Tabla de Contenido

Índice de Tablas x Índice de Ilustraciones xi						
	1.1.	Motivación	1			
	1.2.	Objetivos y alcances	4			
		1.2.1. Objetivo general	4			
		1.2.2. Objetivos específicos	4			
		1.2.3. Alcances	4			
2 .	Maı	rco teórico	5			
	2.1.	Principios de conversión de la energía eólica	5			
		2.1.1. Potencia extraída por un aerogenerador	5			
	2.2.	Control de los sistemas de conversión eólica	7			
		2.2.1. Seguimiento de la máxima potencia	8			
		2.2.2. Conexión de sistemas de conversión eólicos a la red	10			
	2.3.	Generadores de inducción doblemente alimentados	12			
	2.4.	Transformationes $\alpha\beta$ y dq	13			
		2.4.1. Transformada $\alpha\beta$	13			
		2.4.2. Transformada d q	14			
	2.5.	Modelamiento generadores de inducción doblemente alimentados	15			
		2.5.1. Modelo en ejes rotatorios arbitrarios	15			
		2.5.2. Ecuaciones del DFIG en ejes estacionarios $\alpha\beta$	16			
		2.5.3. Modelo en ejes d q	18			
		2.5.4. Estrategias de control del DFIG	18			
		2.5.5. Potencia y modos de operación del DFIG	19			
	2.6.	Control Maximum power point tracking (MPPT) en DFIG	20			
	2.7.	Requerimientos de conversores para sistemas de conversión de energía eólica				
		(WECSs) multi-MW	21			
		2.7.1. Requerimientos lado de la red	22			
		2.7.2. Requerimientos del lado del generador	23			
		2.7.3. Requerimientos de los dispositivos semiconductores	23			
		2.7.4. Requerimientos del sistema de accionamiento	24			
	2.8.	Conversores empleados en los sistemas de generación eólica	24			
		2.8.1. Conversores de dos niveles	24			

		2.8.2. Conversores multiniveles				
		2.8.3. Topologías de conversores multiniveles clásicos				
	2.9.	Conversores modulares multiniveles en cascada				
		2.9.1. Conversores MMCC AC-AC				
3.	Modelación del M^3C					
0.	3.1	Introducción 35				
	3.2	Topología v generales 35				
	3.3	Modelo de tensión-corriente 37				
	3.4	Modelo de potencia-tensión del canacitor				
	0.1.	3.4.1 Potencias de clúster en coordenadas $\alpha\beta0^2$				
	3 5	Análisis de las componentes oscilatorias y condiciones críticas				
	0.0.	3.5.1 Componentes oscilatorias en coordenadas $\alpha\beta 0^2$				
		3.5.2 Clasificación de las oscilaciones y grados de libertad de control				
	3.6	Transformación $\Sigma\Lambda$ del modelo de potencia-tensión				
	0.0.	3.6.1 Componentes oscilatorias de CCV en coordenadas $\alpha\beta0^2 - \Sigma\Lambda$				
		3.6.2 Modelo de tensión-potencia CCV en coordenadas $\alpha\beta 0^2 = \Sigma \Lambda$				
	3.7	Modelo vectorial Tensión-Potencia CCV 47				
	0.1.					
4 .	Met	odología 50				
	4.1.	Diseño y control del generador con conversor				
	4.2.	Análisis del comportamiento DFIG $+M^3C$ en fallas trifásicas sin balanceo 51				
	4.3.	Análisis del comportamiento DFIG $+M^3C$ en fallas asimétricas sin balanceo . 52				
	4.4.	Modelo y simulaciones				
	4.5.	Análisis de resultados y propuestas				
5.	Con	trol del M^3C 54				
	5.1.	Control vectorial de balanceo CCV				
		5.1.1. Balanceo de componentes intra de CCV				
		5.1.2. Balanceo de componentes inter de CCV				
	5.2.	Control de corrientes circulantes				
	5.3.	Control de balanceo medio $v_{c_{00}}$				
	5.4.	Control de balanceo de celda y modelo de celda puente H				
		5.4.1. Modelo de celda puente H \ldots \ldots \ldots \ldots \ldots \ldots 61				
6	One	ración y control del DEIG mediante M^3C haio fallas trifásicas 63				
0.	6.1.	Comportamiento dinámico del DFIG bajo caídas de tensión simétricas				
	0.2.	6.1.1. Operación normal				
		6.1.2. Comportamiento dinámico frente a una caída de tensión				
	6.2.	Comportamiento general de la operación del DFIG con el conversor M^3C bajo				
		fallas simétricas				
		6.2.1. Límites tensiones de clústers				
		6.2.2. Tensión de cluster en aplicación al DFIG				
		6.2.3. Tensiones desde el punto de vista del rotor				
	6.3.	Control del DFIG bajo fallas trifásicas				
	2.	6.3.1. Modelo de la turbina eólica				
		6.3.2. Control MPPT				

		6.3.3. Control de corrientes de rotor	77		
		6.3.4. Control de la potencia activa y reactiva de estator	79		
	6.4.	Control del lado de la red	80		
7.	Ope	eración y control del DFIG mediante M^3C bajo fallas asimétricas	82		
	7.1.	Comportamiento del DFIG bajo fallas asimétricas	82		
		7.1.1. Fallas monofásicas	85		
		7.1.2. Fallas bifásicas entre fases	86		
		7.1.3. Conversor conectado al rotor y corrientes	87		
	7.2.	Comportamiento general del DFIG con el conversor M^3C bajo fallas asimétricas	88		
		7.2.1. Comportamiento visto desde el rotor	88		
		7.2.2. Comportamiento en la tensión de cluster	90		
	7.3.	Control del DFIG y el M^3C bajo fallas asimétricas $\ldots \ldots \ldots \ldots \ldots \ldots$	92		
		7.3.1. Modelo de la máquina en secuencias y control	92		
		7.3.2. Potencias de estator y referencia de corrientes	94		
		7.3.3. Control de lado de la red del M^3C bajo fallas asimétricas	96		
	7.4.	Esquemas de protección frente a fallas mediante crowbar	98		
		7.4.1. Dimensionamiento del crowbar	99		
8.	Simulaciones 12				
	8.1.	Caso de estudio	124		
	8.2.	Operación a velocidad fija	127		
	8.3.	Operación a velocidad variable	137		
	8.4.	Resultados simulación frente a fallas simétricas y LVRT	152		
	8.5.	Resultados simulación frente a fallas asimétricas y LVRT	164		
		8.5.1. Resultados control DFIG con conversor M^3C bajo fallas asimétricas .	164		
		8.5.2. Controlabilidad de corrientes en fallas asimétricas	174		
	8.6.	Operación del DFIG ante fallas mediante el conversor M^3C y sistema de pro-			
		tección <i>crowbar</i>	183		
		8.6.1. Resultados bajo falla asimétrica monofásica total	183		
		8.6.2. Resultados bajo falla asimétrica bifásica total	186		
		8.6.3. Resultados bajo falla trifásica total empleando transformador en el rotor	189		
9.	Con	nclusiones y trabajo futuro	194		
	9.1.	Conclusiones	194		
	9.2.	Trabajo futuro	196		
10.Bibliografía					