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We show that the dynamics of a driven quantum system weakly coupled to a finite reservoir can
be approximated by a sequence of Landau-Zener transitions if the level spacing of the reservoir is
large enough. This approximation can be formulated as a repeated interaction dynamics and leads
to a quantum master equation for the driven system which is of Lindblad form. The approach is
validated by comparison with the numerically exact full system dynamics. To emphasize the role of
coherence in the master equation, we propose a model-system which shows that in its presence, work
can be extracted from a thermal reservoir while if the coherences vanish no work can be extracted.

I. INTRODUCTION

Establishing reliable kinetic descriptions for time-
dependently driven open quantum systems is important
in many contexts [1–8]. In recent years this became par-
ticularly true in quantum thermodynamics where work
has been particulary focused for periodically driven sys-
tems [9–16] but not only [17–23]. We used a distinctive
approach in Refs [24, 25], where we studied the thermo-
dynamics and dynamics of a quantum dot with a time
dependent energy level, coupled to a fermionic reservoir
with finite spacing between energy levels. When the cou-
pling is weak compared to that spacing, the dynamics
can be described as a sequence of Landau-Zener transi-
tions [26–29] occurring whenever the dot energy crosses
a reservoir level. The resulting stochastic dynamics for
the dot occupation was shown to agree very well with the
numerically exact full quantum dynamics.

In these previous studies the initial state was thermal
for the reservoir and diagonal in the energy basis of the
dot. As a result coherences were absent from the descrip-
tion. In the first part of this work, Sec. II, we extend
these previous works and consider initial states which
may contain coherences. We formulate the problem in
a different but equivalent physical setup. Our system is
now a single spin 1/2 system interacting with a reser-
voir of L spin 1/2, that eventually will be thermal. We
will show that the dynamical description we obtain for
the system can be formulated in a repeated interaction
framework [30–32]. The agreement with numerically ex-
act results will again be shown to be very good.

In the second part of the paper, Sec. III, we use our
results to propose a machine that can extract work from
coherences, a topic that has attracted attention in recent
years [33–35]. The machine is driven by spin-1/2 systems
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which are initially prepared in a thermally populated
density matrix with non-vanishing coherences which re-
peatedly interacts with a spin 1/2 particle, in permanent
contact with a thermal reservoir. Work extraction in this
model is exclusively caused by coherences. Conclusions
are drawn in Sec. IV.

II. QUANTUM DYNAMICAL MAP

We consider a spin-1/2 particle interacting with a finite
number of spins whose Hamiltonian takes the form,

H(t) = εtσ
z +

L∑
n=1

εnσ
z
n +

L∑
n=1

νnσ
+σ−n + H.c.. (1)

= HS(t) +HB + V

Above σα (α = x, y, z) are Pauli spin-1/2 matrices and
σ± = (σx ± iσy)/2. Hereon, we refer to the first spin
(without subscript) as the system with time dependent
HS(t) = εtσ

z and the remaining L spins as the reservoir

with HB =
∑L
n=1 εnσ

z
n. When L → ∞ we obtain a

system interacting with a spin reservoir [36]. In this work
we will set the Planck constant ~ and the Boltzmann
constant kB to unity.

As the energy level of the system, εt, is ramped in time
at a rate ε̇t, it will cross the reservoir energy level εn (see
Fig. 1) at time tn and undergo an avoided crossing in the
single spin magnetization (single-particle) basis with an
energy gap of order 2νn. The level spacing between con-
secutive reservoir spin energies is assumed to be greater
than the energy gap, i.e.,

εn+1 − εn > 2|νn| (2)

and the ramping rate at crossing n, ε̇n, is assumed to
change smoothly with n. The time between two consec-
utive levels tn+1 − tn = (εn+1 − εn)/ε̇n, is also assumed
greater than the Landau-Zener validity time τ lzn [37, 38],
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FIG. 1. Schematics of the model with εt linearly ramped.

the time necessary for the standard asymptotic Landau-
Zener formulas to hold. This implies a second condition

εn+1 − εn >
√
ε̇nmax

[
1, 2|νn|/

√
ε̇n

]
. (3)

These assumptions will allow us to treat the dynamics as
a repeated interaction problem [30–32], where the system
interacts with the spins of the reservoir sequentially. In-
deed, over times τn+1 > t > τn where τn = (tn + tn−1)/2
for n > 1 and τ1 = 0, the Hamiltonian can be approxi-
mated as

H(t) ≈ Hn +H 6=n (4)

with

Hn = εtσ
z + εnσ

z
n +

(
νnσ

+σ−n + H.c.
)
,

H 6=n =
∑
n′ 6=n

εn′σzn′ . (5)

The corresponding unitary evolution operator in full
space between τn and τn+1 is thus given by Un ⊗ U 6=n,

with Ux = exp+

[
−i
∫ τn+1

τn
dtHx

]
(x = n, 6= n and the

subscript + indicates the time-ordered exponential). We
will only consider initial states at time t = 0 of the to-

tal system of the form %1
⊗L

n=1 ρ
B
n (0), where %1 is an

arbitrary system density matrix and ρBn (0) an arbitrary
density matrix for spin n of the reservoir. Therefore, as
long as the ramping of the system level occurs only in
one direction (to avoid multiple crossings with the same
reservoir level and thus ensure that at every crossing the
system encounters a free reservoir spin), the system den-
sity matrix at time τn, denoted %n, will be given by the
iterative relation (valid for n ≥ 1)

%n+1 = Trn[Un(%n ⊗ ρBn (τn))U†n], (6)

where ρBn (τn) = e−iεnσ
z
nτnρBn (0)eiεnσ

z
nτn is the freely

evolved reservoir spin n and Trn is the trace over the
space of the spin n of the reservoir.

Thus, the problem of evaluating the quantum dynami-
cal map of the system density matrix boils down to obtain
an expression for the evolution operator Un. To do so,
we begin by expressing Hn in the basis that diagonalize
σz ⊗ σzn

Hn| ↑↑n〉 = (εt + εn)| ↑↑n〉,
Hn| ↑↓n〉 = (εt − εn)| ↑↓n〉+ ν∗n| ↓↑n〉,
Hn| ↓↑n〉 = −(εt − εn)| ↓↑n〉+ νn| ↑↓n〉,
Hn| ↓↓n〉 = −(εt + εn)| ↓↓n〉, (7)

where σz| ↑〉 = | ↑〉, σz| ↓〉 = −| ↓〉, and | ↑↓n〉 = | ↑〉⊗| ↓n
〉 with the first ket corresponding to the system spin and
the second corresponding to the nth reservoir spin. This
shows that nontrivial dynamics will only happen in the
subspace {| ↑↓n〉, | ↓↑n〉} and that it coincides with the
standard Landau-Zener problem [26–29].

Since the ramping has been assumed to vary smoothly
with n, close to the crossing, the energy of the system
spin can be assumed to change linearly in time, i.e.,
εt = ε̇nt. Using this assumption, one can solve the dy-
namics exactly. The so-called adiabatic impulse approx-
imation [37] (see also [41–45]) consists in matching the
exact analytic solution for t→∞ to the finite time adi-
abatic evolution to obtain a simple but accurate expres-
sion. In this way, one obtains that

Un| ↑↑n〉 = e−iαn | ↑↑n〉,
Un| ↑↓n〉 =

√
Rn| ↑↓n〉 −

√
1−Rneiϕn | ↓↑n〉,

Un| ↓↑n〉 =
√
Rn| ↓↑n〉+

√
1−Rne−iϕn | ↑↓n〉,

Un| ↓↓n〉 = eiαn | ↓↓n〉, (8)

with

αn =
ε̇n
2

(
τ2n+1 − τ2n

)
+ εn (τn+1 − τn) , (9)

Rn = e−2πδn , δn =
|νn|2
2ε̇n

, (10)

ϕn =
π

4
+ δn (lnδn − 1) + arg [Γ(1− iδn)] , (11)

and Γ(x) being the Gamma function of x. The parameter
ϕn above is the Stokes phase [40] that is independent of
all the details of the evolution and only depends on what
happens at the avoided crossing. The phase αn keeps
track of the finite time.

Representing %n in the basis {| ↑〉, | ↓〉} as

%n =

(
pn kn
k∗n 1− pn

)
, (12)

using Eq. (6) and Eq. (8), we find that

pn+1 = Rnpn + an(1−Rn)

+
√
Rn(1−Rn)

[
eiϕnqnk

∗
n + H.c.

]
, (13)

kn+1 =
√
Rne

−iαnkn

−
√

1−Rne−i(αn−ϕn)qn(2pn − 1), (14)
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FIG. 2. Comparison between exact quantum dynamics (black solid line), Landau-Zener Markov chain [red closed circles,
Eqs. (16) and (17)], and continuous time Landau-Zener master equation [blue solid line, Eqs. (22) and (23)] for different values
of Landau-Zener transition probability 1 −Rn. The parameters for panels: (a) and (b) are νn = 0.4 and ε̇n = 0.1, (c) and (d)
are νn = 0.2 and ε̇n = 0.2, and (e) and (f) are νn = 0.1 and ε̇n = 1.0. The spin reservoir with L = 10 is set initially at inverse
temperature β = 2, µ = 0, and energies εn = n ε with ε = 1.

where

ρBn (τn) =

(
an qn
q∗n 1− an

)
, (15)

with an = 〈↑ |ρBn (0)| ↑〉 and qn = 〈↑ |ρBn (0)| ↓〉
exp[−2iεnτn]. This completely positive trace preserving
(CPTP) map forms the first main result of this work.
The population and coherence dynamics are clearly cou-
pled to each other.

In the rest of this section we consider the particular
case where the reservoir density matrix is initially grand
canonical ρB(0) = exp [−β(HB − µMB)] /ZB where

MB =
∑L
n=1 σ

z
n is the net magnetization of the reser-

voir and µ the associated spin-chemical potential. This
means that Eq. (15) is diagonal, qn = 0, whereas an =
fn = {exp[2β(εn − µ)] + 1}−1 is a Fermi-Dirac distribu-
tion for spins. As a result, Eq. (13) and Eq. (14) simplify
to

pn+1 = Rnpn + fn(1−Rn) (16)

kn+1 =
√
Rne

−iαnkn. (17)

The populations and coherences are now decoupled. The
coherences will vanish as the number of crossings in-
creases since Rn is a positive real number smaller than
one. The population dynamics in turn obeys a stochas-
tic jump process master equation which was previously
derived in Ref. [24]. We note that our spin model is
formally equivalent to the fermionic model used in that

reference (this can be seen using the mapping: σz → c†c,
σ+ → c† in the Hamiltonian [Eq. (1)] and β → β/2,
ε̇n → ε̇n/2 for the dynamical map in Eqs. (16) and (17)).

Continuous time Landau-Zener quantum master
equation

In order to obtain a continuous time Landau-Zener
quantum master equation for a system interacting with a
thermal reservoir, we consider that during a small inter-
val of time dt the system interacts with n reservoir spins.
Thus, the populations take the form [24, 25],

pn − p1
dt

=
1

dt

n∑
l=1

(1−Rl)(fl − pl). (18)

Neglecting the variation of (1 − Rl)(fl − pl) under the
sum, we obtain

dp(t)

dt
= ε̇tD̄t[1−Rt][f(εt)− p(t)], (19)

with Rt = exp [−2πδt], δt = |νt|2/2ε̇t, and f(εt) =
{exp[2β(εt − µ)] + 1}−1, ε̇t being the instantaneous lin-
earized speed of the system at any time t. The factor
ε̇tD̄t is an estimation of the number of spins that have
interacted with the system in a small interval dt with
D̄t being the reservoir density of states. We next do the
same for the coherences map by expressing it in terms of
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initial condition k1 as,

kn+1 = k1Πn
j=1

√
Rje

−iαj

= k1 exp

 n∑
j=1

(
lnRj

2
− iαj

) . (20)

using the fact that in the continuous time limit τj+1 −
τj = dt′, τj+1 + τj = 2t′, and

∑n
j=1 becomes

∫ t
0
, we

obtain

k(t) = k(0) exp

[∫ t

0

dt′
{
|ε̇t′ |D̄t′

lnRt′

2
− 2iεt′

}]
. (21)

If we furthermore assume to operate in the diabatic
regime where Rt is close to one, we can expand Rt in
Eqs. (19) and (21) to obtain,

dtp(t) = T+[1− p(t)]− T−p(t), (22)

dtk(t) = −2iεtk(t)− Ξt
2
k(t). (23)

with T+ = Ξtf(εt), T
− = Ξt[1 − f(εt)], and Ξt =

πD̄t|νt|2. This equation is of Lindblad form. It is also
equivalent to the Markovian Redfield equation [46] when
applied to our model. The coherence are decoupled from
the population and undergo damped oscillations with a
rate Ξt.

We now compare in Fig. 2 our Landau-Zener dynam-
ics with the exact quantum dynamics obtained by solv-
ing the Schrödinger equation using the Crank-Nicolson
method [47]. The reservoir is thermal and consists of
only 10 spins with equally spaced energy levels εn = n ε
and thus a uniform density of states D̄t = ε−1. The
Landau-Zener Markov chain results are depicted as red
closed circles [Eqs. (16) and (17)] and match well with
the exact dynamics (black solid lines) irrespective of the
Landau-Zener transition probability 1−Rn, for both pop-
ulations [Fig. 2(a), (c), and (e)] and coherence [Fig. 2(b),
(d), and (f)]. In the regime of fast driving [Fig. 2(e) and
(f)], the continuous time approach [Eqs. (22) and (23)]
always coincides at discrete times with the Markov chain
results and thus with the exact results for both popula-
tions and coherences. But the oscillations in between the
avoided crossings are not supposed to be captured. This
is indeed the case for populations but the coherence os-
cillations are surprisingly well reproduced. As expected,
the agreement becomes bad in the slow driving regime
[Fig. 2(a) and (b)] since Rn is not anymore close to one.
Overall, within its regime of applicability the Landau-
Zener approach reproduces very well the exact quantum
dynamics for both populations and coherence. We are
limited by the computational resources to go beyond 10
spins in the reservoir, but as observed for the popula-
tions [25], one may expect a better agreement between
the Landau-Zener approach and the exact quantum dy-
namics as the number of spins in the reservoir increases.

LZ
transition

System
Redfield
dynamics

Driven
atoms

E
n

er
g
y

ε0

ε̇t

0
T 2T 3T

FIG. 3. An illustration of the work machine that utilizes
coherences from the atoms to extract work. The energy of
the atoms is linearly driven across a spin system connected
to a thermal reservoir. The resonant coupling between the
nonthermal atoms and the system generates a Landau-Zener
transition which sustain coherences in the system and enables
work extraction.

III. WORK EXTRACTION USING
COHERENCES

In this section we study a simple model illustrating
that work can be extracted from coherences.

We first consider a system HS in contact with a ther-
mal harmonic reservoir HR via HSR. The total Hamil-
tonian reads HS +HR +HSR, where

HS = ε0σ
z

HR =
∑
k

p2k
2mk

+
1

2
mkω

2
kx

2
k,

HSR = (σx0 + σz0)
∑
k

ckxk. (24)

The system density matrix % follows the well known
Markovian Redfield quantum master equation [46, 48]
which, given the form of the term HSR, couples popula-
tions and coherences and is given by,

dt%nm =− i∆nm%nm +
∑
i,j

Rijnm%ij , (25)

Rijnm =SniSjm (Wni +Wmj)− δj,m
∑
l

SnlSliWli

− δn,i
∑
l

SjlSlmWlj .

Note that there is no general theorem guaranteeing the
positivity of the state % for every t under a Redfield
evolution. However, we check that this is the case in
our computation. In Eq.(25), the only non-zero ele-
ments of ∆nm are ∆12 = −∆21 = 2ε0. The opera-
tor S = σx0 + σz0 has elements S11 = S12 = S21 =
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−S22 = 1, and the Markovian rates read W12 =
J(2ε0)n(2ε0), W21 = J(2ε0) [n(2ε0) + 1] and W11 =
W22 = limx→0 J(x)n(x) (the Lamb-shift are ignored).

Also, J(ω) = ηω/
[
1 + (ω/ωc)

2
]

is an ohmic spectral

density with a Lorentz-Drude cutoff ωc and n(ω) =

[exp(βω)− 1]
−1

is the Bose-Einstein distribution. Be-
cause HSR is assumed weak, the heat flow from the reser-
voir to the system is obtained by integrating over time
the heat rate Q̇ = TrSHSdt%.

We now assume that the system HS is also subjected
to a short interaction every period T with a driven
atom HA(t), described by an interaction term HSA, i.e.,
HSA(t) = HS +HA(t) + VSA, where

HA(t) = ε(t)σz,

VSA = νσ+
0 σ
− + H.c.. (26)

We will also assume that during a time interval T which
starts in between two interactions (see Fig. 3), the en-
ergy of the incoming atom ε(t) is ramped linearly in time
from 0 to 2ε0 and suddenly switched off back to 0 at the
end of the interval T . The process is then repeated with
a fresh statistically identical incoming atom. The inter-
action is assumed to be much shorter than the typical
relaxation time τR ∼ 1/J(2ε0) induced by the reservoir
on the system. In that way, the effect of the reservoir can
be neglected during the system atom interaction. The
Landau-Zener map Eq. (13) and Eq. (14) can thus be ap-
plied to describe the effect of the crossing on the system
density matrix. For consistency, the period T between
two successive system-atom interactions must be longer
than the Landau-Zener time τ lz which in turn must be
shorter than the typical relaxation time induced by the
reservoir τR. As a result of the repeated interactions
with statistically identical atoms, the system will reach
a steady state regime of period T . If τR is compara-
ble or smaller than T , the system will always thermalize
between successive system-atom interactions. But more
interesting effects will be obtained when τR is larger than
T .

In summary, in between system-atom interactions the
system dynamics is described by the Redfield equation
(25) while the effect of the interaction on both the system
and the atoms will be described for n ≥ 1 by

pn+1 = Rpn + a(1−R)

+
√
R(1−R)

[
eiϕqk∗n + H.c.

]
, (27)

kn+1 =
√
Re−iαnkn

−
√

1−Re−i(αn−ϕ)q(2pn − 1), (28)

a′n+1 = Ra+ pn(1−R)

−
√
R(1−R)

[
eiϕqk∗n + H.c.

]
, (29)

q′n+1 =
√
Re−iαnq

+
√

1−Re−i(αn+ϕ)kn(2a− 1) (30)

where a and q (resp. a′n and q′n) denote the populations
and coherence of the atom before (resp. after) the inter-

action. The phase 2αn = ε̇
(
τ2n+1 − τ2n

)
+2ε0 (τn+1 − τn),

ϕ = π/4 + δ (lnδ − 1) + arg [Γ(1− iδ)] with δ = |ν|2/2ε̇,
and the probability R = exp[−2πδ] [similar to Eqs. (9),
(10), and (11)].

In what follows, we will assume that the atoms are
initially not thermal. The initial populations are ther-
mal a = f but the coherences q are nonvanishing. This
will allow us to isolate the effect of coherences. Mechan-
ical work is the work produced by the external time de-
pendent Hamiltonian and obtained by integrating over
time the work rate Ẇmech = TrρSAdtHSA = TrρAdtHA.
We want to see if mechanical work can be extracted (ex-
tracted work is negative by convention) over one period
T . The mechanical work over one period T centered
around the nth system-atom interaction can be decom-
posed into three parts: From 0 to the avoided crossing at
T/2, it is given by the average energy change occurring
when ramping the atom level from 0 to ε0

W (1) = 2ε0a− ε0(1− a). (31)

From after the avoided crossing at T/2 up to time T it
is given by the average energy change occurring when
ramping the atom level from ε0 to 2ε0

W (2)
n = ε0a

′
n+1 − ε0(1− a′n+1). (32)

We note that a′n+1 [Eq. (29)] implicitly contains infor-
mation about all previous coherence due to Redfield evo-
lution that mixes the populations and coherence. From
the sudden switch of the atom level from 2ε0 back to 0
at time T it is given by

W (3)
n = −2ε0a

′
n+1 + 2ε0(1− a′n+1). (33)

Thus, the mechanical work done over the period T cen-
tered around the nth system-atom interaction is

Wmech
n = W (1) +W (2)

n +W (3)
n ,

= 2ε0(a− a′n+1). (34)

This work is thus exactly plus (resp. minus) the en-
ergy change in the system (resp. atom) occurring at
the crossing since the Landau-Zenner map preserves to-
tal energy. Energy conservation at every instant reads
dt(TrρSAHSA) = Ẇmech + Q̇. Integrated over a period,
we thus see that the system energy change over a period
∆ES plus the atom energy change ∆EA, is the system
energy change due to the crossing, Wmech, plus the en-
ergy entering the system from the (Redfield) reservoir as
heat Q. Since the system energy of the atom at the begin-
ning and end of a period has been set to zero, ∆EA = 0
and does not appear in the energy balance over the pe-
riod. When the system reaches a periodic steady state,
the energy change of the system over a period vanishes,
and the minus work equals heat. Work extraction in this
case means that heat is absorbed from the reservoir. As
we will see this is made possible by the initial atom co-
herences. Indeed, in the absence of coherence k0 = 0
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FIG. 4. Average power per cycle, Pmech = Wmech/T , as a function of the initial coherence q = q̃′ + iq̃′′ of the atoms. The
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and q = 0, the steady-state populations for the Redfield
dynamics would be pn = a leading to Wmech = 0.

We plot the steady-state mechanical power Pmech =
Wmech/T per unit cycle in Fig. 4 for different values of
Landau-Zener interaction strength ν as a function of the
real and imaginary part of the initial atom coherence.
The uncolored (white) parts of Fig. 4 are the regions
where the initial density matrix is not physical. The
power profile is not symmetric with respect to the real
and imaginary parts of the initial coherence. Higher work
extraction occurs for positive real parts. The maximum
work is extracted when the Landau-Zener interaction is
the strongest due to a high probability of exchange 1−R
between the system and the atom.

As the temperature β is varied, the populations of
the atoms vary and hence the positivity range of the
initial density matrix changes. Thus, the global maxi-

mum mechanical work done (Pmech > 0) and extracted
(Pmech < 0) per cycle taken with respect to the real and
imaginary part of coherence would vary as a function of
β. In Fig. 5 the shade represents the entire range of
mechanical power Pmech accessible at each value of the
inverse temperature β. The inset shows that at weak
to moderate Landau-Zener interactions, the maximum
power extraction occurs in the high temperature (low β)
regime, whereas the maximum power spent occurs in the
low temperature regime. This could be a possible control
strategy to tune the machine to either extract or spend
power depending only on the temperature of operation.
At strong Landau-Zener interactions this asymmetry dis-
appears and the maximum extracted and spent power
both occur close to β = ε0.

IV. CONCLUSIONS AND DISCUSSION

In this paper we extended the Landau-Zener master
equation studied in [24, 25] by incorporating the coher-
ence dynamics and showing that the resulting quantum
master equation is of Lindblad form. The main idea
is to approximate the system-reservoir interaction as a
repeated interaction problem where every interaction is
described as a Landau-Zener crossing. We showed that
the theory agrees very well with the numerically exact
full quantum simulations. To illustrate the theory and
the role of coherences, we proposed a toy model where
a system can extract work from a single thermal reser-
voir bcause it is repeatedly interacting with atoms with
thermal populations but nonvanishing coherences. While
presented on a specific model, the method used to derive
our Landau-Zener quantum master equation should be
generalizable to any noninteracting open quantum sys-
tem. The extension to interacting models is an interest-
ing future research avenue.
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