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Abstract

A method for market clearing in land use models with a microsimulation approach for location

choice of agents is proposed. The method, based on the Bid-auction theory and random utility

models, assumes that agents individually adjust their perceived expected utility by observing

market prices before entering auctions for a real estate good, hence modifying their overall

willingness to pay for locations. The adjustment translates into a correction of each agent’s bid

level that follows the direction of supply-demand equilibrium, as they attempt to ensure their

location. In each period, auctions for each available real estate good are simulated and prices are

computed as the expected maximum bid of all agents in the market. The proposed method is

tested for the city of Brussels, validated against real data and compared with results obtained

when the bid adjustment is not included. Simulation results reproduce price trends that were

observed in reality between the year 2001 and 2008, outperforming results obtained without a

quasi-equilibrium bid adjustment approach. The proposed method is feasible to be implemented

in large scale microsimulations and agent-based models because it does not require solving large

fixed-point equilibrium problems.
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Introduction

Interventions on urban systems such as large real estate developments, modifications to the
transport system and changes in urban policy are usually costly to implement and can benefit
from models to forecast and evaluate their performance and effects in other elements of the
system. Since Lowry (1964), land use models have been under constant development,
following several different theoretical and methodological approaches to deal with this
complex problem. A review of existing models and their methods can be found in Batty
(2009), Iacono et al. (2008), and Wegener (2004, 2014).

Land use models dealing with urban real estate markets can be broadly classified
according to three dimensions: the level of aggregation for agent treatment, the level of
spatial aggregation and the degree of market representation (ranging from having no
land-market to different mechanisms for market clearing). Some models treat agents in an
aggregate way, defining homogeneous groups that can be characterized by average
attributes, while other models treat their agents individually, these are usually known as
microsimulation or as agent-based models (ABM, see Batty, 2007; Benenson and Torrens,
2004; Heppenstall et al., 2011). In a similar way, space can be divided in analysis zones of
different sizes, from communes or traffic analysis zones to buildings, parcels or dwelling
units, the latter being the most disaggregate level possible.

However, the most relevant difference across modeling approaches is the treatment of
market clearing: how, and at which prices, agents are assigned to locations or units.
Equilibrium models traditionally clear the market by finding a vector of prices that solves
the equilibrium between supply (locations or units) and demand (agents) at an aggregate
level. This approach, while consistent with microeconomic theory, usually requires a series of
unrealistic assumptions like a cross-sectional treatment of time, instant and simultaneous
relocation of all agents, and a perfect match between supply and demand. Moreover, solving
the equilibrium problem will either require working with aggregate agents and space, or
solving a very large fixed point problem with an excessively high computational cost. On the
other hand, dynamic or disequilibrium models treat time as an explicit variable, usually
representing it through a sequence of periods where the output of one period is the input
of the next. Prices in this type of model are usually defined through hedonic methods or
heuristics without solving a market equilibrium as usually defined in microeconomics.
Microsimulation and ABM usually adopt this approach which, although more realistic,
detailed and capable of representing the dynamics of city development and inertia of
urban systems, deviates from classic urban economic theory. A more detailed analysis of
this trade-off between theory, realism and functionality can be found in the works of Parker
and Filatova (2008), Simmonds et al. (2013), and Wegener (2014).

With the increasing availability of data and computing resources, microsimulation models
are becoming more relevant and attractive due to the possibility of representing individual
agents and their complex interactions in a simple yet robust and flexible way. Moreover,
agent-based microsimulation can easily account for the dynamics in the system, something
that is hard to achieve in equilibrium models. However, there is a wide variety of approaches
used to represent market dynamics, and no consensus in this regard has been reached yet.
Exploring market clearing mechanisms that are grounded on microeconomic theory may
help to better understand the underlying dynamics and simulation outcomes from an
analytical point of view.

This paper proposes a method to model location choice and real estate prices
simultaneously in a land use microsimulation context, defining a modeling framework
that could also be applied to more general ABMs of urban phenomena (for an
explanation of the differences between ABM and microsimulation models see Batty,
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2009). The method is based on the bid-auction approach for location choice modeling
(Ellickson, 1981; Martinez, 1992) and works under the assumption that real estate goods
are traded in an auction market, where the best bid for a particular location determines
both the located agent and the price or rent of the good. The proposed approach does not
require solving for equilibrium, but estimates the maximum bid in each location and period by
simulating the underlying auction process. Given exogenous supply levels, individual
households adjust their willingness to pay as a reaction to the (observed) market
conditions. This adjustment goes in the direction of an equilibrium (although it does not
necessarily reach it), because it is obtained from solving a simplified approximation of
microeconomic equilibrium conditions, and produces prices that are higher when goods
are scarce and lower when goods are abundant. The approach allows the computation of
market prices without bundling supply (real estate units) or demand (households) into
aggregate types or categories, as required by equilibrium models. It is also not excessively
expensive in terms of computational time, thanks to the estimation of the price as an
expectation of the maximum bid over all agents instead of simulating individual transactions.

The proposed method is applied to a location choice model for the city of Brussels.
Simulation outcomes are validated against real data, showing a better fit to observed
market prices when the quasi-equilibrium bid adjustment is used.

The paper is organized as follows: We first review market clearing mechanisms used in
equilibrium, ABM and dynamic disequilibrium models, to then propose our own quasi-
equilibrium approach for this. We proceed to formulate a general framework for land use
simulation which embeds the previously proposed market clearing mechanism; this
framework is then used to simulate the city of Brussels. We conclude the paper by
assessing the advantages and limitations of the proposed modeling approach and
identifying possible further research.

Market clearing

Real estate markets are particular and different from other markets because of the scarce
nature of the traded goods and an almost-inelastic demand for them. Because of their spatial
attributes, real estate goods have a quasi-unique nature: all locations are different because
they cannot use the same space and their access to amenities and exposure to externalities
will always be different. Besides the fact that only one consumer can use a location, the main
implication of the quasi-unique nature of real estate goods is the fact that demand for them
will be differentiated: the preference and willingness to pay of one consumer for a particular
location will also be quasi-unique. Besides this, housing is a basic need and demand for it is
essentially inelastic: a household cannot afford not to locate anywhere because it has to live
somewhere. These particular characteristics generate a lot of competition between agents in
the real estate market, especially if supply is relatively scarce.

The location choice problem can be described, in simple terms, as matching agents with
locations in a coherent way. Two main modeling approaches have been proposed for this in
the literature, the Bid-auction (maximum bid, see Ellickson, 1981) and the Choice approach
(maximum utility, see McFadden, 1978). These two approaches have been proved to be
equivalent under equilibrium conditions by Martinez (1992) but, otherwise, cannot
account for the aforementioned conflicts (and resulting prices) that arise from competition
for urban land. A market clearing mechanism, understood as the process of interaction
between supply and demand that assigns goods to consumers (or vice-versa), is needed for
this. The following subsections briefly review the main concepts behind market clearing for
equilibrium and for dynamic disequilibrium models.
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Equilibrium models

From a classical urban economics perspective, market clearing is the process of finding the
combination of location choices and equilibrium prices where every agent achieves
maximum utility (Fujita, 1989) because, in a market context, conflicts are solved through
prices (or bids) that are adjusted in order to discriminate between agents or goods (for a
more detailed review on equilibrium conditions for urban location see Hurtubia, 2012).
Under the Bid-auction paradigm, it is assumed that agents bid their willingness to pay for
each location, with each seller selecting the highest bidder. If an agent is the best bidder for
more than one location, it can discriminate between them by marginally (and
homogeneously) reducing its bid until it remains the best bidder in only one. The bidder
does this because it behaves as a utility (or consumer surplus) maximizer and it is indifferent
between locations where it can achieve the maximum utility (Alonso, 1964), so it will try to
pay the smallest possible amount for any of them. If an agent does not win any auction, it
will increase its bid until it wins at least one auction. If the agent runs out of available budget
and still cannot find a location it becomes ‘‘homeless’’. It is important to notice that an
adjustment of the willingness to pay does not imply a change in the preferences of agents, but
rather a re-assessment and adjustment of their expected utility level. The equilibrium
condition in this case can be expressed as followsX

i

SiP hji,Bhi zið Þð Þ ¼ Hh 8h ð1Þ

where Si is the amount of supply (number of units) in each location i andHh is the number of
households of type h. Bhi is the willingness to pay (or bid) of household h for location i,
which is a function of location attributes (zi). The term P hji,Bhi zið Þð Þ represents the
probability of agent h being the highest bidder for location i. The equilibrium condition
of (1) implies finding a vector of bids Bhi, 8h, ið Þ ensuring all households are located in the
existing supply while achieving maximum utility. This is analogous to finding the vector of
dwelling prices that would solve the equilibrium under a Choice approach and it requires
that total supply (

P
i Si) must equal total demand (

P
h Sh).

Equilibrium models generally use equilibrium conditions that are similar to the one
described by (1). This usually requires treating agents and locations in an aggregate way
and to solve a fixed point problem. Examples of models doing this are RURBAN
(Miyamoto and Kitazume, 1989) and MUSSA (Martı́nez, 1996; Martı́nez and Donoso,
2010) in the family of Bid-auction models, and TRANUS (De La Barra, 1980, 1989; De
La Barra et al., 1984), MEPLAN (Echenique et al., 1990) and RELU-TRANS (Anas and
Liu, 2007) from the family of models assuming a Choice location process.

Dynamic disequilibrium

Dynamic disequilibrium models generally avoid solving equilibrium problems and introduce
dynamics by modeling period-wise, accounting for time lags and feedback effects (mostly
excess of supply or surplus and transport system performance) that make decisions in one
period dependent on the outcome of previous periods. Examples of this type of models are
DELTA (Hunt and Simmonds, 1993; Simmonds, 1999), PECAS (Hunt and Abraham, 2003),
and IRPUD (Wegener, 2008). Some dynamic models do try to incorporate equilibrium
solutions, for example, by solving a long-term inter-temporal equilibrium problem (Anas
and Arnott, 1991) or by solving a series of cross-sectional equilibrium problems in each
modeling period (Martı́nez and Hurtubia, 2006). These models, however, require several
strong assumptions about market or user behavior and would need a very large amount of
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detailed time-series of data to be calibrated, rendering them very hard to implement for a
real case study.

Microsimulation land use models generally adopt a dynamic disequilibrium approach.
For example, UrbanSim (Waddell, 2002; Waddell et al., 2003) finds real estate prices in each
simulation period through a hedonic price model estimated for the base year, but computed
for each simulation period using updated explanatory variables. In cases of conflict like, for
example, two agents choosing the same location, UrbanSim assigns it using a ‘‘first-come,
first-served’’ approach (Waddell, 2010). The idea behind using such an approach is that
neither sellers nor buyers have perfect information on the market and sellers will minimize
risks by giving the location to the first buyer at the asking price. Newer developments in the
UrbanSim framework introduce the effect of competition among agents into the price
formation process and location assignment (Wang and Waddell, 2013) by adjusting prices
in order to minimize the difference between supply and demand. A similar approach is used
in ILUTE (Salvini and Miller, 2005) and was tested for the residential real estate market of
Toronto in Farooq and Miller (2012).

ABMs also tend to adopt a dynamic disequilibrium approach for market clearing; a
review of modeling approaches and applications can be found in the works of Huang
et al. (2014), Matthews et al. (2007), and Torrens and Benenson (2005). Some ABMs
incorporate complex interactions such as competition through real estate auctions and
adjustment of the agent’s expectations (Chen et al., 2011; Ettema, 2011; Filatova, 2015;
Filatova et al., 2009; Parker and Filatova, 2008; Magliocca et al., 2011), explicitly
modeling the market clearing process at an individual scale (for example, by simulating
negotiations between real estate buyers and sellers) and reducing the gap between ABM
and economic theory. In this context, large scale simulations and model result validations
confirm that ignoring market elements such as competitive bidding might produce incorrect
forecasts and policy recommendations (Sun et al., 2014). The approach proposed in this
paper also attempts to account for these elements, by proposing a market clearing
mechanism that works at an individual agent level, but is derived from market
equilibrium conditions that are related to the one described by equation (1).

A quasi-equilibrium approach to market clearing

Amodel for real estate market clearing is proposed. The model attempts to take into account
the equilibrium forces that exist in market interactions, like demand or supply surplus (i.e.
competition), the adjustment of expectations of agents and the corresponding adjustment of
behavior. However, the model does not attempt to solve an equilibrium but, instead,
proposes a disaggregate adjustment process with some outcomes, like the price, being the
result of aggregate market interactions.

The proposed model has the following assumptions

. Interactions between agents take place in a discrete period framework. A period can be any
amount of time large enough to account for a change in the levels of supply and demand.

. In each period, a group of agents enters the market looking for a location. Real estate
supply for the same period is determined independently and does not necessarily satisfy
demand.

. Real estate goods are transacted in auctions. All active agents (those looking for a
location) are potential bidders for all locations.

. Agents do not have access to perfect information on the willingness to pay of other agents
for each location, they can only infer them from the prices they observe in previous
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periods. Before bidding for locations agents adjust their expectations according to this
information.

. Auctions take place simultaneously, the best bidder gets the location. Prices are computed
as the expected maximum bid.

. If an agent is the best bidder for more than one location, it chooses the one that provides
maximum consumer surplus. Vacant locations and unlocated agents participate in new
auctions until the market clears in a particular period. Remaining unlocated agents or
unused units become part of the pool of active agents or vacant units for the next period.

Figure 1 describes the auction and market clearing sequence in the proposed model for a
particular period t. All elements shown in gray boxes are exogenous to the process, including
relocating agents, vacant units, and attributes of the location in the previous period. Agents
adjust their willingness to pay after observing prices and location attributes in the previous
period and bid for each location. The auctions determine who is the best bidder for each
location and the clearing mechanism assigns agents to locations. If, due to conflicts, there are
unlocated agents or empty units, a new set of auctions takes place. The process is repeated
until all agents are located or all locations are occupied; this is a (relaxed) approximation to
the classical equality condition between supply and demand, as described by equation (1). At
the end of the sequence, any unlocated agents or empty units will become relocating agents

Figure 1. Algorithm for market clearing.
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and vacant units respectively for the next simulation period. The overall modeling procedure
and main components of the algorithm are described next.

Location choice modeling under a bid auction approach

Ellickson (1981), following the work of Alonso (1964), proposed to model the household’s bid
(or willingness to pay) as a function of location attributes (zi) and proposed to account for the
unobserved heterogeneity in preferences across households by adding a random error termfBhi ¼ Bh zið Þ þ "h ¼ Bhi þ "h ð2Þ

The probability of a residential unit or location i being occupied by h is the probability of
that particular household winning the auction against all other bidding households

Ph=i ¼ Prob Bhi þ "h 4Bh0i þ "h0 , 8h
0 6¼ h

� �
If the error terms follow a Gumbel or Extreme Value distribution, the best bid probability

can be expressed as

P hjið Þ ¼
exp �Bhið ÞP
g2H exp �Bgi

� � ð3Þ

where H is the set of bidding households. Under the auction market assumption, the price or
rent (ri) of a good is the value of the winning bid which, in a stochastic setting, can be
expressed as an expectation

ri ¼ E max
h

ðBhiÞ

� �
ð4Þ

The Extreme Value distribution assumption allows one to express the expected maximum
bid of a location i as (Ben-Akiva and Lerman, 1985)

ri ¼
1

�
ln

X
g2H

exp �Bgi

� � !
þ
�

�
ð5Þ

where � is the Euler’s constant. Notice that equation (5) allows writing the maximum bid
probability of (3) as a function of the expected price, as follows

P hjið Þ ¼ exp � Bhi � rið Þð Þ ð6Þ

Simulation of auctions can be performed through Monte Carlo draws from the
probability distribution described by equation (3) or (6).

Adjustment of bids

Following Martinez (2000), we assume that the deterministic part of the bid function can be
separated into two elements, therefore; for a particular period t

Bt
hi ¼ bth þ bhi z

t�1
i ,�

� �
ð7Þ
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where bth is the adjustment component that relates the bid with the utility level of the
household and bhi is the hedonic part of the bid expressing the value a household h gives
to the attributes of a location i through a set of parameters �. Because location has not taken
place yet in t, only attributes from the previous period (zt�1i ) are observable by the
household. The functional form of (7) implies the assumption of a quasi-linear
underpinning utility function, which allows for additive decomposition and simplifies the
interpretation of each element (Martı́nez and Henrı́quez, 2007). We assume the preferences
of households will remain constant in time; therefore the value of the hedonic part of a bid
for a particular pair (bhi) will remain constant unless there is a change in the attributes of the
location (zti).

The adjustment of bh follows the logic of households changing their expectations given
what they observe in the market and, therefore, increasing or decreasing their bids depending
on their perceived chance of winning an auction. We define the perceived probability (q) that
agent h has of winning the auction for location i in period t following the bid probability
equation (6), but considering that only the prices of the previous period are observable

qt hjið Þ ¼ exp Bt
hi � rt�1i

� �
ð8Þ

For simplicity we assume the scale parameter (�) to be equal to one. The expected
probability (perceived by h) of winning any auction is the sum over all available supply
(St) of the perceived winning probabilities

qt hð Þ ¼
X
i2St

qt hjið Þ ð9Þ

Because demand for location is inelastic and agents need to locate somewhere, they try to
make this probability to be equal to one. Therefore, by replacing (7) and (8) in (9), we get the
following description of the bid adjustment that accounts for the expectations of the agent,
given the market conditions described by rt�1X

i2St

qt hjið Þ ¼
X
i2St

exp bth þ bhi z
t�1
i ,�

� �
� rt�1i

� �
¼ 1 ð10Þ

Clearing bth from (10) we get

bth ¼ � ln
X
i2St

exp bhi z
t�1
i ,�

� �
� rt�1i

� � !
ð11Þ

The adjustment of bth is, to some extent, similar to adjusting or re-calibrating the
alternative specific constants of a logit model, in order to capture unobserved factors that
describe the market conditions of the forecast scenario (Train, 2009). An intuitive
interpretation is that bth is the bid adjustment households perceive as necessary to attain a
location without over or underbidding, given the available information.

It is important to notice that if supply (St) is large, the sum of (11) will tend to be large as
well. This ensures that, all things being equal, larger supply will always generate smaller
values for bh. This is consistent with the expected lower overall bids that should occur when
supply is abundant. In the opposite case, if supply is scarce, bh will have bigger values. In
general, supply surplus will generate low values of bh while a demand surplus scenario will
trigger increases in the value of bh.
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Equation (10) is similar to equation (1) and to the equilibrium conditions found in models
like MUSSA (Martı́nez, 1996). The bid adjustment of (11) follows the direction of a supply-
demand equilibrium, as it is the result of each household (demand) attempting to ensure
their location in some unit (supply). However, equation (11) does not represent an
equilibrium problem because the attributes of the locations (zt�1i ) and the observed prices
will not change within period t; hence we call this a ‘‘quasi-equilibrium’’ solution. This
means equation (11) is not a fixed point problem and, therefore, can be easily evaluated
for each agent h in each period t. It is important to notice that the solution of (11) will not
ensure the location of an agent h when the auctions take place.

The bid adjustment process described here is similar to the one proposed by Filatova et al.
(2009) in the fact that both correct the willingness to pay of agents as a function of aggregate
market conditions (supply or demand surplus). However, while agents in Filatova et al.
(2009) participate in different sequential auctions where buyers and sellers correct their
bids, asking prices proportionally to the level of demand surplus, the method proposed
here derives the adjustment from quasi-equilibrium conditions, which are solved period-
wise and are explicitly dependent of previous (observable) market prices. Comparison of
both approaches is matter of future work.

Simulation of auctions and calculation of prices

After the bid adjustments have been calculated for each agent, the auctions take place with the
following equation describing the probability of agent h winning the auction for location i

Pt hjið Þ ¼
exp bth þ bhi z

t�1
i ,�

� �� �P
g2Ht exp btg þ bgi z

t�1
i ,�

� �� 	 ð12Þ

A simulation is performed, generating an auction-outcome for each location i, where the
highest bidder will be chosen following the cumulative probability distribution defined by
(12). Prices are the expected maximum bid of each auction, considering the bids of all agents
looking for a location (Ht) and the reference or asking price set by the seller. We model the
asking price as the potential price the location will achieve if auctioned between all located
households (Ht). This is equivalent to computing the equilibrium price for each dwelling
using the logsum expression of (5) but considering that new (re-locating) agents bid their
adjusted willingness to pay

rti ¼ ln
X
g2Ht

exp Bgi z
t�1
i

� �� �
þ
X
h2Ht

exp bth þ bhi z
t�1
i

� �� �0@ 1A ð13Þ

The inclusion of the asking price is equivalent to accounting for the potential bid of other
actors in the market and it is consistent with the definition of equilibrium prices of (5). This
generates a stable price dynamic, since the prices will not depend only on the bids of active
agents but also on that of all potential bidders. The prices will react to scenarios of supply or
demand surplus thanks to the inclusion of the bid adjustments (bh).

The simultaneous simulation of auction outcomes and the use of expected prices are
required for consistency with the economic framework described in the ‘‘Adjustment of
bids’’ section. This also smoothens the simulation results and reduces path dependency,
making prices less dependent on the iterative clearing process. Although the proposed
approach does not attempt to model singular events such as housing bubbles, the
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convenience of ignoring potential path dependency should be reviewed in the future (see Ge,
2017).

Clearing

Since all auctions are simulated simultaneously, it is possible to find agents that are best
bidders for more than one location and agents that could not win any auction. The clearing
process sorts agents and locations by solving conflicts and determines which agents and
locations will go through a new sequence of auctions.

If an agent is the best bidder in more than one auction, it will choose the location that
provides maximum consumer surplus (CS), defined as the difference between the willingness
to pay for the location minus the (equilibrium) price defined in (13)

CSt
hi ¼ Bt

hi � rti ð14Þ

If desired, a probabilistic approach can be applied here too, by computing the probability
of choosing a particular location as

P ijhð Þ ¼
exp Bt

hi � rti
� �P

j2SðhÞ exp Bt
hj � rtj

� 	 ð15Þ

where S(h) is the set of locations where agent h was the highest bidder. The probability of
(15) can be used to generate a simulated choice. Because all active agents bid simultaneously
for all locations, the order in which winning bidders are drawn does not affect the outcome.
After the selection is made, the agent and the location are taken out of the pool. After
repeating this process for all locations, some of them will be empty because they were
discarded by a winning agent and some agents will remain unlocated because they were
not the highest bidders in any auction. This set of empty locations and unlocated agents
enters a new auctioning sequence where the clearing process is repeated until all conflicts are
solved (when either all agents are located or all locations occupied). Bids will be re-adjusted
during the new auction sequences.

This mechanism has the advantage of simulating market clearing in a realistic way. The
bid adjustment has the effect of avoiding under or over-bidding by households; therefore the
best bidder for a particular location is also likely to be an agent that perceives a high utility
in that particular location. This is consistent with economic theory and similar to the
situation observed in equilibrium models, although the relation between the highest bid
and the maximum utility is not absolute, due to the asymmetries of information and
temporal lag in attribute perception.

The adjustment of the bids before entering the auctions can also be understood as a
(simplified) way to model strategic behavior by households. Because of the simultaneous
bid-adjustment for all households, each of them is less likely to overbid and end up winning
auctions for unattractive locations or, in the opposite case, to underbid and end up losing
systematically in all auctions. A more explicit model for strategic behavior could allow
households to participate in different sequential auctions and re-adjust their bids in each
iteration as a function of the observed winning prices. However, there is not enough
empirical evidence describing how households adjust their individual expectations, and
hence their bids, when losing an auction in reality. The proposed method aims at being
an operational model for these processes without incurring excessive complexity or requiring
very detailed assumptions about individual behavior.
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General framework for land use modeling

In order to test the proposed methodology, we insert the market clearing method described
in the previous section within a broader framework for land use modeling, especially
developed for this, called Random Utility Simulator of Household-Location and Urban
Dynamics (RUSH-LoUD). RUSH-LoUD was programmed in Python (code is available
upon request) and contains a series of modules accounting for different elements of urban
dynamics: Demand, Supply, Transport, Relocation and Market Clearing. Figure 2 shows the
different modules and how they interact in one simulation period. In this implementation,
most sub-models are simplified and follow observed distributions instead of having a
behavioral approach, with the exception of the residential market clearing (and location
choice) model. However, the framework supports any behavioral assumption for each of
the sub-models and could be improved in further implementations.

We consider an exogenous demandmodule that, for each simulation period, generates a set
of new agents that enter the system, following control totals defined by official population
statistics coming from Census projections. Relocating agents are drawn randomly in each
period, following an exogenous (and fixed) relocation rate for the whole region. If there are
unlocated agents from the previous period, they are added to the new relocating agent set. The
new agents, together with those agents that are relocating, define the demand. The uniform
sampling protocol for both models generates a set of new and relocating households with the
same distribution of socioeconomic attributes of the observed population.

Supply is determined by a model that, in each period, generates enough supply to satisfy
the total demand, with a spatial and building type distribution that follows that of the supply

Figure 2. General modeling framework.
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in the base year. This is a strong simplifying assumption but generates a supply distribution
that is close enough to that observed in reality for the purposes of this experimental
implementation. The supply model also keeps track of unoccupied supply and makes it
available for the next period.

Demand and supply interact in the Market Clearing model, where the mechanism
described in the previous section takes place and auctions are simulated. The result is a set
of sorted agents and locations together with prices, updated attributes of the locations and a
set of empty units or unlocated agents (depending on the market conditions). These elements
are the main input of the simulation in the next period. Because in this particular
implementation the supply model is set to satisfy total demand plus a structural (relatively
small) vacancy, only empty units are possible.

The transport model is exogenous and provides accessibility measures that characterize
the transport system in each location or zone. In this particular implementation, the results
of a MATSim simulation (Nicolai and Nagel, 2015; Rieser et al., 2007) for the base year are
used and kept constant for all periods. The accessibility is computed as the logsum of the
travel (dis)utility from the zone of origin to every possible zone of destination. A more
appropriate approach would be to re-compute accessibility measures after each simulation
period, but this is very expensive in computational terms and it is left for future validations
of the framework.

For simplicity (and due to the scarce data for job location), the current implementation
simulates the dynamics for the residential real estate market only. Therefore, the non-
residential attributes of the locations (number and distributions of jobs by type and zone)
are computed for the base year and kept constant in the simulation periods.

If data allow, all the simplifying assumptions previously mentioned can be relaxed and
replaced by behavioral models, although these should be carefully specified and estimated.
For this implementation, the focus is placed on the behavioral models for household location
and residential market clearing.

In summary, the current implementation of RUSH-LoUD will only model residential
dynamics. Although reducing the complexity and scope of the simulation, this setting will
allow us to test and evaluate the market clearing model as a proof of concept, avoiding
confusion with the effects that could come from the non-residential market dynamics.

Case study

The proposed model is implemented for the city of Brussels, where data have been collected
in the context of the European research project SustainCity1 (for an extensive description of
this research project see Bierlaire et al., 2015). Table 1 summarizes the main data sources,
most of which were obtained from the Belgian Statistical Office (StatBel). For a more
detailed description of data collection and processing see Cabrita et al. (2015).

The study area considers an extended region around Brussels including 151 communes (c)
subdivided in a total of 4,945 zones (i), covering an important part of the Dutch speaking
region to the north (Flanders) and the French speaking region to the south (Wallonia).
Dwelling alternatives (v) are classified in three types of houses (fully detached, semi-
detached and attached) and one type of multi-unit building (apartments), generating a
total of 19,780 possible locations (combinations of zones and building types). Dwellings
are described by average attributes (price, surface) calculated by type of building and zone.

The area of study contains a total of 1,213,169 households. Figure 3 shows the
distribution of households across the communes in the area of study for the base year.
Central communes (the city of Brussels) concentrate the larger amount of located
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households and are, at the same time, the most dense communes. Besides Brussels, the main
urban agglomerations inside the area of study are Leuven (east of Brussels), Mechelen
(north), and Aalst (west, northwest). Outer communes are less dense, with the less
populated communes located southeast and southwest of Brussels city.

Given data availability, the modeling period-length is a year. For the base year, a
synthetic population is generated (for details of the process see Farooq et al., 2013, 2015)
where individual households are described in terms of their socioeconomic attributes and
their location (building type and zone). For the following modeling periods, control totals
coming from official estimations of population size are used to generate new households
from a sample of the synthetic population. Households are characterized by their size,
income level, number of children, number of workers, and the education level of its
members. Table 2 describes the values for each attribute level.

The marginal distributions of attributes for the synthetic population are consistent with
observed distributions coming from the census and other data sources. The synthetic
population was also used to run the MATSim transport simulation for Brussels.

Figure 3. Number of households by commune, 2001.

Table 1. Data sources.

Variables Database Source

Observed location of households

and their characteristics

MOBEL Hubert and Toint (2002)

Socioeconomic attributes of

zones and communes

2001 Population Census StatBel (2001a)

Employment by activity type

and commune

ONSS (2001) ONSS (2001)

Average transaction prices of

dwellings by commune

House Price Index 2001–2008 StatBel (2001b, 2008)
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Bid-auction model estimation

Preference parameters (the vector � in equation (7)) for the hedonic part of the bid function
are estimated using a method that adjusts the choice probabilities (3) to the observed
locations of households, while simultaneously reproducing observed prices as a function
of the expected maximum bid (for details on the estimation method and the bid function
specification, see Hurtubia and Bierlaire, 2014). A total of 1,346 observations from the
MOBEL survey are used in the estimation. Table 3 shows the specification of the linear-
in-parameters bid function and the results obtained through maximum likelihood estimation
with the statistical software BIOGEME (Bierlaire, 2003; Bierlaire and Fetiarison, 2009).

Table 3. Bid function specification and estimation results.

Parameter location/Spatial attribute � household (hh) attribute Estimate T test

ASC2 – income 2 constant �0.171 �2.07

ASC3 – income 3 constant �0.461 �4.1

ASC4 – income 4 constant 2.05 5.47

ASC5 – income 5 constant 2.19 5.68

�house dummy for houses (types 1, 2 or 3) � dummy hh sizeh 4 2

and inc h >2

�0.128 �2.7

�apartment dummy for apartment (type 4) � dummy hh sizeh 4 2

and inc h> 2

�0.702 �3.88

�surface avg surface of dwelling v in zone i � logarithm of hh sizeh 0.002 2.6

�high-inc % of hh’s of income 4 and 5 in c � dummy for income inc h> 2 3.97 3.21

�low-inc % of hh’s of income 1 and 2 in c � dummy for income inc h> 3 �3.94 �5.62

�education density of education jobs in c � dummy for univ h> 0 0.356 2.8

�industry % of industry jobs in commune c � dummy for inc h> 3 �0.562 �2.25

�service % of service jobs in zone i � dummy for workers h> 0 0.046 2.31

�shopping density of retail jobs in zone i � dummy for income inc h> 2 0.040 2.24

�pubtrans public transport acces i � dummy for cars h ¼ 0 0.257 2.72

�pubtrans2 public transport acces i � dummy for cars h> 1 �0.249 �2.46

�car-access car accessibility in zone i (MATSim) � dummy for cars h> 0 0.007 1.9a

aParameter not significant at the 95% level.

Table 2. Household attributes.

Attribute Levels

Income level of the household (inch) 1 (0–1,859 Euros)

2 (745–1,859 Euros)

2 (1,860–3,099 Euros)

4 (3,100–4,958 Euros)

5 (>4,959 Euros)

Household size hh sizehð Þ 1,2,3,4,5þ

Number of children (childrenh) 0,1,2þ

Number of workers (workersh) 0,1,2þ

Number of cars (carsh) 0,1,2,3þ

Number of people with university degree (univh) 0,1,2þ
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All parameters have the expected signs. The scale parameter � has been normalized to
one. Socioeconomic agglomeration effects are explained by the positive value of �high�inc and
the negative value of �low�inc, meaning that middle and high income households prefer
locations with a higher income distribution while high income households decrease their
willingness to pay for a location where low income households are located in a zone.
Presence of shopping, services, and education increase the willingness to pay for a
location while the presence of industry has a negative effect for high-income households.
Car accessibility has a positive effect for households with one or more cars while access to
public transport attracts households with no car. Households with two or more cars have a
lower willingness to pay for locations with high access to public transport, probably due to
the street priority of the former over private modes.

Simulation design and details

We use the ODD protocol (Grimm et al., 2006, 2010) to describe important concepts and
definitions of the simulation algorithm (in italics). Since the proposed approach is not formally
an ABM, this description is not exhaustive and should be considered only as a complement of
the definitions and concepts of the general framework already proposed.

The objective of the simulation is to predict future real estate prices and the spatial
distribution of households in a city. The main agents in this simulation are households
looking for locations; they are described by the attributes shown in Table 2. All agents
make decisions based on their expectations and their preferences (described by the
parameters of Table 3), their behavior is adaptive since their expectations (and bidding
behavior) react to observed market conditions. The spatial units are zones and communes
(which are aggregations of zones), state variables for these units are the amount, type and
price of supply in them, the number and characteristics of households located in them, and
other attributes like accessibility levels. Of all the spatial state variables, the only endogenous
ones are the number and characteristics of located households, number of vacant units in a
zone, and real estate prices. All other state variables are either kept constant or evolve from
their initial state in a proportional way, following exogenous control-totals. Stochasticity is
present only in the simulation of the auction for each location, which follows the probability
distribution described by (12) using parameters found in Table 3. The model is initialized
with all state variables set to observed values in the year 2001.

Simulation results

Simulations are run for a period of eight years, from 2001 to 2008. The reason to select this
period is the availability of validation data regarding transaction prices for residential units
and the population at the commune level for this period of time.

First, the stability of the simulation is tested by running 100 full simulations with different
random seeds and computing the standard deviation of the simulated prices in the last
simulation year. Figure 4 shows the distribution of the standard deviation over the
average value of the price for all 19,780 combinations of building types and zones. Most
cases have a remarkably low standard deviation, with more than 94% of prices presenting a
standard deviation of less than 5% of the average value. This confirms the stability of the
simulation and indicates that results are not path dependent.

Price dynamics. Figure 5 shows the evolution of prices at the zone level for each of the
simulation years. The values are shown as the difference between the simulated prices and
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the observed average prices in absolute and relative terms, respectively. The boxplot graphic
describes the span for each quartile of the values with the central box containing the 50% of
values that are closer to the median error. Since observed prices are also affected by elements
that are not considered by the model presented in this paper, like inflation or interest rate
effects, we normalize all prices to the average of the observed price in the base year. This
allows us to analyze the relative variation of prices.

The simulation begins with a small average underestimation of prices that turns into an
average overestimation for later periods. This is explained by the fact that simulation prices
will always increase, due to the increase of population and its positive effect on the expected
maximum bid (see equation (13)). The quality of the forecast for prices is relatively stable
across time, with the increase in the extreme values of year the 2005 explained by a large
increase in the population for that particular year. The relatively large errors are explained
by the fact that the plot shows the difference between average price by zone with the
observed average price by commune.

Figure 4. Standard deviation of predicted prices in 2008 (100 simulations).

Figure 5. Error in price forecast, 2001–2008.
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In terms of quality of the price forecast, a more disaggregate analysis is shown in Figure 6,
comparing commune-level forecasted (simulated) prices and observed prices for years 2001
and 2008, in the left- and right-hand side, respectively.

Prices in 2001 are concentrated in the range between 70,000 and 140,000 Euros. However
in year 2008 a group of communes goes beyond the 150,000 Euros threshold, with the
simulated prices following this trend, although systematically underestimating the
magnitude of the price increase. The higher prices appear in the communes of Woluwe-
Saint-Pierre, Woluwe-Saint-Lambert, Lasne and Ukkel, some of the richest communes in
Belgium, measured by the average taxable income of their inhabitants. The systematic
underestimation of prices in 2008 for these communes may be due to the fact that the
uniform increase in supply mis-predicts the number of new units by type, possibly under-
predicting the new supply of the more expensive types.

It is important to notice that the model was estimated over a reduced number of
observations (1,346) where some of the communes are not included. Therefore, despite
results having a fit that is far from good, the trend-following pattern is an indicator of the
good quality of the approach. Figure 7 compares predicted prices for 2008 (quasi-equilibrium,

Figure 7. Comparison of results with and without bid adjustment.

Figure 6. Forecasted vs. observed price by commune (2001–2008).
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correlation coefficient �¼ 0.79) with those obtained using the same model, but without the
bid adjustment process (no-equilibrium, �¼ 0.63). This confirms that adjusting the bids
during the simulation process helps to better predict prices, because it captures the
competition between bidders, especially those of high income who will increase their
willingness to pay in order to increase their chances to be the highest bidders in already
expensive neighborhoods.

Population distribution. The location of new households follows the spatial distribution of the
new supply. Since the generation of new supply follows the observed distribution, most new
households are located in communes that originally presented high density, specially in the
urban areas. The simulation does not take into account land use regulations or development
constraints and results could be clearly improved by doing so. However, results are
consistent with the observed trend of population increase in rural areas of the Flanders
regions.

Since the simulation locates households that can have different sizes, the quality of the
forecast number of people by commune is an indicator of the capacity of the model to
forecast the spatial distribution of agents according to socioeconomic attributes. Figure 8
shows the comparison between simulated and observed data for the number of people by
commune in 2008. The simulation predicts with very good fit for smaller communes and
underestimates the population in 13% for the largest commune (Brussels). This is, however,
most likely due to the oversimplified supply model.

Income distribution. There are no available data for validation regarding the number of
households by income level and zone in 2008, but information on the average income by
commune is available from tax declarations. Predicted average income per commune can be
roughly estimated from the simulation results using the observed average income (in Euros)
per income level from the MOBEL database. The relevant variable to analyze is the variation

Figure 8. Forecasted vs. observed population by commune (2008).
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in the average income by commune, as a proxy of change in the income distribution. Figure 9
shows a comparison between observed and predicted variation in the average income by
commune. Although the simulation tends to overestimate the increase in the average income,
it is clear that results follow the trend observed in reality, predicting large and positive
variations for the communes with the greatest increase in observed income.

The correct prediction of the trend in change of the income distribution explains the
quality of the price forecast results shown in Figures 6 and 7.

Figure 10. Predicted price vs. income increase by commune, 2001–2008.

Figure 9. Observed vs. simulated variation in average income per commune.
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There is a clear pattern of relative increase in income in communes where a relative
increase in price also takes place, as seen in Figure 10. This is due to the fact that the
willingness to pay for a dwelling increases with a high income in the location and
decreases with the presence of low-income households (see Table 3).

Conclusions

A method for market clearing in location choice microsimulations is proposed. The method
is based on the Bid-auction approach and assumes that agents adjust their perceived
expected utility by observing market prices before participating in real estate auctions.
The adjustment translates in a correction of each agent’s bid level as they attempt to
ensure their location. Auctions for each real estate good are simulated and prices are
computed as the expected maximum bid of all agents in the market.

The method is feasible to be implemented in large-scale microsimulations and ABMs,
because it does not require solving an equilibrium and hence computational requirements are
low. Through the adjustment of the bids, the simulation follows the direction of an
equilibrium, without necessarily reaching it. Results are stable across simulations with
different random seeds, suggesting that the process is not path dependent. The proposed
method allows us to compute market prices using (if necessary) an absolutely heterogeneous
population of households and location units. Comparison of results with those of an
aggregate equilibrium model is difficult given the significant differences in aggregation
levels. Further work will explore these differences in order to compare the predictive
capabilities of each approach.

The market clearing method is embedded in RUSH-LoUD, a general land use simulation
framework, and is applied to a real case study for the city of Brussels considering the year
2001 as the base year. Simulation results for the year 2008 are compared with observed data.
The proposed model is able to forecast trends in price increases and changes in the income
distribution by commune that are consistent with observed reality, outperforming
simulations without the quasi-equilibrium adjustment. The correct prediction of the trend
takes place as a result of the adjustment of bids under which each active agent goes in each
simulation period. Higher bids from high-income households make them more likely to win
auctions in expensive neighborhoods, hence increasing the zonal income and making those
neighborhoods even more attractive for other high income households.

The model implementation described in this paper considers many simplifications for the
supply-generation and non-residential location components of the general framework. The
amount of error that can be explained by these simplifying assumptions is not clear and
should be analyzed in future work. These components could, however, be improved by using
better behavioral assumptions and real data. Further research will estimate all the models
within the RUSH-LoUD framework, including the auction model, for a different city,
probably Santiago de Chile, in order to test the framework in its full capacity. Exploring
other auction configurations, such as those described at the end of the ‘‘Clearing’’ section,
are also part of future research.

This framework can be applied to other markets or choice situations, where expectations
and competition between decision makers play an important role like, for example, when
public services or contracts are assigned through a call for bids or tender process. Another
example of a possible extension is the labor market, where individuals compete for different
jobs by ‘‘bidding’’ their experience and skills (their CV) and their salary expectations, with
the job being assigned to the best ‘‘bidder’’. In general, any market where the assignment
mechanism is an auction could be modeled with the proposed approach or extensions of it.
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