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In this thesis, theoretical aspects of observables thrown by cosmic inflation were studied.
In the first work, hypothetical feature correlations were studied in the inflationary scalar
spectrum with features in the tensorial spectrum, with an explicit relationship between both
at the limit of the sharp features. In particular, the anomaly in the scalar spectrum around
l = 23 was taken as an example, where the impact of it on the tensorial spectrum was studied.
The first slow-roll parameter, Epsilon, might suppress those possible deviations to the scale
invariance in the tensorial spectrum.

In the second work, it was found how to generate physical modes in the infrared limit in
scenarios where the curvature perturbations evolve outside the horizon. They obey remaining
symmetries that satisfy curvature modes in the infrared limit, called by other authors, shift-
symmetries. Particularly, as a result of this limit, pre-existing relationships in the literature
(violations of the Maldacena consistency relation) could be recovered without resorting to
standard in-in formalism for the calculation quantum interactions, or Schwinger-Kelldish
interactions.

In the third work, the gravitational effect of the adiabatic curvature modes on an inertial
observer was studied, for which the conformal Fermi coordinates (CFC) associated with
this observer were used. In this framework, we investigated the limits of the testability
on the modes of curvature in the infrared limit, particularly, considered two inflationary
scenarios of great phenomenological importance using CFCs; ultra slow-roll (USR) and slow-
roll (SR) inflation. In both, it was found that the amount of local non-Gaussianity observed
by an inertial observer at first order is zero. Additionally, a connection was found between
the coordinate transformations induced by the CFCs and the coordinate transformations
generated by elements of the conformal group in a de Sitter space.

Finally, beams associated with the 40GHz band for the CLASS telescope were character-
ized, they were modeled at the level of 1% above the intrinsic noise floor of the detectors,
eliminating systematic calibration effects through a pseudoanalytic deconvolution of the cal-
ibration source used(the Moon), in the regime of axially symmetric beams and sources.
Finally, its window function was obtained within the range of multiples 0 < l < 250 at the
level of 1%.
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En esta tesis, se estudiaron los aspectos teóricos de los observables arrojados por la in-
flación cósmica. En el primer trabajo, se estudiaron correlaciones hipotéticas de caracterís-
ticas en el espectro escalar inflacionario con características en el espectro tensorial, con una
relación explícita entre ambas en el límite de las características definidas. En particular,
se tomó como ejemplo la anomalía en el espectro escalar de alrededor de l = 23, donde se
estudió su impacto en el espectro tensorial. El primer parámetro de desplazamiento lento,
Epsilon, podría suprimir esas posibles desviaciones de la invariancia de escala en el espectro
tensorial.

En el segundo trabajo, se encontró como generar modos físicos en el límite infrarrojo en
escenarios donde las perturbaciones de curvatura evolucionan fuera del horizonte. Los mo-
dos de curvatura en el límite infrarrojo obedecen simetrías remanentes, llamados por otros
autores, simetrías de desplazamiento. En particular, como resultado de este límite, las rela-
ciones preexistentes en la literatura (violaciones de la relación de coherencia de Maldacena)
podrían recuperarse sin recurrir al formalismo estándar para el cálculo de las interacciones
cuánticas o las interacciones de Schwinger-Kelldish.

En el tercer trabajo, se estudió el efecto gravitacional de los modos de curvatura adia-
báticos en un observador inercial, para lo cual se utilizaron las coordenadas conformes de
Fermi(CFC) asociadas con este observador. En este marco, se indagaron los límites de la
testeabilidad sobre los modos de curvatura en el límite infrarrojo, en particular, consideramos
dos escenarios inflacionarios de gran importancia fenomenológica utilizando las CFC; Inflación
ultra de desplazamiento lento(USR) y desplazamiento lento(SR). En ambos, se encontró que
la cantidad de no-Gaussianidad local observada por un observador inercial de primer orden
es cero. Además, se encontró una conexión entre las transformaciones de coordenadas induci-
das por las CFC y las transformaciones de coordenadas generadas por elementos del grupo
conforme en un espacio de de Sitter.

Finalmente, se caracterizaron los beams asociados con la banda de 40 GHz para el tele-
scopio CLASS, se modelaron a un nivel de 1% por encima del nivel de ruido intrínseco de los
detectores, eliminando los efectos de calibración sistemáticos a través de una deconvolución
pseudoanalítica de la fuente de calibración utilizada (La Luna), en el régimen de beams y
fuentes axialmente simétricas. Finalmente, se obtuvo la función ventana de los beams dentro
del rango de múltiplos 0 < l < 250 a nivel de 1%.
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The journey is the destination, man.
Gerald Johanssen
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Chapter 1

Introduction

The last century was an epoch of significant achievements in physics. Mainly, cosmology
started with Einstein’s discovery of General Relativity in 1915, then Hubble derived an
empiric relation between the distance and velocity of galaxies that could be explained by the
expansion of the Universe. The discovery of the Cosmic Microwave Background signal in
1964 by Arno Penzias and Robert Wilson, which was the first observational indication of a
cosmological phase of the Universe proposed in 1948 by George Gamow and Ralph A. Alpher
known as big bang nucleosynthesis; by 1967, Partridge and Wilkinson had shown, over large
regions of the sky, that the fractional difference of temperature was order 10−3, leading to
the conclusion that the Universe was in thermal equilibrium at the time of decoupling.

During the 80s and 90s, funding agencies came to realize the opportunity to deploy com-
pelling astrophysical programs both on the ground and on satellites; COBE and WMAP
became a reality. First, Cosmic Background Explorer(COBE) measured spectral radiation
coming from an almost perfect black body in all directions of the sky, and for the first time,
detected oscillatory features in the CMB power spectrum. The exactness of the black body
radiation opened the opportunity to make sensitive tests to non-thermal injections of energy
that could distort this spectrum to times before decoupling, for example, the existence of
long-lived relic particles with tolerability of one month of a lifetime. Second, Wilkinson Map-
ping Anisotropy Probe(WMAP) settled a landmark in 2003 by measuring with unprecedented
precision the CMB temperature anisotropies, allowing to pin down the Universe’s properties
as the best as possible, in many cases at the percent levels. Nowadays, they continue to be
accord with what are now few percent-level observations. It seems inevitable that this was
the moment when the Standard Cosmological Model became firmly established.

One of the most striking and unexpected result in cosmology was the outstanding discovery
in 1998 by the Supernova Cosmology Project, and the High-Z Supernova Search Team used
type Ia supernovae to measure the rate of the ’expected’ deceleration since recession velocity
would always be decreasing, due to the gravitational attraction of the matter in the Universe.
Surprisingly, they found something that challenged our current belief at that time: objects
in the Universe are moving away from one another at an accelerated rate, the so-called
accelerating expanding the Universe. Confirmatory evidence has been found in baryonic
acoustic oscillations, and analyses of the clustering of galaxies. Again, nature does not care
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about what we believe; nature is what it wants to be.

Further development also came by work made by theorists; the actual inflationary paradigm
developed to explain the homogeneity and the flatness of our Universe in 1982 by Guth, Linde,
Albrecht, and Steinhardt; also came with the surprise that served as a mechanism to gener-
ate density fluctuations that seeded the structures of our Universe. The findings by WMAP
supported the idea that structures in the Universe came from gravitational instability to
overdensities, as was believed 20 years previous of these measurements. In words of the as-
trophysics John Bahcall, " the biggest surprise is that there are no surprises," this tells us
that our blind eye anticipated descriptions of our Universe were entirely consistent with the
unprecedented measurements made by WMAP and its successor Planck.

Despite all these developments, GR had only been tested in the regime of weak gravity,
but never in the strong one, until recently. In 2016, the LIGO group detected gravitational
waves from binary compacts objects, concisely, the coalescence of two binary black holes
of ≈ 30M�. So far, our picture of the Universe was mostly assembled using traditional
optic telescopes in every electromagnetic band, from gamma rays to radio. Although this
picture revealed wonders, it has so far lacked highly precise information about objects where
gravity is extremely strong such as BHs, or where gravity is dynamical, and speeds are
relativistic. LIGO team provided missing pieces of this puzzle, for instance, constraining the
speed of gravitational waves close to the speed of light. Nowadays, the two advanced LIGO
detectors in the U.S. and the Virgo detector in Italy are gradually approaching their design
sensitivity, and the third LIGO interferometer in India is expected to join the worldwide
network around 2025. This increasing sensitivity could help us to keep testing GR in strong
regimes constraining the relaxation process and structure, or simple, "BH ringdown" after
BHs collisions. This remnant oscillatory spectrum could shed some new light in testing
modified theories of gravity.

Also in 2019, the event horizon telescope(EHT), a set of synchronized telescopes on the
Earth’s surface, unveiled the first direct visual evidence of a supermassive BH. The image of
the BH at the center of M87, a massive galaxy in the nearby Virgo galaxy cluster, reveals
a ring-like structure with a dark central region - the black hole’s "shadow." Many of the
features of the observed image matched our theoretical understanding of BH "atmosphere"
surprisingly well.

Most of these findings helped to set the foundations of the standard model of cosmology
known as the ΛCDM model, or concordance model. This way of looking our Universe encom-
passes different concepts for its description: First, we have the Λ component which tells us
about the expanding Universe at late times, and second, we have the CDM which stands for
cold dark matter. Under this model, our Universe is made of ∼ 70% of dark energy, encoded
in the cosmological constant Λ, and around a 26% of cold dark matter which is used to ex-
plain the formation of galaxies and their empirical rotation curves. Its original composition
and why it does not interact with ordinary matter is still a remaining mystery. The last
part is the 4% containing all the baryonic matter of our Universe. These are the particles
contained in planets, stars and gas clouds. It is worth mentioning that the ΛCDM model de-
scribes the main complexities of our Universe in just six parameters that come from Quantum
Mechanics, General Relativity, Nuclear Physics, Electrodynamics, and Kinetic theory. This
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striking description makes our Universe a remarkably simple system. Nevertheless, there are
still some unknown ingredients. For example, dark matter, dark energy whose microscopic
origin is not understood, after all, cosmology has become a mainstream topic within particle
physics, mainly because cosmology provides several of the pieces of observational evidence
for the incompleteness of the Standard Model of particle physics.

Nowadays, there is still open problems and prospects in cosmology. Local measurements
of the Hubble parameter, H0, from supernovae and lensing time delays, disagree with the
value inferred from a ΛCDM fit to the cosmic microwave background (CMB), with local
measurements suggesting a higher value. Any apparent systematic effect does not easily
explain this discrepancy in either measurement, and so increasing attention is focusing on
the possibility that this "Hubble tension" may be indicating new physics beyond the standard
ΛCDM cosmological model. In the 2020s, surveys will discover thousands of SNe Ia across
a broad redshift range 0 < z < 2, and together with our advances in understanding and
controlling the sources of systematic uncertainties, this opens up a wide array of potential
uses and narrowing down the achievable experimental precision.

Ground and potential new space mission with thousands of detectors will constraint the
elusive B-modes, characterize galactic foregrounds with unprecedented precision. The miss-
ing pieces of the puzzle will be provided by GW detectors, such as LIGO, Virgo, and future
ground-based detectors; Pulsar Timing Arrays; and the planned future space-based interfer-
ometers such as LISA. Increasing their sensitivity to detect binary compacts objects, but also
increasing our hopes to keep pushing the limits of testability and therefore our understanding
of nature.

Precision cosmology in now. Fasten your belts to your seats.

1.1 Standard ΛCDM Cosmology
Cosmology became a science once Einstein’s discovery of General Relativity (GR) related the
observed distribution of stress-energy to the measurable geometry of spacetime. This implies
the geometry of the universe as a whole can be tied to the overall distribution of matter at
the largest scales. It used to be an article of faith that this geometry should be assumed
to be homogeneous and isotropic, the so-called cosmological principle, but these days it is
pretty much an experimental fact that the stress-energy of the universe is homogeneous and
isotropic on the largest scales visible. On such large scales, the geometry of space-time should,
therefore, be homogeneous and isotropic.

The Friedmann-Robertson-Walker(FRW) metric describes the most general homogeneous
and isotropic geometry in 3+1 dimensions. The line-element for this metric can be written
as

ds2 = gµνdx
µdxν = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (1.1)

where a(t) is the scale factor describing the relative size of a spacelike hypersurface Σt at
different times. The FRW geometry is characterized by the curvature of such spatial slices,
where the parameter k is 0 for flat Euclidean space; 1 for positive curvature space and −1
for negative ones.
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To study this class of spacetime it is useful to analyze the propagation of signals emitted by
a source at a given time t1, and observed by us today at a time t0. Because of the expansion
of space, this signals become stretched while they travel through the universe. We define the
redshift of light between the time of departure t1 and arrival t0 as

1 + z =
a(t0)

a(t1)
. (1.2)

Then if a(t) is increasing with time, the frequency is shifted towards the infrared(redshift
today), by a factor a(t1)/a(t0), and z is different from 0. Additionally, the expansion rate is
characterized by the Hubble parameter H = ȧ/a, which is positive for an expanding universe
and negative for contracting universes. It is convenient and usual to define a(t0) = 1 and
recognize H(t0) = H0 as the Hubble rate today or the Hubble constant. The comoving
distance to an object at redshift z,

χ(z) =

∫ z

0

dz′

H(z′)
, (1.3)

allows us to define two important cosmological distance measures:

• Angular diameter distance. It is defined as the ratio of an objects physical trans-
verse size to its angular size at emission time. This is given by

dA(z) =
1

1 + z
χ(z). (1.4)

• Luminosity distance. It measures the corrected distance, due to redshifting of the
luminous distance emitted by an object as observed on Earth. It is given by

dL(z) = (1 + z)χ(z). (1.5)

The importance of these measures is that they give us the possibility to consider measure-
ments of distances at large redshifts, say z > 0, 1 when the effects of cosmological expansion
are considerable. Measurements at large redshift, tell us whether the universe is expanding
or contracting and how fast.

1.1.1 Einstein equations

To describe the dynamics of the FRW spacetime defined previously, we should solve the
Einstein’s equations. As a first approximation, we assume that the interaction between
different matter components is negligible. In that case, the universe can be modeled as it
was filled with a perfect fluid of pressure p and density ρ. This type of matter is consistent
with the symmetries of the spacetime considered previously, and is described by the following
energy-momentum tensor:

T µν =


ρ(t)

−p(t)
−p(t)

−p(t)

 . (1.6)
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Einstein equations Gµν = 8πTµν become:

H2 +
k2

a2
=

1

3M2
pl
ρ, Ḣ +H2 = − 1

6M2
pl

(ρ+ 3p). (1.7)

On the other hand, conservation of energy-momentum tensor T 0ν
;ν gives:

ρ̇+ 3H(ρ+ p) = 0. (1.8)

Solving this set of equations will allow us to study the evolution of the scale factor a in terms
of the matter content that fills the universe. To proceed we will consider low-density fluids,
such that they satisfy a barotropic state equation. In that case, the pressure as a function of
density is given by p = wρ. Therefore Eq.(1.8) can be rewritten as

d ln ρ

d ln a
= −3(1 + w), (1.9)

thus implying that a ∼ ρ−3(1+w), which gives us back the scale factor as a function of time:

a(t) =

{
t

2
3(1+w) for w = −1
eHt for w = −1

(1.10)

Therefore, we notice that depending on the matter content that we consider, we get a different
evolution of the scale factor a(t) and, thus, the Hubble parameter H(t). As the universe is
filled with a mixture of different matter components, it is useful to classify them by their
contribution to the pressure. Let us examine four important cases:

• Matter. We will use the term matter, to refer to any form of matter for which the
pressure is much smaller than energy density |p| � ρ. This is the case for a gas of non-
relativistic particles, where the energy density is dominated by the mass term. This
includes cold dark matter and baryons (nuclei and electrons). Setting w = 0, we get:

ρ ∝ a−3. (1.11)

This dilution of the energy density simply reflects the expansion of a volume V ∝ a3.

• Radiation. Radiation denotes anything for which the pressure is about a third of
energy density, p = ρ/3. This is the case for a gas of relativistic particles, for which
the energy is dominated by the kinetic energy. This includes photons, neutrinos, and
gravitons.

ρ ∝ a−4. (1.12)

The dilution now includes an extra factor a−1 due to the redshifting of the photon
energy E ∝ a−1.

• Vacuum energy. Or better know as Dark Energy. Einstein’s equations allow another
source Tµν ∝ gµν , producing a negative pressure component characterized by an equa-
tion of state p = −ρ. This is unlike anything we have encountered in the lab but is
hypothesized as the cause of the actual expansion of the universe. We find that the
energy density is constant

ρ ∝ a0. (1.13)
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Since in this case, the energy density does not dilute, energy is created as the universe
expands.

• Curvature. We can also include the effect of the curvature of spacetime as a type of
fluid characterized by an energy density:

ρ ∝ a−2. (1.14)

Figure 1.1: Supernova recesion: Evidence for dark energy, found in 1998 by the Supernova
Cosmology Project and Calan-Tololo Supernovae Survey.

It will be useful to rewrite the different components of the stress-energy tensor in terms
of the critical density for a flat Universe ρc = 3M2

plH
2, which evaluated today becomes,

ρc,0 =
3H2

0

8πG
(1.15)

The dimensionless densities evaluated today are:

Ωi,0 =
ρi,0
ρc,0

(1.16)

Then Friedmann eq. (1.7) becomes

H2 = H2
0

[
Ωr,0a

−4 + Ωm,0a
−3 + Ωk,0a

−2 + ΩΛ

]
(1.17)

Where we have defined
Ωk,0(a) = − k

a2H2
0

(1.18)

as a measure of the relative curvature contribution. In the literature, one usually drops the
index ’0’. Observations suggest that Ωk = 0 so we disregard this contribution hereafter.
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1.1.2 Concordance model

The concordance or ΛCDM model is based on well-tested physical principles, including gen-
eral relativity that describes the dynamics of an expanding universe, the quantum mechanical
laws that govern the creation of species during early times, and the Boltzmann equation which
allows us to track the evolution of each of these species.

Parameter Planck TT+lowP+lensing
Ωbh

2 0.02237± 0.00015
Ωch

2 0.1200± 0.0012
100θMC 1.04092± 0.00031
τ 0.0544± 0.0073
ln(1010As) 3.044± 0.014
ns 0.9649± 0.0042
H0 67.36± 0.54
Ωm 0.3153± 0.0073
σ8 0.8111± 0.0060

Table 1.1: Parameter 68% confidence levels for the base ΛCDM cosmology computed from
the Planck CMB power spectra, in combination with the CMB lensing likelihood.

However, most of the parameters in the concordance model contains information about
physics about which we still have no detailed understanding. The relative fractions of baryons,
dark matter and dark energy in the universe are all governed by fundamental processes that
still lie outside the current Standard Model of particle physics, and may extend up to the TeV,
GUT or even Planck scales. The set of variables required by the concordance cosmology is
not fixed but is dictated by the quality of the available data and our ignorance of fundamental
physical parameters and interactions.

Table 1.1 details the six parameter used in the ΛCDM model and their current values
according to Planck [1] combined with supernovae data and LSS observations [2]. From
1.1 it can be deduced that the current model favors a flat universe dominated by a 68.25%
of dark energy, 26.8% of dark matter and a 4.9% of ordinary or baryonic matter. This
parametrization also includes data about the initial condition necessary to produce the CMB
power spectrum. Assuming that the initial state of the universe was filled with small adiabatic
curvature perturbations parametrized by a power spectrum of the form:

PR(k) ∝ Ask
ns−1. (1.19)

Table 1.1 indicates that Eq.(1.19) forms a near scale invariant power spectrum.

1.1.3 Thermal History

The concordance model describes how the universe is today dominated by dark energy, and
how it is composed of a determined number of species. Since dark energy remains constant
in time, at early times, matter and radiation should be dominant. We now, examine briefly,
the evolution of different types of matter, that reproduce the universe we see today.
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At the beginning, our universe was hot and dense, and spacetime was expanding. This
means that early epochs are characterized by high energies, at which certainly broken symme-
tries in the laws of physics were restored, and by the fact that the expansion rate H(t) plays
an important role as a timescale. The interaction between particles freeze out or decouple
when the interaction rate drops below the expansion rate. Table 1.2 summarizes the various
phase transitions related to symmetry breaking events. We will give a quick summary of the
most important events in the evolution of the Universe. This description will start at 100
GeV where we still have a detailed picture of the physics present.

Above 100 GeV the electroweak symmetry is restored, and the Z and W± bosons are
massless. Interactions are strong enough to keep quarks and leptons in thermal equilibrium.
Below 100 GeV the symmetry between the electromagnetic and the weak forces is broken,
Z and W± bosons acquire mass, and the cross-section of weak interactions decreases as the
temperature of the universe drops. As a result, at 1 MeV, neutrinos decouple from the rest of
the matter. Shortly after, at 1 second, the temperature drops below the electron rest mass and
electrons and positrons annihilate efficiently. Only an initial matter-antimatter asymmetry of
one part in a billion survives. The resulting photon-baryon fluid is in equilibrium. Around 2.2
MeV the strong interaction becomes important, and protons and neutrons combine into the
light elements (H, He, Li) during Big Bang nucleosynthesis(∼ 200s). The successful prediction
of the light elements (H, He and Li) abundances is one of the most striking consequences of
the Big Bang theory. The matter and radiation densities are equal at around 1 eV (1011 s).
Charged matter particles and photons are strongly coupled in the plasma and fluctuations
in the density propagate as cosmic sound waves. Around 0.1 eV (380, 000 yrs) protons and
electrons combine into neutral hydrogen atoms. This epoch, at which the first atoms start
to form (H) is referred to as recombination, despite the fact that electrons had never before
combined into atoms.

Event time t redshift z temperature T
Electroweak phase transition 10−10 s 1015 100 GeV
QCD phase transition 10−9 s 1012 150 MeV
Neutrinno decoupling 1 s 6 · 109 1 MeV
e− − e+ annihilation 6 s 2 · 109 500 KeV
Big bang nucleosynthesis 180 s 4 · 108 0.75 eV
Matter-radiation equality 60 kyr 3200 0.75 eV
CMB decoupling 380 kyr 1100 0.23eV
Reionization 100 Myr 11 2.6meV
Dark energy-matter equality 9Gyr s 0.4 0.33meV
Present 13.7 Gyr 0 0.24meV

Table 1.2: Termal history of the universe.

At a temperature higher than about 3000K the Universe consisted of an ionized plasma
of mostly protons, electrons and photons, with mainly helium and traces of lithium. The
main feature of this plasma is that it was opaque, or more precisely, the mean free path of
a photon was smaller than the Hubble length. As the universe cooled and expanded, the
plasma recombines into neutral atoms, first the helium, then a little later the hydrogen.

After recombination, and once the gas became neutral, the mean free path for photons
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become much larger than the Hubble length, since radiation decoupled from matter. The
universe is then full of a background of freely propagating photons with an almost perfect
black body distribution at the time of recombination epoch. This background radiation has
a temperature of T = 3000K, and as the universe expands photons redshifted, so that the
temperature of photons drops with the increase of the scale factor T ∝ a−1. We can detect
these photons today by looking at the sky, this background of photons come to us evenly from
all directions, with an average temperature of T0 = 2.73K, this is the cosmic microwave
background(CMB) located at a uniform surface or last scatering surface at at redshift 1100.

Even though the observed CMB is highly isotropic, it is not perfectly isotropic. The first
anisotropy discovered was the dipole which was first measured in the 1970’s by several groups.
It was until more than a decade after, that the first observation for the anisotropy was made
l > 2, by COBE satellite:

The natural basis for describing these anisotropies are the spherical harmonics Ylm(θ, φ).
The motion of earth with respect to the CMB comoving frame induces a Doppler shift in
temperature, and this intrinsic dipole effect can be average out; additionally, any locally
uniform perturbation will contribute to the effective background, making indistinguishable
from noticing it. Technically, we typically say that l = 0, 1(monopole and dipole) contribution
are gauge dependent in a part in a ∼ 105, so it does not make any sense have an exact
measurement for them. Nevertheless, the multipoles l ≥ 2 are genuinely gauge invariant and
well defined:

∆T

T0

=
∞∑
l=0

m=l∑
m=−l

almYlm(θ, φ). (1.20)

If we assume statistical isotropy, then there is no preferred direction in the universe, and
we expect that the statistical properties of ∆T/T0 to be independent of the index m. In
consequence, we can define the power spectrum estimator

Cl =
1

(2l + 1)

∑
m

|alm|2 (1.21)

which is better known as the rotationally invariant temperature angular power spectrum.
Which technically is the variance of the probability distribution for alm’s. This quantity
simplifies the information contained in a CMB map pixel and thus is used to analyze the
CMB power spectrum.

∆T

T
≈ 10−5, (1.22)

The anisotropies represent the tiny primordial density fluctuations in the cosmological
matter present at the time of recombination. These small density perturbations, grow via
gravitational instability to form the large-scale structures observed in the late universe. A
competition between the background pressure and gravity determines the details of the
growth of structure. During radiation domination the growth of the overdensities is slow
δρ ∝ ln a. Clustering becomes more efficiently after matter dominates the background den-
sity, δρ ∝ a. Small scales become non-linear when δρ ∼ 1, and form gravitationally bound
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Figure 1.2: Homogeneity and contrast of the CMB: Pictorially if we take a CMB picture
and then we tune its contrast we would notice the anisotropies structure, corresponding to a
different temperature at a different point on the sky.

objects that decouple from the overall expansion that leads to a picture of hierarchical struc-
ture formation with small-scale structures (like stars and galaxies) forming and then merging
in larger structures (clusters and superclusters of galaxies). Around redshift z ≈ 25, high
energy photons from the first stars begin to ionize the hydrogen in the intergalactic medium.
This process of reionization is completed at z ≈ 6. Meanwhile, the most massive stars run
out of nuclear fuel and explode as supernovae. In these explosions the heavy elements (C,
O, etc.) necessary for the formation of life. At z ≈ 1 negative pressure dark energy starts to
dominate the universe expansion, and the growth of structure ceases δρ ≈ constant.

Figure 1.3: Universe evolution. Credit:http://www.damtp.cam.ac.uk/user/db275/
concepts/Lecture7.pdf.

Nowadays, there are many groups such as CLASS, Simons Observatory, BICEP, Polar Bear
among others, expanding the frontier by trying to detect the elusive B-modes and constraint
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the reionization depth, which is a challenging task due to the experimental effort. Mainly,
the B-modes are entirely a quantum gravity phenomena, so fundamentally is important;
additionally, it may give us the energy scale of inflation. We are not able to reach a signal
fainter than r ∼ 0.001, if inflation is a quantum phenomena we know that they must be
there since it must excite light degree of freedom, but we do not know how energetic inflation
was, these pure signal independently from the inflationary model will tell us something about
its energy. For which a principal claim is that quantum fluctuations explain the properties
of primordial fluctuations presently found written large across the entire space. This claim
would imply not only that quantum gravity effects are observable; but that their imprint has
already been detected cosmologically so far. Such affirmations encourage the need to clarify
what parameters control the size of quantum effects in gravity and identify the regime of
validity of semi-classical methods in cosmology.

Figure 1.4: Cosmology Large Angular Scale Surveyor Aka. CLASS telescope located in cerro
Toco, San Pedro de Atacama, Chile. Credit: Matthew Petroff, CLASS collaboration.

As we know so far, inflation gave us coherent adiabatic modes that are frozen until the
hot big-bang epoch; their power spectrum is characterized for being nearly scale-invariant
giving insights about a nearly de Sitter expansion, and their coherent phases tell us that
some event happened everywhere at the same time. However, inflation from the fundamental
perspective is not well understood. Nobody knows what happened precisely there, but we
are confident that something happened at the same time everywhere. Theories embedded in
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string theories and supergravities as UV completions offer a possible compelling explanation,
but their testability maintains us skeptic from it. The most significant advances in the
understanding of inflation have been in the frame of Effective Field Theory(EFT), its success
is based on the fact that it allows separating the physics valid at different energy scales.
Therefore one can isolate the essential degrees of freedom valid up to a specific range of
energy, while the remaining is encoded in operators of the low energy theory. This EFT
approach allows unifying most of the single field models of inflation in just a few parameters.

Observability of inflationary predictions is another enterprise as well and makes contact
with the issue of what means a measurement in gravity at the classical and quantum level.
The theory of cosmological perturbations assumes an external observer with unlimited access
to all places and at all times with complete knowledge of the entire ensemble of modes of
different fields and their properties; under this treatment, this type of observers are outside
the experiment(our universe). Nevertheless, that is not our case. Instead, we are observers
confined in a 4-dimensional spacetime influenced and subordinated by its dynamics. Under
this perspective, we are observers inside of the experiment, which at the same time is merely
one realization of other similar alternatives, with limited access to the entire ensemble of
fields modes.

Due to this fact, we can not have full access to the entire universe restricting our knowledge
and information available to just a causally connected small region of space from which we
sample the local statistical distribution. How we formally deal with the influence of spacetime
dynamics on us is by using the Conformal Fermi Coordinates(CFC). First introduced [3], in
the context of an observer trajectory near strong gravitational fields(Fermi coordinates), but
ultimately incorporated and revived in a cosmological context [4] [5] adapted to a conformal
scenario to study the primordial curvature power spectrum and bispectrum of our universe.
Its construction follows from the flatness theorem and at the same time is a consequence of
the equivalence principle on our Hubble local patch. These coordinates allow us to connect
the global theory of fluctuations with observations whose precision scales as k2

S/k
2
L, where kS

is the observed fluctuation on a determined scale and kL correspond to long modes whose
scale is longer than the scales of interest. The main prediction of these coordinates is the
vanishing of the local measured squeezed limit of the bispectrum[5].

Additionally, current CMB observations show the existence anomalies such as the dipolar,
quadrupole and octupole asymmetry, and a bumpy features at l ∼ 23. During this work, we
will focus on the latter. First, we will use the time-dependent background of the de Sitter
universe, commonly encoded in the slow roll parameters, to create a self-interaction term
for the curvature perturbations[6]. In chapter 4 of this thesis, we analyze the effect of such
background quantities in the power spectrum of the tensor modes and establish a possible
relationship between both power spectra.

The outline of this thesis is the following: In chapter 1, We sketch the salient features of
the standard cosmological model ΛCDM. In chapter 2, We introduce the standard paradigm
of inflation, and review its main features, non-gaussianities to pave our the road in the sub-
sequent sections. In chapter 3, We introduce the main features of CMB by dissecting it in
different pieces to understand the main features qualitatively for temperature and polariza-
tion signal. In chapter 4, We analyze the implications of the time-dependent background
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quantities that parametrize inflation for the scale invariance of the tensor power spectrum.
In chapter 5, We derive new relations for the local non-gaussianity for Slow and Ultra-slow
roll scenarios. In chapter 6, First, introduce the notion of the Fermi coordinates, and then
analyze their implications for the observed power spectrum and bispectrum. In chapter 7,
We characterize the beams and the window functions for the 40GHz band of the Cosmology
Large Angular Scale Surveyor(CLASS).

Finally, we will follow the natural units convention c = ~ = 1. The reduced Planck mass:
M2

pl = 32GN. The Einstein summation over repeated indices. The Greek indices range from
0 to 3 and Latin indices from 1 to 3. The boldface variable denotes spatial coordinates. e.g.
x.
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Chapter 2

Inflation

The cosmic inflation or simply inflation is an early phase of our universe, in which it suffered
a dramatic exponential spatial expansion. This phase explains the universe flatness, near
spatial homogeneity and isotropy, and provides an explanation for the origin of the large-
scale structure(LSS) of the cosmos. Particularly, the origin of LSS are understood as quantum
fluctuations of microscopic regions that were amplified to cosmic scales when the universe
expanded during inflation [7, 8].

Nowadays, inflation is a fundamental piece of our current six cosmological parameter
model, the ΛCDM model, its mechanism of expansion provides two essential parameters
that characterize the near scale-invariant primordial scalar power spectrum of the matter
overdensities that seeded our universe: the amplitude As and slope, ns [9]. The former is a
parameter that characterize how big the fluctuations are and the latter is a parameter that
tells us about how the amplitude varies according to the spatial scales, but most importantly
about a quasi de Sitter spatial expansion during the earliest time in our universe.

The predictive power of Inflation relies on one the features of its spacetime fluctuations:
adiabaticity. Adiabatic quantum spacetime fluctuations are conserved or frozen when their
exit the Hubble horizon until then re-enter after reheating [10]. The mesmerizing strong facts
about CMB fluctuations, is that they are both adiabatic and coherent. These facts imply
that observations can be connected with fluctuations generated during inflation; additionally,
they tell us that some event happened at the same time everywhere[11].

In this chapter first, we will discuss about some cosmic problems that were of relevance
before inflation was introduced and we will explain how inflation solves them. Second, we
will characterize the inflationary metric background, how it can be produced from a field
theoretical frame. Third, we consider how spacetime fluctuations are generated from quantum
field theory of spacetime during inflation and characterize the main features of them. Finally,
we will review some frontier topics in inflation.

This chapter is partially based on [12]. Section (2.7) and (2.8) are based on [13] and [14]
respectively.
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2.1 Causal structure
Causality is the relationship between causes and effects. An effect can not occur before its
cause. Causality form part of the set of the fundamental principles of nowadays physics, it
restricts the shape of the known interactions of the fundamental particles, and is also useful
to predict the shape of new possible interactions. In the frame of General Relativity tell
us roughly about the structure of spacetime at a fundamental level, restricting and defining
regions of spacetime in which objects are able to interact between them depending on their
spatial and temporal location. So people with basic notions of general relativity can say
"given a spacetime metric, I can tell you whether these two object can communicate each
other." This causal connection obviously depends exclusively on the particular spacetime,
we could say things such as, two given objects in Minkowski spacetime can communicate
each other no matter their separation if we had infinity time, or and object inside of the
event horizon of a classical Black Hole will never communicate with an object outside its
Schwarzchild radius. So, a physical meaningfully question in this chapter is: how two object
in a FRW spacetime can communicate each other? or simply what is the causal structure of
a FRW universe?

To do so we begin by taking Eq. (1.1) and changing its time t coordinate to conformal
time τ(remembering that coordinates in Physics are not fundamental, so no matter what are
their values of as long as the mapping between two set of coordinates is well defined) using
the following relation

dτ =
dt

a(t)
, (2.1)

thus, we realize that a FRW metric factorizes into a Minkowski metric ηµν multiplied by the
scale factor a(τ)

ds2 = a2(τ)ηµνdx
µdxν . (2.2)

Therefore the radial propagation of particles is characterized by the following line element

ds2 = a2(τ)
[
−dτ 2 + dr2

]
. (2.3)

In particular null geodesics followed by photons are represented by just straight lines at ±45
angles in the τ − r plane

r(τ) = ±τ + c. (2.4)

The maximal distance of photons can travel between an initial time ti and later time t > ti
is given by:

∆r = τ − τi =

∫ t

ti

dt′

a(t′)
. (2.5)

Thus the maximal distance traveled is equal to the amount of conformal time elapsed during
the interval t − ti. The initial time is often taken to be the origin of the universe ti = 0,
defined by the initial singularity ai = a(ti) = 0. We obtain

∆rmax(t) =

∫ t

0

dt′

a(t′)
= τ(t)− τ(0), (2.6)

which is the comoving particle horizon. If we rewrite the conformal time as

τ =

∫
dt

a(t)
=

∫
d ln a

aH
, (2.7)
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from the above equation, we deduce that the elapsed conformal time depends on the evolution
of the comoving Hubble radius (aH)−1. For example, for a universe dominated by a barotropic
state equation w = p/ρ, we find that this evolves as

(aH)−1 ≈ a
1
2

(1+3w). (2.8)

Note that the dependence of the exponent on the combination 1 + 3w. All the familiar
sources satisfy the strong energy condition (SEC), 1 + 3w > 0, so it is reasonable, prior to
the knowledge of the acceleration of the universe, to assume that the comoving Hubble radius
increases as the universe expands. Performing the integral Eq.(2.7) gives

τ ≈ 2

(1 + 3w)
a

1
2

(1+3w) (2.9)

For conventional matter sources the initial singularity is at τi = 0, with

τi ∼ a
1
2

(1+3w)

i , (2.10)

as a result, the comoving horizon is finite

∆rmax(t) ≈ a
1
2

(1+3w). (2.11)

2.1.1 Flatness problem

Let us recall the evolution of curvature in FRW spacetime, is described by the following
density parameter:

Ωk(a) = − k

a2H2
. (2.12)

Then if we assume, for simplicity, that the expansion is dominated by some form of matter
with an equation of state parameter w, we have a ∼ t

2
3(1+w) , in consequence we get its

evolution:

Ω̇k = ΩkH(1 + 3w) → dΩk

dN
= Ωk(1 + 3w). (2.13)

If we further assume that w > −1/3, then the solution Ωk = 0 is an unstable point. Thus
if Ωk > 0 at some point, Ωk will keep growing. And viceversa, if Ωk < 0 at some point, it
will keep decreasing. Of course at most |Ωk| = 1 in which case w becomes −1/3 if k < 0, or
otherwise the universe collapses if k > 0.

The surprising fact is that nowadays inferred Ωk is smaller than about 10−2. Taking
into account the content of matter of the universe, this means that at earlier times it was
even closer to zero. For example, at BBN epoch, it had to be |Ωk| < 10−18, at the Planck
scale |Ωk| < 10−63. In others words, since curvature depends on redshift as a−2, it tends to
dominate in the future with respect to other forms of matter. So, if today curvature is not
already dominating, it means that it was likely negligible in the past. The value of Ωk at
those early times represents a fascinating small number.

A plausible solution could be k = 0 as an initial state of our universe. While this possibility
could be true, it is unknown the reason why the universe should choose such a precise and
particular initial state. A second possibility, might be that in some epoch the universe
would have been dominated by some bizarre matter content with equation state parameter
w < −1/3.
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2.1.2 Horizon Problem

Let us digress briefly to make a simple calculation. Given that the universe seems very
homogeneous at large distances, a valid question to ask, if we can trace back this to the
beginning of the universe. To do this let us compute the angle subtended by the comoving
horizon at recombination. This is defined as the ratio of the comoving particle horizon at
recombination and the comoving angular diameter distance from us (an observer at redshift
z = 0) to recombination (z ≈ 1100)

θhor =
dhor
dA

. (2.14)

A well defined quantity is the comoving distance between redshifts z1 and z2

τ2 − τ1 =

∫ z2

z1

dz

H(z)
= I(z1, z2). (2.15)

With this the comoving particle horizon at recombination is

dhor = τrec − τi ≈ I(zrec,∞), (2.16)

therefore, the angular scale of the horizon at recombination

θhor =
dhor
dA

=
I(zrec,∞)

I(0, zrec)
. (2.17)

Using Eq.(1.17) as a function of redshift

H(z) = H0

√
Ωm(1 + z)3 + Ωγ(1 + z)4 + ΩΛ, (2.18)

it can be deduced that
θhor = 1.16◦. (2.19)

Therefore, in a matter or radiation dominated universe no physical influence could have
smoothed out initial inhomogeneities that were separated by more than θ > θc = 2θhor = 2.3◦.
It seems to particular how different points, in different directions are so similar. A generic
scenario would not had enough time to thermalize and homogenize the observed universe,
then, how is the CMB so nearly perfect isotropic? This striking fact tells us that even at the
time of the recombination, the largest scales were still outside the horizon. This is called the
Horizon Problem.

2.2 Background
As we have seen Eq. (2.7) implies that the comoving horizon is the logarithmic integral of
the comoving Hubble radius (aH)−1. The Hubble radius, as we mentioned previously, is the
distance over which particles can travel in the course of one expansion time, i.e., it is roughly
the time in which the scale factor doubles. So the Hubble radius is another way of measuring
whether particles are causally connected with each other: If they are separated by distances
larger than the Hubble radius, they cannot currently communicate.

There is a subtle distinction between the comoving horizon τ and the comoving Hubble
radius (aH)−1. If particles are separated by distances greater than τ , they never could have
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communicated with one another; if they are separated by distances greater than (aH)−1 they
cannot talk to each other now. Therefore, it is possible that τ could have been much larger
than (aH)−1 now so that particles cannot communicate today but were in causal contact
early on. This might happen if the comoving Hubble radius early on was much larger than
it is now so that the comoving horizon got most of its contribution from early times. This
could happen, but is not possible during matter or radiation dominated epochs, because in
those cases, the comoving Hubble radius increases in time, so typically we expect the largest
contribution to τ to come from most ancient times.

All this suggests a solution to the horizon problem. If there exists a brief time, where
the universe was not dominated by radiation or matter, and moreover the Hubble radius
decreased. Then the comoving horizon τ would get most of its contributions not from late
times but rather from primordial epochs. Particles separated by many Hubble radius today
would have been in causal contact before the epoch of rapid expansion, and this could explain
the smoothness of the CMB observed today. This epoch of dramatically decreasing Hubble
radius is called inflation.

As noted earlier, a decreasing Hubble radius requires a violation of the SEC, 1 + 3w < 0.
Therefore we notice that the Big Bang singularity is now pushed to negative conformal time,

τi ∝
2

1 + 3w
a

1
2

(1+3w)

i = −∞, for w < −1

3
. (2.20)

This implies that there was much more conformal time between the singularity and decoupling
than we had thought at the beginning of this chapter. The past light cone of widely separated
points in the CMB now had time to intersect before the time τ = 0 which is not the initial
singularity, but instead becomes, what it is called, the time of reheating. There is conformal
time both before and after τ = 0. A decreasing comoving horizon means that large scales
entering the present universe were outside the horizon before inflation ending.Therefore,
causal physics before inflation ending had time to thermalize fluctuations. With a period of
inflation, the uniformity of the CMB is not longer a mystery.

To quantitatively define inflation, let us notice that a shrinking Hubble radius (aH)−1

corresponds to
d

dt
(aH)−1 =

d

dt
ȧ−1 = − ä

ȧ2
. (2.21)

Thus,
d2a

dt2
> 0, (2.22)

which implies that a shrinking comoving horizon produces an accelerated expansion. Also,
inflation implies some constraint on the Hubble parameter. If we write,

d

dt
(aH)−1 = − ȧH + aḢ

(aH)2
= −1

a
(1− ε), where ε = − Ḣ

H2
> 0. (2.23)

The shrinking Hubble sphere therefore also correspond to

ε = − Ḣ

H2
= −d lnH

dN
< 1. (2.24)
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Here we have defined dN = d ln a = Hdt, which measures the number of e-folds N of
inflationary expansion. Eq.(2.24) implies the fractional change of the Hubble parameter
per e-fold is small. Moreover, to solve the horizon problem, we want inflation to last for a
sufficiently long time. To achieve this requires (2.24) to remain small for a sufficiently large
number of Hubble times. This condition is measured by a second parameter,

η =
ε̇

Hε
=
d ln ε

dN
. (2.25)

Then, for |η| � 1 the fractional change of ε per Hubble time is small and inflation persists.
We should also ask ourselves what form of stress-energy tensor source permits accelerated
expansion. Assuming a perfect fluid with p and density ρ, the Friedmann equations become:

Ḣ +H2 = − 1

6Mpl
(ρ+ 3p) = −H

2

2
(1 + 3ρ). (2.26)

Then

ε = − Ḣ

H2
=

3

2

(
1 +

p

ρ

)
< 1→ w =

p

ρ
< −1

3
. (2.27)

The question we would like to answer now is how we can implement inflation on a theoretical
frame. To do this we have a large number of options. This is a big problem in inflation; up to
date, it has been impossible to find a unique model that match all the predictions of inflation,
but instead an enormous variety of models have appeared since inflation was first presented
in the eighties. But to introduce inflation, we give a brief description of the simplest models.

2.2.1 Single field slow-roll inflation

The simplest discussion we can give to push forward our intuition is to consider inflation
as embedded in a field theoretical context. We start by considering a scalar field φ, called
inflaton with potential V (φ) whose dynamics is given by the Lagrangian (we now setM2

pl = 1):

L(φ) = −1

2
gµν∂µφ∂νφ− V (φ). (2.28)

The idea of inflation is to fill a small region of the initial universe with a homogeneously
distributed scalar field sitting on top of its potential V (φ). The equations of motion described
by the action of (2.28), using a FRW background, are

φ̈+ 3Hφ̇+ V ′(φ) = 0, (2.29)

and
H2 =

1

3

(
1

2
φ̇2 + V (φ)

)
. (2.30)

Using these equations we derive the continuity equation, which is found to be given by

Ḣ = −1

2
φ̇2. (2.31)

In addition, the stress-energy tensor is given by

Tµν = − 2√−g
δSφ
δgµν

= ∂µ∂νφ− gµν
(

1

2
∂ρ∂

ρφ+ V (φ)

)
. (2.32)
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This result leads to the following expressions for the energy-density and pressure

ρφ =
1

2
φ̇2 + V (φ), pφ =

1

2
φ̇2 − V (φ). (2.33)

Therefore, the equation of state is

wφ =
pφ
ρφ

=
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

. (2.34)

So the condition for inflation is equivalent to have an Eq. of state with wφ ≈ −1 < 1
3
. Thus

the potential energy V , should dominate over the kinetic energy φ̇2(subdominant but not
negligible). This may be expressed using the slow-roll parameter ε . Then

ε = − Ḣ

H2
=

1

2

φ̇2

H2
� 1. (2.35)

Also, notice that Eq.(2.29) is the same as the one of a particle rolling down a potential. This
particle is subject to friction through the term Hφ̇. Like for particle trajectory, this means
that the solution where φ̇ ≈ Vφ/3H is a slow-roll attractor solution if the friction is large
enough. This can be written in terms of the slow roll parameter η as

η = − φ̈

Hφ̇
� 1. (2.36)

Then we have found that the two slow-roll parameters have to be much smaller than 1. The
first parameter ε meaning that we are on a background solution where the Hubble parameter
means that we are on an attractor solution, and also that this phase of accelerated expansion
(w ≈ −1, a ∝ eHt) will last for a long time. For this condition the persistence of the
acceleration of scalar field has to be small to achieve this, it is useful to define dimensionless
acceleration per Hubble time. We now use the above conditions, ε ∼ |η| � 1 to simplify the
equations of motion. This is the so-called "slow-roll approximation". First, we notice that
the parameters can be written in terms of the potential as,

ε ≈ 1

2

(
V
′

V

)2

(2.37)

η ≈
(
V
′′

V

)2

− 1

2

(
V
′

V

)2

(2.38)

These conditions lead to the following simplification of the inflation equations, which now
reduce to:

φ̇ =
V
′

3H
, H2 =

V

3M2
pl

, a ∝ eHt. (2.39)

Let us notice that inflation will end when w ceases to be ≈ −1, which in terms of slow roll
parameters is,

ε ∼ η ∼ 1 (2.40)

In terms of the potential, this means that the field that starts on top of his potential will
slowly roll down while the Hubble parameterH will decrease, providing less friction. Hence, it
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will be a point when the potential will become too steep to guarantee that the kinetic energy
is negligible with respect to the potential energy. We will call the point in field space where
this occurs φ end. At that point (immediately after inflation occurs), a period dominated by
a form of energy w > −1/3 is expected to begin. This period is called reheating.

The amount of inflation required to solve the cosmological problems is most easily mea-
sured using the number of e-foldings. These are defined as the logarithm of the ratio of the
scale factor at the end and at the beginning of inflation. We then have

N(φ) = ln
(aend
a

)
=

∫ af

ai

d ln a =

∫ tf

ti

Hdt =

∫ φend

φ

H

φ̇
≈
∫ φ

φend

V

V ′
dφ. (2.41)

Where we have used that a ∝ eHt and the slow roll approximations. The largest scales
observed in the CMB are produced some 40 to 60 e-folds before the end of inflation, thus

NCMB ∼
∫ φ

φend

dφ
V

V ′
∼ 40− 60 (2.42)

2.2.2 Slow And Ultra Slow Roll Inflation

Another interesting regime of inflation can be the ultra slow roll phase which is characterized
by the flatness of its potential and can correspond to the previous phase of the slow-roll
regime, more precisely a starting USR period followed by SR phase with a smooth phase
transition. Such scenarios can arise in UV completions theories from higher-dimensional
supergravities[15]. In this case, the expected form for the scalar potential during the infla-
tionary regime could be

V (φ) = V0 − V1e
−φ/φ0 + ... (2.43)

For some scales V0, V1 and φ0. The USR scenario can be understood as a transient phase
between the beginning of inflation and the slow-roll phase, particularly, in the above model
takes place when φ � φ0, so the first potential term, V0, dominates, and so is chosen as
needed for inflationary cosmology, with H2 = V0/(3M

2
pl). In this regime, the scalar field

dynamics reduces to:
φ̈+ 3Hφ̇ = 0. (2.44)

Additionally, with this simplification the relevant potential derivatives are V ′ = (V1/φ0)e−φ/φ0

and V ′′ = −(V1/φ
2
0)eφ/φ0 leading to slow-roll parameters of the form:

ε =
1

2

(
MplV1

φ0V0

)2

e−2φ/φ0 , η = −
(
M2

plV1

φ2
0V0

)
e−φ/φ0 , (2.45)

thus,

ε =
1

2

(
φ0

Mpl

)2

η2 (2.46)

which can easily be large so long as φ� φ0 and φend/φ0 is order unity. Notice that ε and η are
generically small whenever φ� φ0, even if V1 ∼ V0, so there is no need to require φ0 be larger
than Mpl to ensure a slow roll. Typical examples of underlying UV theories give φ0 ∼ Mpl,
in which case ε ∝ η2. It turns out that this prediction provides better agreement with
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experiment that ε ' η does, and the generic expectation ε ∝ η2 has potentially interesting
observational consequences for measurements of primordial gravitational waves because it
relates the as yet unmeasured tesor-to-scalar ratio r < 0.07, to the observed spectral tilt,
ns = 0.96, giving the prediction r ' (ns − 1)2 ' 0.002.

Another interesting and simpler solution in the regime when the field φ has large values(φ >>
φ0), in this case, the potential becomes constant and all the background dynamic is dominated
by a single parameter, V0. In this regime, the slow-roll parameters scale as:

ε ∝ a−6, and η ∝ −6. (2.47)

This can be understood as transient phase, furthermore, it offers a large departure from
conventional slow-roll inflationary models.

2.3 Quantum Initial Conditions from Inflation
As we have seen, Inflaton field φ governs the primordial universe dynamics through a dom-
inant scalar contribution to the stress-energy tensor Tµν , in particular, its energy density ρ
and pressure p. From Friedmann equations, the energy density controls how the universe
evolves in time, most importantly, implicitly determines a universal clock: more energy den-
sity means a smaller universe, hotter and younger, on the other hand, less energy density
means a bigger universe cooler and older. Thus, it defines indirectly a universal clock whose
flow its t; but something remarkable happens when we consider quantum mechanics and gen-
eral relativity at the same footing. In order to satisfy the Heisenberg’s uncertainty principle
from quantum mechanics, a precise time from precise clock is impossible to have, therefore
this quantum mechanical clock, necessarily must locally fluctuate δt(t, x) ∼ δφ/φ̇ ∼ H/φ̇,
this mechanism produces an intrinsic variation in the energy density field δρ in the primordial
universe, that are amplified due to the universe expansion, providing the seeds for the for-
mation of structures that we see today, such as the Cosmic Microwave Background (CMB),
Large Scale Structures(LSS) and smaller objects therein.

2.3.1 Free Scalar spectator Field In dS4

A precise quantum clock is imposible to have, so quantum fluctuations are an inherent of
any inflationary theory. To parametrize these fluctuations, let start with a free spectator
scalar field in de Sitter space with mass m that carries an insignificant amount of energy and
therefore the background does not react in presence of this field. For simplicity, we denote
φ = δφ. The action for this theory is given by:

S =
1

2

∫
d4x
√−g

[
−gµν∂µφ∂νφ−m2φ2

]
, (2.48)

or in conformal time a(τ) = −1/Hτ :

S =
1

2

∫
dτd3xa2

[
φ′2 − (∂iφ)2 −m2a2φ2

]
. (2.49)

It is useful to define an auxiliary field: v = aφ, so the action becomes,

S =
1

2

∫
dτd3x

(
v′2 − ∂iv2 +

(
a′′

a
−m2a2

)
v2

)
, (2.50)
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whose Fourier representation is

S =
1

2

∫
dτ

d3k

(2π)3

[
v′2k − ω2

k(τ)v2
k

]
. (2.51)

One can see that this action is nothing but just a continuous sum of a set of decoupled
harmonic oscillators with time-varying effective mass and angular frequencies related by the
following its dispersion relation,

ω2(τ) = k2 +m2
eff(τ) = k2 +

(
m2

H2
− 2

)
τ−2 (2.52)

We notice immediately, that the longer the wavelength the slower oscillates. This dispersion
relation is associated to the field Fourier modes,

vk(τ) =

∫
d3xv(τ,x)eikx. (2.53)

Varying the action it produces in the so-called Mukhanov-Sasaki equation:

v′′k +

(
k2 +

m2/H2 − 2

τ 2

)
vk = 0. (2.54)

In de Sitter space this mode equation becomes

τ 2v′′k +

(
k2τ 2 − ν2 +

1

4

)
vk = 0,with ν2 =

9

4
− m2

H2
, (2.55)

whose general solution:

vk(τ) =
√
−kτ

[
c

(1)
k H(1)

ν (−kτ) + c
(2)
k H(2)

ν (−kτ)
]
. (2.56)

Where H(1)
ν ,H(2)

ν are the Hankel function of the first and second kind. Notice that its time
evolution does not depend on their wave vector, only its modulo k, that is to say they do not
have a preferred direction to evolve; additionally, in the massless limit ν = 3/2, the Hankel
functions are of the form of ’half-integer’, and one recover the well know results for these
mode equation:

vk(τ) = c
(1)
k

(
1− i

kτ

)
e−ikτ + c

(2)
k

(
1 +

i

kτ

)
e+ikτ (2.57)

where c(1)
k , c

(2)
k were redefined to absorb some irrelevant remnant constants. The above mode

solution correspond to the so called de Sitter modes, and are useful to make quick compu-
tations.

2.3.2 Canonical Quantization

From the action we learned that the conjugate momentum for the auxiliary field π = ∂L/∂v̇ =
v̇. We promote those field to quantum operators v̂(τ, x), π̂(τ, x). The operators satisfy que
equal time conmutator relation:

[v̂(τ,x), π̂(τ,x′)] = iδ3(x− x′). (2.58)
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Where ~ = 1. The delta function is required by locality restrictions: points at a different
location in space are independent and their corresponding operator commutes. Moreover, if
this relation is Fourier transformed immediately one obtain its equivalent representation:

[v̂k(τ), π̂k(τ)] = −i(2π)3δ3(k + k′). (2.59)

Which means the field operator modes are independent, unless they are the same. It is
convenient to expand the quantum auxiliary field v̂k(τ) in terms of creation and annihilation
time independent operators,

v̂k = vk(τ)âk + v∗k(τ)â†−k. (2.60)

Where the mode function vk(τ) and its complex conjugate v∗k(τ) satisfy the classical field
equation (2.56), âk is a creation operator and â†−k its hermitian complex conjugate, they
satisfies bosonic algebra:

[âk, â
†
k′ ] = (2π)3δ3(k− k′), [âk, âk′ ] =

[
â†k, â

†
k′

]
= 0. (2.61)

Which is the well-known commutation relation for raising and lowering operators of a har-
monic oscillator. Quantum states in its Hilbert space are constructed by defining the vacuum
state |0〉 via

âk|0〉 = 0, (2.62)

and the repeated application of a†k produces excited states for this system.

2.3.3 Choice of the vacuum

The Wronskian of the modes function is:

W [vk, v
∗
k] = v′kv

∗
k − vkv′∗k = 2iIm(v′kv

∗
k) (2.63)

From the Eq.(2.54) it is easy to show the Wronskian is time-independent, and therefore, it
can be freely chosen. In particular, we can choose, W [vk, v

∗
k] = −i, because it simplifies the

commutation relations for raising and lowering operator in momentum space. Given this
conservation property, it is convenient to choose a time in which the Wronskian computa-
tion simplifies, such as in the early time limit, where the Hankel functions have a friendly
asymptotic representation:

lim
τ→−∞

H(1,2)
ν (−kτ) =

√
2

−πkτ e
∓ikτe∓

π
2

(ν+ 1
2

). (2.64)

Therefore the mode function Eq. (2.56) behaves like:

lim
τ→∞

vk(τ) = c̃
(1)
k e−ikτ + c̃

(2)
k eikτ . (2.65)

Where c̃(1)
k and c̃(2)

k were defined to absorb the remaining constant in this expansion. Partic-
ularly, in this suitable limit these constants satisfies a simple constraint relation:

|c̃(1)
k |2 − |c̃

(2)
k |2 =

1

2k
. (2.66)

24



As it can be seen, there is a free set of choices that underlie in a hyperbola branch for each
Fourier mode k, therefore there is a remnant arbitrariness for the solution of MS equation.

Moreover, this constraint relation is unable to fix completely the vacuum condition be-
cause it is always possible to apply a Bogolyubov transformation by taking another linear
combination of the 2 modes solution and find another set of raising and lowering operator.
Thus it is fundamental and necessary to find a physical argument to fix completely the vac-
uum ket |0〉. This ambiguity can be untangled by minimizing the vacuum energy, that is to
say, minimizing the vacuum expectation value of the Hamiltonian operator:

Ĥ(τ) =
1

2

∫
d3x

[
π̂2 + ∂iv̂

2 +m2(τ)v̂2
]
. (2.67)

Its momentum representation is:

Ĥ(τ) =
1

2

∫
d3k

(2π)3

[
â−k â

−
−kFk(τ) + â+

−kâ
+
k F
∗
k (τ) + (2â+

k â
−
k + (2π)3δ(3)(0))Ek

]
, (2.68)

with:
Ek(τ) = |v′k(τ)|2 + ω2

k(τ)|vk(τ)|2, and Fk(τ) = v′k(τ)2 + ω2
k(τ)vk(τ) (2.69)

where ω2
k(τ) = k2 +m2

eff(τ). Computing its vacuum expectation value, one finds,

〈0|Ĥ|0〉 =

∫
d3k

(2π)3

(
1 + (2π)3δ(3)(0)

)
Ek. (2.70)

Where the divergence term comes from an infinite volume of integration and Ek is the energy
for each mode. This functional has to be minimized by tuning the mode constants c(1)

k , c
(2)
k .

In the same manner that before, the spectral energy density simplifies in the early time limit,
giving an expectation value(omitting the vacuum energy):

〈0|Ĥ|0〉 =

∫
d3k

(2π)3
k2(|c(1)

k |2 + |c(2)
k |2). (2.71)

Combining this relation with (2.63), this energy density is minimized when |c(1)
k | = 1√

2k
and

c
(2)
k = 0. Thus the mode function reduces to:

vk(τ) =

√
π

2

√
−τH(1)

ν (−kτ). (2.72)

2.4 Two point correlation function
Given the stochastic nature of the quantum field, it is impossible to predict with precision
the exact field configuration in a given space-time point. Due to this impossibility we are
concerned in fields statistical properties, such as, its variance and higher statistical moments.
With this in mind let start computing the most basic, but useful and powerful quantity for
a quantum field in cosmology: the 2-pt correlation function for a quantum field v̂

〈0|v̂(τ,x)v̂(τ,y)|0〉 =

∫
d3k

(2π)3
e−ik(x−y)|vk(τ)|2. (2.73)
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One of the remarkable features of this expression is that the field correlation function is real,
position independent and only depends on the distance between the two spatial coordinates.
Exploiting the fact that the power spectrum is rotationally invariant in momentum space one
gets a reduced expression for the same 2-pt correlation function:

〈0|v̂(τ,x)v̂(τ,y)|0〉 =

∫
d ln kj0(kr)

k3Pv(τ, k)

2π2
, (2.74)

where j0 is the 0-spherical Bessel function and P (τ, k) = |vk(τ)|2. Thus, if we are interested
in the power spectrum for the field φ Eq.(2.49), we get

Pφ(τ, k) =
1

a2

k3

2π2
Pv(τ, k), (2.75)

or more explicitly:

Pφ(τ, k) =
k3

2π2
(Hτ)2 (−πτ)

4
|H(1)

ν (−kτ)|2. (2.76)

In cosmology, we are interested in superhorizon adiabatic modes, since these modes freezes
after horizon crossing, allowing us to connect theoretical predictions with observations. Thus
formally in the superhorizon limit, since

lim
kτ→0

H(1)
ν (−kτ) =

−i
π

Γ(ν)

(−kτ
2

)−ν
, (2.77)

the power spectrum becomes

Pφ(τ, k) =
Γ2(ν)

π3

(
−kτ

2

)3−2ν

H2. (2.78)

2.4.1 Light field limit

A phenomenologically interesting limit is when the scalar field mass approaches to zero, the
called light field limit, m2 � H2, in which ν from the power spectrum (2.78) reduces to
3/2− 1/3m2/H2 and the power spectrum becomes:

Pφ(τ, k) =

(
H

2π

)2(
−kτ

2

) 2
3
m2

H2
(

1− 2

3
c1
m2

H2

)
(2.79)

Therefore its spectral index:
d lnPφ
d ln k

=
2

3

m2

H2
, (2.80)

Where c1 = (2−γ−2 ln 2) and γ is the Euler-Mascheroni number. When m→ 0 the spectral
index approaches to zero, and we get a scale invariant power spectrum for a massless field in
de Sitter space.
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2.4.2 Heavy field limit

Another interesting limit is when m � 3
2
H, or the heavy field limit, in which the degree

of the Hankel function becomes imaginary so ν = iµ so,

µ =

√
m2

H2
− 9/4→ m/H, (2.81)

thus the Fourier modes becomes:

|vk(τ)| =
√
π

2
e−πµ/2

√
−τH(1)

µ (−kτ) (2.82)

In effect, the power spectrum of a very massive field with Bunch-Davis initial condition is
suppressed by an exponential law Pφ(k) ∝ e−π

m
H .

2.5 Curvature Power Spectrum

Since we have already developed all the machinery necessary to describe scalar light degrees
of freedom of fields in de Sitter space, now we will consider single-field slow-roll models of
inflation

S =
1

2

∫
d4x
√−g [R− gµν∂µφ∂νφ− V (φ)] , (2.83)

where we have set the Planckian mass, Mpl = 1. We will study both scalar and tensor
fluctuations. For the scalar modes, we have to be careful to identify the true physical degrees
of freedom. A priori, we have 5 scalar modes: 4 metric perturbations δg00, δgii , δg0i ∼ ∂iB
and δgij ∼ ∂i∂jH and 1 scalar field perturbation δφ. Gauge invariances associated with the
invariance of Eq.(2.83) under scalar coordinate transformations xµ → xµ + εµ remove two
modes. The Einstein’s constraint equations remove two more modes, so that we are left with
1 physical scalar mode.

2.5.1 Comoving gauge

We will work with a fixed gauge throughout. For a various reasons, it will be convenient to
work in comoving gauge, defined by the vanishing momentum density δT 0i = 0. For slow-roll
inflation, this becomes

δφ = 0. (2.84)

In this gauge, perturbations are characterized purely by fluctuations in the metric,

δgij = a2(1− 2ζ)δij + hij. (2.85)

Here, hij is a transverse (∇ih
ij = 0), traceless (hii) tensor and ζ is a scalar. One can show that

the comoving spatial slices φ = const have first order three-curvature R(3) = 4
a2
∇2ζ. Hence,

ζ is referred to as the comoving curvature perturbation. The perturbation ζ has the crucial
property that (for adiabatic matter fluctuations) it is time-independent on superhorizon
scales:

lim
k�aH

ζ̇~k = 0. (2.86)

27



 

Ha
i

ifeng.f.t.ggt.onn
t

into
icefree

ds

dtµ

dxiNidt

Ndt

xi + dxi

Σt+dt

Σt

xi

nµ

Figure 2.1: Space time foliation.

Solving the Einstein’s equations for the non-dynamical metric perturbations δg00 and δg0i in
terms of ζ is a bit tedious. In the ADM metric parametrization where N,N i are respectively
the lapse and the shift vector that define the foliation and where hij is the induced three-
metric on the spatial hypersurface. One advantage of parametrizing in this way is that
neither Ṅ nor Ṅ i do not appear in the action, hence they correspond to non-propagating
fields that act as Lagrange’s multipliers(constraints) with a just algebraic equation of motion.
Furthermore, all the gravitational dynamics is encoded in the 3-metric hij on slices of constant
time. Thus in ADM, the spacetime metric is

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt). (2.87)

Ignoring tensorial perturbation, the 3-metric reads,

hij = a2(t)e−2ζ(t,x)δij (2.88)

where ζ(t,x) is the non-linear generalization [16] of the variable introduced by Bardeen,
Steinhardt and Turner [17] in linear perturbation theory. This variable corresponds to a
local rescaling of the scale factor that is equivalent to a local time reparametrization of the
background evolution.

The action (2.83) can be rewritten as:

S =
1

2

∫
d4x
√
h
[
NR(3) − 2NV +N−1(EijE

ij − E2) +N−1φ̇2
]

(2.89)

Where E = Ei
i and Kij = N−1Eij is the extrinsic curvature defined by:

Kij =
1

2N
(ḣij −DiNj −DjNi). (2.90)

Where Di is the covariant derivative on the 3-metric. The ADM action implies the following
constraints equations for the Lagrange multipliers N and N i or technically theHamiltonian
and the Momentum constraint:

R(3) − 2V −N−2(EijEij − E2)−N−2φ̇2 = 0, Di
[
N−1(Ei

j − δijE)
]

= 0. (2.91)
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To solve these constraint equations, we split the shift vector Ni into an irrotational and
incompressible part(scalar-vector decomposition):

Ni = ∂iψ +NT
i . (2.92)

It is useful solve the constraint equation order by order in ζ so they admit a perturbative
expansion and simplifying the non-trivial non-linearities in their algebraic equations:

N = 1 + δN (1) + δN (2) + ..., ψ = ψ(1) + ψ(2) + ..., NT i = NT i(1) +NT i(2) + ..., (2.93)

replacing in (2.89) one find that:

δN (1) =
ζ̇

H
, ∂2NT i(1) = 0, ψ(1) = − ζ

H
+
a2

H
∂−2(εζ̇). (2.94)

Where ∂−2 is defined as ∂−2∂2f = f . Substituting the first-order constraint solution for
N,N i back into the action, and tediously integrating by parts one finds second order action
for the curvature perturbation ζ:

S =
1

2

∫
dx4a3 φ̇

2

H2

[
ζ̇2 − 1

a2
(∂iζ)2

]
. (2.95)

Defining the canonically normalized Mukhanov variable v = zζ, where z2 = a2 φ̇2

H2 = 2a2ε,
and changing to conformal time, we get:

S =
1

2

∫
dτd3x

[
v′2 − (∂iv)2 −m2

eff(τ)v2
]

(2.96)

where m2
eff(τ) = − z′′

z
= − H

aφ̇
∂2

∂τ2
(aφ̇
H

). We see that this action is of the form Eq.(2.49), thus
we can apply the entire machinery already derived. The effective mass can be obtained in
terms of the background quantities with further manipulations one find:

z′′

z
= (aH)2

[
2− ε+

3

2
η − 1

2
εη +

1

4
η2 + ηk

]
. (2.97)

Additionally, the conformal time satisfies at first order in slow roll expansion:

aH = −1

τ
(1 + ε). (2.98)

Therefore, the effective mass at the first order in slow roll expansion:

m2
eff(τ) = − 1

τ 2

[
2 + 3

(
ε+

1

2
η

)]
. (2.99)

From the Eq.(2.55) we can identify the ν parameter to fix the mode equation vk(τ), m2(τ) =
ν2−1/4
τ2

, where ν2 = 9
4

+ 3(ε + 1
2
η), thus the equivalent to the ratio m2/H2 in the equation

(2.80) is −3(ε + 1
2
η). If ε and η are small enough and nearly constant during inflation thus

ν = 3
2

+ε+ 1
2
η. We can replace these values into (2.79) and (2.80) and divide by an additional

2ε factor that comes from Mukhanov variable ζ = z−1v to get the power spectrum for ζ field:

Pζ(τ, k) =
H2

8π2M2
plε

(
−kτ

2

)−2ε−η

(1−O(ε, η)) (2.100)
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Where we have added M−2
pl to reconstruct the units. Additionally, observations suggest that

this power spectrum can be accurately parametrized by

Pζ(τ, k) = As(k∗)

(
k

k∗

)ns−1

, (2.101)

with As is the amplitude of the power spectrum, k∗ is some reference scale and ns is the
spectral index defined by:

ns − 1 =
d lnPζ
d ln k

= −2ε− η. (2.102)

2.5.2 Tensor Perturbations

Primordial gravitational waves are tensor perturbations of the spacetime metric generated
during inflation, they are gauge invariant objects and appear in the metric as:

ds2 = a2(τ)
[
−dτ 2 + (δij + hij)dx

idxj
]
. (2.103)

Where hij is a symmetric, traceless and transverse tensor, that is to say:

hij = hji hii = 0 ∂ih
i
j = 0, (2.104)

respectively. These conditions imply that hij has only two degrees of freedom, which we shall
denote as the helicity p = ±2. Moreover, we decompose hij in Fourier modes as:

hij(τ,x) =
∑
p=±2

∫
d3k

(2π)3
h

(p)
ij (τ,k)eikx. (2.105)

For k along the ẑ-axis, we choose a set of basis tensors

m(±2)(ẑ) =
1

2
(x̂± iŷ)⊗ (x̂± iŷ). (2.106)

Satisfying the orthonormality and reality conditions:

m
(p)
ij (k̂)(m(q)ij(k̂))∗ = δpq (2.107)

(m(p)ij(k̂))∗ =m
(−p)
ij (k̂) = m(p)ij(−k̂) (2.108)

On such a basis, we have:

h
(±2)
ij (τ,k) =

1√
2
m
±(2)
ij (k̂)h(±2)(τ,k). (2.109)

From the Einstein-Hilbert action the Ricci scalar contribution decouples at linear in pertur-
bations and we find:

(2)S =
M2

pl

8

∫
dτd3xa2

(
ḣijḣ

ij − ∂ihjk∂ihjk
)
. (2.110)

After tedious algebra we get

(2)S =
M2

pl

16

∑
p=±2

∫
dτd3ka2

[
(ḣ(p))2 + k2(h(p))2

]
. (2.111)
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Quantizing this field is the same as the scalar field but replacing ζ → (Mpl/
√

8)h(p) for each
independently-evolving helicity state, one can derive the power spectrum by defining the two
point correlator at an equal time:

〈
h(p)(k)h(q)(k′)∗

〉
=

2π2

k3

Ph(k)

2
δpqδ(k + k′) (2.112)

at the horizon crossing, finally:

Ph(k) =
2H2

π2M2
pl

(
−kτ

2

)−2ε−η

(1 +O(ε, η)). (2.113)

Whose tensor spectral index nT is defined by

nT =
d lnPh(k)

d ln k
= −2ε, (2.114)

as the same for the scalar power spectrum, Eq.(2.113) can be parametrized as

Ph(k) = At(k∗)

(
k

k∗

)nT
. (2.115)

Considering the expressions Eq.(2.100) and Eq.(2.113), it is defined the scalar to tensor ratio
as:

r =
At
As

= 16ε = −8nT . (2.116)

This is the so called consistency relation for scalar and tensorial power spectrum or simply
scalar-to-tensor ratio. In addition to this, since Pζ(k) is fixed and Ph(k) is proportional
to the Hubble scale H, the tensor to scalar ratio is a direct measure of the energy scale of
inflation.

H1/4 ∼
( r

0.01

)1/4

1016GeV. (2.117)

2.5.3 Observations

According to observations, the power spectrum of the curvature perturbation is almost scale-
invariant, with a value of order 10−9. The scale dependence of the spectrum is characterized
by the spectral index ns. Scale invariance correspond to ns = 1, and often the quantity ns−1
is called the spectral tilt. If ns is constant then Pζ(k) ∝ Ask

ns−1. If ns depends on k one
says that the spectral index is running. In that case, one usually assumes that that ns can be
approximated as a linear function on ln k so that the running is defined by n′s = dns/d ln k.
Observations are compatible with the hypothesis that ζ is the primordial perturbation. Also
from the ΛCDM model to current CMB observations anisotropies and galaxy distributions
gives [18]

ln(1010As) = 3.044± 0.014, ns = 0.9649± 0.0042, (2.118)

where the spectrum is defined at the pivot scale k0 = 0.002Mpc−1. This observational value
of the power spectrum is known as the COBE normalization. From the above equations, one
see that the power spectrum depends weakly on the scale so one often refer this as a nearly

31



Figure 2.2: Primordial curvature power spectrum from Planck collaboration 2015. The nearly
scale-invariant of this spectrum, tell us about a quasi de Sitter expansion of the early uni-
verse and its duration, more importantly, it is obtained by naturally deconvolving the angular
power temperature power spectrum or the CTT

l ’s, which makes of this image a remarkably
beautiful and at the same time thrilling plot in concordance with basic inflationary predic-
tions. Nevertheless, it is worth mentioning that the information(amplitude and the scalar
tilt) of this spectrum is not sufficient to break the physical parameter degeneracy between its
Hinflation and ε, furthermore, the scenario is even worst, making the energy inflationary scale
one of the worst constrained parameters in physics. This is why we need an ultimate and
independent primordial source to break this degeneracy, such as B-modes from primordial
gravitational waves [19].

scale invariant power spectrum, and this parameter tell us about a quasi-de Sitter early stage
of our Universe. One can also define the running of the spectral index, as

αs =
d lnns
d ln k

= −2ηε− η̇

Hη
. (2.119)

Thus is one order smaller than ns ∼ 1 in terms of slow roll parameters in the above simple
model. The observational constraint for ns is

αs = −0.0084± 0.008, (68%CL,Planck TT+lowP). (2.120)

Thus although inflation is nearly scale-invariant, an exact scale invariance with ns = 1 is
ruled out at over 5σ.

The production of a stochastic background of gravitational waves(GW) is a fundamen-
tal prediction of any cosmological inflationary model. Their observation would produce the
first experimental evidence of a quantum gravity phenomenon, thus represents an exciting,
powerful window on the origin and evolution of the universe. The features of such a signal
encode unique information about the physics of the Early Universe and the main observa-
tional signature of the inflationary GW background is a curl-like pattern (B-modes) in the
polarization of the CMB.
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In the same footing as the primordial curvature perturbation and in spite of all the efforts
possible so far, primordial gravitational waves have not been detected on the CMB. The
current best upper limit comes from the joint analysis of Planck, BICEP2 and Keck Array
[20], which correspond to a scalar-to-tensor ratio of

r < 0.07 (95% CL), with k∗ = 0.05 Mpc−1. (2.121)

Assuming the consistency relation r = −8nT , where nT is the tensor spectral index. Ex-
cluding temperature data and assuming a scale-invariant GW power-spectrum, the bound
becomes

r < 0.09 (95% CL), with k∗ = 0.05 Mpc−1. (2.122)

In light of all this, it is not at all surprising that primordial GW’s are the object of a growing
experimental effort, and that their detection will be a major goal for Cosmology in the
forthcoming decades. The state of the art corresponds to multiple projects at the different
places around the world, mainly in the north of Chile and Antartica, due to the privileged
atmospheric conditions along the year. A number of, present or forthcoming, ground-based
or balloon-borne experiments, such as ACTPol[21], Polarbear[22], CLASS[23], Piper[24] and
Spider[25], are specifically aimed at B-mode detection. In addition, CMB satellites such as
WMAP and Planck have, in recent years, provided bounds on r, such as the one reported
above.

2.6 Statistical Non-Gaussianity of Primordial Fluctua-
tions

The measured temperature fluctuations in a CMB map from some experiment, with Npix and
∆Ti the temperature fluctuation at the direction n̂ satisfy with good accuracy a Gaussian
probability distribution(PDF)

Pg(∆T ) =
1

(2π)Npix|ξ|1/2 exp

(
−1

2

∑
ij

∆Tiξ
−1
ij ∆Tj

)
. (2.123)

Where ξij = 〈∆Ti∆Tj〉 is the covariance matrix or two point correlation function of the
temperature anisotropy and|ξ| is its determinant. It is usual practice to expand ∆T in
spherical harmonics, ∆T (n̂) = ΣlmalmYlm(n̂). The Gaussian PDF for the a′lms becomes

Pg(a) =
1

Nharm|C|1/2
exp

(
−1

2

∑
lm

∑
l′m′

a∗lm[(C−1)lm,l′m′ ]al′m′

)
. (2.124)

Where Clm,l′m′ = 〈a∗lmal′m′〉 and Nharm is the number multipoles that is summed over. For
a Gaussian PDF for the CMB, its covariance matrix [Clm,l′m′ ], provides a full description of
the data. All higher correlations either vanish, 〈almal′m′al′′m′′〉 = 0, or can be expressed in
terms of Clm,l′m′ . Moreover, when the CMB is statistical homogeneous and isotropic

Clm,l′m′ = Clδll′δmm′ , (2.125)

Eq.(2.124) reduces to

Pg(a) =
∏
lm

e
− |alm|

2

2Cl√
2πCl

. (2.126)
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So far, the the statistics of the CMB fluctuations obeys a Gaussian probability distribu-
tion, however, the existence of non-Gaussian features have not been ruled out. In this
case to parameterize CMB non-Gaussianity makes sense to Taylor expand the probability
distribution(Gram-Charlier expansion) around a Gaussian distribution:

P (a) =

[
1− 1

6

∑
〈al1m1al2m2al3m3〉

∂

∂al1m1

∂

∂al2m2

∂

∂al3m3

+ ...

]
Pg(a). (2.127)

Evaluating their derivatives at the gaussian level gives

P (a)

Pg(a)
= 1 +

1

6

∑
〈al1m1al2m2al3m3〉

(
(C−1a)l1m1(C

−1a)l2m2(C
−1a)l3m3 − 3(C−1)l1m1,l2m2(C

−1a)l3m3

)
.

(2.128)

This formula tell us what we expected that the leading deviation from the Gaussian PDF
is proportional to the angular bispectrum 〈al1m1al2m2al3m3〉. The formula is also used to es-
timate the angular bispectrum from data by maximizing this PDF. In this section, we will
concentrate on the primordial non-Gaussianity of the curvature field ζ.

The hope and the racing for detecting non-Gaussianity keeps intact since the beginning,
theoretically and experimentally. We have the potential to constraint(measure) up to order
0.1 using multi-channel data from future CMB experiments and LSS. Particularly, CMB can
provides us constraint on fNL up to 1, from modes larger than 10 Mpc projected on the last
scattering 2-sphere ((103)2 ∼ 106 modes). Additionally, LSS will survey 3-dimensional fields,
from scales larger than 10 Mpc and shorter than the horizon scale ∼ 104 Mpc, capturing
potentially (104/10)3 ∼ 109 independent modes, improving the sensitivity of non-gaussianity
to 0.1. So this is the beginning of a vibrant epoch to keep pushing(as far as we can) our
fundamental understanding up to the next level.

2.6.1 Non-Gaussian Fields

As far as we have seen, within the inflationary cosmology, higher connected correlators of
the primordial perturbations are generally expected to be small. Fourier coefficients of a
Gaussian perturbation have only the minimal correlation demanded by the reality condition.
As a result, the stochastic properties of perturbations are completely defined by its spectrum.
In particular, the non-zero correlators of the Fourier coefficients are given by the spectrum
that only depend on the magnitude of k, corresponding to rotational invariance:

〈φk〉 = 0, 〈φkφk′〉 = (2π)3δ3(k + k′)Pφ(k), 〈φk1φk2φk3〉 = 0, (2.129)

moreover, trispectrum is related by the power spectrum as

〈φk1φk2φk3φk4〉 = (2π)6δ3(k1 + k2)δ3(k3 + k4)Pφ(k1)Pφ(k3) + two permutations . (2.130)

Nevertheless, the coefficients of non-Gaussian perturbations have additional correlations, not
specified by its spectrum; that means additional correlation between modes. The following
contribution is the three-point correlator that vanishes in the Gaussian case. Thus we define
the bispectrum B given by

〈φk1φk2φk3〉 = (2π)3δ3(k1 + k2 + k3)B(k1, k2, k3). (2.131)
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Translational invariance demands that each correlator vanishes when the sum of the momenta
ki vanishes and the fact that bispectrum depends only on the lengths of three sides of the
triangle formed by the momenta corresponds to invariance under rotations. It is convenient
to define the reduced bispectrum B by going to position space

〈φ(x1 + x3)φ(x2 + x3)φ(x3)〉 =

∫
d3k2

(2π)3

d3k1

(2π)3
B(k1, k2, k3)ei(k1x1+k2x2). (2.132)

Notice that x3 does not appear in the R.H.S. of the above equation because translational
invariance, whereas x1 and x2 are needed to define a triangled configuration. When x1 =
x2 = x3, this configuration defines the skewness of the probability distribution defined by

S = 〈φ3〉/〈φ2〉3/2. (2.133)

2.6.2 Local non-Gaussianity

The simplest possibility to generate non-Gaussianities at higher order is

ζ(x) = ζg(x) + ζN.G.(x) = ζg(x) +
∑
n>1

bn
[
ζng (x)− 〈ζng (x)〉

]
. (2.134)

The second term in the summatory is to guarantee 〈ζ(x)〉 = 0 at all orders. This ansatz was
introduced in [26] in the context of Galaxy halo bias. For our purposes we can just keep the
second order term and ignore the constant contribution, because it can always be absorbed
via a coordinate transformation by the unperturbed background, so

ζ(x) = ζg(x) + bζ2
g (x) + ... = ζg(x) +

3

5
fNLζ

2
g (x) + ..., (2.135)

This is known as local non-gaussianity 1. Since ζg(x) is Gaussian to good accuracy, the first
term must dominate. It is worth emphasizing that this is just an ansatz, instead of a generic
expansion, as an example, the fNL estimator could depend on position and terms like ζ2

g are
not necessarily expanded at the same spatial point. As a result, the terms like fNLζ2

g (x) has
to be in general written as a convolution(as a non-local term). But hereafter we are going to
consider just this term since the local ansatz has clear physical meaning: this ansatz assumes
non-Gaussianities are generated independently at different spatial points. Translating this
requirement into the context of inflation, typically implies the non-Gaussianity is generated
on super-Hubble scales.
Qualitatively, for positive fNL, the part of contribution from positive ζg(x) gets enhanced,
and the part of contribution from negative ζg gets suppressed. This provides an intuitive way
to visualize the sign of fNL. In position space, this non-Gaussianity can be characterized by
the probability distribution of ζ. The probability distribution is plotted in Fig. 2.3. Note
that the tail at large and positive ζ indicates how abundant structures the universe are.
Thus positive fNL means more galaxies are formed given a fixed power spectrum. For the
CMB sky, positive fNL means there are more very cold spots than very hot spots on the
CMB, and more modestly hot spots than modestly cold spots. The position-space features

1The numerical factor 3/5 in (2.135) comes its due to historical reason. fNL originally was introduced in
terms of the gravitational potential.
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Figure 2.3: Schematic probability distribution for the primordial curvature perturbation.
Positive fNL correspond to the red curve in the figure. Negative fNL correspond to an axial
reflection at ζ = 0 of the red curve. The constrained fNL is should be represented much
smaller in this plot. Credit:[27].

of fNL is intuitive to understand. However, inflationary perturbations manifest themselves
in momentum space. There are much more configurations of three-point function to look at,
than just looking at position-space probability distributions point by point. Thus momentum
space correlation functions provide a much more powerful test of non-Gaussianity than the
isolated position space test. In momentum space, the corresponding expression is:

ζk = ζgk +
3

5
fNL

∫
d3q

(2π)3
ζgqζ

g
q−k. (2.136)

Inserting this expression into the three point function:

〈ζk1ζk2ζk1〉 = (2π)3δ3(k1 + k2 + k3)Bζ(k1, k2, k3), (2.137)

with
Bζ(k1, k2, k3) =

18

5
fNL
S(k1, k2, k3)

(k1k2k3)2
P2(k∗), (2.138)

where Pζ(k∗) = k3
∗Pζ(k∗) is the quasi-scale invariant dimensionless power spectrum evaluated

at the fiducial scale k∗ with a shape function normalized to S(k, k, k) = 1 and defined by

Sloc(k1, k2, k3) =
1

3

(
k2

3

k1k2

+ 2 permutations
)
. (2.139)

The shapes of the bispectrum refers to the dependence S on the momentum ratios k2/k1 and
k3/k1, while fixing the overall momentum scale K = (k1 + k3 + k3)/3. Explicitly with this
parametrization the bispectrum (2.138) becomes :

Bζ(k1, k2, k3) =
6

5
fNL

P2(k∗)

(k1k2k3)3

(
k2

1

k2k3

+
k2

2

k1k3

+
k2

3

k1k2

)
. (2.140)
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An interesting quantity appears when one of the momenta goes to zero, for example (assuming
k3 � k1 ≈ k2) in whose case the shape function

lim
k3→0

Sloc(k1, k2, k3) =
2

3

k2

k1

. (2.141)

Thus the bispectrum

lim
k3→0

Bζ(k1, k2, k3) =
12

5
fNLP2(k∗)

1

k3
1k2k2

3

∼= 12

5
fNLPζ(k1)Pζ(k3) (2.142)

This is known as the squeezed limit bispectrum and is a direct relevance since it provides a
direct test for the local ansatz Eq.(2.135). The observational constraint for fNL from Planck
([9]) is:

fNL = 0.8± 5.0, (68%CL, Planck TT + low P). (2.143)

2.7 In-In formalism
The in-in formalism is a systematic scheme to evaluate radiative corrections or higher order
contributions to primordial cosmological perturbation, which is the basis (as well the ADM
formalism) of modern calculations for higher-order contributions to the primordial spectrum.
The importance of these tools for inflation relies upon its predictability, accuracy and its
relative simplicity, therefore, it helps to capture all phenomena by finding the action of fields,
how it behaves, what symmetries are hidden and respected by those fields and finally all
possible couplings with others fundamental fields.

This subsection is organized as follow: first, we will introduce some formal aspects of the
in-in formalism a la Weinberg [13] and secondly, we will compute the simplest radiative con-
tribution from the lowest order interaction Hamiltonian HI order 3. To have some intuition
on the computation of the complete 3 point correlation function we will pick up the sim-
plest term and compute its contribution through the in-in formalism in function to illustrate
some aspect of this methodology. The remaining terms are analogous and straightforward,
however, are a tedious task.

The in-in formalism scheme can be viewed as one of the initial conditions, in-in takes
the initial states of some set of fields, |in〉, and calculates the expectation value of some set
of operators O with respect to these fields at a later time t, |Ω(t)〉. Specifying the initial
conditions typically amounts to choosing the Bunch-Davies vacuum: the dynamical degrees of
freedom behave like harmonic oscillators at very small length scales(well inside the horizon),
and each mode is assumed to be in its ground state. To evaluate an expectation value at some
arbitrary time in the interaction picture one needs to evolve the ’in state’ forward in time
|Ω(t)〉. Operationally, the simplest way of incorporating this initial condition is to include
some evolution in imaginary time, t→ t(1 + iε) and compute the expectation value, 〈O(t)〉,
of a product of operators O(t) at time t, require that we evaluate

〈O(t)〉 = 〈
(
Te−i

∫ t
−∞HI(t′)dt′

)†
O(t)

(
Te−i

∫ t
−∞HI(t′′)dt′′

)
〉 (2.144)

Where the fields on the right-hand side are Heisenberg fields. The expectation value is taken
with respect to the initial state, |in〉, which we assume to be the Bunch-Davies vacuum. The
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interaction Hamiltonian HI is defined in the usual way so that the total Hamiltonian H is
the combination of HI and the free-field Hamiltonian, H0,

H = H0 +Hint. (2.145)

From the action one constructs the Hamiltonian by defining conjugate momenta, and sepa-
rating out the quadratic from the higher order parts: H0 consists of terms that are quadratic
in the perturbative degrees of freedom (and thus free), while Hint consists of all third and
higher order terms. The free Hamiltonian H0 drives the evolution of the operators, while Hint

evolves the states. This separation is natural since in a homogenous and isotropic background
we can find eigenstates of free field Hamiltonian at past infinity. Interaction terms generally
have derivative couplings even when the action contains only canonical kinetic terms. These
derivative couplings are the end result of perturbatively expanding the action. If LI is the
portion of the action with terms of third order and higher, the usual expression for the inter-
action Hamiltonian Hint = −Lint. In the more general case, there will be extra interaction
terms.

〈O〉 =
∑
n,m

〈0|
(
Te−i

∫ t
−∞Hint(t

′)dt′
)†
|n〉〈n|O|m〉〈m|

(
Te−i

∫ t
−∞Hint(t

′)dt′
)
|0〉. (2.146)

The interpretation is clear, the ’in-in’ correlation is the product of vacuum transition ampli-
tudes (’in-out’) and a matrix element 〈n|O|m〉, summed over all possible ’out’ states. The
’in-in’ formalism is simply standard QFT, rigged to compute correlation functions at a fixed
time, given initial conditions instead of asymptotic boundary conditions. Initial conditions
in QFT are usually specified by finding the eigenstates of the free Hamiltonian H0, and
stipulating that the system begins in one (or some combination) of these eigenstates. If the
system begins in the quantum mechanical vacuum, this amounts to putting our system in the
vacuum state of H0 at the initial time. Operationally, the vacuum is selected by redefining
the range of t to include a small imaginary component, t→ t+ iε|t|. At the lowest order:

〈O〉 = Re
〈[
−2iOI(t)

∫ t

−∞(1+iε)

dt′HI
int(t

′)

]〉
(2.147)

The above reduced formula is due to the Hermiticity of the operator product.
Let us consider a Lagrangian with generic fields φa,

S =

∫
d4xL(φa(x, t), φ̇a(x, t)). (2.148)

In a generic system, a range over all the fields in the theory, be it the metric, matter scalar
fields, etc. We will keep the discussion general in this section, and specialize to a FRW
cosmology in the next section. The canonical momenta for this system are defined as usual

πa =
∂L
∂φ̇a

, (2.149)

and hence the Hamiltonian is

H[φa(t), πa(t)] =

∫
d3xφ̇aπa − L. (2.150)
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In the quantum theory, the variables obey the equal time commutators relations

[φa(x, t), πa(y, t)] = iδabδ(x− y). (2.151)

The other commutators vanish as usual. The Heisenberg equations of motion are then

φ̇a(x, t) = i[H[φ(t), π(t)], φa(x, t)], π̇a(x, t) = i[H[φ(t), π(t)], πa(x, t)]. (2.152)

Now we want to consider the following system. We want to split the fields into a classical
part φ and its quantum part δφ:

φa(x, t) = φ̄a(x, t) + δφa(x, t), πa(x, t) = π̄a(x, t) + δπa(x, t). (2.153)

Where the classical part obey the classical equations of motion

˙̄φa(x, t) =
δH[φ̄(t), π̄(t)]

δπ̄a(x, t)
, ˙̄πa(x, t) =

δH[φ̄(t), π̄(t)]

δφ̄a(x, t)
. (2.154)

Varying the Hamiltonian density

˙̄φa(x, t) =

∫
d3y

δH[φ̄(t), π̄(t)]

δπ̄a(x, t)
δ(x− y). (2.155)

And the ’background quantities’ just commutes the Hamiltonian [φ̄(x, t), H] = [π̄(x, t), H] =
0. Plugging the above equation into Eq.(2.151), we see that the perturbations satisfies the
commutator

[δφa(x, t), δπb(y, t)] = iδabδ(x− y) (2.156)

The way to think about this system is that it is a theory of quantized perturbations living
on the classical time-dependent background. This should be familiar to you in the context of
linear cosmological perturbation theory, but in this section, we will formalize it, and consider
beyond linear order perturbation theory.

H[φ(t), π(t)] = H[φ̄(t), π̄(t)] +
δH[φ̄(t), π̄(t)]

δφ̄(x, t)
δφ(x, t) +

δH[φ̄(t), π̄(t)]

δπ̄(x, t)
δπ(x, t) + H̃[δφ(t), δπ(t); t]

(2.157)
The first piece describes the background quantities, the second order piece is proportional
to the background equations of motion so vanishes and finally the quantum piece that starts
at second order in perturbation. In other words, δH contains terms of quadratic and higher
order in the quantized perturbations. The perturbation Hamiltonian H̃[δφ(t), δπ(t); t] term
is a functional of the perturbations, with an explicit time dependence on the background
values (δφ(t), δπ(t)) which we denote by appending a ’t’ at the end.
To apply this toolkit to cosmology, particularly, we are interested in a Hamiltonian of an
interacting theory of primordial curvature perturbation, since they encode quantum radiative
correction for higher order correlation function. This class of Hamiltonian can be splited into
2 pieces: the free theory(quadratic) and the interacting(cubic and higher order):

H = H0 +Hint (2.158)
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H0 correspond to the quadratic y HI to the interacting term2. Concisely, the free theory is
related with gaussian statistic and the power spectrum described in previous, whereas the sec-
ond is related with the so-called non-Gaussianities. Particularly, the quadratic Hamiltonian
density for this theory is given by

H0 = 2ε

[
1

2
π2 − a1

2
(∂ζ)2

]
(2.159)

While the remaining higher order terms [28]:

Hint = −a3ε2ζπ2 +aε2ζ(∂ζ)2−2aεπ(∂ζ)(∂χ)+
a3

2
εη̇ζ2π+

1

2

ε

a
(∂ζ)(∂χ)(∂2χ)+

ε

4a
∂2ζ(∂χ)2 (2.160)

where it has been defined ∂2χ = a2εζ̇, ε = −Ḣ/H2 y η = −ε̇/H2. It is worth noting that
the first three terms are O(ε2) while the rest three are O(ε3). For illustrative purposes let us
consider only the first term in Eq.(2.160) and compute its contribution to 3-point correlation
function of curvature modes by using the in-in formalism:

〈ζk1ζk2ζk3〉 = (2.161)〈[
T̄ exp

(
i

∫ τ

−∞(1−iε)
dτ̃Hint(τ̃)

)]
ζk1(τ)ζk2(τ)ζk3(τ)

[
T exp

(
−i
∫ τ

−∞(1+iε)

dτ̃Hint(τ̃)

)]〉
where T is the ordering operator and T̄ is the anti-temporal ordering as already shown in
the previous subsection. Picking up just first term in (2.160) its contribution becomes

〈ζk1ζk2ζk3〉 = (2.162)

− 2Re

(
i

〈
ζk1ζk2ζk3

∫ τ

−∞(1+iε)

dτ̃dx3a2ε2ζ(x, τ̃)ζ ′(x, τ̃)ζ ′(x, τ̃)

〉)
,

where the apostrophe on the function denotes derivation with respect τ

〈ζk1ζk2ζk3〉 = (2.163)

− 2Re

(
i

〈
ζk1ζk2ζk3

∫
dq3

123

(2π)9

∫ τ

−∞(1+iε)
dτ̃dx3a2ε2ζq1(τ̃)ζ ′q2

(τ̃)ζ ′q3
(τ̃)

〉
· e+i(q1+q2+q3)x

)
contracting the internal and external legs

〈ζk1ζk2ζk3〉 = (2.164)

− 4Re

(
iuk1(0)uk2(0)uk3(0)

∫
dq3

123

(2π)9

∫ τ

−∞(1+iε)

dτ̃dx3a2ε2u∗q1(τ̃)
d

dτ̃
u∗q2(τ̃)

d

dτ̃
u∗q3(τ̃)

· (2π)9δ(3)(k1 + q1)δ(3)(k2 + q2)δ(3)(k3 + q3) · e−i(q1+q2+q3)·x + 1→ 2 + 1→ 3

)
using

duk(τ)

dτ
=
−H√
4εk3

k2τeikτ , and
∫
dx3e+i(q1+q2+q3)·x = (2π)3δ(3)(q1 + q2 + q3) (2.165)

2Hereafter: H̃ → H, δφ→ ζ
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using a = −1/Hτ for a de Sitter universe the three-point correlation function becomes

〈ζk1ζk2ζk3〉 =′ (2.166)[
−4iH6

(4ε)3

1

(k1k2k3)3

∫
−∞(1−iε)τ

dτ̃
1

(Hτ̃)2
ε2 × (k2k3)2τ̃2(1 + ik1τ̃)e−i(k1+k2+k3)τ̃

]
+ Sym

where =′ denotes the equality and the factor (2π)3δ(3)(k1 + k2 + k3) on the right hand side
at the same time. Integrating the time out∫ τ

−∞(1+iε)

dτ̃(k2k3)2(1 + ik1τ̃)e−iKτ̃ = (k2k3)2

(
ik1

K2
+

i

K
− k1τ̃

K

)
e−i(Kτ̃)|τ−∞(1+iε) (2.167)

〈ζk1ζk2ζk3〉 =′
H4

16ε

1

(k1k2k3)3
(k2k3)2

(
1

K
+

k1

K2
+ 1→ 2 + 1→ 3

)
. (2.168)

Obtaining the expression from the first contribution of (2.160) for the non-normalized shape
function

B1(k1, k2, k3) =
H4

16ε

1

(k1k2k3)3
(k2k3)2

(
1

K
+

k1

K2
+ 1→ 2 + 1→ 3

)
. (2.169)

If one consider the remaining terms order O(ε2) of (2.160) that contributes to the three point
correlation function, it turns out:

B(k1, k2, k3) =
H4

M4
pl

1

(k1k2k3)3

1

4ε2

[
η

8

∑
k3
i +

ε

8

(
−
∑

k3
i +

∑
i 6=j

kik
2
j +

8

K

∑
i>j

k2
i k

2
j

)]
.

(2.170)
We see if one of the modes is much longer than the others k2, k3 � k1 hence k2 ∼ k3, then
Eq.(2.170) becomes:

〈ζk1ζk2ζk3〉 = (2π)3δ(k1 + k2 + k3)
H4

M4
pl

1

4ε2

[
η + 2ε

8

∑
k3
i

]
. (2.171)

identifying ns − 1 = −2ε− η, the above expression reduces to

〈ζk1ζk2ζk3〉 = (2π)3δ(3)(k1 + k2 + k3)(1− ns)P (k1)P (k2), (2.172)

This is known as the squeezed limit since the triangle looks like a very squeezed triangle.
Comparing to Eq.(2.142), we that in this limit the slow-roll shape coincides with the local
shape so:

f localNL = − 5

12
(ns − 1). (2.173)

Note the two power spectra are of the short and long modes respectively and the slow roll
parameters are evaluated at the time the short wavelength modes cross the horizon. In other
words, there is a consistency relation between the index of the scalar power spectrum and
the 3-pt correlation function in the squeezed limit. This is a fairly powerful relationship, the
argument laid out above relies on the fact that the long wavelength mode ζ1 remains frozen
out outside the horizon and does not evolve, this is a feature of single scalar field models
regardless of the exact details of the potential. Hence if this consistency relationship is not
obeyed via observations, then we can rule out single scalar field models. In practice this is
a particularly difficult observation to do: the squeezed limit requires k2, k3 � k1, hence we
need a very long wavelength mode. But we only have very few long wavelength modes in
the sky due to cosmic variance, hence our ability to observe the squeezed limit of a 3-pt is
basically constrained by cosmic variance.
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2.8 Conformal Symmetries of Adiabatic Modes
Following [14], we work in ζ-gauge, defined by an unperturbed scalar field and a conformally-
flat spatial metric:

hij = a2(t)e2ζ(t,x)δij. (2.174)

We look for a set of diffeomorphisms that preserve this gauge. To maintain δφ = 0, clearly
diffeomorphisms must be purely spatial, ξi(t, ~x), but a priori can depend on time. To preserve
the conformal flatness of hij, the residual spatial diffeomorphisms are just conformal trans-
formations on R3. This 10-parameter group includes 3 translations, 3 rotations, 1 dilation
and 3 SCTs. Therefore, we ignore translations and rotations, since these are linearly realized
on ζ and therefore do not give rise to soft-pion theorems [29, 30]. Dilations and special
conformal transformations(SCTs) act on the spatial coordinates as

Dilation: xi → λ(t)xi

SCT: xi → xi − x2bi

1− 2b · x+ x2b2
. (2.175)

Under these transformations, the spatial part of the line element transforms as

δijdx
idxj → Ω2(t, ~x)δijdx

idxj (2.176)

where the conformal pre-factor is given by

Dilation: Ω(t, ~x) =eλ(t)

SCT: Ω(t, ~x) =(1− 2b · x+ x2b2)−1 (2.177)

At the infinitesimal level, the Killing vectors that generate these transformations are

Dilation: ξi(t, ~x) = λ(t)xi

SCT: ξi(t, ~x) = 2x · b(t)xi − x2bi(t) (2.178)

The change in the spatial line element by this conformal factor can be absorbed in a redefi-
nition of ζ; which infinitesimally transforms as

Dilation: δζ = λ(t)(1 + xi∂iζ) (2.179)
SCT: δζ = bi(t)(2x

i + (2xixj∂j − x2∂i)ζ). (2.180)

So far these transformations are just diffeomorphisms and as such map solutions of the
equations of motion to other solutions. However, the δζ profiles induced by (2.179) do not
preserve boundary conditions: they map field configurations which fall off at infinity into
those which do not. If we want (2.179) to represent the long-wavelength limit of a physical
mode with suitable fall-off behavior at infinity, then we must check whether the induced
profiles can satisfy the constraint equations away from the neutral mode ~k = 0. In other
words, these profiles cannot “accidentally” solve the equations only because spatial derivatives
are hitting them [31].

This was checked carefully in [29, 30, 32] by generalizing Weinberg’s original argument.
The result is that only a subset of the transformations can be extended to a physical mode.
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Since ζ ′L ≈ k2ζL is constant in time at linear order in gradients [28, 33], the parameters of
the transformations must be time independent: λ̇ = 0, ḃi = 0. Moreover, a SCT must be
accompanied by a time-dependent translation [29, 32]

ξi = ξiSCT − 2bi
∫ t dt′

H(t′)
. (2.181)

These are the adiabatic modes of scalar perturbations: field profiles that can be induced
by a coordinate transformation which are the ~k → 0 limit of a physical field configuration.
Equation (2.181) can be understood physically by considering the linear solution with a long
wavelength mode ζL. After solving the constraint equations for the lapse function and shift
vector, the perturbed line element to leading order in gradients takes the form [29, 30, 32, 34]

ds2 = −dt2 − 2

H
∂iζLdx

idt+ a2(1 + 2ζL)δijdx
idxj, (2.182)

where we have specialized to single-field, slow-roll inflation for simplicity, the aim is to show
that this metric can be generated by performing a suitable change of coordinates on an un-
perturbed, homogeneous solution. Alternatively, we can think of removing a long-wavelength
ζ mode of this form by performing the inverse transformation. To generate the desired hij
while remaining in ζ-gauge, as discussed earlier, the only allowed transformations are spatial
dilations and SCTs. These preserve the conformal flatness of hij. Working at linear order in
ζL, it is easy to check that the transformation

xi → xi + λxi + 2(b · x)xi − x2bi (2.183)

generates the desired spatial metric with

ζL = λ+ xibi. (2.184)

In order to generate the complete metric (2.182), we need an additional change of coordinates
to induce the shift vector component g0i = H−1∂iζL. This is achieved by performing a time-
dependent translation

xi → xi − ∂iζL
2H2a2

. (2.185)

This confirms the result (2.181) that the linear-gradient adiabatic mode corresponds to a
time-independent SCT combined with a particular time-dependent translation. Since all cor-
relation functions we are interested in are translationally invariant, in practice the additional
transformation (2.185) will be of no consequence to our discussion, thus, safely ignored. Al-
though we have focused here on slow-roll inflation for concreteness, it can be shown that the
construction of adiabatic long modes is similar in any model of single-field inflation [32, 35].
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Chapter 3

Cosmic Microwave Background

One of the most essential features of the CMB is its Planck spectrum. It follows the blackbody
curve to extremely high precision, over a factor of approximately 1000 in frequency Fig.3.1.
This implies that the universe was in thermal equilibrium when the radiation was released,
which was at a temperature of approximately 3000K. Today it is near 3K. An even more
important feature is that, to better than a part in 104, this temperature is the same over the
entire sky. This is surprising because it strongly implies that everything in the observable
universe was in thermal equilibrium at one time in its evolution. The most salient feature
is that there are differences in the CMB temperature from place to place, at the level of
10−5, and that these fluctuations have coherence beyond the horizon at the time of the last
scattering. In particular, for this chapter we are interested only in the photons density
contrasts, since, it contains information of matter domination epoch, this time is called the
decoupling, in which physically the photons are no longer interact with electrons via Thomson
scattering, this contains relic information about how our universe began. Pictorially, the
CMB can be viewed as a snapshot of our universe when it was just 380000 years old. Just a
baby universe.

This chapter is partially based on [36, 37] and Lecture notes Physics 217bc, spring 2008,
Caltech1.

3.1 CMB Anisotropies
Now we will see how the photons density evolves from early time to the present epoch. This
anisotropy is observed today as the cosmic microwave background(CMB anisotropy). Pho-
tons in the early universe were in thermal equilibrium, with blackbody distribution momenta.
As the epoch of decoupling is approached, the distribution begins to fall out of equilibrium,
developing anisotropy which is different for two polarization states. After decoupling at
z ∼ 1000, the redshifting of the photons through the inhomogeneous gravitational field gen-
erates more anisotropy, without affecting the polarization states. The reionization at z ∼ 10
generates further anisotropy and more importantly, polarization. The anisotropy is charac-
terized by perturbations in intensity, which corresponds to perturbations in the temperature

1http://www.tapir.caltech.edu/~chirata/ph217/index.html
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Figure 3.1: Measurements of the CMB intensity vs. frequency together with a fit to the
data. Superposed are the expected black body curves for T = 2K and T = 40K. They are
the most precise measurements of the CMB spectrum at the millimeter wavelengths near its
peak were made by the Far Infrared Absolute Spectrophotometer(FIRAS) instrument aboard
the Cosmic Background Explorer (COBE) satellite. Credit: https://lambda.gsfc.nasa.
gov/product/cobe/

of the blackbody distribution, and by two polarization parameters. In this chapter, we study
the temperature and polarization fluctuations which are imprinted on cosmological scales
larger than k ∼ 0.1 Mpc−1. In this regime, first-order cosmological perturbation theory is
almost always a good approximation, failing only on smaller scales and later times. We start
our study with a perturbation called the brightness function Θ defined on the two-sphere
for a given spacetime position:

Θ(η,x, n̂) =
δT (η,x, n̂)

T (η)
. (3.1)

Where η2 is the conformal time and n̂ = p/p is the direction of the incoming photons or
equivalently in the direction where photons are seen −e, and x is the observer position. This
field can be decomposed on the 2-sphere, such as

Θ(η,x, n̂) =
∞∑
l=0

m=l∑
m=−l

(−1)lΘlm(η,x)Ylm(n̂) =
∞∑
l=0

m=l∑
m=−l

Θlm(η,x)Ylm(e). (3.2)

We see the monopole l = 0 is related to photon energy density contrast by [38]:

Θ00(η,x) =
1

4
δγ(η,x). (3.3)

2often in matter domination epoch η is used instead of τ to denote the conformal time. While τ is reserved
to the optical depth of reionization. This chapter will be the exception.
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Figure 3.2: Angular anisotropies.https://www.cosmos.esa.int/web/planck/
planck-collaboration.

This means that the dipole needs a slicing to be defined, but is independent of the threading
choice since it is a scalar. Additionally, it means that we cannot determine the monopole,
because there is no way of measuring the photon energy density at positions other than our
own. The dipole l = 1 is the Doppler shift caused by the motion of the photon fluid relative
to the observer, ∑

m

Θ1mY1m(e) = −vγ · e. (3.4)

We have evaluated the Doppler shift to first order in vγ (non-relativistic formula). At this
point, we have to distinguish between an observer who moves with the gauge threading used to
implement cosmological perturbation theory. It is easy to see that the dipole depends on the
gauge threading, but not the slicing. For these observers, vγ is a cosmological perturbation,
and the evaluation of the Doppler shift to first order corresponds to first order cosmological
perturbation theory. The observed multipoles with l ≥ 2, therefore, represent the intrinsic
anisotropy of the CMB. They are denoted by Θlm:

alm = Θlm(η = η0,x = 0). (3.5)

Where x = 0 is our current position relative to the CMB rest frame and η0 is the actual time.
Therefore we need to understand the statistic of the local multipoles alm(η, 0). To do this,
let first consider a Fourier decomposition of the field:

Θ(η,x, n̂) =

∫
d3k

(2π)3
Θ(η,k, n̂)eikx. (3.6)

Additionally, we can expand the angular Fourier components into spherical harmonics, such
that:

Θ(η,k, n̂) =
∞∑
l=0

(−i)l
√

4π(2l + 1)Θl(η,k)Yl0(θ′, φ′), (3.7)

where θ′, φ′ are the angular variables with the 3-axis rotated in such a way that it points in
the direction of the wavenumber k̂, that is cos θ = n̂ · k̂ . Since the spherical harmonics are
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related to Legendre polynomials, we have the following relation:

Yl0(θ′, φ′) =

√
2l + 1

4π
Pl(θ

′). (3.8)

Therefore we obtain:

Θ(η,k, n̂) =
∞∑
l=0

(−i)l(2l + 1)Θl(η,k)Pl(n̂ · k̂), (3.9)

whereas in real space

Θ(η, 0, n̂) =

∫
d3k

(2π)3

∞∑
l=0

(−i)l(2l + 1)Θl(η,k)Pl(n̂ · k̂). (3.10)

In order to get alm we use the addition theorem for Legendre Polynomials

Pl(n̂ · k̂) =
4π

(2l + 1)

m=l∑
m=−l

Y ∗ml(k̂)Yml(n̂). (3.11)

So that Eq.(3.6) becomes

Θ(η, 0, n̂) = 4π
∑
l,m

∫
d3k

(2π)3
(−i)lΘl(η,k)Y ∗ml(k̂)Yml(n̂) (3.12)

We can read the multipoles components as

alm(η) = 4π(−i)l
∫

d3k

(2π)3
Θl(η,k)Y ∗lm(k̂). (3.13)

The ensemble average of 〈alm〉 is equal zero; therefore they are equally positive or negative,
this fact reflects the statistical isotropy of the primordial probability distribution; nevertheless
the second moment of the multiples are not, so we are interested in its variance. For doing
that we compute the equal time correlation function:

〈alm(η)a∗l′m′(η)〉 = 16π2

∫
d3k

(2π)3

∫
d3k′

(2π)3
(i)l

′−l〈Θl(k, η)Θl′(k
′, η)〉Y ∗l′m′(k̂′)Ylm(k̂). (3.14)

The field Θ can be written in terms of the primordial curvature perturbations generated by
quantum fluctuation during inflation, whose relation is:

〈Θl(k)Θl(k
′
)〉 =

Θl(k)

ζ(k)

Θl(k
′)

ζ(k′)
〈ζ(k)ζ(k′)〉 = Tl(k)Tl(k

′)〈ζ(k)ζ(k′)〉. (3.15)

Notice that the ratios between Θ and ζ are direction independent. They are called transfer
functions, Tl(k), and encodes the adiabatic mode evolution, explicitly they depend on the
physics between the horizon re-entry and its evolution afterward. Moreover, the correlation
function on the R.H.S. satisfies:

〈ζ(k)ζ(k′)〉 = (2π)3Pζ(k)δ3(k + k′), (3.16)
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Figure 3.3: Modes evolution: Overdensities are generated during inflation as quantum
fluctuations. As the horizon shrinks, the wavelength of the curvature modes becomes
larger than the horizon(aka. they exit the horizon), and consequently, they freeze and
become classical. After the hot big bang era or recombination, these modes re-enter
the horizon and they start to grow according to the underlying subhorizon physics, fi-
nally at decoupling or recombination, they leave defined statistical fingerprints which are
transported and projected through incoming photons from the CMB toward us. Credit:
http://www.damtp.cam.ac.uk/user/db275/Cosmology/Lectures.pdf.

where is Pζ(k) the primordial curvature power spectrum. Therefore, the equal time correla-
tion function (3.14) reduces to:

〈alm(η)al′m′(η)〉 = 16π2

∫
d3k

(2π)3
(i)l

′−lT 2
l (k)Pζ(k)Yl′m′(k̂)Ylm(k̂). (3.17)

Separating the k integral into a radial and an angular part to integrate the above expression,∫
d3k

(2π)3
=

∫
k3d ln k

(2π2)

∫
d2k̂

4π
. (3.18)

Finally we get

〈almal′m′〉 = 16π2(i)l
′−l
∫
d2k̂

4π
Ylm(k̂)Yl′m′(k̂)

∫
k3d ln k

(2π2)
T 2
l (k)Pζ(k) (3.19)

〈almal′m′〉 = δll′δmm′4π

∫
d ln kT 2

l (k)Pζ(k) (3.20)

the above expression defines the angular power spectrum as:

〈almal′m′〉 = δll′δmm′Cl, Cl = 4π

∫
d ln kPζ(k)T 2

l (k), (3.21)

where we have defined the dimensionless curvature power spectrum as Pζ(k) = k3Pζ(k)/(2π2)
and the power spectrum anisotropy as Cl = 〈|alm|2〉, is the variance of a gaussian distribution
for a realization of the value a certain multipole alm. The above companion δll′δmm′(with the
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condon-shorty phase convention) tell us that the different modes are statistical independent
or simple do not have any correlation. While its variance, Cl, only depend on the angular
number l reflect the fact of an ensemble rotationally invariant. The Cl’s are quantities that
most of CMB observers aim to measure. The l number has associated an intrinsic angular
scale θ ∼ π/l, thus a dominant physical scale x ∼ rCMBθ ∼ πrCMB with a wavenumber
k ∼ l/rCMB.

Usually, the angular power spectrum is measured starting from l = 2. This is because the
monopole is unobservable; we do not know the true mean value of the CMB temperature
fluctuations, only its value in our location and technically it depends on the gauge time
slicing and therefore gauge-dependent. The dipole l = 1 depend on the observer velocity, so
it has no absolute meaning. It does not make any sense to ask that is the CMB dipole in
a frame relative to distant galaxies, but the latter frame is not known well. The multipole
measured from l ≥ 2 in the CMB rest frame are well defined and genuinely gauge invariant.
The power spectrum defined here is dimensionless, but some of the CMB observers prefer
to quote alm in mK, i.e. they report the perturbations ∆T from the mean temperature Tγ
rather than their fractional temperature ∆T/T0. In this case the power spectrum Eq.(3.21)
must be multiplied by T 2

γ0, where Tγ0 = 2.73 · 106µK.

Another important limitation is the fact that we have one universe in which we have limited
access to sample its statistical distribution; a typical difference between Cl and measured
multipole will be of order the rms deviation of |alm|2 from Cl. The latter is given by

(∆Cl)
2 = 〈(|alm|2 − Cl)2〉 = 〈|alm|4 − C4

l 〉 (3.22)

This is the cosmic variance of Cl, similar to the cosmic variance of correlators of Fourier
components. The real and imaginary parts of the multipoles will have independent Gaussian
probability distributions, provided that the primordial distribution is Gaussian. If a single
real or imaginary part is measured, the cosmic variance is 2C2

l . If all (2l + 1) independent
components of alm are measured, the cosmic variance is reduced by a factor (2l + 1). If
the data are further binned by averaging over a range ∆l around l, this reduces the cosmic
variance by an additional factor ∆l, giving

(∆Cl)
2 =

2

(2l + 1)∆l
C2
l . (3.23)

The cosmic variance is a severe limitation to low l but becomes negligible at higher l. It
is worth remarking that direct observational constraints on non-Gaussianity become very
weak on large scales, corresponding to very low multipoles of CMB. Indeed, in this regime,
they come only from CMB itself, and they depend on the assumed form of non-gaussianity.
However, at least within an inflationary scenario, one does not expect an abrupt change from
Gaussianity.

3.2 Radiative transfer: from recombination to today.

In this section, we consider what happens to photons after recombination. We need to
compute Θl and hence the CMB power spectrum. In the absence of scattering, the photon
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multipoles equations are:

Θ0 = −kΘ1 − Φ̇; (3.24)

Θ̇1 =
k

3
(Θ0 − 2Θ2) +

1

3
kΨ; (3.25)

Θ̇l =
k

2l + 1
[lΘl−1 − (l + 1)Θl+1] . (3.26)

(3.27)

These equations simplify if we note that Ψ = −Φ once the photons and neutrinos do not
contribute significantly to the energy density, and defining:

Θ̄0 = Θ0 + Ψ = Θ0 − Φ; Θ̄ = Θ (l ≥ 1). (3.28)

The system of equations reduces to:
˙̄Θ0 = −kΘ̄1 − 2Φ̇ and (3.29)

˙̄Θl =
k

2l + 1

[
lΘ̄l−1 − (l + 1)Θ̄l+1

]
; (l ≥ 1) (3.30)

Since the universe was optically thick(large τ̇) prior to recombination, we will have Θl(ηrec) =
0 for l ≥ 2. Thus the solutions to (3.29) are determined by the initial conditions Θ̄0,1(ηrec)
and the metric source Φ̇(η). Since the equation is linear, these three contributions can be
assessed separately.

• Initial monopole perturbation. Let us suppose first that at recombination Θ̄0 = 1
and Θ̄l = 0(l ≥ 1), and that Φ̇ = 0. from the derivative relation for spherical Bessel
functions,

(2l + 1)j
′

l(x) = ljl−1(x)− (l + 1)jl+1(x), (3.31)

we can see that the solutions are

Θ̄l = jl(k∆η), ∆η = η − ηrec. (3.32)

This is not surprising: since in this approximation the photons are simple free- stream-
ing, one would expect that at k∆η < 1 an observer should see only a monopole, but
at late times an observer sees many (≈ ∆η/λ = k∆η/2π) perturbation wavelength. In
this case, the dominant multipole is:

l ∼ k∆η. (3.33)

Since jl(x) peaks at x ∼ l this is indeed what we get.
• Initial dipole perturbation. Now let us suppose that initially Θ̄1 = 1, all other

Θ̄l vanish. Also suppose Φ̇ = 0 at all times. Since the equations of motion are
η−independent, if jl(k∆η) is a solution, then the derivative with respect to η of this is
also a solution.

Θ̄ = 3j′l(k∆η). (3.34)

This is the solution that satisfies our initial conditions; recall that at small x, jl(x)→
xl/(2l+ 1)!!. At large l this is very similar to the monopole solution, expect that there
is a factor 3, and the ′ implies that the phase of oscillation is 90 out of phase from the
monopole.

50



• Time-varying potentials. We take a Green’s function approach. If initially Θ̄l = 0,
but Φ̇ is a delta function at some conformal time η1,

Φ̇ = δ(η1), (3.35)

then immediately afterwards Θ̄0 = −2, and the subsequent evolution is:

Θ̄l = −2jl(k(η − η1)) (3.36)

We can get the evolution for general Φ̇ by a superposition:

Θ̄l = −2

∫ η

ηrec

dη1Φ̇(η1)jl(k(η − η1)) (3.37)

• Complete solution. The complete solution to the problem is obtained by superposi-
tion:

Θl = (Θ0(ηrec)− Φ(ηrec))jl(k∆η) + 3Θ1j
′
l(k∆η)− 2

∫ η

ηrec

dη1Φ̇(η1)jl(k(η − η1)) (3.38)

for l ≥ 1. These three terms are generally called the monopole, dipole, and the inte-
grated Sachs-Wolfe(ISW) terms.

3.3 Large scales: The Sachs-Wolfe effect
We begin our study with the largest scales in the CMB, in which the Sachs-Wolfe(SW)
effect takes place. The SW is a property of the CMB, in which photons from the CMB are
gravitationally redshifted, causing the CMB spectrum to appear uneven. This effect is the
predominant source of fluctuations in the CMB for angular scales above about ten degrees;
those were outside the horizon at recombination, this condition requires kηrec < 1 or:

l <
rCMB

ηrec
≈ η0

ηrec
= 50 (3.39)

In this case, at recombination, we may take as an initial condition the matter-dominated
photons multipole moments:

Θ0 =
3

5
Φ(0); Θ1 =

3

5
iΦ(0)(kη0)1/2; Φ =

9

10
Φ(0) (3.40)

The higher multipoles are zero at η = ηrec, since kηrec < 1, the dipole term is negligible.
We will also ignore the effects of the cosmological constant Λ, so that we are in matter
domination, therefore Φ′ = 0, that is to say no integrated SW effect. Then:

Θl(η0) = − 3

10
Φ(0)jl(k(η0 − ηrec)) ≈ −

3

10
Φ(0)jl(kη0) = −1

5
ζjl(kη0) (3.41)

the CMB power spectrum is then:

Cl =
4π

25

∫
d ln kPζ(k)|jl(kη0)|2. (3.42)
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Now let us suppose that Pζ(k) is a power law, as predicted by inflation with a smooth
potential:

Pζ(k) = Pζ(η−1
0 )(kη0)ns−1 (3.43)

then

Cl =
4π

25
Pζ(η−1

0 )

∫ ∞
0

d ln k(kη0)ns−1|jl(kη0)|2 =
4π

25
Pζ(η−1

0 )

∫ ∞
0

dx

x
xns−1|jl(x)|2 (3.44)

The last integral can be evaluated to give:

Cl =
2ns−2π2

25
Pζ(η−1

0 )
Γ(l + ns/2− 1/2)Γ(3− ns)

Γ(l + 5/2− ns/2)Γ2(2− ns/2)
. (3.45)

An important case is when ns = 1, for which we get:

l(l + 1)

2π
Cl =

Pζ(η−1
0 )

25
= Constant. (3.46)

For this reason, CMB observers often make plots of angular power spectrum with l(l+1)Cl/2π
on the vertical axis. If ns 6= 1, but l � 1, then we can apply Stirling’s formula to the Γ’s
and get:

Cl ≈
2ns−2π2Γ(3− ns)
25Γ2(2− ns/2)

Pζ(η−1
0 )lns−3, (3.47)

so find the dependence:
l(l + 1)

2π
Cl ∝ lns−1. (3.48)

For ns > 1 this means the CMB power spectrum increases as one goes to smaller angular
scales, while for ns < 1 the opposite occurs. In principle, one can measure ns this way.
In practice, the ISW effect is essential at the lowest range of l’s, where the Bessel function
is slowly varying, and there is a limited range of l’s satisfying the condition l < η0/ηrec.
Therefore in order to measure ns one resorts to a global fit to all the CMB data, which
includes scales that were inside the horizon at recombination. We will study next.

3.3.1 Acoustic peaks

Now let us consider the scale that was inside the horizon at the time of equality. Using (3.38),
the anisotropy today is:

Cl = 4π

∫
d ln kPζ(k)

∣∣∣∣Θ0(k)

ζ
jl(k∆η) + 3

Θ0(k)

ζ
j′l(k∆η)

∣∣∣∣2 (3.49)

where ∆η = η0 − ηrec. These terms correspond to the monopole photon perturbation, the
dipole term o the last scattering surface. We can simplify the integrals if we go to late times,
that is to say, k∆η � 1, and we use the asymtotic form of the spherical Bessel function for
l� 1. The function jl(x) goes to zero if x < l + 1/2, and for x > l + 1/2 we have:

jl(x)→ 1

l + 1/2

cos β√
sin β

cos

[(
l +

1

2

)
(tan β − β)− π

4

]
, (3.50)

j′l(x)→ −1

l + 1/2
cos β

√
sin β sin

[(
l +

1

2

)
(tan β − β)− π

4

]
, (3.51)

x =

(
l +

1

2

)
sec β, (3.52)
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where x ≤ β < π/2. The above equations correspond the WKB solutions. Now we can
exchange the integral form k to β, by using:

k =

√
3

ηrec

(
l +

1

2

)
sec β, (3.53)

and d ln k = tan βdβ. At large l, the arguments (l+1/2)(tan β−β) are rapidly varying so we
can replace the squares of Bessel functions with their cycle averages using cos2, sin2 → 1/2
sin cos→ 0:

(jl(x))2 → 1

2(l + 1/2)2

cos2 β

sin β
, (3.54)

(j′l(x))2 → 1

2(l + 1/2)2

cos2 β

sin β
, (3.55)

(jl(x))2(j′l(x))2 → 0. (3.56)

The last results mean that in the high l limit, the correlation between the monopole and
the dipole terms vanish, which is what we should expect since the dipole is equally likely to
point toward the observer as away so it ought to add incoherently to the monopole. In the
Cl formula we have:

Cl =2π

∫
dβ tan βPζ(k)

∣∣∣∣Θ̄0

ζ

∣∣∣∣2 1

(l + 1/2)2

cos2 β

sin β
tan β (3.57)

+ 18π

∫
dβ tan βPζ(k)

∣∣∣∣Θ̄1

ζ

∣∣∣∣2 1

(l + 1/2)2
cos2 β sin β tan βdβ (3.58)

given the fact we are working at high l we may simplify further and display the above
expression as l(l + 1)Cl/2π form:

l(l + 1)

2π
Cl =

∫ π/2

0

dβPζ(k)

∣∣∣∣Θ̄0

ζ

∣∣∣∣2 cos β + 9

∫ π/2

0

dβPζ(k)

∣∣∣∣Θ̄1

ζ

∣∣∣∣2 cos β sin2 β (3.59)

The physical remaining of this equation is that π/2−β is the angle between the Fourier mode
k and the line of sight. The integration over cos βdβ represents the averaging of such angles
over the unit sphere, Θ̄ is the monopole, and the Doppler term has a sin β in amplitude(sin2 β
in power) because only the line of sight component of the velocity is relevant.
Specific values. For k � keq, the photon perturbations at the time of recombination were:

Θ0(ηrec) = −ζ cos
kηrec√

3
; Θ1(ηrec) =

ζ√
3

sin
kηrec√

3
(3.60)

with the potential Φ→ 0. This correctly predicts that the function Θ̄0/ζ and Θ̄1/ζ are oscil-
latory, and that this will give rise to oscillations in (3.59) since the integrands are dominated
by k ∼ l/rCMB. Since the Θ̄0/ζ, Θ̄1/ζ are squared, the period of oscillation is now:

∆k =
π
√

3

ηrec
(3.61)

and this corresponds to oscillations in l of:

∆l = rCMB∆k =
π
√

3rCMB

ηrec
= π
√

3
η0

ηrec
≈ 270 (3.62)

53



for η0/ηrec = 50. And this is indeed what we see. A second prediction form this approxima-
tion, which does not come out correctly, is the amplitude of fluctuations. At large l, where
the amplitude over β smooths out the oscillations, we predict:

l(l + 1)

2π
Cl → Pζ(k), (3.63)

which is wrong: it overpredicts the CMB fluctuations. There are two major reasons for this:
first, the amplitude of Θ̄0 as written above is only valid if k is much greater than keq, which is
not true of modes relevant for CMB; and second photons can diffuse relative to the baryons
since τ̇ is not infinite. Both of these facts bring down fluctuation power. There is no range
of k in which one can simultaneously neglect diffusion and take k � keq. The first effect can
only be derived by numerical calculation, since there is no analytic solution to modes that
are the order of the horizon scale, and are near matter-radiation equality. It brings a factor
of ∼ 4 suppression in Cl. The second effect can be treated analytically, which we do next.

3.4 The Damping Tail

At tiny scales, we must consider the fact that photons have a finite mean free path. We will
give two treatments of the effect: first an order-of-magnitude treatment, and then treatment
base on the Boltzmann hierarchy.
Diffusion length. We will first try to estimate the comoving mean free path of photons is
given by:

Lmfp =
1

neσTa
=

a2

nH,0σTxe
, (3.64)

where nH,0 = 2 · 10−7 cm−3 is the comoving density of hydrogen atoms. Now the conformal
time between scatterings is:

∆η =
1

Lmfp
. (3.65)

The distance-squared traveled by a photon by diffusion adds incoherently after each scatter-
ing: (the number of scattering

∫
dη/η)

∆x2 ∼
∫
L2
mfp

dη

η
=

∫
Lmfpdη =

1

nH,0σT

∫
dη
a2

xe
. (3.66)

If recombination were instantaneous (xe = 1 until ηrec ), and we assume matter domination
so a ∝ η2, this would imply:

∆x2 ∼ a2(ηrec)ηrec
5nH,0σT

∼ (10−3)2(300Mpc)
5 · 2 · 10−7cm3 · 7 · 10−25cm2

∼ 140Mpc2, (3.67)

so a photon can travel about 12Mpc comoving before recombination. In reality, the distance
is a little bit larger because xe drops as hydrogen begins to recombine, and hence there is a
rise in the integrand before the surface of the last scattering at xe ∼ 0.1.
Boltzmann equation treatment. The formal way to treat the diffusion effects is by
including the Θ2 term in the Boltzmann equation. Leaving out the potential, and neglecting
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the Θ3 term which is suppressed relative to Θ2 by another factor of τ̇ , we get:

Θ̇0 = −kΘ1 (3.68)

Θ̇1 =
1

3
k(Θ0 − 2Θ2) + τ̇

(
Θ1 −

1

3
ivb

)
(3.69)

Θ̇2 =
2

5
kΘ1 +

9

10
τ̇Θ2 (3.70)

If we neglect baryon intertia (R � 1) so that the baryon come to the photon rest frame
instantaneously then we can neglect the τ̇ term in Θ̇1 because vb = −3iΘ1. Then we find:

∂

∂η

Θ0

Θ1

Θ2

 =

 0 −k 0
k/3 0 −2k/3
0 2k/5 9τ̇ /10

Θ0

Θ1

Θ2

 (3.71)

In practice τ̇ is varying, but on small scales, one may take a WKB approximation and treat
it as approximately constant over a cycle. One may then determine the dispersion relation
of the acoustic waves by looking at the eigenvalues of the 3x3 matrix. The determinant is:∣∣∣∣∣∣

−ω −k 0
k/3 −ω −2k/3
0 2k/5 9τ̇ /10− ω

∣∣∣∣∣∣ = 0 (3.72)

which gives:

− 4

5
k2ω +

(
ω2 +

k2

3

)(
9

10
τ̇ − ω

)
= 0. (3.73)

This is a cubic equation and has three roots. In the limit |τ̇ | � |ω|, the solutions are ω ±
ik/
√

3, 9τ̇ /10. We want to know the leading-order corrections to two oscillatory solutions(the
exponentially decaying solution is not of interest). In this case, |ω| � |τ̇ |, so we approximate:

− 4

15
k2ω +

9

10
τ̇

(
ω2 +

k2

3

)
= 0 (3.74)

We let ω ± ik/
√

3 + ε:

− 4

5
k2±ik√

3
+

9

10
τ̇

(
−1

3
k2 ± 2√

3
ikε+

1

3
k2

)
= 0 (3.75)

The solution is:

ε = 4
k2

27τ̇
, (3.76)

so

ω = ± ik√
3

+ 4
k2

27τ̇
(3.77)

Since τ̇ < 0 this means that the acoustic waves decay. The amplitude decays by a factor

exp

(
−
∫

4k2

27|τ̇ |dη
)
. (3.78)
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This is usually written as e−k2/k2D , where the damping scale is:

k−2
D =

∫
4

27|τ̇ |dη =
4

27

∫
dη

neσTa
(3.79)

Thus wavenumbers smaller than the photon diffusion length are wiped out. In reality, there
are finite baryon inertia corrections to this equation, and also the photons develop polarization
which causes additional anisotropic scattering the factor of 4/27 should be 8/45.

3.5 Cosmology from the CMB power spectrum
We have seen that the CMB power spectrum is quite rich in features. It has the Sachs-Wolfe
plateau at low l, then a series of acoustic peaks, and finally a damping tail. This spectrum
allows us to obtain a number of cosmological observables.

• Amplitude and slope. The overall normalization and tilt of the CMB power spectrum
allow one to estimate P(k) and the spectral index ns.
• Baryon density. The baryon density Ωbh

2 has two significant imprints on the CMB
power spectrum: since baryons are pressureless, they decrease the sound speed and
hence reduce the sound horizon. This stretches all the acoustic peaks to higher l.Baryons
are attracted to dark matter potential wells(the ikΨ term in the baryon velocity equa-
tion), and thus the acoustic oscillation in Θ0 − Φ is offset: the positive extremes of
Θ0 −Φ are larger than the negative extremes. Since the odd-numbered acoustic peaks
are associated with Θ0 − Φ > 0, they are enhanced relative to the even peaks. This
effect increases if Ωbh

2is increased.
• Matter density. If the matter density Ωmh

2 is increased, then the matter-radiation
equality occurs earlier. This suppresses the high-l power spectrum (relative to the SW
plateau) even more since the decaying potential during the radiation era that drives
the acoustic oscillations in our earlier calculation does not occur. Also, the ISW effect,
which enhances the first peak because the universe is not entirely matter-dominated at
recombination, is suppressed.
• Distance to the surface of the last scattering. The comoving angular diameter

distance determines the positions of the peaks in the CMB power spectrum to the sur-
face of last scattering, r. If r is increased, then the peaks move to the right. Historically
this was of importance in ruling out open Universe models. A key issue here is param-
eter degeneracy: the situation where multiple parameters affect a feature. The CMB
power spectrum slope is affected by both matter density and the primordial slope ns,
but not in the same way(matter density suppresses only the peak region and produces a
unique suppression of the first peak). Two other degeneracies that will encounter later
are reionization and tensors, which also tilts the spectrum, but they produce unique
features in the polarization that already have(reionization) or soon will(tensor) break
the degeneracy.

3.6 CMB Polarization
So far, we have treated the CMB as unpolarized. This picture is incorrect since it affects the
statistic properties generated via Thomson scattering process. This small polarized signal

56



Figure 3.4: TT -angular power spectrum by Planck collaboration 2015. The dashed ver-
tical line at l = 30 correspond to the change of map between commander(l = 2 − 29) and
SMICA(l = 30−2500). Data shows an astonishing matching with the CMBmodel for higher l;
however, at low l is cosmic variance(theoretical error) dominated. The unique easy solution to
fix these statistical mismatches is to switch from this universe to another, take data, and com-
bine them. Credit: https://www.cosmos.esa.int/web/planck/planck-collaboration.

is about 10% of the total intensity coming from the CMB temperature alone, so indeed, it
is not negligible. This statistical polarized signal has already provided various significative
information about the primordial statistic and its consistency and has the potential to keep
shedding some new light by opening a new window to the nature of inflation, recombination,
and reionization.

3.6.1 Polarized Boltzmann equation

We have assumed that the photons have a scalar phase space density f(x̂i, p, p̂i, η). In reality,
there is two polarization of photons, vertical θ̂ and horizontal φ̂, and the phase space density
may be different in each one. Moreover, the two polarizations may be correlated if the
photons are polarized in a diagonal direction or have circular polarization. Generally, we
write the phase space density as 2x2 Hermitian density matrix:

f =

(
fθ̂θ̂ fθ̂φ̂
fθ̂φ̂ fφ̂φ̂

)
=

(
fI + fQ fU + ifV
fU − ifV fI − fQ

)
(3.80)

The phase space density viewed through a linear polarizing filter at position angle ψ is:

f(xi, p, p̂i, η, ψ) = fI + fQ cos(2ψ) + fU sin(2ψ). (3.81)

The temperature perturbation that we have been studying has an analogue for polarization.
We define the temperature polarization Θ as:

fI = 1/ (exp(p/Tγ0(1 + Θ))− 1) (3.82)

with

Θ(xi, p, p̂i, η) =
fI − f (0)

−p∂f (0)/∂p
(3.83)
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Whereas for Q,

Q(xi, p, p̂i, η) =
fQ

−p∂f (0)/∂p
(3.84)

moreover, similarly for U and V . Thus our goal now is to characterize Θ, Q, U, V , as usual,
we will work in Fourier space and arrange the ẑ axis in the direction of k. The polarization
will be created by Thomson scattering. Since Thomson scattering does not create circular
polarization, we will not consider V . It is then convenient to write the polarization as a
traceless-symmetric tensor field,

Pab =

(
Q U
U −Q

)
(3.85)

Now we could deal with the Boltzmann equation for polarized phase space density is just like
that for intensity and we write:

C[f ] =
Df

dη
, (3.86)

where C[f ] is the collision term, and the derivative D/dη transports the 2x2 matrix according
to:

Dfab
dη

=
∂

∂η
fab + ẋi

∂

∂xi
fab + ṗ

∂

∂p
fab + ˙̂p

∂

∂p̂
fab + hµa

(u · ∇)hcµ
u0

hνb
(u · ∇)hdν

u0
fab (3.87)

where a, b ∈ θ̂, φ̂ are indices of 2-dimensional plane perpendicular to direction of photon
propagation. In the last term, hµa is a 4-vector corresponding to the unit vector in the
direction of a on the unit 2−sphere. This term accounts for the fact that the basis θ̂, φ̂
is not parallel-transported along the photon’s trajectory so the polarization can appear to
rotate due to the choice of the coordinate system. At first order in perturbation theory,
this effect must vanish since the polarization is first-order and any coordinate rotation is
also first-order. A similar argument kills the ˙̂pi term. Also ẋi multiplies a first-order term(a
spatial gradient) so it can be replaced with its zeroth-order value p̂i. If one is looking at the
polarized components, fab is first-order so one may replace ṗ with −aHp. Thus the photon
Boltzmann equation reduces to:

C[fQ] = ḟQ + p̂i
∂

∂xi
fQ − aHp

∂

∂p
fQ (3.88)

similarly for U . Writing this in terms of the dimensionless Q and U , we get:

C[fQ] = −p∂f
(0)

∂p
Q̇−Q ∂

∂η

(
p
∂f (0)

∂p

)
− p∂f

(0)

∂p
p̂i

∂

∂xi
+ aHp∂

(
p
∂f (0)

∂p
Q

)
(3.89)

Since f (0) depends only on the combination of ap, the ∂/∂η term cancels against the part
of fourth term where the derivative acts on p∂f (0)/∂p. Then, after dividing through by
−∂f (0)/∂p, we get:

C[fQ]

−p∂f (0)/∂p
= Q̇+ p̂i

∂

∂xi
Q+ aHp

∂f (0)

∂p

∂Q

∂p
(3.90)

This is a remarkably simple equation: note that there is no gravity inside of it. Polarization
is created only by the collision operator, which includes Thomson scattering. Lie the case for
Θ, it will turn out that Q and U are frequency independent. We will write the right-hand
side as C[Q] so:

Q̇+ ik · p̂Q = C[Q] (3.91)
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Spherical harmonic decomposition.

The decomposition of Q and U in spherical harmonics is not as straightforward as Θ they
generate a traceless and symmetric tensor, with determined transformation properties. In
order to the spherical harmonic of Q and U satisfies the same rotational properties as Θlm,
we need to construct a tensor covariantly derived from the basis functions Ylm. An option
is by taking derivatives of Ylm and generate a new tensor that respects the properties of the
polarization vector, such as:

Y E
lm,ab(θ, φ) = − 2√

(l − 1)l(l + 1)(l + 2)

(
DaDb −

1

2
gabD

2

)
Ylm(θ, φ) (3.92)

Y B
lm,ab(θ, φ) = − 2√

(l − 1)l(l + 1)(l + 2)
(εbcDaDc + εacDbDc)Ylm(θ, φ) (3.93)

Where Da and D2 are the covariant derivative and the Laplacian, respectively, on unitary
2-sphere with a metric and antisymmetric symbol:

gab =

(
1 0
0 sin2 θ

)
, εab =

1

sin θ

(
0 1
1 0

)
(3.94)

This set of functions form a complete basis for a traceless-symmetric tensor field on the unit
sphere. This completeness can be demonstrated by applying second derivative operators to
any polarization field Pab to get a scalar, and then expand the scalar in spherical harmonics.
the normalization coefficients have been chosen so that:∫

Y E∗
lm,abY

E,ab
lm d2n̂ = 2 (3.95)

and similarly for B. The factor 2 is useful because |fab|2 actually double-counts the square
of each Stokes parameter, i.e. it is 2(f 2

I + f 2
Q + f 2

U + f 2
V ). It is worth noting there is no l = 0

or l = 1 tensor field, which is a consequence of e±2iψ dependence of the polarized intensity.
One can see this as well by noting that traceless-symmetric derivative operators applied to
Y00 and Y1m give zero. In addition to rotational properties, which are equivalent to those of
Ylm, the tensor spherical harmonics have parity properties:

Ylm(n̂) = (−1)lYlm(−n̂), Y E
lm(n̂) = (−1)lY E

lm(−n̂), Y B
lm(n̂) = (−1)l+1Y B

lm(−n̂). (3.96)

The B-type spherical harmonic has an extra minus sign because its definition includes the
Levi-Civita tensor. It is customary to express the polarized phase space density in E and B
spherical harmonics:(

Q(n̂) U(n̂)
U(n̂) −Q(n̂)

)
=
∑
lm

(−i)
√

4π(2l + 1)
[
ElmY

E
lm,ab(n̂) +BlmY

B
lm,ab(n̂)

]
(3.97)

in analogy to the temperature anisotropies. This equation is the analogue of the spherical
harmonic decomposition for polarization. The Elm and Blm transform under rotations in the
same way as Θlm.
Free streaming term. If the equation (3.91) is projected in this basis and after some tedious
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but straightforward algebra we obtain the streaming equation for the E and B modes:

Ėlm =

√
(l − 2)(l + 2)(l −m)(l +m)

l(2l + 1)
kEl−1,m −

√
(l − 1)(l + 3)(l + 1−m)(l + 1 +m)

(l + 1)(2l + 1)
kEl+1,m

(3.98)

− 2im

l(l + 1)
kBlm + C[Elm].

Ḃlm =

√
(l − 2)(l + 2)(l −m)(l +m)

l(2l + 1)
kBl−1,m −

√
(l − 1)(l + 3)(l + 1−m)(l + 1 +m)

(l + 1)(2l + 1)
kBl+1,m

(3.99)

+
2im

l(l + 1)
kElm + C[Blm]

Where the C[·] denotes the collision operator. Particularly the collision operator for polar-
ization depend only on the local phase space density of photons, and only the photon density
at that particular frequency. Symmetry under rotation and parity dictate the shape that the
collision terms should have, thus C[Elm] can depend only on quantities with the same angular
momentum and parity, i.e. Θ and Elm, whereas Blm can only depend on Blm. The freedom
under the coordinate choice also demands that the companion coefficients must depend only
on l, so we get:

C[Elm] = τ̇Elm − τ̇(αlΘl + βlElm); C[Blm] = τ̇Blm − τ̇ γlBlm (3.100)

the second term represents the terms that have been remitted after scattering. The easiest
way to determine each coefficient is just by studying the m = 0 case, in which the E type
spherical harmonics Y E

lm have only Q polarization and the B modes only U . Thus we may
derive α, β, γ by taking m = 0 and keeping only the Q/U polarization. There is then a
separate vertical ’north-south’ temperature perturbation ΘV and a horizontal ’east-west’
polarization ΘH , given by

ΘV = Θ +Q, ΘH = Θ−Q. (3.101)

One can estimate the post-scattering intensity and polarization by looking at the polarization-
resolved differential scattering cross section from the incoming direction and polarization at
the baryon rest frame p̂′ and ζ ′ to the outgoing p̂ and ζ. The component of the collision term
due to re-scattered radiation is:

C[ΘV ]r.s. = |τ̇ |
∫
d2p̂′

[
dPV→V
dΩ

ΘV (p̂′) +
dPH→V
dΩ

ΘH(p̂′)

]
(3.102)

and the polarization differential probability is

dPζ′→ζ
dΩ

ΘV (p̂′ → p̂) =
3

8π
(ζ · ζ ′)2 (3.103)

where ζ is given by:

ζV = (cos θ cosφ, cos θ sinφ,− sinφ), ζH = (sinφ, cosφ, 0) (3.104)

60



and the differential probability are:
dPH→H
dΩ

ΘV (p̂′ → p̂) =
3

8π
cos2 ∆φ (3.105)

dPH→V
dΩ

ΘV (p̂′ → p̂) =
3

8π
cos2 θ sin2 ∆φ (3.106)

dPV→H
dΩ

ΘV (p̂′ → p̂) =
3

8π
cos2 θ′ sin2 ∆φ (3.107)

dPV→V
dΩ

ΘV (p̂′ → p̂) =
3

8π
(cos θ cos θ′ cos ∆φ+ sin θ sin θ′)2 (3.108)

where ∆φ = φ− φ′. Since we are looking from m = 0 modes, we may angle average over ∆φ
and then get:

C[ΘV (p̂)]r.s. =
3|τ̇ |

4

∫ [(
1

2
cos2 θ cos2 θ′ + sin2 θ sin2 θ′

)
ΘV (p̂′) +

1

2
cos2 θΘH(p̂′)

]
sin θ′dθ′

(3.109)

C[ΘH(p̂)]r.s. =
3|τ̇ |

4

[
1

2
cos2 θ′ΘV (p̂′) +

1

2
ΘH(p̂′)

]
sin θ′dθ′ (3.110)

Using Q = (ΘV −ΘH)/2, thus:

C[Q(p̂)]r.s. =
3 sin θ|τ̇ |

8

∫
dθ′ sin θ′

[(
1

2
− 3

2
cos2 θ′

)
Θ(p̂′) +

3

2
sin2 θ′Q(p̂′)

]
(3.111)

this equation can be simplified if we recall the values of spherical harmonics,

Y20 =

√
5

16π
(3 cos2 θ − 1), Y E

20,θ̂θ̂
=

√
15

32π
sin2 θ (3.112)

and we note that only spherical harmonics with l = 2 are involved. Moreover, if we transform
to harmonic space, C[Elm] vanishes unless l = 2. For this special case, we get:

C[E20]r.s. =

(
−
√

6

10
Θ20 +

3

5
E20

)
|τ̇ | (3.113)

so we identify α2 = −
√

6/10 and β2 = 3/5. A similar calculation can be done for B modes
and shows that the re-scattering term to be zero γl = 0. Finally, the overall system of
equations for polarization is:

Ėlm =

√
(l − 2)(l + 2)(l −m)(l +m)

l(2l + 1)
kEl−1,m −

√
(l − 1)(l + 3)(l + 1−m)(l + 1 +m)

(l + 1)(2l + 1)
kEl+1,m

(3.114)

− 2im

l(l + 1)
kBlm − |τ̇ |

(
Elm +

√
6Θ2m − 6E2m

10
δl2

)
(3.115)

Ḃlm =

√
(l − 2)(l + 2)(l −m)(l +m)

l(2l + 1)
kBl−1,m −

√
(l − 1)(l + 3)(l + 1−m)(l + 1 +m)

(l + 1)(2l + 1)
kBl+1,m

(3.116)

+
2im

l(l + 1)
kElm − |τ̇ |Blm (3.117)
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There are separate E type and B type power spectra,

〈aE∗lmaEl′m′〉 = CEE
l δll′δmm′ 〈aB∗lmaBl′m′〉 = CBB

l δll′δmm′ (3.118)

Because E has the same parity as temperature, it is also possible to have a temperature-
polarization spectrum:

〈a∗lmaEl′m′〉 = CΘE
l δll′δmm′ (3.119)

The power spectra for the scalars can be determined using the same method as for temper-
ature, i.e. integrating over wavenumbers and angles to get:

CEE
l = 4π

∫
d ln kPζ(k)

∣∣∣∣Elζ
∣∣∣∣2 (3.120)

CΘE
l = 4π

∫
d ln kPζ(k)Re

[
Θ∗l
ζ

El
ζ

]
(3.121)

although the real part in the integrand is unnecessary for scalars since Θl/ζ and El/ζ are
real.

E�modes B�modes

Figure 3.5: E-modes and B-modes patterns: The E-modes or curl free patterns are symmet-
ric under reflection, whereas the B-modes or divergenless pattern are antisymmetric under
reflection. Credit: https://writescience.wordpress.com/2014/04/11/

Recombination epoch

Polarization can be generated at recombination because of the finite thickness of the last
scattering surface. The finite optical depth |τ̇ | < ∞ allows a Θ2 to be generated, and then
converted into polarization. We can get an approximate sense for the magnitude of the
polarization by using the tight-coupling limit:

Θ̇2 =
2

5
kΘ1 +

9

10
τ̇Θ2, (3.122)

and supposing that the two terms on the right side approximately balance, which should be
true if τ̇ is large. Then:

Θ2 ≈
4k

9|τ̇ |Θ1 (3.123)
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The polarization generated by the source term is:

Ė2 ≈ −
√

6

10
|τ̇ |Θ2 ≈ −

2
√

6

45
kΘ1. (3.124)

Thus right after recombination, we should have a polarization field of

E2(ηrec) ≈ −
2
√

6

45
k∆ηlssΘ1, (3.125)

where ∆ηlss is the width of the last scattering surface, i.e. the time during which the above
equations are valid. But Θ1 is an oscillating function; in the small-scale limit we have

Θ1 ≈ −
ζ√
3

sin
kηrec√

3
exp(−k2/k2

D) (3.126)

so

E2(ηrec) ≈
2
√

2

45
k∆ηlss sin

kηrec√
3

exp(−k2/k2
D) (3.127)

This is an oscillating function, which rapidly goes to zero at large k, and also has an exponen-
tial cutoff. It is proportional to the width of the surface of the last scattering. It is smaller
than Θ1 by a factor of kηlss. In order to determine what the polarization looks like today, we
need to do a radiative transfer calculation. This is analogous to the spherical Bessel function
calculation for temperature, except that the polarization equations are more complicated
and the solution is a tensor spherical Bessel function. Qualitatively, however, the results are
similar to those for temperature: the power spectrum CEE

l today is an integral over P(k)
weighted heavily at k ∼ lrCMB. because E2 has a sine instead of a cosine dependence, the
results are. First, The E-type polarization power spectrum CEE

l shows acoustic oscillations,
but 180◦ out of phase with CΘΘ

l (sin2vs.cos2). Second, The cross-correlation CΘE
l is 90◦ out

of phase with both (sin cos).

Reionization epoch.

Theory predicts that the universe should have become neutral at z ∼ 1200 and the existence
of acoustic oscillations confirms that this picture is correct. however, we know that universe
must have become reionized again from studies of hydrogen(Lyman-α) absorption lines in
quasars. A neutral intergalactic medium would present an optical depth of ∼ 104 and all
flux blueward of Lyman−α in the quasar rest frame would be wiped out. Instead what is
observed is a complex series of absorption features whose fractional transmission increases
with redshift, being about 50% at z ∼ 3 and becoming complete above z ∼ 6. This implies
that some mechanism reionized almost all the gas in the universe sometime before z = 6. The
most likely candidate is UV radiation from an early generation of stars. Reionization causes
an additional source of optical depth between us and recombination surface. If reionization
were a step function at z = zri, with post-reionization electron abundance xe, the this optical
depth is

τri =

∫
neσTdt =

σTnH0xe
H0

∫ zri

0

(1 + z)3 dz

(1 + z)
√

Ωλ + Ωm(1 + z)3
. (3.128)
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If zri is large then the cosmological constant has only a minor influence; removing it reduces
the integral to:

τri ≈
2σTnH0xe

3Ω
1/2
m H0

(1 + zri)
3/2. (3.129)

The usual assumption is that at reionization, H became ionized to H+ and He to He+, which
gives xe = 1.08(1 electron from H and 0.08 from He). He →He+ is predicted by simulations
to occur at the same time as H→ H+ because of the spectrum of the starts. Under these
conditions, we get:

τri ≈ 0.0023(1 + zri)
3/2. (3.130)

The requirement of zri > 6 from the quasar absorption features implies τri > 0.043. In order
to measure τri we must understand its impact on the CMB. If one studies the Boltzmann
equation, one can see that all of the high multipoles in the CMB have terms in the Θ̇ equation
that contain −|τ̇ |Θl for l ≥ 1. These terms become inactive after recombination, but turn
on again due to reionization. This implies that all of the modes that were inside the horizon
at reionization(hence have temperature anisotropies dominates by large l) are suppressed by
a factor of exp(−τri).The condition for this to occur is roughly kηri � 1, or

l = k(η0 − ηri)�
η0 − ηri
−ηri

. (3.131)

Within this range the power spectrum, which depends on Θ2
l , is suppressed by a factor:

Cl → Cl exp(−2τri). (3.132)

Therefore reionization causes a suppression of all the high multipoles. This makes sense: the
additional scattering wipes out small-scale structure. The second effect of reionization is on
the CMB polarization. For modes that were outside the horizon at recombination, we found
in the temperature anisotropy section that

Θl(η) = −1

5
ζjl(kη), (3.133)

and in particular

Θ2(ηri) = −1

5
ζjl(kηri), (3.134)

If the scattering from reionization were instantaneous(it is not) then this immediately gen-
erates E-mode polarization:

E2(ηri) =

√
6

50
τriζj2(kηri). (3.135)

The free-streaming converts this into a polarization today at l ∼ k(η0 − ηri). Since the
spherical Bessel function is dominated by arguments near ∼ 3, we thus expect E-mode
polarization to peak at

l ∼ 3
η0 − ηri
ηri

(3.136)

and have an amplitude proportional to τri. In the power spectrum one expects:

CEE
l ∝ τ 2

ri and CΘE
l ∝ τri. (3.137)

The expected polarization per ln l,
√
l(l + 1)CEE

l /2π is order τri
√
P ∼ 10−6, i.e. at µK level;

thet factor
√

6/50 makes this even lower. Nevertheless, this polarization feature at low l it
was detected by Planck, which finds τri = 0.087± and zri = 11.0± 1.4.
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θ

Figure 3.6: The transformation of quadrupole anisotropies into linear polarization. In dif-
ferent regions the plane wave modulation of the quadrupole can change its sign but not its
polarization sense. (a) The orientation of the quadrupole moment with respect to the scat-
terig direction n̂ determines the sense and magnitude of the polarization. It is aligned with
the cold(red, long) lobe in the eθ⊗eφ tangent plane. (b) In spherical coordinates where n·k =
cos θ, the polarization points north-south Q with magnitude varying as sin 2θ for scalar fluctu-
ations. Credit: http://background.uchicago.edu/~whu/polar/webversion/polar.html
.

Figure 3.7: EE and TE angular power spectrum. Remarkably the red curves are not a
fit, they are the model using the parameters inferred from the TT -angular power spec-
trum.Therefore these plot show the consistency of the theoretical framework [19].

Gravitational waves

Primordial gravitational waves are expected to be very weak, and their imprint on the CMB
temperature fluctuations would be very hard to disentangle from that of the density fluc-
tuations. In polarization, however, they have a unique signature: the B-type polarization,
which is not generated by density perturbations is given by

CBB
l = 8π

∫
d ln kPh(k)

∣∣∣∣Bl(k)

h

∣∣∣∣2 . (3.138)

However, we may make an educated estimate as follows. The rate of generation of photon
quadrupole at the recombination surface is:

Θ̇2 ∼ −
Ė

5
≡ 2

5
√

3
ḣ, (3.139)
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where we have written the gravitational wave amplitude in terms of h = (h+ ∓ ihx)/
√

2
instead of E to avoid confusion with the polarization. This occurs throughout the time of
the last scattering, so during this surface Θ2 is of order

Θ2 ∼
2

5
√

3
ḣ∆ηlss. (3.140)

Thomson scattering then generates E-type polarization:

Ė2 ∼ −
√

6

10
|τ̇ |Θ ∼ −

√
2

25
ḣ∆ηlss. (3.141)

The dominant gravitational wave modes will be those that enter the horizon at recombination
k ∼ 1/ηrec: modes that eneter earlier adiabatically decayed away, and those that enter later
have h 6= 0 but ḣ ≈ 0. For these waves, ḣ ∼ h/ηrec, and the typical polarization is:

√
2

25

∆ηlss
ηrec

hrms ∼ 10−7r1/2. (3.142)

This is at scale of l ∼ kη0 ∼ η0/ηrec ∼ 50, i.e. a few degrees. However for typical models
with r ∼ 0.1 the amplitude is down in the range of 100nK, and a more careful calculation
gives a somewhat lower number. This makes gravitational waves one of the most difficult
problems in observational cosmology. Nevertheless, there is an enormous prize: measuring
r and hence setting the energy scale of the inflationary epoch. Gravitational waves also
generate polarization at reionization, however, this is on the largest scales (l of a few) where
foregrounds are most severe.

Gravitational wave phenomenology

A few results follow easily from the above equations:

• Thomson scattering of the local quadrupole Θ2m of the temperature field is the only
source for polarization.
• Generation of polarization can only happen in regions where the optical depth is high

enough to have Thomson scattering but not so high as to wash out the quadrupole.
The two such possibilities are the recombination surface and reionization.
• Thomson scattering can only generate l = 2 E-type polarization; the free- streaming

terms are needed to generate everything else.
• The mixing of E into B-type polarization occurs via a single term in the Ḃlm equation

that has a factor of m. Therefore for scalar perturbations (m = 0), there is no way to
generate B-type polarization. On the other hand, tensors can generate it.

3.7 CMB systematics
No discussion of the CMB would be complete without a brief mention of the problems facing
experimentalist who measure such tiny signals. Here we give an incomplete list:

• The ground. The CMB polarization fluctuations are a few µK, but the ground is
at ∼ 300K. Therefore if even a small amount of ground radiation diffracts into the
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telescope it is a serious problem. Ground-based experiments must take care to minimize
diffraction, and also take advantage of the fact that the sky rotates relative to the ground
so that the two effects can be separated. Going to space also helps but is expensive.
• The atmosphere. The Earth’s atmosphere contains H2O and O2 molecules that radi-

ate in the microwave bands. Humidity variations can masquerade as CMB anisotropies.
These move relative to the sky and do not repeat from day to day, so once again there
are ways to separate them, nevertheless, they are so large that they must be very care-
fully removed. Balloon or space experiments have an advantage as they rise above most
of the water vapor.
• Beams. Precise measurement of the CMB fluctuations requires that one understand

the beam (i.e. how the response to a source varies depending on how far it is off the
boresight) very well. These are usually determined by diffraction: the resolution of an
experiment is no better than θ = λ/D. But to measure CMB power spectrum to 1%,
we need to know the Fourier transform of the beam to 0.5%. Often one uses a bright
microwave source such as a planet for this purpose.
• Intensity → polarization leakage. Since the CMB temperature fluctuations are

much brighter than polarization one must make sure that the two polarizations mea-
sured by the instrument have the same relative calibration and that features such as
polarized diffraction spikes are well understood. The CMB temperature fluctuations are
much fainter than the ground, so one might think they are less of a problem, but they
are fixed to the sky which may make them more pernicious than the ground pick-up.
• Response to magnetic flux. The Earth’s magnetic field can affect some types of

microwave detectors, especially those using SQUIDs to measure current. These must
be carefully shielded using superconducting cages.

There are also foregrounds: objects that emit microwaves that are not the CMB.

• Active galactic nuclei. These emit synchrotron radiation that is often time depen-
dent. They have a different spectrum than the CMB, tilted to lower frequencies than
a blackbody. The brighter ones can be recognized easily in CMB maps and are usu-
ally pointlike but the fainter ones may not. Some experiments, must do a statistical
subtraction of AGN.
• Star-forming galaxies. These emit synchrotron, free-free radiation, and also thermal

radiation from dust grains that have been heated by absorption of starlight. They
are much fainter than AGN but with several emission, mechanisms may have complex
spectra. To date, they have not been a problem but the next generation of higher-
frequency CMB experiments (≥ 150GHz) could face significant difficulties, especially
at small angular scales.
• Galactic synchrotron. Our own Milky Way emits synchrotron radiation, which fills

the entire sky and at low frequencies (422 GHz) contributes tens of µK even at high
Galactic latitude. The synchrotron is highly polarized which makes it a special problem
for CMB experiments. It is steeply frequency-dependent, being much brighter at low
frequency, so maps at e.g. 400 MHz are often used to assess contamination.
• Galactic free-free radiation. This is present but not the dominant foreground at

any frequency. It has a well-understood spectral dependence, Iν ∝ ν−0.15, so it is most
important at low frequency. It is intrinsically unpolarized in the optically thin regime,
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and its source, warm ionized gas, is also traced at optical wavelengths by diffuse Hα
emission.
• Galactic dust. Interstellar dust absorbs starlight and can re-radiate it at infrared

wavelengths; a small fraction of the energy emerges in the microwave via the Rayleigh-
Jeans tail. The emission is weakly (∼ 5%)polarized due to the alignment of the dust
grains with the magnetic field. There is also evidence for an additional dust emission
process, possibly electric dipole radiation from spinning dust grains, or thermal fluctua-
tions of the magnetic moment of iron-bearing grains. Thermal dust emission dominates
the Galactic foreground above ∼ 80GHz.

The foregrounds are a serious problem, but by rejecting data from the Galactic plane (where
they are worst), using their frequency dependence, and incorporating data from other wave-
lengths, they have so far been overcome. They will, however, represent a major challenge,
especially for gravitational wave detection.

Figure 3.8: LFI at 30GHz Commander map: The top figure shows the magnetic fields and
the intensity of polarized radiation synchrotron radiation measured from LFI at 30GHz. The
bottom figure shows the magnetic fields and the intensity of polarized radiation synchrotron
radiation measured from HFI at 353GHz. These two figures are important to understand
the status of the current observation of B modes from CMB. They correspond to the main
spurious sources on the galactic plane that must be characterized and eliminated. Credit:
https://www.cosmos.esa.int/web/planck/planck-collaboration.
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Chapter 4

Features

The simplest models of cosmic inflation [7, 8, 39, 40] predict both scalar and tensor primordial
fluctuations, characterized by a set of nearly scale invariant power spectra. While cosmic
microwave background (CMB) observations have enabled us to tightly constrain the power
spectrum of scalar perturbations, a detection of primordial gravity waves (in the form of
B-modes) remains a pending challenge. Current efforts to observe the CMB polarization will
reach the limits of cosmic variance, allowing us to either measure or constrain the tensor-to-
scalar ratio r down to r ∼ 0.01 - 0.002 [23, 41–43]. The observation of B-modes in the CMB
would give us access to the value of the Hubble expansion rate H during inflation, reinforcing
the idea that the Hot Big Bang era was preceded by a stage of dramatic accelerated expansion.

Although current CMB observations are compatible with a nearly scale invariant power
spectrum for curvature perturbations [19], there are some hints of scale dependent features
present in the spectrum at certain multipoles [44–46]. The shape and size of such features
could in principle allow us to discriminate the type of physics that played a role during
inflation, since their appearance in the primordial spectra would invalidate the simplest
models of inflation, forcing us to consider models in which non-trivial degrees of freedom
interacted with primordial curvature fluctuations around horizon crossing [19, 47–63] (see
also [64–66] for early work on features of the tensor spectrum and [67] for an up-to-date
review). The prospects of unveiling physics beyond the single-field slow-roll paradigm has
also propelled new ideas to analyze the presence of such features in 21 cm and Large Scale
Structure observations [68–71].

The effective field theory (EFT) approach to inflation [72, 73] is particularly useful to
understand the appearance of features in the primordial spectra. This formalism allows one
to study models of inflation beyond the canonical single field paradigm by incorporating the
sound speed at which curvature fluctuations propagate, as a parameter in the Lagrangian
for perturbations. Within this framework, features are the consequence of time variations
of background quantities appearing in the Lagrangian describing the dynamics of the lowest
energy fluctuations. These time variations break – in a controlled way – the standard behavior
required in single field slow-roll inflation, producing localized features in the spectra, though
without invalidating inflation as a mechanism to explain the origin of primordial fluctuations
in a way compatible with observations. Given that the source of features may be traced back
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to background parameters that affect the evolution of all perturbations, features appearing
in different n-point correlation functions would be necessarily correlated [6, 74–84]. In the
case of scalar perturbations, a powerful way to study such time-dependent departures from
slow-roll is the joint estimator analysis of two- and three-point correlation functions [82],
since a detection of correlated signals in the power spectrum and bispectrum would increase
the statistical significance of these features.

In this article we explore the possibility of establishing a novel class of cross correlation
between spectra. Specifically, the questions we wish to address are the following: If features
in the primordial scalar power spectrum are confirmed, would they also show up in the tensor
power spectrum? In addition, if the scale suppression of the angular power spectrum in the
multipole range 4 ≤ ` ≤ 50 is found to be of primordial origin, what type of signal should
we expect in the angular power spectrum of B-modes? To that end, we study the effect of
time dependent backgrounds on the dynamics of fluctuations in order to correlate features
in the power spectra of scalar and tensor modes. Our main result is that features ∆PT/PT ,
appearing in the tensor power spectrum PT , are correlated to features ∆PS/PS, appearing
in the scalar spectrum PS in Fourier space, in the following way

d2

d ln k2

(
∆PT
PT

)
= 6ε0

∆PS
PS

, (4.1)

where ε0 is the (constant) average value of the slow-roll parameter ε = −Ḣ/H2. This
expression tells us that any feature appearing in the tensor spectrum is in general suppressed
with respect to those appearing in the scalar spectrum [85]. This suppression is two-fold: On
the one hand, ε0 must be small in order to keep inflation valid as a mechanism to produce
fluctuations over a large range of scales. On the other hand, the ln k-derivatives must be
large in order for features to be observable in the scalar power spectrum.∗ Note that this
approach is model independent since it takes the scalar power spectrum data as an input
without reference to the mechanism that produces the features.

Our results show that any strong departure of scale invariance in the scalar spectrum must
come together with a consequential departure in the tensor spectrum, but at a level that is too
small to be observed. As a corollary, any future observation of scale invariance departures in
the tensor spectrum cannot be of primordial origin, unless some exotic mechanism underlies
their origin. For example, models where the only background quantity experiencing rapid
variations is the tensor sound speed will have features only in the tensor spectrum [86]. On
the other hand, non Bunch-Davies initial conditions may lead to features in the two spectra
with the same amplitude [87]. In this work, however, we are interested in predicting the
scale dependence of the tensor spectrum from the scalar power spectrum, highlighting the
perspective of a joint analysis of the two spectra. Having this in mind, in the particular
case of the observed deficit of the angular power spectrum around ` ∼ 20, we conclude that
coming CMB polarization experiments should not encounter any scale dependence of the
spectrum around that region.

The article is organized as follows: In Section 4.1 we present the method used and derive
∗As we shall see in the next section, observable features in the spectra must have an identifiable structure

over a range of scales smaller than ln k. This implies that ln k-derivatives acting on either ∆PT or ∆PS must
be large.
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the correlation of the two power spectra for the cases where i) features appear due to sudden
variations of the Hubble scale, and ii) variations in both the Hubble scale and the sound
speed are responsible for features. In Section 4.2, we present results for the tensor power
spectrum in the low ` region, modeling the features in the scalar signal with a Gaussian and
a cosine function. Finally, we conclude in Section ??.

4.1 Correlation of power spectra
In this section we apply the methods elaborated in [6, 76] to correlate features appearing in
the tensor and scalar power spectra. Our method is based on the in-in formalism to study the
evolution of quantum fluctuations on a time dependent quasi-de Sitter background [13, 28].
Another widely used method to study features is the so called generalized slow-roll formalism
[88–91].

4.1.1 Preliminaries

Let us set the ground for the computation by first writing down the quadratic actions for
the scalar and tensor perturbations in Fourier space. For the scalar part we will consider the
primordial curvature perturbation R in comoving gauge. On the other hand, for the tensor
part we will work with the traceless and transverse perturbation γij as:

γij(k, τ) ≡ h+(k, τ)e+
ij(k) + h×(k, τ)e×ij(k), (4.2)

where k is the wave vector (or momenta), and e+
ij(k) and e×ij(k) are the elements of a time

independent basis for tensors satisfying δijeij = 0 and kieij = 0. We may further define
canonically normalized fields u and f+,× as

u = zR, f+,× = a(t)h+,×, z ≡
√

2ε
a

cs
, (4.3)

where a(t) is the scale factor, cs is the sound speed of the curvature perturbations and
ε = −Ḣ/H2 the first Hubble slow-roll parameter. In these variables, the quadratic actions
for scalar and tensor modes in conformal time τ are found to be

S
(2)
S =

1

2

∫
dτ d3k

[
(u′)2 + c2

sk
2u2 +

z′′

z
u2

]
, (4.4)

S
(2)
T =

1

2

∫
dτ d3k

[
(f ′)2 + k2f 2 +

a′′

a
f 2

]
, (4.5)

where we have chosen units such that mPl = 1, while keeping only one polarization mode for
simplicity. Notice that primes (′) represent derivatives with respect to τ . The background
quantities z′′/z and a′′/a may be written as

z′′

z
= (aH)2

(
2− ε+

1

2
η − s

)(
1 +

1

2
η − s

)
+ aH

(
η′

2
− s′

)
, (4.6)

a′′

a
= (aH)2 (2− ε) , (4.7)

where η = ε′/εaH and s = c′s/csaH.
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4.1.2 Rapidly time varying backgrounds

To describe the origin of features, we may split each action into a zeroth order term, that
describes the evolution of fluctuations in a quasi-de Sitter spacetime, and an interaction term,
that contains the rapidly varying contributions of the background. To do so, we will assume
that the background is such that ε remains small (ε � 1) throughout the whole relevant
period where features are sourced. To model this behavior we will take ε to be of the form:

ε = ε0 + ∆ε, |∆ε| � ε0, (4.8)

where ε0 is (for any practical purpose) a constant, and ∆ε(τ) contains information about the
sudden variations of the background. One could consider that ε0 = −Ḣ0/H

2
0 , where H0 is

the slowly varying part of the Hubble expansion rate. In the same manner, η will have two
contributions:

η = η0 + ∆η, ∆η = − 1

ε0

τ∆ε′, (4.9)

where η0 = −ε̇0/H0ε0. Given that we are taking ε0 as a slowly varying function, we may
neglect η0 against ∆η and simply take

η = − 1

ε0

τ∆ε′. (4.10)

We will additionally assume that η remains small at all times:

|η| � 1. (4.11)

However, given that we are interested into understanding the effects of rapidly varying back-
grounds, further derivatives of η could be large, and the following hierarchy may be satisfied:

|η| � |τη′| � |τ 2η′′|. (4.12)

On the other hand, we may also consider rapid variations of the sound speed cs admitting
departures from the slowly varying value c0 = 1:

θ ≡ 1− c2
s � 1, |θ| � |τθ′| � |τ 2θ′′|. (4.13)

The hierarchies (4.12) and (4.13), together with eqs. (4.8) and (4.11), reflect what we mean
by having a rapid varying background near a quasi-de Sitter state.

The previous assumptions allow us to rewrite z′′/z and a′′/a in the following way

z′′

z
=

2

τ 2

(
1 +

1

2
δS(τ)

)
,

a′′

a
=

2

τ 2

(
1 +

1

2
δT (τ)

)
, (4.14)

where we have used τ ' −(aH)−1(1 + ε), and introduced the quantities δS(τ) and δT (τ) to
parametrize the rapid variations of the background:

δS(τ) = 3ε+
1

2
η − τ

2
η′ − 3s+ τs′, δT (τ) = 3ε. (4.15)
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By plugging these expressions back into the actions of eqs. (4.4) and (4.5) and treating the
rapidly varying parts as interaction terms, we may split the theory as:

S0
S =

1

2

∫
dτd3k

[
(u′)2 + k2u2 +

2

τ 2
u2

]
, Sint

S =
1

2

∫
dτd3k

[
δS(τ)

τ 2
u2

]
, (4.16)

S0
T =

1

2

∫
dτd3k

[
(f ′)2 + k2f 2 +

2

τ 2
f 2

]
, Sint

T =
1

2

∫
dτd3k

[
δT (τ)

τ 2
f 2

]
. (4.17)

Notice that eq. (4.12) implies a further hierarchy of the form

|δ| � |τδ′| � |τ 2δ′′|, (4.18)

where δ stands for both δS and δT . Given that a change in e-folds dN is related to a change
in conformal time by dN = −dτ/τ , the previous hierarchies simply tell us that δS and δT
vary rapidly over an e-fold:

|δ| �
∣∣∣ dδ
dN

∣∣∣� ∣∣∣ d2δ

dN2

∣∣∣. (4.19)

As we shall see, these are the rapidly varying functions that source the appearance of features
in the spectra.

4.1.3 In-in formalism

We may now use the standard in-in formalism (see [92] for a review), which provides a way
to compute the effects of the rapid time varying background on n-point correlation functions.
To simplify the discussion, let us focus our attention on the scalar sector of the theory (i.e.
the u fluctuations), and then come back to the case of tensor modes. Firstly, the complete
solution u(k, τ) can be written in terms of interaction picture fields uI(k, τ) as

u(k, τ) = U †(τ)uI(k, τ)U(τ), (4.20)

where U(τ) is the propagator, given by

U(τ) = T exp

[
−i
∫ τ

−∞+

dτ ′HI(τ
′)

]
.

Here T is the time ordering symbol, and∞+ = (1 + iε)∞ is the usual prescription to choose
the right vacuum in the infinite past. In addition, HI(τ) is the interaction Hamiltonian, given
by

HI = −δS(τ)

τ 2

1

2

∫
d3k u2

I . (4.21)

The interaction picture fields uI(k, τ) are given by free field solutions of the zeroth order
action (i.e. with δS = 0), written in terms of creation and annihilation operators a†k and ak
as:

uI(k, τ) ≡ akuk(τ) + a†−ku
∗
k(τ). (4.22)

The creation and annihilation operators satisfy the standard commutation relation
[
ak, a

†
k′

]
=

(2π)3δ(3)(k − k′), whereas the mode functions uk(τ) are given by mode solutions respecting
Bunch-Davies initial conditions:

uk(τ) =
1√
2k

(
1− i

kτ

)
e−ikτ . (4.23)
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Furthermore, the vacuum state |0〉 is defined to satisfy ak|0〉 = 0. By expanding the propa-
gator U(τ), we may compute corrections to the two point function as The power spectrum
PR(k, τ) of the primordial curvature perturbation R (evaluated at a given time τ) is related
to the two point function 〈u(k, τ)u(k′, τ)〉 as follows:

1

z2
〈u(k, τ)u(k′, τ)〉 ≡ 2π2

k3
δ(3)(k− k′)PR(k, τ). (4.24)

We are interested in the power spectrum of super horizon modes at the end of inflation PR(k),
which corresponds to the τ → 0 limit of PR(k, τ). By taking into account the splitting of the
theory into the zeroth order quasi-de Sitter part and the interaction part, we finally obtain

PR(k) = P0
S + ∆PS(k), P0

S(k) =
H2

0

8π2ε0

, (4.25)

where P0
S corresponds to the standard power spectrum for curvature perturbations in a quasi-

de Sitter space-time, and ∆PS(k) contains the deviations from scale invariance induced by
the rapidly varying background† [6]

∆S(k) ≡ ∆PS
P0
S

=
i

4k3

∫ ∞
−∞

dτ

[
θ′′′′

8
+
δ′′H
2τ 2
− δH
τ 4

]
e2ikτ , (4.26)

where θ is defined in (4.13) and δH is given by

δH(τ) = 3ε+
1

2
η − τ

2
η′. (4.27)

Notice that the integration in eq. (4.26) is performed over the whole real line (−∞,+∞),
which from now on will be omitted. To derive eq. (4.26) we did the following trick [76]: We
extended the τ -integration domain from (−∞, 0) to (−∞,+∞) by imposing that both θ and
δH are antisymmetric functions with respect to the interchange τ → −τ .

We may now repeat all of the previous steps to compute the way that features appear in
the tensor power spectrum. We find

PT (k) = P0
T + ∆PT (k), P0

T (k) =
H2

0

2π2
,

where ∆PT (k) is given by

∆T (k) ≡ ∆PT
P0
T

=
i

4k3

∫
dτ

[
δ′′T
2τ 2
− δT
τ 4

]
e2ikτ . (4.28)

Equations (4.26) and (4.28) are the basic equations that we will exploit to obtain the desired
correlation between the two sectors of the theory. Before deducing such a relation, let us
notice that the hierarchy of eq. (4.18) necessarily implies a hierarchy in Fourier space affecting
the spectra, that reads

|∆(k)| �
∣∣∣d∆(k)

d ln k

∣∣∣� ∣∣∣d2∆(k)

d ln k2

∣∣∣, (4.29)

where ∆(k) stands for both ∆S(k) and ∆T (k).
†Notice that in eq. (4.26) time derivatives may be interchanged by factors of −2ik. Therefore, the

appearance of four derivatives in θ might be deceiving, as the original expression [6] leading to eq. (4.26)
had no time derivatives acting on θ. Having time derivatives acting on both θ and δH in eq. (4.26) allows
one to have a single function of time being Fourier-transformed at the right hand side of the equation.
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4.1.4 Features from varying Hubble parameters

In this subsection we consider the case where cs = 1 for all times, so that δS = δH , and
any observable feature is the outcome of sudden variations of H(t). Firstly, because of the
hierarchy (4.18) satisfied by δT , eq. (4.28) may be simplified as:

∆T (k) =
i

8k3

∫
dτ
δ′′T
τ 2
e2ikτ . (4.30)

Furthermore, because of eq. (4.15), we see that eq. (4.30) may be rewritten in terms of η as:

∆T (k) = −3iε0

8k3

∫
dτ
η′

τ 3
e2ikτ . (4.31)

This expression may now be Fourier inverted, leading to a formal expression for η′ in terms
of ∆T (k) as

η′ =
1

3ε0

∫
dk

[
d3

d ln k3
∆T (k)

]
e−2ikτ . (4.32)

Next, we may use the hierarchy of eq. (4.18) satisfied by δS to rewrite eq. (4.26) as

∆S(k) = − i

16k3

∫
dτ

1

τ
η′′′e2ikτ , (4.33)

where we used the fact that δH ' −τη′/2. As a last step, we may insert the expression for
η′ in eq. (4.32) back into eq. (4.33), to obtain the main result of this work:

d2

d ln k2
∆T = 6ε0∆S. (4.34)

This equation offers the desired link between features in the tensor and scalar spectra. Notice
from eq. (4.31) that even though we have assumed that ε � 1, the piece ∆T (k) could in
principle be large. However, from eq. (4.34), we see that features in the tensor power
spectrum are highly suppressed with respect to those in the scalar spectrum. This is not
only due to the presence of ε0 [85], but also due to the double ln k-derivative acting on
∆T (k), on account of the hierarchy (4.29).

In the next subsection we extend this result to the more general case in which rapid
variations of the sound speed are also allowed. As we shall see, in this case too, tensor
features remain generically suppressed.

4.1.5 Including the effects of a varying sound speed

In the EFT of inflation [72, 73], the quadratic part of the action may exhibit a non-trivial
sound speed for the perturbations, which could also lead to the presence of features in the
scalar power spectrum [93, 94]. In general the evolution of cs(t) is independent of the evolution
of H. That means that if features are generated by the simultaneous rapid variation of both
cs and H, then the scalar and tensor power spectra would exhibit uncorrelated oscillatory
features. This is because PS would have features sourced by both cs and H while PT would
have features sourced by H alone. We would then have a relation of the form

∆S =
1

6ε0

d2

d ln k2
∆T + ∆c, (4.35)
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where ∆c represents the features sourced by variations of the sounds speed cs.

There are however intuitive reasons to expect that, at least in certain classes of models,
variations of cs and H happen in synchrony. An example of such a situation is the case where
the inflationary valley admits turns, which is typical in multifield inflation [93]. In these
scenarios, as the inflaton traverses a curve in the field space, there are instant deviations
from slow-roll produced by “centrifugal" effects. Furthermore, the existence of such turns
is responsible for a non-trivial sound speed [95]. The two quantities should thus be related
since they stem from the same source. Another situation where cs and H vary simultaneously
is in P (X,ϕ) models, where the kinetic term of the inflaton has a non-trivial structure. In
these cases a reduction of the rapidity of the vacuum expectation value of the inflaton would
inevitably induce a change in both cs and H.

To capture the aforementioned situations, in [79], a one parameter relation between the
Hubble slow-roll parameter η and the sound speed was proposed. This had the form

η = η0 −
α

2
τθ′, (4.36)

with α ∈ R and θ = 1 − c2
s. It was also shown to hold within several classes of models

including P (X,ϕ) and multifield models, with α admitting specific values for each case.

Using this fact, one may now relate θ to η in eq. (4.26) and follow the exact same steps
to obtain a generic relation between the scalar and tensor power spectra in the case where
both the sound speed and the Hubble radius experience sudden variations:

d2

d ln k2
∆T = 6ε0

α

1 + α
∆S, α 6= −1, (4.37)

and for the special case of α ' −1:

d

d ln k
∆T = −6

5
ε0∆S. (4.38)

We see that in these set-up’s too, deviations of the tensor power spectrum from scale invari-
ance are suppressed by the slow-roll parameter ε as well as a double and a single momentum
integral which smoothes out any acute variation of the scalar spectrum.

Before discussing quantitative features of these results, let us stress once more that the
simple forms of eqs. (4.34), (4.37) and (4.38) are leading order expressions based on the
assumption that any observable feature satisfy the following: i) it is sharp, in the sense that
any departure from scale invariance should take place within few e-folds, and ii) it doesn’t
disrupt inflation, that is, ε remains small through out the whole dynamics.

4.2 A quantitative discussion
We now discuss the results of the previous section in two interesting situations. First, we
consider the case in which resonant features are present throughout the whole spectra, and
second, the case of the low ` power deficit observed in the scalar power spectrum. For this
discussion, it will be useful to write concrete expressions relating features in the spectra
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and the rapidly varying contributions to the slow-roll parameters ∆ε and ∆η. By Fourier
inverting eq. (4.33) for the general case where the sound speed also contributes to features,
these are found to be given by [6]

∆η(τ) =
i

π

α

1 + α

∫
dk

[
d

dk

∆PS
P0
S

]
e2ikτ , ∆ε(τ) =

iε0

π

α

1 + α

∫
dk

[
1

k

∆PS
P0
S

]
e2ikτ , (4.39)

with ∆ε following from the relation ∆η = −τ∆ε′/ε0. Note that the coefficient α
1+α

in eq.
(4.39) is an O(1) number for any α so it’s specific value has no impact on the results. We
thus set it to one in what follows and work with eq. (4.34). The only case where it plays a
role is when α ' −1, in which the next to leading time derivative dominates in the RHS of
eq. (4.26) leading to the following expressions:

∆η(τ) = − i

5π

∫
dk k

[
d2

dk2

∆PS
P0
S

]
e2ikτ , ∆ε(τ) = −iε0

5π

∫
dk

[
d

dk

∆PS
P0
S

]
e2ikτ . (4.40)

4.2.1 Resonant features

This type of scale dependence is relevant in models of inflation where the potential is periodic
or semi-periodic, such as axion monodromy inflation [96], or models like Natural Inflation
[97]. Inflationary scenarios involving axions usually require super-Planckian field range, and
hence, they are good candidates for the production of primordial gravitational waves [98, 99].

To acquire an idea of the possible impact of resonant features on the tensor power spec-
trum, we model the resonant part of the scalar power spectrum as

∆S(k) = A cos (Ω log(k/k∗) + φ) , (4.41)

where A parametrizes the amplitude of the feature, while Ω and φ denote the frequency
and the phase of the oscillation, respectively. To be concrete, we will consider the following
values A = 0.028, Ω = 30 and φ/2π = 0.634, which were found to constitute the best fit in
the analysis of resonant features by Planck [9]. In addition, we set k∗ = 0.05 [Mpc]−1 as a
reference scale.

Case for α 6= −1

Using the parametrization (4.41) as a input, we numerically obtain the shape of the tensor
spectrum feature via eq. (4.34), while the slow-roll parameters are reconstructed from eq.
(4.39). The results are shown in the plots of figure 4.1. There we see that features in the
tensor power spectrum are present, albeit with an amplitude of ∆T ∼ 10−6 making them
observationally irrelevant. This is a complementary argument in support of the claim that
tensor features stemming from axionic potentials should be suppressed due to the smallness
of the decay constant of the axion [100].

Case for α ' −1

Next, we consider the special case of α ' −1 for the resonance features. We numerically
solve eqs. (4.38) and (4.40) and plot the results in figure 4.2. As can be seen, even though
there is an order of magnitude enhancement with respect to the general case, the amplitude
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of the deviation from a scale invariant spectrum still remains extremely small. Furthermore,
in this case η can reach values up to η ∼ 0.8. This does not invalidate the hierarchy (4.12),
as to go from eq. (4.6) to eq. (4.14) one really requires η/2 to be much smaller than 1.

4.2.2 Predictions for the low ` tensor power spectrum

The low ` multipole region is the main observational window into CMB polarization since it
is not contaminated by lensing effects. In addition, it is where the low ` deficit takes place in
the scalar power spectrum [19, 47–53]. We focus in the ` < 50 region, roughly corresponding
to 0.0002 . k . 0.004 [Mpc]−1, which is the band that CMB polarization observatories focus
on.

In order to get a quantitative look into the tensor power spectrum we model the ` ∼ 20
dip in the angular power spectrum as a sharp Gaussian:

∆S(k) = −Ae−λ(ln(k/k∗))2 , (4.42)

where k∗ determines the location of the feature. We set A = 0.15, λ = 15 and k∗ = 0.002
[Mpc]−1, which are chosen to have a rough fit with the observed power deficit. In addition,
we choose ε0 = 0.0068 [9].

Case with α 6= −1

We solve eqs. (4.34) and (4.39) with the parametrization (4.42) as an input, with the results
shown in the plots of figure 4.3. We see that for a realistic amplitude A the tensor power
spectrum exhibits a feature of amplitude ∆T ∼ 10−9.

Case with α ' −1

In the special case of α ' −1, we see that the tensor spectrum and the slow-roll parameters,
now given by eqs. (4.38) and (4.40) respectively, exhibit a feature which is enhanced by
an order of magnitude compared to the previous case. However, as seen in figure 4.4, the
amplitude still remains extremely small.
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4.3 Figures
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Figure 4.1: The first two slow-roll parameters ∆η and ∆ε (left panels) using eq. (4.39) and
∆PS
P 0
S

(k), ∆PT
P 0
T

(k) (right panels) related by eq. (4.34), in the case of the resonant feature (4.41).
We have used A = 0.028, Ω = 30, φ/2π = 0.634, k∗ = 0.05[Mpc]−1 and ε0 = 0.0068.
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Figure 4.2: The first two slow-roll parameters ∆η and ∆ε (left panels) using eq. (4.40) and
∆PS
P 0
S

(k), ∆PT
P 0
T

(k) (right panels) related by eq. (4.38), in the case of the resonant feature (4.41).
We have used A = 0.028, Ω = 30, φ/2π = 0.634, k∗ = 0.05[Mpc]−1 and ε0 = 0.0068.
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Figure 4.3: The first two slow-roll parameters ∆η and ∆ε (left panels) using eq. (4.39) and
∆PS
P 0
S

(k), ∆PT
P 0
T

(k) (right panels) related by eq. (4.34), in the case of the Gaussian feature (4.42).
We have used A = −0.15, λ = 15, k∗ = 0.002[Mpc]−1 and ε0 = 0.0068.
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Figure 4.4: Plot of the first two slow-roll parameters ∆η and ∆ε (left panels) using eq. (4.40)
and ∆PS

P 0
S

(k), ∆PT
P 0
T

(k) (right panels) related by eq. (4.38), in the case of the Gaussian feature
(4.42). We have used A = −0.15, λ = 15, k∗ = 0.002[Mpc]−1 and ε0 = 0.0068.
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Chapter 5

Consistency Relations

In the previous chapter, it was addressed how features on the B-modes power spectrum are
related to features scalar power spectrum, and it was discussed how departures from these
relations might indicate other mechanisms or other degrees of freedom. However, their re-
alization is subordinated to the detection of the B-modes signal, and it is well known that
there is no guarantee of being detected since it depends on the energy scale of inflation, our
experimental sensitivity to polarization and our knowledge on galactic foregrounds. There-
fore, it is natural to conceive other alternative tests of primordial physics. One of them is the
study of the non-linear regime of perturbations, exciting diagnostics of inflationary physics
can be constructed from it, and they might shed new light about different and degrees of
freedom during inflation; these ideas are not idle theorizing but are predictive and subject
to meaningful experimental test. Cosmological observations are providing several surprising
pieces from the cosmological puzzles and new challenges.

It is by now well understood that Maldacena’s consistency relation fNL = 5(1−ns)/12 [28],
linking together the amount of local (squeezed) non-Gaussianity fNL with the spectral index
ns − 1, and valid for attractor models of single field inflation [101–108], cannot be directly
observed. A correct account of the observable amount of primordial local non-Gaussianity
yields [4, 5, 109–111]

f obs
NL = 0 +O(k2

L/k
2
S), (5.1)

where O(k2
L/k

2
S) stands for non-Gaussianity produced by non-primordial phenomena such as

gravitational lensing and redshift perturbations (the so called projection effects [112, 113]).
This result may be understood as coming from a cancellation between the primordial value
predicted in co-moving gauge 5(1− ns)/12, and a correction −5(1− ns)/12 +O(kL/kS) that
arises after considering a change of coordinates rendering gauge invariant observables. This
coordinate change corresponds to a transformation from co-moving coordinates to the so
called conformal Fermi coordinates [3, 5].

It appears to be entirely reasonable that the cancellation leading to (5.1) is only effective
when the prediction of primordial non-Gaussianity corresponds to fNL = 5(1− ns)/12. This
is because Maldacena’s consistency relation itself may be thought of as the consequence of
a space-time reparametrization linking short- and long-wavelength curvature perturbations
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realized with the help of a symmetry of the system under a simultaneous spatial dilation
and a field reparametrization [101]. Thus, any measurement of local non-Gaussianity would
directly rule out single field models of slow-roll inflation [7, 8, 39, 40, 114] (attractor models
of inflation), but it would not rule out other classes of inflation. In particular, one would be
seriously motivated to consider more exotic models of inflation such as curvaton scenarios
[115], multi-field models [116], or non-attractor models of inflation (that is, models for which
the background depends on the initial conditions [117–121]). For instance, in the case of
ultra slow-roll inflation [117, 122], one finds fNL = 5/2, from where it seems unlikely that a
cancellation could happen.

In this chapter, we show that there is a slightly more general class of non-Gaussian con-
sistency relations, of which Maldacena’s relation is an example. This generalization emerges
from a space-time reparametrization (linking short- and long-wavelength curvature pertur-
bations) that is realized with the help of a more general symmetry. This time, the symmetry
transformation involves both a time dilation and a spatial dilation. We will show that this
symmetry is approximate in the case of ε� 1 (where ε is the standard first slow-roll param-
eter), but exact in the case of ultra slow-roll (independently of the value of ε). In a previous
work [121] was already investigated the derivation of non-Gaussian consistency relations valid
for non-attractor models using symmetry arguments. The difference between the present
work and ref. [121] is that the symmetry used here involves a space-time reparametriza-
tion affecting the action of curvature perturbations, whereas the symmetry explored in [121]
corresponds to a symmetry of the full action driving inflation.∗

The existence of a more general consistency relation (coming from space-time reparametriza-
tions) suggests that the vanishing of eq. (5.1) may be effective under more general conditions,
valid beyond the attractor single field models of inflation. In particular, one could expect
(5.1) to be valid in the extreme case of ultra slow-roll inflation. We will argue that this is
indeed the case in a companion article [123], where the use of conformal Fermi coordinates
is considered for the case of non-attractor models.

We have organized this chapter as follows: In Section 5.1 we offer a review of the derivation
of the standard consistency relation for single field slow-roll inflation (attractor inflation). In
Section 5.2 we derive the generalized version of the consistency relation. We do this first for
the simple case ε → 0, and then extend this result to the more subtle case ε 6= 0, where we
pay some attention to the particular case of ultra slow-roll inflation. Then, in Section 5.3
we briefly discuss our results, and ask how they could be modified by deviations from the
canonical models of inflation for which our results are strictly valid. Finally, in Section ??
we present our conclusions.

5.1 Review of the Consistency Relation Derivation

Let us start by reviewing the derivation of the standard consistency relation for single field
slow-roll attractor inflation, in which the curvature perturbation freezes on superhorizon
scales. We will closely follow the discussion of ref. [104], (see also the derivations in refs.

∗While completing this work we have become aware that Finelli et al. [35] are finishing an article on the
same subject, possibly arriving to similar conclusions.

83



[101, 105]), but with a perspective that will show to be useful for generalizing the relation
later on.

The metric line element describing a perturbed FRW spacetime, in co-moving gauge may
be written as:

ds2 = a2(τ)

[
−N2dτ 2 + 2Nidτdx

i + e2ζdx2

]
, (5.1)

where a is the usual scale factor. We have adopted conformal time τ , which is related to
cosmological time t via dτ = dt/a. The lapse δN = N − 1 and shift Ni functions respect
constraint equations that are found by varying the action of the perturbations. The linear
solutions are given by:†

δN =
1

H∂0ζ, Ni = −∂i
ζ

H + ε
∂i
∂2
∂0ζ. (5.2)

After replacing these solutions back into the action, one obtains a cubic action describing
a single scalar degree of freedom ζ. Now, let us consider the following transformations of
coordinates and fields:

x = egx′, (5.3)
τ = τ ′, (5.4)
ζ = ζ ′ + ∆ζ, (5.5)

where g and ∆ζ are functions of τ ′ only. We would like to know how these relations affect
the form of the ζ-action for a certain choice of g and ∆ζ. Given that g and ∆ζ are taken as
perturbations, this would require us to consider the full initial action, Einstein-Hilbert plus
scalar field, including the background contributions (this is because (5.3) implies that some
background terms will be promoted to perturbations). Instead of examining this change
by inserting (5.3)-(5.5) in the full action explicitly, we may analyze the way in which the
metric (5.1) is affected. This will allow us to infer how the action itself is affected by the
transformation. To proceed, first notice that (5.3) and (5.4) imply

dxi = egdx′i + eg∂0gx
′idτ ′, (5.6)

dτ = dτ ′. (5.7)

In second place, recall that N and Ni were already fixed in terms of ζ, and so they must
change according to (5.5). This is because we are examining how the transformations alter
the form of the ζ-action after N and Ni were solved. One finds:

δN = δN ′ +
1

H∂0∆ζ, (5.8)

Ni = N ′i + ∂i∆ψ, (5.9)

where ∆ψ is such that

∂2∆ψ = −∂2 ∆ζ

H + ε∂0∆ζ. (5.10)

†In this work we assume regular Bunch-Davies initial conditions. For a discussion on the effect of consid-
ering different initial states, see [124].
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Given that we are choosing ∆ζ to be x′-independent, ∆ψ satisfies the simpler equation
∂2∆ψ = ε∂0∆ζ. This equation is solved by ∆ψ = 1

6
xixiε∂0∆ζ, and so we may write:

∂i∆ψ =
1

3
x′iε∂0∆ζ. (5.11)

Then, replacing all of these results back into the metric (5.1), we obtain:

ds2 = a2(τ ′)

[
− e2δN ′+ 2

H∂0∆ζdτ ′2

+2
(
N ′i + ∂0gx

′
i +

1

3
x′iε∂0∆ζ

)
dτ ′dx′i + e2ζ′+2∆ζ+2gdx′2

]
. (5.12)

It is important to keep the perturbations appearing in the term proportional to dx′2 up to
third order at least. In this case, we have kept ∆ζ and g exactly as they appear from the
definition of the transformations (5.3)-(5.5). On the other hand, in those terms proportional
to dτ ′2 and dτ ′dx′i we must keep the perturbations up to first order at least. The reason for
doing this is that we want to understand how (5.3)-(5.5) change the form of the ζ-action up
to third order. Given that the cubic action depends on the linear contributions to δN and
Ni, we do not need to worry about contributions coming from ∆ζ and g beyond linear order
in terms proportional to dτ ′2 and dτ ′dx′i.

Next, notice that if we choose both g and ∆ζ constant, and demand them to satisfy
∆ζ = −g we end up with

ds2 = a2(τ ′)

[
−N ′2dτ ′2 + 2N ′idτ

′dx′i + e2ζ′dx′2
]
. (5.13)

This metric has exactly the same form of (5.1), and therefore the action for ζ ′, obtained by
using this metric, has the same form as the one for ζ. This in turn, implies that both ζ and
ζ ′ are solutions of the same system of equations of motion. Moreover, these solutions are
connected through the relation:

ζ(τ, x) = ζ ′(τ ′, x′)− g. (5.14)

Since τ = τ ′ and x = egx′, we may write instead:

ζ(τ, x) = ζ ′(τ, e−gx)− g. (5.15)

This relation may be used to derive the squeezed limit of the bispectrum in terms of the
power spectrum of the perturbations. First, let us consider a splitting of ζ into short- and
long-wavelength contributions of the form:

ζ = ζS + ζL. (5.16)

Here, ζL is such that it contains modes that have exited the horizon. For all purposes, ζL
is x-independent. In addition, if we are interested in attractor models of single field inflation,
ζL is also τ -independent. Then, if in eq. (5.15) we choose g = −ζL (or, equivalently ∆ζ = ζL),
we end up with

ζS(τ, x) = ζ ′(τ, eζLx). (5.17)
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In other words, the long wavelength mode of ζ has been absorbed via a coordinate transfor-
mation.‡ Relation (5.17) tells us that ζS(τ, x) may be expressed in terms of a fluctuation ζ ′
that is a solution of the same system of equations satisfied by ζ, but with eζLx instead of
x in the spatial argument. In other words, we have non-linear information about how the
long-wavelength mode ζL modulates the short wavelength mode ζS. Next, let us consider the
2-point correlation function 〈ζS(τ,x)ζS(τ,y)〉 ≡ 〈ζSζS〉(τ, |x − y|). Equation (5.17) tells us
that

〈ζSζS〉(τ, |x− y|) = 〈ζ ′ζ ′〉(τ, eζL|x− y|). (5.18)

Notice that 〈ζ ′ζ ′〉(τ, |x − y|) is nothing but the usual 2-point correlation function of the
curvature perturbation in co-moving gauge (because ζ ′ is a solution of the full system).
Expanding the previous relation in powers of ζL, we obtain

〈ζSζS〉(τ, |x− y|) = 〈ζ ′ζ ′〉(τ, |x− y|) + ζL
d

d ln |x− y|〈ζ
′ζ ′〉(τ, |x− y|) + · · · . (5.19)

Then, by writing the fields in Fourier space as

ζ(x) =
1

(2π)3

∫
d3kζ(k)eik·x, (5.20)

we end up with

〈ζSζS〉(k1,k2) = 〈ζ ′ζ ′〉(k1,k2)− ζL(kL) [ns(kS, τ)− 1]Pζ(τ, kS), (5.21)

where we have defined kL = k1 + k2 and kS = (k1 − k2)/2. In the previous expressions, the
power spectrum Pζ(τ, k) and its spectral index ns(k)− 1 are defined as

Pζ(τ, k) =

∫
d3re−ik·r 〈ζζ〉 (τ, r), (5.22)

ns(k, τ)− 1 =
∂

∂ ln k
ln(k3Pζ(τ, k)), (5.23)

with r ≡ |x− y|.

The first term at the rhs of eq. (5.21) is independent of ζL, so by correlating eq. (5.21)
with ζL(k3), we obtain

〈ζL(k3)〈ζSζS〉(k1,k2)〉 = −〈ζL(k3)ζL(kL)〉 [ns(kS, τ)− 1]Pζ(τ, kS). (5.24)

The squeezed limit of the bispectrum appears as the formal limit:

lim
k3→0

(2π)3δ(k1 + k2 + k3)Bζ(k1,k2,k3) = 〈ζL(k3)〈ζSζS〉(k1,k2)〉. (5.25)

Thus, putting together eqs. (5.24) and (5.25) we see that the squeezed limit acquires the
form:

Bζ(k1,k2,k3) = − [ns(kS, τ)− 1]Pζ(kS)Pζ(kL). (5.26)
‡This reveals that ζ corresponds to an adiabatic mode [10, 32], and that the evolution of the short

wavelength contribution ζS(τ, x) may be thought of as that of a perturbation ζ ′ on a new redefined background
(obtained by the absorption of ζL).
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This corresponds to Maldacena’s well known consistency relation. It was obtained with
the help of transformation (5.17) linking short- and long-wavelength co-moving curvature
perturbations ζS and ζL through a “complete” curvature perturbation ζ ′ (that is, a curvature
perturbation for which there has been no separation of scales). In other words, (5.26) gives
us information on how the long wavelength mode ζL modulates the short wavelength mode
ζS.

5.2 A Generalized Consistency Relation
We would like to count with a consistency relation valid for cases in which the long mode ζL
is time dependent, that is, when the curvature perturbation evolves on super-horizon scales.
For simplicity, let us first attempt this in the formal limit ε → 0. We will consider the case
ε 6= 0 in Section 5.2.3.

5.2.1 Case with ε→ 0

If ε = 0, the Hubble parameter H = ȧ/a is a constant, and the scale factor a is given by

a(τ) = − 1

Hτ
, (5.1)

Then, let us consider the following transformations:

x = egx′, (5.2)
τ = efτ ′, (5.3)
ζ = ζ ′ + ∆ζ. (5.4)

Here the quantities g, f and ∆ζ are all functions of τ ′. For concreteness, let us assume that
τ = τ ′ at a given reference time τ∗. This implies that f = 0 at τ ′ = τ∗. To make this explicit,
one could write f as f(τ ′) =

∫ τ ′
τ∗
dτh (this will not be important though). This choice is

completely arbitrary, and one could certainly fix initial conditions for f and g in other ways,
without modifying the main conclusions of this section. The change of coordinates implies:

dxi = egdx′i + eg∂0gx
′idτ ′, (5.5)

dτ = efdτ ′(1 + τ ′∂0f). (5.6)

Note that now ∂0 ≡ ∂τ ′ . Replacing these relations back into the metric (5.1), we find:

ds2 = a2(τ ′)

[
− e2δN ′−2τ ′∂0∆ζ+2τ ′∂0fdτ ′2

+2
(
N ′i + ∂0gx

′
i

)
dτ ′dx′i + e2ζ′+2∆ζ+2g−2fdx′2

]
. (5.7)

As before, let us recall that the perturbations appearing together with δN and Ni may be
treated up to linear order. On the other hand, those appearing together with ζ ′ must be
treated up to cubic order. In this case, we are treating them exactly. Now, notice that if we
demand that g is constant, and that

∆ζ + g − f = 0, (5.8)
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the metric reduces back to (5.13). Then, we conclude that the ζ-action is invariant under
the transformations (5.2)-(5.4). Therefore, we have two solutions ζ and ζ ′ related through
the following relation

ζ(τ, x) = ζ ′(e−fτ, e−gx)− g + f. (5.9)

In order to deduce the squeezed limit of the bispectrum in this class of models, let us now
again consider the splitting

ζ = ζS + ζL. (5.10)

Recall that this time we are assuming that ζL depends on time. As we did with (5.15), let
us choose f and g in such a way that ∆ζ = ζL:

− g + f = ζL(τ). (5.11)

Given that f = 0 for τ = τ∗, the previous relation sets the constant g as g = −ζL(τ∗). Then
we find that f is given by

f = ζL(τ)− ζL(τ∗). (5.12)

This leads to a relation between ζS and ζ ′ given by:

ζS(τ, x) = ζ ′(e−[ζL(τ)−ζL(τ∗)]τ, eζL(τ∗)x). (5.13)

If ζL(τ) does not evolve, then ζL(τ) = ζL(τ∗), and we recover eq. (5.17). We may now
compute the power spectrum of ζS. Up to first order in ζL, it is direct to find in Fourier space

〈ζSζS〉(k1,k2) = 〈ζ ′ζ ′〉(k1,k2)− [ζL(kL)− ζ∗L(kL)]
d

d ln τ
Pζ(τ, kS)

−ζ∗L(kL) [ns(kS, τ)− 1]Pζ(τ, kS). (5.14)

Correlating this expression with ζL(k3), we end up with

〈ζL(k3)〈ζSζS〉(k1,k2)〉 = −〈ζL(k3) [ζL(kL)− ζ∗L(kL)]〉 d

d ln τ
Pζ(τ, kS)

−〈ζL(k3)ζ∗L(kL)〉 [ns(kS, τ)− 1]Pζ(τ, kS). (5.15)

This expression involves the correlation of ζL(k3) evaluated at a given time τ , with ζ∗L(k3)
which is evaluated at the reference time τ = τ∗. When superhorizon modes freeze, the first line
cancels and there is no difference between ζ∗L(k3) and ζL(k3), so we end up with Maldacena’s
standard attractor result. However, if ζL grows on superhorizon scales fast enough for ζ∗L to
become subdominant, and for the first line to dominate the second one, we end up with

Bζ(k1,k2,k3) = −Pζ(kL)
d

d ln τ
Pζ(kS). (5.16)

This is one of our main results. Equation (5.16) tells us that under a substantial super-horizon
growth, the squeezed limit is dominated by a time derivative of the power spectrum.

5.2.2 Non-Gaussianity in Ultra Slow-roll Inflation

Before considering the more general case in which ε 6= 0, let us briefly analyze (5.16) in the
context of ultra slow-roll inflation, where the inflaton field moves over a constant potential
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and, as a consequence, the curvature perturbation evolves exponentially after horizon cross-
ing. The salient feature of this model is the rapid decay of ε, which is found to be given
by

ε ∝ 1

H2a6
. (5.17)

Although ε→ 0 very fast, the value of η is found to be large:

η = −6
(

1− ε

3

)
. (5.18)

The linear equation of motion respected by ζ on super-horizon scales is given by

d

dt

(
εa3ζ̇

)
= 0. (5.19)

Then, neglecting terms subleading in ε, one finds that ζ ∝ τ−3. In other words, the power
spectrum on superhorizon scales behaves as:

Pζ(k) ∝ τ−6. (5.20)

Using this result back into (5.16), we find that the bispectrum in ultra slow-roll is given by

Bζ(k1,k2,k3) = 6Pζ(kL)Pζ(kS), (5.21)

which coincides with the well known expression previously found in the literature [118, 121].

One should be careful with the result (5.21), even though it coincides with the known
squeezed limit for ultra slow-roll inflation. Recall that we are judging the effect of the
transformations (5.2)-(5.4) on the ζ-action from their effect on the metric. This implies that
we are neglecting terms proportional to ε in the metric that could, according to eq. (5.18),
have a sizable impact on the action due to time derivatives of ε. Strictly speaking, at this
point in our derivation the result of eq. (5.16) is valid as long as ε� 1 together with η � 1.
But under these conditions it is hard (or impossible) to have a sizable super-horizon growth
of ζ that could lead to an interesting situation where eq. (5.16) could be used. To understand
this issue more closely, let us analyze the case ε 6= 0 in what follows.

5.2.3 Case with ε 6= 0

Let us now analyze the more general case in which ε 6= 0. Here, we may consider the following
transformation of coordinates and fields:

x = egx′, (5.22)
a(τ) = e−fa(τ ′), (5.23)
ζ = ζ ′ + ∆ζ. (5.24)

Notice that we are defining the time reparametrization in terms of the scale factor a in order
to keep the transformation in the spatial part of the metric (which involves a(τ)) valid to
all orders in the perturbation f . The effect of this transformation on the rest of the metric
may be computed up to linear order. With this in mind, it is possible to derive that the time
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reparametrization to linear order is given by τ = τ ′ − 1
Hf , where H = a−1∂0a. Then, the

transformations lead to:

dxi = egdx′i + eg∂0gx
′idτ ′, (5.25)

dτ = dτ ′ +
(

(1− ε)f − 1

H∂0f
)
dτ ′, (5.26)

where we used ∂0H = (1− ε)H2. Plugging these transformations back into the action (5.1),
one finds:

ds2 = a2(τ ′)

[
− e2δN ′+2 1

H∂0∆ζ−2εf−2 1
H∂0fdτ ′2

+2
(
N ′i + ∂0gx

′
i +

1

3
x′iε∂0∆ζ

)
dτ ′dx′i + e2ζ′+2∆ζ+2g−2fdx′2

]
. (5.27)

Now, consider the following conditions on g and f :

∂0∆ζ − εHf − ∂0f = 0, (5.28)
∆ζ + g − f = 0. (5.29)

It is direct to see that these two equations imply:

∂0g = −εHf. (5.30)

Then, the metric becomes

ds2 = a2(τ ′)

[
− e2δN ′dτ ′2 + 2

(
N ′i + ∆Ni

)
dτ ′dx′i + e2ζ′dx′2

]
, (5.31)

where we have defined ∆Ni as

∆Ni = −εHfx′i +
1

3
x′iε(εHf + ∂0f), (5.32)

and where f is such that it is a solution of eq. (5.28). Now, it is clear from this result that
the ζ-action will not be invariant under the present transformation unless either ∆Ni = 0,
or ∆Ni leads to the appearance of a total derivative. This second option will not be true in
general, and ∆Ni will imply terms in the action that are proportional to ε and η.

At this point, the metric of eq. (5.31) differs from the original metric of eq. (5.1) by the
fact that ∆Ni does not vanish. The difference is of order ε, as expected from the analysis of
Section 5.2.1. In what follows, let us explore what would be required to satisfy the condition
∆Ni = 0, independently of the size of ε (that is, we will not assume that ε is small). First,
it is direct to see that ∆Ni = 0 is equivalent to

∂0(a−2H−1f) = 0. (5.33)

This implies that f must have the following dependence on time:

f = Ca2H, (5.34)
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where C is an integration constant that may be chosen conveniently. Note that here we
cannot adopt the condition f = 0 at a given time τ = τ∗. This is because of the way in which
f is introduced in eq. (5.23). Now, according to eq. (5.28), the solution for f given by eq.
(5.34) must be compatible with ∆ζ. In other words, it must be possible to choose C in such
a way that

∂0∆ζ = 3CH2a4, (5.35)

(where we have used H = Ha). This corresponds to a strong restriction on ∆ζ, which has
not been chosen yet. As in the previous subsections, we are interested in identifying ∆ζ as:

∆ζ = ζL. (5.36)

Inserting this back into (5.35), we see that ∆Ni = 0 is only possible if (remember that in eq.
(5.35) ∂0 ≡ ∂τ )

ζ̇L = 3CH2a3. (5.37)

Of course, this behavior is not guaranteed in general. However, in the particular case of ultra
slow-roll inflation one has ε ∝ 1/H2a6, and so we may rewrite (5.37) as

ζ̇L ∝
1

εa3
, (5.38)

which is nothing but (5.19). As a consequence, we see that in ultra slow-roll inflation one has
∆Ni = 0 independently of the value of ε. Therefore, we have shown that the transformations
(5.22)-(5.24) with f , g and ∆ζ chosen as in (5.34), (5.30), and (5.36) respectively, correspond
to an exact symmetry of the action for curvature perturbations in ultra slow-roll inflation
(independent of the size of ε). This should not come as a surprise. Similar to exponential
inflation, ultra slow-roll inflation never ends, and so the size of ε (which dilutes as ∼ a−6)
cannot be regarded as a fundamental quantity describing the state of inflation.

The final step is to deduce an expression for ζS. This is found to be

ζS(τ, x) = ζ ′(e−ζL−gτ, e−gx), (5.39)

with g the solution of eq. (5.30). It is straightforward to see that g will contribute terms
that are subleading in ε, and so we recover the expression (5.16) found in Section 5.2.1. This
in turn, leads to the well known result (5.21).

5.3 Discussion
Now that we know that (5.16) is valid for ultra slow-roll inflation, but not for general situa-
tions with ε 6= 0, we would like to anticipate how this result could change once we consider
models that depart from the exact ultra slow-roll behavior. First, if the action describing
single field inflation is canonical, then all of the couplings appearing in the ζ-action will
consist of time derivatives of H, such as ε and η. Given that the action remains invariant
under the set of transformations (5.22)-(5.24) in the case of ultra slow-roll, then models with
a background close to ultra slow-roll have departures at most proportional to

6 + η.
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However, in order to have a small spectral index in models close to ultra slow-roll it is
necessary to have |6 + η| � 1, and so it would not be possible to have large departures from
(5.16) unless the spectral index becomes incompatible with observations. Another possibility
is to consider non-canonical models of inflation. In this class of models one has an additional
parameter, the sound speed cs, which is not directly related to variations of H. This time,
the action for ζ could have terms (parametrizing departures from the ultra slow-roll case)
proportional to: (

1− 1

c2
s

)
η.

This type of departure would not be suppressed for small values of cs, and one could expect
sizable modifications to the result shown in (5.21). In fact, a direct computation shows that
the modification to (5.21) due to cs is given by [120]

Bζ(k1,k2,k3) ' 6

c2
s

Pζ(kL)Pζ(kS). (5.1)

This result has also been obtained through symmetry arguments [121] pertaining the structure
of the Lagrangian of P (X)-theories of inflation [125], but not through symmetry arguments
related to space-time parametrizations, as considered here. Given that cs appears as a con-
sequence of non-gravitational interactions, it seems reasonable to assume that a space-time
reparametrization leading to (5.1) does not exist.
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Chapter 6

Conformal Fermi Coordinates and
vanishing fNL

The theory of cosmological perturbations and the current treatment for observations assumes
an external observer with unlimited access to all places and at all times with complete
knowledge of the entire ensemble of modes of different fields and their properties; under
this treatment, this type of observers are outside the experiment, or outside of our universe.
Nevertheless, that is not our case. Instead, there is a subtle difference; we are observers
confined in a 4-dimensional spacetime influenced and subordinated by its dynamics. Under
this perspective, we are observers inside the experiment, which at the same time is merely one
realization of other similar alternatives, therefore, with limited access to the entire ensemble
of fields modes.

As a matter of fact, we are unable to have full access to the entire universe, restrict-
ing our knowledge and information available to just a causally connected small region of
space from which we extract local cosmological data. The way in which we formally should
deal with the influence of spacetime dynamics on us is by using the Conformal Fermi Co-
ordinates(CFC). First introduced [3], in the context of an observer trajectory near strong
gravitational fields(Fermi coordinates), but ultimately incorporated and revived in a cosmo-
logical context [4, 5] adapted to a conformal scenario for the study of the power spectrum
and bispectrum for primordial curvature fluctuationsof our universe.

This section is organized as follows, first, we will introduce the theoretical framework this
chapter relies on, such as, defining some tools such as the notion of Fermi coordinates
for a generic manifold, and the Fermi normal coordinates(FNC), geodesic congruence,
and the flatness theorem. Then we will jump in an intermediate step which are the Fermi
coordinates applied to an FRW universe and finally, dive into the conformal Fermi coordinates
and their predictions explored prediction so far.

Finally, directed the readers, this is the most technical technical chapter of this thesis. I
decided keeping all the content related to the CFC on this chapter and not sending to an
appendix, because at the bottom of these tools concepts and their mathematical development
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are taken by the hands, therefore, under my judgment they are inseparable in the expository
frame of this thesis.

6.1 Fermi Normal Coordinates

In the mathematical frame of Riemannian geometry, the Fermi coordinates are local coor-
dinates that are adapted to a geodesic timelike. Formally, suppose M is an 4-dimensional
Riemannian manifold, γ a geodesic that lives in M, and P any point along γ, then there
exist local coordinates (t, x1, x2, x3) around P such that:

• For small t, (t, 0, 0, 0) represents a geodesics near P .

• On γ the 3-metric tensor is the Euclidean metric δij.

• On γ all the Christoffel symbols vanish.

Such coordinates are called Fermi coordinates after their introduction and use in work related
to particle collision made by the Italian physicist Enrico Fermi. The above properties are
only valid on the geodesic. For example, if all Christoffel symbols vanish near P , then
the manifold is flat near P . It is said that we can introduce local inertial coordinates/Fermi
normal coordinates for any timelike geodesic. Physically, Fermi normal coordinates represent
the frame of reference of an inertial observer(as observer in our universe) whose metric (along
its worldline) looks like a diagonal matrix ηµν = diag(−1,+1,+1,+1). This requires that
three coordinates be spacelike and one timelike. Also, this coordinates can be extended for
lightlike geodesics, but with other treatments.

Uµ

�

P

Q

s

vi

�

Figure 6.1: Geometrical construction of Fermi coordinates
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For a given point in spacetime, it is always possible to find a coordinate system xα
′ such

that:
gα′β′(P ) = ηα′β′(P ), Γα

′

β′γ′(P ) = 0 (6.1)

where ηµν = diag(−1, 1, 1, 1) is the Minkowski metric. Such a coordinate system will be called
Lorentzian inertial frame at P . Also, we note that is not possible to set all the derivatives of
the connection to zero when the spacetime is curved, the physical interpretation of the local
flatness theorem is that a free-falling observer see no effect of gravity in their immediate
vicinity, as required by the Einstein equivalence’s principle. For concreteness we will take the
geodesic to be timelike and we will adopt a geometric proof of the theorem We will show that
we can introduce coordinates xµ = (tP , x

i) such that near γ, the metric can be expressed as

g00(x) = −1−R0i0j(tP ,xp(tP ))xixj, (6.2)

g0i(x) = −2

3
R0jik(tP ,xp(tP ))xjxk, (6.3)

gij(x) = δij −
1

3
Rikjl(tP ,xp(tP ))xkxl. (6.4)

These coordinates are known as Fermi Normal Coordinates, and tP is the proper time
along the geodesic γ, on which the spatial coordiante xi are all zero. The components of
Riemann tensor are evaluated on γ, and they depend on tP only . It is obvious that Eq.
(6.2) enforces gµν = ηµν and Γµαβ|γ = 0. Then the local-flatness theorem holds everywhere on
the geodesic.

6.1.1 FNC Geometric Construction

We will use xα = (t, xa) to denote the Fermi normal coordinates, and xα
′ will refer to

an arbitrary coordinate system. We imagine we are given a spacetime with a metric gα′β′
expressed in these coordinates. We will consider a geodesic γ in this spacetime. Its tangent
vector Uα′ and we let t be the proper time along γ. On this geodesic we select a point O at
which we set t = 0 . At this point we construct an orthonormal basis (eµ)α

′ (the subscript µ
serves to label the 4-basis vectors), and we identify (et)

α′ with the tangent vector Uα′ at O.
From this we construct a basis everywhere on γ by parallel transporting (eµ)α

′ away from O.
Our basis therefore satisfies

(eµ)α
′

;β′U
β′ = 0 (et)

α′ = Uα′ , (6.5)

as well as
gα′β′(eµ)α

′
(eν)

β′ = ηµν , (6.6)

everywhere on γ. Here, ηµν = diag(−1, 1, 1, 1) is the Minkowski metric. Consider now a
spatial-like geodesic β originating from a point P on γ, at which t = tP . This geodesic has a
tangent vector vα′ , and we let s denote the proper distance along β; we set s = 0 at P . We
assume that vα′ is orthogonal to Uα′ so that it admits a decomposition

vα
′|γ = Ωa(ea)

α′ . (6.7)

To ensure that vα′ is properly normalized, the expansion coefficient must be properly normal-
ized δabΩaΩb = 1. By choosing a different coefficient Ωa we can construct a new geodesic β
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that are also orthogonal to γ at P . We shall denote this entire family of spatial-like geodesics
as β(t,Ωa). The Fermi normal coordinates of a point Q located away of the geodesic γ is
constructed as follows. First we find a unique geodesic that passes through Q and intersects
γ orthogonally. We label the intersection as P and we name the geodesic β(tQ,Ω

a
Q) with

tQ = tP and Ωa
Q the expansion coefficients of vα′ at that point. We then assign to Q new

coordinates:
x0 = tP , xa = Ωa

QsQ (6.8)

where the sQ is the proper distance from P to Q. These are the Fermi normal coordinates
of the point Q, therefore, xα = (t,Ωas), and we must now figure out how these coordinates
are related to xα′ , the original system.

6.1.2 Coordinate Transformation

We note first that we can describe a family of geodesics β(t,Ωa) by the relations of the form
xα
′
(t,Ωa, s). In this parameter t and Ωa serve to specify which geodesic, and s the proper

distance to along the geodesic. If we substitute s = 0 in these relations, we recover the
description of the timelike geodesic γ in terms of its proper time; the parameters Ωa are the
irrelevant. The tangent to the geodesics β(t,Ωa) is

vα
′

=

(
∂xα

′

∂s

) ∣∣∣
t,Ωa

. (6.9)

This vector is a solution to the geodesic equation subjected to the initial condition vα′ |s=0 =
Ωa(ea)

α′ . But the geodesic is invariant under a rescaling of the affine parameter, s→ s/c, in
which c is a constant. Under this rescaling vα′ → cvα

′ and as a consequence we have that
Ωα′ → cΩα′ . We have therefore established the identity xα′(t,Ωa, s) = xα

′
(t, cΩa, s/c), and a

special case we find
xα
′
(t,Ωa, s) = xα

′
(t, sΩa, 1) = xα

′
(xα) (6.10)

by virtue of the equation (6.8), this relation is the desired transformation between xα′ and
xα (FNC). In fact we have:

Ωa(ea)
α′ = vα

′
∣∣∣
γ

=
∂xα

′

∂s

∣∣∣
s=0

=
∂xα

′

∂xa

∣∣∣
s=0

Ωa (6.11)

which shows that
∂xα

′

∂xa
= (ea)

α′ (6.12)

from previous equations observations we also have :

∂xα
′

∂t

∣∣∣
γ

= Uα′ = (et)
α′ (6.13)

finally Eqs. (6.12) (6.13) tell us that on γ, ∂xα
′

∂xµ
= (eµ)α

′ .
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Deviation vectors ξα

Suppose that in the relations xα′(t,Ωa, s), the parameters Ωa are varied while keeping t and s
fixed. This defines new curves that connects different geodesic β at the same proper distance
s from their common intersection point P on γ. This is very similar to the construction
described in section 6.1.1, then the vectors

ξαa =
∂xα

∂Ωa

∣∣∣
t,s
, (6.14)

are deviation vectors relating geodesics β(t,Ωa) with different coefficient Ωa. Similarly,

ξα
′

t =
∂xα

′

∂t

∣∣∣
s,Ωa

(6.15)

are deviation vectors relating different geodesics β(t,Ωa) that start at different points on γ,
but share the same coefficient Ωa. The four vectors defined in equation (6.14) and (6.15)
satisfies the geodesic equation (6.35); it must be kept in mind that in this equation, the
tangent vector is vα′ , not Uα′ , and the affine parameter is s not t.

Metric on γ

The components of the metric in Fermi Normal coordinates are related to the old components
by general transformation rule

gµν(x) =
∂xµ

′

∂xµ
∂xν

′

∂xν
gµ′ν′(x

′(x)). (6.16)

Evaluating this on γ yields gµν(x)|γ = (eµ)µ
′
(eν)

ν′gµ′ν′(x
′(x)), after using (6.13),(6.12). This

states that in the Fermi normal coordinates, the metric is Minkowski everywhere on the
geodesic γ.

First derivatives of the metric on γ

To evaluate the Christoffel symbols in the Fermi normal coordinates, we recall from the
curves (6.10) that x0 = t, xa = Ωas are geodesics so that these relations must be solutions
to the geodesics equation,

d2xα

ds2
+ Γαβγ

dxβ

ds

dxγ

ds
= 0. (6.17)

This gives Γαab(t)Ω
aΩb = 0. On γ the Christoffel symbols are functions of t only, and are

therefore independent of Ωa. Since these coefficients are arbitrary, we conclude that Γαab = 0.
To obtain the remaining components we recall the basis vectors (eµ)α are parallel transported
along γ, so that

d(eµ)α

dt
+ Γαβγ(eµ)β(et)

γ = 0, (6.18)

since (eµ)γ = Uα. By virtue of (6.12), (6.13) we have (eµ)α = δαµ in the Fermi coordinates,
and the parallel-transport equation implies Γγβt|γ = 0. The Christoffel symbols are therefore
all zero on γ. We shall write this as

gαβ,γ|γ = 0 (6.19)

This proves that the Fermi normal coordinates enforce the local- flatness theorem everywhere
on the central geodesic γ.
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Second derivatives of the metric γ

We next turn to the second derivatives of the metric or the first derivatives of the connection.
From the fact that Γαβγ is constant everywhere on γ, we obtain immediately

Γαβγ,t|γ = 0. (6.20)

From the definition of the Riemann tensor, we also get

Γαβt,γ|γ = Rα
βγt|γ = 0. (6.21)

The other components are harder to come by. For these we must involve the deviation vectors
ξαa introduced in Section 6.1.2. These vectors satisfy the geodesic equation, (6.35), which we
will fully write as

d2ξµ

ds2
+ 2Γαβγv

β dξ
γ

ds
+
(
Rα
βγδ + Γαβγ,δ − ΓαγµΓµβδ + ΓαδµΓµβγ

)
vβξγvδ = 0. (6.22)

According to Eq. (6.9), (6.10), (6.14) and (6.15), we have that vα = Ωaδαa , ξαt = δαt , and
ξαa = sδαa in the Fermi coordinates. If we substitute ξα = ξαt in the geodesic deviation equa-
tion and evaluate it at s = 0, we find Γαbt,c|γ = Rα

bct|γ, which is just a special case of (6.35).

To learn something new, let us substitute ξα = ξαa instead. In this case we find

2γαabΩ
b + s

(
Rα
bad + Γαab,d − ΓαaµΓµbd + ΓαdµΓµab

)
ΩaΩb = 0 (6.23)

Before evaluating this on γ, we expand the first term in power of s:

Γαab = Γαab|γ + sΓαab,µ|γvµ +O(s2) = sΓαab,d|γΩd +O(s2), (6.24)

dividing through by s and the evaluating on γ, we arrive at

Rα
bad + 3Γαab,d|γΩbΩd = 0. (6.25)

Because the coefficients Ωa are arbitrary, we conclude that the quantity within the brackets,
properly symmetrized in the indices b and d, must vanish a little algebra finally reveals that:

Γαab,c

∣∣∣
γ

= −1

3
(Rα

abc +Rα
bac)|γ. (6.26)

Equations (6.20), (6.21), (6.26) give the complete set of derivatives of the Christoffel symbols
on γ. It is now a simple matter to turn these equations into statements regarding the second
derivatives of the metric at γ. Because the metric is Minkowski everywhere on the geodesics,
only the spatial derivatives are non-zero. These are given by

gtt,ab = −2Rtatb|γ, gta,bd = −2

3
(Rtbac +Rtcab)|γ, gab,cd = −1

3
(Racbd +Radbd)|γ. (6.27)

From the local flatness theorem and (6.27) we recover (6.2), the expansion of the metric
around γ, to the second in spatial displacement xa.

98



6.2 Congruence of timelike geodesics
Let O be an open region in spacetime. A congruence in O is a family of curves such that
though each point in O there passes one and only one curve from this family, the tensor B
can be expressed as:

Bij =
1

3
θδij + σij + ωij, (6.28)

where θ = Bi
i is the expansion scalar as the trace part of Bij, σij = B(ij) − 1

3
θδij is the

shear tensor as the symmetric-trace free part of Bij, and ωij = B[i,j] is the rotation tensor
as the antisymmetric part of Bij. Theta is the fractional change of volume per unit time.
Volume changes are not affected by the shear and rotations tensors. (And the curves do
not intersect; picture this as a tight bundle of copper wires). In this section, we will be
interested in congruences of timelike geodesics, which means that each curve in the family
is a time-like geodesic. We wish to determine how such congruence evolves with time. More
precisely stated, we want to determine the behavior of the deviations vector ξµ between two
neighboring geodesics in the geodesic congruence, as a function of proper time τ along the
reference geodesic(central geodesic). The geometric setup is the same as the previous section
with the following relations:

UµUµ = −1, Uµ
;νU

ν = 0, Uµ
;νξ

ν = ξµ;νU
ν , Uµξµ = 0, (6.29)

where Uµ is tangent to geodesics. Notice in particular that ξµ is orthogonal to Uµ. In other
words, the deviation vector points in the directions transverse to the flow of the congruence.

6.3 Transverse metric
Given the geodesic congruence and associated timelike vector field Uµ, the spacetime metric
gµν can be decomposed into a longitudinal part −UµUν and transverse part hµν given by

hµν = gµν + UµUν . (6.30)

The transverse metric is purely "spatial", in the sense that it is orthogonal to Uµ, that is
to say, Uµhµν = hµνU

ν . It is effectively three dimensional: in a comoving Lorentz frame
at some point P within the congruence, Uα = (−1, 0, 0, 0), gµν = diag(−1, 1, 1, 1), and
hµν = diag(0, 1, 1, 1). We may also note relations hµµ = 3 and hµρhρν = hµν .

6.3.1 Kinematics

We now introduce the tensor field Bµν defined as:

Bµν = Uµ;ν (6.31)

Like hµν , this tensor is purely transverse, which implies that is constant along the geodesic
(UµBµν = UµUµ;ν = 1

2
(UµU

µ);ν = 0)and self transported (BµνU
ν = Uµ;νU

ν = 0). Moreover,
it determines the evolution of the deviation vector. By applying the Lie derivatives we know
that ξµ;νUν = Uµ

;νξ
ν and we immediately obtain:

d

dt
ξµ = ξµ;νU

ν = Bµ
ν ξ

ν . (6.32)

We see that Bµ
ν measures the failure of ξµ to be parallel transported along the congruence.
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Figure 6.2: Geodesic congruence

6.4 Geodesic deviation
The geometrical meaning of the Riemann tensor is best illustrated by examining the behavior
of neighboring geodesics. Consider two such geodesics, γ0 and γ1, each described by relations
xα(t) in which t is the affine parameter; the geodesics can be either spacelike, timelike, or
null. We want to develop the notion of a deviation vector between these two geodesics, and
derive an evolution equation for this vector.

For this purpose we introduce, in the space between γ0 and γ1, an entire family of inter-
polating geodesics fig. 6.2. To each geodesics we assign a label s ∈ [0, 1], such that γ0 comes
with label s = 0 and γ1 with s = 1. We collectively describe these geodesics with relations
xα(s, t), in which s serves to specify which geodesic at t is the affine parameter along the
specified geodesic. The vector field Uα = ∂xα/∂t is tangent to the geodesics, and it satisfies
the equation Uα

;βU
β = 0. If we keep t fixed in the relations xα(s, t) and vary s instead,

we obtain another family of curves, labelled by t and parameterized by s; in general these
curves will not be geodesics. The family has ξα = ∂xα/∂s as its tangent vector field, and
the restriction for this vector to γ0, ξα|s=0, gives a meaningful notion of a deviation vector
between γ0 and γ1. We wish to derive an expression for its acceleration,

D2ξµ

dt2
= (ξα;βU

β);γU
γ, (6.33)

in which it is understood that all quantities are evaluated on γ0. In flat spacetime the geodesic
γ0 and γ1 are straight, and although their separation may change with t, this change is
necessary linear: D2ξα/dt2 = 0 in flat spacetime. A non-zero result for D2ξα/dt2 = 0
will, therefore, reveal the presence of curvature, and indeed, this vector will be found to be
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proportional to the Riemann tensor. It follows at once from the relations Uα = ∂xα/∂t and
ξα = ∂xα/∂s that ∂Uα/∂s = ∂ξα/∂t, which can be written in covariant form as

£uξ
α = £ξU

α = 0→ ξα;βU
β = Uα

;βξ
β. (6.34)

We also have at our disposal the geodesic equation, Uα
;βU

β = 0. These equations can be
combined to prove that ξαUα is constant along γ0 so we can set ξαUα = 0. This means that
the curves t = constant cross γ0 orthogonally, and adds weight to interpretation of ξα as
a deviation vector. We may now calculate the acceleration that both geodesics γ0 and γ1

experience, starting from the equation 6.33, as a result:

D2ξµ

dt2
= −Rµ

νρλU
νξρUλ. (6.35)

This is the geodesic deviation equation. It shows that curvature produces a relative acceler-
ation between two neighboring geodesics; even if they start parallel, curvature prevents the
geodesics from remaining parallel.

6.4.1 Raychaudhuri’s equation

We now want to derive an evolution equation for θ, expansion scalar. We begin by developing
an equation for Bµν itself:

Bµν;ρU
ρ = Uµ;νρU

ρ = −BµρB
ρ
ν −RµρνλU

ρUλ. (6.36)

The equation for θ is obtained by taking the trace:

dθ

dt
= −BµνBνµ −RµνU

µUν (6.37)

it easy to check that BµνBνµ = 1
3
θ2 + σµνσµν − ωµνωµν . Making the substitution, we arrive

at
dθ

dt
= −1

3
θ2 − σµνσµν + ωµνωµν −RµνU

µUν . (6.38)

This is the Raychaudhuri’s equation for the congruence of timelike geodesics. We note that
since the shear and rotation tensor are purely spatial, σµνσµν ≥ 0 and ωµνωµν ≥ 0, with the
equality sign holding if and only if the tensor is identically zero. As an illustrative example
let us consider the congruence of comoving world lines in an expanding universe with metric:

ds2 = −dt2 + a2(t)dx2 (6.39)

where a(t) is the scale factor. The tangent vector field −∂αt, and a quick calculation reveals
that

Bµν = Uµ;ν =
ȧ

a
hµν , (6.40)

where an overdot indicates a differentiation with respect to t. This shows the shear and
rotation tensor are both zero for this congruence. The expansion, on the other hand, is given
by:

θ = 3
ȧ

a
=

1

a3

da3

dt
. (6.41)
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This illustrates rather well the general statement that the expansion H is the fractional
rate of change of the congruence’s cross-sectional volume(which is here proportional to a3).
The interpretation of θ is the fractional rate of change of ∆V , the congruence’s cross-sectional
volume:

θ =
1

∆V

d∆V

dt
(6.42)

cross-section and cross-sectional volume γ from the congruence, and on the geodesic pick up
a point P at which t = tP . Construct, in a small neighbourhood around P , a small set δΣ(tP )
of points P ′ such that through each of these point pass another geodesic from this congruence,
and (ii) at each point P ′ , t is equal to tP . This set form a three dimensional region, a small
segment of the hypersurface t = tP . We assume the parametrization has been adjusted so
that γ intersects δΣ(tP ) orthogonally(there is no requirement that other geodesics do, so as
the congruence may not be hypersurface orthogonal). We shall call δΣ(tP ) the congruence’s
cross section around the geodesic γ, at proper time t = tP . We want to calculate the change
of this volume in this hypersurface and compare it with the volume δΣ(tQ), where Q is a
neighbouring point on γ.

We introduce coordinate δΣ(tP ) by assigning a label yi(i = 1, 2, 3) to each point P ′ in the
set. Recalling that through each of these points there passes a geodesic from the congruence,
we see that we may use yi to label the geodesics themselves. By demanding that each geodesic
keep its label as it moves away from δΣ(tP ), we simultaneously obtain a coordinate system xi

in δΣ(tQ) or any other cross section. Therefore, this construction defines a coordinate system
(t, xi) in a neighbourhood of the geodesics γ, and there exists a transformation between this
system and the originally in use: xµ = xµ(t, yi). Because xi is constant along the geodesics,
we have

Uµ =
∂xµ

∂t

∣∣
ya
. (6.43)

On the other hand, the vectors:

(ei)
µ =

(
∂xµ

∂xi

)
t

, (6.44)

are tangent to the cross sections. These relations implies that £U(ei)
µ = 0, and we also have

Uµ(ei)
µ = 0 holding on γ (and only on γ). We now introduce the three-tensor hij defined by

hij = gµν(ei)
µ(ej)

ν . (6.45)

This act as a metric tensor on δΣ(t): For displacement confined to the cross-section (so that
dt = 0), xµ = xµ(t, yi) and

ds2 = gµνdx
µdxν = gµν

(
∂xµ

∂yi
dyi
)(

∂xν

∂yj
dyj
)

= gµν(ei)
µ(ej)

νdyidyj = hijdy
idyj. (6.46)

Thus, hµν is the three-dimensional metric on the congruence’s cross section. Because γ is
orthogonal to its cross-section(Uµ(ei)

µ = 0), we have that hij = hµν(ei)
µ(ej)

ν on γ, where
hµν = gµν + UµUν is the transverse metric, if we define hij to be the inverse hij, then it is
easy to check that

hµν = hij(ei)
µ(ej)

ν . (6.47)

On γ the three dimensional volume element on the cross-section, or cross-sectional volume, is
∆V =

√
hd3y, where h = det[hij] because the coordinate yi are comoving (since the geodesic
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since the geodesic moves with a constant value of its coordinates) and d3y does not change
as the cross section δΣ(t) evolves from t = tP to t = tQ. A change in ∆V comes entirely
from a change in

√
h:

1

∆V

d∆V

dt
=

1√
h

d
√
h

dt
=

1

2
hij
dhij
dt

. (6.48)

The rate of change of a three-metric:

dhij
dt

= (gµν(ei)
µ(ej)

ν);ρU
ρ (6.49)

= gµν(ei)
µ
;ρ(ej)

νUρ + gµν(ei)
µ(ej)

ν
;ρU

ρ (6.50)
= gµν(U

µ
;ρ(ei)

ρ)(ej)
ν + gµν(ei)

µ(Uν
;ρ(ej)

ρ) (6.51)
= Uν;µ(ei)

µ(ej)
ν + Uµ;ν(ei)

µ(ej)
ν (6.52)

= (Bµν +Bνµ) (ei)
µ(ej)

ν (6.53)

Multipliying by hij and evaluating on γ, so that (6.47) may be used, we obtain

hij
dhij
dt

= (Bµν +Bνµ)hij(ei)
µ(ej)

µ = 2Bµνh
µν = 2Bµνg

µν = 2θ (6.54)

this establishes that local expansion rate is:

θ =
1√
h

d

dt

√
h. (6.55)

6.5 Fermi Normal Coordinates (FNC) in FRW

First, we want to summarize the main results of the works [4, 5, 110, 126] about the con-
struction of the so called Fermi coordinates (See also appendix A of [127]).
Consider a free falling observer along a timelike geodesic h(γ)(from now on, the central
geodesic). Let be P an arbitrary point on the central geodesic such that P = h(γ0). At this
point(as we have already seen) it is possible to construct an orthonormal tetrad or vierbein,
{(eγ)

µ, γ = 0, i} which satisfies the condition ηαβ = (eα)µ(eβ)νgµν that is parallel transported
along h(γ). Here (e0)µ is a tangent timelike 4-vector to h at P , and (ej)

µ will be orthogonal
to h at P and then be a spacelike vector. The goal is to describe the spacetime in a neigh-
bourhood of P . For that, let fix a point Q outside the central geodesic, and more importantly
connected to P through the spacelike geodesic g(λ) as it is shown in Figure (6.3). The affine
parameter λ of this spatial-like geodesic g(λ) is chosen in such a way that Q = g(λ = 1),
whose, generator vector, namely, v, is normal to h at P Eq. (6.9) therefore, it can be decom-
posed as a linear combination of the spatial component of the vierbein (ej)

µ, moreover, the
time component, tF , of the Fermi coordinates is chosen to be the proper time τ of P at h,
that a free falling observer experience. Hereafter, xµ will denote the global coordinates, while
xµF the Fermi normal coordinates(or the conformal Fermi coordinates). Now, we need to find
a map between these two coordinates, this is achieved by solving the geodesic equation for g
(6.17):

d2xµ

dλ2
+ Γµαβ

dxα

dλ

dxβ

dλ
= 0, (6.56)
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as a power series on λ:

xµ(λ) =
∞∑
n=0

αµnλ
n, (6.57)

with initial conditions:

Figure 6.3: Geometrical construction of Fermi coordinates

αµ0 = xµ(P ) = (tF , 0, 0, 0), αµ1 =
dxµ

dλ

∣∣∣
λ=0

= xiF (ei)
µ. (6.58)

The subsequent terms in this power series expansion are found recursively by derivating Eq.
(6.57) with respect to λ and using Eq.(6.56), with this, we find

αµ2 = −1

2

d2xµ

dλ2

∣∣∣
λ=0

= −1

2
Γµαβα

α
1α

β
1 (6.59)

αµ3 = −1

6

d3xµ

dλ3

∣∣∣
λ=0

= −1

6
[∂ηΓ

µ
αβ(αα1α

β
1α

η
1) + 4Γµαβα

α
1α

β
2 ], (6.60)

and so on. Now, it is possible to expand the global coordinates as a function of Fermi normal
coordinates:

xµ(xF ) = αµ0 + (eσ)µxσF −
1

2
Γµαβ(eσ)α(eρ)

βxF
σxρF +O(x3

F ), (6.61)

with corrections starting at O(x3
F ). If we denote gFµν as the metric in the FNC and gµν the

metric in global coordinates, they are related by the usual transformation rule for any tensor.

gFµν(xF ) =
∂xα

∂xµF

∂xβ

∂xνF
gαβ(x(xF )) (6.62)

Where the Jacobian (6.62) has the form:

∂xµ

∂xνF
=(eν)

µ − Γµαβ(eν)
α(ej)

βxF
j +O(x2

F ) (6.63)

=(eν)
µ + Aµνjx

j
F +O(x2

F ).
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To be explicit the fact we will only consider linear order terms along all the computations,
we also expand the metric

gαβ(x(xF )) =gαβ
∣∣
P

+
∂gαβ
∂xµ

∣∣∣
P
xµ + ...

=gαβ
∣∣
P

+ (ej)
µ(∂µgαβ)

∣∣
P
xjF +O(x2

F ). (6.64)

Now, expanding the metric al linear order (6.64), transforming the metric (6.62) using (6.63)
and linearizing the metric:

gFµν(xF ) = ηµν +∇γgαβ
∣∣
P

(eµ)α(eν)
β(ej)

γxjF +O(x2
F ),

when the covariant derivative is compatible with the metric (absence of torsion), one has
∇γgαβ = 0. Then, the metric tensor in Fermi normal coordinates just correspond to a
Minkowski metric

gFµν(xF ) = ηµν +O(x2
F ). (6.65)

6.5.1 Unperturberd FLRW Universe

As an example of FNC construction, we will start with a concise and illustrative example;
unperturbed FLRW. This example is enough to show explicitly the fact that the first cor-
rections to Minkowski begin in quadratic order in FNC(|xF |2H2), we will apply the recipe
mentioned before and construct the line element for FLRW. To begin, consider the FLRW
metric, written as

ds2 = −dt2 + a2(t)γijdx
idxj, (6.66)

where a is the scale factor and t and xi denotes the temporal and the spatial coordinate
respectively. Furthermore, the above expression can be suitable written in conformal coordi-
nates by using the conformal time dτ = dt

a(t)
, thus

ds2 = a2(τ)(dτ 2 + γijdx
idxj), (6.67)

where γij = δij(1 + K
4
δabx

axb)−2. We will restrict to perform the computations considering
the curvature constant K = 0. To compute the metric corrections for the FLRW universe,
we need the Christoffel symbols for the metric Eq. (6.66), which are

Γ0
ij = aȧδij, Γki0 =

ȧ

a
δki = Hδki . (6.68)

To find the vierbein components, we impose the flatness condition Eq. (6.6)

ηαβ = (eα)µ(eβ)νgµν , then (e0)µ(e0)νgµν = −1, (ei)
µ(ej)

νgµν = δij. (6.69)

Using the following ansatz:

(e0)µ = (α,0), (ei)
µ = (0, βδji ), (6.70)

is straightforward to find that α = 1 and β = a(t)−1. Finally the vierbein becomes

(e0)µ = (1,0), (ei)
µ = a(t)−1(0, δji ). (6.71)
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Now we need to find the explicit form of Eq. (6.58), (6.59) and (6.60) once known the
Christoffel symbols and the veirbein

αµ0 = (tF ,0), αµ1 =
xiF
a(t)

(0, δji ) (6.72)

α0
2 = −1

2
Γ0
ijα

i
1α

j
1 = −H

2
xiFx

j
F δij = −H

2
~x2
F , αk2 = −1

2
Γki0α

i
1 α0

1︸︷︷︸
=0

= 0 (6.73)

to compute (6.60) one have to consider:

∂0Γki0 = Ḣδki , ∂0Γ0
ij = (ȧ2 + aä)δij = a2(Ḣ + 2H2)δij (6.74)

Then

α0
3 = −1

6

∂0Γ0
ijα

i
1α

j
1 α0

1︸︷︷︸
=0

+4Γ0
ijα

i
1 αj2︸︷︷︸

=0

 = 0 (6.75)

αk3 = −1

6

∂0Γki0α
i
1 α0

1︸︷︷︸
=0

αj1 + 4Γki0α
i
1α

0
2

 =
H2

3a
xkFx

i
Fx

j
F δij =

H2

3a
xkF~x

2
F . (6.76)

Replacing in Eq. (6.61) and separating by components, one finds at quadratic order in xF
the coordinates sees as

x0 = t = tF −
H

2
~x2
F (6.77)

xi =
xiF
a

(
1 +

H2

3
~x2
F

)
(6.78)

now, taking into account the transformation of the metric Eq. (6.62) one finds the following
relations:

gF00 =

(
∂t

∂tF

)2

g00 +

(
∂xi

∂tF

)(
∂xj

∂tF

)
gij, (6.79)

∂t

∂tF
= 1− Ḣ

2
~x2
F , (6.80)

∂xi

∂tF
=
H

2

[
1 +

(Ḣ + 2H2)

3
~x2
F

]
xiF , (6.81)

∂xk

∂xiF
=
δki
a

(
1 +

H2

3
~x2
F

)
+

2H2

3a

(
xlF δli

)
xkF . (6.82)

Preserving only the zeroth and quadratic order terms, one gets

gF00 = −1 + (Ḣ +H2)~x2
F , gFij = δij −

H2

3

(
~x2
F δij + xF ixF j

)
. (6.83)

It is possible to perform a change of coordinate in the above equation to eliminate the term
xF ixF j, since, this coordinate construction only fixes the gauge linearly at the central geodesic
coordinates [112]. Finally one finds the Fermi metric, including the second order corrections,
is

ds2 = −
[
1− (Ḣ +H2)~x2

F

]
dtF

2 +

[
1− H2

2
~x2
F

]
d~x2

F . (6.84)
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As an additional step, connecting with the results of [4], we may compute the geodesic
expansion (this expression comes from solving the Raychaudhuri equation for a geodesic
congruence), defined by

θ =
1

3
∇µU

µ =
1

3
(∂µU

µ + ΓµµλU
λ) (6.85)

Since Uµ = (e0)µ and using the Christoffel symbols Eq. (6.68) and (??), one finds

θ = H(t), (6.86)

that is to say, the scalar expansion factor is equal to the Hubble expansion rate, as our
suspicion from the beginning. This remarkable result is important to understand future
conceptual key steps in the following section of this chapter.

6.5.2 Perturbed FLRW Universe

In this section, we will follow the results presented in the appendix C.2 of [112]. If we work
with the perturbed conformal metric defined by

gµν = ηµν + hµν =

(
−1 + h00 h0j

hi0 δij + hij

)
, |h| � 1. (6.87)

The construction of the Fermi coordinates now is respect to the metric (6.87). We will
denote the Fermi coordinates respect to the perturbed metric like x̄F . To find the vierbein
components along the central geodesic, first, for (e0)µ we postulate the ansatz

(e0)µ =
(
α, vi

)
, |vi| � 1. (6.88)

Here, vi is the peculiar velocity of the observer. Using Eq. (6.69) with (6.88)

(
α vi

)(−1 + h00 h0j

hi0 δij + hij

)(
α
vj

)
= −1 (6.89)

⇒ α =
1√

(1− h00)
≈ 1 +

1

2
h00. (6.90)

For the spatial tetrad components, (ek)
µ, we replace the ansatz (ek)

µ = (αk, β
i
k) and use the

flatness condition to determine αk and βik, that reads

(ek)
µ(e0)νgµν = 0 and (ek)

µ(el)
νgµν = δkl. (6.91)

Following the same steps performed in (6.89)-(6.90), for (6.91) at linear order in hµν and vi
one finds that α and β are related by

αk = βik (hi0 + vi) and βikβ
j
l (δij + hij) = δkl. (6.92)

Then one finds, at linear order in hµν , α and β are

βik = δik −
1

2
hij, and αk = (hk0 + vk) . (6.93)
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In consequence, the Vierbein associated with (6.87) is given by

(e0)µ =

(
1 +

1

2
h00, v

i

)
, (ej)

µ =

(
vj + h0j, δ

i
j −

1

2
hij

)
. (6.94)

Since hµν is a small perturbation, we have only considered linear terms of h along the com-
putation. Particularly, the coordinate expansion (6.61) reduces to

xµ(x̄F ) = P µ + (ei)
µx̄iF −

1

2
Γµijx̄

i
F x̄

j
F . (6.95)

Where P µ = xµ(P ) are the global coordinates of the central geodesic, so that vi = ∂P i/∂x0.
As stated before, the Fermi time component is defined by the proper time of an observer on
the central geodesic, namely the proper time of P

x̄0
F = τP =

∫ √
gµν
∣∣
P
dxµdxν (6.96)

keeping only the linear contributions, then the conformal proper time is related to the global
time by

x0(P ) = x̄0
F +

1

2

∫ x̄0F

0

h00(0, τ)dτ. (6.97)

On the other hand, the Christoffel symbols for Eq. (6.87) are given by

Γµij =
1

2
(hµi,j + hµj,i + hij

,µ) . (6.98)

Finally, the coordinate expansion of the global coordinates in terms of Fermi normal coordi-
nates is

x0(x̄F ) = x̄0
F +

1

2

∫ x̄0F

0

h00(0, τ)dτ + (vj + h0j)x̄
j
F +

1

4

(
h0j,i + h0i,j + h′ij

)
x̄iF x̄

j
F , (6.99)

for the temporal , and

xk(x̄F ) = P k + x̄kF −
1

2
hki x̄

i
F −

1

4

(
hki,j + hkj,i − hij ,k

)
x̄iF x̄

j
F , (6.100)

for the spatial coordinates.

6.6 Conformal Fermi Coordinates (CFC)
In this section, provided with the nurtured intuition on the FNC, we will generalize the
construction of Fermi Normal Coordinates(FNC) to local conformal coordinates that a free
falling observer experiences. This set of coordinates are suitable constructed for an homoge-
neously and isotropically expanding space-time such a FLRW universe, moreover, they are
required to make predictions for any cosmological purpose, since, these set of coordinates ac-
count the fact that any local observer is unable to capture any gravitation effect(curvature)
much wider than the sound horizon in a description of metric perturbations. So, such ig-
norance is parametrized by absorbing them into a new local effective metric, the Conformal
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Fermi Metric(CFC). Finally, is worth mentioning that this section has been influenced for
[4], [5], [110],[126] as a result, we generalize and extend part of these work already started
by incorporating a non-attractor scenario for the evolution of metric perturbations, deducing
more relations and simply reducing their expressed relations.

As we know from the beginning of this chapter,as a consequence of the Einstein’s equiv-
alence principle, an inertial observers do not experience any gravitational effects on them.
Therefore, their local spacetime description is equivalent to a flat spacetime. As requirement
for its description, the mentioned effect naturally induces a diffeomorphism between global
coordinates and the inertial frame of the form:

gFµν(x̄) =
∂xα

∂x̄µ
∂xβ

∂x̄ν
gαβ(x(x̄)), (6.101)

where bars denotes the CFC’s. These coordinates are the physical set of coordinates used
for measurements. Due to the perturbative description of the metric fluctuations, these two
set of coordinates slightly differs, thus a generic coordinate transformation has the form:

τ(τ̄ , x̄) = τ̄ + ξ0(τ̄ , x̄), xi(τ̄ , x̄) = x̄i + ξi(τ̄ , x̄), (6.102)

where ξµ is a shift 4-vector, that is expansible perturbatively order by order such that:

ξµ(τ̄ , x̄) = ξµ(0)(τ̄ , x̄) + ξµ(1)(τ̄ , x̄) + ξµ(2)(τ̄ , x̄) + ... (6.103)

The induced FLRW metric now has the form of:

gFµν(x̄) = a2
F (τ̄)ḡµν = a2

F (τ̄)[ηµν + hFµν(x̄)] = a2
F (τ̄)ḡFµν(x̄), hFµν(x̄) = O(x̄2), (6.104)

where the "F"-super/subscripts denotes the ’CFC’s’ objects such as the spacetime scale
factor aF (x) and the metric tensor gFµν , additionally, the conformal proper time is defined as

dτ̄ = a−1
F (P (t̄))dt̄, (6.105)

where τ̄ is the conformal time coordinate for the conformal geodesic or simple the proper time,
this allows us to construct surfaces of constant τ̄ , spanned by space-like conformal geodesics
with respect to the conformal metric ḡFµν = a−2

F (x)gFµν . We must emphasize that this set of
coordinates physically fixes the gauge up gradients only, because the flatness requirement:
ḡFµν |P = ηµν and ∂ρḡFµν |P = 0, just imposes restriction on the metric and their first derivatives
along the central geodesics. Additionally, metric perturbations can be expressed in terms of
the Riemann tensor Eq.(6.2):

hF00(x̄) = −R̄F
0k0l|P x̄kx̄l, hF0i(x̄) = −2

3
R̄F

0kil|P x̄kx̄l, hFij(x̄) = −1

3
R̄F
ikjl|P x̄kx̄l, (6.106)

where R̄F
µρνσ is the Riemann tensor of the conformal metric in CFC coordinates, and indices

have been lowered with the conformal metric. Explicitly, in terms of global coordinates,
R̄F
µρνσ|P is,

R̄F
µρνσ|P = R̄αβγδ|P (ēµ)αP (ēρ)

β
P (ēν)

γ
P (ēδ)

µ
P , (6.107)

where the basis vectors at the central geodesic are given by (ēν)
β
P = aF (P )(eν)

µ
P . Furthermore,

we need to determine the induced local scale factor aF (x̄) that contributes with gradients to
the Riemann tensor of the conformal Fermi metric ḡFµν , this function can be determine through
a local expansion rate by taking the divergence of the time-like vector ∇µU

µ ∝ HF (τ̄ , x̄c),
d

dt̄
log aF (P ) =

1

aF (τ̄)

d

dτ̄
log aF (P ) =

∇µU
µ

3

∣∣∣
P
. (6.108)
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6.6.1 CFC construction

The metric in the CFC coordinates (τ̄ , x̄) for a inertial observer with timelike vector Uµ

resembles a Minkowski space, whose first correction scales as x̄ix̄j∂i∂jζL instead of |x|2H2,
as in the case of FNC. Particularly, its construction goes as follow:

• Tetrad construction: along the central geodesic at each point P (t̄) is constructed
an orthonormal system {(eν)µ : ν = 0, 1, 2, 3} with respect to the timelike vector Uµ ≡
(e0)µ. These vectors are parallel transported along the central geodesic.
• Conformal Fermi time: given a Fermi scale factor, aF , we define the conformal Fermi

time, τ̄ , as the time coordinate, in Eq. (6.105) this allow us to define the surface of
constant τ̄ , spanned by space-like conformal geodesics.
• Spatial coordinates: it is possible constructing a map from global conformal co-

ordinates to the CFC Eq.(6.17). The coordinates of a point Q inside the geodesic
congruence are defined as the director vector that generates the spatial-like conformal
geodesic that joins P with Q, this geodesic satisfies:

d2xµ

dλ2
+ Γ̄µαβ

dxα

dλ

dxβ

dλ
= 0, with Γ̄µαβ = Γµαβ − Cµ

αβ, (6.109)

where Γ̄µαβ are the Christoffel symbols for the conformal metric ḡFµν and Cµ
αβ is defined

by:
Cµ
αβ = δµα∇β ln aF + δµβ∇α ln aF − gαβgµλ∇λ ln aF . (6.110)

Moreover, the first derivatives of aF are constrained by the CFC metric and the gradient
of aF along the central geodesic must be along the time direction

∇µ ln aF |x̄i=0 = (ln aF )
′
aF (e0)µ, (6.111)

where the prime denotes derivatives with respect to τ̄ . Additionally, second derivatives
are constrained by Eq.(6.104) ∇µ∇ν ln aF |x̄i=0. In particular, they exactly match the
expression for an unperturbed FLRW. With this construction, we can now derive an
explicit transformation law from global coordinate to CFCs. In particular, one can
solve Eq. (6.109) as a power expansion with affine parameter λ:

xµ(λ) =
∞∑
n=0

αµnλ
n. (6.112)

This set of curves connect points that are in the same spatial hypersurfaces, particularly,
we are interested in connecting any point P along the central geodesic(xµ(P ) = (τ̄ , 0))
with a point Q,in the same spatial hypersurface, which in CFC has the coordinates
xµ(Q) = (τ̄ , x̄) in the same hypersurface. Since P is chosen as the spatial origin, we
immediately have αµ0 = xµ(P ). Additionally, rescaling λ such that λ = 0 corresponds
to P and λ = 1 at Q. These spatial-like geodesics are generated by the perpendicular
spatial-like vector at λ = 0, (ēi)

µ
P , more explicitly:

αµ1 =
dxµ

dλ

∣∣∣
λ=0

= (ēi)
µ
P x̄

i = aF (P )(ei)
µ
P x̄

i, (6.113)
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furthermore, higher order contributions are computed recursively by taking successive
derivatives to Eq.(6.109) :

xµ(τ̄ , x̄) = xµ(P ) + aF (P )(ei)
µ
P x̄

i − a2
F (P )

2
Γ̄µαβ|P (ei)

α
P (ej)

β
P x̄

ix̄j (6.114)

− a3
F (P )

6
(∂γΓ̄

µ
αβ − 2Γ̄µσαΓ̄σβγ)|P (ei)

α
P (ej)

β
P (ek)

γ
P x̄

ix̄jx̄k + ..., (6.115)

and the basis vectors are given by:

(e0)µ = a−1(τ)

(
1 +

1

2
h00, V

i

)
, (ej)

µ = a−1(τ)

(
Vj + h0j, δ

i
j −

1

2
hij

)
, (6.116)

or equivalently in the comoving gauge, using the ADM decomposition.

(e0)µ = a−1(τ)
(
1−N1, V

i
)
, (ej)

µ = a−1(τ)
(
Vj +Nj, [1− ζ]δij

)
, (6.117)

where all quantities are evaluated at the central geodesic. As a remark, we emphasize that
just for brevity, x̄i was used instead of the distance to the central geodesic ∆x̄i = x̄i − x̄ic.

6.6.2 Mapping to CFC

In this section, we are going to find an explicit map between global conformal coordinates,
xµ, and the CFC, x̄µ, to do that we are going to solve perturbatively, recursively and inde-
pendently of the underlying inflationary background some of the expressions stated in the
previous section. Let us start with the definition of the CFC basis vector:

∂xµ(τ̄ , x̄c)

∂τ̄
= aF (P )(e0)µP , (6.118)

considering the spatial coordinates µ = i:

(ē0)iP = aF (τ̄)(e0)iP =
aF (τ̄)

a(τ(τ̄ , x̄c))
V i(x(τ̄ , x̄c)), (6.119)

but we know that (e0)iP is a first order in perturbation, so the zeroth order aF (P )
a(P )

suffices,
which is just 1. Therefore, from Eq.(6.118) we deduce:

xi(τ̄ , x̄c) = x̄ic +

∫ τ̄

τ̄∗

ds̄V i(τ(τ̄ , x̄c), x̄c), (6.120)

where we have used x = x̄c. In the same manner from Eq. (6.118) if µ = 0, the time shift is:

τ(τ̄ , x̄) = τ̄ + ∆τ(τ̄ , x̄c) = τ̄ + C∆τ (x̄c) +

∫ τ̄

τ̄∗

ds̄ (∆a(s̄, x̄c)−N1(s̄, x̄c)) . (6.121)

Now we already have the first terms of Eq. (6.112) associated to the spatial component
(6.120) and the temporal component (6.121), we are able to extend the map recursively to
neighboring points around the central geodesic. It is worth noting that due to the constraint
Eq.(6.104) the conformal Christoffel symbols Γ̃ must be first order in perturbations and
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must contain gradients of ζL, thus we can neglect second order contributions coming from
aF (P )/a(P ), so the equation Eq. (6.114) simplifies to:

xµ(τ̄ , x̄) = xµ(P ) + aF (P )(ei)
µ
P x̄

i − 1

2
Γ̄µαβ|P (ei)

α
P (ej)

β
P x̄

ix̄j, (6.122)

where the conformal Christoffel symbols are determined by:

Γ̄ρµν = Γρµν − δρµ∇ν ln aF − δρν∇µ ln aF + gµνg
ρσ∇σ ln aF (6.123)

and the scale factor gradient along the central geodesic

∇µ ln aF |P = −H(P )

aF (P )
(e0)µ,P , (e0)µ,P = gµν(e0)νP , (6.124)

with the local comoving Hubble expansion rate HF ,

H(P )

aF (P )
=

1

a(τ)

(
H(τ)−H(τ)N1(τ,xc(τ)) + ∂0ζ(τ,xc(τ)) +

1

3
∂iV

i(τ,xc(τ))

)
. (6.125)

Replacing Eq.(6.120), (6.121) into (6.122) we find a coordinate transformation, up to third
order in gradient expansion, that looks like:

τ(τ̄ , x̄) = τ̄ + ∆τ(τ̄ , x̄c) + Fi(τ̄ , x̄c)x̄
i − 1

2
Γ̄0
ij(τ̄ , x̄c)x̄

ix̄j + ... (6.126)

xl(τ̄ , x̄) = x̄l +

∫ τ̄

τ̄∗

ds̄V l(s̄, x̄c) + [∆a(τ̄ , x̄c)− ζL(τ̄ , x̄c)]x̄
l − 1

2
Γ̄lij(τ̄ , x̄c)x̄

ix̄j + ..., (6.127)

where we omitted the x̄c and it has been defined Fi = Ni + Vi. Finally, the above expression
suggest the following parametrization for Eq. (6.102):

xµ(τ̄ , x̄) = x̄µ + ξµ(0)(τ̄ , x̄c) + ξµ(1)(τ̄ , x̄) + ξµ(2)(τ̄ , x̄) + ... (6.128)
= x̄µ + ξµ(τ̄ , x̄c) + Aµi (τ̄ , x̄c)x̄

i +Bµ
ij(τ̄ , x̄c)x̄

ix̄j + ... (6.129)

Notice that all coefficients for this expansion have been evaluated at the central geodesic.

Peculiar velocity potential

Despite having the full construction of the map so far, we have not yet provided an analytical
expressions for the peculiar velocity potential, F in terms of the metric perturbations. In an
unperturbed universe, we know that it must be zero because one can always set a reference
system in which is exactly zero. However, in a perturbed universe, we know that it must
depend on spatial gradients of curvature modes. In principle, V i is unconstrained, but if
we impose that the vierbein is parallel transported, particularly, by using the self parallel
transportation of Uµ:

Uλ∂λU
µ + ΓµαβU

αUβ = 0, (6.130)

we find a relation between V j, and the Lagrangian constraints N j, N1(time shift and the
time lapse, respectively). Thus,

∂0V
i +HV i = −∂iN1 − ∂0N

i −HN i. (6.131)
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If we define the velocity potential F , such as, F i = V i +N i = ∂iF , substituting in the above
equation, this reduces to:

∂0F
i +HF i + ∂iN1 = 0→ ∂0F +HF +N1 = C(τ), (6.132)

whose general solution is

F(τ,x) = e−
∫ τ
τ∗ dsH(s)

[
τ∗CF(τ∗,x)−

∫ τ

τ∗

ds e
∫ s
τ∗ dωH(ω)N1(s,x)

]
, (6.133)

where C(τ) was set to zero because only spatial gradients contributes. In particular, it is
possible reduce (6.133) for a quasi-de Sitter limit by using the conformal Hubble parameter
definition,

H(τ) = aH = ȧ =
a′

a
=
d ln a(τ)

dτ
= ∂τN, (6.134)

that is to say, the conformal Hubble parameter is just the conformal time derivatives of the
number of e-folds, N(τ), so the integral in the exponential reduces to:

exp

(
−
∫ τ

τ∗

dsH(s)

)
= exp (−N(τ) +N(τ∗)) = a(τ∗)/a(τ), (6.135)

where we are using that the scale factor can be parametrized as a(τ) = a(τ∗)e
N(τ). Moreover,

if we choose τ∗ = −∞ as N = 0, the last expression simplifies to:

exp

(
−
∫ τ

τ∗

dsH(s)

)
= e−N(τ). (6.136)

For the remaining terms in Eq. (6.133), we know from ADM formalism that N1(τ) = ∂0ζ/H,
so: ∫ τ

τ∗

ds e
∫ s
τ∗ dωH(ω)N1(s,x) =

∫ τ

τ∗

ds eN(s) ∂0ζ

∂τN
. (6.137)

Additionally, if we take τ = −1/H = −1/∂τN at first order. Using N is a monotonic function
of τ , we have τ = − dτ

dN
, and by direct integration gives N(τ) = − ln (τ/τ∗), so τ = τ∗e

−N .
Replacing in Eq. (6.137) we find:∫ τ

τ∗

ds e
∫ s
τ∗ dωH(ω)N1(s,x) =

∫ N

N∗

dN
ds

dN
eN(s) ∂ζ

∂N
=

∫ N

N∗

dN(−τ∗ e−N) eN(s) ∂ζ

∂N

=− τ∗
∫ N(τ)

N(τ∗)

dN
∂ζ

∂N
= −τ∗(ζ(τ,x)− ζ(τ∗,x)). (6.138)

Thus, the peculiar velocity potential Eq.(6.133) reduces remarkably to:

F(τ,x) = τ(CF(x) + ζ(τ,x)− ζ(τ∗,x)). (6.139)

Depending on the background behavior, the curvatures perturbations will evolve differently
after horizon crossing; if the modes are adiabatic, for attractor models they will freeze and
therefore conserved [10]. This fact allow us to make robust prediction connecting inflationary
models and observations. Thus for this scenario we know ∂0ζL(τ,x) ≈ 0, then ζL(τ,x) ≈
ζL(τ∗,x) so the peculiar velocity potential becomes:

F(τ,x) = τCF(x), (6.140)
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and therefore the peculiar velocity,

V i(τ,x) =τ∂i(CF(x)− ζL(τ,x)) (6.141)

where we have ignored O(ε) terms. Since by construction we know that CF is composed only
by long modes, we at least know that it will be suppressed kL, in particular its divergence(that
influences HF ):

∂iV
i(τ,x) = −τ∂2ζL(τ,x) ∝ k2

LζL(τ,kL) (6.142)

is k2
L suppressed, then terms that involve the divergence of the peculiar velocity can be safely

ignored for single field attractor inflation.
On the other hand, for non-attractor inflation the peculiar velocity V i becomes:

V i(τ,x) =∂iF −N i

=τ∂i(−ζ(τ∗,x) + CF(x))− ∂i(ε∂−2∂0ζ(τ,x)), (6.143)

whose divergence is:

∂iV
i(τ,x) =τ∂2(−ζ(τ∗,x) + CF(x))− ε∂0ζ(τ,x). (6.144)

thus, the first term is k2
L suppressed, whereas the second ε ∝ a−6 and ∂0ζ ∝ a2. So the

divergence of the peculiar velocity potential is suppressed for this scenario too.

Conformal Scale Factor

In this section, we will derive a first order expression for the ratio between the local scale
factor and the global scale factor along the geodesic, this ratio is order ζ and can be easily
be extended to points outside the central geodesic inside the local patch. We can find the
local expansion rate as the fractional volume change that an inertial observer experiences
along its world-line in a perturbed expanding spacetime. Physically, they cannot distinguish
between long modes, ζL, of a wavelength longer than the sound horizon and the background,
therefore, these observers infer a different and effective Hubble ratio given by (6.28):

HF (τ̄) =
1

3
∇µU

µ. (6.145)

Expanding the divergence of the 4-velocity:

∇µU
µ =

1

3
(∂µU

µ + ΓµµλU
λ) =

3

a
H +

3

2

H
a
h00 +

h′

2a
+

1

a
∂jV

j, (6.146)

using h = δijhij = 2ζ(τ, x)δijδij = 6ζ(τ, x) and h00 = −2∂0ζ/H, the above expression reduces
to:

∇µU
µ =

1

a

(
3H + ∂jV

j
)
. (6.147)

As we have seen in the previous subsection the peculiar velocity contribution is strongly sup-
pressed, this can be viewed physically as long wavelength modes(which are almost constant)
can not induce substantial deviation on an inertial observer, because their spatial gradients
are very small, so safely we can ignore them. Nevertheless, in [128], the authors considered
a local influence of long modes on short ones as an effective curved universe with k 6= 0, to
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derive corrections to Maldacena’s consistency relation at ’order q2’. It is interesting to keep
tracking those terms since they potentially could induce a complete fNL vanishing, beyond
the linear order. We left the impact of these terms for future work.
Coming back to work, we need an expression for the modified scale factor. Let us consider
the time derivative of the ratio aF (τ̄)/a(τ):

d

dτ

(
aF (τ̄)

a(τ)

)
=

1

a(τ)

d aF (τ̄)

dτ
+ aF (τ̄)

d a−1(τ)

dτ
=

1

a(τ)

d aF (τ̄)

dτ̄

dτ̄

dτ
− aF (τ̄)

a2(τ)

da(τ)

dτ
,

thus this slightly deviation becomes,
d ln aF (τ̄)/a(τ)

dτ
=

(
−H(τ) +HF (τ̄)

dτ̄

dτ

)
. (6.148)

It is easy to see that in the unperturbed universe limit, one recovers zero as expected. Finally,
we must find dτ̄

dτ
, this can be achieved from the invariance of the line element between global

and CFC coordinates along the central geodesic:

ds2 = a2(τ)(ηµν + hµν)dx
µdxν = a2

F (τ̄)ηµνdx̄
µdx̄ν . (6.149)

By construction, an observer inertial only experience a temporal displacement in the CFC
frame, thus Uµdτ̄ = (dτ̄ , 0, 0, 0). Therefore the line element:

a2(τ)(η00 + h00)dτ 2 = a2
F (τ̄)η00dτ̄

2, (6.150)

where h00 receives a contribution from long modes only, and extra contribution on l.h.s. have
been neglected because they are second-order contributions. This implies

dτ̄

dτ
=

a(τ)

aF (τ̄)

(
1− 1

2
h00(τ,xc)

)
, (6.151)

replacing in (6.148)
d ln aF (τ̄)/a(τ)

dτ
=

[
−H(τ) +HF (τ̄)

a(τ)

aF (τ̄)

(
1− 1

2
h00(τ,xc)

)]
(6.152)

using (6.146) in the above expression we find:
d ln aF (τ̄)/a(τ)

dτ
=

(
−Hh00(τ,xc)

2
+

1

3
∂jV

j(τ,xc)

)
. (6.153)

Which is a reduced expression for Eq. (2.15) of [4]. Integrating the above equation:
aF (τ̄)

a(τ)
= exp

(
C∆a(xc) +

∫ τ

τ∗

ds

(
−1

2
H(τ)h00(τ,xc) +

1

3
∂jV

j(τ,xc)

))
, (6.154)

where C∆a(xc) is a time independent field. To reduce the above expression, in the comoving
gauge we have h00 = −2∂0ζ/H while the second term is k2

L suppressed, so the above expression
becomes:

aF (τ̄) =a(τ) exp

(
C∆a(xc) +

∫ τ

τ∗

ds ∂0ζ(s,xc)

)
(6.155)

=a(τ) (1 + ζ(τ,xc)− ζ(τ∗,xc) + C∆a(xc) + ...) . (6.156)

We realize that the scale factor shift is:

∆

(
aF (τ̄)

a(τ)

)
=
aF (τ̄)

a(τ)
− 1 = (ζ(τ,xc)− ζ(τ∗,xc) + C∆a(xc)). (6.157)

As we will see, the behaviour of the inflationary background determines the value of C∆a(xc).
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Time shift ξ0

Finally, one needs an equation to determine the time shift ξ0 induced by the map from the
comoving global coordinates to the observer coordinates. This time shift not only affects the
proper time that the inertial observer describes its neighborhood, but also the scale factor in
a determined way. To compute this quantity one start with the global time dependence in
terms of the Fermi conformal time, from (6.121) we know that the time shift is defined as:

∆τ(τ̄ , x̄c) =C∆τ (x̄c) +

∫ τ̄

τ̄∗

ds̄
[aF
a

(s̄, x̄c)− 1−N1(s̄, x̄c)
]
.

Integrating this expression:

∆τ(τ̄ , x̄c) =C∆τ (x̄c) +

∫ τ̄

τ̄∗

ds̄

(
ζL(s̄, x̄c)− ζL(τ̄∗, x̄c) + C∆a(x̄c)−

∂0ζL(s̄, x̄c)

H

)
=C∆τ (x̄c) + τ̄C∆a(x̄c)

∣∣τ̄
τ̄∗

+ τ̄ ζ(τ̄ , x̄c)
∣∣τ̄
τ̄∗
− τ̄ ζ(τ̄∗, x̄c)

∣∣τ̄
τ̄∗

(6.158)

Finally at the central geodesic x̄c we find

∆τ(τ̄ , x̄c) = τ̄(ζ(τ̄ , x̄c)− ζ(τ̄∗, x̄c)) + C∆τ (x̄c) + C∆a(x̄c)(τ̄ − τ̄∗). (6.159)

This time shift is completely generic under the inflationary assumptions(weather SR or USR),
but just valid along the central geodesic points x̄c, however, it can easily be extended to
its local neighbourhood around it by incorporating the next order time shift contributions,
ξ

0(1)
L (τ̄ , x̄), as gradients long wavelength modes, by doing so, we are able to recover the
full-time shift map up to k2

L corrections. Adding its leading order corrections,

∆τ(τ̄ , x̄) = ξ0
L(τ̄ , x̄) = ξ

0(0)
L (τ̄ , x̄) + ξ

0(1)
L (τ̄ , x̄)

= ∆τ(τ̄ , x̄c) + x̄i∂iF(τ̄ , x̄c) (6.160)

From (6.139) we know ∂iF = τ̄ [∂iζL(τ̄ , x̄c)− ∂iζL(τ̄∗, x̄c) + ∂iCF(x̄c)], then the time shift
becomes

∆τ(τ̄ , x̄) =C∆τ (x̄c) + C∆a(x̄c)(τ̄ − τ̄∗) + τ̄(ζ(τ̄ , x̄c)− ζ(τ̄∗, x̄c))+

x̄iτ̄ [∂iζL(τ̄ , x̄c)− ∂iζL(τ̄∗, x̄c) + ∂iCF(x̄c)] . (6.161)

Given this structure, one notices that the gradients can be resumed into the curvature per-
turbations at first order:

∆τ(τ̄ , x̄) = τ̄(ζL(τ̄ , x̄)− ζL(τ̄∗, x̄)) + C∆τ (x̄c) + C∆a(x̄c)(τ̄ − τ̄∗) + τ̄ x̄i∂iCF(x̄c), (6.162)

notice that at this point we have not assumed anything about the 3 remnant fields that
aroused from the integrations of equations (6.139), (6.155), (6.162), their fixing depends on
the inflationary conditions weather is SR, USR or a combination of both(since the later can
be understood as a transient phase until SR takes over) and the physical flatness requirement
that an inertial observer experience along the central geodesic.
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Curvature Modes Transformation

Until now we have kept the discussion quite general: just a small diffeomorphism from the
comoving coordinates to the observer coordinates. Nevertheless, we have not concerned yet
in quantities that are projected into observations, such as curvature perturbations. In this
subsection, we start from the transformation of curvature modes ζ. We consider a coordinate
transformation from x → x̄ (that in the case of attractor inflation does not change the
hypersurfaces of constant τ). However, when the time coordinate is involved it is better to
start from the definition of ζ in slices of spacetime on the surfaces Στ [129], that by definition
are related to the local number of e-folds δN(x):

δN = ζ =
log det(gij/a2)

6
, (6.163)

where gij is the induced metric on Στ . We can use this formal definition to see how ζ
transform under a small coordinate change, xµ → x̄µ = xµ − ξµ. Denoting with a bar the
transformed metric at leading order in ξ we have:

gµν → ḡµν = gµν + 2∇(µξν) = gµν + gνρ∇µξ
ρ + gµρ∇νξ

ρ, (6.164)

so that:
ḡij/a

2 = δij + (e2ζ − 1)︸ ︷︷ ︸
=∆g

δij + 2∇(iξj)/a
2. (6.165)

Using the relation log det = Tr log, and working at quadratic order in perturbations,

log(ḡij/a
2) = 2ζδij + 2∇(iξj)/a

2 − 2ζ(∂iξj + ∂jξi + 2Hξ0δij). (6.166)

Now, what we need is an expression for ∇(iξj)/a
2. First of all, we know that:

∇iξj/a
2 = ∂iξj + 2ζ∂iξj +Nj∂iξ

0 + gjρΓ
ρ
iσξ

σ/a2, (6.167)

with the following relevant contractions:

gjkΓ
k
ilξ

l/a2 = δjkΓ
k
ilξ

l = −HNjξi + δijξ
l∂lζ − 2ξ[i∂j]ζ, (6.168)

gjkΓ
k
i0ξ

0/a2 = e2ζδjkΓ
k
i0ξ

0 = Hδijξ0 + 2Hζξ0δij + ξ0∂0ζδij − ∂[iNj]ξ
0, (6.169)

gj0Γ0
iσξ

σ/a2 = NjΓ
0
iσξ

σ = NjΓ
0
ikξ

k = NjHδikξk = HξiNj. (6.170)

Replacing in Eq.(6.166)

log(ḡij/a
2) = 2ζδij + 2∂(iξj) + 2Hξ0δij + 2N(i∂j)ξ

0 + 2ξµ∂µζδij + ..., (6.171)

finally, taking the trace, we obtain:

ζ̄ =
Tr log(ḡij/a

2)

6
= ζ +

∂iξ
i

3
+Hξ0 +

N i∂iξ
0

3
+ ξµ∂µζ. (6.172)

Splitting both ζ and ζ̄ into its long and short contribution, and assigning the long wavelength
prescription ξµ = ξµL, we obtain the effective transformation for each modes

ζ̄L = ζL +
∂iξ

i
L

3
+Hξ0

L, ζ̄s = ζs +
N i
s∂iξ

0
L

3
+ ξµL∂µζs, (6.173)

whereNi = Ni(ζ) is the linear shift constraint. The above expression illustrates that the short
modes transform effectively like a scalar field, plus small correction that vanishes for attractor
inflation. As we will see in the forthcoming sections, this is due to the long modes gradients,
they go to zero on super-Hubble scales, additionally, this term does not play any role in both
the power spectrum(it cancels by symmetry) and the bispectrum(low order corrections).

117



Short Modes Transformation

As we have seen in the previous subsection, short modes of curvature in CFC are represented
by (6.173):

ζ̄s(x̄) = ζs(x̄) + ξµL(x̄)∂µζs(x̄) +
1

3
N i
s(x̄)∂iξ

0
L(x̄) (6.174)

= ζs(x(x̄)) +
1

3
N i
s(x̄)∂iξ

0
L(x̄). (6.175)

So they transform effectively as a scalar field, plus a small correction generated by the time
coordinate shift ξ0 that couples to the time shift function N i associated to the short modes.
Notice that this small correction is kL suppressed and as we will see does not contribute to
the two-point correlation function since it cancels by spatial symmetry. Explicitly the second
term reads,

∂kξ
0
L(τ̄ , x̄) = ∂k(∆τ(τ̄ , x̄c) + ∂iF(τ̄ , x̄c)x̄

i) = ∂iF(τ̄ , x̄c). (6.176)

Which at first order, it is just the peculiar velocity gradient at x̄c.

Long Modes Transformation

We start transforming the long wavelength curvature modes according to Eq. (6.173):

ζ̄L(x̄) = ζL(x̄) +
1

3
∂iξ

i
L(x̄) +Hξ0

L(x̄). (6.177)

From Eq. (6.126) we are able to identify the small temporal and spatial coordinate shift
induced by the long wavelength modes as

ξ0
L(x̄) = ∆τ(τ̄ , x̄c) + ∂iF(τ̄ , x̄c)x̄

i, (6.178)

ξiL(x̄) =

∫ τ̄

τ̄∗

dsV i(s, x̄c)+
[aF
a

(τ̄ , x̄c)− 1− ζL(τ̄ , x̄c)
]
x̄i − 1

2
Γ̄ijk(τ̄ , x̄c)x̄

jx̄k, (6.179)

taking the spatial divergence and ignoring the peculiar velocity contribution, V i, because is
k2
L suppressed. The divergence of the spatial shift becomes,

∂iξ
i
L(x̄) = 3

[aF
a

(τ̄ , x̄c)− 1− ζL(τ̄ , x̄c)
]
− 3(x̄k∂kζL(x̄) +H∂kF(τ̄ , x̄c)x̄

k), (6.180)

expanding long modes around the central geodesic ζL(τ̄ , x̄) = ζL(τ̄ , x̄c) + x̄i∂iζL(τ̄ , x̄c), and
replacing it into Eq. (6.177),

ζ̄L(x̄) = ζL(τ̄ , x̄c)−ζL(τ̄∗, x̄c) + C∆a(x̄c) +H(C∆τ (x̄c) + C∆a(x̄c)(τ̄ − τ̄∗)+
τ̄(ζ(τ̄ , x̄c)− ζ(τ̄∗, x̄c))) +O(∂i∂jζL(x̄))

ζ̄L(x̄) =H (C∆τ (x̄c)− τ̄∗C∆a(x̄c)) +O(∂i∂jζL(x̄)). (6.181)

The above expressions correspond to the curvature of long modes in the CFC around the
central geodesic. It is worth noting the consistency of this result since the physical ζL has
been entirely removed up to second order in ζ via coordinate transformation modulo fields
that depend on USR or SR condition. Remarkably, this result generalizes the expression (6)
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in the early work [5], though a full and explicit demonstration, in which not only a spatial
diffeomorphism is considered, but also generic one that is extended to the time coordinate.

Despite having analytical expressions for both short and long modes, we have not imposed
any condition on the residual fields C∆τ (x̄c), C∆a(x̄c), which are just a combination of time-
independent fields that came from integrating the equations for the scale factor aF and the
time shift ξ0, these quantities are determined by the condition that an inertial observer
can not notice the gravitational background from long wavelengths ζL, that is to say, in the
CFC frame the metric must be Minkowski, with their conformal Christoffel symbols(and their
gradients) equals to zero, which is the mathematically equivalent to the statement that metric
corrections start at quadratic order in conformal Riemann tensor. Given this condition, long
modes vanish along the central geodesic ζ̄L(τ̄ , x̄) = 0, this implies that in order to remove
them completely up to second order inside the patch we require:

C∆τ (x̄c)− τ̄∗C∆a(x̄c) = 0, (6.182)

thus,
ζ̄L(x̄) = O(x̄ix̄j∂i∂jζL(x̄c)) = ′curvature and tidal effects′. (6.183)

In effect, the long wavelength modes are subtracted completely up to second order in deriva-
tives, inside the patch, which is one of the results of [5]. Additionally, the above physical
requirement imposes constraints on the time shift and the local scale factor (6.186) that
acquire the simple form:

∆τ(τ̄ , x̄) = τ̄(ζL(τ̄ , x̄)− ζL(τ̄∗, x̄)) + τ̄(C∆a(x̄c) + x̄i∂iCF(x̄c)) (6.184)
aF (τ̄) = a(τ̄)(1 + ζL(τ̄ , x̄c)− ζL(τ̄∗, x̄c) + C∆a(x̄c)), (6.185)

where we used that the argument function change, x→ x̄, induces an irrelevant higher order
correction. The above expression is a reduction of Eq. (6.162) and (6.155) after the induced
flatness condition for the CFC frame and the remaining residual field C∆a(x̄) inside in both
of them, depends on the single field background, specifically on the property whether its is
attractor or not. For attractor inflation it is known that the superhorizon modes ’frezees’
or they do not experience a considerable growth, then ζL(τ̄ , x̄) ≈ ζL(τ̄∗, x̄), therefore for
fixing the CFC completely only C∆a(x̄c)) needs to be set. We observe the remaining term
for attractor inflation just correspond to a constant shift in the magnitud of the scale factor,
therefore, it does not play any role, so it can be chosen such that, C∆a(x̄) = CF(x̄) = 0, in
consequence:

aF (τ̄) = a(τ), ∆τ(τ̄ , x̄) = τ̄O(∂i∂jζL(x̄c)), (6.186)

for single field inflationary attractor models. This result have been obtained in [4] [5] [123].
On the other hand, for non-attractor inflation one can set C∆a(x̄) = ζL(τ̄∗, x̄) in order to
eliminate gauge mode ζL(τ̄∗, x̄)(or any arbitrariness in the choice of τ∗), then

aF (τ̄) = a(τ̄)(1 + ζL(τ̄ , x̄)), ∆τ(τ̄ , x̄) = τ̄ ζL(τ̄ , x̄) + τ̄O(∂i∂jζL(x̄c)), (6.187)

as a consequence, it is obtained C∆a(x̄) = CF(x̄) = C∆τ (x̄)/τ̄∗ = ζL(τ̄∗, x̄), for attractor
and non-attractor inflation due to ζL removal constraint. This was the last choice for resid-
ual field setting associated to the time integration of the three differential equations along
this computations. This result resembles Eq. (17) in [5] as a suggestion for "non-trivial
backgrounds".
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Second order map reconstruction

Until now we have computed the CFC expansion map recursively up to first order; neverthe-
less, it is also worth compute this expansion up to second order to incorporate higher order
corrections in correlations function, but also the potential underlying non-linear symmetries
behind this coordinate transformation. These corrective terms are reached by solving recur-
sively the spatial-like geodesic equations which are contained in the geodesic congruence at
a fixed global time in a locality around the central geodesic. Let start with the infinitesimal
coordinate transformation (6.128):

τ = τ̄ + ξ0
L(τ̄ , x̄), xi = x̄i + ξiL(τ̄ , x̄), (6.188)

the time and spatial shift can be expanded according to their spatial coordinate order around
x̄c = 0

ξµL(τ̄ , x̄) = ξ
µ(0)
L (τ̄ , x̄c) + ξ

µ(1)
L (τ̄ , x̄) + ξ

µ(2)
L (τ̄ , x̄) + ... (6.189)

For attractor inflation, both scale factors are the same (6.186), therefore, the conformal

Γ(ηµν + hµν) C(a−1
F ) + C(a)

Γ̄kij −∂kζLδij + ∂iζLδ
k
j + ∂jζLδ

k
i H(−F kδij + Fiδ

k
j + Fjδ

k
i )

Γ̄0
ij ∂0ζLδij − 1

2
(∂iNj + ∂jNi) −(∂0ζL + ∂mV

m/3)δij

Table 6.1: In this table we collect the relevant CFC conformal metric Christoffel coefficients
from [4]. We separate them into contributions from ηµν +hµν and those from the scale factor
a2/a2

F . The terms of the left(right) are useful for (non-)attractor models.

ratio in (6.157) is 1, as a consequence, the peculiar velocity potential ∂kF = 0, thus in this
scenario, terms in the second column of table (6.1) do not contribute, so their contracted
Christoffel symbols Γ̄kij(τ̄ , x̄c), Γ̄

0
ij(τ̄ , x̄c) are:

Γ̄kij(τ̄ , x̄c)x̄
ix̄j = −∂kζL(τ̄ , x̄c)x̄

2 + 2x̄i∂iζL(τ̄ , x̄c)x̄
k, (6.190)

Γ̄0
ij(τ̄ , x̄c)x̄

ix̄j = −τ̄ ∂i∂jζL(τ̄ , x̄c)x̄
ix̄j. (6.191)

Replacing in (6.128):

xk(x̄) = (1− ζL(τ̄ , x̄c)− x̄i∂iζL(τ̄ , x̄c))x̄
k +

1

2
∂kζL(τ̄ , x̄c)x̄

2, (6.192)

resumming,

xk(x̄) = (1− ζL(τ̄ , x̄))x̄k +
1

2
∂kζL(τ̄ , x̄c)x̄

2, (6.193)

where in the second line the long mode gradient was re-summed. Notice that the above
expression evidently displays the local absorption of long wavelength modes in the spatial
CFC. Moreover, and remarkably, the shape of the second order expansion of (6.193) (6.194)
terms are compatible with terms generated by dilation and SCT transformations [32], [29],
[30] in the comoving gauge when the dilation parameter is taken as λ = ζL(τ̄ , x̄c) and the
symmetry generator vector bi = ∂iζL(τ̄ , x̄c). Finally, resumming the time shift terms, we get

τ(x̄) = τ̄

(
1 +

1

2
∂i∂jζL(τ̄ , x̄c)x̄

ix̄j
)
. (6.194)
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In this case, the inertial observer’s clock is synchronized only at the central geodesics and
increases quadratically as the Hessian of ζL for nearby points, which can be completely be
ignored(k2

L suppressed).

In contrast, for a non-attractor single field scenario, the scale factor defined in the CFC
is different from the defined in global coordinates, thus its ratio, aF/a, is different from the
unity, therefore ∂kF has to be considered. Using the second column of table (6.1), one sees
that the Christoffel symbols related to the spatial coordinate vanishes whereas time do not,

Γ̄kij(τ̄ , x̄c)x̄
ix̄j =

(
−∂kζL(τ̄ , x̄c)x̄

2 + 2x̄i∂iζL(τ̄ , x̄c)x̄
k
)

(6.195)

−
(
−∂kζL(τ̄ , x̄c)x̄

2 + 2x̄i∂iζL(τ̄ , x̄c)x̄
k
)

= 0

Γ̄0
ij(τ̄ , x̄c)x̄

ix̄j = −τ̄ ∂i∂jζL(τ̄ , x̄c)x̄
ix̄j, (6.196)

gathering time shift terms altogether, one notices that a resummation is possible again:

τ(x̄) = τ̄(1 + ζL(τ̄ , x̄c) + x̄i∂iζL(τ̄ , x̄c) +
1

2
∂i∂jζL(τ̄ , x̄c)x̄

ix̄j), (6.197)

therefore, global coordinates projected onto CFC reads,

τ(x̄) = τ̄(1 + ζL(τ̄ , x̄)), xi(x̄) = x̄i. (6.198)

The above terms are analog to the expressions (6.193) (6.194), but long modes have been
absorbed in the time coordinate instead. In consequence, one can obtain a new scale factor for
this inflationary scenario as a first order mode expansion induced by the new time foliation,

a(τ) = a(τ(x̄)) = a(τ̄ + τ̄ ζL(τ̄ , x̄)) = a(τ̄)(1 +Hτ̄ ζL(τ̄ , x̄)) = a(τ̄)(1− ζL(τ̄ , x̄)). (6.199)

Comparing with (6.187) we recognize:

aF (τ̄) = a(τ̄) = a(τ)(1 + ζL(x)). (6.200)

This corresponds to the same scale factor as a function of the proper time, and one can see
that it can be bigger or smaller depending on the sign of the induced time shift. Finally, it is
worth mentioning that due to the smallness coordinate shift, maps (6.193) (6.194) (6.198) are
easily invertible by just changing the function argument x̄→ x, but most importantly, these
type diffeomorphisms are useful to deduce correlation functions through shift symmetries
[35] [130]. In previous sections, we explicitly showed the mapping for both attractor and
non-attractor scenarios. The physical interpretation of the induced CFC is different for each
type of inflationary model. For non-attractor inflation, it is better redefine the comoving
time slice for one that a inertial observed experiences, since long modes keep evolving in
time, so they effectively can be absorbed in another time varying function such as the scale
factor as a suitable option leaving the spatial map intact. Schematically, if we start with
a perturbed universe: ds2 = a2(τ) [−(dτ)2 + (1 + 2ζL(x))(dx)2)]. This can be arranged to
ds2 = a2(τ)(1 + 2ζL(x)) [−(1− 2ζL(x))(dτ)2 + (dx)2)] as the same manner for attractor case,
moreover, one can locally absorb long wavelength modes around xc by defining a new time
foliation, dτ̄ = (1 − ζL(x))dτ , implying, the scale factor transforms under this time shift
as, a(τ + ∆τ) = a(τ)(1 +H∆τ), this implies that a(τ(x)) = a(τ̄)(1 − ζL(x̄)). Therefore, if
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Attractor Non-attractor
ξ

0(0)
L (τ̄ , x̄) 0 τ̄ ζL(τ̄ , x̄c)

ξ
0(1)
L (τ̄ , x̄) 0 τ̄ ∂iζL(τ̄ , x̄c)x̄

i

ξ
0(2)
L (τ̄ , x̄) τ̄ 1

2
(∂i∂jζL(τ̄ , x̄c))x̄

ix̄j τ̄ 1
2
(∂i∂jζL(τ̄ , x̄c))x̄

ix̄j

ξ
i(0)
L (τ̄ , x̄) 0 0

ξ
i(1)
L (τ̄ , x̄) −ζL(τ̄ , x̄c)x̄

i 0

ξ
i(2)
L (τ̄ , x̄) −∂jζL(τ̄ , x̄c)x̄

ix̄j + 1
2
∂iζL(τ̄ , x̄c)x̄

2 0
aF (τ̄) a(τ) a(τ̄)

(ẽ0)µ (1− ∂0ζL/H, V i) (1 + ζL − ∂0ζL/H, V i)

(ẽj)
µ (−∂jζL/H, (1− ζL)δij) (−∂jζL/H, δij)

Table 6.2: Results: this is a summary of the derived perturbative quantities for the CFC
construction evaluated at the central geodesic. All the geometrical objects of interest are
displayed here; in particular, notice the tetrad vectors for both types of scenarios in which
is the unobservable long modes have been absorbed either in the spatial components or the
temporal components. In the last two lines the coordinates (τ̄ , x̄c) was omitted for brevity.

we ignore O(ζ2
L) corrections the line element in this new set of coordinates becomes ds2 =

a2(τ̄) [−(dτ̄)2 + (dx̄)2], or in other words conformally flat.

On the other hand, when inflation has reached an attractor phase(or simply attractor
scenario) the modes superhorizon modes change their time behaviour and finally freeze thus
conserved. Hence, the suitable alternative is a spatial diffeomorphism keeping the time
component intact, dτ = dτ̄ . Qualitatively, if we start with a perturbed metric: ds2 =
a2(τ) [−(dτ)2 + (1 + 2ζL(x))(dx)2)] then the long wavelength perturbations can be absorbed
by defining a new spatial coordinate, such as dx̄ = (1 + ζL(x))dx. In consequence, the metric
becomes conformally flat, ds2 = a2(τ̄) [−(dτ̄)2 + (dx̄)2].

6.7 Short Modes Power Spectrum

Given the last expression for the coordinate time shift, now we know an analytic expression
for short modes in CFC, using this, we proceed to compute the correlation function short
modes.

〈
ζ̄s(x̄2)ζ̄s(x̄1)

〉
=

〈[
ζs(x̄1) +

1

3
N i
s(x(x̄1))∂iξ

0
l (x̄1)

] [
ζs(x̄2) +

1

3
N i
s(x(x̄2))∂iξ

0
l (x̄2)

]〉
= 〈ζs(x2)ζs(x1)〉+

1

3

〈
ζs(x1)N i

s(x(x̄2)
〉
∂iξ

0
l (x̄2) +

1

3

〈
ζs(x2)N i

s(x(x̄1)
〉
∂iξ

0
l (x̄1) + ...

= 〈ζs(x2)ζs(x1)〉+
1

3

〈
ζs(x1)N i

s(x(x̄2)
〉
Fi(τ̄ , x̄c) +

1

3

〈
ζs(x2)N i

s(x(x̄1)
〉
Fi(τ̄ , x̄c) + ...

= 〈ζsζs〉 (τ, r) +
1

3
Fi(τ̄ , x̄c)

〈
ζsN

i
s

〉
(τ,−r) +

1

3
Fi(τ̄ , x̄c)

〈
ζsN

i
s

〉
(τ, r) + ...

(6.201)
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The time shift in the comoving gauge has the form: N i = ∂iψ = ∂i
(
− ζ
H + ε∂−2∂0ζ

)
, then,

its correlator with the short modes is〈
ζs(x1)N i

s(x2)
〉

=
1

(2π)3

∫
d3k eik(x1−x2)ikiζ(k)ψ(k)

=− 1

(2π)3

∫
d3k eik(x2−x1)ikiζ(k)ψ(k)

=−
〈
ζs(x2)N i

s(x1)
〉
, (6.202)

which implies the parity property 〈ζsN i
s〉 (−r) = −〈ζsN i

s〉 (r). Therefore, the two last term of
(6.201) cancel each other exactly, as a consequence, the correlation function for short modes
transform effectively as a scalar field for both SR and USR inflationary models under a small
induced diffeomorphism:〈

ζ̄s(x̄2)ζ̄s(x̄1)
〉

= 〈ζs(x2)ζs(x1)〉 = 〈ζsζs〉 (τ, r), (6.203)

more explicitly, by expanding the r.h.s. of (6.203):

〈ζsζs〉 (τ, r) = 〈ζsζs〉 (τ̄ , r̄) + ξµ(τ̄ , r̄)∂µ 〈ζsζs〉 (τ̄ , r̄) (6.204)

where the global coordinates were expanded in terms of CFC ri = r̄i+ξi(τ̄ , r̄), τ = τ̄+ξ0(τ̄ , r̄).
Moreover, it is useful expand the coordinate shifts order by order, this separation allows us
visualize each contribution of CFC coordinate expansion in a clear manner,〈

ζ̄sζ̄s
〉

(r̄) = 〈ζsζs〉 (r̄) + ξ0
L(τ̄ , r̄)∂0 〈ζsζs〉 (r̄) + ξiL(τ̄ , r̄)∂i 〈ζsζs〉 (r̄)

= 〈ζsζs〉 (x̄) + (ξ
0(0)
L (τ̄ , r̄) + ξ

0(1)
L (τ̄ , r̄))∂0 〈ζsζs〉 (r̄)

+ (ξ
i(0)
L (τ̄ , r̄) + ξ

i(1)
L (τ̄ , r̄))∂i 〈ζsζs〉 (r̄).

With this expression on hand, let’s look at attractor inflation, as we have seen ξ0 = 0, and
keeping the first order terms, the 2-pt correlation function reads,〈

ζ̄sζ̄s
〉

(r̄) = 〈ζsζs〉 (r̄) + ζL(τ̄ , x̄c)x̄
i∂i 〈ζsζs〉 (r̄), (6.205)

Fourier transforming this expression, we get

P̄ (τ̄ , k̄s) =

(
1 + ζL(τ̄ , x̄c)

∂ ln(k3
sP (τ̄ , k̄s))

∂ ln ks

)
P (τ̄ , k̄s). (6.206)

On the other hand, for non-attractor inflation, it has been found that the spatial shift is
ξi = 0, thus for (6.203) the time shift accounts. Replacing the first order contribution from
(6.197) into (6.203) 〈

ζ̄sζ̄s
〉

(r̄) = 〈ζsζs〉 (r̄) + τ̄ ζL(τ̄ , x̄c)∂0 〈ζsζs〉 (r̄), (6.207)

finally, Fourier transforming the short modes:

P̄ (τ̄ , k̄s) =

(
1 + ζL(τ̄ , x̄c)

∂ lnP (τ̄ , k̄s)

∂ ln τ̄

)
P (τ̄ , k̄s). (6.208)

Equations 6.203 and 6.208 are the power spectrum for the aforementioned scenarios in CFC;
and it can be observed they contain first order one realization effects from IR physics.
We will discuss their origin in the conclusions.
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6.8 Bispectrum Squeezed Limit

6.8.1 Observed fNL in single field Attractor models

It is known that the squeezed limit of the three-point function is understood as the correlation
between a long mode that modulates 2-point correlation function in Fourier space, the so
called background wave argument. In the absence of modulation, the 2-point function does
not experience any contribution from longer modes and thus remains the same. It is worth
mentioning that in this limit for single field inflation only gravitational interactions matters,
therefore, this limit is model independent; moreover, their quadratic corrections start at the
second order as k2

L/k
2
s and they are a model dependent [101] [103]. Thus in the limit k3 → 0,

we know:
lim
k3→0

(2π)3δ3(k1 + k2 + k3)B(k1, k2, k3) = 〈ζ(k3)〈ζ(k1)ζ(k2)〉〉 (6.209)

and this result is valid at any time during inflation. Particularly, for single field slow roll
inflation, it is well known they satisfy the well know Maldacena’s consistency relation [28]:

lim
k3→0

Bζζζ(k1, k2, k3) = −(ns − 1)P (k3)P (k1) (6.210)

where the P (k) correspond to the power spectrum of a determined model, that could depend
for example, the speed of sound, and ns correspond to the spectral index of the scalar power
spectrum. From CFC construction we know that the power spectrum receives long mode
contributions, which first order correction correspond to a dilatation by a factor ζL:

P̄ (τ̄ , k̄s) = P (k̄s) + ζL(τ̄ , x̄c)
∂ ln(k3

sP (k̄s))

∂ ln k̄s
P (k̄s), (6.211)

by using (6.206), the squeezed limit of the bispectrum in the CFC:

lim
kL→0

Bζ̄ζ̄ζ̄(k̄L, k̄1, k̄2) = lim
kL→0

Bζζζ(k̄L, k̄1, k̄2) +
∂ ln(k̄3

sP (k̄s))

∂ ln ks
P (k̄L)P (k̄s) (6.212)

= −(ns − 1)P (k̄L)P (k̄s) + (ns − 1)P (k̄L)P (k̄s) (6.213)

thus,
lim
kL→0

Bζ̄ζ̄ζ̄(k̄L, k̄1, k̄2) = 0. (6.214)

As a result, in the CFC frame the superhorizon long modes do not couple with short modes, or
in simple words they do not interact gravitationally, as a consequence, a free-falling observer
measures a vanishing fNL, as dictate the principle of equivalence.

6.8.2 Observed fNL in Single Field Non-attractor Models

For single field non-attractor models, the situation is quite similar to attractor models; a
longer mode modulates the short scale physics changing the effective background. In this
scenario, the squeezed limit of the three-point function is radically different; it violates the
Maldacena’s consistency relation for canonical single field inflation, producing a local non-
gaussianity with magnitude fNL = 5/2 [35, 120, 121, 130]. However, recent works have shown
a suppression of the latest for a smooth transition by a factor e−∆N , where ∆N means the
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duration of the transition between the non-attractor to the attractor phase in terms of the
e-folding [131]. Our interest is a non-attractor phase, so we consider the former. For this
scenario, the squeezed limit for canonical single field reads:

lim
kL→0

Bζ̄ζ̄ζ̄(k̄L, k̄1, k̄2) = 6P (k̄L)P (k̄s) (6.215)

Now considering (6.208), and the fact that ζ ,the squeezed limit of the bispectrum in the
CFC frame:

lim
kL→0

Bζ̄ζ̄ζ̄(k̄L, k̄1, k̄2) = Bζζζ(k̄L, k̄1, k̄2) +
∂ lnP (τ̄ , k̄s)

∂ ln τ̄
P (k̄L)P (k̄s) (6.216)

= 6P (k̄L)P (k̄s)− 6P (k̄L)P (k̄s) (6.217)

thus,

lim
kL→0

Bζ̄ζ̄ζ̄(k̄L, k̄1, k̄2) = 0. (6.218)

Thus for both scenarios, the result is the same: superhorizon physics do not affect shorter
scales for an inertial observer, independently of the underlying background behavior. The
interpretation of this result is elucidated by remembering the meaning of Conformal Fermi
Coordinates, that is to say, equivalence principle guarantees that always exists sufficient
small vicinity in which an inertial observer describe the spacetime as it were flat, that is to
say, Minkowski, erasing in this way any small global curvature, in this footing these results
are protected by the local flatness theorem.
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Chapter 7

Window Functions and Deconvolution
Method for The Cosmology Large
Angular Scale Surveyor(CLASS)
Telescope

Precision cosmology not only is gestated in constructing more telescope with thousands of
detectors with high responsivity but also, two additional endeavors that are equally impor-
tant: First, answering questions of what does it mean a measurement in cosmology. Second,
how systematic errors are understood and modeled. In this chapter, we will address the later
by understanding one of the sources of systematic errors, the beams.

7.1 Beams and Window Functions

Knowledge of the beam profiles is of critical importance for interpreting data from CMB
experiments. In algorithms for recovering the CMB angular power spectrum from a map,
the output angular power spectrum is divided by the window function to reveal the intrin-
sic angular power spectrum of the sky. Thus, the main beam and its transform (response
function) directly affect cosmological analyses. Typically, the beam must be mapped to less
than 30 dB of the peak to achieve 1% accuracy on the angular power spectrum. The CLASS
40GHz calibration is done entirely with the Moon profile, which fills the main lobes and side-
lobes. For most other CMB experiments, insufficient knowledge of the beams affects both
the calibration and window function.

Although it is traditional, and often acceptable, to parameterize beams with a single one
or two-dimensional Gaussian form, such an approximation is not useful for CLASS. This is
because at the level to which the beams must be characterized, they are intrinsically non-
Gaussian. Moreover, the CLASS beams can be treated as azimuthally symmetric because
each pixel is observed with multiple orientations. The symmetric beam approximation allows
us avoid many of complications associated with asymmetric beams.
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Figure 7.1 shows the beams in profile after symmetrization. In the Moon analysis, the
data is binned into pixels generating a map of approximately 20 x 20 degrees and then is
azimuthally averaged in rings of width ∼ 0.1(degrees). Due to noise, the maximum value in
a map is often not on the best symmetry axis, though it is generally within 1 pixel of it. The
symmetrized beam has the same solid angle as the raw beam to < 0.3%. The symmetrized
beam normalized with respect to its solid angle if often denoted b(θ). In the following we
discuss how b(θ) is parameterized by using the Hermite functions, how the window functions
are computed, and how the uncertainties in the window functions are propagated through to
the CMB angular power spectrum. The notation is summarized in Table (7.1).

Table 7.1: Notation

Symbol Description
ΩB ................ Beam solid angle
σB ................ Width of a Gaussian beam
FWHM ......... Full width at half maximum
B(θ) ............. Beam profile normalized with

∫
B(θ)dΩ = 1

b(θ) ............... Beam normalized to unity at θ = 0

Bl ................. Beam response function of B(θ)

bl .................. Beam response function normalized to unity at l = 0

wTTl ............... Temperature Window function normalized to unity at l = 0

ΣB,ll′ .............. Beam covariance matrix for Bl

Σb,ll′ ............... Beam covariance matrix for bl
Σw,ll′ .............. Temperature Window function covariance matrix

Mathematically the beam is a kernel used to convolved the sky. In other words the
measured temperature anisotropy is different from the true sky. Qualitatively the beam
function acts as a low pass filter for the angular multipoles. Usually the multipoles l = 0
or l = 1 receives the true value because larger scales are unaffected. Particularly if an
infinite resolution experiment were constructed the beam would be nothing but the delta
function defined on the 2-sphere and the respective window function would be the unity. For
intermediate resolution it is known that the wider the beam, narrower the window function.
This behavior can be captured by the simplest model: an azimuthally symmetric Gaussian
beam

B(θ) = exp

(
−1

2

θ2

σ2

)
. (7.1)

The polar angle θ is defined relative to the line of sight and σ the gaussian width it is common
in the literature to define an equivalent quantity for the beam width called the full width at
half maximum (FWHM), which is the angular separation at which Eq. 7.1 reaches 0.5 value

θFWHM =
√

8 ln 2σ. (7.2)

Moreover, we can define the gaussian beam normalized by its solid angle, ΩB =
∫
dΩB(θ):

b(θ) =
1

ΩB

exp

(
−1

2

θ2

σ2

)
. (7.3)

127



This beam can be expanded in terms of spherical harmonics,

b(θ) =
lmax∑
l=0

∑
m

√
(2l + 1)

4π
blmYlm(θ, φ), (7.4)

with the expansion coefficient given by the projection:

blm =

√
4π

(2l + 1)

∫
dΩb(θ, φ)Y ∗lm(θ, φ). (7.5)

Since b(θ) does not depend on φ, the unique modes with non vanishing contribution are the
modes m = 0, blm = blδ0m:

b(θ) =
∑
l=0

blYl0(θ, φ), with bl =

∫
dΩb(θ)Pl(cos θ) (7.6)

the bl’s approximately are,

bl = exp

(
− l(l + 1)

2
σ2
b

)
. (7.7)

The above expression defines the beam response function. Additionally, we can define similar
quantities for polarization. For perfectly co-polar beam and assuming fully polarized detec-
tors, with no sensitivity to circular polarization. The beam Q and U Stokes parameter can
be obtained from the azimuthally symmetric beam as

Qb ± iUb = −b(θ)e±2iφ. (7.8)

This can be expanded:

Qb ± iUb = −
∑
lm

√
2l + 1

4π
(bElm ∓ ibBlm)∓2Ylm(θ, φ) (7.9)

as a spin-2 field, which can be represented in spherical harmonic of spin-2, ±2Ylm. In the case
of a fully azimuthally symmetric beam [132], its harmonic spin-2 representation reduces to

bPl = −(8π)
(l − 2)!

(l + 2)!

∫
dθ sin θb(θ)−2P

2
l (cos θ) (7.10)

where the supercripts label P = E,B, and −2P
2
l is a Legendre polynomial of spin−2. As

a main feature, its harmonic representation starts from l = 2, since the l = 0, 1 are erased
when the rising and lowering operators of spin ±2 acts over Y m

l [132]. For an azimuthally
symmetric beam:

bPl = exp

(
−(l(l + 1)− 4)

2
σ2
b

)
. (7.11)

Beams in CMB analysis mathematically correspond to a kernel defined on the 2-sphere,
acting on the true sky as

T̃ (n̂2) =

∫
dΩ1b(n̂2, n̂1)T (n̂1) (7.12)
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where T̃ is the measured temperature in the direction n̂2. Receiving temperature weighted
contributions from n̂1 and noise has not been included. The importance of the beam in the
analysis is that it weights the true power spectrum on the sky. Let us suppose we have a
generic scalar field defined on the 2-sphere as the CMB temperature fluctuations, this field
can be decomposed into the spherical harmonic basis:

T (n̂1) =
∑
lm

TlmYlm(n̂1), (7.13)

or compactly, in a coordinate free way:

|T 〉 =
∑
lm

Tlm|lm〉 (7.14)

In the same manner the beam as a kernel in Eq.(7.12) is decomposed as

b(n̂2, n̂1) =
∑
l1l2

∑
m1m2

bl2m2l1m1Y
∗
l2m2

(n̂2)Yl1m1(n̂1) (7.15)

where n̂1, n̂2 are two sky direction and bl2m2l1m1 are the components of the beam matrix that
reduces to bl1δl1l2δm1m2 for symmetric beams. It is useful to define the beam operator as:

b̂ =
∑
l1l2

∑
m1m2

bl2m2l1m1|l2m2〉〈l1m1| (7.16)

since it reduces an analytic expression to an algebraic one. The convolution Eq.(7.12) is
clearer

|T̃ 〉 = b̂|T 〉 =
∑
l1l2

∑
m1m2

bl2m2l1m1Tl1m1|l2m2〉

where T̃ is the convolved temperature vector. The coordinate free representation is simpler
to manipulate than the real space convolution (7.12), but the real space convolution is more
intuitive. For example a convolution is. Projecting in the real basis the Eq.(7.17) becomes

T̃ (n̂2) =
∑
l1l2

∑
m1m2

bl2m2l1m1Tl1m1Yl2m2(n̂2). (7.17)

In effect, we can identify easily the measured map coefficient T̃l2m2 as:

T̃l2m2 =
∑
l1m1

bl2m2l1m1Tl1m1 . (7.18)

With this definition it easy to compute the power spectrum for temperature 〈T̃ |T̃ 〉:

〈T̃ |T̃ 〉 =
∑
l′1l2

∑
m′2m1

T̃l′2m′2T̃l2m2〈l′2m′2|l2m2〉 =
∑
l′2m
′
2

(
T̃l′2m′2T̃l2m2

)
(7.19)

=
∑
l′2m
′
2

∑
l′1l1

∑
m′1m1

b∗l′2m′2l′1m′1bl
′
2m
′
2l1m1

Tl′1m′1Tl1m1

 , (7.20)
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identifying the coefficients as:

|T̃l′2m′2|
2 =

∑
l′1l1

∑
m′1m1

b∗l′2m′2l′1m′1bl
′
2m
′
2l1m1

Tl′1m′1Tl1m1 (7.21)

Defining the ensemble average C̃l′2m′2 = 〈|T̃l′2m′2|2〉:

C̃l′2m′2 =
∑
l′1l1

∑
m′1m1

b∗l′2m′2l′1m′1bl
′
2m
′
2l1m1

Cl′1δl′1l1δm′1m1
=
∑
l′1

∑
m′1

|bl′2m′2l′1m′1|
2Cl′1 (7.22)

Notice that despite the fact that Tlm’s do not have any correlation in m and l the measured
T̃lm’s are not absent of correlation. In general, beam asymmetries induce m-dependence
for the measured angular power spectrum C̃l′m′ . Additionally, for estimating the primordial
power spectrum we can take average over m and relabel l and m, therefore

〈C̃l′〉 =
∑
l

1

(2l + 1)

∑
mm′

|bl′m′lm|2〈Cl〉, (7.23)

or compactly as
〈C̃l′〉 =

∑
l

Ml′l〈Cl〉. (7.24)

For a particular case in which matrixMl′l is nothing but the window function for a symmetric
beam, wlδl′l, ones gets:

〈C̃l′〉 = wl〈Cl〉. (7.25)

The above expression constitutes the relationship between the measured power spectra C̃l
and the true value Cl. The window function wl in this case for temperature corresponds
to the weights for different multipoles, therefore its understanding its critical for any CMB
analysis.

7.2 Symmetric Moon Temperature Model
A measured moon map, T̃ , can be modeled as the convolution between the moon as uniform
disc T of an angular radius a, and a symmetric beam, B:

T̃ = T ∗B +N , (7.26)

where a small noise component N was added. This convolution can be represented in k-
domain by applying the Fourier projector F−1(F(·)) and using the Fourier representation of
the uniform disc, 2πa2J1(ka)/ka with J1(x) the Bessel function of the first kind; thus,

T̃ (θ, φ) =
a

(2π)

∫
R2

dkeik·x
J1 (ka)

k
B(k) +N(θ, φ). (7.27)

It is suitable to use the rotational symmetry of the convolved signal by doing the following
substitution: x = θ cosφ, y = θ sinφ; the identity cos ξ cosφ + sin ξ sinφ = cos(ξ − φ); and
making a change of variables ξ − φ = ψ. So,

T̃ (θ) =
a

(2π)

∫ ∞
0

∫ 2π

0

dkdψeikθ cosψJ1 (ka)B(k) +N(θ, φ). (7.28)
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Additionally, by using the integral representation of the zeroth order Bessel function of the
first kind, 2πJ0(z) =

∫ 2π

0
dψe±iz cosψ and taking the angular average of the noise 〈N(x)〉φ =

N(θ), then the observed temperature map is only a function of θ:

T̃ (θ) = 2πa

∫ ∞
0

dkJ0(kθ)J1 (ka)B0(k) +N(θ), (7.29)

where B0(k) is the 0-th Hankel transform of the beam defined by B0(k) =
∫∞

0
dθθB(θ)J0(kθ).

The above analytical expression is the model of the moon-beam convolution. Notice that it
has been reduced from 2-dimensional convolution (two integrals) to a single 1-dimensional
integral expression by using the rotational symmetry of both functions. This reduces the
fitting computation process.
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Figure 7.1: Average beam profile. The shaded region denotes a 1-σ of uncertainty envelope
around the beam average along the season.

7.2.1 Beam Fitting with Convolution

Since the contribution from non-Gaussian components of the symmetrized beam modify
significantly the CMB analysis, it is necessary to quantify and parametrize these deviations
with some complete basis. The natural way to capture these effect is by projecting the
symmetrized beam into the Hermite basis (as the quantum harmonic oscillator) since they
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parametrize these deviations from gaussianity and form an orthonormal basis. Thus the
Hermite expansion is given by

B(θ) =
Nmax∑
j=0

a2jB2j

(
θ

σb

)
, (7.30)

where θ is the angular distance from the beam center, σb corresponds to the standard devia-
tion of the gaussian component and Bj to their corrections. Explicitly the above expression
is

B(θ) =
Nmax∑
j=0

a2j
1√

22j(2j)!
√
π
H2j

(
θ

σb

)
exp

(
−1

2

θ2

σ2
b

)
, (7.31)

where 2j is an even number and Nmax correspond to maximum number of Hermite functions
implemented. This expansion allows us to capture and parametrize the small features that
deviates from the Gaussianity. This basis has already been implemented in [133]. Thus in
order to obtain the beam shape from moon scans data, we need to fit a certain number of
Hermite functions to the beam, this number can be estimated if we note that the n-Hermite
polynomials have a maximum at θn,max = ±σb

√
2n, and then they decay as a Gaussian. Since

our effective beam has its last relevant feature at ∼ 7.0 deg. and σb ∼ 0.65 Fig.(7.1), this
implies b2Nmaxc = 44 imposing an upper limit, Nmax ≤ 22, for the beam expansion.

Replacing Eq.(7.31) into Eq.(7.29) each of these modes contributes as:

T̃2j(θ) = 2πa

∫ ∞
0

dkJ0(kθ)J1 (ka)B0,2j(k) (7.32)

to the moon temperature field. The T̃2j(θ) corresponds to the temperature contribution
of B0,2j(k), which is the 2D-Hankel transformation of B2j(θ). Then the temperature map
Eq.(7.29) can be expanded linearly as,

T̃ (θ) =
∑
j

a2jT̃2j(θ) +N(θ). (7.33)

Therefore, if the coefficients set a2j are found, the beam shape Eq.(7.31) is determined. Since
we are interested only in the beam shape it is suitable to normalize the composed map at
θ = 0 to the unity. If N(0)� T̃ (0), then:

t̂(θ) =

∫∞
0
dkJ0(kθ)J1 (ak)B0(k)∫∞
0
dkJ1 (ak)B0(k)

+ n(θ). (7.34)

with n(θ) = N(θ)/T̃ (0) and B0(k) the 2D-Hankel transform of the beam. Additionally,
to compute the Hankel transform of the B2j functions and convolve analytically the basis
Eq.(7.32) to get Eq.(7.33) and (7.34), we can use the fact that the even Hermite polynomials
are composed of even monomials as:(

θ

σb

)2n

exp

(
− θ2

2σ2
b

)
⊆ B2n(θ) = H2j

(
θ

σb

)
exp

(
−1

2

θ2

σ2
b

)
,with (7.35)
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with n ≤ j, whose Hankel transform are:

H0

[(
θ

σb

)2n

exp

(
− θ2

2σ2
b

)]
(k) = 2nσ2

bΓ (n+ 1) ·1 F1

(
n+ 1; 1;

−σ2
bk

2

2

)
. (7.36)

Where 1F1(a, b, z) are the confluent hypergeometric functions of the first kind. This allows
us to obtain an analytical expression in Fourier representation for different Hermite modes,
as a consequence, each component of the convolved basis, T̃2j(θ), is determined exactly as an
integral representation of known functions.

Returning to Eq.(7.34) and using the convolved Hermite basis Eq.(7.36), the normalized
moon-beam model Eq.(7.32) can be expanded in terms of the components of this basis.

t̂(θ) =

∑Nmax
j=0 a2jT̃2j(θ)∑Nmax
j=0 a2jT̃2j(0)

+ n(θ) (7.37)

The above expression is symmetric under a rescaling transformation T̃ → aT̃ . Therefore to
avoid a scale degeneracy in the set coefficient {a2n}, it is suitable to choose one of them to
be unity, for instance a0, and proceed with the fitting procedure, thus

t̂(θ) =
T̃0(θ) +

∑Nmax
j=1 a2jT̃2j(θ)

T̃0(0) +
∑Nmax

j=1 a2jT̃2j(0)
+ n(θ). (7.38)

The above expression gives the fitting coefficients for the set a2j and its respective covariance
matrix Σa,jj′ . The figure 7.2 displays the symmetrized convolved moon signal, the fit to this
signal and the deconvolved beam.

After deconvolving the beam from the moon contributions, we can construct its window
function using Eq.(7.6). The figure (7.3) shows the temperature window function with its
fractional uncertainty uncluded.

Figure(7.4) shows the uncertainties of the convolved beam compared with the beam. The
red line represent their fractional deviation from the true value, showing that a deconvolution
procedure is important for higher l.

Table 7.2: Window function parameters

Parameter Value
σb(deg) ................ 0.665± 0.002

FWHM(deg) ....... 1.552± 0.005

Ωb·10−4(sr2) ........ 7.938± 0.008

lw=0.5 .................... ∼ 110

lw=0.2 .................... ∼ 165

lmax
[

∆wl
wl

% < 0.01
]
... ∼ 225

Nmax ..................... 22
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Figure 7.2: Beam profile: the red line represents the symmetrized convolved signal between
the moon and the beam(T ∗ B) with its respective fit using Eq.(7.38)(green line), whereas
the blue dashed line represent the deconvolved beam.

7.2.2 Uncertainty Propagation

The procedure of combining power spectra requires the full covariance matrix of the individual
cross-power spectra. The full covariance matrix for CMB analysis receives contribution from
well know canonical principal sources: cosmic variance, instrument noise, mode coupling due
to foreground mask, point source subtraction errors, uncertainty in the window function and
the overall calibration uncertainty. This covariance matrix can be expanded as

Σfull = Σc. variance + Σmasking + Σpoint sources + Σbeams + Σinstrument noise (7.39)

In this subsection we are concerned in the last term. These errors correspond to the uncer-
tainty in the beam window function, wl. This errors arise from fluctuations in the window
function which cause the measured power spectrum C̃l to differ from our convolved spectrum
wlCl, where wl is the estimated window function. Cross window functions are computed as
the product of beam response functions:

wijl = bilb
j
l (7.40)

with i, j = T,E,B. When at least one component correspond to E or B the window function
starts at l = 2, since the l = 0, 1 are erased when the rising and lowering operators of spin
±2 acts over Y m

l [132] for uncertainty propagation.
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Figure 7.3: Temperature-temperature window function: The upper panel show the l depen-
dence of the window function acting as low pass filter. The bottom panel shows its fractional
uncertainty.

The expansion Eq.(7.31) systematically provides a straightforward way to derive the co-
variance matrix associated with the window function; from this expansion the errors on the
beam transform propagates from the basis components

∆bil = bil(~a)− 〈bil〉 =
N∑
n=0

∂bil
∂an

(an − 〈an〉) =
N∑
n=0

∂bil
∂an

∆an. (7.41)

Therefore the beam covariance matrix between bil and b
j
l′ is defined as:

Σij
b,ll′ = 〈∆bil∆bjl′〉 =

∑
n,n

∂bil
∂an

∂bjl′

∂an′
〈∆an∆an′〉 =

∑
n,n

∂bil
∂an

∂bjl′

∂an′
Σa,nn′ . (7.42)

This matrix has units of sr2, and is independent of the Moon’s temperature, and as expected
its magnitude is large at low l and at high l for calibration and sensitivity loss, respectively.
Moreover, if we note that the beam is normalized by its solid angle, bil = Bi

l/B
T
l=0 at l = 0,

then the uncertainty at l = 0 is fixed to 0, but it increases at high l.

Σij

b,ll′
=

1

(BT
l=0)2

[
Σij

B,ll′
+ bilb

j

l′
ΣTT
B,00 − bilΣTj

B,0l′
− bj

l′
ΣiT
B,l0

]
(7.43)

the diagonal above expression Eq.(7.43) gives us the standard deviation of the beam response
function Fig.7.2 and its off-diagonal element have the information of modes coupling. In the
same manner for the window function, wI .

ΣIJ
w,ll′ = 〈∆wIl ∆wJl′〉 = wIl w

J
l′

(
Σij
b,ll′

bilb
j
l′

+
Σi′j′

b,ll′

bi
′
l b
j′

l′

+
Σi′j
b,ll′

bi
′
l b
j
l

+
Σij′

b,ll′

bilb
j′

l′

)
(7.44)

where I = ii′, J = jj′ corresponding to T,E,B. This covariance matrix enters directly to the
likelihood function to constrain cosmological parameter and therefore is used for any CMB
analysis. Moreover, to characterize it completely it is sufficient have knowledge about the
beam covariance.
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Figure 7.4: Fractional uncertainty comparison: The blue and the light blue contours rep-
resent the fractional uncertainty of beam and the convolved beam, respectively. The red
line correspond to the fractional deviation between the convolved beam and the deconvolved
beam, this effect is significant for higher l. The negative tendency can be interpreted as a
lack of power for higher l since the moon convolution softens the small beam features that
adds extra amplitude.

7.3 Conclusions

The main features of the beams in the40 GHz band (Q-band) for CLASS experiment have
been presented in real and harmonic representation. The beam solid angle, which is necessary
for instrument calibration is given with 1% of precision. The uncertainties in the window
function are typically < 1.0% at the range 0-225, multipoles of the CLASS experiment that
constrain the reionization optical depth and a potential large angular scale B-mode signal.
These values do not include all systematic effects.

We have also showed how the moon deconvolution formalism improved the window func-
tion analysis. This construction is generic, systematic, and easy to implement. Moreover,
this semi-analytic method is computationally low cost, In addition to this, We have not in-
corporated second order effects corresponding to the yearly variation of the moon angular
diameter due to its orbit. We suspect that this constitutes a negligible effect.

In addition to this, we have provided a formalism to propagate the beams errors into
the cosmological likelihood, encapsulated in the beam covariance matrix. The components
of covariance matrix are small. This can be attributed to the high signal-to-noise moon
measurement. As a consequence, the small uncertainties implies that the solid angle is
determined with high accuracy. This high-precision estimate of the window function and
associated errors will be important when comparing CLASS to other data for calibration.
Moreover, the low-l off-diagonal components show a small and basis-dependent correlation
that is worth mentioning, since it can induced small mode couplings. Furthermore, the
magnitude of its off-diagonal components are strictly smaller than its diagonal components.
Therefore, approximated matrix inversion procedures are a suitable fit for this covariance

136



0 50 100 150 200 250
l

0

50

100

150

200

250

l

TT
bll

0.0000000

0.0000003

0.0000006

0.0000009

0.0000012

0.0000015

0.0000018

0.0000021

0.0000024

0.0000027

Figure 7.5: Temperature-temperature beam covariance matrix in harmonic representation.

matrix, reducing the computational cost of its inversion. For all these reasons, the Hermite
functions are an appropriate basis to capture the beam deviation from Gaussianity.
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7.4 Chapter Appendix
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Figure 7.6: Temperature-Temperature window function: The upper panel show the l depen-
dence of the window function acting as low pass filter. The bottom panel shows its fractional
uncertainty.
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Figure 7.7: Temperature-Polarization window function. P = E,B. The upper panel show
the l dependence of the window function acting as low pass filter. The bottom panel shows
its fractional uncertainty.

138



0.00
0.25
0.50
0.75
1.00

w
PP l

0 25 50 75 100 125 150 175 200 225
Multipole l

0.010
0.005
0.000
0.005
0.010

w
PP l

/w
PP l

Figure 7.8: Polarization-Polarization window function. P = E,B. The upper panel show
the l dependence of the window function acting as low pass filter. The bottom panel shows
its fractional uncertainty.
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Figure 7.9: Temperature-Temperature beam covariance matrix in harmonic representation.
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Figure 7.10: Polarization-Polarization beam covariance matrix in harmonic representation.
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Figure 7.11: Polarization-Temperature beam covariance matrix in harmonic representation.
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Chapter 8

Conclusions, Discussions, and Overview

In the first three chapters, we reviewed all the everybody-must-knowcompletely both con-
ceptually and technically for early time cosmology. I did not keep it short since the aim of
those chapters is that the people who could read this thesis could experience a transition
from rookie to amateur passing through the essential material. Shortly, more than a jargon
directed to the thesis committee was a student-to-student style.

In the fourth chapter, we studied the possible appearance of scale dependent features in the
power spectrum of primordial tensor perturbations due to non-trivial inflationary dynamics
in a model independent way. Our main result is Eq.(4.34) – or Eqs.(4.37), (4.38) in the more
general case of EFT’s with a sound speed – which consist of relations linking features in
the tensor power spectrum to those appearing in the scalar power spectrum, allowing us to
estimate the amplitude and shape of the former given the latter. In general, we find that
the tensor spectrum is expected to be featureless: Indeed, Eq. (4.34) shows that any feature
appearing in the tensor spectrum is generically suppressed with respect to those appearing
in the scalar one for two reasons: firstly due to slow-roll [85], and more importantly, due to
the fact that features should in general be sharp enough in order to leave an imprint in the
CMB.

One may wonder about other mechanisms producing features in the tensor sector of the
theory. For instance, in principle, we could consider a Lagrangian describing the dynamics
of tensor modes with a sound speed ct experiencing rapid variations producing features in
the tensor spectrum. However, in [134] it was shown that under a disformal transformation,
models with a non-trivial tensor sound speed (and canonical scalar sector) map into models
with a non-trivial scalar sound speed (and canonical tensor sector). Since the spectra are
invariant under such a transformation, our formalism to relate features in the tensor spectrum
to those appearing in the scalar spectrum would continue to be valid. Moreover, in the special
case where only ct varies, the disformal transformation would lead to an equivalent system
where both cs and H vary, but in such a way that the scalar spectrum remains featureless
[86]. Given that we are interested in understanding the consequences of features in the scalar
spectrum on the tensor one, this class of situations is out of our scope.
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Current CMB observations show the existence of departures from scale invariance in the
power spectrum of primordial curvature perturbations in the multipole range ` ∼ 20. If we
interpret this behavior as the result of the dynamics of inflation, we are led to conclude that
the tensor power spectrum will not show any consequential departure from scale invariance in
this region. The importance of this conclusion may be appreciated more clearly by inverting
the statement: If tensor modes are observed to have strong departures from scale invariance
in the aforementioned multipole range, then we will have good reasons to suspect that the
departures appearing in the scalar spectrum are not of primordial origin.

In chapter fifth, we have generalized the well known non-Gaussian consistency relation
(5.24) to a broader class of relations that is able to cope with those classes of models where
the curvature perturbation ζ evolves on super-horizon scales. This relation is given by eq.
(5.15), and in the case where the super-horizon growth dominates, it leads to:

Bζ(k1,k2,k3) = −Pζ(kL)
d

d ln τ
Pζ(kS). (8.1)

The standard non-Gaussian consistency relation (5.24) can be understood a symmetry invol-
ving a simultaneous spatial dilation and a reparametrization of the curvature perturbation.
In the case of (8.1), the symmetry involves a time dilation together with a reparametrization
of the curvature perturbation. In both cases, the reparametrization is induced by super-
horizon evolution of the long-wavelength contributions of the curvature perturbation. While
this symmetry is approximate in general when ε � 1, it becomes exact in the case of ultra
slow-roll, independently of the value of ε. (It is also exact when ε = 0.)

Our result complements previous studies on consistency relations derived from symmetries
of quasi-de Sitter spacetimes [29, 30, 32, 128, 135–137] applied to the context in which
curvature perturbations freeze at horizon crossing. In addition, our result substantiates one
more time the well known violation to the standard consistency relation found by the authors
of ref. [118]. However, our result raises the question how the non-Gaussianity expressed in
(8.1) would survive the transition from a non-attractor phase —in which ultra slow-roll is
dominant— to an attractor phase where standard slow-roll inflation is dominant (before
inflation ends).

Given that the expression leading to (8.1) involves a time derivative of the power spectrum,
one may suspect that once the non-attractor phase concludes, and the modes stop evolving on
super-horizon scales, this contribution would become suppressed. In this case, the transition
to the new phase would imply a leading contribution to the bispectrum dictated by the
scale dependence of the power spectrum (through ns − 1). Strictly speaking, our expression
cannot describe this transition. This is because during such a transition the system is no
longer invariant under the set of transformations (5.22)-(5.24).

One could speculate that in such a transition (from non-attractor to attractor, see also
[138]) the amount of non-Gaussianity in the form of (8.1) could be transferred to a form of
non-Gaussianity that is described by (5.24). But this would necessarily imply an unaccept-
ably large value of the spectral index ns− 1. Another possibility is that, instead of (8.1), the
bispectrum produced during ultra slow-roll has to be read as

Bζ(k1,k2,k3) ' 6Pζ(kL)Pζ(kS), (8.2)
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without taking into consideration the time derivative appearing in the expression preceding
it. In other words, the factor 6 implied by the τ -derivative becomes engraved on the dis-
tribution of superhorizon modes, and survives until the modes re-enter the horizon much
after inflation. Given that ultra slow-roll inflation has gained some prominence as a transient
period of inflation that could explain certain phenomena associated to primordial physics
[139, 140], this seems to be a relevant issue to clarify. In [123] we will study this issue more
closely, by introducing the use of conformal Fermi coordinates [4, 5, 110]. There, we will
argue that the non-Gaussianity produced in non-attractor models such as ultra slow-roll is
non-observable (f obs

NL = 0).

In chapter sixth, we have studied the computation of local non-Gaussianity accessible
to inertial observers in canonical models of single field inflation. It was already known
[4, 5, 109, 111] that observable local non-Gaussianity vanishes in the case of single field
attractor models (f obs

NL = 0) modulo projection effects. In this work, we have extended this
result to the case of non-attractor models (ultra slow-roll) in which the standard derivation
gives a sizable value fNL = 5/2. This result (the standard result) was thought to represent
a gross violation of Maldacena’s consistency relation. We have instead shown that for both
classes of models, the consistency relation is simply:

f obs
NL = 0. (8.3)

This result is noteworthy: In ultra slow-roll, comoving curvature perturbations experience an
exponential superhorizon growth, and this growth was taken to be the natural explanation
underlying large local non-Gaussianity. However, this is indeed not the case.

Our results shed new light on our understanding of the role of the bispectrum squeezed
limit in inflation to test primordial cosmology. We now know that non-Gaussianity cannot
discriminate between two drastically different regimes of inflation. Instead, we are forced
to think of new ways of testing the evolution of curvature perturbations in non-attractor
backgrounds. This is particularly important once we face the possibility that ultra slow-roll
could be representative of a passing phase within a conventional slow-roll regime [139, 140].

To derive (8.3), we have re-examined the use of conformal Fermi coordinates introduced
in ref. [5] and perfected in refs. [4, 110]. Our results complement these works. For instance,
the vanishing of f obs

NL in the case of non-attractor models required us to consider in detail the
contribution of time-displacement of the CFC map that is irrelevant in the case of attractor
models.

The previous remark offers a way to understand the vanishing of local f obs
NL for the case of

non-attractor models. To appreciate this, let us first focus on the case of attractor models.
Notice that in the case of attractor models the freezing of the curvature perturbation can
be absorbed at superhorizon scales through a re-scaling of the coordinates, which, to linear
order in the perturbations, looks like x→ x′ = x + ζ(xc)x, where ζ is the value of the mode
at horizon crossing. It is precisely this scaling that gives rise to the modulation of small
scale perturbations by long scale perturbations in comoving gauge. The map coefficients of
eq. (6.193) show that in attractor inflation the local transformation corresponds to x →
x = x̄− ζ(x̄c)x̄. This transformation is opposite to the previous re-scaling, and therefore it
cancels the effect of the modulation in comoving coordinates.
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Now, something similar happens in the case of non-attractor models. Here, the curvature
perturbation does not freeze on superhorizon scales. Instead, on superhorizon scales the mode
acquires a time dependence that may be absorbed by a re-scaling of time τ → τ ′ = τ − ζ(τ)τ
in the argument of the scale factor (in comoving coordinates). Similar to the case of attractor
models, the map coefficients of eq. (6.198) show that in the non-attractor regime the local
CFC transformation corresponds to τ(τ̄) = τ̄ + ζ(τ̄)τ̄ , which is opposite to the previous
re-scaling, and so it cancels the whole modulation effect.

More generally, and independently of whether we are looking into the attractor regime
or the non-attractor regime, the cancellation may be understood as follows: The squeezed
limit of the 3-point correlation function of canonical models of inflation is the consequence
of a symmetry of the action for ζ under the special class of space-time reparametrization
shown in Eqs. (5.2)-(5.3). This symmetry is exact in the two regimes that we have studied,
but approximate in intermediate regimes. In addition, this symmetry dictates the way in
which long-wavelength ζ-modes modulate their short wavelength counterparts. The CFC
transformation is exactly the inverse of the symmetry transformation, and so the modulation
deduced with the help of the symmetry is canceled by moving into the CFC frame.

At this point, it is important to emphasize that our computation was performed during
inflation. That is, we have performed the CFC transformation while inflation takes place, and
the result B + ∆B = 0 found in Section 6.8 is strictly valid during inflation. The claim that
the primordial contribution to f obs

NL vanishes for a late time observer must be a consequence
of the CFC transformation, taking into account the entire cosmic history. This would require
studying the transition from the non-attractor phase to the next phase, which presumably
could be of the attractor class, a study began in [131, 138]. Given that both B and ∆B found
in Section 6.8 are exactly the same (but of opposite signs) and determined by τ -derivatives
and k-derivatives of the power spectrum, we expect that the transition will affect equally B
and ∆B, in such a way that the net result would continue to be B + ∆B = 0. Verifying this
claim, which seems reasonable, is out of the scope of the present article.∗

The vanishing of local non-Gaussianity in both attractor and non-attractor models of sin-
gle field inflation might not necessarily be surprising after all. In both cases, after the inflaton
scalar degree of freedom is swallowed by the gravitational field, the only dynamical scalar
degree of freedom corresponds to the curvature perturbation. As a consequence, the interac-
tion coupling together long and short wavelength modes is purely gravitational, and therefore
the equivalence principle dictates that long wavelength physics cannot dictate the evolution
of short wavelength dynamics, implying that any observable effect must be suppressed by a
ratio of scales O(kL/kS)2. All of this calls for a better examination of the relation between
the local ansatz and the squeezed limit of the bispectrum [141].

Our work leaves several open challenges ahead. First, we have focussed our interest in
canonical models of inflation, namely, those in which the inflaton field is parametrized by a
Lagrangian containing a canonical kinetic term. In this category, the ultra slow-roll regime

∗In a recent article [131] (written simultaneously to this work), Cai et al. studied the effects on the
bispectrum B of a transition from a non-attractor phase to an attractor phase. They discovered that the
transition can drastically change the value of fNL, suppressing its value if the transition is smooth. Then,
the question would be: What happens with ∆B during such transitions?
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is not fully realistic, and at best should be considered as a toy model allowing the study of
perturbations under the extreme conditions of a non-attractor background. However, it has
been shown that attractor regimes may appear more realistically within non-canonical models
of inflation such as P (X) models. In these models, one has non-gravitational interactions
inducing a sound speed cs 6= 1, and so we suspect that our result (8.3) will not hold in those
cases. Nevertheless, this work (together with ref. [130]) calls for a better understanding of
the non-Gaussianity predicted by non-attractor models in general.

Second, given that observable local non-Gaussianity vanishes in ultra slow-roll, in which
curvature perturbations grow exponentially on superhorizon scales, one should revisit the
status of other classes of inflation, such as multi-field inflation, where local non-Gaussianity
may be significant. It is entirely feasible that in some models of multi-field inflation the
amount of local non-Gaussianity may be understood as the consequence of a space-time
symmetry dictating the way in which long-wavelength modes module short modes.

Third, a deeper understanding of our present result is in order. In the case of attrac-
tor models, Maldacena’s consistency relation (and its vanishing) may be understood as a
consequence of soft limit identities linking the non-linear interaction of long wavelength per-
turbations with shorter ones [29, 30, 32, 128, 135–137]. However, there were good reasons to
suspect that these relations would not hold anymore in the case of non-attractor models [5].
Our results suggest that, regardless of the background, these identities continue to be valid,
and in an inertial frame the gravitational interaction cannot be responsible for making long
wavelength modes affect the local behavior of short wavelength modes.

Finally, to sum up, interactions between long-wavelength and short-wavelength pertur-
bations is an exciting diagnostic of inflationary physics, as it can distinguish between one
or more light degrees of freedom during inflation; these ideas are not idle theorizing but
are predictive and subject to meaningful experimental test. Cosmological observations are
providing several surprising pieces from the cosmological puzzles and new challenges. We
showed that if gravity is a local theory, superhorizon non-linear gravitational interactions
do not generate observable contributions of the local type. Specifically, long-wavelength
modes(multipoles lower than 100 in the scalar power spectrum) that outside the horizon at
recombination does not interact with modes short modes inside the horizon, so that any effect
produced on the dynamics of short modes during recombination is zero or suppressed(tidal
effects). As a consequence, in our observed local universe, non-linearities do not contribute
to a scale-dependent galaxy bias(∆b ∝ k−2). We conclude, that primordial local-type of
non-linearities do not generate any imprint modulo tidal effects kiLk

j
L/k

2
S and one realization

effects, that are to say, fluctuations with insufficient statistical data inside the observable
universe(so the ergodic theorem does not hold); therefore, any like local type non-linearity
should arise through projection effects from photon propagation, which depend on the spe-
cific large-scale structure tracer, such as lensing and redshift space distortions, that could
in principle be distinguishable from local coupling induced by gravity. The cancelation of
the bispectrum squeezed limit (6.214) and (6.215) is the result of two arguments: i) Gravity
is understood as a local theory, therefore, linear gravity self-interactions are local too. ii)
The flat local geometry demanded by the equivalence principle at the vicinity of the observer.
These two arguments lead to the complete local cancelation of the bispectrum squeezed limit;
in this regime the bispectrum always takes a simple expression, even for models with reduced
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speed of sound, we do not expect large departures from results obtained in chapter seventh,
since equivalence principle demands that the observed squeezed limit bispectrum starts as
∼ (kL/kS)2P (kS)P (kL). Considering the mentioned effects, if there is any departure beyond
projection effects, it could immediately be understood as a deviation from the standard single
field inflation or local gravity theories.

In the seventh chapter, we wore overall and modeled the signal calibration measurements
for the CLASS telescope. The signal consisted of a two-dimensional convolution between our
Moon and the 40GHz beam in a small angular area containing the Moon. The purpose was
to understand the properties of the beams across the focal plane, detector responsiveness,
with a brighter object.

The fraction between the angular diameter of the Moon and the average Q-band beam
is ∼ 0.16, therefore, the angular size of the Moon regime, in which cannot be treated as a
point source, in effect, more sophisticated tools were implemented for the signal modeling.
In our task, we constructed the axis-symmetric non-Gaussian beam model using the Hermite
functions and constructed an ad-hoc semi-analytical method of convolution for 2-dimensional
axis-symmetric objects. This allowed us obtaining a clean beam signal from a smeared convo-
luted signal. This task is of critical importance since knowledge of the beam properties, such
as, main lobes, side lobes, solid angle, contributes significantly to the order precision in which
CLASS was designated; therefore, any spurious signal could contaminate the cosmological
data by adding or removing fictitious signal at incorrect angular scales, as a consequence
producing a distorted C ′ls weighting. Moreover, calibration and detector responsiveness for
Q-band also depends on how well the beams are characterized; for example, temperature and
degree of polarization of points sources are sensitive to the solid angle of beams. As a result
of the procedures described in chapter seventh, we obtained clean beam signal parametrized
with the Hermite function basis until uncertainties of less than 40dB, with 99.9% of its solid
angle falling in a region less than 2◦ from its peak, also, we constructed its window function
with more than 99% of precision between 0 < l < 225 with minimal mode couplings and a
semi-diagonal covariance matrix in harmonic space, facilitating its inverting procedure when
being used in the CLASS likelihood function for the 40GHz band. Precision cosmology not
only is gestated in constructing more telescope with thousands of detectors with high re-
sponsivity but also, two endeavors are equally important: First, how systematic errors are
understood and modeled. Second, answering questions of what does it mean a measurement
in cosmology. Otherwise, parameters might be poorly understood, the potentially designed
responsivity of telescopes could not be reached, or there are more missing aspects that have
not been noticed because incorrect tools are being used. In this direction, the task entrusted
in this thesis was three-fold. First, shortening the distance between the question, what does
it mean a cosmological measurement? And its answer; what tools can be used or developed.
Second, understand(and work!) the role of beams and window functions for the Cosmology
Large Angular Scale Surveyor(CLASS) telescope; in principle, they look distant, but actu-
ally is the opposite, any deviation on the beams affects directly the CMB observables in the
scales of interest throughout its window function. Third, make predictions on the potential
B-modes signal about whether they might be featureless or not.

Answering all the aforementioned questions and queries in a period of a MSc thesis is a
Spartanian task. Worrisome, was not our ally, but instead, we worked in shortening the gaps
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by understanding them and producing new quality material. The task is not complete; there
is still a wide range of unexplored high energies in which terrestrial accelerators cannot reach.
Precisely, the closest way to approach this range of energies is the CMB, LSS, and future
21-cm line experiments. Any unexpected deviation could help to elucidate new degrees of
freedom shortening the distance to the ultimate fundamental theory of everything. Testing
primordial cosmology combines theoretical and experimental endeavors in unique ways. In-
flation is one the window to understanding gravity. Despite being one of the first discovered
law of physics and being formulated 300 years ago, gravity is still poorly understood; there is
still no satisfying microscopic description that could explain gravity in strong regimes. Pri-
mordial cosmology is an available window to explore gravity and other particle interactions,
it is remarkably, how well, we know the universe until second after being created, primor-
dial origins of structures, elements formation, and their abundance, among others. However,
we still are not sure about its first stage, such new degrees of freedom, primordials fields,
gravity in strong regimes. For scientists, this degree of uncertainty is compelling for obvious
reasons, is an abstract arena of ideas, speculations, skepticism, discussions, growing, and
collaboration.

Stay tuned!
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