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Abstract

This paper investigates the limit properties of a sequence of competitive outcomes existing

for economies where all commodities are indivisible, as indivisibility vanishes. The nature of

this limit depends on whether the “strong survival assumption” is assumed or not in the limit

economy, a standard convex economy. If this condition holds, then the equilibrium sequence

converges to a Walras equilibrium for the convex economy; otherwise it converges to a hierarchic

equilibrium, a competitive outcome existing in this economy despite the fact that a Walras

equilibrium might not exist.
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1 Introduction

The “discrete economy” proposed by Florig and Rivera [10] is a private ownership economy where

the indivisibility of consumption goods matters at an individual level, but is negligible at the level

of the entire economy. The continuum of individuals that participate in this economy is partitioned

into a finite a number of “types of agents”. Individually, consumption and production sets are

discrete sets (the same subset for agents of the same type), while their aggregate by type of agent

is the convex hull of the individual set. Consumers of a given type are identical, except for a

continuum parameter with which we initially endow them. This parameter could be identified as

fiat money (see Drèze and Müller [6]), whose sole role is to facilitate the trade of indivisible goods.
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Despite the fact that fiat money has no intrinsic value whatsoever, since it does not enter into

consumer preferences, it plays a fundamental role in the assignment of resources.1

We now observe that a standard economy,2 with a finite number of agents and polyhedral con-

sumption and production sets, can be approximated by a sequence of discrete economies. The

types of agents of these economies are the agents of the standard economy, and the corresponding

individual consumption and production sets are discrete subsets, such that their convex hulls con-

verge to the polyhedral sets of the standard economy.3 Hence, we say that the standard economy

is the limit of a sequence of discrete economies, as indivisibilities vanishes.

The “rationing equilibrium” is a competitive outcome existing for discrete economies, with a

strictly positive price for fiat money (Theorem 4.1 in Florig and Rivera [10]).4 This outcome is a

refinement of a Walras equilibrium (with a strictly positive price of fiat money), and they coincide

under the condition that different consumers are initially endowed with a different amount of fiat

money –dispersedness of fiat money–. Nonetheless, fiat money may continue having a positive price

even in case all consumption goods are perfectly divisible. This occurs, for instance, when local

satiation holds for some consumers, or when some rigidities of prices are present. In such cases,

the rationing equilibrium becomes a dividend equilibrium, or equilibrium with slack, a generalized

notion of a Walras equilibrium with money, where fiat money has a strictly positive price (see Kajii

[12] and Mas-Colell [13]). Otherwise, when prices are flexible and local non-satiation holds, fiat

money becomes worthless for a standard economy.

Despite the fact that the price of fiat money is zero in the standard convex economy above, the

result does not inform of the properties of the rationing equilibrium allocation when indivisibilities

vanished. In fact, due to the close relationship existing between rationing equilibrium and the

Walras equilibrium for discrete economies, and from the approximation of a standard economy by

discrete economies, one would reasonably expect the existence of some relationship between such

allocation and a Walras equilibrium in the standard economy. This paper aims to prove such a

relationship. In doing so, by the approximation of economies, we need to assume that consumption

and production sets of the standard economy are polyhedron (not a restrictive condition), and then

we investigate the limit properties of a rationing equilibrium sequence that arises from the sequence

of discrete economies. In other words, we want to provide an answer to the question of what a

rationing equilibrium allocation becomes as indivisibilities vanishes.

1Fiat money should not be confused with “commodity money” (also known as inside money), yet another contin-
uum parameter widely employed in the literature to assure the existence of a Walras equilibrium when consumption
goods are indivisible (see Bobzin [4] for a review of general equilibrium models with indivisible goods). Contrary to
fiat money, commodity money satisfies overriding desirability, i.e. it is so desirable by the agents that an adequate
amount of it could replace the consumption of any bundle of indivisible goods.

2A standard economy is an economy with a finite number of agents, where both consumption sets and production
sets are convex (see Arrow and Debreu [1]). A standard economy with fiat money is a standard economy where
consumers are initially endowed with fiat money. Throughout this paper, convex economy and standard economy are
used indistinctively.

3The Kuratowski – Painlevé set convergence notion is used in this paper. See Rockafellar and Wets [17].
4The efficiency and core equivalence properties of a rationing equilibrium are studied in Florig and Rivera [9]
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Our results show that the nature of this limit depends on whether the “strong survival condition”

holds in the standard economy or not. If this condition is satisfied, under mild conditions, we show

that this limit is a Walras equilibrium (without money) for the standard economy, and therefore

the indivisibility of consumption goods becomes irrelevant when it is small. However, this situation

could be quite different when the initial endowment of resources to each consumer does not belong to

the interior of the respective consumptions set. In this case, the indivisibility of consumption goods

could matter, regardless of how small it is. It may then occur that not all consumers have access to

all goods, i.e. a good may be so expensive that some consumers who do not own expensive goods

cannot buy a single unit by selling their entire initial endowment. When the consumption goods

become “more divisible”, i.e. if the minimal unit per commodity decreases, then the equilibrium

price may react so that the situation persists.

Following Gay [11], based on a generalized concept of price, several authors have proposed gen-

eralizations of the Walras equilibrium existing in the convex case even when the Walras equilibrium

does not exist due to a failure of the strong survival assumption (see, for instance, Danilov and

Sotskow [5], Marakulin [14] and Mertens [15]). Supported by several examples, Florig [7] proposes

an interpretation of those generalized prices in terms of small indivisibilities, introducing the con-

cept of “hierarchic equilibrium”. In the case of linear preferences, Florig [8] shows that a hierarchic

equilibrium is the limit of standard competitive equilibria of economies with discrete consumption

sets converging to the positive octant.5 See also Piccioni and Rubinstein [16] for an alternative

point of view of the hierarchic equilibrium.

When strong survival does not hold in the standard economy, we show then that rationing

equilibria converge to a “hierarchic equilibrium”, a competitive outcome in this economy. This

result formalizes the interpretation of hierarchic equilibria in terms of small indivisibilities given in

Florig [7].

This work is organized as follows. Section 2 introduces preliminary concepts and notations,

while Section 3 presents the model of economies and equilibria notions used in this paper. There

we also define the notion of convergence of a sequence of discrete economies to a convex economy.

In Section 4 we present the main contributions of this paper, the convergence of equilibrium results

(namely, Proposition 4.2 when the strong survival condition holds, and Theorem 4.1 for a general

case). Finally, most of the proofs are provided in the Appendix, i.e. Section 5.

2 Notation and some concepts

In what follows, 0m is the origin of Rm, xt is the transpose of x ∈ Rm, whose Euclidean norm is ‖x‖;
the inner product between x, y ∈ Rm is x·y = xty, and the open ball centered at x with radius ε > 0

is B(x, ε). For a couple of sets K1, K2 ⊆ Rm, ξ ∈ R and p ∈ Rm, we denote ξK1 = {ξx, x ∈ K1},
p · K1 = {p · x, x ∈ K1} and K1 ± K2 = {x1 ± x2, x1 ∈ K1, x2 ∈ K2}, while the set-difference

5As local satiation cannot hold in the case of discrete consumption, dividend equilibria are employed.
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between them is denoted K1 \K2. Furthermore, clK1, intK1 and convK1 denote, respectively, the

closure, interior and the convex hull of K1.

Let λ(·) the standard Lebesgue measure in the underlying space, and for a couple of sets

K1 ⊆ Rm and K2 ⊂ Rk, L1(K1,K2) is the subset of Lebesgue integrable functions from K1 to K2.

We follow Rockafellar and Wets [17] to denote

N∞ = {N ⊆ N : N \N is finite} and N∗∞ = {N ⊂ N : N is infinite}.

For N ∈ N∗∞, the subset of accumulation points of {xn}n∈N is6

acc {xn}n∈N = {x ∈ Rm : ∃N′ ⊂ N, N′ ∈ N∗∞, xn →N′ x}.

We also recall that the outer limit of a sequence of subsets {Kn}n∈N of Rm is the subset

lim sup
n→∞

Kn = {x ∈ Rm : ∃N ∈ N∗∞, ∃xn ∈ Kn, n ∈ N, with xn →N x} ,

while the inner limit is

lim inf
n→∞

Kn = {x ∈ Rm : ∃N ∈ N∞, ∃xn ∈ Kn, n ∈ N, with xn →N x} .

The sequence of subsets {Kn}n∈N of Rm converges in the sense of Kuratowski – Painlevé to the

subset K ⊆ Rm if

lim sup
n→∞

Kn = lim inf
n→∞

Kn = K,

which is case we write lim
n→∞

Kn = K.

Finally, the outer limit of a correspondence Ψ : Rm ⇒ Rk at x̄ ∈ Rm is

lim sup
x→x̄

Ψ(x) =
⋃

{xn→x̄}

lim sup
n→∞

Ψ(xn).

3 The model

3.1 Economies and related concepts

The “limit economy” (or the “convex economy” by conditions below) is a standard private ownership

economy à la Arrow-Debreu, where we also consider that consumers are initially endowed with

a positive parameter called “fiat money”, whose sole role is to facilitate the exchange among

consumptions goods, with no intrinsic value whatsoever. For this economy, we set I, J and L as

the set of consumers and firms, and the number of consumption goods, respectively. Firm j ∈ J
6For N ∈ N∞ or N ∈ N∗∞, and a sequence {xn}n∈N of vectors of Rm, we write xn →N x when limn→∞,n∈N xn = x;

in case N = N we put xn → x.
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is characterized by a production set Yj ⊂ RL, and consumer i ∈ I by a consumption set Xi ⊂ RL,

endowments ei ∈ RL, and a strict preference correspondence Pi : Xi ⇒ Xi. Let mi ∈ R++ be the

amount of fiat money with which consumers i ∈ I is initially endowed. The vector of total initial

resources is e =
∑

i∈I ei ∈ RL, and for (i, j) ∈ I × J , θij ∈ [0, 1] is the consumer i’s share in firms

j. As usual, we assume that for every j ∈ J ,
∑

i∈I θij = 1. The limit economy is the collection

E =
(
{Xi, Pi, ei}i∈I , {Yj}j∈J , {θij}(i,j)∈I×J , {mi}i∈I ,

)
.

Next conditions are part of our standing assumptions throughout this paper.

Assumption C. For all i ∈ I, Xi is a compact, convex polyhedron, and Pi : Xi ⇒ Xi

is irreflexive, transitive and has an open graph in Xi ×Xi.

Assumption P. For all j ∈ J , Yj is a compact, convex polyhedron.

As a counterpart for the convex economy, we now introduce the model of a“ discrete economy”,

which follows Florig and Rivera [10] when they model an economy where the indivisibility of

consumption goods matters at individual level, but is negligible at the level of of the entire economy.

By convenience, when we later introduce a sequence of such economies, we use index n ∈ N to denote

a discrete economy. The “types” of agents of the discrete economy are the agents of the convex

economy, such that the type of consumer i ∈ I and the type of producer j ∈ J are conformed by a

continuum of individuals indexed, respectively, by compacts subsets Ti ⊂ R and Tj ⊂ R, pairwise

disjoint. The subset of consumers and firms is respectively denoted by

I =
⋃
i∈I

Ti and J =
⋃
j∈J

Tj .

The type of producer t ∈ J is j(t) ∈ J , and firms of type j ∈ J are characterized by a discrete

production set Y n
j ⊆ RL. The aggregate production set of these firms is the convex hull of λ(Tj)Y

n
j .

A production plan for a firm t ∈ J is denoted by y(t) ∈ Y n
j(t), and the set of admissible production

plans is

Y n =
{
y ∈ L1(J ,∪j∈JY n

j ) : y(t) ∈ Y n
j(t) a.e. t ∈ J

}
.

The type of consumer t ∈ I is i(t) ∈ I, and each consumer of type i ∈ I is characterized

by a discrete consumption set Xn
i ⊆ RL, an initial endowment of resources ei ∈ RL and a strict

preference correspondence Pni : Xn
i ⇒ Xn

i . A consumption plan of individual t ∈ I is denoted by

x(t) ∈ Xn
i(t), and the set of admissible consumption plans is

Xn =
{
x ∈ L1(I,∪i∈IXn

i ) : x(t) ∈ Xn
i(t) a.e. t ∈ I

}
.

The total initial resources of the economy is e =
∑

i∈I λ(Ti) ei ∈ RL, and for (i, j) ∈ I × J ,

θij ≥ 0 is the consumer of type i’s share in firms of type j. For every j ∈ J , we assume that
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∑
i∈I λ(Ti)θij = 1. In addition, we also assume that each consumer t ∈ I is initially endowed with

an amount of fiat money m(t) ∈ R+, where m ∈ L1(I,R+).

A discrete economy En is the collection

En =
(
{Xn

i , P
n
i , ei}i∈I , {Y n

j }j∈J , {θij}(i,j)∈I×J ,m, {Ti}i∈I , {Tj}j∈J
)
,

and the feasible consumption-production plans of En are the elements of (see Aubin and Frankowska

[3] for the definition of integral of a correspondence)

A(En) =

{
(x, y) ∈ Xn × Y n :

∫
I
x(t)dt =

∫
J
y(t)dt+ e

}
.

We now define supply and demand concepts for economy En, readily extendible to economy E .

In the following, p ∈ RL, q ∈ R+ and K stands for a “salient cone” of RL, whose family is CL.7 The

“profit”, the “Walras supply” and the “rationing supply” of a type j ∈ J firm are, respectively,

πnj (p) = λ(Tj) sup
z∈Y nj

p · z, Snj (p) = arg max
z∈Y nj

p · z

and σnj (p,K) =
{
z ∈ Snj (p) : p 6= 0L ⇒ (Yj − {z}) ∩K = {0L}

}
. In addition, the “income” of

consumer t ∈ I is

wnt (p, q) = p · ei(t) + qm(t) +
∑
j∈J

θi(t)jπ
n
j (p),

whose “budget set” is Bn
t (p, q) =

{
ξ ∈ Xi(t) : p · ξ ≤ wnt (p, q)

}
. The “Walras demand”, the “weak

demand” and ”rationing demand” for consumer t ∈ I are, respectively,

dnt (p, q) =
{
ξ ∈ Bn

t (p, q) : Bn
t (p, q) ∩ Pni(t)(ξ) = ∅

}
, Dn

t (p, q) = lim sup
(p′,q′)→ (p,q)

dnt (p′, q′),

and δnt (p, q,K) =
{
ξ ∈ Dn

t (p, q) : Pni(t)(ξ)− {ξ} ⊆ K
}
.

Remark 3.1. As we shall ensure that dnt (·) is closed valued and locally bounded, Theorem 5.19

in Rockafellar and Wets [17] implies that Dn
t (·) is upper hemi-continuous while dnt (·) may fail to

be upper hemi-continuous. Notice also that, by definition, dnt (p, q) ⊆ Dn
t (p, q) and δnt (p, q,K) ⊆

Dn
t (p, q). See Florig and Rivera [10] for more details on these concepts.

Remark 3.2. The next characterization of weak demand is a straightforward consequence of Propo-

sition 3.1 in Florig and Rivera [10].

Proposition 3.1. Let n ∈ N, (p, q) ∈ RL ×R++ and assume m(t) > 0. Then, the following holds:

Dn
t (p, q) =

{
ξ ∈ Bn

t (p, q) : inf
{
p · Pni(t)(ξ)

}
≥ wnt (p, q), ξ 6∈ convPni(t)(ξ)

}
.

7We recall a convex set K ⊂ RL is a convex cone if 0L ∈ K and ξK ⊂ K for all ξ > 0; a convex cone K is said to
be “salient” if K ∩ −K = {0L}.
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3.2 Equilibrium notions

Some of the equilibrium notions that are used in this paper are presented in next definition. They

are presented for a discrete economy En, and can be straightforwardly extended to the convex

economy E .

Definition 3.1. Given (xn, yn, pn, qn) ∈ A(En)× RL × R+ and Kn ∈ CL, we call

(a) (xn, yn, pn, qn) a ”Walras equilibrium with fiat money” of En, if for a.e. t ∈ I, xn(t) ∈
dnt (pn, qn) and for a.e. t ∈ J , yn(t) ∈ Snj(t)(pn),

(b) (xn, yn, pn, qn) a ”weak equilibrium” of En, if for a.e. t ∈ I, xn(t) ∈ Dn
t (pn, qn) and for a.e.

t ∈ J , yn(t) ∈ Snj(t)(pn),

(c) (xn, yn, pn, qn,Kn) a ”rationing equilibrium” of En, if for a.e. t ∈ I, xn(t) ∈ δnt (pn, qn,Kn)

and for a.e. t ∈ J , yn(t) ∈ σnt (pn,Kn).8

We end this part introducing the “hierarchic equilibrium” concept, a competitive outcome for

economy En. Hereinafter, vectors of RL are supposed to be columns, and for k ∈ N, [p1, . . . , pk] ∈
RL×k is the matrix whose columns are p1, . . . , pk ∈ RL.

A “hierarchic price” for consumption goods is P = [p1, . . . , pk]
t ∈ Rk×L, and the “hierarchic

value” of ξ ∈ RL is Pξ = (p1 · ξ, . . . , pk · ξ)t ∈ Rk. Moreover, denoting by suplex the supremum with

respect to ≤lex, the lexicographic order9 on RL, the “hierarchic supply” and the “hierarchic profit”

of a firm of type j ∈ J of economy En at P are

Snj (P) = {z ∈ Y n
j : ∀z′ ∈ Y n

j , Pz′ ≤lex Pz} and πnj (P) = λ(Tj) suplex{Qz : z ∈ Y n
j },

respectively, and given Q ∈ Rk+, the hierarchic budget set of consumer t ∈ I is

Bn
t (P,Q) = cl

ξ ∈ Xn
i(t) : Pξ ≤lex Pei(t) +m(t)Q+

∑
j∈J

θi(t)jπ
n
j (P)

 .

Based in Florig [7], we introduce the next equilibrium concept.10

Definition 3.2. A collection (xn, yn,Pn,Qn) ∈ A(En)× Rk×L × Rk+ is a “hierarchic equilibrium”

of the economy En if:

8The salient cone K in the rationing equilibrium definition is determined endogenously as part of the equilibrium,
and summarizes the information that each consumer needs to have in addition to market prices (and their own
characteristics) in order to formulate a demand, leading to a stable economic situation, in the sense that no further
trading can take place making all participants in a second round of trading strictly better off. Under general conditions
over the economy, the existence of such an equilibrium is proved in Florig and Rivera [10].

9For (s, t) ∈ Rm × Rm, we recall s ≤lex t, if sr > tr, r ∈ {1, . . . ,m} implies that ∃ρ ∈ {1, . . . , r − 1} such that
sρ < tρ. We write s <lex t if s ≤lex t, but not t ≤lex s. The maximum and the argmax with respect to this order are
denoted by maxlex and argmaxlex, respectively (similarly for minlex and argminlex).

10Marakulin [14] introduced a similar notion for exchange economies, using non-standard analysis.
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(a) for a.e. t ∈ J , yn(t) ∈ Snj(t)(Pn),

(b) for a.e. t ∈ I, xn(t) ∈ Bn
t (Pn,Qn) and Pni(t)(xn(t)) ∩Bn

t (Pn,Qn) = ∅.

The number k ∈ N in last expressions will be determined at the equilibrium. When k = 1, the

hierarchic equilibrium reduces to a Walras equilibrium (with fiat money).

3.3 Approximation of convex economies

In order to define a sequence of discrete economies {En}n∈N that approximates the economy E , it

seems to be natural assume the conditions for all i ∈ I, m(t) = mi ∈ R+, t ∈ Ti, and λ(Ti) =

λ(Tj) = 1, (i, j) ∈ I × J . However, these conditions are not needed in proving our results, and

they could be considered just for interpretative purposes. The only relevant aspect in defining

that sequence is the way by mean of which individual consumption and production sets of the

discrete economies approximates corresponding subsets of the convex economy. To do so, in view

of Assumptions C and P we just need to consider sequences of discrete sets whose convex hulls

converge to the consumption and production sets of economy E . For the sequel we use given

sequences νh : N→ N, h = 1, . . . , L, such that limn→∞ νh(n) =∞, for all h. The family of subsets

{Mn}n∈N with

Mn =
{
ξ = (ξ1, . . . , ξL) ∈ RL : (ν1(n)ξ1, . . . , νL(n)ξL) ∈ ZL

}
, n ∈ N,

then converges in the sense of Kuratowski-Painlevé to RL. Let {Xn
i }n∈N, i ∈ I, and {Y n

j }n∈N, j ∈ J ,

such that

Y n
j = Yj ∩Mn 6= ∅ and Xn

i = Xi ∩Mn 6= ∅,

and let Pni : Xn
i ⇒ Xn

i be the restriction of Pi to Xn
i . Using these concepts, for n ∈ N we have

that the discrete economy En is the following collection:

En =
(
(Xn

i , P
n
i , ei)i∈I , (Y

n
j )j∈J , (θij)(i,j)∈I×J ,m, {Ti}i∈I , {Tj}j∈J

)
.

4 Hypotheses and convergence results

In addition to the standing conditions above, the next are assumptions that are used at different

parts of this paper, they depending on the convergence result to be established.

Assumption M. m : I → R+ is bounded and for a.e. t ∈ I, m(t) > 0.

Assumption S. For all i ∈ I, ei ∈
(
Xi −

∑
j∈J θijλ(Tj)Yj

)
.

Assumption SA. For all i ∈ I ei ∈ int
(
Xi −

∑
j∈J θijλ(Tj)Yj

)
.

Assumption A. For all n ∈ N, i ∈ I and all j ∈ J , Xi = convXn
i and Yj = convY n

j .
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Assumption F. For all i ∈ I and each face F of Xi such that11

{ei}+
∑
j∈J

θijλ(Tj)Yj

 ∩Xi ⊆ F,

the sequence {F ∩Xn
i }n∈N converges in the sense of Kuratowski-Painlevé to F .

Assumption F requires that Xn
i restricted to the affine subspace for which the interiority as-

sumption holds converges to Xi restricted to that affine subspace. This is important to ensure that

the budget set for a sequence of equilibria of the economies En converges to a budget set of the

economy E for some limit of the price sequence considered.

The following proposition is an immediate consequence of Theorem 4.1 in Florig and Rivera

[10]. For the proof it is enough to check that Assumption C on the economy E implies that the

consumption and production sets of any economy of sequence {En}n∈N that approximates E are

finite (i.e., the number of its elements is finite). The proposition ensures that the sequence of

equilibria for which we study convergence do actually exist.

Proposition 4.1. Suppose E satisfies Assumptions C, P, M and S, and let {En}n∈N be a se-

quence of economies approximating E. For each n ∈ N, there exists a rationing equilibrium

(xn, yn, pn, qn,Kn), with qn > 0, for economy En.

4.1 Convergence under the “strong survival assumption”

In the next proposition, the survival assumption SA plays an important role in establishing the

convergence to a Walras equilibrium. While this hypothesis is widely used, it is unrealistic, because

it states that every consumer is initially endowed with a strictly positive quantity of every existing

good. Typically, most consumers have a single good to sell (usually, their labor). In fact, it implies

that all agents have the same level of income at equilibrium in the sense that they have all access

to the same goods.

Proposition 4.2. Suppose E satisfies Assumptions C, P, M and SA, and let {En}n∈N be a se-

quence of economies approximating E satisfying Assumption A. For each n ∈ N, let (xn, yn, pn, qn)

be a weak equilibrium of En, with qn > 0 and ‖ (pn, qn) ‖= 1. Then, there exists N ∈ N∗∞, such

that the following hold:

(a) (pn, qn)→N (p∗, q∗),

(b) there is (x∗, y∗) ∈ A(E), such that for a.e. t ∈ I, x∗(t) ∈ acc{xn(t)}n∈N, and for a.e. t′ ∈ J ,

y∗(t′) ∈ acc{yn(t′)}n∈N, with (x∗, y∗, p∗, q∗) a Walras equilibrium with fiat money for E.

11For a convex compact polyhedron P ⊂ Rm, a face is a set F ⊆ P such that there exists ψ ∈ Rm with F =
argmaxψ · P .
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Moreover, if for a.e. t ∈ I, x∗(t) ∈ clPi(t)(x
∗(t)), then (x∗, y∗, p∗) is a Walras equilibrium for E.

Proof. First note that {En}n∈N approximating E implies that for all i ∈ I, lim
n→∞

Xn
i = Xi. By

Assumption SA, the smallest face of Xi containing{ei}+
∑
j∈J

θijλ(Tj)Yj

 ∩Xi

is Xi, which implies that Assumption F is satisfied. Therefore, all the assumptions of Theorem

4.1 below are satisfied. Assumption SA implies that for a hierarchic equilibrium (x, y,P,Q) with

P = [p1, . . . ,pk]
t ∈ Rk×L and Q = (q1, . . . , qk)

t ∈ Rk+ (see definition in next section), such that

(x∗, y∗, p1, q1) is a Walras equilibrium with fiat money (cf Florig [7]). Moreover, if for a.e. t ∈ I,

x∗(t) ∈ clPi(t)(x
∗(t)), then standard arguments imply that q1 = 0, this concluding the proof.

4.2 The general case

We now replace assumption SA by a more realistic one, assuming that every consumer could decide

not to exchange anything. We will not assume however that he could survive for very long without

exchanging anything. In such a case the limit of a sequence of rationing equilibria will not necessarily

be a Walras equilibrium, it will be a hierarchic equilibrium, which is a competitive equilibrium with

a segmentation of individuals according to their level of wealth. When this segmentation consists

of just one group, the hierarchic equilibrium reduces to a Walras equilibrium.

The next theorem, a generalization of Proposition 4.2, is the main result of this paper. The

proof is given in the Appendix.

Theorem 4.1. Suppose E satisfies Assumptions C, P, M and S, and let {En}n∈N be a sequence

of economies that approximates E and satisfying Assumptions A and F. For each n ∈ N, let

(xn, yn, pn, qn) be a weak equilibrium of En, with qn > 0 and ‖ (pn, qn) ‖= 1. Then, there exists

a hierarchic equilibrium (x∗, y∗,P,Q) for economy E, with P = [p1, . . . ,pk]
t, Q = (q1, . . . , qk)

t,

k ∈ {1, . . . , L}, such that for some N ∈ N∗∞ the following hold:

(i) for each n ∈ N, pn =
∑k

r=1 εr(n) pr, with εr+1(n)/εr(n)→N 0,

(ii) for a.e. t ∈ I, x∗(t) ∈ acc{xn(t)}n∈N, and for a.e. t ∈ J , y∗(t) ∈ acc{yn(t)}n∈N.

Remark 4.1. Since a rationing equilibrium is a weak equilibrium (see Definition 3.1), it follows

that Theorem 4.1 remains valid when using a sequence of rationing equilibria instead of a sequence

of weak equilibria as stated.

5 Appendix: the proofs

The proof of Theorem 4.1 requires some additional definitions and technical results, presented in §
5.1. This Theorem is proved in § 5.2.
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5.1 Preliminary results

Definition 5.1 and Lemma 5.1 are taken borrowed from Florig and Rivera [10].

Definition 5.1. For integer k ∈ {1, . . . ,m}, a set of orthonormal vectors {ψ1, . . . , ψk} ⊂ Rm

coupled with sequences εr : N → R++, r ∈ {1, . . . , k}, is called a lexicographic decomposition of a

sequence ψ : N→ Rm, if there exists N ∈ N∗∞ such that following hold:

(a) for all r ∈ {1, . . . , k − 1}, εr+1(n)/εr(n)→N 0,

(b) for all n ∈ N, ψ(n) =
∑k

r=1 εr(n)ψr.

The lexicographic decomposition of ψ : N→ Rm is denoted as {{ψr, εr}kr=1,N}.

Lemma 5.1. Every sequence ψ : N→ Rm \ {0m} admits a lexicographic decomposition.

For the lexicographic decomposition above and 1 ≤ r ≤ k, we set

Ψ(r) = [ψ1, . . . , ψr] ∈ Rm×r.

For z ∈ Rm we denote Ψ(r)z = (ψ1 · z, . . . , ψr · z)t ∈ Rr, and for Z ⊆ Rm we also define

Ψ(r)Z = {Ψ(r)z : z ∈ Z}.

The next lemmata refers to a sequence ψ : N→ Rm \ {0m}, whose lexicographic decomposition

is {{ψr, εr}kr=1,N}. Parts (i) and (ii) of this result are proved in Florig and Rivera [10], while part

(iii) is a direct consequence of part (ii) coupled with the observation that for any ξ ∈ Rm and finite

set of points Z ⊂ Rm, conv argmax ξ · Z = argmax ξ · convZ.

Lemma 5.2.

(i) For all z ∈ Rm there exists n̄ ∈ N such that for all n > n̄ with n ∈ N:

Ψ(k) z ≤lex 0k ⇐⇒ ψ(n) · z ≤ 0.

(ii) If Z ⊆ Rm is a finite set, then there exists n̄ ∈ N such that for all n > n̄ with n ∈ N:

argmaxlex Ψ(k)Z = argmax ψ(n) · Z.

(iii) If Z ⊆ Rm is a convex and compact polyhedron, then there exists n̄ ∈ N such that for all

n > n̄ with n ∈ N:

argmaxlex Ψ(k)Z = argmax ψ(n) · Z.

11



Notice that both parts (ii) and (iii) in Lemma 5.2 remain valid when replacing argmaxlex by

argminlex.

The next lemmata is a key property used in the proof of our main result.

Lemma 5.3. Let Z ⊂ Rm be a convex and compact polyhedron, and define

ρ = max
{
r ∈ {0, . . . , k} : minlex Ψ(r)Z = 0max{1,r}

}
and F = argminlex Ψ(ρ)Z.

The following holds:

(i) lim sup
n→∞

{z ∈ Z : ψ(n) · z ≤ 0} ⊆ cl {z ∈ Z : Ψ(k)z ≤lex 0k} .

Suppose now that minlex Ψ(k)Z <lex 0k, and let {Zn}n∈N ⊂ Rm such that

lim
n→∞

Zn = Z and lim
n→∞

(Zn ∩ F) = Z ∩ F .

Then the following holds:

(ii) cl{z ∈ Z : Ψ(k)z ≤lex 0k} ⊂ lim inf
n→∞

{z ∈ Zn ∩ F : ψ(n) · z < 0}.

Proof. For N ∈ N∗∞ and n′ ∈ N, we set Nn′ = {n ∈ N : n > n′}.

For the proof of part (i), let z̄ ∈ argminlex Ψ(k)Z and assume that lim sup
n→∞

{z ∈ Z : ψ(n) · z ≤

0} 6= ∅, since otherwise the result is trivial. Hence, for z∗ in that subset, there is N ∈ N∗∞ and

{zn}n∈N ⊂ Z such that zn →N z∗ and for all n ∈ N, ψ(n) · zn ≤ 0. By Lemma 5.2, part (iii), there

exists n1 ∈ N such that for all n ∈ Nn1 , we have

argminlex Ψ(k)Z = argminψ(n) · Z.

As for all n ∈ Nn1 ,

ψ(n) · z̄ = minψ(n) · Z ≤ ψ(n) · zn ≤ 0,

we have by part (i) of Lemma 5.2 that Ψ(k) z̄ ≤lex 0k.

Let σ = max
{
r ∈ {0, . . . , k} : Ψ(r)z∗ = 0max{1,r}

}
. If Ψ(k)z∗ ≤lex 0k, then the conclusion is

trivial. Therefore, we assume Ψ(k)z∗ >lex 0k, which implies that σ < k and ψσ+1 · z∗ = δ > 0. At

this stage, two cases must be considered.

Case 1. ρ < σ.

As ρ < σ, we have ρ < k, Ψ(ρ + 1) z̄ <lex 0ρ+1 and Ψ(ρ + 1) z∗ = 0ρ+1. Therefore, for all

µ ∈ [0, 1[,

Ψ(ρ+ 1) (µz̄ + (1− µ)z∗) <lex 0ρ+1.

Hence Ψ(k) (µz̄ + (1− µ)z∗) <lex 0k, implying that z∗ ∈ cl {z ∈ Z : Ψ(k)z ≤lex 0k}.

Case 2. ρ ≥ σ.

12



As ρ ≥ σ, for all r ∈ {1, . . . , σ}, ψr · z̄ = ψr · z∗ = 0. Then {z̄, z∗} ⊆ argminlex Ψ(σ)Z. For

n ∈ N we set

ψ∗(n) =
σ∑
r=1

εr(n)ψr,

with ψ∗(n) = 0 when σ = 0. By part (ii) in Lemma 5.2 there exists n2 > n1 such that for all

n ∈ Nn2 , 0 = ψ∗(n) · z̄ = ψ∗(n) · z∗ ≤ ψ∗(n) · zn. For n ∈ N, we set

an =

σ+1∑
r=1

εr(n)ψr · zn and bn =
εσ+2(n)

εσ+1(n)

k∑
r=σ+2

εr(n)

εσ+2(n)
ψr · zn,

with bn = 0 if σ + 1 = k. By the fact that {zn}n∈N remains in a compact set, there exists n3 > n2

such that for all n ∈ Nn3 , on the one hand

an ≥ εσ+1(n)ψσ+1 · zn > εσ+1(n)
δ

2
,

and, on the other hand, since bn converges to zero,

bn ∈
1

4
[−δ, δ].

Therefore, for all n ∈ Nn3 ,

0 ≥ ψ(n) · zn = an + εσ+1(n)bn ≥ εσ+1(n)
δ

4
,

contradicting δ > 0, hence concluding the proof of part (i).

In order to prove the part (ii), let z̄ ∈ argminlex Ψ(k)Z. By the fact that minlex Ψ(k)Z <lex 0k,

we have ρ < k and ψρ+1 · z̄ < 0. Let ζ ∈ cl{z ∈ Z : Ψ(k)z ≤lex 0k}. Then, for ε ∈]0, 1] there exists

ζε ∈ B(ζ, ε/2) ∩ Z such that Ψ(k)ζε ≤lex 0k. By the convexity of Z, for µ ∈]0, ε/2[ it follows that

zε = (1− µ)ζε + µz̄ ∈ Z ∩ B(ζ, ε),

and then Ψ(k)z̄ ≤lex Ψ(k)zε ≤lex Ψ(k)ζε ≤lex 0k.

The definition of ρ implies Ψ(ρ)z̄ = 0max{1,ρ} and therefore we have also

Ψ(ρ)zε = Ψ(ρ)ζε = 0max{1,ρ}.

This last result coupled with the fact that ρ < k implies

ψρ+1 · z̄ ≤ ψρ+1 · zε ≤ ψρ+1 · ζε ≤ 0 and ψρ+1 · z̄ < 0.

Since ψρ+1 · ζε ≤ 0, we also have δ = ψρ+1 · zε < 0. Therefore Ψ(ρ+ 1)zε <lex 0ρ+1. Hence, we have
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established that Ψ(k)zε <lex 0, zε ∈ F and zε ∈ B(ζ, ε). Let us now consider {zn}n∈N ⊆ F ∩ Zn
with zn →N zε. We observe that

ψ(n) · zn =

k∑
r=1

εr(n)ψr · zn = ερ+1(n) (αn + βn),

where

αn =
1

ερ+1(n)

ρ+1∑
r=1

εr(n)ψr · zn and βn =
1

ερ+1

k∑
r=ρ+2

εr(n)ψr · zn,

with βn = 0 if ρ + 1 = k. Given that, for all n ∈ N, Ψ(ρ)zn = 0max{1,ρ}, and as βn converges to

0 and δ < 0, there exists n̄ such that for all n ∈ N with n > n̄, αn < δ/2 and βn < −δ/4 and

therefore αn + βn < δ/4 < 0. All of this implies that for all n ∈ N with n > n̄,

ψ(n) · zn = ερ+1(n) (αn + βn) < ερ+1(n) δ/4 < 0.

Therefore, for ζ ∈ cl{z ∈ Z : Ψ(k)z ≤lex 0k} and ε ∈]0, 1], we have that

zε ∈ B(ζ, ε) ∩ lim inf
n→∞

{z ∈ Zn ∩ F : ψ(n) · z < 0},

and then, since the lim inf above is a closed set,12 ζ ∈ lim inf
n→∞

{z ∈ Zn ∩ F : ψ(n) · z < 0}.

5.2 Proof of Theorem 4.1

Proof. In the following, we use a sequence (xn, yn, pn, qn)n∈N of weak equilibria with qn > 0 of the

economy En (which exists by Proposition 4.1, considering that a rationing equilibrium is a weak

equilibrium). We can assume without loss of generality that for all t ∈ I, xn(t) ∈ Dn
t (pn, qn) and

all t ∈ J , yn(t) ∈ Snj (pn).13

In the remaining we split the proof of theorem into six steps.

Step 1 . Hierarchic price.

Since ‖(pn, qn)‖ = 1, n ∈ N, from Lemma 5.1 there exist {{(pr, qr), εr}r=1,...,k,N}, a lexi-

cographic decomposition of the sequence {ψ(n) = (pn, qn)}n∈N. In the sequel, without loss of

generality, we identify that subset N with N, and we denote

P = [p1, . . . ,pk]
t and Q = (q1, . . . , qk)

t,

and for r ∈ {1, . . . , k}, we set P(r) = [p1, . . . ,pr]
t and Q(r) = (q1, . . . , qr)

t.

12See, for example, Proposition 4.4 in Rockafellar and Wets [17].
13Since a countable union of negligible sets is negligible, we could restrict the sequel to an appropriate subset of

full Lebesgue measure. Here, as the consumption and production sets are finite for each n ∈ N, we could also adjust
the sequence (xn, yn) such that for all t ∈ I, xn(t) ∈ Dn

t (pn, qn) and all t ∈ J , yn(t) ∈ Snj (pn) while maintaining
(xn, yn) ∈ A(En).
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Step 2. Supply: for all t ∈ J , lim sup
n→∞

Snj(t)(pn) ⊆ Sj(t)(P).

As for all j ∈ J , by Lemma 5.2 there exists nj ∈ N such that for all n > nj ,

Sj(pn) = Sj(P) = argmaxlexPYj .

For all n ∈ N and all j ∈ J , convY n
j = Yj , S

n
j (pn) ⊆ Sj(pn) = convSnj (pn), implying that for all

n > nJ = max{nj , j = 1, . . . , J}, and all t ∈ J ,

Snj(t)(pn) ⊆ Sj(t)(P) = convSnj(t)(pn),

hence concluding the proof of this Step.

Step 3. Income.

For the sequel, for all j ∈ J , let ζj ∈ argmaxlexPYj , and for all i ∈ I, we set zi = ei +∑
j∈J θijλ(Tj)ζj . By Step 2, for all t ∈ I and all n > nJ , wt(pn, qn) = pn · zi(t) + qnm(t).

Step 4. Budget: For all t ∈ I, lim sup
n→∞

Bt(pn, qn) ⊆ Bt(P,Q). Moreover, if m(t) > 0 then

Bt(P,Q) ⊆ lim inf
n→∞

{
x ∈ Xn

i(t) : pn · x < wt(pn, qn)
}
.

Using zi from Step 3, the first inclusion is a straightforward consequence of part (i) of Lemma

5.3 applied to Z =
(
Xi(t) − zi

)
× {−m(t)}. Indeed, note that for all n ∈ N, n > nJ , and all

x′n(t) ∈ Bt(pn, qn) we have ψn · zn ≤ 0 with zn = (x′n(t)− zi(t),−m(t)) and ψ(n) = (pn, qn).

For the second inclusion, for t ∈ I and n ∈ N, we set F = minlexP(ρ)Xi(t) and

ρ = max
{
r ∈ {0, . . . , k} : minlexP(r)Xi(t) = 0max{1,r}

}
.

Assumption S coupled with the observation m(t)Q >lex 0k implies

minlex P(
(
Xi(t) − zi(t)

)
−m(t)Q <lex 0k and m(t)Q(ρ) = 0max{1,ρ}.

Therefore, producers profit maximization and Assumption S implies{ei(t)}+
∑
j∈J

θi(t)jλ(Tj)Yj

 ∩Xi(t) ⊆ F .

By part (iii) of Lemma 5.2 we observe that F is a face of Xi(t), and then, by Assumption F it

follows that

lim
n→∞

Xn
i(t) ∩ F = Xi(t) ∩ F .
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By part (ii) of Lemma 5.3

Bt(P,Q) ⊆ lim inf
n→∞

{
x ∈ Xn

i(t) ∩ F : pn · (x− zi(t)) < qnm(t)
}
,

and since

lim inf
n→∞

{
x ∈ Xn

i(t) ∩ F : pn · (x− zi(t)) < qnm(t)
}
⊆ lim inf

n→∞

{
x ∈ Xn

i(t) : pn · x < wt(pn, qn)
}

the second inclusion holds true.

Step 5. Demand: for all t ∈ I with m(t) > 0 and all x∗(t) ∈ acc{xn(t)}n∈N,

Pi(t)(x
∗(t)) ∩Bt(P,Q) = ∅.

Let t ∈ I such that m(t) > 0 and choose N(t) ∈ N∗∞ such that xn(t) →N(t) x
∗(t) and for all

n ∈ N(t), n > nJ . By contraposition, assume that there is ξ ∈ Pi(t)(x∗(t)) ∩ Bt(P,Q). Then, by

Step 5 there exists n̄1 > nJ and ξn →N ξ such that for all n > n̄1 with n ∈ N,

pn · (ξn − zi(t))− qnm(t) < 0 and ξn ∈ Xn
i(t).

As the graph of Pi(t) is open, there exists n̄2 > n̄1 such that for all n > n̄2 with n ∈ N,

pn · (ξn − zi(t))− qnm(t) < 0 and ξn ∈ Xn
i(t) ∩ Pi(t)(x

∗(t)),

and, again, as the graph of Pi(t) is open, we can choose n̄3 > n̄2 such that for all n > n̄3 with

n ∈ N(t), we have pn · (ξn − zi(t))− qnm(t) < 0 and ξn ∈ Pni(t)(xn(t)). As qnm(t) > 0, the last fact

contradicts xn(t) ∈ Dn
t (pn, qn) for all n > n̄3 with n ∈ N(t) (see Proposition 3.1).

Step 6. Equilibrium allocation.

Using Fatou’s lemma in Artstein [2], there exists (x∗, y∗) ∈ A(E) such that for a.e. t ∈ I and

a.e. t′ ∈ J , x∗(t) ∈ acc{xn(t)}n∈N and y∗(t′) ∈ acc{yn(t′)}n∈N. By Step 2, for a.e. t ∈ J , y∗(t) ∈
Sj(t)(P), and by Steps 4 and 5, for a.e. t ∈ I, x∗(t) ∈ Bt(P,Q) and Pi(t)(x

∗(t))∩Bt(P,Q) = ∅.
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