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In the context of higher participation of renewable generation in power systems worldwide, it is
critical to capture the variable nature of these energy sources in investment planning models. Fur-
thermore, an optimal investment plan of complementary generation, transmission, and storage in-
frastructure for the integration of renewable generation has to recognise the flexible means necessary
to deal with its variable outputs. To do so, investment planning models have to consider higher
time resolution and a more detailed model of operation, which renders models intractable. Fur-
ther computational complexities are needed to capture the increased levels of long-term uncertainty,
due to evolving policy and market parameters, such as subsidies to renewables, investment costs of
generation and storage technologies, among others.

Hence, we propose a multi-stage stochastic network expansion program and its associated de-
composition algorithm, which is able to co-optimise network and energy storage assets, properly
capturing long-term uncertainties through a scenario tree representation of various possible future
evolutions of model’s parameters. Additionally, the proposed model considers high resolution in the
operation, with an hourly representation, and incorporates unit commitment constraints, to properly
capture the inflexibilities of the current infrastructure. Due to these features, the model is able to
plan for future flexible systems, such as energy storage systems, needed to deal with the variability
of increased volumes of renewable generation. To handle the increased computational burden pro-
duced by the operational details considered, we represent the yearly operation of the system by a
set of typical days/weeks, and solve the problem utilising a Dantzig-Wolfe decomposition with an
improved column generation approach. The novel characteristic of our algorithm is the day/week-
based decomposition utilised to generate new columns, which is beyond the classic scenario tree
node-based decomposition reported in existing literature.

Through various case studies on three different power networks, we validate our model, study
key features of planning network and storage facilities under uncertainty, and demonstrate the
scalability of the proposed approach. In this vein, we use the IEEE 24-busbar network for validation
and derivation of key insights of planning future flexible networks. Then, we test computational
performance of our algorithm on the IEEE 118-busbar network, demonstrating the benefits of the
day/week-based decomposition against the classic scenario tree node-based decomposition. Finally,
we study the Australian power system where investments in large pumped storage hydro facilities are
being coordinated with investments in key transmission corridors. Our case studies demonstrate the
significant option value of storage facilities, helping to defer investments in new corridors, waiting
for more information to be available in the future that will support a better decision making. Our
case studies also show the distortions caused by neglecting operational details in network expansion
planning, particularly, the value of flexibility is considerably decreased, as investment on flexible
assets is significantly lower than case studies with higher operational details. Finally, our enhanced
model of Dantzig-Wolfe decomposition is able to solve instances of multi-stage stochastic planning
problem that can not be solved by the most recent version of the algorithm available in the literature.
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Dentro del contexto de una mayor participación de generación renovable, es necesario capturar la
naturaleza variable de esta tecnología en modelos de planificación. Además, un plan de inversión
óptimo de infraestructura de generación complementaria, transmisión y almacenamiento para la in-
tegración de energías renovables tiene que reconocer los mecanismos flexibles necesarios para lidiar
con su variabilidad. Para hacerlo, modelos de planificación de la inversión tienen que considerar una
mayor resolución temporal y detalle de la operación, lo que genera modelos intratables computa-
cionalmente. Más complejidades computacionales son necesarias para incluir los elevados niveles
de incertidumbre a largo plazo, debido a nuevas políticas y parámetros de mercado, tales como,
subsidios a renovables, costos de inversión de generación y almacenamiento, entre otros.

Por consiguiente, proponemos un programa de expansión de redes estocástico multietapa y su
algoritmo de descomposición asociado, el cual es capaz de cooptimizar redes y sistemas de almace-
namiento, capturando adecuadamente la incertidumbre a largo plazo a través de una representación
de árbol de escenarios de distintas posibles evoluciones de parámetros del modelo. Adicionalmente,
el modelo propuesto considera alta resolución en la operación con resolución horaria, e incorpora
restricciones de unit commitment para capturar apropiadamente las inflexibilidades de la infraestruc-
tura actual. Dadas estas características, el modelo es capaz de planificar sistemas flexibles futuros
necesarios para lidiar con la variabilidad de altos volúmenes de generación renovable. Para manejar
la carga computacional producida por estos detalles de operación, representamos la operación anual
del sistema a través de un conjunto de días/semanas típicas, y resolvemos el problema utilizando la
descomposición de Dantzig-Wolfe con un método de generación de columnas mejorado. La novedosa
característica de nuestro algoritmo es la descomposición en día/semana típica utilizada para generar
nuevas columnas, la cual extiende la clásica descomposición nodal reportada en la literatura.

A través de distintos casos de estudio en tres distintos sistemas de potencia, validamos nuestro
modelo, estudiamos características claves de la planificación de redes y almacenamiento bajo incer-
tidumbre y demostramos la escalabilidad de la propuesta. En este sentido, usamos la red de prueba
IEEE de 24 barras para validación y derivación de información clave para planificar futuras redes
flexibles. Luego se probó el desempeño del algoritmo en la red de prueba IEEE de 118 barras,
demostrando los beneficios de la descomposición en día/semana típica. Finalmente, se estudió el
sistema de potencia australiano, donde inversiones en grandes centrales de bombeo son coordinadas
con corredores de transmisión. Nuestros casos de estudio demuestran el significativo valor de la
opción del almacenamiento, aplazando inversiones en nuevos corredores, esperando por más infor-
mación disponible para tomar una mejor decisión. También muestran las distorsiones causadas por
desestimar los detalles operacionales en la red de transmisión, particularmente, el valor de la flexi-
bilidad es considerablemente reducido al obtener una menor inversión en tecnologías flexibles que en
casos de estudio con mayor detalle operacional. Finalmente, nuestro modelo mejorado de la descom-
posición de Dantzig Wolfe es capaz de resolver instancias de planificación estocástica multietapa que
no pueden ser resueltos por la versión más reciente disponible en la literatura.
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Chapter 1

Introduction

1.1 Motivation

Power systems are currently evolving towards low-carbon generation systems, mainly domi-
nated by renewable sources such as wind and solar generators. Power system operators will
need to deploy flexibility in the operation to cope with the increased variability and uncer-
tainty added by these generators [1]. In addition, the availability of flexible technologies such
as energy storage, flexible AC transmission systems, demand response, among others, will
provide different operational measures to improve the performance of the system. Several
entities have begun to tackle this lack of flexibility by developing studies aiming to plan
required measures and infrastructure to make a better and smoother transition towards low-
carbon systems. Reference [2] is a plan developed by Australian Energy Market Operator
(AEMO) which aims to identify transmission investments that will be necessary to develop
in the Network Electricity Market (NEM) for the next 20 years, in the context of an evolving
Australian power system.

The coordination of flexible technologies can have a significant impact on the opera-
tional cost and also on the investment requirements of the network infrastructure [3]. In
consequence, short-term operation must be considered explicitly within long-term planning.
Neglecting short term operational constraints can result in suboptimal or even infeasible so-
lutions [4]. Moreover, considering long-term uncertainty will also be important in the context
of low-carbon power systems. Network infrastructure requires longer construction time com-
pared to renewable generation. Thus, network planners will need to anticipate investment
decisions in generation, which are uncertain in terms of magnitude, location and connection
times [5]. Technologies such as energy storage and FACTS devices have a considerable shorter
construction time, therefore, they can provide flexibility in the planning stage by allowing
to adapt the investment plan within shorter time scales, avoiding large network investments
that may be needed only in a limited number of scenarios. Hence, a strategic approach,
modelled by stochastic programming, will be required in order to avoid the risk of locking in
to inefficient solutions [3].
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We present a multi-stage stochastic transmission and storage co-optimisation model with
unit commitment constraints. For realistic size systems, the model is a large-scale mixed
integer programming problem. To overcome the computational burden, we develop a solu-
tion methodology based on the Dantzig-Wolfe decomposition that allows to solve large case
studies efficiently. We demonstrate through different study cases the benefit of the proposed
methodology. Additionally, we show the importance of considering an explicit representation
of operational details in planning with renewable generation. We also present the benefits of
co-optimising investment in network infrastructure and storage systems. Finally, we extend
the use of this algorithm applying it to the australian NEM, solving a real-scale stochastic
optimisation problem under uncertainty [2].

1.2 Proposed Hypothesis

Considering high operational details in the short-term and uncertainty in the long-term in a
stochastic planning problem impact the amount, timing and diversity of the optimal portfolio
of investment in comparison to traditional planning approaches.

1.3 General Objective

The general objective of this thesis is to develop a mathematical program for solving the
co-optimisation of planning long-term investment in network assets and storage system. The
importance features of our proposal is to recognise high operational details in the operational
problem, as well as, long-term uncertainty regarding location and volume of future generation,
storage costs, demand growth, fuel costs.

1.3.1 Specific Objectives

• Co-optimise network and storage systems under uncertainty considering operational
details in the IEEE RTS 24-bus system, in order to validate our optimisation model
and observe benefits and consequences of co-optimising in the long-term when several
scenarios are considered.

• Develop a computational model able to solve a transmission and storage co-optimisation
model under uncertainty that considers high operational details in a real-scale network.

• Demonstrate scalability of the computational model solving a co-optimisation problem
in the IEEE RTS 118-bus system considering a larger amount of scenarios.

• Demonstrate the applicability of the computational model by employing it on a real
network, specifically, to the National Electricity Market network of Australia.

1.4 Contributions

• Develop a multi-stage stochastic mathematical program to determine long-term invest-
ments in network and energy storage systems, considering long-term uncertainty and

2



high operational resolution so as to capture the (in)flexibility levels of the generation
fleet.

• Reformulate the Dantzig Wolfe Algorithm proposed in [6] to improve solution times
and memory usage, by splitting the operational problem, reaching a sub-nodal level, in
many smaller and decoupled subproblems by using a typical day/week-decomposition
approach that can be easily paralellised.

• Demonstrate the relations between network investment and energy storage investment
in a stochastic multi-stage fashion, analysing the complementarities and conflicts be-
tween both of them in future network plans.

1.5 Structure of the Document

The document is structured as follows: In Chapter 2 the co-optimisation model is presented,
alongside with the necessary modifications to render the Reformulated Dantzig Wolfe Algo-
rithm that will be applied on two study cases. Chapter 3 extends the use of the Reformulated
version by utilising it in a real study case on the Australian Network Electricity Market. In
Chapter 4 conclusions are drawn and further work is proposed.

3
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Chapter 2

Co-optimising network and storage
systems with high operational resolution

2.1 State of the Art

2.1.1 Transmission planning under uncertainty

Current models for power system planning which consider uncertainty are structured under
different approaches. At first, different temporal frameworks might be considered, these are
utilised in the model to declare how decisions are taken in time and how the uncertainty is
developed throughout the expansion. A single-stage approach considers decisions only in a
single period under equal information for all future periods. Whereas, a multi-stage approach
decisions are made in each period facing uncertainty regarding future developments. More-
over, uncertainty can be represented by: using probabilistic models, which corresponds to
stochastic programming and robust optimisation, which ensures feasibility for a user-defined
set of uncertainty realisations [7].

On transmission planning, several formulations have considered uncertainty with a sim-
plified representation of the operation. Reference [5] proposed a two-stage transmission and
generation planning model. Operation was modelled through an economic dispatch with a
DC representation of the network. Results showed the importance of taking into account
uncertainty and the benefits of stochastic approaches compared to deterministic approaches.
In [8] a solution methodology for the two-stage transmission and generation planning based
on the Progressive Hedging (PH) algorithm was developed. Since PH cannot guarantee con-
vergence to the optimal solution, several acceleration techniques are implemented, which
allow to improve the quality of the solution. Authors in [9] proposed a transmission planning
model with non-conventional assets, such as energy storage or FACTS devices. The problem
has binary investment variables and linear operation variables. A methodology based on the
Benders decomposition was used to solve the problem. Results show how non-conventional
assets enable more adaptability for the system planner to overcome uncertainty.

5



In [3] the importance of considering uncertainty and operational flexibility in transmission
planning was studied. The authors demonstrate the need for a unified framework and dis-
cuss the computational challenges that arise from it. A stochastic transmission and storage
planning model with an horizon of multiple years is presented in [10]. Although different
scenarios are considered, the planner cannot adapt investment decisions as more information
is known about the uncertain parameters. Only 3 long-term scenarios, 5 days per year and
a simplification of the UC constraints are considered to reduce the complexity of the prob-
lem. Reference [11], also studies the multi-stage stochastic transmission and energy storage
planning problem. Investment decisions are binary, and the operation was represented by a
DC optimal power flow with no consideration of unit commitment constraints. The authors
developed a decomposition based on Nested Benders decomposition. The algorithm was com-
pared to the Progressive Hedging algorithm, and results showed that PH has convergence
issues for multi-stage mixed integer problems, failing to find a solution, while the nested
decomposition allows to solve the problem, achieving a solution with a 1.11% optimality gap.
Reference [12] presents a multi-stage stochastic linear generation and transmission expan-
sion planning model with energy storage. Operation is represented by an economic dispatch.
Ramp rate constraints are included, and transmission is represented by a pipeline model.
The Progressive Hedging algorithm was used to solve the large-scale linear programming
model. Results show that the decomposition allows to reduce solution times by 96%. Most
recently, in [13] a transmission planning problem under long- and short-term uncertainty is
presented. Long-term uncertainty is represented by changes across years of demand growth
and generation capacity, whereas short-term uncertainty is related to seasonal changes, for
example, demand and renewable power production variability. This problem was solved via
a primal Benders’ decomposition.

2.1.2 Flexibility in the expansion problem

Traditional methods for the expansion problem used to utilise load blocks for representing the
operational model, which brought the problem of decoupling hourly chronology of demand
and renewable profiles in the hope of reducing the computational burden. As renewable
generation capacity increases in power systems, this simplification is not be longer useful to
represent the operational model as new hourly effects were introduced by these new technolo-
gies, being necessary to use a higher operational resolution to represent operational aspects of
conventional generation, such as, commitment status, as well as ramping capabilities. These
features gained relevance due to variability introduced by renewables. In [14] authors declare
that modelling under a low temporal resolution may have a great impact on the planning
results, therefore they suggest that improving the temporal representation is suggested to be
prioritised.

In the recent years, the consideration of flexibility within expansion problems has become
an active area of research. References [15, 16, 1, 17] present different static deterministic
generation expansion planning models including unit commitment constraints. To overcome
tractability issues, using a reduced number of typical weeks to represent the year, clustering
similar units or convex relaxations were proposed, as opposed to reference [4], where thirteen
typical weeks were considered for each year, developing a deterministic multi-year generation
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expansion model with UC constraints, which utilises the Dantzig-Wolfe decomposition to
solve large-scale instances with high operational resolution. Reference [18] utilised a mixed
integer linear program to determine the optimal set of generation units within a generation
expansion problem framework. They considered operational constraints, such as, unit com-
mitment and startup costs, demonstrating that including these constraints have a important
impact on the optimal portfolio of investments, and need being considered, especially at in-
creasing rates of intermittent renewables. In addition to commitment, ramps and startup
costs, reference [19] included minimum stable generation constraint and reserve requirements
demonstrating that operating these mentioned reserves have a substancial impact on the op-
timal portfolio of investments, and result in a substancial increase of renewable integration
costs. Most recently, in [20] was utilised an adaptive robust optimisation model for planning
with operational uncertainty, by using representative days based on uncertainty sets they
could consider variability and short-term uncertainty rendering a chronological representa-
tion of the system operation, and thus enabling the inclusion of key operational aspects.
Authors stated that the risk of inappropriately choosing specific load an renewable profiles is
reduced, as a broader range of operational conditions may be considered in the uncertainty
sets.

Additionally, Transmission Expansion Problems have been coordinated with different as-
sets to provide operational flexibility which proves to defer expansion investment in transmis-
sion lines, in [21], demand response was incorporated into the transmission planning problem
for systems with a high penetration of wind energy, authors proved that demand response
programs can even substitute for generation and transmission network expansion in power
system with considerable amount of intermittent energy resources. Flexible AC transmission
system (FACTS) and Series Compensator (SC) devices have been incorporated in the Trans-
mission Expansion Problem to determine the minimum-cost network reinforcement schemes
considering investment and congestions costs in [22]. Authors in [23] introduce the concept
of flexible transmission network planning by proposing a corrective post-contingency network
switching action to reconfigure the efficiently the network under contingency conditions. The
approach proposed find the optimum generation dispatch as well as optimum transmission
capacity along with network switching pattern in all outage circumstances.

2.1.3 Storage systems in the expansion problem

As renewable generation increases in power systems, there has been created a new interest
in investigating the impact of utility scale energy storage in power system operation and
planning. In [24] authors have listed the benefits of the energy storage systems (ESS) in
transmission networks, such as, asset deferral, voltage regulation and system stability, and
integration of renewable energy at avoiding curtailment imposed by insufficient transmission
capacity and time-shifting when renewable energy is stored during off-peak interval for de-
ploying it during on-peak interval. In [25] it is concluded that ancillary services bring more
profit to ESS than arbitrage, authors modelled three different market products (day-ahead
market, intraday market and regulation market) in order to asses economically ESS in energy
market and ancillary services in the Nordic power market. Reference [26] presents the costs
and benefits of ESS deployment in a Transmission Planning context. Authors conclude that
by deploying new ESS assets the network investment costs are reduced in all their study
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cases. Utilising their proposed planning formulation size and location of future ESS can be
obtained. Additionally, in [27] a bilevel program is used to obtain optimal location and size
of ESS by reducing the system operating cost while ensuring that merchant storage recover
investments in ESS assets via a minimum profit constraint.

2.1.4 Decomposing methods

Including the unit commitment constraints and hourly time-scale resolution in the stochastic
transmission and storage planning problem leads to a large scale mixed integer linear problem
(MILP), which often cannot be solved by commercial MIP solvers. Thus, it is necessary to
use decomposition methods to break the problem into several easier-to-solve subproblems.
The co-optimisation model has integer variables in the investment and operation decisions
of every stage. This characteristic cannot be handled by traditional Benders decomposition,
and complicates the use of methods such as the ones presented in [11] or [12]. The Nested
decomposition presented [11] could lack of accuracy due to the convexification used, or re-
quire a large amount of time to achieve the desired accuracy. Moreover it does not allow to
fully exploit the parallelisation of subproblems. In [20] a two-stage model was solved under
the column-and-constraint generation method. The Progressive Hedging algorithm has been
succesfully applied to two-stage transmission planning problems [8], and to multi-stage linear
generation and transmission planning [12]. For multi-stage stochastic linear problems, the
Progressive Hedging algorithm is proved to converge. However, for mixed-integer problems,
there is no guarantee of convergence. This issue can be tackled by using several heuristics
for two-stage problems. But for multi-stage problems, the convergence can be difficult to
achieve. Moreover, since Progressive Hedging is a scenario-based decomposition, each sub-
problem is a multi-stage mixed integer quadratic deterministic problem. These can be very
difficult to solve even without quadratic terms, as shown in [4].

Considering the structure of a planning problem which is characterised by a diagonal
in block structure, The Dantzig-Wolfe decomposition presents features that make it more
appealing for tackling this problem, compared with other common decomposition methods
applied in planning problems, this algorithm can easily deal with integer variables at the slave
subproblem level unlike the abovementioned approaches resulting in a more-suited technique
for solving these large instances of MILP, [6] presented a formulation of the Dantzig-Wolfe
Algorithm applied to a multi-stage stochastic capacity planning problem applying "variable
splitting" to allow multiple capacity expansions of a facility over the planning horizon, au-
thours stated that they reached optimality in a case composed of 243 different scenarios
with six stages. Authors in [4] extended this work by including high operational resolu-
tion constraints in a deterministic expansion capacity problem utilising the abovementioned
algorithm, the algorithm has been extended to transmission expansion problems, in [28] a
multi-stage stochastic planning of a integrated power and natural gas system was proposed,
this problem was solved by using an asynchronous version of the dantzig wolfe algorithm,
uncertainty was related to (i) volumes of new renewable generation and (ii) new demands.
Importance of a unified planning between these two networks was highlighted in this work
in regard of planning the energy sector.
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2.2 Co-optimisation model

We propose a stochastic mixed integer linear programming model to determine the optimal
investment in energy storage and transmission assets in power systems. The model minimises
the overall expected investment and operating costs across a multi-stage scenario tree.

Transmission system investment relieves congestion in existing lines and helps to integrate
new generation units, among other things. On the other hand, energy storage systems open
possibilities to flow management, arbitrage, peak load shaving and can defer or replace net-
work investments. Furthermore, energy storage systems, have shorter commissioning times
than transmission lines. Therefore, energy storage systems provide more adaptability, by
allowing the system planner to decide its investment after the realisation of the uncertainties.

Usually, in long-term planning, the operation was represented by non-chronological models
using the load duration curve. However, in order to capture benefits of energy storage sys-
tems a more detailed time-sequential modeling should be proposed. In addition, the effects
of variability from renewable sources on conventional generation cycling must be considered.
Therefore, the unit commitment constraints must be included to accurately capture the op-
erational issues.

Our model decides when and where to invest in either energy storage or transmission in-
frastructure. In the operational stage, it decides the output power for every generation tech-
nology, which generators to commit, power flows through lines, charge and discharge power
of energy storage systems and reserve provision. Long-term uncertainty can be presented
through different generation investment plans, renewable penetration levels, fuel prices, hy-
drology, investment costs, among others.

2.2.1 Objective function

The model minimises overall expected investment and operating costs across every node in
scenario tree as shown in (2.1).

Minimise
∑
m∈M

φm

[ Im +Om

(1 + r)y(m)

]
(2.1)

Investment costs are the annualised cost of investing in new assets such as energy storage
systems an new transmission lines, as shown in (2.2).

Operational costs, as shown in (2.3), include fuel costs, startup and shutdown costs for
conventional generation. We also consider a penalisation arising from renewable generation
curtailment.
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Im =
∑
b∈B̂

∑
i∈℘m

Πbi
b C

BwBbi +
∑
l∈L̂

∑
i∈℘m

Πli
l w

L
li , ∀m ∈M (2.2)

Om =
∑
d∈D

Γd

(∑
t∈T

(∑
g∈GC

(
ΠOG
g pGgmdt + ΠOU

g ugmdt+

ΠOV
g vgmdt

)
+
∑
g∈GR

ΠOC
g

(
PR
gmA

R
gmdt − pRgmdt

)))
, ∀m ∈M (2.3)

2.2.2 Main Investment Constraints

wBbm ∈ Z+, ∀b ∈ B̂, ∀m ∈M (2.4)

wLlm ∈ Z+, ∀l ∈ L̂,∀m ∈M (2.5)∑
i∈℘m

wLli ≤ 1, ∀l ∈ L̂,∀m ∈M (2.6)∑
i∈℘m

wLli =
∑
i∈℘k

wLli , ∀l ∈ L̂,∀m ∈M s,∀k ∈ Sm (2.7)

wLl1 = 0, ∀l ∈ L̂ (2.8)

Investment decisions are defined as positive integer variables, as shown in (2.4)−(2.5).
Thus, an asset cannot be decommissioned once invested. Transmission lines can be invested
only once per scenario, as shown in (2.6). We consider that transmission lines have a lag
of one stage between decision and commissioning time due to prolonged construction times.
Thus, transmission investment decision in siblings nodes must be the same, this is modeled
by constraint (2.7). Also, transmission lines cannot be commissioned in stage 1, as shown in
(2.8).

2.2.3 Main Operational Constraints

∑
g∈GC

n

pGgmdt +
∑
g∈GR

n

pRgmdt +
∑
b∈Bn

pBbmdt −Dnmdt =
∑

l∈Fromn

flmdt −
∑
l∈Ton

flmdt,

∀n ∈ N,∀m ∈M,∀d ∈ D, ∀t ∈ T (2.9)∑
g∈GC

rGgmdt +
∑
b∈B

rBbmdt ≥ R
S

tm ∀m ∈M, ∀d ∈ D, ∀t ∈ T (2.10)

∑
g∈GC

rGgmdt +
∑
b∈B

rBbmdt ≥ RS
tm ∀m ∈M, ∀d ∈ D, ∀t ∈ T (2.11)

− F lm ≤ flmdt ≤ F lm ∀l ∈ EL,∀m ∈M,∀d ∈ D, ∀t ∈ T (2.12)

− F lm

∑
i∈℘m

wLli ≤ flmdt ≤ F lm

∑
i∈℘m

wLli ∀l ∈ L̂,∀m ∈M,∀d ∈ D, ∀t ∈ T (2.13)

−M(1−
∑
i∈℘m

wLli ) +
θFromlmdt − θTolmdt

Xl

≤ flmdt ≤
θFromlmdt − θTolmdt

Xl

+M(1−
∑
i∈℘m

wLli ),
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∀l ∈ L̂,∀m ∈M,∀d ∈ D, ∀t ∈ T (2.14)
θFromlmdt − θTolmdt

Xl

≤ flmdt ≤
θFromlmdt − θTolmdt

Xl

, ∀l ∈ EL,∀m ∈M,∀d ∈ D, ∀t ∈ T (2.15)

pGgmdt + rGgmdt ≤ P
G

gmx
G
gmdt, ∀g ∈ GC ,∀m ∈M,∀d ∈ D, ∀t ∈ T (2.16)

pGgmdt ≥ PG
gmx

G
gmdt + rGgmdt, ∀g ∈ GC ,∀m ∈M,∀d ∈ D, ∀t ∈ T (2.17)

rGgmdt ≤ xGgmdtR
G

gm, ∀g ∈ GC ,∀m ∈M,∀d ∈ D, ∀t ∈ T (2.18)

rGgmdt ≤ xGgmdtR
G
gm, ∀g ∈ GC ,∀m ∈M,∀d ∈ D, ∀t ∈ T (2.19)

xGgmdt = xGgmd(t−1) + ugmdt − vgmdt, ∀g ∈ GC ,∀m ∈M,∀d ∈ D, ∀t ∈ T (2.20)

xGgmdt ≥
t∑

τ=t−tong

ugmdτ , ∀g ∈ GC , ∀m ∈M, ∀d ∈ D, ∀t ∈ T (2.21)

1− xGgmdt ≥
t∑

τ=t−toffg

vgmdτ , ∀g ∈ GC , ∀m ∈M, ∀d ∈ D, ∀t ∈ T (2.22)

pGgmdt − pGgmd(t−1) ≤ xGgmd(t−1)Rpgm + ugmdtP
G
gm,

∀g ∈ GC , ∀m ∈M, ∀d ∈ D, ∀t ∈ T (2.23)

pGgmd(t−1) − pGgmdt ≤ xGgmd(t−1)Rpgm + vgmdtP
G

gm,

∀g ∈ GC , ∀m ∈M, ∀d ∈ D, ∀t ∈ T (2.24)

pRgmdt ≤ P
R

gmA
R
gmdt, ∀g ∈ GR,∀m ∈M,∀d ∈ D, ∀t ∈ T (2.25)

pBbmdt = pB+
bmdt − p

B−
bmdt, ∀b ∈ B, ∀m ∈M, ∀d ∈ D, ∀t ∈ T (2.26)

pBEbmdt = pbmd(t−1) − pB+
bmdt + pB−bmdtη, ∀b ∈ B, ∀m ∈M,∀d ∈ D, ∀t ∈ T (2.27)

pBbmdt − rBbmdt ≥ −CB
∑
i∈℘m

wBbi , ∀b ∈ B, ∀m ∈M,∀d ∈ D, ∀t ∈ T (2.28)

pBbmdt + rBbmdt ≤ CB
∑
i∈℘m

wBbi , ∀b ∈ B, ∀m ∈M, ∀d ∈ D, ∀t ∈ T (2.29)

pBEbmdt + rBbmdtα ≤ CBζB
∑
i∈℘m

wBbi ∀b ∈ B, ∀m ∈M, ∀d ∈ D, ∀t ∈ T (2.30)

pBEbmd(t−1) + rBbmdtα ≤ CBζB
∑
i∈℘m

wBbi ∀b ∈ B, ∀m ∈M,∀d ∈ D, ∀t ∈ T (2.31)

pBEbmdt − rBbmdtα ≥ 0, ∀b ∈ B, ∀m ∈M, ∀d ∈ D, ∀t ∈ T (2.32)
pBEbmd(t−1) − rBbmdtα ≥ 0, ∀b ∈ B, ∀m ∈M,∀d ∈ D, ∀t ∈ T (2.33)

pBEbmd1 = 0, ∀m ∈M,∀d ∈ D, ∀b ∈ B (2.34)
pBEbmdt = 0, ∀m ∈M,∀d ∈ D, ∀b ∈ B (2.35)

Demand in each bus bar must be satisfied in every node at every moment in the system
according to the nodal balance equation (2.9). System up/down reserve requirements are
requested to respond to short-term perturbations, as shown in (2.10)−(2.11). Power flows
in lines are bounded by their maximum capacity, according to (2.12)−(2.13). A linearized
DC power flow is formulated to represent power transfers according to (2.14)−(2.15). For
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candidate lines the Big-M approach has been used, as shown in (2.14).

Constraints (2.16)−(2.25) pertain to the operation of generators. The output power of
generators, considering upward reserves, is limited by the committed capacity, as shown in
(2.16). A minimum output, considering downward reserves, is required to have a stable power
production, as in (2.17). Constraints (2.18)−(2.19) model the reserve provision limits of gen-
erators. Equation (2.20) is the unit commitment state equation, which relates commitment
state with startup and shutdown variables. This allows us to consider minimum up and down
times along with startup and shutdown costs. Constraints (2.21)−(2.22) impose minimum
operation times of generators. Ramping limits are considered for conventional generators, as
shown in (2.23)−(2.24). Constraint (2.25) limits the output power of renewable generators
by the availability of the resource and the installed capacity.

Batteries operation is modelled through (2.26)−(2.35). Constraint (2.26) models the bat-
tery power. Constraint (2.27) states the energy balance of batteries. The output power
of batteries, considering reserve, is bounded by the maximum power capacity, as shown in
(2.28)−(2.29). Equations (2.30)−(2.33) set energy limits in batteries, enough energy should
remain in the battery to provide up reserve according to (2.30) and (2.31) and enough avail-
able energy capacity to provide down reserve according to (2.32) and (2.33). According to
(2.34)−(2.35) batteries must start and finish the representative day with zero energy.

2.3 Column Generation Approach

To apply the decomposition, we first reformulate the problem into a diagonal block structure.
To do so, we include new variables zBb,i and zLl,i that represent the total units of storage b
and line l, respectively, that have been installed until node i. These variables must meet
constraints (2.36) and (2.37).

zBbm ≤
∑
i∈℘m

wBbi , ∀b ∈ B,m ∈M (2.36)

zLlm ≤
∑
i∈℘m

wLli , ∀l ∈ L,m ∈M (2.37)

Thus, we can replace constraints (2.13)-(2.14) by constraints (2.38)-(2.39) and constraints
(2.28)-(2.31) by constraints (2.40)-(2.43).

− F lm z
L
lm ≤ flmdt ≤ F lm z

L
lm,

∀l ∈ L̂,∀m ∈M,∀d ∈ D, ∀t ∈ T (2.38)

−M(1− zLlm) +
θFromlmdt − θTolmdt

Xl

≤ flmdt ≤
θFromlmdt − θTolmdt

Xl

+M(1− zLlm),

∀l ∈ L̂,∀m ∈M,∀d ∈ D, ∀t ∈ T (2.39)
pBbmdt − rBbmdt ≥ −zBbmCB,

∀b ∈ B, ∀m ∈M,∀d ∈ D, ∀t ∈ T (2.40)
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pBbmdt + rBbmdt ≤ zBbmC
B,

∀b ∈ B, ∀m ∈M, ∀d ∈ D, ∀t ∈ T (2.41)
pBEbmdt + rBbmdtα ≤ zBbmC

BζB,

∀b ∈ B, ∀m ∈M, ∀d ∈ D, ∀t ∈ T (2.42)
pBEbmd(t−1) + rBbmdtα ≤ zBbmC

BζB,

∀b ∈ B, ∀m ∈M, ∀d ∈ D, ∀t ∈ T (2.43)

Then, the reformulated co-optimisation problem seeks to minimise the objective function
(2.1) subject to constraints (2.9)-(2.12),(2.15)-(2.27),(2.32)-(2.43).

Now it is possible to apply the Dantzig Wolfe decomposition. To ease the understanding,
we first present the matrix form of the reformulated co-optimisation problem (2.44). Con-
straint (2.44b) is the linking constraint that couples time stages by relating the available
infrastructure in scenario tree node m with the investment decisions made on the predeces-
sor nodes of m. Constraint (2.44c) restrict the operational decisions to the total available
infrastructure in node m. Constraint (2.44d) summarise the investment constraints (2.7)-
(2.8). The operational constraints are modelled by (2.44e). Set Υm is the feasible region of
operating decisions in scenario tree node m. If constraint (2.44b) was relaxed, the investment
problem for each node could be solved independently.

min
∑
m∈M

∑
i∈℘m

φmc>mwi +
∑
m∈M

φmq>mym (2.44a)

s.t. : zm ≤
∑
i∈℘m

wi, ∀m ∈M (2.44b)

Amym ≤ zm, ∀m ∈M (2.44c)
Bmwm ≤ 0, ∀m ∈M (2.44d)

ym ∈ Υm, ∀m ∈M (2.44e)
wm ≤ w̄m, ∀m ∈M (2.44f)
zm ≤ z̄m, ∀m ∈M (2.44g)
wm ∈ Z+, ∀m ∈M (2.44h)
zm ∈ Z+, ∀m ∈M (2.44i)

We define the feasible region of available infrastructure in scenario tree node m by:

Ψm = {zm ∈ Z+ | ∃ym ∈ Υm, Amym ≤ zm, zm ≤ z̄m}

Note that Ψm is a bounded integer polyhedron, and that any point in Ψm can be expressed
as an integer combination of a finite number of integer points { ẑm}jmj=1 [29]. For each vector
of available infrastructure, there exist an associated optimal operational plan, ŷjm. Then, zm
can be rewritten as:

zm =

jm∑
j=1

λjmẑjm,

jm∑
j=1

λjm = 1, λjm ∈ {0, 1}. (2.45)
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The master problem of the Dantzig-Wolfe decomposition can be obtained by substituting
zm and ym in (2.44).

min
∑
m∈M

φmc>mwm +
∑
m∈M

jm∑
j=1

φmq>mŷjmλ
j
m (2.46a)

s.t. :

jm∑
j=1

ẑjmλ
j
m ≤

∑
i∈℘m

wi, ∀m ∈M, [πm] (2.46b)

jm∑
j=1

λjm = 1, ∀m ∈M, [µm] (2.46c)

λjm ∈ {0, 1}, ∀m ∈M, ∀j ∈ Jm (2.46d)
Bmwm ≤ 0, ∀m ∈M (2.46e)

wm ≤ w̄m ∈ Z+, ∀m ∈M (2.46f)
wm ∈ Z+, ∀m ∈M (2.46g)

2.3.1 Column Generation Algorithm

Since it is not possible to enumerate all feasible vectors of available units and its associated
operational plan, they are produced using the Column Generation approach. The idea is to
work only with a subset of columns in the master problem, and add more only when needed.
First, a restricted master problem is formulated with a limited number of columns. Then, the
dual prices πm and µm are obtained by solving the linear relaxation of the master problem.
New columns are generated by solving the subproblem (2.47) for each node m of the scenario
tree. The objective value (2.47a) is the reduced cost of the new column. Columns with
negative reduced cost could improve the objective value of the master problem. If no column
with negative reduced cost can be found, then the linear relaxation of the master problem
has been solved to optimality.

sp(m): min φmq>mym − zmπm − µm (2.47a)

s.t.: Amym ≤ zm (2.47b)
ym ∈ Υm (2.47c)
zm ≤ z̄m (2.47d)
zm ∈ Z+ (2.47e)

The subproblems can be solved in parallel because they only require the dual price infor-
mation require from the restricted master problem.

The Column Generation algorithm is described in Algorithm 1. The first set of columns is
constructed by solving the subproblems (2.47) using πm = −106 for every node and candidate
asset and µm = 0 for every node.
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2.3.2 Representative Day-Based Dantzig Wolfe Decomposition

The subproblems can be seen as one-stage mixed integer investment problems. They can
become large and difficult to solve, depending on the size of the power system and the number
of representative days or weeks used for replicating the yearly operation. Additionally, when
subproblems are solved in parallel, the iteration is not completed until every subproblem is
solved. Therefore, sometimes bottlenecks can be faced if a group of subproblems requires a
larger computational time than the rest.

To overcome this intractability issue we propose a different approach for the Dantzig
Wolfe decomposition. Instead of decomposing in yearly subproblems, we further decompose
by representative days reaching a sub-nodal level. Increasing, in this way, the number of
subproblems, but with much less computational effort per subproblem. Since more subprob-
lems are being solved, the number of iterations required for convergence of the algorithm will
probably increase.

Figure 2.1 depicts the representative day-based decomposition. Each node of the original
scenario tree is split into several sub-nodes, representing each day of the operating stage.
The investment decisions of each group of sub-nodes must be the same. This is coordinated
by the master problem.

Following the reasoning presented above, the master and subproblems can be formulated.
Problem (2.48) presents the master problem of the day-based decomposition. Note that now
for each node of the scenario tree m and each representative day d, columns of available
infrastructure and its associated daily-operational cost are modelled. On each node, invest-
ments should be performed to meet the requested available infrastructure for each day, as
stated in (2.48b).

min
∑
m∈M

φmc>mwm +
∑
m∈M

∑
d∈D

jmd∑
j=1

Γdφmq>mdŷ
j
mdλ

j
md (2.48a)

s.t. :

jmd∑
j=1

ẑjmdλ
j
md ≤

∑
i∈℘m

wi, ∀m ∈M,∀d ∈ D, [πmd] (2.48b)

jmd∑
j=1

λjmd = 1, ∀m ∈M,∀d ∈ D, [µmd] (2.48c)

λjmd ∈ {0, 1}, ∀m ∈M,∀d ∈ D, ∀j ∈ Jmd (2.48d)
Bmwm ≤ 0, ∀m ∈M (2.48e)

wm ≤ w̄m ∈ Z+, ∀m ∈M (2.48f)
wm ∈ Z+, ∀m ∈M (2.48g)

Problem (2.49) is the subproblem of the day-based decomposition. There is one subprob-
lem per day and node of the scenario tree. Now, each subproblem can be interpreted as a
daily investment problem.
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m = 1 

m = 2

m = 3

m = 4

m = 5

m = 6
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Figure 2.1: Scenario tree with 7 nodes, 4 typical days, 28 subproblems and 4 scenarios

sp(m, d): min Γdφmφmq>mdymd − zmdπmd − µmd (2.49a)

s.t.: Amdymd ≤ zmd (2.49b)
ymd ∈ Υmd (2.49c)

zmd ≤ z̄m (2.49d)
zmd ∈ Z+ (2.49e)

The problem is solved following Algorithm 1, but changing the master problem (2.46) by
(2.48), and the subproblem (2.47) by (2.49). Also, the for-loop in line 16 should be over
m ∈M and d ∈ D.
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2.4 IEEE-RTS Case Study - Validation model

This section validates the optimisation model and studies the economic performance of
stochastic and deterministic network expansion plans when co-optimised with battery en-
ergy storage plants. To do so, we introduce 4 case studies in which we also study the impacts
of operational details on the results of co-optimised network expansion plans with storage.

2.4.1 Input Data

We modified the IEEE 24-Bus System described in [30] by reducing in 25% rate capacity
for lines connected to transformers between buses: 24-3, 11-9 and 12-10. Also, we consider
two types of technologies for investing: (a) Transmission investment, new lines added in
parallel to existing ones with same capacity and reactance as installed: 3-10, 3-9 x2, 8-9
and 15-24 with an investment cost of 48 $/MW/km/yr and transformers 3-24 x4, 9-12 with
an investment cost of 28.2k $/MW/yr. One stage lag is considered between decision and
commissioning time; (b) Storage system in buses 11, 12 and 24 characterised by modules of
5MW/10MWh, 50 modules as maximum per bus, round-trip efficiency of 90% and invest-
ment cost of 80 k$/MW/yr, additionally, curtailment cost from renewables ΠOC is set at 50
$/MWh. Modified system with candidate assets is shown in Figure 2.2 and network param-
eters are presented in Table 4.1. A 8760 hours systemic Chilean demand profile and solar
profile have been utilised, these profiles have been clustered into 25 typical days. Profiles have
been clustered through K-means algorithm [31] by comparing a vector with 6 components, 3
components from each profile: Peak value, highest ramp (absolute value), total energy in a
day. Peak load is set in 2850 MW considering a 1% demand growth per year a 10% discount
rate is considered.

2.4.2 Case studies

We present 4 different cases where the modified IEEE 24-bus system is solved:

i The stochastic co-optimisation of new network and energy storage infrastructure, under-
taken in a multi-stage fashion and considering the (in)flexibility levels of the generation
fleet by using UC constraints.

ii The stochastic optimisation of new network infrastructure only (without energy storage
plants), undertaken in a multi-stage fashion and considering the (in)flexibility levels of
the generation fleet by using UC constraints.

iii The stochastic co-optimisation of network and energy storage infrastructure without
UC constraints, undertaken in a multi-stage fashion and ignoring the (in)flexibility
levels of the generation fleet.

iv The deterministic co-optimisation of network and energy storage infrastructure, under-
taken in a multi-year fashion and considering the (in)flexibility levels of the generation
fleet by using UC constraints. In this deterministic approach, optimisation of every
scenario is carried out in isolation from other scenarios, assuming perfect information
about how the future will evolve.
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Figure 2.2: Modified IEEE 24-Bus System with candidate assets in dashed red lines
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Three stages are considered for 4 scenarios, uncertainty is related to location and installed
capacity of renewable generation. Scenario tree is depicted in Figure 2.3 and its data is shown
in Table 2.1.

m = 1

m = 2

m = 5

m = 4

m = 3

m = 7

m = 6

Figure 2.3: Scenario Tree - 3 Stages and 4 Scenarios

Table 2.1: Scenario data for IEEE 24-Bus case. PV 12 and PV 24 correspond to PV installed
capacity in buses 12 and 24 respectively.

Node Probability Stage Scenario PV 12 [MW] PV 24 [MW]
1 1 1 S1 - S4 0 0
2 0.5 2 S1 - S2 0 1150
3 0.5 2 S3 - S4 1150 0
4 0.25 3 S1 0 1600
5 0.25 3 S2 535 1150
6 0.25 3 S3 1150 535
7 0.25 3 S4 1600 0

All cases are coded in Julia 0.6 [32] and solved with CPLEX 12.6.1 on a server with 24
vCPU 2.3 GHz Intel Xeon E5 and 24 GB of RAM under Google Cloud Engine infrastracture
[33]. 0.1% MIPgap was requested. The firsts three cases solve the whole scenario tree, thus
considering that every scenario tree node includes 25 subproblems, in every iteration 175
subproblems are solved parallelly using 24 workers with 1 thread each. In the deterministic
case 75 subproblems are solved in every iteration.

Results

Tables 2.2 to 2.5 show the investment infrastructure (amount of modules of battery invested
are presented within brackets, tables show when decision is taken) and Tables 2.6 to 2.11 the
respective costs of the four case studies.
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As cases i-iii are obtained in a multi-stage stochastic fashion, there are investment solutions
shown in Tables 2.2 to 2.4 that are common to multiple scenarios so as to respect the non-
anticipativity constraints of the stochastic problem. On the contrary, there are no non-
anticipativity constraints in case iv and thus investment solutions are shown for each scenario
independently as depicted in Table 2.5.

Table 2.2: Co-optimising network and storage systems

S1 S2 S3 S4
Stage 1 L2, L3, L4, L8
Stage 2 L1, L5, L10, B24[42] L9, B12[24]
Stage 3 B24[8] B24[8] - B12[26]

Table 2.3: Only network investment

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Stage 1 L2, L3, L4, L8, L10
Stage 2 L1, L5 L9
Stage 3 - - - -

In case i, various investments are undertaken in powerlines in stage 1 that are comple-
mented later by the installation of further lines but also new battery storage plants in node 24
(for scenarios 1 and 2) and node 12 (in scenario 4). In case ii, instead, only lines are utilised
in the investment plans, which is translated into lower costs of investments, but significantly
higher operational cost as demonstrated in Tables 2.6 and 2.7, increasing the overall total
cost. Thus, the use of battery energy storage in network expansion plans can drive, in this
case, costs downwards as much as 0.8% in average. Another interesting result corresponds
to the delay in the decision of installing line L10 in the stochastic program that co-optimises
new line capacities and storage plants. Indeed, in case 2, note that the installation of L10
is carried out in stage 1, which is common to all scenarios. However, L10 is truly needed
to deal with scenarios 1 and 2 only (when new generation is installed in node 24) and it
may result stranded if scenarios 3 and 4 realises. Thus, in the co-optimisation solution, the
decision to undertake L10 is delayed in order to wait and see which scenario is more likely
to unfold. Hence, in the co-optimisation solution, L10 will be installed and used efficiently
only if scenarios 1 and 2 realises, while battery energy storage will be preferred under the
realisation of scenarios 3 and 4.

Table 2.4: Unit commitment constraints neglected - Stochastic

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Stage 1 L2, L3, L4, L8, L10
Stage 2 L1, L5 L9
Stage 3 - - - B12[5]

Results for case iii (see Table 2.4) demonstrate that investments in storage plants are
significantly reduced if the (in)flexibility levels associated with the current generation fleet
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are ignored. This is an important result since operational details (such as the UC constraints)
are usually neglected in transmission expansion plans. Moreover, the lack of participation of
battery storage plants in transmission plans creates another problem: L10 will be brought
forward and installed in stage 1, altering the overall transmission plan. Note that, in this
example, battery plants have a double benefit: provide operational flexibility and delay
the installation of network infrastructure. In fact, investments in storage plants serve as
a “buffer” while we wait to get more information about which scenario is more likely to
occur. Therefore, network investment will be needed sooner rather than later (as operational
flexibility is ignored, affecting the participation of energy storage plants in transmission
plans), even when some of these investments may be stranded in the future due to the
realisation of unfavourable scenarios (like scenarios 3 and 4, in which L10 is not needed if
the appropriate amount of capacity in storage plants is installed).

Table 2.5: Co-optimising network and storage system - Deterministic

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Stage 1 L2, L3, L4, L8,

L10
L2, L3, L4, L8,

L10
L8 L8

Stage 2 L1, L5, B24[27] B24[25] B12[25] L9, B12[25]
Stage 3 B24[23] B24[4] B12[4], B24[4] B12[5]

Case iv shows investment plans for each scenario assuming perfect information about
the future (see Table 2.5). Interestingly, if the network planner knew that new generation
capacity was going to be installed in node 12 (scenario 4), he would build only L8 in the
first stage. However, and as demonstrated in Table 2.10, a significantly higher cost will be
observed is another scenario, different to scenario 4, realises. For example, Table 2.10 shows
that if the solution of scenario 4 is implemented, but scenario 1 ultimately realises, then the
total cost will be as high as MM$ 1,035.51. Note that this cost differs significantly from the
cost of scenario 4 in Table 2.9, and this is because the latter assumes perfect information
about the future, which is unrealistic when planning networks under uncertainty (in other
words, it quantifies the cost of implementing the investment propositions of scenario 4 under
the realisation of scenario 4).

Table 2.6: Co-optimising network and storage system - Stochastic - Costs in MM$

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Mean
Operation 770.14 761.64 767.90 767.1 766.69
Investment 46.81 46.81 33.05 39.44 41.53
Total 816.95 808.45 800.95 806.54 808.22

Table 2.7: Only network investment - Stochastic - Costs in MM$

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Mean
Operation 801.84 786.58 784.78 795.75 792.24
Investment 22.81 22.81 22.21 22.21 22.51
Total 824.65 809.39 806.98 817.96 814.75
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Table 2.8: Unit Commitment constraints - Stochastic - Costs in MM$

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Mean
Operation 470.09 457.18 455.4 462.33 461.25
Investment 22.81 22.81 22.21 23.43 22.81
Total 492.9 479.99 477.61 485.76 484.07

From comparing Table 2.6 and 2.10, we can observe that the solution of the stochastic
program, that features a cost of MM$ 808.22, is better than the solution of any deterministic
plans and this is because although deterministic plans feature the lower costs under perfect
information (see Table 2.9), in reality, the future is uncertain and thus the costs associated
with the realisation of different scenarios to those used in the design of the plans, might be
extremely high. Thus, although costs of deterministic plants seem to be smaller (Table 2.9),
they are not (see Table 2.10).

Table 2.9: Co-optimising network and storage system - Deterministic - Costs in MM$

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Mean
Operation 772.38 769.47 769.47 767.94 769.81
Investment 43.55 31.97 17.01 26.38 29.73
Total 815.93 801.44 786.48 794.32 799.54

Table 2.10: Matrix cost by fixing deterministic solutions in different scenarios - Costs in MM$

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Mean

Solution
from

Scenario 1 815.93 807.42 812.89 842.27 819.63
Scenario 2 825.10 801.43 807.31 836.09 817.48
Scenario 3 1,030.28 953.27 786.48 809.46 894.87
Scenario 4 1,035.51 957.72 790.42 794.32 894.49

Likewise, the costs of case iii displayed in Table 2.8 would not correspond to the true cost
observed in reality. Indeed, in reality UC constraints must be respected and thus Table 2.11
shows the true costs of case iii, where the network and storage capacity obtained from the
solution of case iii is operated by using the UC constraints, recalculating operational costs.
This demonstrates that ignoring the (in)flexibility levels of the generation fleet may drive
costs up, as high as 7%.

Table 2.11: Fixed solution from neglecting UC constraints - Stochastic - Costs in MM$

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Mean
Operation 803.66 786.97 785.25 793.57 792.36
Investment 22.81 22.81 22.21 23.43 22.81
Total 826.48 809.78 807.45 817.00 815.18
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2.5 IEEE 118-busbar System Case Study

This section studies the scalability of our approach and the computational performance
against the traditional DW node-based decomposition in terms of execution time, RAM
utilisation and number of iterations.

2.5.1 Input data

We modified the IEEE 118-Bus System described in [34] by raising peak load from 3319 MW
to 4500 MW.We consider two types of technologies for investing: (a) 8 candidate transmission
lines added in parallel to existing ones with same capacity and reactance as installed: 8-30,
30-38, 53-54, 64-65, 77-82, 82-83, 80-99, 94-100 with an investment cost of 90 $/MW/km/yr.
One stage lag is considered between decision and commissioning time; (b) Storage system
in buses 8, 15, 30, 38, 54, 59, 77, 80, 83, 100 characterised by modules of 5MW/10MWh,
50 modules as maximum per bus, round-trip efficiency of 90% and investment cost of 40
k$/MW/yr, additionally, curtailment cost from renewables ΠOC is set at 150 $/MWh.

Same demand profile as 2.4 is considered, and uncertainty is related to growth rate of
systemic solar installed capacity. We include 4 solar plants in buses (initial installed capacity)
15 (270 MW), 54 (325 MW), 59 (875 MW) and 80 (475 MW) whose final installed capacity
depends on the scenario, all solar plants growth at the same rate.

2.5.2 Results and discussion

In Figures 2.5 to 2.8, we show the value of the objective function and compare the compu-
tational performance in terms of execution time, use of RAM, and number of iterations for
different instances of the stochastic program, in particular in terms of the number of repre-
sentative days, number of stages, and number of scenarios. Hence, we study the following
cases:

• 4 scenarios obtained by branching in two nodes in firsts two stages with equal probability
considering 3 stages. Demand and solar profiles have been clustered in 5, 15 and 25
typical days. Same scenario tree as shown in Figure 2.3 and its data is presented in
Table 2.13

• 9 scenarios obtained by branching in three nodes in firsts two stages with equal prob-
ability considering 3 stages. Demand and solar profiles have been clustered 25 typical
days. Scenario tree is shown in Figure 2.4 considering firsts 3 stages and its data is
presented in Table 2.14 for firsts 3 stages.

• 27 scenarios obtained by branching in three nodes in firsts three stages with equal
probability considering 4 stages. Demand and solar profiles have been clustered in 5,
15 and 25 typical days. Scenario tree is shown in Figure 2.4 and its data is presented
in Table 2.14.

We compared amount of integer and continuous variables and constraints from a mono-
lithic approach, original formulation of Danztig Wolfe and the node-based decomposition
from the 4 stages, 27 scenarios and 25 representative days case. From Table 2.12 it can
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be observed that the reformulation subproblem size is about 970 times smaller in terms of
integer variables, 918 times smaller in terms of continuous variables and 1000 times smaller
in terms of constraints in comparison to the monolithic approach.

Table 2.12: Subproblem size comparison

Reformulated DW DW Monolithic
Integer Variables 4,014 97,326 3,893,040

Continuous Variables 31,296 782,400 28,747,200
Constraints 59,230 1,480,510 59,220,088

All cases are coded in Julia 0.6 [32] and solved with CPLEX 12.6.1 on two servers with
2 10-core Intel Xeon E5-2660 each and 48 GB of RAM each from National Laboratory High
Performance Computing infrastructure [35], 0.1% MIPgap was requested for every 3 stages
case and 0.5% for every 4 stages case.
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Figure 2.4: Scenario Tree - 4 Stages and 27 Scenarios - IEEE 118-Bus System
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Table 2.13: Scenario tree - 3 Stages and 4 Scenarios - IEEE 118-Bus System

Node Probability Stage Scenario Solar Growth Rate
1 1 1 S1 - S4 1
2 0.5 2 S1 - S2 1.3
3 0.5 2 S3 - S4 1.1
4 0.25 3 S1 1.5
5 0.25 3 S2 1.4
6 0.25 3 S3 1.3
7 0.25 3 S4 1.2

25



Table 2.14: Scenario tree data - 4 Stages and 27 scenarios - IEEE 118-Bus System

Node Probability Stage Scenario Solar Growth Rate
1 1 1 S1-S27 1
2 1/3 2 S1-S9 1.5
3 1/3 2 S10-18 1.3
4 1/3 2 S19-S27 1.1
5 1/9 3 S1-S3 2
6 1/9 3 S4-S6 1.8
7 1/9 3 S7-S9 1.7
8 1/9 3 S10-S12 1.6
9 1/9 3 S13-S15 1.5
10 1/9 3 S16-S18 1.4
11 1/9 3 S19-S21 1.3
12 1/9 3 S22-S24 1.2
13 1/9 3 S25-S27 1.1
14 1/27 4 S1 2.7
15 1/27 4 S2 2.6
16 1/27 4 S3 2.5
17 1/27 4 S4 2.5
18 1/27 4 S5 2.4
19 1/27 4 S6 2.3
20 1/27 4 S7 2.2
21 1/27 4 S8 2.1
22 1/27 4 S9 2
23 1/27 4 S10 2.2
24 1/27 4 S11 2.1
25 1/27 4 S12 2
26 1/27 4 S13 2
27 1/27 4 S14 1.9
28 1/27 4 S15 1.8
29 1/27 4 S16 1.9
30 1/27 4 S17 1.8
31 1/27 4 S18 1.7
32 1/27 4 S19 1.7
33 1/27 4 S20 1.6
34 1/27 4 S21 1.5
35 1/27 4 S22 1.6
36 1/27 4 S23 1.5
37 1/27 4 S24 1.4
38 1/27 4 S25 1.5
39 1/27 4 S26 1.4
40 1/27 4 S27 1.3
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Figure 2.5: Objective Function Costs - IEEE 118-Bus System

In terms of execution time, we have information for only two instances when applying the
traditional DW approach. These two cases are, as shown in Figure 2.6, (i) that of 5 days,
3 stages and 4 scenarios, and (ii) that of 5 days, 4 stages and 27 scenarios. For the other
cases of 3 stages, the traditional DW approach reached the maximum allowed time of 48
hours without delivering a solution, while for those cases of 4 stages, the computer run out
of memory. Instead, when we use our proposed DW approach, we obtain solutions for all
studied instances, with time savings of more than a half with respect to the times utilised by
the traditional DW algorithm.
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Figure 2.6: Time solution - IEEE 118-Bus System

We observe a similar situation in terms of RAM usage (see Figure 2.7, with more significant
differences and advantages for the larger case study with 4 stages, in which our approach saves
approximately a half of the memory utilised by the traditional DW approach. Note that, in
the case of 4 stages, saving RAM is critically important to obtain investment solutions since,
precisely, the other cases of 4 stages could not be solved due to RAM problems.
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Figure 2.7: Use of Memory - IEEE 118-Bus System

Finally, in terms of the number of iterations Figure 2.8 shows that our approach features
significantly more iterations due to the larger amounts of subproblems present in the iterative
process. Indeed, and as mentioned, the decomposition approach in our proposal is based
on typical days, while in the traditional approach, a node-based decomposition is used.
Nevertheless, the larger amount of subproblems and iterations present in our approach is
precisely what makes it faster and less demanding in terms of utilisation of RAM since every
subproblem is significantly simpler to solve.
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Figure 2.8: Iterations - IEEE 118-Bus System
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Algorithm 1: Column Generation algorithm
1 Initialize MP (2.46) with initial set of columns ;
2 Set jm ← 1, k ← 0, δIP ←∞, δLP ←∞, UB ←∞, LB ←∞;
3 while δIP > εMIP do
4 while δLP > εLP do
5 ZSP ← 0;
6 Solve the linear relaxation of MP (2.46);
7 Collect solution (ZMP

LP ,π,µ);
8 UB ← ZMP

LP ;
9 for m = 1 to M do

10 Solve subproblem (2.47);
11 Collect solution (ZSP

m , x̂m, ŷm);
12 if ZSP

m < 0 then
13 jm ← jm + 1;
14 x̂jm ← x̂m, ŷ

j
m ← ŷm;

15 ZSP ← ZSP + ZSP
m ;

16 end
17 end
18 LB ← ZMP

LP + ZSP ;
19 δLP ← (UB − LB)/LB);
20 end
21 Solve integer MP (2.46);
22 Collect solution (ZMP

IP );
23 δIP ← (ZMP

IP − LB)/(LB);
24 ZMP

IP k ← ZMP
IP ;

25 k ← k + 1;
26 if k ≥ 5 then
27 if abs(ZIP

k −
∑k−1

i=k−4 Z
IP
i /4) ≤ σ then

28 break
29 end
30 end
31 end
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Chapter 3

Australian Case Study

3.1 Mathematical model

3.1.1 Master problem

min
∑
m∈M

γmφm
(∑
l∈L

ΠL
lmv

L
ml +

∑
p∈PC

ΠP
pmv

P
mp +

∑
b∈BC

ΠB
bmv

B
mb

)
+
∑
m∈M

∑
w∈Wm

∑
j∈Jwm

γmΓwφmqTwmŷjwmλ
j
wm (3.1a)

s.t.
∑
j∈Jwm

v̂Lmwlλ
j
wm ≤

∑
i∈℘m

vLil ∀m ∈M,∀w ∈ Wm,∀l ∈ L, [πmwl] (3.1b)∑
j∈Jwm

v̂Bmwbλ
j
wm ≤

∑
i∈℘m

vBib ∀m ∈M, ∀w ∈ Wm,∀b ∈ BC , [πmwb] (3.1c)∑
j∈Jwm

v̂Pmwpλ
j
wm ≤

∑
i∈℘m

vPip ∀m ∈M, ∀w ∈ Wm,∀p ∈ PC , [πmwp] (3.1d)∑
j∈Jwm

λjwm = 1 ∀m ∈M,∀w ∈ Wm, [µwm] (3.1e)

vLml ∈ Z+ ∀m ∈M, ∀l ∈ L, (3.1f)
vBmb ∈ Z+ ∀m ∈M, ∀b ∈ Bc. (3.1g)
vPmp ∈ {0, 1} ∀m ∈M,∀p ∈ PC , (3.1h)
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3.1.2 Slave problem

min sp(w,m) :
∑
j∈Jwm

γmΓwφmqTwmyjwmλ
j
wm −

∑
l∈L

vLmwlπ̂mwl−∑
p∈PC

vPmwpπ̂mwp −
∑
b∈BC

vBmwbπ̂mwb − µ̂mw (3.2a)

s.t. vLmwl ≤ v̄Ll ∀l ∈ L, (3.2b)
vBmwl ≤ v̄Bb ∀b ∈ BC , (3.2c)∑

g∈Gn

pgh +
∑
b∈BR

n

pbh +
∑
b∈BC

n

pbh +
∑
g∈GR

n

pgh+∑
p∈PE

n

pph +
∑
p∈PC

n

pph +
∑
l∈Inn

flh −∑
l∈Outn

flh + LSnh = Dnh ∀n ∈ N,∀h ∈ H, (3.2d)

flh + frfwdlh ≤ F̄l + vLmwlL̄l ∀l ∈ L,∀h ∈ H, (3.2e)
flh − frrevlh ≤ F̄l − vLmwlL̄l ∀l ∈ L,∀h ∈ H, (3.2f)∑

g∈Gn

rgh +
∑
b∈BC

n

rbh +
∑
p∈PE

n

rph +
∑
p∈PC

n

rph+∑
l∈Inn

frfwdlh −
∑
l∈Outn

frfwdlh −
∑
l∈Inn

frrevlh +∑
l∈Outn

frrevlh = R̄qnh ∀n ∈ N,∀h ∈ H, (3.2g)

pgh + rgh ≤ P̄gmxgh ∀g ∈ G,∀h ∈ H, (3.2h)
pgh ≥ Pgxgh ∀g ∈ G,∀h ∈ H, (3.2i)

rgh ≤ αgP̄gmxgh ∀g ∈ G,∀h ∈ H, (3.2j)
xgh ≤ Ngm ∀g ∈ G,∀h ∈ H, (3.2k)

pgh ≤ P̄gmβwgNgm ∀g ∈ Gror,∀h ∈ H, (3.2l)∑
h∈H

pgh ≤ HP̄gmβwgNgm ∀g ∈ G \Gror, (3.2m)

xgh = xgh−1 + sgh − tgh ∀g ∈ G,∀h ∈ H, (3.2n)
pgh − pgh−1 ≤ xgh−1∆gP̄gm + sghPg ∀g ∈ G,∀h ∈ H (3.2o)
pgh−1 − pgh ≤ xgh∆gP̄gm + tghPg ∀g ∈ G,∀h ∈ H, (3.2p)

xgh ≥
∑

h′∈h−hon(g)

sg,h′ ∀g ∈ G,∀h ∈ H, (3.2q)

Ngm − xgh ≥
∑

h′∈h−hoff(g)

tg,h′ ∀g ∈ G,∀h ∈ H, (3.2r)

pgh ≤ AghP̄gm ∀g ∈ GR,∀h ∈ H, (3.2s)
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pbh ≤ P̄B
mb ∀b ∈ BR, ∀h ∈ H, (3.3a)

pbh ≥ −P̄B
mb ∀b ∈ BR, ∀h ∈ H, (3.3b)

ebh ≤ P̄B
mbC

Br ∀b ∈ BR,∀h ∈ H, (3.3c)
ebh ≥ 0 ∀b ∈ BR,∀h ∈ H, (3.3d)

ebh = ebh−1 − pbhηr ∀b ∈ BR,∀h ∈ H, (3.3e)
eb1 = 0, ebH = 0 ∀b ∈ BR (3.3f)
pbh + rbh ≤ vBmwbζ

B ∀b ∈ BC ,∀h ∈ H, (3.3g)
pbh ≥ −vBmwbζB ∀b ∈ BC ,∀h ∈ H, (3.3h)
ebh − ξrbh ≥ 0 ∀b ∈ BC ,∀h ∈ H, (3.3i)

ebh−1 − ξrbh ≥ 0 ∀b ∈ BC ,∀h ∈ H, (3.3j)
ebh = ebh−1 − pbhηb ∀b ∈ BC ,∀h ∈ H, (3.3k)

ebh ≤ vBmwbC
BζBb ∀b ∈ BC ,∀h ∈ H, (3.3l)

bb1 = 0, bbH = 0 ∀b ∈ BC , (3.3m)
pph + rph ≤ vPmwpζ

P
p ∀p ∈ PC ,∀h ∈ H, (3.3n)

pph ≥ −vPmwpζPp ∀p ∈ PC ,∀h ∈ H, (3.3o)

eph − ξrph ≥ 0 ∀p ∈ PC ,∀h ∈ H, (3.3p)
eph−1 − ξrph ≥ 0 ∀p ∈ PC ,∀h ∈ H, (3.3q)
eph ≤ vPmwpC

P
p ζ

P
p ∀p ∈ PC ,∀h ∈ H, (3.3r)

eph = eph−1 − pbhηP ∀p ∈ PC ,∀h ∈ H, (3.3s)

ep1 = epH =
1

2
vPmwpC

P
p ζ

P
p ∀p ∈ PC , (3.3t)

pph + rph ≤ P̄ P
mp ∀p ∈ PE, ∀h ∈ H, (3.3u)

pph ≥ −P̄ P
mp ∀p ∈ PE, ∀h ∈ H, (3.3v)

eph − ξrph ≥ 0 ∀p ∈ PE, ∀h ∈ H, (3.3w)
eph−1 − ξrph ≥ 0 ∀p ∈ PE, ∀h ∈ H, (3.3x)

eph ≤ P̄ P
mpC

P
p ∀p ∈ PE, ∀h ∈ H, (3.3y)

eph = eph−1 − pbhηP ∀p ∈ PE, ∀h ∈ H, (3.3z)

ep1 = epH =
1

2
P̄ P
mpC

P
p ∀p ∈ PE (3.4a)

3.1.3 Planning Model with column generation

After validating the optimisation model and proving its scalability in real-scale networks we
apply it on a real-size network system corresponding to the Australian NEM network. We
extend the use of the Reformulated Day-Based Dantzig Wolfe Decomposition presented in
section 2.3.2 by solving a large-scale mixed-integer linear problem, in this case, as opposed
to cases solved in Chapter 2, subproblems solve a operation problem of one week long each
turning the reformulation from a Day-Based to a Week-Based model. The formulation does
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not change but only the value of H increases from 24 to 168.

The optimisation model involves two problems, the master problem, which decides in-
vestment for all nodes of the scenario tree and operational solution coming from previous
columns added from subproblems (3.1a), and the slave problem, which solves one indepen-
dent investment and operational problem within one typical week in a specific scenario and
stage utilising dual prices obtained from master problem (3.2a).

Constraints (3.1b) - (3.1c) ensure that investments are consistently made, and any new
investment is available for all coming nodes. (3.1e) guarantees that only one column is
selected for every subproblem. Line and battery investment are integer as depicted in (3.1f)
and (3.1g) respectively, and candidate pumped storage decision is binary as real projects are
considered (3.1h).

In slave subproblems, the operational and investment optimisation problem is modelled
as follow: a maximum amount of modules can be installed in lines and batteries as shown in
(3.2b)-(3.2c). Constraint (3.2d) models nodal power balance, (3.2e) and (3.2f) model power
flows in lines considering reserve flow and new added capacity if modules of lines are in-
vested, reserve balance is modelled in (3.2g) allowing to transfer reserve among electrical
nodes. Conventional generators are modelled through constraints (3.2h) to (3.2r), (3.2h)
reflects maximum output power, (3.2i) minimum stable generation, (3.2j) present the head-
room that must be available in conventional generators for providing spinning reserve, (3.2k)
limits maximum amount of machines to commit per generator, (3.2l) is applied only for run-
of-river generators constraining their maximum generation according to their plant factor
and (3.2m) is applied to no run-of-river conventional generators constraining the maximum
energy generated within a typical week (one subproblem’s duration), (3.2n) shows commited
machines per generator according to startups and shutdowns, (3.2o)-(3.2p) present ramp
rates per generators, and (3.2q)-(3.2r) constraint minimum up and down time per genera-
tors respectively. Renewables’ power output are constrained by their installed capacity and
availability of resources as shown in (3.2s), constraints (3.3a) to (3.3f) describe residential
batteries’ operation, (3.3a) and (3.3b) model limits for generation and load mode respectively,
(3.3c) and (3.3d) present maximum and minimum energy to be stored in residential batteries
respectively, and (3.3f) present their border conditions. (3.3g) - (3.3m) describe candidate
battery operation, unlike residential batteries, candidate batteries can provide reserve, there-
fore an additional reserve variable is added in its operation, (3.3g) and (3.3h) describe power
limits for generation and load mode, (3.3i) and (3.3j) present minimum energy that must be
available at the beginning and at the end of one time block (one hour) for providing reserve,
(3.3k) shows state of charge of a candidate battery, (3.3l) presents maximum energy capacity
and (3.3m) border conditions stating that no energy must be kept at the end of the simu-
lation. From constraint (3.3n) to constraint (3.4a) candidate and existing pumped storage
plants are modelled, for candidate pumped storage plants, (3.3n) models maximum power
output as generator and (3.3o) models maximum power input operating as pump, constraints
(3.3p) and (3.3q) state the minimum energy that must be stored at all times for providing re-
serve, energy capacity is obtained according to (3.3y) and state of charge according to (3.3s),
border conditions state that, in case of any investment, energy stored at the beginning and
at the end of simulation period must be half of maximum capacity. Similarly, for existing
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pumped storage plants their maximum power as generator is modelled according to (3.3u)
and maximum power input as pump is modelled according to (3.3v), minimum energy must
be stored at all times for providing reserve as modelled in (3.3w) and (3.3x), energy capacity
is obtained according to (3.3z) and state of charge is obtained according to (3.3y), energy
at the beginning and at the end of simulation period must be half of maximum capacity as
shown in (3.4a).

Accelerating methods for Column Generation

Despite solving subproblems which are fast to solve, sometimes the algorithm faces issues
in converging, finding good columns or it simply takes too long. Therefore, We have imple-
mented some accelerating methods that help the algorithm to reach convergence.

• Dynamic time limit: When solving many subproblems in parallel, sometimes a few
amount of them are harder to be solved creating a bottleneck in the algorithm, this
because one iteration is not completed until all of subproblems are solved. We have
implemented a methodology which capture the solution time of all subproblems in one
iteration and calculates the 85th percentile. For the next iteration, all of subproblems
must be solved within this time, otherwise the algorithm stops the subproblem and cap-
tures the best solution obtained for that subproblem. If more than 25% of subproblems
are stopped before converging, a new time limit is set.

• Tunned solver: We have utilised the auto tunning feature of the solver in the subprob-
lems.

• Warm-start: Before solving a subproblem, we provide an initial value to investment
variables coming from previous master problem solution.

• Column Sharing: The investment solution obtained from a subproblem is shared among
all subproblems that belong to the same scenario tree node. This applies to all sub-
problems of the scenario tree. Iterations will become longer to solve, but many columns
will be added to master problem in each iteration accelerating convergence.

Additionally in this study case, we have relaxed the operational variables coming from
conventional generators in order to reduce computational time from subproblems, yet the
investment variables remained integer. It has been proven that by relaxing these variables
the model still captures with relatively high precision the relevant flexibility requirements
according to reference [36].

3.2 Study Case

This study aims to develop a planning model for the Network Electricity Market (NEM) under
uncertainty. We merge four different scenarios described in the ISP [2] into one scenario tree
branching on the root node. These scenarios differ each other in generation expansion plans,
storage investment costs, load growth rate and fuel costs.
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Figure 3.1: 7-bus system NEM

The network is composed by seven buses and six lines as shown in Figure 3.1, one bus for
each state except Queensland which is separated in three buses. Interconnectors are shown
in dashed lines and a candidate line is shown in dash-dotted line. Current capacities are
shown in Table 3.1

Load profiles are obtained from [37], they increase in time by different rates according to
scenario, stage and location conforming to shown in Tables 4.2 - 4.4, renewable profiles do
not change in time, thus, they are repeated in every scenario tree node, additionally, genera-
tion installed capacity, storage investment prices and fuel costs depend on scenario tree node.

Table 3.1: Interconnector’s capacities

Link Capacity
From To [MW]
TAS VIC 500
NSW VIC 1000
QLDS NSW 600
QLDC QLDS 1900
QLDN QLDC 2225
SA VIC 850
SA NSW 0

The study case is programmed in Julia 0.6, being solved utilising Gurobi 8.0 and CPLEX
12.8.1, University of Melbourne infrastructure was utilised to run the models utilising 12
8-core i7 Intel machines with 16 GB of RAM each, these computers were coordinated under
OpenHPC clustering environment. 156 subproblems in parallel were solved at each iteration.
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3.2.1 Operational model

Every year is represented through 12 independent subproblems of 168 hours long each. Every
subproblem represent one typical week corresponding to one month of the year, these weeks
are characterised by their resource availability, weight in the year and demand.

Some interconnectors in NEM are High Voltage Direct Current (HVDC) lines [38], besides
that, NEM’s shape is mostly radial resulting in controllable flows in the system, for this
reason, angles in electrical nodes are dismissed rendering a transport model, line capacity is
assumed the same for forward and reverse direction.

In order to reduce computational complexity, generators are aggregated into clusters of
same technology and similar variable cost, one or two aggregated machines per technology
in every bus. Wind farms, solar plants and rooftop solar are modelled as single machines
constrained by their availability and installed capacity with the possibility of curtailing.

Storage systems are classified according to their energy capacity. Residential batteries’
energy capacity is considered in two hours at maximum power and their installed capacity
depends on stage and scenario being solved, utility-scale storage system’s energy capacity
is considered in two hours as well, and their installed capacity is economically optimised,
finally pumped storage energy capacity depend either is existing pumped storage or candidate
pumped storage, the former have energy capacities from 6 hours to 25 hours and the latter
are composed by projects of either 24 hours or 168 hours with 1500 MW and 2000 MW
of maximum power respectively whose installation is economically optimised. Residential
batteries can only do arbitrage, although, pumped storage systems and utility-scale storage
systems can provide spinning reserve and do arbitrage. Residential batteries and utility-scale
storage systems have a 90% round-trip efficiency, unlike pumped storage system having a
80% round-trip efficiency.

3 + 5 rule has been utilised for reserve requirements at all times. Reserve must be equal
to 3% of demand plus 5% of renewable generation at every bus at every hour and reserve can
be imported/exported through transmission system. Conventional generation can provide
up to 20% of commited generation as reserve and storage systems must keep enough energy
to provide up to half-an-hour of reserve at maximum power.

3.2.2 Investment model

Every existing link can be reinforced by expanding their actual capacity by modules of 200
MW up to a defined maximum depending on the interconnector as shown in Table 3.2, a new
line between South Australia and New South Wales is proposed with a candidate module
of 700 MW. Investment costs are obtained by calculating an average cost per installed MW
according to each interconnector from ISP Assumptions Workbook [39].
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Table 3.2: Current line capacities and maximum reinforcement options

Link Capacity Maximum
From To [MW] modules
TAS VIC 500 12
NSW VIC 1000 18
QLDS NSW 600 30
QLDC QLDS 1900 20
QLDN QLDC 2225 20
SA VIC 850 20
SA NSW 0 1 (700 MW)

Pumped storage system and large-scale utility storage are investment options in NEM, the
former can be invested in New South Wales representing Snowy 2.0 project characterised by
a 2000 MW storage system with 168 hours of duration at maximum power with an estimated
cost of 4 billion of Australian dollars and in Tasmania representing Battery of The Nation
project characterised by a 1500 MW storage system with 24 hours of duration at maximum
power with an estimated cost of 2.25 billion of Australian dollars, pumped storage system
have an efficiency set at 80% and 50 years of lifetime as AEMO considers, they also have
one stage lag between decision and commissioning time, the latter can be invested in any of
the seven buses as modules of 200 MW up to 15 GW with 2 hours of duration at maximum
power, no lag in considered between decision and commissioning time and efficiency is set at
90%.

3.2.3 Scenarios

Four different scenarios are solved simultaneously under a stochastic approach considering
the root node as base for all of them (see Figure 3.2), each scenario has a 25% probability of
occurrence. A 6% of discount rate is considered.

Scenarios as described as follows, any comparison is referred to Neutral scenario:

• Neutral: Business as Usual

• Slow: Economic growth is weak reducing generation investment along with a strong
large-scale demand side participation. Wind and utility PV show a slower cost reduction
in comparison to Neutral scenario.

• Fast: Strong economic growth along with a weak large-scale demand side participation.
Wind and utility PV show a rapid cost reduction in comparison to Neutral scenario.

• High DER: Neutral economic growth along with a strong large-scale demand side par-
ticipation and distributed storage aggregation.

All scenarios consider a initial generation installed capacity which varies depending on the
scenario and stage being solved (see Figure 3.3), thermal generation reaching their lifespan
are retired from the system, new base load generation such as high efficiency low emissions
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(HELE) coal-fired generation is added into the system to deliver low-cost, reliable and secure
supply of synchronous generation and renewable technologies penetration increases accord-
ing to build prices and policies. Moreover, scenarios are characterised by different demand
forecasts projected to increase in time at different rates, however, net demand is expected
to remain flat due to new DER supplying new energy into the system. Finally, investment
costs may differ among scenarios depending on economical and technologic development.

Planning horizon is set in 20 years beginning in 2020, every scenario is composed by 4
stages of 5 years long each. Each year is represented by a representative time frame of 12
weeks, these weeks are obtained utilising K-medoids clustering algorithm [40] by comparing
a large matrix with demand and renewable profiles for every electrical node and obtaining a
representative week for every month of the year.

N
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w
Fast
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igh

 D
ER

Stage 1 Stage 2 Stage 3 Stage 4

Figure 3.2: Scenario tree node composed by 4 scenarios and 4 stages

3.2.4 Results

Investment decisions for stochastic study case are shown in Tables 3.4 and 3.5 (it is shown
when new investments are operating), a darker background in some cells mean that decision
must be the same for all scenarios within same stage due to longer construction times of
pumped storage plants and transmission lines.

From Table 3.4 it can be observed that two important investments are made being com-
missioned at the second stage, NSW − V IC link is reinforced by 2.2 GW and TAS − V IC
link is reinforced by 400 MW, additionally, SA−NSW new link is invested in the fast sce-
nario at the fourth stage, creating a new interconnection with 700 MW of capacity between
two buses that were not connected before. From Table 3.5 it can be observed when Bat-
tery of The Nation investment is obtained at stage 4 in the Fast scenario the TAS − V IC
link is considerably reinforced, likewise when Snowy 2.0 is invested, links connecting NSW
are reinforced as well. Moreover, it is important to note that no utility storage asset were
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Figure 3.3: Installed capacity by technology, stage and scenario of NEM

invested.

Transmission investment

Due to the presence of lead time in transmission investments, all scenarios at the second stage
share the same transmission investment decision. NSW − V IC link by the second stage is
reinforced in more than two times its initial capacity ending up with 3.2 GW of transfer
capacity. This major investment is justified by its operation in the first stage where this
link, most of the time, remained importing energy from VIC to NSW at maximum capacity
according to the load duration curve depicted in Figure 3.4. During the firsts two stages,
NSW, in average, is the most expensive bus of the system as shown in Table 3.3, therefore it
is expected to be importing energy rendering NSW − V IC link to be highly congested.
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Figure 3.4: Load duration curve of NSW − V IC link at Stage 1

After reinforcing the link at the second stage, its load duration curve for the different
scenarios are shown in Figure 3.5, the fast scenario is the only scenario with forward flows in
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Table 3.3: Marginal costs in stage 1 and stage 2

Marginal Cost
[$/MWh]

Stage 1 Stage 2
Location Root node Fast HighDER Neutral Slow
NSW 21.5 14.4 15.56 16.04 16.04
QLDN 19.79 16.05 16.05 16.04 15.92
QLDC 19.79 16.05 16.05 16.04 15.92
QLDS 19.79 16.05 16.05 16.04 15.92
SA 15.42 16.49 12.72 14.75 11.24
TAS 0.89 5.61 3.77 6.60 3.08
VIC 9.94 11.17 9.4 10.27 7.90

NSW to VIC direction, additionally in this scenario NSW bus is cheaper than Queensland’s.
For the rest of scenarios, this link still remains exporting at maximum capacity.

Links connecting Queensland’s buses are not reinforced during the firsts stages, it is impor-
tant to note from Table 3.3 that marginal costs of Queensland’s buses are the same for every
stage, therefore links connecting Queensland are not as congested as NSW’s links obtaining
no investments.

-3K

-2K

-1K

0K

1K

2K

3K

Fl
ow
 [M
W
]

Fast

-3K

-2K

-1K

0K

1K

2K

3K

Fl
ow
 [M
W
]

Slow

-3K

-2K

-1K

0K

1K

2K

3K

Fl
ow
 [M
W
]

High DER

-3K

-2K

-1K

0K

1K

2K

3K

Fl
ow
 [M
W
]

Normal

Figure 3.5: Load duration curve of NSW − V IC link at Stage 2
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Table 3.4: Stochastic - Line Investment

Stage
Line Scenario 1 2 3 4

Fast 0 2200 2200 3000
HighDER 0 2200 2200 2400
Normal 0 2200 2200 2200NSW - VIC

Slow 0 2200 2600 2600
Fast 0 0 0 1000

HighDER 0 0 0 0
Normal 0 0 0 0QLDC - QLDS

Slow 0 0 0 0
Fast 0 0 0 0

HighDER 0 0 0 0
Normal 0 0 0 0QLDN - QLDC

Slow 0 0 0 0
Fast 0 0 0 2000

HighDER 0 0 0 0
Normal 0 0 0 600QLDS - NSW

Slow 0 0 0 0
Fast 0 0 0 700

HighDER 0 0 0 0
Normal 0 0 0 0SA - NSW

Slow 0 0 0 0
Fast 0 0 0 0

HighDER 0 0 0 0
Normal 0 0 0 0SA - VIC

Slow 0 0 0 0
Fast 0 400 600 1800

HighDER 0 400 400 600
Normal 0 400 400 800TAS - VIC

Slow 0 400 400 800

Storage Investments

From Table 3.5 it can be observed at the fourth stage Battery of The Nation was invested only
in the Fast Scenario and Snowy 2.0 was invested in the Fast, HighDER and Neutral scenarios.
Their investment were triggered mostly by providing arbitrage, avoiding curtailment and
providing reserve.

From Figure 3.6 it can be observed the input/output power of existing and invested
pumped storage plants on the top and the amount of stored water (state of charge) on the
bottom of New South Wales. Both pumped storage do arbitrage at pumping during PV
generation time and they generate during no PV generation time. From the bottom chart it
can be observed that the storing capacity of the existing pumped storage is fully utilised at
some times, leaving the pumped storage with no energy left, on the other hand, the invested
pumped storage capacity is not fully utilised due to its energy capacity which is large enough
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to generate at maximum power as long as the time simulation, besides that, it is set to start
and finish the operation at half of capacity so it is not possible to take advantages of its large
energy capacity.
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Figure 3.6: Power and State of Charge of Pumped Storage plants - NSW Neutral Scenario
at Stage 4

In addition to arbitrage, at the same time pumped storage supports the system to avoid
curtailment during high renewable generation, from Table 3.6 curtailment for all stages and
scenarios are shown. Battery of The Nation project was invested at the fourth stage in
the Fast Scenario reducing curtailment from 15.6 GWh in the previous stage to zero, it is
important to keep in mind from Figure 3.3 that renewable installed capacity increases in time
and the Fast Scenario involves the highest Utility Solar and Wind installed capacity among
all scenarios.

Table 3.6: Curtailment in Tasmania

Scenario [MWh]
Stage Fast HighDER Neutral Slow
1 0
2 2402 3019 665 1225
3 15647 8153 2897 3545
4 0 38503 20574 11937
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Table 3.5: Stochastic - Storage Investment

Stage
Location Tech Scenario 1 2 3 4

Fast 0 0 0 1
HighDER 0 0 0 1
Normal 0 0 0 1Pumped Storage

Slow 0 0 0 0
Fast 0 0 0 0

HighDER 0 0 0 0
Normal 0 0 0 0

NSW

Utility Storage

Slow 0 0 0 0
Fast 0 0 0 0

HighDER 0 0 0 0
Normal 0 0 0 0QLDN Utility Storage

Slow 0 0 0 0
Fast 0 0 0 0

HighDER 0 0 0 0
Normal 0 0 0 0QLDC Utility Storage

Slow 0 0 0 0
Fast 0 0 0 0

HighDER 0 0 0 0
Normal 0 0 0 0QLDS Utility Storage

Slow 0 0 0 0
Fast 0 0 0 0

HighDER 0 0 0 0
Normal 0 0 0 0SA Utility Storage

Slow 0 0 0 0
Fast 0 0 0 1

HighDER 0 0 0 0
Normal 0 0 0 0Pumped Storage

Slow 0 0 0 0
Fast 0 0 0 0

HighDER 0 0 0 0
Normal 0 0 0 0

TAS

Utility Storage

Slow 0 0 0 0
Fast 0 0 0 0

HighDER 0 0 0 0
Normal 0 0 0 0VIC Utility Storage

Slow 0 0 0 0
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Furthermore, pumped storage systems are big reserve contributors to the system, most
of the reserve requirements are provided by either new plants or existing plants (see Figure
3.7). With this in mind, less conventional generators must be commited to fulfill reserve
requirements decreasing marginal costs in the system. Moreover, importing reserve nodes
become exporting reserve nodes according to Figure 3.7 where provided reserve, in average,
becomes higher than average reserve requirements (blue line in Figure 3.7).
Specifically, Tasmania at the third stage in the Fast Scenario, in average, has 57.3 MW
of required reserves, and only 6.3 MW, in average, of provided reserve, on the contrary,
at the fourth stage still in the Fast Scenario, the required reserve increased to 65.3 MW
in average, but Battery of The Nation project provided in average 131.5 MW of reserve,
therefore TAS − V IC link end up transferring reserve at the fourth stage as a consequence
of the Battery of The Nation investment as shown in Figure 3.8.
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Figure 3.7: Average provided reserve in buses with new pumped storage plants

Deterministic Results

After solving the stochastic model, every scenario is solved separately in order to observe
which investments are triggered by a single scenario, or which investments suit all scenarios,
results are shown in Tables 3.7 and 3.8.

At first, it can be observed from Table 3.7 that storage investments do not change in
comparison to stochastic’s results from Table 3.5.

Considering the deterministic shape of the scenario tree of all scenarios after the second
stage, it could be expected to obtain the same storage investment at the fourth stage like
the stochastic results. Whereas, stochastic results present line investments right after the
branching at the second stage, so it is expected to obtain differences at the second stage.
From Table 3.8, NSW − V IC link has different investments in each scenarios, the Fast
scenario has the lowest investment in comparison to the rest of scenarios, and only the
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Figure 3.8: Reserve flow in TAS − V IC link in the Fast Scenario

Slow Scenario reaches the 2200 MW obtained previously in the stochastic result, moreover,
TAS − V IC investment at the second stage is deferred in three out of four scenarios, thus,
the corridor between Tasmania and New South Wales is not as reinforced as the stochastic
results. Despite having differences at the second stage, as mentioned before, the deterministic
shape of the scenarios from the second stage renders similar investments at the fourth stage,
having big investment in links connecting NSW when Snowy 2.0 is invested, as well as big
investment in TAS − V IC link when Battery of The Nation is invested.

System Security

In the previous planning exercise, the only consideration of security modelled was the spin-
ning reserve, therefore, this security aspect were ensured at all times for every scenario.
Furthermore, according to Fig. 3.7 and Fig. 3.8 when new pumped storage capacity are
installed in the system, these new assets change how reserve flows are distributed around
the system, fulfilling not only the reserve requirements of the bus where these assets were
installed but also by exporting reserve to the system.

Utility storage batteries have been modelled to do arbitrage and provide secondary reserve
only. Considering that conventional generation and pumped storage systems can provide
secondary reserve as batteries can, the latter type of storage system can not stand out
against those technologies due to all reserve requirements were already satisfied during the
first stages of the exercise by existing capacity of the system. Hence, no investment was
obtained in utility storage batteries.

If the planning exercise would have been done within a security-constrained context,
whereby different security requirements were presented, such as, ROCOF, nadir require-
ments, fast frequency response, among others. Batteries could have stood out against differ-
ent technologies because of their characteristics which make them more attractive to invest
on.
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Table 3.7: Deterministic - Storage Investment

Stage
Location Tech Scenario 1 2 3 4

Fast 0 0 0 1
HighDER 0 0 0 1
Normal 0 0 0 1Pumped Storage

Slow 0 0 0 0
Fast 0 0 0 0

HighDER 0 0 0 0
Normal 0 0 0 0

NSW

Utility Storage

Slow 0 0 0 0
Fast 0 0 0 0

HighDER 0 0 0 0
Normal 0 0 0 0QLDN Utility Storage

Slow 0 0 0 0
Fast 0 0 0 0

HighDER 0 0 0 0
Normal 0 0 0 0QLDC Utility Storage

Slow 0 0 0 0
Fast 0 0 0 0

HighDER 0 0 0 0
Normal 0 0 0 0QLDS Utility Storage

Slow 0 0 0 0
Fast 0 0 0 0

HighDER 0 0 0 0
Normal 0 0 0 0SA Utility Storage

Slow 0 0 0 0
Fast 0 0 0 1

HighDER 0 0 0 0
Normal 0 0 0 0Pumped Storage

Slow 0 0 0 0
Fast 0 0 0 0

HighDER 0 0 0 0
Normal 0 0 0 0

TAS

Utility Storage

Slow 0 0 0 0
Fast 0 0 0 0

HighDER 0 0 0 0
Normal 0 0 0 0VIC Utility Storage

Slow 0 0 0 0
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Table 3.8: Deterministic - Line Investment

Stage
Line Scenario 1 2 3 4

Fast 0 800 800 3000
HighDER 0 2000 2000 2000
Normal 0 1800 1800 1800NSW - VIC

Slow 0 2200 2400 2400
Fast 0 0 0 800

HighDER 0 0 0 0
Normal 0 0 0 0QLDC - QLDS

Slow 0 0 0 0
Fast 0 0 0 0

HighDER 0 0 0 0
Normal 0 0 0 0QLDN - QLDC

Slow 0 0 0 0
Fast 0 0 0 1600

HighDER 0 0 0 200
Normal 0 0 0 800QLDS - NSW

Slow 0 0 0 0
Fast 0 0 0 700

HighDER 0 0 0 0
Normal 0 0 0 0SA - NSW

Slow 0 0 0 0
Fast 0 0 0 0

HighDER 0 0 0 0
Normal 0 0 0 0SA - VIC

Slow 0 0 0 0
Fast 0 0 200 2000

HighDER 0 0 200 600
Normal 0 0 0 600TAS - VIC

Slow 0 0 200 400
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Chapter 4

Conclusions and Further Work

4.1 Conclusions

We have presented through this thesis a large-scale mixed-integer program applied to a plan-
ning problem in the context of co-optimising network and storage systems under uncertainty
with high operational resolution through a column generation approach. We have been able
to formulate a methodology to solve this program by applying advanced decomposing tech-
niques in the field of optimisation. Besides the contribution of the reformulation of the
technique, we can conclude several statements about the planning problem by solving three
different study cases.

After validating the optimisation model through a co-optimisation problem under uncer-
tainty considering high operational resolution on the IEEE 24-bus system and utilising the
reformulated algorithm on the NEM system we can state that: (a) Neglecting unit com-
mitment constraints in the planning problem leads to inefficient solutions when flexibility
requirements are not considered when high penetration of renewable generation is presented
in the system. (b) Storage system can defer or replace investments in transmission system,
we have proved that a transmission expansion problems with no consideration of storage
systems leads to more and earlier transmission investments, in addition to higher overall
costs. (c) Investment in batteries depends on the systemic capacity of providing flexibility
and the flexibility requirements on the system. In the IEEE 24 bus case, when flexibility
requirements were dismissed by neglecting unit commitment constraints, investment in bat-
teries were reduced considerably in comparison to a higher operational resolution. However,
in the Australian case, no investments in batteries were obtained as the system had high ca-
pability of providing the required flexibility. We could have expected to obtain investments
in batteries in the Australian case if different types of flexibility were required where batter-
ies could over-perform against conventional assets. (d) Co-optimising network and storage
systems permits to avoid uncoordinated large investments. We have shown that investments
in pumped storage assets come along with reinforcement in the transmission system, e.g. if
one pumped storage plant were decided to be installed unilaterally, it might face unsuitable
transmission system around it. (e) Investments in storage systems with high energy capacity
support considerably to reduce curtailment levels. We have shown how pumped storage sys-
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tem performs during a week by displacing energy from cheaper moments of the day to more
expensive moments reducing curtailment. (f) When a pumped storage system is installed, it
can not only change power flows around it, but it can also change the reserve distribution
around the system. We have shown that importing-reserve buses become exporting-reserve
ones when a pumped storage system with high energy capacity is installed. (g) It is not
possible to take all advantages of the energy capacity from large pumped storage systems if
the operation problem is as long as the energy capacity. We have shown that new pumped
storage state of charge was far from being fully utilised during a week operational problem.
This should affect the investment cost of this asset. This effect was not considered in this
work.

Regarding the use of The Dantzig Wolfe Algorithm applied to stochastic planning problems
it can be concluded that: we have proposed and applied a reformulation for the Dantzig
Wolfe Algorithm based on splitting the scenario tree nodes (reaching a sub-nodal level)
into a number of independent subproblems which are smaller and faster to solve. We have
demonstrated through solving a planning problem in the IEEE 118-bus system that the
accuracy of results is ensured, the use of computational resources is considerably reduced as
well as the computational time required for solving this problem in comparison to original
formulation. Furthermore, this reformulation of the algorithm allow to solve instances of the
stochastic planning problem that can not be solved by the most recent version available in
the literature.

4.2 Further Work

We propose to focus on the operational problem by adding new considerations in the model,
such as inertia constraints, fast-frequency response, ROCOF and nadir constraints. It would
be interesting to observe differences in investments when these security constraints are in-
volved in the planning problem. Moreover, another interesting topic to study would be to
extend the duration of subproblems to a couple of weeks or a month, in order to observe how
this large pumped storage performs, and if it moves energy from one week to another. Addi-
tionally, it could be study how investment changes if the amount of typical representations
of the year are reduced.

Furthermore, the algorithm can be improved by utilising the computational resources
that are not being used while harder subproblems are being solved. We propose to study a
methodology to assign dynamically the computational resources on the subproblems while a
iteration is being completed in order to increase the average use of CPUs.
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Appendix

Nomenclature

Chapter 1 - Indices

b Index of battery.

d Index of typical day.

g Index of generator.

j Index of columns.

l Index of lines.

m Index of scenario tree node.

t Index of hour.

Chapter 1 - Sets

Jm Set of total columns added in scenario tree node m.

ςm Set of all predecessors of m, not including m.

B̂ Set of candidate batteries.

L̂ Set of candidate lines.

℘m Set of all predecessors of m, including m.

Bn Set of batteries in node n.

B Set of batteries.

D Set of typical days.

EL Set of existing lines.

Fromn Set of lines that start from node n.
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GC
n Set of conventional generators in node n.

GC Set of conventional generators.

GR
n Set of renewable generators in node n.

GR Set of renewable generators.

G Set of generators.

MS Set of the scenario tree nodes that contains one child node of each parent node in the
scenario tree.

M Set of scenario tree nodes.

Sm Set of sibling nodes of scenario tree node m.

Ton Set of lines that go to node n.

T Set of time periods (hours).

Chapter 1 - Parameters

α Duration for reserve in storage.

Γd Weight for typical day d.

x̂jm Investment solution for column j in scenario tree node m.

ŷjmd Operational solution for column j in scenario tree node m in typical day d.

Am Matrix that couples operational and investment decisions in scenario tree node m.

c>m Investment costs in scenario tree node m.

q>m Operational costs in scenario tree node m.

F lm Maximum capacity in line l in scenario tree node m.

P
G

gm Capacity of generator g in scenario tree node m.

P
R

gm Capacity of renewable generator g in scenario tree node.

R
G

gm Maximum up secondary reserve of generator g in scenario tree node m.

R
S

mdt Up reserve requirements in scenario tree node m in typical day d at time t.

φm Probabliity of scenario tree node m.

Πbi
b Investment cost for candidate battery b in scenario tree node i. (annuitized)
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ΠOG
g Operational cost for generator g.

ΠOU
g Start-up cost for generator g.

ΠOV
g Shut-down cost for generator g.

Πli
l Investment cost for candidate line l in scenario tree node i. (annuitized)

ΠOC
gm Curtaliment cost of renewable generator g in scenario tree node m.

PG
gm Minimum capacity of generator g in scenario tree node m.

RG
gm Maximum down secondary reserve of generator g in scenario tree node m.

RS
mdt Down reserve requirements in scenario tree node m in typical day d at time t.

ζB Duration for a single module of storage battery.

Argmdt Renewable avaliabliity of renewable generator g in scenario tree node m at time t.

CB Capacity of one battery module.

Dnmdt Demand in node n in scenario tree node m in typical day d at time t.

M Sufficiently large positive constant.

p(m) Parent node of scenario tree node m.

Rpgm Maximum ramp rate in of generator g in scenario tree node m.

r Discount rate.

toffg Minimum down time of a generator g.

tong Minimum up time of a generator g.

Xl Reactance of line l.

y(m) Year according to scenario tree node m.

Chapter 1 - Variables

flmdt Power flow of line l in scenario tree node m in typical day d at time t.

λjm Binary variable that selects column j for each scenario tree node m.

x′m Vector of investment in scenario tree node m.

xm Investment decisions in scenario tree node m.

ymd Operational decisions in scenario tree node m in typical day d.
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rBbmdt Up reserve of battery b in scenario tree node m in typical day d of at time t.

rGgmdt Up reserve of generator g in scenario tree node m in typical day d at time t.

θ
From/To
lmdt Voltage angle in From/To node of line l in scenario tree node m in typical day d at

time t.

rBbmdt Down reserve of battery b in scenario tree node m in typical day d at time t.

rGgmdt Down reserve of generator g in scenario tree node m in typical day d at time t.

pBbmdt Power output of battery b in scenario tree node m in typical day d at time t.

pGgmdt Power output of generator g in scenario tree node m in typical day d at time t.

pRgmdt Power output of renewable generator g in scenario tree node m in typical day d at
time t.

pB+
bmdt Discharge power of battery b in scenario tree node m in typical day d at time t.

pB−bmdt Charge power of battery b in scenario tree node m in typical day d at time t.

pBEbmdt Energy stored of battery b in scenario tree node m in typical day d at time t.

ugmdt Startup of generator g in scenario tree node m in typical day d at time t.

vgmdt Shutdown of generator g in scenario tree node m in typical day d at time t.

wBbi Installation of candidate battery b in scenario tree node i.

wLli Installation of line l in scenario tree node i.

xGgmdt Commitment of generator g in scenario tree node m in typical day d at time t.

xbm Investment variable in scenario tree node m for candidate battery b.

xlm Investment variable in scenario tree node m for candidate line l.

Chapter 2 - Sets

Jwm Set of added columns of typical week w in scenario tree node m.

℘m Set of nodes from root-node to m-node.

BC Set of candidate batteries(BC
n for residential batteries in electrical node n).

BR Set of residential batteries (BR
n for residential batteries in electrical node n).

GR Set of renewable generators (GR
n for renewable generators in electrical node n).

Gror Set of run-of-river generators. (Gror ⊂ G).
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G Set of conventional generators (Gn for conventional generators in electrical node n).

L Set of lines.

M Set of scenario tree nodes.

N Set of electrical nodes.

PC Set of candidate pumped storage plants.(PC
n for candidate pumped storage plants in

electrical node n)

PE Set of existing pumped storage plants (PE
n for existing pumped storage plants in

electrical node n).

Pc Set of candidate pumped storage plants.

Wm Set of subproblems in scenario tree node m.

Chapter 2 - Parameters

αg Available headroom for reserve of generator g.

L̄l Capacity of one module in line l.

P̄B
b Maximum power of battery b.

P̄ P
p Maximum power of pumped storage plant p.

P̄gm Capacity of generator g in scenario tree node m.

v̄Bb Maximum modules to be installed of candidate battery b.

v̄Ll Maximum modules to be installed in line l.

βwg Plant factor in typical week w of generator g.

∆g Ramp limit of generator g

ηB Round-trip efficiency for candidate batteries.

ηP Round-trip efficiency for pumped storage plants.

ηBr Round-trip efficiency for residential batteries.

γm Discount factor in scenario tree node m.

Γw Weight of typical week w.

ŷjwm Operational solution of column j of typical week w in scenario tree node m.

qTwm Operational cost of typical week w in scenario tree node m.
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φm Probability of node m.

ΠB
bm Investment cost of candidate battery b in scenario tree node m.

ΠL
lm Investment cost of line l in scenario tree node m.

ΠP
pm Investment cost of pumped storage p in scenario tree node m.

Pg Minimum generation limit of generator g.

ξ Minimum reserve duration of batteries.

ζB Power of one module of battery.

ζPp Maximum power of candidate pumped storage plant p.

Agwh Availability of renewable resource of generator g in typical wee w at hour h.

CP
p Duration at maximum power of pumped storage plant p.

CBr Duration at maximum power of residential batteries.

Dnh Demand in electrical node n at hour h.

hoff(g) Minimum down time of generator g.

hon(g) Minimum up time of generator g.

H Duration of one subproblem.

Ngm Total available units of generator g to perate in scenario tree node m.

Chapter 2 - Variables

R̄qnh Reserve requirement in electrical node n at time h.

λjwm if 1, column j is selected in scenario tree node m in typical week w.

µwm Dual variable from convexity constraint of typical week w in scenario tree node m.

πmwb Dual variable from battery investment constraint in scenario tree node m in typical
week w of battery b.

πmwl Dual variable from line investment constraint in scenario tree node m in typical week
w of line l.

πmwp Dual variable from pumped storage investment constraint in scenario tree node m in
typical week w of pumped storage plant p.

ebh State of charge of battery b at time h.
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eph State of charge of pumped storage plant p at time h.

flh Power flow in line l at time h.

frfwdlh Forward reserve flow in line l at time h.

frrevlh Reverse reserve flow in line l at time h.

LSnh Load shedding in electrical node n at hour h.

pbh Power of battery b at time h.

pgh Generation output of generator g at time h.

pph Power of pumped storage plant p at time h.

rbh Reserve provided by battery b at time h.

rgh Reserve provided by generator g at time h.

rph Reserve provided by pumped storage plant p at time h.

sgh Number of startups of generator g at time h.

tgh Number of shutdowns of generator g at time h.

vBmb Investment decision of battery b in scenario tree node m.

vLml Investment decision of line l in scenario tree node m.

vPmp Investment decision of pumped storage plant p in scenario tree node m.

xgh Commited machines of generator g at time h.
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Table 4.1: Network parameters - Modified IEEE 24-Bus system

From To X Rating Length
node node [p.u.] [MW] [km]
1 2 0.014 175 5
1 3 0.211 131.25 89
1 5 0.085 175 35
2 4 0.127 175 53
2 6 0.192 175 80
3 9 0.119 131.25 50
3 24 0.084 300 0
4 9 0.104 131.25 43
5 10 0.088 175 37
6 10 0.061 131.25 26
7 8 0.061 175 26
8 9 0.165 131.25 69
8 10 0.165 131.25 69
9 11 0.084 300 0
9 12 0.084 300 0
10 11 0.084 300 0
10 12 0.084 300 0
11 13 0.048 500 53
11 14 0.042 375 47
12 13 0.048 375 53
12 23 0.097 375 108
13 23 0.087 500 97
14 16 0.059 500 43
15 16 0.017 500 19
15 21 0.049 500 55
15 21 0.049 500 55
15 24 0.052 375 58
16 17 0.026 500 29
16 19 0.023 500 26
17 18 0.014 500 16
17 22 0.105 500 117
18 21 0.026 500 29
18 21 0.026 500 29
19 20 0.04 500 44
19 20 0.04 500 44
20 23 0.022 500 24
20 23 0.022 500 24
21 22 0.068 500 76
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Table 4.2: Slow scenario demand growth comparing to Neutral Case

Stage NSW QLD SA TAS VIC
2020-21
Stage 1 0% 0% 0% 0% 0%

2025-26
Stage 2 -7% -14% -6% -5% -16%

2030-31
Stage 3 -19% -17% -7% -6% -16%

2035-36
Stage 4 -25% -33% -13% -16% -24%

Table 4.3: Fast scenario demand growth comparing to Neutral Case

Stage NSW QLD SA TAS VIC
2020-21
Stage 1 0% 0% 0% 0% 0%

2025-26
Stage 2 6% 5% 6% 8% 5%

2030-31
Stage 3 12% 11% 11% 10% 11%

2035-36
Stage 4 17% 15% 17% 14% 16%

Table 4.4: High DER scenario demand growth comparing to Neutral Case

Stage NSW QLD SA TAS VIC
2020-21
Stage 1 0% 0% 0% 0% 0%

2025-26
Stage 2 0% 0% 0% 0% 0%

2030-31
Stage 3 0% 0% 0% 0% 0%

2035-36
Stage 4 0% 0% 0% 0% 0%

Table 4.5: Utility storage investment cost for Australian Case [$/MW/yr]

Stage Neutral Scenario Slow Scenario Fast Scenario High DER Scenario
2020-21
Stage 1 $ 146,717 $ 146,717 $ 146,717 $ 146,717

2025-26
Stage 2 $ 119,311 $ 119,311 $ 97,540 $ 141,081

2030-31
Stage 3 $ 108,089 $ 108,089 $ 80,707 $ 135,470

2035-36
Stage 4 $ 98,621 $ 98,621 $ 66,505 $ 130,736
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Table 4.6: NEM Installed capacity by technology - Neutral Scenario

Technology 2020-21 2025-26 2030-31 2035-36
Black
coal 18,219 16,419 13,419 7,899

Brown
coal 4,808 4,808 4,808 3,280

Hydro 5,364 5,364 5,364 5,364
CCGT 4,111 2,649 2,649 2,139
Peaking
gas + liquids 6,944 6,971 6,971 6,971

Wind 8,118 10,211 10,943 13,563
Utility
Solar 2,839 6,728 9,686 21,472

Distributed
storage 977 2,588 3,980 5,066

Rooftop
PV 9,186 13,459 17,092 19,655

Total 60,566 69,197 74,912 85,408

Table 4.7: NEM Installed capacity by technology - Slow Scenario

Technology 2020-21 2025-26 2030-31 2035-36
Black
coal 18,219 16,419 11,959 6,439

Brown
coal 4,808 4,808 4,808 3,280

Hydro 5,364 5,364 5,364 5,364
CCGT 4,111 2,649 2,649 2,139
Peaking
gas + liquids 6,944 6,669 6,669 6,669

Wind 8,118 10,211 10,676 10,763
Utility
Solar 2,839 3,990 6,126 7,224

Distributed
storage 977 2,588 3,980 5,066

Rooftop
PV 9,186 13,459 17,092 19,655

Total 60,566 66,157 69,323 66,599
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Table 4.8: NEM Installed capacity by technology - Fast Scenario

Technology 2020-21 2025-26 2030-31 2035-36
Black
coal 18,219 16,419 12,689 7,169

Brown
coal 4,808 4,808 3,718 2,190

Hydro 5,364 5,364 5,364 5,364
CCGT 4,111 2,649 2,649 2,539
Peaking
gas + liquids 6,944 7,119 7,072 7,180

Wind 8,118 10,801 13,708 16,107
Utility
Solar 2,839 11,462 22,002 33,412

Distributed
storage 977 2,588 3,980 5,066

Rooftop
PV 9,186 13,459 17,092 19,655

Total 60,566 74,669 88,273 98,681

Table 4.9: NEM Installed capacity by technology - HighDER Scenario

Technology 2020-21 2025-26 2030-31 2035-36
Black
coal 18,219 16,419 13,054 7,534

Brown
coal 4,808 4,808 4,808 3,280

Hydro 5,364 5,364 5,364 5,364
CCGT 4,111 2,649 2,649 2,139
Peaking
gas + liquids 6,944 7,070 7,070 7,070

Wind 8,118 10,211 10,747 13,700
Utility
Solar 2,839 6,932 9,328 13,867

Distributed
storage 977 2,111 4,969 10,537

Rooftop
PV 9,186 15,736 33,136 51,014

Total 60,566 71,300 91,125 114,504
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