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Regardless of the molecular and physiological mechanisms

involved, maternal fetal circadian systems interactions are

recognized as crucial crosstalk for fetal development, and in

turn, it may be a key factor determining fitting health in

adulthood.

However, in the last 100 years, life on the planet has altered the

natural light-dark cycle by increasing light at night inducing

disorganization of the circadian system, that is,

chronodisruption, including perturbation of the melatonin

circadian rhythm by decreasing its nocturnal peak. The

reduction in melatonin is associated with gradual losses in

antioxidant protection, immunological and anti-inflammatory

effects and as stated by WHO, the lack of nocturnal peak of

melatonin is a deleterious signal that may induce chronic

disease and cancer.

Collectively the current review provides evidence about the role

played by maternal circadian rhythms in fetal development and

the impact of fetal-maternal desynchronization in the health

and diseases of the offspring.
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Introduction
During gestation, the fetus follows a strict program that

allows development and a successful transition to the

extrauterine life, to which maternal circadian signals play

a key role not only in the precise daily delivery of oxygen,
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nutrients, hormones and biophysical signals but also

allowing fine coordination of the fetus with the external

photoperiod. However, when the circadian signals from

the mother to the fetus are interrupted or altered, the

synchrony between the fetus and its mother disappear

and detrimental effects are observed in fetal growth/

development and postnatal physiology.

The evidence available suggests that maternal chrono-

disruption unsettles the fetal circadian system. Moreover,

maternal chronodisruption in murine models (pregnant

rats exposed to chronic photoperiod shift -CPS-), induces

disarray of the circadian system in the adult offspring.

The outcome is alterations in metabolic and cardiovascu-

lar physiology and lack of melatonin circadian rhythm

[1–4,5�,6], as seen in Non-Communicable Diseases

(NCD) that infringe our modern society.

Circadian clocks
Life in the earth evolved predictively to accommodate

the individual’s physiology and behavior to daily day/

night changes induced by our planet rotation. In the

mammals, the result is a marvelous mechanism in which

integrated systems of biological clocks oscillate with a

period close to a day (circa dies, 24 hours). Such clocks

drive circadian rhythms at the cellular and systemic level,

generating an internal temporal order in physiological

functions tuned to the external environment. Conceptu-

ally, a circadian clock comprises three parts, an input

signal that entrains the internal clock to clock-time, an

oscillator with a period of 24 hours, and output rhythmic

signals [7�,8]. In adult mammals, the circadian system is

organized as a master clock, located in the suprachias-

matic nucleus (SCN) of the hypothalamus that commands

peripheral circadian clocks located in brain areas other

than the SCN and almost every organ of the body [7�,8].
Then SCN, connected to the retina by the retino-

hypothalamic tract, entrains to the Light-Dark (LD)

cycle. Next, such information is conveyed to peripheral

circadian clocks through innervation by the autonomic

nervous system or through the effects on all organs of

circadian rhythms like temperature, melatonin, and glu-

cocorticoids (reviewed by Buijs et al. [7�] Serón-Ferré et al.
[8] Serón-Ferré and Takahashi [9] Leliavski et al. [10]). At

the cellular level, circadian function in the SCN and

peripheral circadian clocks is sustained by the intercon-

nected stimulatory and inhibitory transcriptional-

translational feedback loops of the clock genes named

Period1-3, Cryptochrome1-2, Bmal1, and Clock [11–13].

This circuit drives genes involved in major cellular
www.sciencedirect.com
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functions through binding to E-boxes in their promoters

(clock-controlled genes) or by using other transcription

factors as intermediaries like DBP and Egr1 [14]. The

overall outcome is the 24-hours oscillation of about 10–

30% of the transcriptome, impacting a wide range of

physiological functions. Ultimately, the integrated net-

work of signals linking the SCN and peripheral oscillators

results in overt circadian rhythms in physiological pro-

cesses like thermoregulation, sleep, melatonin/ACTH/

corticosteroid secretion, metabolic status and feeding

tuned to the daily light: dark cycle (reviewed by Buijs

et al. [7�] Serón-Ferré et al. [8] Serón-Ferré and Takahashi

[9] Leliavski et al. [10]).

The maternal circadian system
During pregnancy, maternal physiology changes to fulfill

the increasing metabolic demands of the fetus, provide

input for timely parturition and finally providing food and

care for the newborn. As a result, the cardiorespiratory

system, immune system, renal, hepatic and gastrointesti-

nal function, and endocrine system differ from that of

non-pregnant women [8,15]. The circadian system is not

an exception. Compelling evidence support that a func-

tional reorganization of the circadian system occur along

gestation in several species [16–18].

In the same line, has been reported variations in daily

patterns of immunoreactive of c-FOS (Fos proto-

oncogene or AP-1 transcription factor subunit) expression

in early pregnant rats in areas related to sleep/wake

control, finding an attenuation of daily rhythms of FOS

expression in areas known to support wakefulness,

whereas FOS expression was maintained in areas that

correlate with sleep [16]. Keeping in mind that FOS

expression is an indirect marker of neuronal activity

and also a clock controlled gene; upregulation of FOS

mRNA in a neuron indicates early circadian responses,

thus maternal SCN circadian rhythms are adapting

through gestation. As well, a series of studies by Schrader

and cols [16–18], assessing rhythms of cFos and Per2

protein expression, demonstrated a functional reorgani-

zation of the SCN during early pregnancy. In this context,

our group reported a 3 hours advance in the acrophase of

the circadian rhythms controlled by SCN, like activity,

temperature and heart rate, between the first and last

week of gestation in the rat compared with non-pregnant

females [4]. Additionally, Martin-Fairey and cols,

recently reported that pregnancy induces an earlier chron-

otype of activity in mice and woman, with decreases in

total activity close to delivery [19��]. Altogether, the

present evidence supports that maternal SCN is modified

during gestation providing a plastic background for fetal

development, that need further exploration.

Besides the SCN; maternal peripheral clocks also adjust

to pregnancy condition, as shown by differences between

pregnant and non-pregnant rats in liver expression of
www.sciencedirect.com 
clock genes pregnant and non-pregnant rats [20,21].

The expecting human, rat and mice maintain a robust

circadian rhythm of plasma glucocorticoids during gesta-

tion. Although an increase in plasmatic levels of maternal

plasma glucocorticoids has been observed, the acrophase

of the rhythm is maintained, and the hypothalamic-adre-

nal axis response to stress is markedly decreased [8,22,23].

A maternal circadian rhythm that merits our special

attention is the maternal melatonin circadian rhythm.

In a diversity of species the amplitude of maternal mela-

tonin circadian rhythm increases at the end of gestation

[8,24��,25,26]. Maternal melatonin, reaches the fetus,

providing photoperiod information as well as contributing

to the circadian synchronization between the mother and

the fetus [27]. Besides, hormones like leptin, prolactin,

progesterone and estrogens present circadian rhythms

during pregnancy in several species, including the human

[8]. Then, close to term, preceding parturition, there is a

prominent rhythm in human and non-human primates

maternal oxytocin and circadian rhythms in uterine activ-

ity [28]. Also, metabolic variables like plasma glucose,

cholesterol, free fatty acids, and triglyceride concentra-

tions show a circadian rhythm in the pregnant rat [4,20].

At the end, the current information supports that mater-

nal circadian rhythm are impacted by gestation; therefore

the mother will provide several redundant circadian sig-

nals to the fetus, key for fetal development. However still

remains unclear how maternal circadian rhythm, with

some exceptions, as described below, contribute to the

fetal circadian rhythm development.

Fetal circadian system
There is ample evidence that the fetus has a circadian

system, based on the expression of clock genes, in several

fetal tissues in ex vivo and in vivo condition (Review in

Refs. [8,26]), persistence of these oscillations in vitro
experiments [27,29,30] and presence the circadian

rhythms in utero such as fetal movements (human, sheep),

fetal breathing (sheep), plasma hormones (prolactin

sheep, adrenal steroids fetal rat, human and nom human

primates) (Review in Refs. [8,26]). Importantly, these

fetal rhythms are entrained to the external environment

by a maternal signal. Organization of the fetal circadian

system differs from the adult and the current concept is

that different fetal clocks in different organs behave as

peripheral oscillators entrained by the maternal circadian

system. Thus, maternal signals like melatonin and food

availability [12,31,32], provide a time-frame signal that

contributes to the maturation of the fetus and its correct

synchronization with its external media, the mother

(Figure 1).

However, as an adult, the fetus would be exposed to

deleterious signals when the maternal circadian system

is disrupted by erroneous photoperiod, that is, maternal

chronodisruption. Such situation, besides other effects
Current Opinion in Physiology 2020, 13:128–134
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Figure 1

Mother

Light/dark
cycle

SCN

?

?

?

Peripheral Clocks Melatonin

Pineal

Fetus

PLACENTA

SCN

Fetal circadian rhythms

Fetal homeostasis

Food and Metabolic
signals

Current Opinion in Physiology 

Schematic representation of the proposed entrainment pathways of

the fetal circadian system. The fetal adrenal and fetal SCN could be

entrained by the rhythms of maternal melatonin, whereas other fetal

peripheral clocks are phase entrained by (1) the maternal SCN through

humoral or metabolic signals that cross the placenta or (2) a fetal

peripheral circadian clock. We propose that a potential candidate for

this task is the fetal adrenal gland through circadian glucocorticoid

production (modified from Ref. [8]).
would lead to intermittent melatonin signaling, poten-

tially inducing long-term effects in the offspring. The

far-reaching effects of gestational malnutrition, hyp-

oxia, stress on the development of adult diseases such

as hypertension, metabolic syndrome, obesity, and neu-

rologic/mental disorders have been extensively

reported in the Developmental Origins of Health and

Disease (DOHaD) models [33–36]. Briefly, DOHaD, as

interpreted from the works by David Barker and cols, is

an approach to biomedical research that highlight the

impact of prenatal and perinatal exposure to deleterious

environment and its role in the onset of Non-

Communicable Diseases in adulthood (NCD) [37].

Given the wide-ranging unhealthy effects of our 24/7
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society, maternal gestational chronodisruption maybe

another player in DOHAD associated with NCD.

Troublingly, cardiovascular diseases, cancers, chronic

respiratory diseases, and type 2 diabetes mellitus, are

responsible for 68% of global deaths, while 40% occur-

ring prematurely (before age 70).

Long-term effects of gestational
chronodisruption on the offspring
Epidemiological and experimental research studies call

attention to the effect on the offspring of maternal

chronodisruption induced by shift work during preg-

nancy. Shift work may disrupt the maternal melatonin

rhythm and impose abnormal maternal sleep and feeding

patterns. Epidemiological studies in women show that

shift work increases the risks of spontaneous abortion,

premature delivery and low birth weight babies

(reviewed in Refs. [19��,38–40]). Meanwhile, in the

rat, simulated shift work during pregnancy induces pro-

found maternal metabolic changes, modified gestational

length and decreases pregnancy weight gain. Impor-

tantly Chronic Phase Shift (CPS) exposure modified

the acrophase of a number of circadian rhythms in

pregnant rats, providing an erroneous environment to

the fetus (Figure 2, From Ref. [4]). This is currently

explained through phenotypic plasticity where a geno-

type can give rise to different physiological or morpho-

logical states depending on the prevailing environmental

conditions during development. Studies in experimental

animals to date show that the long-term effects of CPS in

gestation would act through changes in the development

of organs and tissues such as the liver, kidneys, adipose

tissue, pancreas, among others.

At the present the effects on the offspring of gestational

chronodisruption have been studied experimentally in

several species using as models: maternal pinealectomy

[41–44], maternal exposure to constant light [29,45–50]

and maternal exposure to chronic phase shifts during

gestation [1,4,5�,19��,51��]. These three models have in

common alteration or suppression of the maternal circa-

dian rhythm of melatonin. Keeping in mind that: a) the

fetal pineal does not produce melatonin, b) maternal

melatonin crosses placenta freely, originating a rhythm

in the fetal circulation akin the one in the mother, c)

almost all the fetal tissues studied from several species

presented melatonin receptors (reviewed in Refs.

[8,52��]) it is not surprising that in vivo and in vitro

experiments in rat, non-human primate and sheep, dem-

onstrated effects of melatonin on the fetal organs like

adrenal, brown adipose tissue and cerebral arteries, on

fetal hormonal rhythms like prolactin, corticosterone and

cortisol, and fetal cardiovascular response to hypoxia and

adrenal response [8,46,50,52��,53�,54,55]. Moreover, ges-

tational chronodisruption (by alteration of the maternal

melatonin circadian rhythm), is indeed, an unhealthy

signal for fetal development [4,5�,6,42,47,49,56,57]. In
www.sciencedirect.com
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Figure 2
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Schematic representation of acrophases distribution in maternal plasma circadian rhythms in the pregnant rats in control condition (Light dark

photoperiod: LD) or exposed to chronic shift photoperiod (CPS) during gestation (for details see Ref. [4]).
keeping with the importance of the fetal environment and

postnatal outcome, perturbations of the fetal circadian

system by melatonin deprivation during gestation have

long-term consequences in the offspring. Metabolic

effects (glucose intolerance, impaired glucose-stimulated

insulin secretion), and hepatic insulin resistance have

been detected in the adult offspring of pinealectomized

rats reared in LD [42]. In adult offspring gestated in LL,

we observed a complete lack of a day/night differences in
Figure 3
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plasma melatonin and decreased day/night differences in

plasma corticosterone.

Moreover, overall hippocampal day/night difference of

gene expression was decreased, which was accompa-

nied by a significant deficit of spatial memory [6]. Using

a similar model we found in fetal heart that a relevant

fraction of the fetal cardiac transcriptome was modified

by maternal exposure to constant light, likewise in the
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 fetal liver (18 DG; n = 5). Expression was measured by Microarray (for

etus from mothers exposed to constant light since 50% of gestation

ion but receive melatonin daily in the drinking water during the

an-Keuls as a post-hoc).
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persistent adult downregulation of the mRNA coding

for a subunit of the voltage-gated potassium Kv4 chan-

nel complex (Kcnip2) was found, that suggest enduring

molecular changes which may shape the hypertrophy

observed in the left ventricle of adult LL offspring [49].

Recently, we reported that the effect of maternal

chronodisruption also is reflected in changes in renal

function, inducing an increase in blood pressure and

variability of heart rate and blood pressure [4,51��].
Therefore, chronodisruption by perturbation of the

maternal pineal melatonin rhythm maybe a player in

the incidence of adult diseases programmed by nega-

tive pregnancy conditions, encompassed by DOHaD

concept.

Melatonin is a pleiotropic hormone involved in the fine-

tuning of a vast number of physiological functions

ranging from provision of temporal order, antioxidant

effects, actions on cell cycle, and so on [52��]. In this

context, recently has been demonstrated that melato-

nin has epigenetic effects by inducing differential

methylation of a number of genes in cancer cells, in

porcine oocytes having a protective effect over the

NNAT gene involved in development [58]. In contrast,

melatonin has been shown to increase acetylation of

histones H3 and H4 in some areas of the rat brain and

Neural stem cells [59,60]. A potential role of maternal

melatonin in fetal epigenome is suggested by micro-

array analysis of fetal liver from fetuses gestated in

constant light in which the mother received melatonin

during the night (partially publish in Ref. [47]). As

shown in Figure 3 the exposure to continuous light

decreased the expression of mRNA encoding 4 enzymes

involved in DNA methylation and importantly mater-

nal melatonin treatment reversed the effect totally in

3 of these enzymes, and partially in the last one ana-

lyzed here, Ghmt (Figure 3). These results support that

maternal melatonin modified the epigenome in the

fetal liver and opens the possibility of effects in other

fetal organs, impacting metabolic and cardiovascular

physiology in adult life. The sort of programming that

we described is conceptually similar to the program-

ming by melatonin during gestation  of the onset of

puberty in seasonal mammals. In these, photoperiod,

informed to the fetus by the duration of the maternal

melatonin rhythm, acting on the fetal pituitary pro-

grams postnatal growth and onset of reproductive  func-

tion, leading to puberty at the proper season [61].

In summary, the evidence exposed here support that

gestational chronodisruption induces major changes in

maternal circadian rhythms, fetal development and that

these changes have an impact in the adult life at several

physiological levels. Therefore, a challenge remains, in

which our next step is helping to prevent the conse-

quences of a modern 24/7 society, one that does not sleep

during the night anymore.
Current Opinion in Physiology 2020, 13:128–134 
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