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a b s t r a c t 

In this study, an expert system is presented for analyzing the mental workload of interacting with a 

mobile phone while facing common daily tasks. Psychophysiological signals were collected from various 

devices, each characterized by a different cost and obtrusiveness. To deal with user-level signal data, 

a support vector machine-based feature selection approach is proposed. Given the limited person-level 

information available, our goal was to construct robust models by pooling population-level information 

across users (as a heterogeneity control). A single optimization problem that combines four objectives is 

proposed: model, margin maximization, feature selection, and heterogeneity control. The costs of using 

the devices were estimated, leading to a decision tool that allowed experiment designers to evaluate the 

marginal benefit of using a given device in terms of performance and its cost. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

People use electronic devices such as smartphones and tablets

hile performing daily routines, including talking, walking or lis-

ening to a lecture. Multitasking eventually leads to an increase

n the person’s productivity and quality of task performance,

ut currently, there is ample evidence that it might overwhelm

sers by increasing their mental workload ( Jiménez-Molina & Ko.,

015; Lee et al., 2014; Okoshi et al., 2015; Oulasvirta, Tamminen,

oto, & Kuorelahti, 2005; Samaha & Hawi, 2016; Smith & Du-

ay, 2014; Van Deursen, Bolle, Hegner, & Kommers, 2015; Wang,

ang, Gaskin, & Wang, 2015 ). The term “mental workload” refers

o the amount of perceived mental effort induced by a particular

ask ( Wickens, 2002 ). Therefore, having an intelligent system ca-

able of continually assessing the mental workload in such condi-

ions would permit, among other benefits, knowing the moments

n which an interaction is possible and convenient and will not sat-

rate the person’s cognitive capacity. 

Traditional approaches to assessing human mental work-

oad have focused almost exclusively on subjective methods

 Matthews, Reinerman-Jones, Barber, & Abich, 2015; Young,
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rookhuis, Wickens, & Hancock, 2015 ), such as surveys and autop-

rception scales ( Albers, 2011; Galy, Cariou, & Mélan, 2012 ). The

ost widespread example of this method is the NASA Task Load

ndex, which measures mental and physical performance as well as

he effort and frustration of the user ( Hart, 1988 ). These methods

re limited by a reporting bias because they are applied after the

erson was engaged in the task. Additionally, real-time assessment

f mental workload is not performed in these methods. Another

pproach to measuring mental workload consists of performance-

ased methods. Although the performance measures are objective

nd it is possible to measure them in real time, it has been shown

hat in certain cases they may not reflect the subtle changes in

ognitive load during execution of the task. This approach has been

ecommended for tasks that induce changes in performance that

re sufficient to be observed ( Chi & Lin, 1997; Galy et al., 2012;

aas & Van Merriënboer, 1993 ). 

Several expert systems have recently been proposed for assess-

ng cognitive human behavior by means of psychophysiological re-

ponses ( Bailey & Iqbal, 2008; Chen & Epps, 2013; Haapalainen,

im, Forlizzi, & Dey, 2010; Ikehara & Crosby, 2005; Jiménez-Molina,

etamal, & Lira, 2018; Yoshida, Ohwada, Mizoguchi, & Iwasaki,

014 ). For instance, peripheral psychophysiological signals captured

rom progressively smaller sensors, including an oximeter, elec-

roencephalogram, electrodermal activity meter, thermometer, and 

upillograph, among others, have been used to classify discrete
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levels of human mental workload in various settings ( Haapalainen

et al., 2010; Jiménez-Molina et al., 2018; Lo, Sehic, & Meijer,

2017 ). The obtained information consists of synchronous multi-

device datasets. Moreover, several signals can be gathered from

each device, and multiple features can be extracted from each

signal, while each device has its own cost and obtrusiveness for

the person. The advantage of using psychophysiological informa-

tion is that it allows measuring objective indicators of mental

workload because of the empirically demonstrated correlation be-

tween the reactions of the nervous system and psychological stim-

uli ( Cacioppo, Tassinary, & Berntson, 2007 ). 

Learning effective machine learning models to analyze these

multidevice datasets is challenging. In fact, multiple objectives

need to be integrated in the models. First, where possible, high-

cost devices have to be avoided. Second, it is undesirable to use

devices with high obtrusiveness for the person. Both would prob-

ably lead to losing features that could otherwise contribute to the

prediction. In addition, since these studies of human behavior have

a qualitative interest in the specific features that govern cognitive

phenomena, it is important that the models incorporate feature se-

lection during the classification task. All of these objectives must

be balanced in personalized models that achieve a reasonable level

of predictive performance. 

Learning effective machine learning models to analyze these

multidevice datasets is also challenging if multiple objectives are

pursued. In our case, we seek accurate models while avoiding de-

vices that are expensive and/or very obtrusive for the person. This

can be achieved by incorporating feature selection during the clas-

sification task. The advantage of selecting the relevant sources of

information is in fact twofold, since such studies of human behav-

ior have a qualitative interest in the specific features that govern

cognitive phenomena ( Jiménez-Molina et al., 2018; Lo et al., 2017 ).

Some of the above challenges can be effectively approached

using support vector machines (SVMs) ( Cortes & Vapnik, 1995 ),

which are well-known machine learning models with appealing

advantages, such as providing a single optimum obtained via con-

vex optimization, being flexible in allowing inclusion of additional

objectives ( Maldonado, Pérez, & Bravo, 2017 ), and offering a supe-

rior predictive performance ( Cortes & Vapnik, 1995 ). Nevertheless,

one issue that standard SVMs cannot handle is feature selection

( Bradley & Mangasarian, 1998 ). An adequate selection allows a bet-

ter interpretation of the process that generated the data, providing

insights into human cognitive behavior ( Guyon, Gunn, Nikravesh,

& Zadeh, 2006 ). Additionally, using less information leads to a re-

duction in data collection costs ( Guyon et al., 2006; Maldonado,

Pérez et al., 2017 ). This last advantage is very important in the case

study presented in this paper, since expensive devices, such as an

eye tracker, are used to gather psychophysiological signals from the

participants, and these are data used to determine if the task they

are performing induces a low or high mental workload. 

In this paper, a novel approach is proposed for simultane-

ous SVM classification and feature selection. Our contribution is

twofold. The first is methodological: we propose a novel SVM ap-

proach for binary classification in which data are collected at an

individual level, but not enough information is available for cali-

brating individual models properly. We propose a strategy in which

all individual classifiers are constructed simultaneously, and infor-

mation is pooled across individuals to improve predictive perfor-

mance. This problem is related to panel data, which consist of ob-

servations obtained over multiple time periods for the same indi-

viduals. This problem has often been analyzed using econometric

models, but few machine learning solutions have been proposed

in the literature. Furthermore, our proposal performs group-level

feature selection. Assuming that attributes stem from multiple de-

vices, each generating several signals, we penalize the use of fea-

tures at a group level using the infinity norm. If the model selects
ne attribute from a given group, additional attributes from the

ame source can be included at zero cost. 

The second contribution is applied: we apply our proposal to

 real-world problem of modeling mental workload based on psy-

hophysiological signals, developing an expert system for analyz-

ng mobile phone interactions and daily common tasks performed

imultaneously. We assumed that a mobile phone task would

e more demanding cognitively in the presence of interference,

uch as answering the experimenter’s questions verbally. The psy-

hophysiological signals were collected from four devices with dif-

erent costs: an ECG, an eye tracker, a thermometer, and a pulse

ximeter. In this study, we estimated the costs of using various de-

ices from two perspectives: (1) the monetary cost of the device,

nd (2) the obtrusiveness for the participant in the experiments.

hese costs were incorporated explicitly in the modeling process. 

The main goal of our expert system is to develop Pareto curves

or using different devices, showing their respective predictive per-

ormance in terms of AUC and signal collection costs. This is a very

seful tool for decision making, since it allows experiment design-

rs not only to estimate the expected performance of a multide-

ice experiment for mental workload assessment but also to un-

erstand the trade-off between the cost of using a given device

nd its marginal benefit in terms of performance. 

The remainder of this paper is structured as follows. In

ection 2 , background and previous studies of mental workload

ssessment are discussed, and developments in feature selection

nd SVM classification that are relevant to this study are pre-

ented. The proposed SVM approach is described in Section 3 . In

ection 4 , experimental results for the case study are given. Finally,

ection 5 provides the main conclusions of this study and discusses

pportunities for future work. 

. Background and literature review 

In this section, we first provide the theoretical basis and briefly

iscuss the background for the assessment of mental workload.

hen, related work on mental workload classification based on

sychophysiological signals is presented. Next, the classical SVM

ormulation for binary classification ( Cortes & Vapnik, 1995 ) is de-

cribed. Finally, related work on feature selection for SVM classifi-

ation is discussed. 

.1. Mental workload background 

Cognitive resources are assets used by humans to think, re-

ember, make decisions, solve problems and coordinate move-

ents ( Wickens, 2002 ). Examples of cognitive resources include

erception, attention, short- and long-term memory, and motor

ontrol, among others. According to Navon et al. ( Navon & Go-

her, 1979 ), there is a limited amount of these underlying re-

ources in the human learning and information processing system.

n addition, mental workload demands different amounts of these

esources depending on the tasks in which the person is involved

t the same time. 

Multiple theories of human mental workload have been devel-

ped. One of them was proposed by John Sweller in the educa-

ional domain and states that a high mental workload results in

dditional demand for cognitive resources, which in turn decreases

erformance and processing efficiency, making learning more diffi-

ult. This theory distinguishes three categories or types of mental

orkload to determine which type is unnecessary. One of them is

ntrinsic mental workload, related to the complexity of the task;

nother is extraneous mental workload, related to the situation or

ontext and to external factors such as time pressure and task or-

anization; finally, germane mental workload is related to learning
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nd the schematization of tasks, and is a desirable mental work-

oad needed to automate the performance of similar tasks ( Paas,

enkl, & Sweller, 2003; Sweller, 1988; 1994; Sweller, van Merrien-

oer, & Paas, 1998 ). 

In general, excessive demand for cognitive resources can lead

o distractions, increase errors, provoke stress and frustration, and

educe ability for mental planning, problem solving, and decision

aking. This can provoke a state of saturation, called cognitive re-

ource depletion ( Wickens, 2002 ). This overload implies that the

rain cannot easily process new information, resulting in process-

ng and execution errors. An example is the distraction caused by

he arrival of notifications to the smartphone while the person is

ngaged in a different task. In this case, the person needs to di-

ide his/her attention and expend a portion of his/her cognitive

esources on the new stimulus. 

A theory of human mental workload of special interest

or this paper is Wickens’s multiple resources model (MRM)

 Wickens, 2002 ), which presents a comprehensive and quantita-

ive method for the assessment of mental workload. This model

hows empirical evidence of three cognitive dimensions that, de-

ending on the type of tasks, may cause competition and interfer-

nce among cognitive resources if they are simultaneously used.

he first dimension is composed of three stages that are respon-

ible for processing task information, known as the perceptual,

entral processing and response stages. The second dimension is

omposed of the cognitive resources that are demanded for each

tage, including selective attention, perception, working memory

nd motor control. The third dimension contains the attributes that

haracterize cognitive resources and the way they are being used,

uch as input modality—visual, auditory or tactile—and processing

ode—spatial or verbal. The interference among attributes of simul-

aneously demanded resources increases the mental workload. 

Three types of interference have been described

 Wickens, 2002 ): by input modality, by processing stage and

y processing code. The first occurs when two or more tasks use

he same input modality. In this case, the interference is complete,

hich might cause serious errors in the execution of the task. The

econd type of interference occurs when two or more tasks use

esources from the same stage. It can be complete or partial. In

his case, it is possible to perform the tasks, but the performance

s likely to be worse than under normal conditions. Finally, the

hird type of interference occurs when there is a conflict in the

patial or verbal processing code. 

Oulasvirta et al. (2005) present evidence of competition due to

he use of the cognitive resource of attention in smartphone in-

eractions and daily tasks. The researchers propose a framework

ased on Wickens’s MRM to evaluate competition and interference

mong cognitive resources. We use this approach to tag the lev-

ls of mental workload of combinations of smartphone interactions

nd daily tasks performed by the person. 

.2. Assessment of mental workload using psychophysiological signals 

In recent years, several studies have addressed the assessment

f mental workload using peripheral psychophysiological signals

nder diverse experimental conditions in which tasks with diverse

evels of complexity had to be performed. 

Bailey and Iqbal (2008) study the effect of interruptions on the

erformance of a person on particular tasks. The researchers ob-

erve that interruptions impact performance, but this impact is

ower if the interruption occurs during a low mental workload pe-

iod. Additionally, they assess mental workload by performing an

xperiment with three tasks and using pupil size (PS) as a psy-

hophysiological measure. The study concludes that mental work-

oad varies during the execution of tasks and that this variation is

elated to the distinct level of difficulty of the task. 
Ikehara and Crosby (2005) use an eye tracker, a pressure sensor

or the mouse, an electrodermal activity (EDA) sensor and a pulse

ximeter. Several mathematical fractions are shown on a computer

creen to the participants in the experiment, who have to select

ractions that are less than 1/3. Experimenting with two levels of

ifficulty, the authors determine that the EDA signal and PS have

he greatest statistical significance for assessing mental workload. 

Shi, Ruiz, Taib, Choi, and Chen (2007) assess stress and arousal

evels using an EDA signal. In the experiment, the subjects have

o answer questions in three ways: using gestures and speaking,

nly speaking and only using gestures. The researchers show that

he EDA signal significantly increases if the task is more complex.

imilarly, Nourbakhsh, Wang, and Chen (2013) use an EDA signal to

iscriminate between the difficulty of eight arithmetic tasks with

our levels of complexity. 

Ryu and Myung (2005) evaluate the mental workload of arith-

etic tasks with various levels of difficulty. The devices used are

n electroencephalogram (EEG), an electrooculogram (EOG) and

n electrocardiogram (ECG). The results indicate that the mental

orkload of an arithmetic task is accurately inferred using the sup-

ression of the alpha rhythm—extracted from the EEG—and that of

 tracking task is effectively measured using the number of eye

links—extracted from the EOG—and heart rate variability (HRV)—

xtracted from the ECG. 

Most recent studies focus on training classifiers with processed

sychophysiological signal data to predict whether the mental

orkload on a specific task is high or low ( Yoshida et al., 2014 ).

or instance, Haapalainen et al. (2010) assess the mental workload

f tasks such as solving problems related to visual perception and

ognitive speed. By using an eye tracker, an EEG, an ECG, heat flow

nd heart rate (HR), the authors obtain 81.1% average accuracy in

lassifying the mental workload. Fritz, Begel, Müller, Yigit-Elliott,

nd Züger (2014) assess a computer code comprehension task. Ob-

aining data through an eye tracker, an EEG and an EDA device,

hey achieve an accuracy of 85% in classifying two levels of mental

orkload using an SVM model. 

Chen and Epps (2013) propose an eye-based mental workload

easurement system that analyzes three types of eye activity:

upillary response, blinks and eye movement (fixation and sac-

ade). The experiment consists of solving arithmetic tasks while

arious images from the International Affective Picture System

IAPS) are shown. By training a Gaussian mixture model classifier,

he authors obtain an average accuracy of 79% in classifying two

evels of mental workload. 

.3. SVM background 

Given a set of instances, each with a binary label, denoted by

 x i , y i ), where x i ∈ � 

n and y i ∈ { −1 , +1 } for i = 1 , . . . , m, the soft-

argin SVM classifier ( Cortes & Vapnik, 1995 ) finds a hyperplane

f the form w 

� x + b = 0 by solving the following quadratic pro-

ramming problem (QPP): 

in w ,b, ξ
1 
2 ‖ 

w ‖ 

2 + C 
m ∑ 

i =1 

ξi 

.t. y i (w 

� x i + b) ≥ 1 − ξi , ξi ≥ 0 , i = 1 , . . . , m, 

(1) 

here ξ i is the soft-margin slack of the i th training point, and

 > 0 is a regularization parameter. 

The SVM approach has been extended to elicit consumer pref-

rences by constructing individual utility functions in the context

f choice-based conjoint analysis ( Evgeniou, Boussios, & Zacharia,

005; Evgeniou, Pontil, & Toubia, 2007; López, Maldonado, & Mon-

oya, 2017 ). In choice-based conjoint studies, consumers choose

etween various fictitious product profiles in a questionnaire,

enerating (limited) information that is used to estimate utility

unctions ( Evgeniou et al., 2005; Green & Rao, 1971 ). Conjoint
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analysis has important similarities with our case study, since the

latter involves persons engaged in combinations of smartphone in-

teractions and daily tasks, who therefore are generating individual

data that can be used for modeling how their mental workload re-

lates with the complexity of the combination. 

Heterogeneity control for SVMs was first proposed by

Evgeniou et al. (2005) . The idea was to estimate all individual func-

tions independently and to subsequently compute a population

function as the average of all individual estimates. The final indi-

vidual functions are a linear combination of the original functions

and the population function. Later, Evgeniou et al. (2007) proposed

LOG-Het, a single optimization problem that aimed at finding

individual utility functions while penalizing their deviations from

the population mean. LOG-HET used a logistic error function, and

therefore, it could not be directly linked to an SVM. LOG-HET was

adapted to an SVM approach by López et al. (2017) by replacing

the logistic error function with the hinge loss. Finally, the idea of

performing feature selection together with heterogeneity control

was developed by Maldonado, Montoya, and López (2017) , in

which the � 2 regularization was replaced by the � 1 -norm, and a

backward elimination process was implemented. 

2.4. Feature selection for SVMs 

Feature selection is an important topic in artificial intelligence

literature, since the research areas and application domains are

vast, including business analytics ( Seret, Maldonado, & Baesens,

2015 ), medical diagnosis ( Shilaskar & Ghatol, 2013 ), and demand

forecasting ( Jiang, Chin, Wang, Qu, & Tsui, 2017 ). Although SVMs

have important advantages in terms of predictive performance and

computational efficiency, they cannot derive the importance of the

variables automatically. Therefore, several extensions have been

proposed in the literature, by either modifying the original SVM

formulation presented in Eq. (1) or altering the structure of the

method to assess feature relevance. 

A well-known strategy for SVM classification is to penalize the

use of features by replacing the Euclidean norm in Formulation

(1) with a regularizer that encourages sparsity. The most common

approach is the use of the LASSO penalty, or the � 1 -norm ( Bradley

& Mangasarian, 1998 ), which leads to the following formulation: 

min w ,b, ξ ‖ 

w ‖ 1 + C 
m ∑ 

i =1 

ξi 

s.t. y i (w 

� x i + b) ≥ 1 − ξi , ξi ≥ 0 , i = 1 , . . . , m, 

(2)

where ‖ w ‖ 1 = 

∑ n 
i =1 | w i | denotes the � 1 -norm of vector w ∈ � 

n . 

Similarly, a group penalty function can be used as a regulariza-

tion strategy. The idea is to penalize the use of a group of re-

lated variables together in such a way that sparsity is encouraged

at a group level rather than by removing weights independently

( Yuan & Lin, 2006 ). This strategy was originally developed for bi-

nary classification with categorical attributes with multiple levels,

which are usually transformed into sets of dummy variables ( Yuan

& Lin, 2006 ). In such cases, it may be desirable to remove the full

set of dummy variables ( Yuan & Lin, 2006 ) rather than the levels

individually. Feature selection can then be performed simultane-

ously at the variable level, jointly penalizing all the weights re-

lated to one attribute ( Chapelle & Keerthi, 2008 ). This idea was ex-

tended to multiclass classification ( Chapelle & Keerthi, 2008 ) and

twin SVM classification ( López & Maldonado, 2017 ). 

The best-known group penalty is called group-LASSO ( Yuan &

Lin, 2006 ), which extends the idea of the LASSO penalty by penal-

izing the Euclidean norm of the weights related to a given group.

Formally, suppose that each of n available attributes is assigned

to one of J disjoint groups of size n j , that is, { 1 , . . . , n } = 

⋃ J 
j=1 

I j ,
|I j | = n j , and 

∑ J 
j=1 

n j = n . A group structure for the weight vec-
or can be defined as w = [ w 

(1) � , . . . , w 

(J) � ] � ∈ � 

n , with w 

( j) ∈ � 

n j 

or j = 1 , . . . , J. A generalized regularization term of the � p,q -norm

an then be formalized based on this group structure as follows

 Maldonado, Bravo, López, & Pérez, 2017 ): 

 w ‖ p,q := 

( 

J ∑ 

j=1 

‖ w 

( j) ‖ 

q 
p 

) 1 /q 

, p, q > 0 , (3)

here the � p -norm is applied for each group, and the � q -norm is

ubsequently applied for the resulting vector. Note that if p = q,

he � p,q -norm coincides with the � p -norm, that is, ‖ w ‖ p,p = ‖ w ‖ p .
aking into account the above norm, Yuan and Lin (2006) proposed

he group-LASSO function as follows: 

(w ) = 

J ∑ 

j=1 

√ 

n j || w 

( j) || 2 . (4)

Another penalty function is the � ∞ ,1 -norm, which has the fol-

owing form: 

(w ) = ‖ w ‖ ∞ , 1 := 

J ∑ 

j=1 

|| w 

( j) || ∞ 

, (5)

here || w 

( j) || ∞ 

= max l∈I j {| w l |} . The � ∞ ,1 -norm penalty was

riginally developed, under the name F ∞ 

-norm SVM ( Zou &

uan, 2008 ), for dealing with categorical variables in binary SVM

lassification. The advantage of the � ∞ ,1 -norm over the group

ASSO function is that the resulting SVM formulation can be effi-

iently solved, since it can be cast into a linear programming prob-

em. A set of slack variables t j = || w 

( j) || ∞ 

can be introduced, and

he problem then entails the minimization of these variables with

he inclusion of constraints of the form | w l | ≤ t j for each l ∈ I j and

j = 1 , . . . , J. For simplicity, we refer to the � ∞ ,1 -norm penalty as the

 ∞ 

-norm in the remainder of this paper. 

. Proposed SVM approach for simultaneous feature selection 

nd heterogeneity control 

In this section, two novel SVM formulations are proposed. As-

uming that several data points are generated by persons, the main

dea is to construct linear SVM classifiers, one per person, based on

our objectives: 

• Generalization and complexity reduction: Following the reason-

ing behind SVM, we encourage complexity reduction by includ-

ing a regularizer based on either the � 2 or the � 1 -norm. The

motivation behind this idea is to maximize the separation mar-

gin between the two classes, improving the model’s generaliza-

tion capabilities. 
• Model fit: All artificial intelligence models need to be accu-

rate. To guarantee an adequate classification performance, the

model fit is maximized by including slack variables ξ. The sum

of these variables is minimized in a similar way to an SVM (us-

ing the hinge loss function). 
• Cost-based feature selection: We include group penalty func-

tions to encourage the use of few groups of related features.

We assume that for each person, various devices are used to

gather information, and several features can be collected from

each device. Under this scheme, it is desirable to use as few

devices as possible, taking into account that some devices are

more expensive than others and that some tests can be more

obtrusive than others. We suggest using the � ∞ ,1 -norm as the

group penalty function. 
• Heterogeneity control: Assuming that little per-person infor-

mation is available, it is desirable to pool information across

participants to improve generalization and reduce the risk of
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f  
overfitting that arises from the estimation of models with few

samples. To this end, we minimize the differences between per-

person weights and a population w 0 estimated from the data of

all persons. 

This strategy avoids high deviations among persons, shrinking

the weights to a population mean. 

The combination of the last two objectives is the main method-

logical contribution of this paper. Note that these two objectives

re related to the main goal of machine learning, i.e., to general-

ze new objects well. On the one hand, feature selection is impor-

ant when few samples are available due to the curse of the dimen-

ionality . Informally, the volume of the space increases so fast with

imensionality that the data points become sparse. Overfitting is

 direct consequence of the curse of dimensionality, since using

oo many attributes leads to better in-sample classification, al-

hough it may not generalize well when new data are encountered

 Guyon et al., 2006 ). On the other hand, heterogeneity control al-

ows better generalization by forcing the parameters of the model

o be less sensitive to the noise caused by small samples, aiming

t balancing individual and general patterns. Although these two

bjectives pursue the same goal to some extent, they act in dif-

erent directions; while feature selection shrinks the weights to-

ards zero, heterogeneity control pulls them towards the popula-

ion mean w 0 . In this context, the proposed formulations encour-

ge the removal of a particular source of information in all the hy-

erplanes that are constructed when many components of w 0 are

lose to zero. Nevertheless, it is important to set the trade-off pa-

ameters carefully. 

First, we propose � 2 − � ∞ 

-SVM-HET, which uses the Euclidean

orm for the first and the fourth objectives (margin maximization

nd heterogeneity control). Next, � 1 − � ∞ 

-SVM-HET is presented,

hich uses the � 1 -norm instead. 

.1. � 2 − � ∞ 

-SVM-HET 

Let us denote by w k ∈ � 

n the individual weight vectors for each

erson k = 1 , . . . , K. Given tuples of the form 

(
x ik , y 

k 
i 

)
, where x ik ∈

 

n and y k 
i 

∈ { +1 , −1 } for i = 1 , . . . , I k , the following formulation is

roposed: 

in w k , w 0 , 

b k ,ξ
k 
i 

∑ K 
k =1 

(
1 
2 
(‖ w k ‖ 

2 + θ‖ w k − w 0 ‖ 

2 ) 

+ λ
J ∑ 

j=1 

c j || w 

( j) 
k 

|| ∞ 

+ γ
∑ I k 

i =1 
ξ k 

i 

)
.t. y k 

i 
(w 

� 
k 

x ik + b k ) ≥ 1 − ξ k 
i 
, ξ k 

i 
≥ 0 , 

i = 1 , . . . , I k , k = 1 , . . . , K, 

(6) 

here θ , λ, and γ are positive trade-off parameters that can be set

sing cross-validation, and 

∑ K 
k =1 I k = m is the total number of sam-

les. Parameter c = (c 1 , . . . , c J ) represents the relative cost for each

ata source and can be regarded as an incentive for the penalty

unction to prioritize the removal of expensive data sources. We

ecommend setting this parameter by estimating the cost of us-

ng a given group of variables relative to that of the others (see

ection 4.7 for the derivation of c in our case study). The objec-

ive function in Formulation (6) represents the four objectives dis-

ussed previously. First, the Euclidean norm of weights w k related

o the individual classifiers is minimized (complexity reduction).

he second term represents the squared differences between each

ndividual function and the population vector w 0 , aiming at con-

rolling heterogeneity. The third term represents the � ∞ 

-norm, as

escribed in Eq. (5) . The feature penalization is controlled by pa-

ameter λ. Finally, the last term in the objective function guaran-

ees an adequate model fit by penalizing misclassified elements

using the hinge loss function). 
To avoid using a nonsmooth function in Formulation (6) , a set

f auxiliary variables z kj is introduced for each k = 1 , . . . , K, includ-

ng the new constraints | w kl | ≤ z kj for each l ∈ I j and j = 1 , . . . , J.

hese modifications lead to the following QPP: 

in w k , w 0 ,b k , 

ξ k 
i 
, z k 

∑ K 
k =1 

(
1 
2 
(‖ w k ‖ 

2 + θ‖ w k − w 0 ‖ 

2 ) 

+ λ(c ∗ z k ) 
� e + γ

∑ I k 
i =1 

ξ k 
i 

)
.t. y k 

i 
(w 

� 
k 

x ik + b k ) ≥ 1 − ξ k 
i 
, ξ k 

i 
≥ 0 , 

i = 1 , . . . , I k , k = 1 , . . . , K, 

−z k j e ≤ w 

( j) 
k 

≤ z k j e , j = 1 , . . . , J, k = 1 , . . . , K, 

(7) 

here z k = (z k 1 , . . . , z kJ ) ∈ � 

J , the asterisk ( ∗) denotes the compo-

entwise vector product operator, and e is a vector of ones of the

ppropriate dimension. The following remarks are important for an

fficient implementation of our approach. The proofs for these re-

arks are presented as supplementary material. 

emark 3.1. 

(a) Proposition 1 (see Appendix A in the online supplementary

material) shows that the quadratic problem (7) is strictly

convex. This result is key to our modeling approach, since it

implies that our model guarantees a single optimal solution.

(b) Additionally, in Appendix A, it is shown that the following

relation holds (see Eq. (A.15)): 

w 0 = 

1 

K 

K ∑ 

k =1 

w k . (8) 

Hence, we can first compute the person-level weights w k 

and subsequently obtain vector w 0 by using Eq. (8) . 

(c) Note that if vector w 0 is known a priori, Formulation (7) is

separable, and we can solve the following problem: 

min w k ,b k ,ξ
k 
i 
, z k 

1 
2 
(‖ w k ‖ 

2 + θ‖ w k − w 0 ‖ 

2 ) + λ(c ∗ z k ) 
� e 

+ γ
∑ I k 

i =1 
ξ k 

i 

s.t. y k 
i 
(w 

� 
k 

x ik + b k ) ≥ 1 − ξ k 
i 
, ξ k 

i 
≥ 0 , i = 1 , . . . , I k ,

−z k j e ≤ w 

( j) 
k 

≤ z k j e , j = 1 , . . . , J, 

(9) 

for each k = 1 , . . . , K. 

Taking into account Remark 3.1 (b) and (c), we propose a “divide

nd conquer” approach for Formulation (7) to compute the person-

evel weights w k . This approach is shown in Algorithm 1 . 

lgorithm 1 � 2 − � ∞ 

-SVM-HET Algorithm. 

1. For each k = 1 , . . . , K, w k is obtained by solving 

min 

w k ,b k ,ξ
k 
i 
, z k 

1 
2 
‖ w k ‖ 

2 + λ(c ∗ z k ) 
� e + γ

∑ I k 
i =1 

ξ k 
i 

s.t. y k 
i 
(w 

� 
k 

x ik + b k ) ≥ 1 − ξ k 
i 
, ξ k 

i 
≥ 0 , i = 1 , . . . , I k , 

−z k j e ≤ w 

( j) 
k 

≤ z k j e , j = 1 , . . . , J. 

(10) 

2. Compute w 0 via Eq. (8). 

3. For each k = 1 , . . . , K, w k is obtained by solving formulation

(9). 

Finally, the decision function for a new sample x is given by

f k (x ) = w 

� 
k 

x + b k , for k = 1 , . . . , K. 

.2. � 1 − � ∞ 

-SVM-HET 

This approach is similar to � 2 − � ∞ 

-SVM-HET, with the only dif-

erence being that the first two terms of the objective function in
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Formulation (7) use the � 1 -norm instead of the � 2 -norm for com-

plexity and heterogeneity reduction. Let us consider the following

problem: 

min w k , w 0 , 

b k ,ξ
k 
i 

∑ K 
k =1 

(
‖ w k ‖ 1 + θ‖ w k − w 0 ‖ 1 

+ λ
J ∑ 

j=1 

c j || w 

( j) 
k 

|| ∞ 

+ γ
∑ I k 

i =1 
ξ k 

i 

)
s.t. y k 

i 
(w 

� 
k 

x ik + b k ) ≥ 1 − ξ k 
i 
, ξ k 

i 
≥ 0 , 

i = 1 , . . . , I k , k = 1 , . . . , K. 

(11)

To avoid using nonsmooth functions in Formulation (11) , aux-

iliary vectors of nonnegative variables u k , v k ∈ � 

n , z k ∈ � 

J are in-

cluded for each k = 1 , . . . , K, leading to the following linear pro-

gramming problem: 

min w k , w 0 , 
u k , v k , z k , 

b k , ξ
k 

∑ K 
k =1 

(
u 

� 
k 

e + θv � 
k 

e + λ(c ∗ z k ) 
� e + γ ξk � e 

)
s.t. y k 

i 
(w 

� 
k 

x ik + b k ) ≥ 1 − ξ k 
i 
, ξ k 

i 
≥ 0 , 

i = 1 , . . . , I k , k = 1 , . . . , K, 

−u k ≤ w k ≤ u k , k = 1 , . . . , K, 

−v k ≤ w k − w 0 ≤ v k , k = 1 , . . . , K, 

−z k j e ≤ w 

( j) 
k 

≤ z k j e , j = 1 , . . . , J, k = 1 , . . . , K. 

(12)

Note that the decision rule for � 1 − � ∞ 

-SVM-HET is similar to

that for � 2 − � ∞ 

-SVM-HET. Additionally, note that the proposed

approach does not require a backward elimination step or any

other pruning strategy for performing feature selection. 

Analogously to � 2 − � ∞ 

-SVM-HET, we propose solving Formula-

tion (12) in three steps, as shown in Algorithm 2 . 

Algorithm 2 � 1 − � ∞ 

-SVM-HET Algorithm. 

1. For each k = 1 , . . . , K, w k is obtained by solving 

min 

w k ,b k ,ξ
k 
i 
, z k 

‖ w k ‖ 1 + λ(c ∗ z k ) 
� e + γ

∑ I k 
i =1 

ξ k 
i 

s.t. y k 
i 
(w 

� 
k 

x ik + b k ) ≥ 1 − ξ k 
i 
, ξ k 

i 
≥ 0 , i = 1 , . . . , I k , 

−z k j e ≤ w 

( j) 
k 

≤ z k j e , j = 1 , . . . , J. 

(13)

2. Compute w 0 via Eq. (8). 

3. For each k = 1 , . . . , K, w k is obtained by solving 

min 

w k , u k , 

v k , z k ,b k , ξ
k 

u 

� 
k 

e + θv � 
k 

e + λ(c ∗ z k ) 
� e + γ ξk � e 

s.t. y k 
i 
(w 

� 
k 

x ik + b k ) ≥ 1 − ξ k 
i 
, ξ k 

i 
≥ 0 , i = 1 , . . . , I k , 

−u k ≤ w k ≤ u k , 

−v k ≤ w k − w 0 ≤ v k , 

−z k j e ≤ w 

( j) 
k 

≤ z k j e , j = 1 , . . . , J. 

(14)

4. Case study 

We apply the proposed approach described in Section 3 to a

multidevice dataset obtained from a case study for classifying the

mental workload of a set of participants through their psychophys-

iological signals. The tasks consisted of participants engaging in

various combinations of smartphone interactions and daily com-

mon tasks simultaneously. 

The goals of machine learning are to analyze (i) whether it is

possible to infer mental workload from a multidevice dataset of

psychophysiological signals as well as (ii) which signals explain
ental workload best and which ones are truly needed for con-

tructing accurate predictors, taking into account the cost of the

evices used for capturing the psychophysiological signals. While

he first objective requires predictive modeling, feature selection is

xtremely relevant to accomplishing the second. 

.1. Task design 

Mental workload is manipulated through the cognitive interfer-

nce phenomenon described in Wickens’s MRM (see Section 2.1 ).

n this case, it is important to note that a task will be more

ognitively demanding if there are more cognitive interferences

nvolved. Specifically, participants are required to perform seven

asks using certain applications on a smartphone while their psy-

hophysiological signals are being measured. The first two smart-

hone interactions require the use of the Gmail application and

re as follows: reading a simple e-mail and replying to a simple

-mail. The following five smartphone interactions require the use

f the Gmail application and a suitable application for searching

or certain information. These interactions are as follows: reading

n e-mail with search instructions, opening the application to fol-

ow the search instructions, entering the search parameters, read-

ng and analyzing the search results and replying to the e-mail

ith the results. 

One of the most important applications of the MRM is assign-

ng mental workload levels to two or more activities performed at

he same time. This model can be used intuitively, as shown in

ig. 1 . To this end, a score is assigned according to the cognitive

esource demanded in the multitask scenario. Thus, if the cogni-

ive resource is exclusive and therefore cannot be used simultane-

usly for two activities, the score is 1 (high); if the resource can

e perfectly shared, the score is 0 (none), and a score of 0.5 (low)

s chosen if the cognitive resource can be partially shared. 

In this study, two treatments were designed to induce low and

igh mental workload. In the first treatment, participants must

erform each of the smartphone interactions free of interruptions.

ccording to the MRM, participants only need to control their per-

onal space while performing the interactions. In this treatment,

nly one interference is caused by the simultaneous use of mo-

or control resources and verbal code attributes. The second treat-

ent requires performing all the interactions while simultaneously

erbally answering questions of the experimenter and listening to

usic (in the native language of the participant) through a hear-

ng aid. Thus, the participant should pay attention to, examine, an-

lyze, and make sense of the questions while using auditory and

isual input modalities and working memory. In this case, sev-

ral partial interferences occur, since both the tasks and the ver-

al stimulus require motor control and working memory resources

imultaneously (see Fig. 1 ). 

.1.1. Task difficulty validation 

Considering the interference activities of Fig. 1 as an example,

n the case of listening, there is a significant interference with the

se of the cognitive resource of auditory perception, to which the

alue of 1 (high) is assigned. In addition, music in the native lan-

uage creates a partial interference with the verbal perception re-

ource, to which the value of 0.5 (low) is assigned; in turn, lis-

ening to music requires a high demand on the verbal information

rocessing resource, which uses working memory, so the value of

 (high) is assigned. For the resources not demanded by the task,

he value of 0 (none) is assigned, since these resources remain fully

vailable. 

An additional validation was carried out once all the experi-

ental sessions were finished. To this end, the NASA Task Load

ndex scores were used. For each task, the scores of the NASA

ask Load Index for the two treatments were compared using a
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Fig. 1. Example of a high mental workload treatment. 
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epeated measure ANOVA (RM-ANOVA). It was concluded that the

ifference between the mean of the scores was statistically signif-

cant for each task ( p < . 001 ), which showed that there were two

evels of mental workload. 

.2. Participants 

The experiment was performed with 50 engineering students

rom the University of Chile, including 33 men and 17 women with

 mean age of 22.4 ± 2.8 years. They were recruited using the

niversity news application. They did not suffer from cardiovascu-

ar diseases, had no vision impairments and were not being treated

ith medications that could affect their normal behavior. Addition-

lly, to avoid bias, all of them were familiar with the use of smart-

hones. They were compensated CL$5,0 0 0 (approximately US$10)

or their participation. 

This study was approved by the Research Ethics Committee at

he Faculty of Physical and Mathematical Sciences at the Univer-

ity of Chile. All participants read and signed an informed consent

orm. 

.3. Apparatus 

HR, blood oxygen saturation (SpO 2 ) and temperature were col-

ected from sensors provided by the Cooking Hacks Company, at a

requency of 50 Hz, using an e-health shield connected to an Ar-

uino microcontroller that sent the data to a Linux server. The PS

ignal was collected at a rate of 120 Hz using an eye tracker devel-

ped by the Pupil Labs Company and equipped with two cameras

or recording the eye and the vision of the participant. Since PS

alues are defined in pixels, a resolution setting of 320 × 240 pix-

ls was used for the front camera, which was compatible with
apturing 120 frames per second, as recommended by the man-

facturer. This eye tracker also provided eye-gaze data points that

ere needed to identify the timestamps coinciding with saccades

nd blinks, which were useful in processing the PS data points, as

hown in Section 4.5 . HR was captured in beats per minute (bpm)

nd SpO 2 through the relation of the wavelength of blood with

emoglobin in the presence or absence of oxygen. The ECG, col-

ected through electrodes provided by the Cooking Hacks Company,

as captured in millivolts (mV) at a frequency of 110 Hz. Temper-

ture was captured in degrees Celsius ( ◦C). 

.4. Experimental protocol 

As soon as each participant entered the laboratory, he/she was

nformed about the objectives of the experiment and was asked

o complete a basic personal data questionnaire along with read-

ng and signing of the informed consent form. The sensors were

nstalled and began the data capture in the following order: the

CG electrodes on the chest, the pulse oximeter on the index fin-

er of the nondominant hand, the thermometer on the ring finger

f the same hand, and the eye tracker built into a pair of glasses.

hen, the eye tracker was calibrated using the software provided

y the manufacturer, and a testing activity was performed. Next,

he participant was asked to close his/her eyes for 90 seconds to

elax before starting the tasks. This was done to mitigate the mod-

fication of the behavior of the subjects—known as the Hawthorne

ffect ( Parsons, 1974 )—due to their awareness of being studied, fol-

owed by a resting state for two minutes. For each participant,

he three tasks were presented randomly. In the beginning, the in-

tructions for the correct completion of the tasks were given. After

ompleting each task, the participant was asked to complete the

ASA Task Load Index questionnaire ( Hart, 1988 ). Subjects relaxed

or 30 seconds between tasks. When a participant completed the
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Fig. 2. Pupil diameter signal processing. 
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last questionnaire, the experiment was considered complete, and

he/she was asked not to disclose the characteristics of the experi-

ment to other people to avoid biasing other participants. 

4.5. Signal processing 

To use the psychophysiological signals, it is necessary to process

various artifacts to obtain a noise-free signal suitable for use in

machine learning models. 

In the case of PS, the eye tracker and the Pupil Labs software

provide a confidence level of the PS value obtained at each times-

tamp. This indicator is based on the adjustment of an ellipse using

the Canny’s edge detection algorithm, a filter that is based on the

signal strength of neighboring pixels. If the value of the confidence

level is above a certain threshold, the ellipse is reported as the true

edge of the pupil. More details are available in Kassner, Patera, and

Bulling (2014) . Therefore, as the first step, we removed all the PS

values with confidence levels of less than 60% as recommended by

the manufacturer. This resulted in removal of 1.69% of the PS data

points. The standard second step in processing of PS data is to re-

move and interpolate the PS values that coincide with the times-

tamps of the eye-gaze saccades and with the blinks—given that the

eyelid blocks the infrared light of the eye tracker ( Holmqvist et al.,

2011 ). Since the time interval in which these events occur is a few

milliseconds long, we performed a linear interpolation of the PS

values for these timestamps. In the third step, a low-pass filter

with a Blackman window with a cut-off frequency of 2 Hz was

applied to eliminate high-frequency noise. These three steps are

shown in Fig. 2 . 

For the ECG signal, we first performed the fast Fourier trans-

form (FFT) to transform the samples from time domain to fre-
uency domain and subsequently eliminate noisy records (high

requencies). To this end, we applied a 50 Hz Butterworth-type

ow-pass filter of the 8th order and then removed all the data

oints with higher frequencies. Finally, the inverse Fourier trans-

orm was performed to obtain a suitable signal (see Fig. 3 ). 

Recent studies have proven that the discrete wavelet transform

DWT) is one of the most suitable tools for processing signals such

s HRV. In fact, HRV was obtained from the ECG data points by

dentifying the maximum values in each cycle of the ECG wave (R

oints). This procedure was performed by using DWT, which pro-

ides a time-scale representation of a given signal, generated by di-

ation and translation of a function known as the discrete mother

avelet. Its structure is obtained by mother wavelets and scaling

equences deducted from one octave to the next by a two-scale

ifference equation ( Addison, 2005 ). Specifically, signal x j−1 [ i ] is

assed through a low-pass filter and a high-pass filter with im-

ulse responses g [ i ] and h [ i ] to produce the approximation coeffi-

ient a j [ i ] and the detailed coefficient d j [ i ], respectively, as shown

n Eqs. (15) and (16) . 

 j [ i ] = 

∑ 

k 

x j [ k ] g[2 i − k ] , j ≥ 1 , (15)

 j [ i ] = 

∑ 

k 

x j [ k ] h [2 i − k ] , j ≥ 1 . (16)

We used the Daubechies-6 function with three grades of de-

ompositions and eight levels, following the approach utilized in

revious studies ( Khandoker, Gubbi, & Palaniswami, 2009 ), since

t is a suitable function for detecting variations in nonstationary

ignals ( Haddad & Serdijn, 2009 ). The high-frequency components

coefficients d 1 and d 2 ) are removed from the DWT decomposi-

ion, so only d , d and d are used to reconstruct the signal. Next,
3 4 5 
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Fig. 3. Electrocardiogram signal processing. 
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ts squared value is calculated to obtain the highest peaks, and an

-peak detection is performed. Finally, the time between each R

oint is calculated. 

We applied a low-pass filter of 1 Hz to the temperature data

oints to reduce the noise and high variability between adjacent

easurements (see Fig. 4 ). 

For the HR and SpO2 signals, only missing values and outlier

reatments were performed. 

As a common treatment for all of the above signals, a normal-

zation was performed using the baseline values obtained from the

verage of the signal data points at the last three seconds of the

est period of each participant. Then, the baseline values were sub-

racted from the signals obtained during the tasks’ execution. 

.6. Feature extraction 

The processed and standardized data of each task were divided

nto a set of data point segments, each with the duration of one

econd, according to the orders of magnitude of time window sizes

requently used in the literature on mental workload assessment

ith psychophysiological sensors ( Fritz et al., 2014; Haapalainen

t al., 2010; Ryu & Myung, 2005 ). Then, each one second long data

oint segment was labeled with the mental workload (low or high)

nduced by each treatment (previously validated by the score of

he NASA Task Load Index). Next, several features were extracted

rom each of the data point segments based on the results of stud-

es reviewed in Section 2 , as described below. 

Fritz et al. (2014) , the mean, median and variance of the PS

oints in each segment were extracted as features. To highlight the

udden changes in pupillary signal slope, the first derivative δ[ n ]

as also calculated, where δ[ n ] = ̂

 x [ n ] − ̂ x [ n − 1] . 
Based on the study of Haapalainen et al. (2010) , the median ab-

olute deviation (MAD) of each ECG segment was obtained, as well

s the mean, median and variance. The ECG MAD was obtained as

 CG MAD = | E CG i − median (E CG ) | . 
Additionally, we calculated the mean, median and variance in

ach segment for each of the temperature, HR and SpO2 data se-

ies. 

As recommended by Khandoker et al. (2009) , we extracted the

ollowing features of HRV for each one-second-long segment: 

• Mean: 

x = 

1 

N 

N ∑ 

i =1 

x i , (17) 

where x i corresponds to coefficients a j [ i ] and d j [ i ]. 
• Variance: 

σ 2 = 

N ∑ 

i =1 

( x − x i ) 
2 . (18)

• Energy of the approximate coefficients: 

ENG j = 

M j ∑ 

i =1 

| a j [ i ] | 2 . (19)

• Entropy of the approximate coefficients: 

ENT j = −
M j ∑ 

i =1 

p j [ i ] log 2 p j [ i ] , (20)

with 

p j [ i ] = 

| a j [ i ] | ∑ M j 
. (21)
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Fig. 4. Temperature signal processing. 
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4.7. Application of the proposed SVM approach 

In this section, the performance of various machine learning

methods applied to the features extracted from the multidevice

dataset of the case study is explained and discussed. In particu-

lar, the proposed � 2 − � ∞ 

-SVM-HET and � 1 − � ∞ 

-SVM-HET meth-

ods are compared with the � 2 -SVM and � 1 -SVM methods. 

Model validation is a very important step in SVM classification

since it reduces the risk of overfitting ( Tibshirani & Hastie, 2009 ).

Based on Maldonado, Montoya et al. (2017) , the following strategy

was followed for model selection: hyperparameters C, λ, γ , and θ
were set using a grid search with { 2 −7 , 2 −6 , . . . , 2 0 , . . . , 2 6 , 2 7 } as

possible values. 

Regarding data normalization, all variables were scaled to [0,1].

For each person, we performed a leave-one-out (LOO) cross-

validation ( Tibshirani & Hastie, 2009 ) at the task level: each model

was trained with n − 1 tasks performed by a participant, leaving

one out for testing. The process was repeated n times, where n = 7

was the number of tasks performed by each participant. 

All experiments were performed using MATLAB R2016b. We

used the LIBSVM ( Chang & Lin, 2011 ) and LIBLINEAR ( Fan, Chang,

Hsieh, Wang, & Lin., 2008 ) toolboxes for the � 2 -SVM and � 1 -SVM

methods, respectively. Our proposals and their variants were im-

plemented on the CVX toolbox ( Grant & Boyd, 2014 ), a multipur-

pose solver for convex optimization. To evaluate the performance

of our method in terms of predictive accuracy and the cost of the

solution, we first train all models using all available information

and then perform a backward variable elimination process, remov-

ing the less relevant group of features and reevaluating the perfor-

mance without retraining. 
t  
To compute the cost of the solution, we use the following val-

es for the various devices that generate the five groups of signals

HR, SpO 2 , temperature, PS, and HRV): 

• SpO 2 , HR, and temperature are the least expensive psychophys-

iological signals to acquire. As mentioned earlier, the first two

signals are obtained using a pulse oximeter, while tempera-

ture is measured using a thermometer. These are also the least

physically obtrusive instruments in this study because all of

these sensors are placed on the fingers of the nondominant

hand, as shown in Fig. 5 . Therefore, we evaluate the relative

cost of these signals to be 1. Note that although SpO 2 and

HR are collected using the same device, they are considered

two different data sources since they involve two different psy-

chophysiological signals obtained for the participants. In other

words, we regard the fixed cost of the device as marginal in

comparison with the costs of providing a pulse oximeter device

to the various participants. 
• The cost of the ECG, which used electrodes placed on the chest

to determine the HRV, is estimated to be 3 since its cost and

obtrusiveness were considered to be medium. 
• The glasses-shaped eye tracker, used to measure PS, is the most

expensive device as well as the most physically obtrusive one

for the participants in our experiments. Therefore, we evaluate

the relative cost of this device to be 10, i.e., using this device is

ten times as expensive as using the least expensive device. 

Note that each of these “costs” is in reality a measure of the rel-

tive loss involved in using a given instrument and is inclusive of

he monetary cost of buying and using a device, which is assumed

o be fixed for all participants, and of the negative effects that the
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Fig. 5. Participant with the sensors performs the experiment. Sensors: (1) Pulse oximeter, (2) Skin temperature sensors, (3) ECG and (4) Eye tracker. 
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(a) Performance in terms of AUC. (b) Performance in terms of variable collection cost.

Fig. 6. Performance curves for the various SVM approaches. 

Table 1 

Performance summary for all approaches. 

AUCx100 Cost Parameters 

Mean ± STD Max Min Mean ± STD Max Min C λ θ

� 2 -SVM 68.1 ± 17.9 99.9 57.5 10.3 ± 5.1 16.0 4.4 2 6 – –

� 1 -SVM 87.7 ± 13.7 98.6 67.3 11.4 ± 4.8 16.0 3.7 2 −4 – –

� 2 − � ∞ -SVM-HET 88.4 ± 11.0 98.0 72.2 9.4 ± 5.2 15.7 2.9 2 −5 2 4 2 5 

� 1 − � ∞ -SVM-HET 94.2 ± 5.0 97.6 85.8 11.4 ± 4.8 15.7 4.1 2 −7 2 −4 2 −2 

� 2 -SVM-HET 81.7 ± 15.2 97.9 61.9 10.1 ± 5.0 15.7 3.5 2 −5 – 2 5 

� 1 -SVM-HET 93.8 ± 5.5 97.6 84.6 11.5 ± 4.7 15.7 4.2 2 −7 – 2 −2 

� 2 − � ∞ -SVM 83.2 ± 13.7 93.7 61.8 9.2 ± 5.2 16.0 3.0 2 1 2 6 –

� 1 − � ∞ -SVM 94.1 ± 7.4 99.6 81.9 10.5 ± 5.3 16.0 3.1 2 0 2 −6 –
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device use causes to the individuals in terms of discomfort due to

the physical obtrusiveness. 

4.8. Results 

Fig. 6 presents the performance in terms of AUCx100 ( Fig. 6 (a))

and the relative variable collection cost of the solution ( Fig. 6 (b))

for an increasing number of selected groups. The graphs are de-

signed to be read backwards: the first solution for each method is

that with five groups of features, which usually achieves the largest

AUC. Then, the backward elimination process starts, reducing the

accuracy yet also decreasing the costs. We look for an accurate

solution at a low cost. These curves can be regarded as Pareto-

optimal solutions in terms of balancing the predictive accuracy and

signal acquisition costs. 

Fig. 6 shows that all methods are approximately equally effec-

tive in terms of their predictive performance if five sources of sig-

nals are used; however, this scenario also entails the largest signal

acquisition cost. After the first group of features is removed, the

AUC values of most methods remain close to 1, with the exception

of � 2 -SVM, which fails at constructing accurate models if these sig-

nals are removed. This result can be explained by the lack of a reg-

ularizer that encourages feature selection for � 2 -SVM. If one or two

groups are used, it is observed that the two proposals are the best
pproaches in terms of AUC, and � 1 − � ∞ 

-SVM-HET clearly out-

erforms all other methods. Considering variable acquisition costs,

 2 − � ∞ 

-SVM-HET is the most effective method at prioritizing the

ource costs of signals, although all methods behave relatively sim-

larly from the perspective of this measure. 

Table 1 presents the best performance in terms of AUCx100 and

ignal acquisition costs for all methods (showing the average for

ll participants). For each method, the mean feature selection per-

ormance is presented with its corresponding standard deviation

MEAN ± STD), which is obtained by averaging the five results pre-

ented in Fig. 6 . Additionally, the best and worst results in terms

f AUC (MAX and MIN, respectively) are reported. Note that the

orst performance in terms of AUC always results from using only

ne source of features, which is also the scenario with the mini-

um signal acquisition costs. Finally, the optimal hyperparameter

onfiguration is also reported in Table 1 for all methods. For com-

leteness, we also study the performance of our proposals if one of

he two new objectives is not considered. That is, we set θ = 0 , i.e.,

o heterogeneity control is applied, leading to the � 2 − � ∞ 

-SVM

nd � 1 − � ∞ 

-SVM models, and we also set C 1 = 0 , i.e., no grouped

eature selection is performed, leading to the � 2 -SVM-HET and � 1 -

VM-HET methods. 

Table 1 shows that the best overall performance is achieved

ith � 1 − � ∞ 

-SVM-HET which outperforms all alternative
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pproaches in terms of the average AUC, while the average

osts are relatively similar. The other proposed method � 1 − � ∞ 

-

VM-HET achieves the second best average AUC with the lowest

osts, also resulting in an interesting alternative for classification. 

.9. Discussion 

A comparison between the use of the full proposal with the

our objectives ( � p − � ∞ 

-SVM-HET with p = { 1 , 2 } ) and methods

hat consider three objectives ( � p -SVM-HET and � p − � ∞ 

-SVM)

eads us to conclude that the balance between the former always

utperforms the latter. 

Similarly, the methods with three objectives are also an im-

rovement over those that consider only two objectives. The most

mportant improvement is achieved with the inclusion of the

 ∞ 

-norm, followed by the use of heterogeneity control. Another

mportant conclusion is that the � 1 -norm is more effective than

he � 2 -norm when feature selection is performed. This result can

e explained by the � 1 -norm being designed for this task, unlike

he � 2 -norm, and being more compatible with the � ∞ 

-norm in

ts structure, since both strategies require the computation of the

bsolute values of the weights. 

Another notable observation is that the � 1 -norm-based models

re more computationally efficient than their � 2 -norm-based coun-

erparts since the former can be cast into linear models, while

he latter are QPPs. Linear models can usually be solved faster

han quadratic models. Therefore, we recommend the � 1 − � ∞ 

-

VM-HET method for applications in which the balance between

redictive performance and collection cost is important. 

The preceding experiments imply that it is possible to classify

ental workload with accuracy up to and indeed close to 100%,

ven if a subset of the psychophysiological signals is available from

evices. That was the first objective of the study, as previously

entioned. 

Considering the second objective, we use the backward elimi-

ation approach on the � 1 − � ∞ 

-SVM-HET method to obtain the

elevance of each device. This method is chosen since it produces

he best average performance in terms of AUC (see Table 1 ) and

he best predictive performance (also in terms of AUC) using few

ources of attributes (see Fig. 6 (a)). All the remaining methods per-

orm poorly if only one device is considered. 

The feature relevance is obtained as follows: for each partic-

pant, the backward elimination approach leads to a ranking of

evices based on the elimination order (the first removed de-

ice has a rank of 5, the second removed device a rank of 4,

nd so on). Then, an average rank is computed as the mean

or all participants. Note that this procedure is only performed

or illustrative purposes; our proposals do not require this back-

ard elimination step, and the results reported in the previous

ection were obtained without backward elimination. This proce-

ure leads to the following ranking in the decreasing order of

mportance: 

1. HRV, measured with the ECG device, has an average rank of

1.44. This is the most important signal in this study according

to the proposed model. The relative cost of this device was es-

timated to be 3. 

2. PS has an average rank of 2.52. The relative cost of the device

that captures this signal was estimated to be 10. 

3. Temperature has an average rank of 3.20. The relative cost of

the respective device was estimated to be 1. 

4. HR has an average rank of 3.58. The relative cost of the respec-

tive device was estimated to be 1. 

5. SpO 2 has an average rank of 4.22. The relative cost of the re-

spective device (the same as that used to measure HR) was es-
timated to be 1. l  
The previous results imply that the importance of various de-

ices varies with the participant. Nevertheless, HRV is usually in

he first or the second position according to the rank for vari-

us participants, leading to an average of 1.44. Note that even

hough this approach is biased to favor the least expensive de-

ices, the most expensive devices appear in the first and sec-

nd places. The reason is that the validation procedure was per-

ormed using AUC as the main performance metric, and the pre-

ious ranking was obtained with the parameter configuration that

aximized this measure. It is possible to increase the penalty pa-

ameter λ to encourage the least expensive devices to appear in

he leading positions of the rank, although it will lead to a loss in

erformance. 

elation to other SVM classification methods 

Various approaches to SVM-based feature selection are already

vailable. We refer the reader to the book by Guyon et al. (2006) .

he SVM-RFE approach and other iterative search methods that

t covers differ in regard to the feature selection methodology.

he proposed technique is an embedded feature selection method,

.e., it directly obtains a variable subset that represents an at-

empt to improve classification performance simultaneously with

inimizing dimensionality, and does not rank variables accord-

ng to their contribution. Iterative search strategies, also known

s wrapper methods, are usually more computationally demand-

ng than embedded methods, such as that presented in this

tudy. 

As explained, a device generates several signals; therefore, fea-

ure selection cannot be performed at the variable level if the main

oal is to reduce variable acquisition costs. Variables that belong

o the same device must be penalized jointly to guarantee that the

ntire source of information is not taken into account in the mod-

ling process ( Yuan & Lin, 2006 ). Current research in SVM-based

eature selection offers some alternatives for performing grouped

ariable selection, including the use of mixed-integer programming

pproaches ( Maldonado, Pérez, Labbé, & Weber, 2014 ). However,

he inclusion of binary variables leads to a more complex optimiza-

ion scheme than that for a group penalty function for the weight

ector ( Maldonado et al., 2014 ). 

The use of a group penalty function for cost-based feature se-

ection was proposed in Maldonado, Bravo et al. (2017) for the

ask of credit scoring. However, this application does not deal with

anel data as a series of signals; it only solves a single model for

ll the applicants. The estimation of the collection costs is also very

ifferent and involves only monetary costs while excluding factors

uch as the obtrusiveness of a given device from the perspective of

he users. 

An additional interesting challenge that arises in this study

s the modeling of heterogeneity in participants’ behaviors

 Evgeniou et al., 2007 ). When per-participant models are estimated

ith little individual information, general patterns from all partic-

pants can be leveraged to construct robust predictors ( Evgeniou

t al., 2007; López et al., 2017 ). The cost-based model proposed in

aldonado, Bravo et al. (2017) does not control for the heterogene-

ty among various credit applicants. 

Heterogeneity control has been studied in conjoint analysis

 Green & Rao, 1971 ); however, this task is very different from bi-

ary classification; therefore, the models have a different structure.

n López et al. (2017) , an SVM model was proposed for deriving

arious utility functions of the respondents using a heterogeneity

ontrol scheme similar to that proposed in this paper. However,

he above study’s method does not consider feature selection. In

aldonado, Montoya et al. (2017) , feature selection was included

n the modeling process of conjoint analysis. However, both regu-

arization and heterogeneity control strategies differ from those of
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our proposal. Furthermore, all attributes are assumed to have the

same cost in both studies. 

Finally, the current trend in physiological signal analysis in-

volves the use of deep learning methods ( Faust, Hagiwara, Hong,

Lih, & Acharya, 2018 ). Deep neural networks have outperformed

convex methods, such as SVMs, mostly because of their ability to

perform automatic signal preprocessing ( Faust et al., 2018 ). This

is the main limitation of our approach since it requires trans-

forming the signals to produce positive results. However, the main

strengths of SVM classification are the ability to incorporate ad-

ditional objectives, such as heterogeneity control and cost-based

feature selection, and the absence of local minima via convex op-

timization. Due to using this multiobjective scheme, we are able

to gain important insights into the application. Finally, black-box

modeling, such as that performed by deep neural networks, is

prone to overfitting, especially if few data points are available. Our

goal is to construct user-level models even though limited infor-

mation is available for each user. To the best of our knowledge,

no strategy for heterogeneity control has been proposed for deep

neural networks. 

5. Conclusions and directions for future work 

In this study, two novel SVM-based methods are presented for

the task of feature selection and binary classification. Our propos-

als are designed for tasks in which (i) data are collected from

various persons but the available individual information may be

scarce and in which (ii) data are collected from various sources

of attributes with heterogeneous acquisition costs. Considering the

first issue, we extend the ideas of Evgeniou et al. (2007) and

Maldonado, Montoya et al. (2017) , who propose controlling het-

erogeneity in a conjoint analysis by minimizing the deviations

between the individual functions and a general population pat-

tern. Considering the second aspect, we follow the reasoning

behind group penalty functions ( Yuan & Lin, 2006 ) to design

a strategy that penalizes the use of the entire data source to

which the costs are attributed, rather than eliminating features

independently. 

From the expert systems’ point of view, the proposed approach

to simultaneous SVM classification and feature selection opens the

possibility of developing an intelligent system capable of automat-

ically assessing the mental workload of mobile users continuously,

unobtrusively, and at low cost. Moreover, this assessment can fa-

cilitate the development of personal cognitive assistants to help

users more effectively manage their multitasking while using mo-

bile devices and performing daily routines. To our knowledge, the

proposed approach and the chosen case study constitute the first

attempt to bring together both the flexibility of SVM in simulta-

neous feature selection and the continuous assessment of mental

workload. 

The proposals were applied to a case study of assessing

mental workload through psychophysiological signals. Our exper-

iments demonstrate the advantages of the proposed approach

which achieves a superior predictive performance compared with

well-known SVM formulations if some devices (data sources) are

removed. Additionally, our method achieves a positive perfor-

mance even if a single device is used for each participant, lead-

ing to a reliable relevance ranking of various psychophysiological

signals. 

Some managerial insights into the application can be gained

that could be useful for the design of expert systems based on psy-

chophysiological signals from multiple devices. On the one hand,

the feature ranking derived by the proposed method identifies sig-

nals that are redundant or that should be avoided due to their

cost and obtrusiveness. For example, the analysis presented in the

previous section suggests that the SpO signals are almost irrele-
2 
ant to the task. On the other hand, the Pareto curves shown in

ig. 6 allow modeling the trade-off of using expensive/obtrusive

evices, such as the eye tracker, and the respective impact on per-

ormance. 

Many other practical applications that involve assessing men-

al workload with psychophysiological signals are possible with

he proposed approach. Examples include adapting web interfaces

o users’ changing mental workload ( Jiménez-Molina et al., 2018 ),

valuating cognitive capabilities, delivering notifications ( Bailey &

qbal, 2008 ), and measuring drivers’ alertness ( Yoshida et al., 2014 ),

mong other tasks. 

Furthermore, our proposal can be applied to tasks in several do-

ains, for example, in medical diagnoses in which several signals

re collected per patient. Respiratory diseases, such as obstructive

leep apnea syndrome (OSA), require adequate diagnosis data in

he form of signals from various sources, such as a nasal airflow

ensor or an ECG, and each test has a different cost and obtru-

iveness ( Ríos & Erazo, 2016 ). Our proposal can also be useful in

usiness analytics, where the cost of acquiring data can be explic-

tly computed. Credit scoring is one example of an application for

hich several data sources are available, including potentially ex-

ensive data bought from credit bureaus that can be penalized in

he modeling process ( Maldonado, Pérez et al., 2017 ). 

This study opens interesting possibilities for future develop-

ent. As previously mentioned, our proposal can be applied in

ther contexts in which data from different sources are collected.

dditionally, our approach can be extended to kernel methods. Al-

hough we believe that the use of the � ∞ 

-norm leads to a dual

ormulation to which the kernel trick cannot be applied, we in fact

elieve that our approach without feature selection (yet including

eterogeneity control) can be extended as a kernel method (see

he supplementary material for a detailed derivation of the dual

orm for � 2 − � ∞ 

-SVM-HET and a discussion of this topic). Finally,

VM has been adapted to functional data, which is an interest-

ng approach if the covariates can be represented as a time series

 Rossi & Villa, 2006 ). Our approach could be extended to functional

VM classification by penalizing the use of expensive functional

ata during SVM training. 
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