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ABSTRACT 

 
A micro-network of low-cost sensors has been built and deployed in the city of Concón with the purpose of informing the 

community about the air quality in their neighborhood. Currently, 10 active stations, which are installed in resident-owned 
houses and public spaces, measure PM10 and PM2.5, rain, temperature, humidity, and wind speed and direction and display 
this information via a mobile application. The particulate matter is measured with a Dylos monitor, and the collected data 
has been calibrated using a Beta Attenuation Mass monitor for PM2.5 located in the same city as where the low-cost monitors 
are deployed. The PM2.5 concentration is obtained through a linear equation that uses small and large particle counts from 
the Dylos monitor. Additional calibration has been performed using neural networks, resulting in a noticeable improvement. 
The data also show that calibrations performed in other cities cannot be applied to measurements taken in Concón. As noted 
in many other studies, the relative humidity strongly influences the particle count. For the months of June, July, and August, 
the hourly profiles reveal a prominent evening peak in downtown Concón but a less obvious increase at the other sites, 
indicating that wood burning (or a similar source) mainly occurs in downtown. The nearby oil refinery, Enap, does not seem 
to increase the concentration of particulate matter on average, but short-term PM2.5 events generated by the refinery have 
not yet been analyzed. 
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INTRODUCTION 

 
Air pollution is one of the main environmental problems 

in Chile, and it is also a source of public health problems. 
This phenomenon is widespread throughout the world, is 
greatly dependent on the economic status of a country and 
the number of inhabitants, but it is also very sensitive to the 
topographical and meteorological conditions. In most 
Chilean cities, the topography determines to a great extent 
the pollution levels observed (Gramsch et al., 2006; Molina 
et al., 2017). 

It is standard practice and it is well known that the only way 
to measure and evaluate the impact generated by air pollution 
is through high-quality monitoring systems in controlled 
networks (EU, 2008; Snyder et al., 2013). This is the case of  
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several cities in Chile, which contain monitoring networks 
with characteristics that are adapted to the city. Together, 
these stations form the National Air Quality Information 
System (SINCA). It is also well known that these stations 
have a high purchasing and maintenance cost, with most 
monitors costing between USD 10,000 and 500,000 (Chong 
and Kumar, 2003; Osses et al., 2013). The consequences of 
the high cost are that maintenance is often delayed, resulting 
in poor data quality. In other cases, equipment repairs may 
take several months, resulting in large gaps in the data. 

In general, the number of air quality monitoring stations 
is insufficient to determine the spatial variability of air 
pollution within a city. In Concón there are 3 stations that 
measure criteria air pollutants (SINCA, 2019), but data for 
several contaminants suffer the problems mentioned above. 
The low number of monitors does not allow knowing what the 
air quality behavior is within a neighborhood or sector. The 
current number of stations only allows a general knowledge 
of the pollution in Concón, without information about large 
sectors in the periphery. This fact is counterproductive for 
the population, who every day is demanding more detailed 
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information about pollution in their own neighborhood. The 
air quality stations in Concón are connected online to the 
National Air Quality Information System in Chile (SINCA, 
2019). Any user can consult graphically those stations of 
interest and review the current values and historical data of 
air quality and meteorology. This capacity allows the 
community to be informed almost in real time on the quality 
of the air that they are breathing in the surroundings of the 
station. However, this same system also allows the user to 
detect gaps in the data, or calibration problems. 
 
Citizen Networks 

Citizens are concerned about pollution of the environment 
they live in, including the quality of the air they breathe. This 
concern manifests itself in different ways, but it has the greatest 
impact on public opinion when the citizens get organized. In 
fact, pollution problems have led to social organizations such 
as neighborhood associations, parent organizations, unions, 
etc. to organize many rallies and demonstrations which have 
had a very high impact on the social media and networks and 
have attracted considerable attention from politicians. At the 
same time, these organizations express high distrust of the 
official monitoring networks because they have seen the 
data gaps and calibration problems. They also see the 
stations as black boxes, on which they have no control and 
to which they have no access. 

At the international level, the appearance of low-cost 
monitoring networks has been observed as a citizen’s 
alternative for air quality monitoring. These low-cost networks 
can use a larger number of equipment for the same area, 
providing a spatial vision that allows the citizens to ask 
about the air quality in their immediate neighborhood. This 
spatial vision not only allows citizens to review the data and 
monitoring procedures, but also learn about the dynamics of 
pollutants, thereby identifying possible emission sources not 
considered in the local emissions inventory. 

For example, a Canadian project that was implemented 
around Toronto and Hamilton shows how “citizen science,” 
modern technology, and citizenship can generate unique 
initiatives that make a difference with state activities. The 
Initiative for Healthy Air and Local Economies project 
(INHALE, 2019) is directed by local agencies (Environment 
Hamilton and Toronto Environmental Alliance), whose 
objective is that ordinary people (citizens) can participate in 
the monitoring of air quality in their neighborhood. The 
initiative was generated because in Hamilton there are only 
3 stationary air monitoring stations, which are grouped around 
the city. Although this information is reported on a map, it is 
totally insufficient for monitoring at the neighborhood level. 
From the viewpoint of its creators, INHALE is considered a 
relatively simple system, where a person (citizen) when 
walking or riding a bicycle, can carry a device that measures 
the concentration of particles in the air, along with a GPS to 
know the exact position of the measurement along the route 
taken. These data are collected and uploaded to a mobile 
application (Network, 2019), where a color scale shows the 
concentrations measured in the journey made by the citizen. 
For now, the INHALE initiative is only limited to certain 
neighborhoods of the city.  

Another pioneering project, called Bicycle Air Monitoring, 
covers an even wider area, and since the sensors are linked 
to bicycles, if the users travel greater distances it is possible 
to cover larger areas. This type of approach (citizen science) 
is far from perfect, but it can provide us with background 
information that gives the spatial dimension of the problem 
of air pollution and air quality within cities. This approach 
has the main advantage of being able to be implemented in 
any city in the world. 

We can mention another initiative which takes place in 
the city of Pittsburgh; it is the Group Against Smog and 
Pollution (GASP, 2019). This citizen’s initiative is conceived 
in a similar way as the previous one, that is, the city has a 
few stationary air monitoring stations, which do not give 
citizens security on the air quality in their neighborhood. It 
is known that the spatial variability of air quality inside a city 
can change a lot depending on the location of the sources, 
wind pattern, street orientation, micro-topography, etc. In 
addition, the maximum concentration of particulate matter 
also depends on the time of day in the city. The above 
generates an additional problem; for example, if people live 
in a highly polluted area, but the closest air quality 
monitoring station is far away, they get the false impression 
that they live in a clean place. This leads citizens to have 
some level of distrust of the data shown by the stationary, 
official network. A comprehensive review of the different 
techniques used for low-cost monitoring is presented by 
Clements et al. (2017). 

The city of Concón is very close to the Enap Oil Refinery 
and it suffers from many of the problems mentioned before. 
In the past, there have been many citizen protests related to 
air pollution. Several times the environmental authority has 
requested improvements in the refinery’s management and 
has changed regulations; consequently, the refinery’s operation 
has required adjustment. 

This work aims to implement and assess a low-cost air 
quality monitoring system. These low-cost devices, relatively 
easy to operate and having some desirable technical features, 
such as their high time resolution, are suitable for citizen 
science in its collaborative aspect, considering the air pollution 
and related social concerns and distrust toward the authorities. 
A citizens’ network was built for spatial surveillance (See 
map in Fig. 1) of air quality in the city of Concón. Data are 
presented to the public in real time via a mobile application 
(Network, 2019). An intuitive web system is being developed 
and implemented for citizen consultation at the neighborhood 
level from computers or cell phones. A network of this nature 
is the first implemented in Chile, setting a precedent and 
having an important impact, not only in the local community, 
but throughout the country. The network is being built through 
an association between two public universities and the Enap 
Oil Refinery. In this work, a description of the network is 
given, as well as the sensors and electronics used in all 
equipment. A discussion is presented about the important issue 
of sensor calibration according to the local environmental 
conditions, which, in the authors’ opinion, is the main result 
of this work. 
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Fig. 1. Map of Concón with the location of the citizens’ micro-network stations. The red circles are the stations of the micro-
network; the blue circle shows the location of the Concón monitoring station from the SINCA network. 

 

MEASUREMENTS AND METHODS 
 
Study Area 

The project is located in the Valparaíso Region, which has 
important industrial activity and three large ports (San 
Antonio, Valparaíso, and Quintero). In addition to the oil 
refinery, the study area has a copper smelter (Ventanas), a 
power plant with a total installed capacity of 272 MW (AES 
Gener), and several chemical companies. The citizens’ air 
quality monitoring micro-network was implemented in the 
city of Concón because of the closeness to the oil refinery 
(see map in Fig. 1) and because citizens in this town are very 
sensitive to emissions from the refinery. The micro-network 
has 10 working stations that measure PM10 and PM2.5, rain, 
temperature, humidity, and wind speed and direction and 
upload the mobile application (Network, 2019). Real-time 
data can be accessed through an application built for cell 
phones. 

Concón has a temperate (Mediterranean) coastal climate, 
influenced by the cold Humboldt Current. The thermal 
behavior is characteristic of the coastal areas: During the 
summer the minimum temperatures oscillate between 12°C 
and 16°C (January), while the maximum temperatures are in 
the range between 20°C and 24°C. Very rarely, the temperature 
exceeds 28°C during the summer season, mainly because of 

its mornings with cloud cover. In winter (July) the minimum 
temperatures vary between 6°C and 10°C, while the maximum 
temperatures are between 11°C and 15°C. Humidity in the 
area is also high, oscillating between 60% and 95% during 
the whole year. There is very little frost interference, rarely 
showing minimum temperatures below 5°C. Precipitation 
occurs mainly between autumn and winter, with July the 
rainiest month (with 107 mm on average), and an annual 
average of 480 mm. During winter this zone is often affected 
by the coastal trough (Garreaud et al., 2002) increasing the 
air pollution problems; however, the wind regime tends to 
attenuate the maximum values, displacing during the day the 
air masses towards the north or towards the interior by 
canyons and valleys. 

 
Sensor Development 

A low-cost sensor station was designed and built in order 
to deploy it in Concón’s network. It is equipped with an 
optical sensor (DC1100 Pro; Dylos Corp., Riverside, CA, 
USA) to count large and small particles and measure rain, 
temperature, humidity, and wind speed and direction. The 
particle count can be converted to PM10 or PM2.5 by means 
of a suitable equation (see “Results” section). A Raspberry 
Pi micro-computer integrates the signal from all sensors and 
sends the data to the app (Network, 2019) through a GPRS 
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communications system. Fig. 2(a) shows a picture of the 
whole station with the particle counter and meteorological 
sensors. Fig. 2(b) shows a detail of the station with the Dylos 
sensor, Raspberry Pi, and interface. The station is also 
equipped with a battery that allows 2 hours of operation if 
there is a power outage. PM10 and PM2.5 are measured with 
a Dylos DC1100 optical system (Dylos Corp., 2019). A 
window was built in the box so that users can review the 
particle count on the sensor and contrast it with the number 
displayed on the web site. This feature was built because one 
of the aims of the network was to improve citizens’ trust of 
the network. The Dylos sensor has 2 channels for small and 
large particles which roughly correlate to PM2.5 and PM10. 
However, there have been many studies evaluating the 
performance of low-cost particle matter monitors (Williams 
et al., 2014; Jovasevic et al., 2015; Manikonda et al., 2016; 
Feinberg et al., 2018; Zheng et al., 2018) and it is widely 
agreed that calibration of the equipment has to be performed 
for each site. The Dylos sensor gives the number of small 
and large particles with an average sampling time of 60 sec. 
Temperature and humidity are measured with an SHT30 
sensor (Sensirion AG, Switzerland); meteorological parameters 
are measured with a Wind/Rain Sensor Assembly from 
Argent Data Systems (Santa Maria, CA, USA). The station 
was mounted on a tripod for easy installation on the 
participants’ backyard.  

Twenty stations were built and 10 are currently deployed 
in houses in Concón. A picture of the sensors during the 
inter-calibration procedure is shown in Fig. 3. The whole 
system is installed in the backyard of citizens’ homes or in 

public places, such as fire stations and park entrances. 
 
Neural Networks 

As an alternative to calibrate PM2.5 concentrations using 
particle counts from the Dylos, the capacity of a multi-layer 
neural network (MLP) has been analyzed. An MLP is an 
algorithm based on the activity of processing units or neurons. 
These neurons are organized in layers, and all neurons in one 
layer are connected to neurons in the next layer. Since the 
activation function for each neuron is non-linear, the global 
algorithm is also non-linear. Connection weights are calculated 
during a learning phase based on a sample of the data, where 
particle count and meteorology are inputs and PM2.5 
concentrations are known outputs (Rumelhart et al., 1986; 
Salini and Pérez, 2015).  

 
Intercomparison 

An intercomparison of the instruments was performed to 
determine the variability among them. 10 instruments were 
located on top of one of the stations of SINCA 2019, and 
measurements were made for 1 month. A picture of the 
instruments while they were tested is shown in Fig. 3. The 
raw output from the Dylos monitor was averaged to obtain 
1 point per hour. A plot of the small particle data from 
8 stations is shown in Fig. 4. For clarity, not all the stations 
are shown in the plot. It is seen that they all show similar 
variations, with very high correlation. The highest correlation 
obtained was 0.9949 and the lowest was 0.7641. These values 
are consistent with Feinberg et al. (2018), who obtained 
correlations between 0.73 and 0.86 for the Dylos small 

 

(a)  (b)  

Fig. 2. (a) Picture of the station with power supply, wind and speed sensors, rain gauge, and screen to visualize particle 
counts from the Dylos. (b) Open station detailing the Dylos sensor, Raspberry Pi, and interface board.  
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Fig. 3. Low-cost sensors on top of a pollution monitoring station located inside the Enap Oil Refinery during calibration 
procedure.  

 

 
Fig. 4. Comparison of 8 stations during July 2018. 

 

particle count. Our results also show very high correlation 
for large particles. For the 10 instruments, the average and 
standard deviation of the number of small and large particles 
is shown in Fig. 5 for the month of July 2018. A difference 
in the average result of up to 20% for small particles and 
25% for large particles was measured for this month. 
However, since the correlation between instruments is very 
high, with proper calibration the difference can be reduced 
greatly (Manikonda et al., 2016). 
 
RESULTS 
 
Linear-fit Calibration 

Initial calibration of 1 low-cost monitor was performed in 

Las Condes Air Pollution Station (Gramsch et al., 2016), 
which belongs to the SINCA network (SINCA, 2019) and is 
located in Santiago, Chile, about 100 km south-east of 
Concón. Calibration was done in Las Condes because the 
site has been used in previous studies and it is well suited for 
an intercomparison between instruments (Gramsch et al., 
2006). Las Condes has a dry climate (low relative humidity 
(RH) most of the year) and is a receptor site for pollution 
coming from downtown Santiago. The low-cost monitor 
was co-located with a Beta Attenuation Mass monitor (BAM 
1020; Met One, Grants Pass, OR, USA) for PM10 and PM2.5 
as well as a meteorological station. The BAM monitor has a 
U.S. EPA Federal Equivalent Method (FEM; U.S. EPA, 2019) 
designation for continuous PM2.5 and PM10 monitoring; the  
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Fig. 5. Average and standard deviation for number of (a) small 
and (b) large particles of 12 stations during July 2018. Note the 
differences in scales between the small and large particles.  

 

units used are [µg m–3]. Measurements were performed 
continuously from March 27 until April 10, 2018. The basic 
statistics for the data (mean, standard deviation, max, min, 
and sample size) are shown in Table 1 As already mentioned, 
the number of small particles minus large particles is roughly 
proportional to PM2.5 (Williams et al., 2014; Manikonda et 
al., 2016); thus a simple linear equation was constructed for 
the concentration obtained with the Dylos instrument, PM2.5D: 
 
PM2.5D = (S – L)f1 + Lf2   [µg m–3] (1) 
 
where S is the number of small particle output from the Dylos, 
L is the number of large particles, f1 and f2 are calibration 
factors with units of [µg m–3], and PM2.5D is the fine particle 
matter obtained from the Dylos in units of [µg m–3]. f1 and f2 
were obtained by optimizing the correlation with the BAM, 
the square of the differences, and the total average for the 
measuring period. The Pearson correlation for this period 
was R = 0.507. The precision was calculated using the 
normalized root mean square error (nRMSE; Manikonda et 
al., 2016) and the result for the period was 0.415, which is 
very similar to the value obtained by Manikonda et al. (2016). 
A similar equation was constructed for PM10D in Las Condes. 
The correlation was R = 0.505, with nRMSE = 0.527. However, 
in this case the best result was obtained when f1 = 0, i.e., only 

the number of large particles is related to PM10. There is also 
a small positive correlation (R = 0.418) between the number 
of small particles and relative humidity. When the relative 
humidity is higher than ~85%, a larger increase in the number 
of particles is seen, just as has been noted before (Williams 
et al., 2014). However, no attempt has been made to correct 
for relative humidity, because there is a wide divergence 
with respect to the type of correction to be made (Zheng et 
al., 2018). The f1 and f2 factors as well as R and nRMSE are 
shown in Table 2.  

Using the calibration factors obtained in Las Condes, the 
particle count data from a station in Concón was adjusted to 
get PM2.5 concentration. Data from a BAM monitor belonging 
to the Concón station of the SINCA network was used. The 
station is shown with a blue dot in Fig. 1. The BAM monitor 
was compared with Station 19 located about 100 m to the 
west. The average result for Station 19 (shown in Fig. 1) was 
37% higher than the BAM monitor. Therefore, a second 
calibration was performed in the city of Concón, where the 
monitors are being used. As before, a linear equation was 
obtained by optimizing the correlation with the BAM monitor, 
minimizing the square of the differences and the difference 
between the averages for the measuring period. The measuring 
period was from April 12 to October 28, 2018. The correlation 
between the BAM monitor and the calculated PM2.5D from the 
Dylos was R = 0.683, with nRMSE = 0.538. As expected, 
the f1 and f2 factors were different from those in Las Condes. 
Interestingly, there was no long-term drift in the 7 month 
period, as shown in Fig. 6(a). Concón is a coastal city, with 
very high humidity during the whole year, so the air quality 
is highly influenced by wind coming from the sea. Thus, in 
this site it is expected that the humidity plays a larger role in 
the particle count from the Dylos. A correlation plot between 
humidity and number of small and large particles from the 
Dylos monitor is shown in Fig. 7. It is clearly seen that when 
the humidity increases, the number of particles increases. 
For small particles (Fig. 7(a)), even at low humidity, there is 
an effect on the number of particles. It can also be seen that 
for high humidity levels there is not always a high particle 
count, which indicates that a simple linear relationship between 
number of particles and humidity will not correct the effect. 
For large particles (Fig. 7(b)), the influence of humidity on 
the number of particles is mainly for RH > 80%. 

 
Neural Network Calibration 

In order to reduce the error between the BAM monitor and

 

Table 1. Basic statistics for the concentrations measured with the Dylos and BAM monitors in both sites. Units are [µg m–3]. 

Measurement Mean Std. deviation Max. Min. Sample size 
Las Condes      

Dylos PM2.5 19.2 8.8 45.7 6.1 333 
BAM PM2.5 19.2 7.1 41 4 333 
Dylos PM10 61.4 29.5 157.7 22.2 333 
BAM PM10 61.9 34.7 218 16 331 

Concón*      
Dylos PM2.5 20.7 14.8 96.6 0.9 3922 
BAM PM2.5 20.1 11.7 95 1 4678 

* no PM10 data was available in Concón Air Pollution Station. 
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Table 2. Parameters used for the linear fit between the Dylos and BAM monitor as well as the correlation and nRMSE. 

Measurement f1 f2 R nRMSE 
Las Condes     

Dylos PM2.5 linear fit 0.00197 0.0042 0.507 0.415 
Dylos PM10 linear fit 0 0.1938 0.505 0.527 

Concón*     
Dylos PM2.5 linear fit 0.00348 0.00084 0.683 0.538 
Dylos PM2.5 N.Net. fit   0.742 0.339 

* no PM10 data was available in Concón Air Pollution Station. 

 

 

 

 
Fig. 6. (a) PM2.5 in Concón with BAM monitor and Dylos data from Station 19, calibrated with the linear equation. (b) PM2.5 
with BAM monitor and Dylos data from Station 19 calibrated with the neural network (20% of the data). (c) PM2.5 with 
BAM monitor and Dylos data from Station 19 calibrated with the linear equation (20% of the data). 
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(a)   (b)  

Fig. 7. Correlation plot between relative humidity and small particles (a) and large particles (b) measured at Station 19 in 
Concón for the April 12–October 28, 2018, period. 

 

the stations, an MLP has been used for the calibration of 
PM2.5. Based on the observed correlations between some 
meteorological variables and difference between large-particle 
and total particle count, the best results can be obtained 
using an MLP with the following properties: input layer with 
7 neurons, hidden layer with 12 neurons, and output layer 
with 1 neuron. 

The inputs are the total particle count, large particle count, 
difference between total and large particle count, temperature, 
relative humidity, wind speed, and solar radiation. Output is 
the predicted PM2.5 concentration. Data considered are hourly 
values between April and September 2018. From this set, 
80% of the data has been randomly extracted for training and 
20% was used for testing. Based on the training set, weights 
are adjusted by minimizing the error between predicted and 
observed values. The test set of data is used for an independent 
estimation of PM2.5 concentrations. Fig. 6(b) shows the 
quality of the calibration for the 20% of the data used for 
testing. A normalized percent error of 25% was obtained by 
comparing with BAM data, with the normalized percent 
error defined as: 
 
NPE = ⟨|obs – predicted|⟩/⟨obs⟩ (2) 
 
where triangular bracket means average over the test set values. 
The correlation between the BAM monitor and the calculated 
PM2.5D from the Dylos was R = 0.742 and nRMSE = 0.339. 
To make a fair comparison, the same 20% of the data was 
fitted to obtain PM2.5D using the linear equation and shown 
in Fig. 6(c). In this case, the normalized percent error was 
38%, and the correlation between the BAM monitor and the 
calculated PM2.5D from the Dylos did not change by much 
(R = 0.638 and nRMSE = 0.532). The improvement using 
the neural network is evident from Figs. 6(b) and 6(c). Most 
of the overestimation and underestimation of the true value 
is reduced with the neural network calibration. The neural 
network results for Concón data are summarized in Table 2. 
Data in Las Condes (2 weeks) were not enough to use the 
neural network for calibration. In Las Condes there were 
only 333 data points compared to 4678 in Concón. 

PM2.5 Profile 
Field deployment of the stations was done on houses of 

Enap’s personnel and not all stations were installed at the 
same time. Data from April 2018 until November 2018 are 
available for the following stations: Station 1, which was 
installed in a sports field, downwind from the city and the 
oil refinery (see Fig. 1); Station 20, which was installed outside 
an office in the refinery; Station 19, which was installed in 
the backyard of a house in downtown Concón, about 100 m 
west of the SINCA station; and Station 12, which was 
installed on the western side of Concón. Fig. 8 shows a 
detailed picture of the measurement site. It can be seen that 
the sports field is not located near houses, while Station 19 
is completely surrounded and Station 20 is very close to the 
river. These differences in the immediate surroundings make 
a difference in the total PM2.5 and the profile of the site, in 
spite of the fact the longest distance between stations is only 
5 km. The hourly profiles for the months of April–November 
are shown in Fig. 9. These averages have been used to see 
the trends in PM2.5 in the city. It is very clear in all the sites 
that PM2.5 increases from April (fall) to July (winter), and 
then decreases in September and October (spring). This 
trend is typical in most cities in Chile (Gramsch et al., 2004; 
Gramsch et al., 2006; Molina et al., 2017). During winter, 
low wind speeds and strong inversion prevent the dispersion 
of contaminants, leading to high concentrations, especially 
at night. As a consequence, the highest concentrations are 
always seen in the months of May, June, and July. All plots 
in Fig. 9 show a rush-hour peak in the morning hours (7–10 
a.m.) which is characteristic of any large city in the world 
(Molina et al., 2012). Another peak occurs at night, and it is 
related to the evening rush hour traffic, emissions from 
heating appliances, restaurants, etc., and it is more pronounced 
during winter. At night, the wind speed is low and frequent 
thermal inversions keep contaminants close to the ground 
(Gramsch et al., 2006; Gramsch et al., 2014). Fig. 9 shows 
that the evening peak is more pronounced in downtown 
Concón (Fig. 9(a)) during the months of June, July, and August. 
The peak is less pronounced at the refinery (Fig. 9(b) and 
west Concón (Fig. 9(c)). In winter, the morning rush is very
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Fig. 8. Map for each of the 4 detailed locations discussed in the text and in Fig. 9. 

 

similar in all the stations. The least pronounced peak during 
winter is the sports field station (Fig. 9(d)), probably due to 
the longer distances from the houses (Fig. 8). This is an 
indication that wood burning (or similar emissions) occur 
mainly in downtown Concón. In all the stations there is a 
clear concentration decrease during the afternoon (2:00–
6:00 p.m.) which is due to higher wind speeds in the area, 
affecting all sites in the same way. An interesting feature is 
that the station at the refinery does not show higher PM2.5 
than the other stations, which indicates that, on average, the 
refinery does not seem to increase particulate matter pollution. 
Analysis of short-term events coming from the refinery that 
may increase PM2.5 pollution has not been made yet. 
Another feature observed in the data that is not seen in other 
cities of Chile (Gramsch et al., 2006; Molina et al., 2017) is 
the fact that in the early morning (1:00–5:00 a.m.) PM2.5 
does not decrease despite the decrease in the city’s activity. 
This may be due to the fact that at this time of the day there 
is high relative humidity which would increase the count in 
the Dylos detector. 
 
PM2.5 Spatial Distribution 

The spatial distribution of PM2.5 can be used to teach 
people about pollution in their neighborhood and to determine 
possible sources of contamination. The spatial distribution 
in Concón has been calculated for the months of June, July, 

and August 2018 (winter) and February and March 2019 
(summer). The Dylos data was calibrated using Eq. (1); 
subsequently the hourly average was calculated and used to 
generate the interpolation. The program used was R (R Core 
Team, 2018) and the interpolation methodology was the 
inverse distance weighted interpolation (IDW). The maximum 
number of points for each station during winter 2018 was 
2208 and the minimum was 1704. During summer, the 
maximum number of points for each station was 1280 and 
the minimum was 936. Fig. 10 shows the interpolation of PM2.5 
concentration for the winter of 2018 and summer of 2019. It 
can be seen that during summer the highest concentration is 
in the station close to the sea, indicating that particles from 
the sea are the main source of PM2.5 in the area. In winter, 
the average concentration for the month of July is slightly 
higher in the refinery sector. 

 
CONCLUSIONS 
 

A micro-network of 10 low-cost Dylos sensors in Concón 
has been used to obtain the temporal and spatial profile of 
PM2.5 in the city. Although this micro-network was deployed 
partly in houses belonging to residents of the community, 
the differences between its data and those obtained by the 
official network were not very large, with a correlation of R 
= 0.742 following neural network calibration. Although the 
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(a)  (b)  

(c)  (d)  

Fig. 9. PM2.5 hourly profile for the months of April–November 2018 in 4 stations. 

 

 
Fig. 10. Interpolated PM2.5 concentration in summer (February–March 2019) and winter (June–August 2018) in Concón. 
The location of the monitoring stations is indicated with a dot and the corresponding number.  

 

measurement area contains Enap, a large oil refinery, this 
facility does not seem to contribute significantly to the PM2.5. 
Our results from calibrating the low-cost sensors with a BAM 
monitor indicate that conducting this process at the site 
where the sensors are to be installed is imperative, as a 37% 
difference in the PM2.5 measurements between the BAM and 
the sensors arose following sensor calibration in a different 
location. Additionally, the correlation and the error between 

the BAM monitor and the Dylos sensors noticeably improved 
when a neural network was employed for calibration, with the 
correlation increasing from 0.638 to 0.742 and the nRMSE 
decreasing from 0.532 to 0.339. The temporal profiles from 
all of the stations reveal a very strong influence from traffic 
emissions, which is typical of most cities around the world. 
Furthermore, relative humidity, which noticeably affected 
the particle count, was addressed in the neural network 
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calibration but not the linear calibration equations. Finally, 
downtown Concón displays a pronounced evening peak in 
the PM2.5 during the winter, which is most likely related to 
emissions from wood burning. Sites that are located outside 
of downtown, however, exhibit a smaller peak. 
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