
Original Article

Structural Health Monitoring

2020, Vol. 19(2) 390–411

� The Author(s) 2019

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/1475921719850576

journals.sagepub.com/home/shm

Deep semi-supervised generative
adversarial fault diagnostics of rolling
element bearings

David Benjamin Verstraete1, Enrique López Droguett1,2 ,
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Abstract
With the availability of cheaper multisensor suites, one has access to massive and multidimensional datasets that can and
should be used for fault diagnosis. However, from a time, resource, engineering, and computational perspective, it is
often cost prohibitive to label all the data streaming into a database in the context of big machinery data, that is, massive
multidimensional data. Therefore, this article proposes both a fully unsupervised and a semi-supervised deep learning
enabled generative adversarial network-based methodology for fault diagnostics. Two public datasets of vibration data
from rolling element bearings are used to evaluate the performance of the proposed methodology for fault diagnostics.
The results indicate that the proposed methodology is a promising approach for both unsupervised and semi-supervised
fault diagnostics.
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Introduction

Condition health monitoring systems are becoming a
standard specification for customers purchasing large
capital assets. With the proliferation of cheap sensing
technology, these assets are now streaming massive
quantities of data at an unprecedented rate. The fields
of structural health monitoring (SHM) and fault diag-
nostics have grown from the need to make sense of
these data. The primary drawback to fault diagnostics
within these systems is the requirement of labeling mil-
lions, and potentially billions, of data points. To label a
dataset of this magnitude is resource intensive, costly,
computationally expensive, and subject to confirma-
tional data biases of the engineers interpreting the data.
Thus, labeling the output of an extensive sensor system
data output requires significant investment. Moreover,
there is a strong assumption within supervised fault
diagnosis that everything is known about a preset class
of faults. This restricts the ability of the supervised
model to generalize. If the model only knows what the
engineer knows, it is reasonable to assume the model’s
knowledge of the system could be incomplete; there-
fore, traditional feature learning would have a funda-
mental generalization problem.

The general problem within unsupervised learning is
extracting information or value from unlabeled data.
Unsupervised learning is an ill-posed problem because
appropriate downstream tasks are unknown at the time
of training. Therefore, unsupervised learning should
disentangle the relevant unknown tasks that are helpful
for the problem. For instance, a useful disentangled
representation for a dataset of cracks in a concrete
structure would be dimensions for crack length, crack
width, neighboring cracks, or the presence of the crack
intersections.1 These representations may be relevant
for natural tasks like damage evaluation or crack pro-
pagation. For irrelevant tasks, like the percentage of
white pixels, this representation would be extraneous.
Therefore, a useful unsupervised learning algorithm
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must guess the likely set of subsequent classification
tasks correctly without knowledge of what the tasks
are. This is a challenge deep learning attempts to solve.
Deep learning makes up much of the recent unsuper-
vised fault diagnostic research.2–10 All these
approaches, except that of Langone et al.,3 are
restricted to unsupervised feature learning followed by
supervised fault diagnostics. Moreover, none of these
methods attempt unsupervised learning with an image
representation of the data.

Most recently, generative adversarial networks
(GANs) have been developed within the computer
vision community.11 Training this deep generative mod-
eling is done using a minimax game. The goal of train-
ing is to learn a generator distribution that fools the
discriminator into classifying it as from the true data
distribution. Unlike variational autoencoders (VAEs),
which tries to assign probability to every data point in
the data distribution,12 a GAN learns a generator net-
work, which transforms a noise variable in a sample by
generating samples from the sample distribution. With
a sharper image from GANs, one gets more precise
image features. However, currently there are no agreed
upon methods to assess the training of, or comparison
of, a GAN without visually inspecting the images. This
is difficult to accomplish without an image of the sig-
nal. A vector of data would not suffice. Therefore,
GANs provide a better foundation for fault diagnostics
based on rich images of signals.

In this article, we propose a novel deep learning gen-
erative adversarial methodology for a comprehensive
approach to fault diagnostics on time–frequency
images. This article explores both deep convolutional
GANs (DCGAN) and information maximizing GAN
(InfoGAN) architectures. From the proposed architec-
tures for these two types of GANs networks, clustering
is done via spectral and k-means+ + clustering on the
down-sampled activation output of the discriminator.
To improve clustering results, semi-supervised learning
is included as a second stage to the methodology by
altering the cost function to account for data labels. In
addition, both 32 3 32 pixel and 96 3 96 pixel images
are explored as inputs to methodology. This methodol-
ogy is then evaluated with both the Machinery Failure
Prevention Technology (MFPT) Society13 and Case
Western Reserve (CWR) University Bearing Data
Center14 bearing datasets. The proposed methodology’s
results are then compared with unsupervised learning
via autoencoders (AEs) and VAE. To evaluate the pro-
posed unsupervised methodology, traditional super-
vised learning metrics are inappropriate. A confusion
matrix and its associated metrics are unable to evaluate
clustering techniques. The ground truth is known;
therefore, purity,15 normalized mutual information

(NMI),16 and adjusted rand index (ARI)17 are used to
evaluate the quality of the clusters.

The rest of this article is organized as follows:, sec-
tion ‘‘Background on adversarial training’’ provides an
overview of GANs. Section ‘‘Proposed generative
adversarial fault diagnostic methodology’’ outlines the
proposed unsupervised and semi-supervised methodol-
ogy constructed to aid the diagnostic task of fault detec-
tion. Section ‘‘Examples of applicationu applies the
methodology to both the MFPT and CWR experimen-
tal datasets. Section ‘‘Comparison with AE and VAEo
compares these results to unsupervised AE and VAE.
The last section finishes with some concluding remarks.

Background on adversarial training

GANs were first proposed by Goodfellow et al.11

GANs consist of a generator network and a discrimina-
tor model network. Generative models seek to learn the
underlying joint probability distribution P(x, y) of the
random variables to categorize a signal. Discriminative
models, on the other hand, disregard how the data were
generated and simply categorize the data points based
on a conditional probability distribution p(y|x).18

Within the context of fault diagnostics, generative mod-
els attempt to learn every potential fault to then classify
the faults, whereas discriminative models attempt to
determine fault differences absent of learning every
fault. GANs seek to utilize both models’ strengths. The
generator attempts to create a synthetic dataset, X’,
which matches the real data, X that only the discrimina-
tor can see and classify as shown in Figure 1. The gen-
erator samples from a noise distribution, Z (e.g.
normal) and the discriminator determines whether the
sampled data (e.g. an image) is real or fake.

Functionally, GANs train two convolutional neural
networks (CNNs) at the same time. The generator,
which is depicted in Figure 1, utilizes deconvolutional
layers to take the noisy input Z and creates the speci-
fied size image. The parameters in Z is then updated
continuously throughout the training of the network.
This image is then fed into the discriminator network

Figure 1. GAN overview.
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to judge whether the generated image is real or fake.
The discriminator is a CNN with convolutional layers,
pooling, and nonlinear activations. This is all done in a
feedforward operation where the weights, biases, and
errors are set throughout. To update the networks and
adjust these hyperparameters, backpropagation is used
to send the errors back through the networks to update
the weights and biases. This process removes redun-
dant, uninteresting features.

To accomplish this, the fundamental foundation of
the GANs algorithm is the two-player minimax game.
The generative network maps a noise source to an input
space to generate a fake image. The discriminative net-
work receives the generators input (a fake image) and
classifies it as real or fake. This amounts to a two-player
game with the two networks competing against each
other as in equation (1)11

min
G

max
D

V (G,D) =Ex;Pdata(x) log(D(x)½ �

+Ez;Pnoise(z) log(1� D(G(z)))½ �
ð1Þ

where Pdata(x) is data distribution, Pnoise(x) is noise dis-
tribution, D(x) is discriminator objective function, and
G(z) is the generator objective function.

For each generator parameter update the discrimi-
nator is trained to optimality. The minimization of the
value function leads to the minimization of the Jensen–
Shannon (JS) divergence between the real data and the
trained model distributions on x. This minimization
frequently results in vanishing gradients as the discrimi-
nator saturates. While the ideal training results in
optimality, in most practical applications this is not
necessarily the case. At the moment the training of
GANs requires visual inspection of the output images;
therefore, an image representation of the signal is
needed.

There has been, and there continues to be, a large
amount of research surrounding the architectures and
training of a GAN. For this article both DCGAN and
InfoGAN are used. Fundamentally, these two GAN
are identically trained to the proposed method by
Goodfellow et al.11 However, their architectures and
cost functions are modified to account for the applied
datasets and unsupervised versus semi-supervised
objective functions.

Clustering

This article examines two primary clustering algorithms
for classification (k-means+ + and spectral) and princi-
pal components analysis (PCA) for visualization. K-
means+ + was chosen to explore the robustness of the
methodology to simple clustering algorithms. K-mean-
s+ + differs from the traditional k-means algorithm by

first choosing the initial cluster center uniformly at ran-
dom and then choosing each subsequent center with
probability proportional to the square of its proximity
to the nearest center.19

Spectral clustering on the other hand is a graph clus-
tering technique where eigenvectors of the data matrices
are used. Data are mapped to a low-dimensional space
for spectral clustering. This dimensionality reduction is
more computationally expensive than the k-means+ +
algorithm; however, it can achieve superior results.20

Proposed generative adversarial fault
diagnostic methodology

A two-stage fault diagnostic methodology is proposed
within this article. Stage one consists of fully unsuper-
vised generative adversarial fault diagnostics, and stage
two semi-supervised generative adversarial fault diag-
nostics. In practice, sensor signals are gathered, and
stage one can be used at the start to assess the baseline
of the system when labels for the data are unavailable.
As knowledge of the system signals improve, fault sig-
nals can be identified, labeled, and then incorporated
into stage two. The intention is that unsupervised clus-
tering, operating on the automatic identified features
by the GAN, identifies fault clusters away from the
baseline. Once labeled data is available, it can be added
to the model to improve the maintenance decision-
making. Upon completion, the engineer can then
visually monitor the system via PCA to begin labeling
some of the signals being gathered. This labeled data
can then be input into the GANs methodology, with a
modification to the cost function, to further improve
the clustering results until a predefined criterion of per-
formance is met. Once the system signals move to a
fully supervised labeled dataset, the engineer can then
transition the modeling to a fully supervised deep learn-
ing framework.21

Algorithm 1. K-means ++ algorithm.

Initialize k-means ++ algorithm
� Take one center, c1, chosen uniformly at random from

data points, X.
� Take a new center, ci, choosing x 2 X with probability

D(x)2P
x2X

D(x)2, where D(x) denotes the shortest distance

from a data point to the closest center already chosen.
� Repeat previous step until all k centers are taken.
� Proceed with standard k-means algorithm.
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The discriminator network provides the ability to
train itself against generated images as an adversary
within both DCGAN and InfoGAN architectures.
Since the discriminator is trained to predict the fake
from the real dataset, it can provide a robust feature
set of the real data. To accomplish this, the GAN dis-
criminator training automatically generates a high-level
feature representation of the data from the input image
to an output vector. The goal of the GANs training is
then to take this high-level representation feature set as
an input to clustering algorithms. This allows the gen-
erator to avoid overfitting on the raw data by only hav-
ing access to the gradients. Two GAN architectures
explored in this article are not a restriction on the
methodology; these were two architectures chosen
because of their strong results in other tasks, such as
image generation. To use the InfoGAN, the encoder
dimension must be given as the number of system
health states believed to exist, whereas this is not a
requirement for training the DCGAN. For instance, to
validate the proposed methodology the encoder dimen-
sion was set to three. The DCGAN training, on the
other hand, does not require the encoder dimension.

The DCGAN architecture developed for this article
incorporates the guidelines proposed in Radford et
al.;22 however, some adjustments were made to the
architecture to handle the datasets used in this article
and thus provide superior results for unsupervised fault
diagnostics. DCGANs were the first major advance-
ment on the original GAN architecture.22 Through
exhaustive model exploration, this work resulted in the
following five GANs architecture guidelines:

1. Pooling layer replacement with strided convolu-
tions for both the discriminator and the generator
networks;

2. Batch normalization (BN) is required for both the
discriminator and generator networks;

3. Fully connected (FC) hidden layers should be
removed for deep architectures;

4. Rectified linear unit (ReLU) activation use in all
layers of the generator except the output should use
tanh;

5. Leaky ReLU activation use on all layers for the
discriminator.

DCGANs are the main baseline to implement
GANs; however, as stated in Radford et al.,22 model
instability still exists within the training of the model.
The longer the model trains, the higher the risk of
mode collapse. This occurs when a filter subset col-
lapses to a single oscillating mode.

There have been many studies on the effectiveness of
individual wavelets and their ability to match a signal.
One could choose between the Gaussian, Morlet,
Shannon, Meyer, Laplace, Hermit, or the Mexican Hat
wavelets in both simple and complex functions. To
date, there is no defined methodology for identifying
the proper wavelet to be used and this remains an open
question within the research community.23 For the pur-
poses of this article, the Morlet wavelet is chosen
because of its similarity to the impulse component of
symptomatic faults of many mechanical systems.24

As shown in Figure 2, the proposed methodology
starts with the training of a GAN with the unlabeled
dataset. This will train two CNNs, one discriminator,
and one generator. The discriminator needs to learn
distribution of the real vibration fault dataset to be able
to discriminate between the generated fake samples and
the real samples. The generator attempts to trick the
discriminator by learning the underlying distribution of
the generated data. The last activation layer of the
training is then concatenated and visually inspected via
PCA to evaluate the ability of the GAN to separate the
data. At this point, the engineer will be looking for a
robust representation of the baseline signals from the
asset. From there, the engineer weighs the value of
labeling the incoming data versus the cost to label.

In the following sections, we discuss and detail the
proposed methodology for fault diagnostics. The

Algorithm 2. Spectral clustering algorithm.

Input: Similarity matrix S 2 R
n3n, number k of clusters to construct

� Construct a similarity graph. Let W be its weighted adjacency matrix.
� Compute the unnormalized Laplacian L.
� Compute the first k eigenvectors v1, . . . , vk of the generalized eigenproblem Lv = lDv.
� Let V 2 R

n3k be the matrix containing the vectors v1, :::, vk as columns.
� For i = 1, :::, n, let yi 2 R

k be the vector corresponding to the i-th row of V.
� Cluster the points (yi)i = 1, ..., n in R

k with the k-means algorithm into clusters C1, :::,Ck.
Output: Clusters A1, :::, Ak with Ai = fjjyj 2 Cig.
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following sections include discussions regarding the
architectures for the DCGAN and InfoGAN models

underpinning the methodology followed by a detailed
discussion on the proposed methodology steps.

Figure 2. Proposed generative adversarial fault diagnostic methodology.
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Functionally, the training of the DCGAN involves
tuning the parameters on two CNNs. In the generator
architecture in Figure 3, noise Z is used to generate a
vector of data. This is then used to project and reshape
to 512 6 3 6 features. From these features, 256
12 3 12 features are deconvolved. Following to 128
24 3 24 features, then 64 48 3 48 features, and finally
3 96 3 96 images are generated. Between each of these
layers, BN and ReLU are used, and finally tanh is used
for the last layer.

The discriminator CNN in Figure 4 shows the
reduction from the image into smaller features. The

discriminator takes the 96 3 96 image and convolutes
the image into 64 feature maps of 48 3 48 size. The 64
feature maps are then again convoluted to 128 feature
maps of size 24 3 24, then 256 feature maps of
12 3 12 size, and finally 512 feature maps of 6 3 6
size. Between each of these layers, the data are passed
through BN and leaky ReLU. The final activation
layer of 512 6 3 6 feature maps results in features
automatically learned from the data and maps to the
subsequent step in the proposed methodology discussed
in section ‘‘Proposed Generative Adversarial Fault
Diagnostic Methodology.’’

Figure 3. Generator network.

Figure 4. Discriminator network.

Figure 5. InfoGANs discriminator network.
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This comprises both networks for the DCGANs
training. To update both networks through each step, a
cross-entropy backpropagation is used. This backpro-
pagation allows updating of the weights and biases
throughout the network to optimize toward the
intended outputs. This is done with the gradients out of
the discriminator to help avoid overfitting on the raw
data.

InfoGANs take the unsupervised objective function
into account as a mutual information variable in the
input of the generator network.25 This input now con-
sists of z and c vectors. The latter is used in the mutual
information term to represent some latent variable in
the data. The InfoGAN’s objective remains the same as
the GAN objective function; however, it now makes
use of the dataset descriptive latent variables c and z,
as shown in equation (2)

min
G

max
D

VInfoGAN (G,D,Q) = V (G,D)� lLI (c; G(z, c))

ð2Þ

where Q is the auxiliary distribution to approximate
the posterior, G is generator, D is discriminator, c is the
latent code, z is incompressible noise, G(z, c) is genera-
tor network in terms z and c, and LI is variation lower
bound of mutual information I.

The hyperparameter l is introduced within the
InfoGAN optimization to control the scale of the
GANs objective function. A l set to 1 suffices for dis-
crete latent codes, and a smaller l is useful for continu-
ous variables to ensure the scale remains the same.

Figure 5 shows the proposed architecture for the
InfoGAN discriminator. Note that this discriminator
network, more specifically the FC encoder layer within
InfoGAN, is the only difference versus DCGANs. The
distribution Q(c| x) is the posterior approximation of
the true posterior P(c| x). The approximate posterior Q
is parameterized as a neural network.

The benefit to using the InfoGAN algorithm is the
ability to extract meaningful features of the data cre-
ated by the generator encoder vector. This means, for a
fault diagnostic problem, c encodes the semantic fea-
tures (fault classes, e.g. baseline, inner race fault, outer
race fault) of the data distribution and z encodes the
unstructured noise of the distribution (e.g. width of the
impulse, background noise of the signal). Even with the
mutual information objective function, there is no
guarantee that the latent variables found by the trained
InfoGAN will be the desired structure in the data.
Therefore, InfoGANs still require visual inspection of
the generator images to assess its image quality. In the
following sections, we discuss the steps in the proposed
methodology.

Read raw signal and image representation
construction

Prior to GAN initialization, it is necessary to generate
images of the accelerometer data streaming from the
rolling element bearing. Scalogram images contain time
and frequency on the axis and the color depicts the
magnitude. Once the images are generated, the entire
dataset is subdivided into three groups: training, test,
and validation. It is common to have the bulk of the
images in the training set, with the remainder used as a
test set to evaluate the model’s ability to predict the sys-
tem’s health classes.

Unsupervised GAN initialization

Once the scalogram images are generated, Algorithm 3
outlines the process as a means for a feedforward pipe-
line for fault diagnosis. Global average pooling is used
to reduce the last convolutional layer filters to k vectors
of 1 3 1. This is then concatenated to form a 1 3 k
vector and fed into a clustering algorithm.

Once the GAN model is trained (DCGAN or
InfoGAN), two additional steps are needed to evaluate
the model. The first step is a visual inspection of the
trained generator network to evaluate the quality of the
generated images. Visual inspection of the output
images of the generator network is a key indicator to
how well the GAN architecture is training and whether
any of the known drawbacks are surfacing, such as
mode collapse,26 vanishing gradients,27 non-

Algorithm 3. Unsupervised feedforward pipeline for images, i.

Train GAN Architecture to data dependent, context dependent
epoch count.
for i images do
� Feed forward pass through the discriminator.
� Global Average Pooling for k filters out of last

convolutional layer to output k 1x1 filters.
� Concatenate last convolutional layer activations (with

encoder for the InfoGAN) from each image i as a 1 x k
vector.

� Normalize this vector with L2 Norm (Euclidean
Distance):

xj j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k = 1

xkj j2
s

end for
� Vector is labeled LA vector for DCGAN.
� Vector is labeled LA + encoder vector for InfoGAN.
� The resulting vector is fed into a clustering algorithm

(k-means ++ , spectral) to obtain labels for images.
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convergence,28 and checkerboarding artifacts.29 The
second step consists of sampling images from a random
uniform input vector between 0 and 1. For the
InfoGAN, the c input vector is a random one-hot
encoded categorical vector. This step uncovers prob-
lems in the convergence of the network, mode collapse
to a specific kind of image, or the inability of the model
to generate similar images to the ones in the original
dataset.

Concatenation, normalization, and clustering

To extract the discriminator information after training,
a feedforward pass is done with each image (i) in the
dataset to obtain each last convolutional layer activa-
tion. These activations are pooled via global average
pooling for each filter (k). This means that, given k fil-
ters in the last layer, the output is k 1 3 1 vectors for
each scalogram. After global average pooling, these
vectors are concatenated into a 1 3 k vector and nor-
malized with Euclidean L2 normalization. From this
point, the vector output of the DCGAN is referred to
as the last layer activations vector, or LA vector.
Moreover, the output of the InfoGAN includes the
encoder output. Therefore, from this point, this enco-
der concatenated with the LA vector output of the
InfoGAN is referred to as the LA + encoder vector.

The last step is to use this LA vector or
LA + encoder vector (C or Cen, respectively) as an
input into clustering algorithms. For the purposes of
this article, k-means+ + and spectral clustering are
examined. Again, this is not a restriction on the metho-
dology; it is a means to display the robustness of the
methodology to two common straightforward cluster-
ing algorithms.

Unsupervised visual evaluation—PCA

Once the output of unsupervised clustering is complete,
a method to assess the clustering results without the
real labels is needed. For the proposed methodology,
one could evaluate the clustering output of the LA or
LA + vector’s visually to choose the appropriate num-
ber of clusters to proceed with the remainder of the
methodology. Note that the GANs training creates a
suitable underlying manifold representation of the data
that can be used in a two-dimensional visual inspection.
Engineering knowledge can then be utilized to provide
meaning to the evaluation of the visual results of PCA.

Label data

One of the strengths of the proposed methodology is
the ability to feed in an incrementally increasing
amount of labeled data into the training dataset of the

GANs algorithm to increase fault class identification
results from the clustering. This has practical impor-
tance because, when a new asset comes online, initially
there may be little knowledge of the system faults and
their respective raw signals. As more knowledge is
gained, labeled data can be incorporated into the
model. The results section of this article validates the
methodology with metrics for increasing percentages of
labeled data (for validation purposes, it is assumed that
labels are known) within the training dataset for semi-
supervised fault diagnostics.

Semi-supervised GAN initialization

Semi-supervised GAN initialization involves training of
the chosen GAN architecture with an incrementally
increasing set of labeled data. This is an important
aspect to explore because as the engineer gains more
knowledge about a new system, one can label small sets
of data which are known to be faults to increase the
system’s health state identification via clustering. This
approach improves the quality of the clustering results
via a semi-supervised cost function (equation (6)) as
described in Salimans et al.28 In the unsupervised train-
ing, the discriminator learns features to avoid classify-
ing the generated data as real data, but these features
might not be the best representation given the implicit
labels the problem has. One way to help the discrimina-
tor get improved and more meaningful features for
these labels is to use the discriminator as a classifier for
these classes. This is possible with a minor change to
the proposed GAN pipeline outlined in the first step of
Algorithm 1. Indeed, the loss function L is modified to
equation (3), as follows

L = Lsupervised + Lunsupervised ð3Þ

where

Lsupervised = � Ex, y;pdataðx, yÞ log pmodel(yjx, y\K + 1)

Lunsupervised = � fEx;pdataðxÞ log½1� pmodel(y = K + 1jx)�
+Ex;Glog½pmodel(y = K + 1jx)�g

This cost function adds a cross entropy loss for the
first k discriminator outputs. The unsupervised cost is
the same as the original GAN (equation (1)). However,
there is a slight change as now K + 1 corresponds to
the probability of the sample being false. The discrimi-
nator is used as a competent classifier given a subset of
the dataset. In this case, the discriminator will be used
as a feature extractor given a subset of the dataset to
improve the system’s health state identification results
based on clustering. Labels are used as clues for the
structure of the data with the aim of creating an
improved discriminator. This assumes that images
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generated with semi-supervised learning have better
quality than the ones generated in an unsupervised
manner. However, notice that the main objective of a
GAN is to generate data points or images that resemble
the training dataset and not to predict any system’s
health states. Thus, if we use a few labeled data points
and generated data we are performing a semi-
supervised training.

Semi-supervised stop criteria

For a qualitative analysis, the GAN’s last activation
layer outputs are used to generate a two-component
PCA plot. The ideal result would be a clear separation
between the health states (classes). If there is not a clear
separation, then adding labeled data would help aid in
the separation and provide better system health state
diagnosis. It is at this point the engineer, now with a
small number of labels of the fault conditions, can begin
using metrics to evaluate whether the model is perform-
ing suitably to cease labeling additional data. Eventually
the quantity of labeled data reaches a point at which the
decision can be made to explore a deep learning enabled
fully supervised fault diagnostic methodology.

Examples of application

In this section, the proposed methodology is applied to
both the MFPT and CWR bearing datasets. To vali-
date the proposed methodology, known labels are
available. Therefore, metrics like purity, NMI, and
ARI can be used. Graphics processing unit (GPU)
computing was utilized throughout this article using a
system with a Nvidia GPU Titan XP, CPU Core i7-
6700 K 4.2 GHz, 32 GB RAM, Tensorflow 1.0,
cuDNN 5.1, and Cuda 8.0.

MFPT dataset

This dataset was provided by the MFPT Society.13 An
experimental test rig with a NICE bearing gathered
accelerometer data for three conditions. First, a base-
line condition was measured at 270 lbs of load and a
sampling rate of 97,656 Hz. Second, 10 total outer race-
way faults were tracked. Three outer race faults were
loaded with 270 lbs with a sampling rate of 97,656 Hz,
and seven outer race faults were assessed at varying
loads: 25, 50, 100, 150, 200, 250, and 300 lbs. The sam-
pling rate for the faults was 48,828 Hz. Third, seven
inner race faults were analyzed with varying loads of 0,
50, 100, 150, 200, 250, and 300 lbs. The sampling rate
for the inner race faults was 48,848 Hz. Scalogram
images, as shown in Table 1, were generated from the
raw signal with the following classes: normal baseline,
inner race fault, and outer race fault. The total scalo-
grams images used for each class was3423, 1981, and
5404 respectively. With 10,808 total images, the training
set size used was 50%. Bilinear interpolation30 was used
to scale the images down to a manageable size for the
training. The MFPT dataset is a good test for any algo-
rithm’s ability to separate the baseline healthy data with
the outer race fault condition. This can be seen in the
similarity of the raw signals in Figures 6 and 7, respec-
tively. Figure 8 shows the inner race fault condition.

Within the scalograms of the MFPT dataset there
are a few areas to be noted. The noise level within the
baseline and outer race data appears to be higher than
the inner race. This is confirmed from the plots of the
raw signals. The baseline and outer race faults look
similar, hence the potential difficulty in the conducting
fault diagnosis on this dataset.

Although labels are available for this dataset, the
results presented in this section were obtained with
fully unsupervised training on both DCGAN and
InfoGAN architectures, with complete datasets and
without labels. Visual inspection of the output images

Figure 6. Baseline signal. Figure 7. Outer race fault signal.
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of the generator network, as shown in Figures 9 and
10, is a key indicator to how well the GAN architecture
is training and whether mode collapse, vanishing gradi-
ents, non-convergence, or checkerboarding artifacts is

occurring. Checkerboarding artifacts occur when the
stride length is not directly divisible by the convolu-
tional filter size. The output images on this dataset
show that the generator performed well in converging
to the distribution of the data. It is clear which images
are the inner race fault images, and there is a slight var-
iation in the images generated for the baseline and
outer race conditions.

Following the proposed methodology in section
‘‘Proposed generative adversarial fault diagnostic meth-
odology’’ (see Figure 2), the alternative models can be
qualitatively evaluated based on the two-component
PCA. Thus, Figure 11 shows the PCA results for the
best model corresponding to the spectral clustering
based on the InfoGAN LA vector with an output image
of 32 3 32 pixels. Indeed, Supplemental Appendix A
contains the results for the two-component PCA based
on both the InfoGAN and DCGAN data representa-
tions. For the sake of brevity, only the results for the
best performing clustering method, spectral clustering,

Figure 8. Inner race fault signal.

Figure 9. Output images of DCGAN generator training model.

Figure 10. Output images of InfoGAN generator training
model.

Table 1. 96 3 96 pixel MFPT scalogram images (actual size).

Baseline Inner race Outer race

MFPT: machinery failure prevention technology.
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are shown. Both Supplemental Appendix A and Figure
11 compare the predicted labels with the real labels.
Note that, from the results in Supplemental Appendix
A, the InfoGAN LA vector with an output image of
32 3 32 pixels provides the best separation and identi-
fication of the system’s health states. This model is
closely followed by the InfoGAN LA + vector with an
output image of 32 3 32 pixels that, when contrasted
to the real labels, shows some difficulty in separating
the baseline health state.

This qualitative evaluation is important within the
proposed methodology, because for unsupervised fault
diagnostics, the first step for this data representation is
a clear separation between the baseline healthy data
and any faulty unhealthy data. The faults themselves
do not necessarily need to be separated from each other
at this stage, as the goal of this step is to separate
healthy from unhealthy. Isolating faults between each
other can be assessed in a later stage of the proposed
methodology as the engineer begins to label data and
has further knowledge into the ground truth of the sig-
nals. As can be seen from Figure 11, for the best model,
InfoGAN LA vector with image output of 32 3 32 pix-
els, the baseline is separated well from the rest of the
fault signal data.

The last convolutional layer activation of the GAN’s
generator allows visualization of the manifold GAN
developed during training of the underlying gradient

basis of the raw data. This layer holds valuable infor-
mation about the underlying distribution of the data.

The effectiveness of the proposed methodology can
be evaluated with the following metrics: ARI, NMI,
and purity. ARI and NMI are well-known evaluation
metrics; however, purity is somewhat new but used
often. Purity, simply put, is the ratio between the domi-
nant class in the cluster and the size of the cluster. More
formally, purity is as in equation (7)

Purity(wi) =
1

ni

max
n

(nij) j 2 C ð4Þ

where w are clusters, n are members, and C are the
number of classes.

The three metrics used for evaluation all measure
different aspects of the effectiveness of unsupervised
learning algorithms. Purity values range from 0 (poor
clustering) to 1 (perfect clustering). A high purity would
be easy to achieve if the selected number of clusters is
high. For instance, if every feature from the proposed
methodology had its own cluster, the purity would be
1. Therefore, purity cannot be used to evaluate the
number of clusters. NMI allows one to evaluate the tra-
deoffs of the number of clusters. However, NMI has
the same drawback as purity does where if there are
one-image clusters, NMI has a value of 1. The last
metric used to evaluate the clustering output is ARI.
ARI, simply put, is the accuracy of the clustering and

Figure 11. Spectral clustering PCA, InfoGAN LA output image 32 3 32 pixels. (a) Real labels. (b) Predicted labels.

Table 2. Fully unsupervised 32 3 32 generator output, InfoGAN LA output and spectral clustering.

Labeled data (%) ARI Purity NMI

0 0.89 0.96 0.88

InfoGAN: information maximizing generative adversarial networks; ARI: adjusted rand index; NMI: normalized mutual information.
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measures the percentage of correct decisions. ARI gives
equal weight to the false positives and false negatives.
This accounts for the shortcomings of purity and NMI
where, at times, ARI can perform worse when separat-
ing similar data points than clustering dissimilar data
points. From the complete set of results shown in
Supplemental Appendix B, Tables B.1 to B.4, the pro-
posed architectures for the DCGAN and InfoGAN
provide a robust underlying manifold representation of
the data and they have solid performance for unsuper-
vised fault diagnostics. The InfoGAN LA vector with
32 3 32 output images and with spectral clustering is
the one that achieves the best results: ARI of 0.89, pur-
ity equal to 0.96 and NMI of 0.88 as shown in Table 2.
This indicates the proposed methodology is creating
pure clusters, the number of clusters is generating a
high NMI, and the ARI accuracy of 0.89 is high for
unsupervised learning.

Moreover, the InfoGAN architecture with the
32 3 32 generator output outperformed the 96 3 96
output. This could be explained by the similarities
between the baseline and the outer race fault condition.
With increased generator resolution potentially blur-
ring the images, the GAN models could therefore have
a harder time classifying them. Based on the ARI,
NMI, and purity results, there is no definitive optimal
image resolution for both the architectures. Spectral

clustering outperformed k-means+ + across the board.
The ability of spectral clustering to map to a lower
dimensional space allowed for better predictions.
Therefore, for the MFPT dataset, the InfoGAN out-
performed the DCGAN. Given the noise the MFPT
dataset has within two of the classes, the InfoGAN did
a better job of encoding the experimental noise into the
z vector.

Table 3. 32 3 32 generator output, InfoGAN LA output, and spectral clustering.

Labeled data (%) Amount of labeled data ARI Purity NMI

0 0 0.89 0.96 0.88
1 54 0.37 0.73 0.45
2 108 0.46 0.79 0.59
4 216 0.82 0.94 0.81
8 432 0.88 0.96 0.87
10 541 0.90 0.96 0.88
20 1081 0.98 0.99 0.96

InfoGAN: information maximizing generative adversarial networks; ARI: adjusted rand index; NMI: normalized mutual information.

Figure 12. CWR experimental test stand for roller bearing.

Figure 13. Baseline raw signal.

Figure 14. Inner race fault raw signal.
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The next step would be to monitor the system as
baseline data is collected. As faults arise, inspection
and knowledge of faults must be completed to ensure
the fault diagnostic system improves. These results
indicate a strong value proposition for the proposed
methodology. The following section explores increas-
ing the percentage of labeled data within this
methodology.

As the results of the unsupervised learning are
obtained, semi-supervised learning may be required if
some of the results do not meet the user requirements
for prediction capability. Although the fully unsuper-
vised results for this dataset are satisfactory, with best
purity scores of 0.96 and 0.82 for the InfoGAN and
DCGAN, respectively, and good separation on the
PCA plot for the identification of health states, the
semi-supervised case is explored to see how good the
results can be with an investment in resources to label
the data. This is a time-consuming and expensive pro-
cess, so we analyze different cases that incrementally
add labels to the dataset. The percentage of the labeled
data is dependent on knowledge of the failure process,
degradation, application, quality of the data, feeling/
expert knowledge, and associated costs. For the sake of
brevity, in this section, we focus on the architecture
with the best performance in the unsupervised stage
discussed in the previous section, that is, the InfoGAN
LA vector with 32 3 32 generator output. Note also
that the models are trained with only a small portion of
the dataset that is labeled.

The top results are reported in Table 3, which are
for the InfoGAN architecture with LA output image
32 3 32 pixels using spectral clustering. To evaluate
effectiveness of the semi-supervised fault identification
pipeline, the actual labels are compared with predicted
clusters (predicted health states).

Something peculiar in the results is the fact that the
metrics performance decreases initially with the addi-
tion of labeled data. This is because the semi-supervised
models are trained with labels on a very small portion
of the full dataset. The most important part of these
validation metric results is the point at which the semi-
supervised case begins outperforming the unsupervised
case. This happens at 8%. The semi-supervised case is
able to match the unsupervised results with only 4%
labeled data and surpass it with 8%. This gives the engi-
neer a decision point with which to make an economic
decision to start labeling data. Compared with the fully
unsupervised, the semi-supervised results show a better
separation overall of the baseline versus the fault data.

In sum, at a 0.94 purity from the spectral clustering
results out of the InfoGAN c vector, it is worth explor-
ing this unsupervised approach for this dataset before
spending engineering resources on labeling the vast
amount of data for similar systems in industry. Also,
with the addition of the labeled data, there are few
points worth commenting. First, spectral clustering still
outperformed k-means+ + . The results for the low per-
centage labeled data show almost equal performance
compared with the unsupervised results, as shown in
Supplemental Appendix B, Tables B.1 to B.4. This is
not surprising as the unsupervised results were already
high. These results indicate that unsupervised results
can be achieved with a small labeled subset.

CWR University bearing dataset

The second experimental dataset was provided by
CWR University Bearing Data Center.14 A Reliance
electric motor, 2 horsepower, was used with ball bear-
ings in experiments for the acquisition of vibration
accelerometer data on both the drive end and fan end

Figure 16. Ball fault raw signal.Figure 15. Outer race fault raw signal.
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bearings, as shown in Figure 12. The signal is generated
from the bearings supporting the motor shaft. Single
point artificial faults were seeded in the bearing with an
electro-discharge machining. Location and diameter of
the faults varied for the outer raceway. In addition, 0–3
horsepower motor loads were included within the
experimental data. Accelerometers were attached via
magnets to the housing on the 12 o’clock location.

For the purposes of this article four classes were
used: baseline, inner raceway, outer raceway, and roll-
ing element (ball). In total, the images generated for
each class was 3304, IR 2814, OR 2819, BF 2816,
respectively. These classes were assembled by combin-
ing the fault sizes, motor speed, and motor load. The
training set size again was set to 50% of the 11,753 total
images. To ensure the images were a computationally
efficient size, bilinear interpolation30 was used to scale
the images down to a manageable size for the training.
For the CWR dataset, any analysis incorporating the
rolling element (ball fault) data requires more sophisti-
cated algorithms than envelope analysis.31 Visually, one

can see from Figures 13 to 16 that this would hold true.
The ball fault signal (Figure 16) appears to mimic parts
of both baseline and outer race fault signals.

From the raw signals, the following scalograms were
generated based on the procedure presented in section
‘‘Background on adversarial training.’’ Bilinear interpo-
lation was used to scale the image down to a usable size
(96 3 96 and 32 3 32 pixels) for training the GAN.
Samples of these images are shown in Table 4. One can
see the ball fault images may mimic the higher fre-
quency outputs of the outer race faults, and the lower
frequency response of the baseline signals. Also note
that, overall, the noise in this dataset appears to be less
than that of the MFPT dataset.

After training both proposed architectures for
DCGAN and InfoGAN, the output images on this
dataset, as shown in Figures 17 and 18, appear to show
that the generator performed well in converging to the
distribution of the data.

The PCA of the first two components of the LA vec-
tor (DCGAN) and LA + vector (DCGAN and

Table 4. 96 3 96 pixel CWR scalogram images of the faults.

Baseline Inner race Outer race Ball fault

CWR: Case Western Reserve.

Figure 17. Output images of DCGAN generator training model. Figure 18. Output images of InfoGAN generator training model.
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InfoGAN) representations are compared. The pre-
dicted and real labels are shown in the Supplemental
Appendix B for all the models based on the best per-
forming clustering method. For the CWR dataset, this
is k-means+ + with the DCGAN LA vector on
96 3 96 generator images as shown in Figure 19.
However, one can observe that PCA operating on the
DCGAN and InfoGAN training had difficulties with
the baseline data separation. It appears that the ball
fault data results in two sets of clusters in the PCA,
which is difficult for the clustering methods that do not
employ a higher dimensional space to separate.

The ARI, purity, and NMI metrics are again used to
validate the proposed methodology on this dataset. The
complete set of results can be found in Supplemental
Appendix C, Tables C.1 to C.4. For the CWR dataset,
it is the 96 3 96 generator output on the DCGAN uti-
lizing k-means+ + clustering that delivers the best
results with ARI, purity, and NMI scores equal to 0.69,
0.82, and 0.78, respectively, and is shown in Table 5.
Note that these are much lower than the unsupervised
results of the MFPT dataset.

The unsupervised results for the CWR dataset are
low and appear as though they could benefit from the
addition of labeled data to the training. Based on these
results, the next section explores increasing the percent-
age of labeled images within the GANs training. Semi-
supervised learning of the fault detection should be

explored given the lower results of the unsupervised
learning.

Again, once the first model is trained, the dataset is
incrementally labeled. NMI, purity, and ARI were
again used to evaluate the model since the labels are
known. As in the previous section, we restrict our dis-
cussion to the DCGAN architecture as it achieved the
best fault diagnosis results in the fully unsupervised
stage. Thus, the results are reported in Table 6 from the
96 3 96 generator output, using the DCGAN architec-
ture and k-means+ + clustering to separate the system
health states.

The first evaluation of the results also indicates the
same pattern the MFPT results had. The metric perfor-
mance decreased as labels were added in smaller quan-
tities. The point with which the semi-supervised results
outperformed the unsupervised results for this dataset
is between 8% and 10%. The CWR dataset benefited
greatly from the addition of the labels.

K-means+ + operating on the representation from
the DCGAN for this dataset had better system state
separation with labeling a portion of this dataset. The
purity is much improved with the top model achieving
0.98 purity with 20% labeled data, whereas the unsu-
pervised case was only 0.82. The CWR dataset is an
easily separable dataset using the baseline data, inner
race, and outer race faults. With the addition of the
ball fault data, however, one must use more

Figure 19. K-means + + PCA, DCGAN LA output image 96 3 96 pixels. (a) Real. (b) Predicted.

Table 5. CWR 96 3 96 generator output, DCGAN k-means + + clustering.

Labeled data (%) ARI Purity NMI

0 0.69 0.82 0.78

CWR: Case Western Reserve; DCGAN: deep convolutional generative adversarial networks; ARI: adjusted rand index; NMI: normalized mutual

information.
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sophisticated methods to perform fault diagnosis. The
CWR dataset, in general, has less noise throughout the
scalograms than the MFPT dataset. Even without the
information from the latent space of the InfoGAN, the
DCGAN architecture provided a better representation
for these data, which benefited greatly from the addi-
tion of labeled data.

In sum, the CWR predictions performed worse than
the MFPT dataset predictions as found in the
Supplemental Appendix C for unsupervised training.
K-means+ + outperformed spectral clustering but not
always. A 32 3 32 generator output versus a 96 3 96
generator output was less clear. For the DCGAN and
k-means+ + , the 96 3 96 output performed better.
However, for spectral clustering, both output sizes per-
formed poorly. K-means+ + with a DCGAN architec-
ture and a 96 3 96 pixel generator output had the
highest purity measure.

Comparison with AE and VAE

To evaluate the proposed methodology, a baseline
against AE and VAE was completed on the same set of
scalogram images. The same external clustering evalua-
tion metrics are used to assess the methodology. The
features are extracted from the encoder output for the
autoencoder architecture and from the z-mean output
in the VAE case.

For the AE two architectures are considered: one
based on FC layers (multilayer perceptron (MLP)-AE)
and another with convolutional layers (Conv-AE). At
least two layers are used for the encoder/decoder (thus
using at least four layers given symmetric encoder–
decoder) to allow the AE to generate complex enough
features. Given this base architecture, layers or hidden
units are added until the following qualitative criteria is
met: after 10,000 iterations we reconstruct 10 images
and decide based on image quality if the decoder gener-
ated is a good reconstruction. The loss function is the
mean square error between reconstruction and input
image.

Based on the procedure established by the proposed
methodology, Figures 20 to 22 show the PCA visualiza-
tions based on the results obtained from the MLP-AE,
Conv-AE, and Conv-VAE architectures, respectively.
Note that all PCAs have an explained variance near
90% so the visualizations are a good approximation of
the general structure of the data.

In the MLP-AE results, the structure of the features
is not so clear given the overlap and the spread of the
data structure. An explanation for this behavior is the
nature of MLP when they are used on images: the spa-
tial information is hard to encode, so more complex
transformations are required. This hypothesis is sup-
ported comparing this with the structure found by the
Conv-AE where a half-moon structure is found. From
the results reported in Tables 7 (MFPT) and 8 (CWR),

Table 6. CWR 96 3 96 generator output, DCGAN k-means + + clustering.

Labeled data (%) Amount of labeled data ARI Purity NMI

0 0 0.69 0.82 0.78
1 117 0.40 0.62 0.42
2 235 0.47 0.71 0.59
4 470 0.51 0.69 0.61
8 940 0.51 0.70 0.55
10 1175 0.88 0.95 0.88
20 2350 0.95 0.98 0.94

CWR: Case Western Reserve; DCGAN: deep convolutional generative adversarial networks; ARI: adjusted rand index; NMI: normalized mutual

information.

Table 7. MFPTunsupervised AE and VAE results.

Model ARI Purity NMI

MLP AE k-means + + 0.44 0.76 0.49
MLP AE spectral 0.61 0.82 0.73
Conv-AE k-means + + 0.38 0.73 0.49
Conv-AE spectral 0.50 0.81 0.53
Conv-VAE k-means + + 0.51 0.81 0.67
Conv-VAE spectral 0.54 0.81 0.69

MFPT: machinery failure prevention technology; AE: autoencoder; VAE: variational autoencoder.
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we get consistently high results in most of the metrics
for Conv-VAE. If we consider only purity, the Conv-
VAE is marginally outperformed by MLP-AE for both
the MFPT, Figure 24, and CWR, Figure 23, datasets
but, in terms of representation, the Conv-VAE is pre-
ferable as shown in Figures 22 (MFPT) and 25 (CWR).
The Conv-VAE architecture has the best baseline signal
separation among the three models. Despite these
results for the MLP and VAE-based approaches, the
proposed GAN-based methodology outperforms all
models, as it can be substantiated by comparing the
results in Tables 7 (MFPT) and 8 (CWR) with Tables 2
(MFPT) and 5 (CWR).

These results indicate a limitation of the proposed
methodology where the available clustering evaluation
metrics only measure the clustering of a representation,
not the representation itself. However, the representa-
tions do exhibit a consistent intrinsic structure between
them. The convolutional VAE and AE together with
the GAN representation result in similar structures.
The main difference seems to be the ease of the cluster-
ing algorithm to separate this structure. The results
indicate that complex models tend to ease this process

with higher ARI, NMI, and purity scores. For example,
in the case of the MFPT dataset, if we compare these
results with the top GAN results, the best non-GAN
model ranks fifth best (see Table 2 and Supplemental
Appendix B). This indicates that a lower computational
cost methodology can achieve reasonable results; how-
ever, to increase ARI, NMI, and purity scores a consid-
erably more complex model is required.

Concluding remarks

Unsupervised fault diagnostics is a critical area of
research with applications in many industries. The abil-
ity to detect faults when there is almost zero ground
truth, with little to no labeled data, and from big multi-
dimensional machinery data has vast economic bene-
fits. In this article, a novel deep generative adversarial
multistage methodology is proposed for fault diagnos-
tics. This methodology achieved superior unsupervised
prediction results over both AEs and VAEs. These
results are then further improved with the addition of a
subset of labeled data.

Figure 20. MFPT AE MLP architecture.
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To achieve the results presented in this article, the
outputs of the activation layers in both DCGANs and
InfoGANs were examined within two traditional clus-
tering algorithms:(1) k-means+ + and (2) spectral.
These two clustering algorithms were chosen to prove
the robustness and flexibility of the GAN-based metho-
dology to simple clustering techniques. The InfoGAN
encoder vector was tested as an additional feature for
clustering; however, the addition of the encoder infor-
mation had mixed results. It appears the InfoGAN
architecture outperforms the DCGAN on noisier data
like the MFPT set. Both architectures’ performance
benefited from labeling even a small portion of the
data.

While these initial results showed promise, there are
limitations and research is in process to address them.
The MFPT dataset is simple enough for envelope anal-
ysis classification if the signals are known; however, the
CWR dataset cannot be diagnosed with envelope anal-
ysis alone. The MFPT dataset did include varied loads
and multiple sampling frequencies which were not
explored in this work. The amount of data within each
of those datasets was insufficient for the methodology

and resulted in overfitting. Varied rotational speeds
were also not explored as the datasets did not contain
them. It is widely known that training a GAN architec-
ture can be challenging. To complete the work in this
study, the training was done multiple times to ensure
the GAN converged toward the Nash equilibrium with-
out mode collapse and vanishing gradients occurring.

Generative adversarial fault diagnostics paired with
the automatic feature learning inherent with deep learn-
ing has great potential benefits for many industries as
more adopt a predictive maintenance program. GANs
as a research topic is still, relatively speaking, in its
infancy. It has been accelerating and proliferating
through other research communities at a fast pace since
2014. This is the first article to incorporate it into fault
diagnostics. The proposed methodology proves that it
is flexible enough to incorporate engineering expertise
as that expertise grows. In fact, the proposed metho-
dology demonstrates that fault diagnostics are strength-
ened by the meaning engineering expertise can give to
the learned GAN feature representations. DCGANs
prove their ability to diagnose faults with zero informa-
tion on the real classes within the dataset. Moreover,

Figure 21. MFPT AE convolutional architecture.
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Figure 22. MFPT VAE convolutional architecture.

Figure 23. CWR AE MLP architecture.
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Figure 24. CWR AE convolutional architecture.

Figure 25. CWR VAE convolutional architecture.

Verstraete et al. 409



InfoGANs show that, with slight knowledge of how
many potential driving failure modes the rolling ele-
ments may have, the diagnostics results may be
improved with little economic investment. With inte-
grated unsupervised and semi-supervised fault diagnos-
tics, industries such as aerospace, wind power, oil and
gas, and automotive are poised to unlock new poten-
tials for diagnostic and structural health management
systems.
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2. Wang L, Zhao X, Pei J, et al. Transformer fault diagnosis

using continuous sparse autoencoder. Springerplus 2016;

5(1): 448.
3. Langone R, Reynders E, Mehrkanoon S, et al. Automated

structural health monitoring based on adaptive kernel spec-

tral clustering.Mech Syst Signal Pr 2017; 90: 64–78.

4. Lei Y, Jia F, Lin J, et al. An intelligent fault diagnosis

method using unsupervised feature learning towards

mechanical big data. IEEE T Ind Electron 2016; 63(5):

3137–3147.
5. Li X, Ding Q and Sun JQ. Remaining useful life estima-

tion in prognostics using deep convolution neural net-

works. Reliab Eng Syst Safe 2018; 172: 1–11.
6. Lee S, Ha J, Zokhirova M, et al. Background information

of deep learning for structural engineering. Arch Comput

Meth Eng 2018; 25: 121–129.
7. Jiang P, Hu Z, Liu J, et al. Fault diagnosis based on

chemical sensor data with an active deep neural network.

Sensors 2016; 16(10): 1695.
8. Sun W, Shao S, Zhao R, et al. A sparse auto-encoder-

based deep neural network approach for induction motor

faults classification. Measurement 2016; 89: 171–178.
9. Liao L, Jin W and Pavel R. Enhanced restricted Boltz-

mann machine with prognosability regularization for

prognostics and health assessment. IEEE T Ind Electron

2016; 63(11): 7076–7083.
10. Wang J and Zhang C. Software reliability prediction

using a deep learning model based on the RNN encoder–

decoder. Reliab Eng Syst Safe 2018; 170: 73–82.
11. Goodfellow I, Pouget-Abadie J, Mirza M, et al. Genera-

tive adversarial nets. Adv Neur Inform Process Syst 2014;

27: 2672–2680.
12. Kingma DP and Welling M. Auto-encoding variational

bayes, 2013, arXiv:1312.6114
13. Bechhoefer E. A quick introduction to bearing envelope

analysis, 2016, https://www.scribd.com/document/110769

949/A-Quick-Introduction-to-Bearing-Envelope-Analysis
14. Loparo KA. Bearing Data Center, Case Western Reserve

University, 2013, http://csegroups.case.edu/bearingdata-

center/pages/welcome-case-western-reserve-university-

bearing-data-center-website
15. Manning CD, Raghavan P and Schütze H. Introduction

to information retrieval. New York: Cambridge University

Press, 2008.
16. Kuncheva LI. Combining pattern classifiers: methods and

algorithms. Hoboken, NJ: John Wiley & Sons, 2004.
17. Hubert L and Arabie P. Comparing partitions. J Classif

1985; 2(1): 193–218.
18. Jebara T. Generative versus discriminative learning. In:

Jebara T (ed.) Machine learning (The international series

in engineering and computer science), vol. 755. Boston,

MA: Springer, 2004.

Table 8 CWR unsupervised AE and VAE results.

Model ARI Purity NMI

MLP AE k-means + + 0.49 0.69 0.55
MLP AE spectral 0.35 0.60 0.59
Conv AE k-means + + 0.21 0.53 0.27
Conv AE spectral 0.38 0.66 0.57
Conv VAE k-means + + 0.50 0.68 0.61
Conv VAE spectral 0.19 0.55 0.34

CWR: Case Western Reserve; AE: VAE: variational autoencoder.

410 Structural Health Monitoring 19(2)

https://www.scribd.com/document/110769949/A-Quick-Introduction-to-Bearing-Envelope-Analysis


19. Arthur D and Vassilvitskii S. k-means++ : the advan-

tages of careful seeding. In: Proceedings of the eighteenth

annual ACM-SIAM symposium on discrete algorithms,

2007. Society for Industrial and Applied Mathematics,

http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf
20. Shi J and Malik J. Normalized cuts and image segmenta-

tion. Departmental Papers (CIS): 107, 2000, http://

www.cis.upenn.edu/~jshi/papers/pami_ncut.pdf
21. Verstraete D, Ferrada A, Droguett EL, et al. Deep learn-

ing enabled fault diagnosis using time-frequency image

analysis of rolling element bearings. Shock Vib 2017;

2017: 5067651.
22. Radford A, Metz L and Chintala S. Unsupervised repre-

sentation learning with deep convolutional generative

adversarial networks, 2016, arXiv:1511.06434
23. Feng Z, Liang M and Chu F. Recent advances in time–

frequency analysis methods for machinery fault diagno-

sis: a review with application examples. Mech Syst Signal

Pr 2013; 38(1): 165–205.

24. Lin J and Qu L. Feature extraction based on Morlet
wavelet and its application for mechanical fault diagno-
sis. J Sound Vib 2000; 234(1): 135–148.

25. Chen X, Duan Y, Houthooft R, et al. InfoGAN: inter-
pretable representation learning by information maximiz-
ing generative adversarial nets, 2016, arXiv:1606.03657

26. Metz L, Poole B, Pfau D, et al. Unrolled generative
adversarial networks, 2016, arXiv:1611.02163

27. Gulrajani I, Ahmad F, Arjovsky M, et al. Improved
training of Wasserstein GANs, 2017, arXiv:1704.00028

28. Salimans T, Goodfellow I, Zaremba W, et al. Improved
techniques for training GANs, 2016, arXiv:1606.03498

29. Odena A, Dumoulin V and Olah C. Deconvolution and
checkerboard artifacts. Distill 2016; 1(10): e3.

30. Raveendran H and Thomas D. Image fusion using LEP
filtering and bilinear interpolation. Int J Eng Trend Tech-

nol 2014; 12(9): 427–431.

31. Smith WA and Randall RB. Rolling element bearing diag-
nostics using the Case Western Reserve University data: a
benchmark study.Mech Syst Signal Pr 2015; 64: 100–131.

Verstraete et al. 411


