
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics
https://doi.org/10.1007/s13042-020-01085-8

ORIGINAL ARTICLE

Enhancing a machine learning binarization framework
by perturbation operators: analysis on the multidimensional knapsack
problem

José García1  · Eduardo Lalla‑Ruiz2 · Stefan Voß3 · Enrique López Droguett4

Received: 5 January 2019 / Accepted: 8 February 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Solving combinatorial optimization problems is of great interest in the areas of computer science and operations research.
Optimization algorithms and particularly metaheuristics are constantly improved in order to reduce execution times, increase
the quality of solutions and address larger instances. In this work, an improvement of the binarization framework which uses
the K-means technique is developed. To achieve this, a perturbation operator based on the K-nearest neighbor technique is
incorporated into the framework with the aim of generating more robust binarized algorithms. The technique of K-nearest
neighbors is used for improving the properties of diversification and intensification of metaheuristics in its binary version.
The contribution of the K-nearest neighbors perturbation operator to the final results is systematically analyzed. Particle
Swarm Optimization and Cuckoo Search are used as metaheuristic techniques. To verify the results, the well-known mul-
tidimensional knapsack problem is tackled. A computational comparison is made with the state-of-the-art of metaheuristic
techniques that use general mechanisms of binarization. The results show that our improved framework produces consistently
better results. In this sense, the contribution of the operator which uses the K-nearest neighbors technique is investigated
finding that this operator contributes significantly to the quality of the results.

Keywords  Combinatorial Optimisation · Machine Learning · Metaheuristics · KNN · K-means · Knapsack

1  Introduction

Decision making in complex systems is a cross-cutting
activity in different areas of engineering and management.
Many of these decisions require evaluating a very large com-
bination of elements as well as having to solve a combi-
natorial optimization problem (COP) to find a feasible and
satisfactory result. Examples of COP are found in the areas
of logistics Korkmaz et al. [32], transportation García et al.
[25], machine learning Al-Madi et al. [2] biology Guo et al.
[27], and many others. Depending on the problem defini-
tion, many COPs can be categorized as NP-hard. Among
the most successful ways to address such problems, a com-
mon solving way is to simplify the model in order to try to
solve instances of small to medium size through exact tech-
niques, or addressing them through heuristic or metaheuris-
tic algorithms. This last solving option allows to deal with
large-size problems, but without ensuring the optimality of
the solutions. Therefore, research lines that allow obtaining
robust algorithms associated with the solution of COPs are

 *	 José García
	 jose.garcia@pucv.cl

	 Eduardo Lalla‑Ruiz
	 e.a.lalla@utwente.nl

	 Stefan Voß
	 stefan.voss@uni‑hamburg.de

	 Enrique López Droguett
	 elopezdroguett@ing.uchile.cl

1	 Pontificia Universidad Católica de Valparaíso,
2362807 Valparaíso, Chile

2	 Department of Industrial Engineering and Business
Information Systems, Universiteit Twente, Enschede,
The Netherlands

3	 Institute of Information Systems, University of Hamburg,
Hamburg, Germany

4	 Department of Mechanical Engineering, University of Chile,
Beauchef 850, Santiago, Chile

http://orcid.org/0000-0003-3126-8352
http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-020-01085-8&domain=pdf

	 International Journal of Machine Learning and Cybernetics

1 3

of great interest in the areas of computer science and opera-
tions research.

During the last decade, important investigation lines have
explored the hybridization among different optimization
techniques with the goal of obtaining more robust meth-
ods in terms of quality of solutions and convergence times.
In the literature, the main hybridization proposals are: (i)
matheuristics, which combine heuristics or metaheuristics
with mathematical programming Caserta and Voß [6], (ii)
hybrid heuristics, the combination between different heu-
ristic or metaheuristic methods Talbi [51], (iii) simheuris-
tics, that combine simulation and metaheuristics Juan et al.
[30], and (iv) the hybridization between metaheuristics and
machine learning. The latter hybridization field between
machine learning and metaheuristics is an emerging research
line in the area of operations research. In this sense, we find
that the combination can occur such that metaheuristics help
machine learning algorithms to improve their results (e.g.,
[9, 62]) or in the opposite direction where machine learn-
ing techniques help in the robustness of metaheuristic algo-
rithms (e.g., [16]). The details of the hybridization forms are
specified in Sect. 2.1.

In this article, inspired by the mentioned research lines,
we explore the application of an automatic learning algo-
rithm in a perturbation operator to improve the diversifica-
tion and intensification properties of a given metaheuristic
when addressing combinatorial optimization problems. The
contributions of this work are detailed below:

–	 An improvement of the automatic learning binarization
framework designed in García et al. [24] is proposed in
order to allow metaheuristics commonly defined and
used in continuous optimization addressing COP effi-
ciently. This framework uses the k-means unsupervised
learning technique to perform the binarization process
and in this article, the nearest K-neighbors technique is
included to improve the diversification and intensifica-
tion properties of a given metaheuristic. The selected
metaheuristics are particle swarm optimization (PSO)
and cuckoo search (CS). Their selection is based on the
fact that they are commonly used in continuous optimiza-
tion and allow an easy way to adjust their parameters in
continuous spaces. In this sense, theoretical models of
PSO convergence already exist.

–	 These hybrid metaheuristics are applied to the well-
known multidimensional knapsack problem (MKP). This
problem has been extensively studied, and because of
that, small, medium, and large instances are available
in the literature. We have utilized the large instances as
the ones used to evaluate the contribution of the KNN
perturbation operator. On the other hand, the MKP has
numerous practical real-world applications, such as com-
puter scheduling programs in multiprogramming envi-

ronments, allocation of shelf space to a consumer product
in retail stores, the capital-budgeting problem, among
many others.

–	 For a proper evaluation of our hybrid algorithms first, we
use a parameter estimation method developed in García
et al. [24] to determine the best metaheuristic configura-
tions. Subsequently, experiments are developed with the
aim of shedding light on the contribution of the KNN
operator in the framework. Finally, our hybrid algorithms
are compared with the latest generation binarization
frameworks. For this purpose, we use the larger problems
of the OR-Library1. The numerical results show that our
hybrid algorithms achieve highly competitive results.

The rest of the article is structured as follows. Section 3
describes the MKP and some of its applications. In Sect. 2,
a state-of-the-art hybridization between the areas of machine
learning and metaheuristics is provided and main binariza-
tion methods are described. Later, in Sect. 4, the proposed
hybrid algorithm is detailed. The results of the contribution
of the KNN operator are provided in Sect. 5. To evaluate the
quality of our results, in Sect. 6 we provide a comparison
with algorithms that use generic binarization mechanisms.
Finally, in Sect. 7 conclusions and some future lines of
research are given.

2 � Related works

2.1 � Hybridizing metaheuristics with machine
learning

When it comes to integrating machine learning and
metaheuristics, two large groups can be mainly indicated.
The first group corresponds to metaheuristic techniques for
improving the performance of machine learning algorithms.
The second covers machine learning algorithms for enhanc-
ing metaheuristics performance. For the first group, we find
four main areas of application: improving clustering algo-
rithms, feature selection applications, improving classifica-
tion algorithms and strengthening regression algorithms.
The summary of the integration between these two areas is
shown in Fig. 1.

In the case of clustering algorithms, a variety of methods
has been reported. One of the main problems that presents
a greater algorithmic complexity, corresponds to the search
of centroids for grouping in a better way the set of studied
objects. Since this problem is NP-hard, approximate meth-
ods have been proposed to address it. In this regard, there

1  OR-Library: http://www.brunel.ac.uk/mastjjb/jeb/orlib/mknapinfo.
html.

International Journal of Machine Learning and Cybernetics	

1 3

is a long list of studies in this area, however, in recent years
the focus has moved to solving applied problems. In Mann
and Singh [40], an improved artificial bee colony algorithm
was applied to solve the problem of energy-efficient cluster-
ing in a wireless sensor network. In Mirghasemi et al. [42]
we found the use of particle swarm optimization and fuzzy
C-means to perform segmentation of images with noise. The
planning of helicopter transportation of employees to the
production platforms of oil and gas was studied in de Alva-
renga Rosa et al. [14], using a cluster search metaheuris-
tic. In that work, the metaheuristic approach was compared
with a general-purpose solver (i.e., CPLEX), indicating that
the former produces better, more stable solutions in shorter
computational time. Another interesting application in logis-
tics management corresponds to the management policy of
warehousing and item assignment. In Kuo et al. [33], a PSO
algorithm was applied for the item assignation problem in
a synchronized zone order picking system. Finally, in Kuo
et al. [34] a clustering method based on metaheuristics was
proposed to solve a client segmentation problem.

A major difficulty in the learning process of a machine
learning algorithm is related to the dimension of the data-
set. The inadequate handling of the dimension of the data-
set can involve problems such as under or over-fitting plus
large amounts of computations necessary for its training.
Because of its definition, feature selection is a combinatorial
problem and has been effectively addressed by metaheuristic
algorithms. In Ahmad et al. [1], metaheuristic algorithms
were compared with traditional feature selection methods,

applying them to datasets used in sentiment analysis. The
selection of features is fundamental in real-time data stream
mining problems; e.g., in Fong et al. [18] an accelerated PSO
was proposed to efficiently address feature selection. A self-
adaptive PSO was developed in Xue et al. [56] to address
the large-scale feature selection problem in classification.

The problems of classification and regression form an
important group of problems that are usually addressed
through supervised learning techniques. The contribution
of metaheuristics in supervised learning algorithms in both
classification and regression problems has been significant.
Metaheuristics have contributed to the improvement of
algorithms such as support vector machine, artificial neural
networks, decision trees, logistic regression, among oth-
ers. In Chou and Thedja [11], a classification system was
proposed that integrates a firefly algorithm with the least
squares support vector machine technique to apply it to geo-
technical problems. Classification systems applied to health-
care using metaheuristic algorithms and big data techniques
are detailed in Tsai et al. [52]. In Fernandes et al. [17],
metaheuristics were used to design an enhanced probabilistic
neural network algorithm. In regression problems, for exam-
ple, by applying metaheuristics in time series using sliding-
window in Chou and Nguyen [9], they design a model to
predict the stock prices of Taiwan’s construction companies.
In Chou and Pham [10], by using the firefly algorithm, the
parameters of least squares support vector regression are
optimized for enhancing prediction accuracy in engineering
design. The shear strength prediction in reinforced concrete

Fig. 1   General scheme: com-
bining machine learning and
metaheuristics. Adapted and
extended from Calvet et al. [5]

	 International Journal of Machine Learning and Cybernetics

1 3

deep beams was addressed in Chou et al. [8]. In that article,
they propose a firefly algorithm integrated with a support
vector machine algorithm for accurately predicting shear
strength.

On the other hand, the contribution of machine learn-
ing techniques to strengthen metaheuristic algorithms has
been important. In this case, we distinguish two large groups
according to the way they are integrated. A first group cor-
responds to specific integrations where the techniques of
machine learning are inserted through an operator into one
of the metaheuristic modules. The second group corresponds
to general integrations where the machine learning technique
works as a selector of different metaheuristic algorithms,
choosing the most appropriate one for each instance.

In the case of a specific integration, we find integrations
in different modules of metaheuristics. For example, dur-
ing the initialization of solutions, performing the tuning of
parameters, in the binarization of continuous metaheuristics,
also machine learning is used in the population management,
etc. In the tuning of parameters, in De Jong [15] the author
applies a dynamic tuning approach for adapting the param-
eters depending on the instance and the evolution of the
algorithm. A chess rating method was applied in Veček et al.
[55]. That method was compared with other techniques such
as f-race showing a good performance. In Ries and Beullens
[45], a decision tree was used to perform the tuning of the
parameters. Usually, the mechanism of solution initialization
of a metaheuristic is done in a random way or using some
heuristic. However, there are attempts to use machine learn-
ing in the initialization of solutions. In Li et al. [36], a case-
based reasoning was used to initialize a genetic algorithm
and apply it to the weighted circles layout problem. Hopfield
neural networks were used in Yalcinoz and Altun [57] to
initiate solutions of a genetic algorithm that were used to
solve the economic dispatch problem. With regards to popu-
lation management, the main line of research is related to
extracting information from the solutions previously visited
in the search space and identifying the regions that have
the greatest potential to exploit them. In the literature, we
can observe the use of clustering techniques to improve the
exploration of the search space Streichert et al. [49]. Also,
the use of case-based reasoning techniques was investi-
gated in Santos et al. [46] in order to identify subspaces of
searches to solve the single-vehicle routing problem. In Jin
et al. [29], an incremental learning technique was used to
apply this to the constrained portfolio optimization problem.
Finally, a research area with a lot of activity corresponds to
designing binary versions of algorithms that work naturally
in continuous spaces to enable them to work on combina-
torial problems. In this area, the application of clustering
techniques in García et al. [20] to perform the binarization
has been proposed. In García et al. [21, 22], the percentile
concept and the ranking of the solutions were used to obtain

binary algorithms from continuous algorithms. In García
et al. [20] the distributed computing framework Apache
Spark was applied to generate distributed versions of the
binarized algorithms.

Concerning general integrations, we can point out three
main groups: algorithm selection, hyperheuristics, and coop-
erative strategies. In the case of algorithm selection, the
objective is to choose from a portfolio of algorithms together
with a set of characteristics associated with each instance of
the problem. In Smith-Miles et al. [48] meta-learning tech-
niques were used with the goal of proposing a methodology
to measure the strengths and weaknesses of algorithms that
solve optimization problems in different instances. The berth
scheduling problem at bulk terminals was addressed in de
León et al. [16] by using a machine-learning-based algo-
rithm selection approach. The goal of hyperheuristics is to
automate the design of heuristic or metaheuristic methods to
address a wide range of problems. In Tyasnurita et al. [53],
an artificial neural network was used to improve the perfor-
mance of hyperheuristics when solving different instances
of the vehicle routing problem. The problem of nurse roster-
ing was addressed in Asta et al. [3] through a tensor-based
hyperheuristic algorithm. Finally, in Damaševičius and
Woźniak [13] a hyperheuristic was designed which allows
integrating different nature-inspired algorithms. Coopera-
tive strategies consist of combining algorithms in a parallel
or sequential way in order to obtain more robust methods.
Cooperation can be completed by sharing a complete solu-
tion or part of it. In Cadenas et al. [4], a centralized coop-
erative strategy was developed where knowledge was mod-
eled through fuzzy rules. In Martin et al. [41], a distributed
framework based on agents was proposed. Each agent cor-
responds to a metaheuristic, where the agent has the ability
to adapt through direct cooperation. This framework was
applied to the permutation flow shop problem.

2.2 � Binarization methods

Nowadays, there is a series of metaheuristic algorithms that
are designed to work in continuous spaces. Among the most
prominent, Particle Swarm Optimization (PSO) and Cuckoo
Search (CS) can be marked as some of the most used ones.
On the other hand, the existence of a large number of NP

-hard combinatorial problems motivates the investigation
of robust mechanisms that allow adapting these continuous
algorithms to discrete versions.

In a review of the state-of-the-art of binarization tech-
niques Crawford et al. [12], two approximations were iden-
tified. A first approach considers general methods of bina-
rization. In those general methods, there is a mechanism
that allows transforming any continuous metaheuristic into
a binary one without altering the metaheuristic operators.
In this approach, the main frameworks used are transfer

International Journal of Machine Learning and Cybernetics	

1 3

functions and angle modulation. The second approach cor-
responds to binarizations where the way of operating
metaheuristics is specifically altered. Within this second
approach, techniques such as Quantum binary and Set-based
approaches can be highlighted.

Transfer functions: The simplest and most widely used
binarization method corresponds to the transfer functions.
The transfer functions were introduced by Kennedy and
Eberhart [31] to generate binary versions of PSO. PSO con-
siders each solution as a particle. This particle has a position
given by a solution for some iteration and a velocity which
corresponds to the vector obtained from the difference of the
particle position in two consecutive iterations. The transfer
function is a very simple operator and relates the velocity
of the particles in PSO with a transition probability. The
transfer function takes values from ℝn and generates tran-
sition probability values in [0, 1]n . The transfer functions
force the particles to move in a binary space. Depending
on its shape, these are usually classified as S-Shape Yang
et al. [59] and V-Shape García et al. [23]. Once the function
produces the value between 0 and 1, the next step is to use
a rule that allows obtaining 0 or 1. For this, well-defined
rules are applied that use the concepts of complement, elite,
random, among others.

Angle Modulation: This method is based on the family
of trigonometric functions shown in Eq. (1). These func-
tions have four parameters responsible for controlling the
frequency and displacement of the trigonometric function.

The first time this method was applied to binarizations was
in PSO. In this case, the binary PSO was applied to bench-
mark functions. Assume a given binary problem of dimen-
sion n and let X = (x1, x2,… , xn) be a solution. We start with
a four-dimensional search space. Each dimension represents
a coefficient of Eq. (1). Then every solution (ai, bi, ci, di) is
associated to a gi trigonometric function. For each element
xj the following rule is applied:

Then, for each initial solution of 4 dimensions (ai, bi, ci, di) ,
function gi which is shown in Eq. (1) is applied and then
Eq. (11) is utilized. As a result, a binary solution of dimen-
sion n (bi1, bi2,… , bin) is obtained. This is a feasible solution
for our n-binary problem. The angle modulation method has
been applied to network reconfiguration problems Liu et al.
[38] using a binary PSO method, to the antenna position
problem using an angle modulation binary bat algorithm
Moiz et al. [43], and to a multi-user detection technique
Swagatam et al. [50] using a binary adaptive evolutionary
algorithm.

(1)gi(xj) = sin(2�(xj − ai)bi cos(2�(xj − ai)ci)) + di

(2)bij =

{
1 if gi(xj) ≥ 0

0 otherwise

Quantum binary approach: Considering the line of
research that integrates the areas of Evolutionary computa-
tion (EC) and Quantum computation, there are mainly three
categories of algorithms Zhang [60].

1.	 Quantum evolutionary algorithms: Corresponds to the
design of EC algorithms to be applied in a quantum
computing environment.

2.	 Evolutionary-designed quantum algorithms: These algo-
rithms try to automate the generation of new quantum
algorithms using Evolutionary algorithms.

3.	 Quantum-inspired evolutionary algorithms: This cat-
egory uses quantum computing concepts to strengthen
EC algorithms.

In particular, the Quantum binary approach belongs to
Quantum-inspired evolutionary algorithms. Specifically, this
approach adapts the concepts of q-bits and superposition used
in quantum computing to work in normal computers.

In the Quantum binary approach method, each feasible
solution has a position X = (x1, x2,… , xn) and a quantum
q-bits vector Q = [Q1,Q2,… ,Qn] . Q represents the probabil-
ity of xj taking the value 1. For each dimension j, a random
number between [0,1] is generated and compared with Qj , if
rand < Qj , then xj = 1 , else xj = 0 . The upgrade mechanism
of the Q vector is specific to each metaheuristic.

The main difficulty that general binarization frameworks
have is related to the concept of Spatial disconnect Leonard
et al. [35]. Spatial disconnect is originated when nearby solu-
tions generated by metaheuristics in the continuous space are
not transformed into nearby solutions when applying the bina-
rization process. Roughly speaking, we can think of a loss of
the continuity of the framework. This phenomenon of Spatial
disconnect has the consequence that the properties of explo-
ration and exploitation are altered and, therefore, the preci-
sion and convergence of metaheuristics worsen. A study was
developed on how the transfer functions affect the exploration
and exploitation properties in Saremi et al. [47]. For angle
modulation, the study was developed in Leonard et al. [35].

On the other hand, specific binarization algorithms, that
modify the operators of the metaheuristic, are susceptible to
problems such as Hamming cliffs, loss of precision, search
space discretization and the curse of dimensionality Leonard
et al. [35]. This was studied by Pampara [44] and for the par-
ticular case of PSO by Chen et al. [7]. In the latter, the authors
observed that the parameters of the Binary PSO change the
speed behavior of the original metaheuristic.

	 International Journal of Machine Learning and Cybernetics

1 3

3 � Applications of the multidimensional
knapsack problem

The multidimensional knapsack problem (MKP, [19]), is a
non-deterministic polynomial-time ( NP)-hard combinato-
rial problem that considers multiple resource constraints,
Garey and Johnson [26] Its goal is to fill a given multi-
dimensional capacity-limited knapsack with a subset of
items in order to get the maximum benefit associated with
the profit of each selected item. The selection of items has
to consider the limitations of resource capacity since each
element has different resource requirements. Formally, the
problem is defined as follows.

subject to:

where bi corresponds to the capacity limitation of resource
i ∈ M . Each element j ∈ N has a requirement of cij regard-
ing resource i as well as a benefit pj . Moreover, xj ∈ {0, 1}
indicates whether the element is in the knapsack or not,
j ∈ {1,… , n} , cij ≥ 0 , pj > 0 , bj > 0 , n corresponds to the
number of items, and m the number of knapsack constraints.

In the rest of this section, with the aim to show the
importance of solving the MKP, we detail some MKP
applications in the real world. The first problem to be
detailed corresponds to the daily photographic scheduling
(DPS) problem of an earth observation satellite Vasquez
and Hao [54]. Let F = (f1,… , fm) be a set of candidate
photographs to be taken the next day by the satellite. Since
the satellite has more than one camera, the cameras are
denoted by C = (c1,… , ck) . In order to represent the prob-
lem in a binary form, it is necessary to define the vec-
tor X = (x1,… , xn) , where x1 represents the pair (f1, c1) ,
x2 = (f1, c2) , and so on. Each pair xj = (photograph, cam-
era), associates a profit pj which results from an aggrega-
tion of a series of conditions such as the urgency of the
photograph, the importance of the client, meteorological
forecast, etc. In addition, the set of photos, associates a set
of hard constraints related to the storage capacity, restric-
tions associated with non-overlapping pictures and con-
straints associated with the instantaneous data flow.

The DPS problem model associated with a satellite with
three mono and one stereo cameras is modeled by expres-
sions (6) to (9):

(3)Maximize P(x1,… , xn) =

n∑

j=1

pjxj.

(4)
n∑

j=1

cijxj ≤ bi, i ∈ {1,… ,m}.

(5)xij ∈ {0, 1}.

where pj ∈ ℤ
+ . and subject to:

where C1 represents the capacity of the knapsack, C2 indi-
cates that each photo is taken by a single camera, and C3
models flow and overlay constraints, B ∈ {1, 2}.

Another interesting problem related to the MKP is the
shelf space allocation problem (SSAP) Yang [58]. The idea
is to manage the shelf space through intelligent systems.
Properly solving this problem not only decreases the level
of inventories, but also improves the relationship between
the seller and the customer. When we consider the SSAP,
the objective function corresponds to the profit of all prod-
ucts of the store. Additionally, the problem has constraints
associated with the store’s total storage capacity along with
maintaining an adequate product mix. Formally, the problem
is described as follows.

subject to:

A store has n product items determined by a product mix
decision and these items can be displayed on m shelves.
Then, xij represents the amount of product i that can be
located on the shelf j. The length of shelf j is Tj and each
facing of product i (interpreted as the width of showing i
once on the shelf), is ai long. To maintain the stock balance
of each product, lower and upper limits are defined. The
lower limit Li associated with a product i, is necessary to
guarantee that customers still find enough units of item i.

(6)Maximize P(x1,… , xn) =

n∑

j=1

pjxj

(7)
n∑

j=1

cjxj ≤ C1

(8)xi + xj ≤ 1,∀(xi, xj) ∈ C2

(9)xi + xj + xk ≤ B,∀(xi, xj, xk) ∈ C3

(10)xij ∈ {0, 1}

(11)Maximize P(x1,… , xn) =

n∑

i=1

m∑

j=1

pijxij

(12)
n∑

i=1

aixij ≤ Tj, j = {1,… ,m}

(13)Li ≤

m∑

j=1

xij ≤ Ui, i = {1,… , n}

(14)xij ∈ {ℤ+
0
}

International Journal of Machine Learning and Cybernetics	

1 3

The upper limit Ui of a product i, ensures that an adequate
space is left for other products.

4 � Hybrid algorithm

In this section, the algorithm used to solve the MKP is
detailed. Our algorithm is composed of two modules: The
KNN perturbation module diagrammed in the left part of
Fig. 2 and the binarization module shown in the right part of
Fig. 2. The KNN perturbation module uses the KNN algo-
rithm in order to obtain the nearest neighbors of a particular
solution. This module feeds on a subset of data generated in
the different iterations of the binarization module. The aim
of the binarization module is to binarize the solutions gener-
ated by continuous swarm intelligence algorithms such as
PSO and CS. The binarization module uses four operators:
The solutions initialization operator described in Sect. 4.2,
the K-means operator detailed in Sect. 4.3, a repair operator
described in Sect. 4.5, and the KNN perturbation operator
detailed in Sect. 4.4.

4.1 � KNN perturbation module

In this section, the operation of the KNN perturbation mod-
ule is explained in detail. The final goal of this module is to
calculate, using a measure, the importance of each dimen-
sion in the neighbourhood of the solution when trying to

solve a particular instance of the MKP. As a measure to esti-
mate importance, a definition similar to the Morris method
used in Iooss and Lemaître [28] is used. The objective of the
Morris method is to determine the input variables that are
most important using a small number of evaluations to per-
form the calculation. The method allows determining linear
influences, non-linear influences, and interactions between
the variables.

Consider N points in the search space given by
S = {Xj∕j ∈ {1,… ,N}} , then we define EEi(X),X ∈ S by:

where X̂i corresponds to the complement, that is, if Xi = 0
then X̂i = 1 . The previous calculation is performed for each
of the dimensions of all solutions in S. Then, we calculate
the statistical indicators average ( �i ) and standard deviation
( �i ) defined in the Eqs. 16 and 17, respectively.

Then the pair (�, �) has quite clear interpretations depending
on the combination of:

(15)EEi(X) = f (X1,… , X̂i,… ,Xd) − f (X)

(16)�i =
1

N

N∑

j=1

|EEi(X
j)|

(17)�i =

√√√√ 1

N

N∑

j=1

(EEi(X
j) − ui)

2

Fig. 2   Flow chart of machine learning swarm intelligence algorithm

	 International Journal of Machine Learning and Cybernetics

1 3

1.	 Small values of � and � means the variable has a small
effect on the objective function.

2.	 Small values of � and high values of � implies that the
input variable has important non-linear effects.

3.	 High values of � and small values of � implies that the
input variable has important linear effects.

4.	 High values of � and high values of � implies that the
input variable has important non-linear effects or inter-
action with other variables.

The previously detailed calculations allow us to evaluate the
exploration of the whole space. However, our objective is to
evaluate the exploitation capability in the region of a defined
solution. Therefore, the previous calculations must be adapted
with the aim of incorporating the concept of the neighbour-
hood into the calculation. This way, to introduce that, we
use the K-nearest neighbourhood algorithm. This algorithm
allows us to efficiently obtain the neighbour of a solution. The
calculation of the mean and the standard deviation is made
using exclusively the neighbours of the solution. As a starting
point, the KNN perturbation module is fed with a percentage
of the solutions generated by the binarization module in each
iteration. This is shown in Fig. 2 in the Solution iteration data
arrow. In our specific case, the percentage of solutions was
25% of the best solutions obtained in each iteration. The idea
of incorporating 25% of the best solutions aims to use elements
which belong to the first quartile to determine with this infor-
mation where the solution should be perturbed. Subsequently,
each time the binarization module needs to execute a perturba-
tion operator, it will deliver to the perturbation module a list of
solutions so that the perturbation module calculates, for each
solution, the measure that allows the perturbation to be made.
Finally, the list of measurements is delivered to the perturba-
tion operator which is responsible for executing the perturba-
tion. This is shown in Fig. 2 on the Solution neighbourhood
information arrow.

Finally, to perform the calculation of the measure, we con-
sider the value wi of Eq. (18), where �∗

i
 and �∗

i
 , correspond to

normalized values of the mean and deviation, respectively. The √
2 value is added to the wi values to normalize them between

0 and 1. The details of the calculation of w for each solution
are shown in Algorithm 1.

 As input, the algorithm uses the solution (sol) in order to
obtain its corresponding weights. As an output, the algo-
rithm delivers the weights (ListWeight) associated with
the solution. The first function to execute corresponds to
getting the K neighbours which are stored in neighbours.
Subsequently, with the neighbour list, wi is calculated for

(18)wi =

√
�∗
i
+ �∗

i√
2

each dimension according to Eqs. 16–18. D represents the
dimension of sol.

4.2 � Initialization operator

In the initialization of the solutions, the heuristic shown in Eq.
(19) is used. In this equation cij represents the cost of the object
i in the knapsack j, bj corresponds to the capacity constraint
of the knapsack j and pi corresponds to the profit of the i ele-
ment. This heuristic was proposed in García et al. [24] and its
objective is to select the elements that enter the knapsack. The
construction of a solution starts with the random selection of
a first element, later it is consulted if it is possible to add new
elements. If it is possible, from the list of elements that satisfy
the constraints, the one with the best value according to Eq. 19
is selected. The process of incorporating elements continues
until there are no elements that satisfy the constraints. The
pseudo-code is shown in Algorithm 2.

(19)�i =

∑m

j=1

cij

m(bj−
∑

l∈S clj)

pi

International Journal of Machine Learning and Cybernetics	

1 3

4.3 � K‑means operator

Since PSO and CS are continuous swarm intelligence
algorithms and the MKP is a combinatorial problem, a
discretization framework is required. In the literature, two
large groups of binarization algorithms have been pro-
posed. The first group corresponds to specific adaptations
of the continuous algorithm that can hardly be applied
to other continuous algorithms. The second group corre-
sponds to general binarization methods that usually have
lower performance than the specific methods but allow
adapting any continuous algorithm. For a detailed review
of the different techniques, the reader is referred to Craw-
ford et al. [12].

In order to binarize more than one continuous algo-
rithm, in this article we use a general method of binari-
zation based on the k-means unsupervised learning tech-
nique. This technique was chosen because it showed for
the knapsack problem to be more robust than other general
binarization techniques such as transfer functions García
et al. [24]. In Fig. 3 the main stages of the k-means bina-
rization method are considered. The binarization process
begins with the value of the solutions (s) and their dis-
placements (d) generated by the continuous algorithm.
This stage is illustrated in the left part of Fig. 3. Because
the algorithm is continuous, d takes values in ℝn space.
In the Eq. 20, the update of the solution is presented in
a general way. The st+1 variable represents the s solution
of the particle at time t+1. This solution is obtained from
the solution s at time t plus a d function calculated at time
t+1. The function d is specific to each metaheuristic and
produces values in ℝn . For example in Cuckoo Search
d = 𝛼 ⊕ Levy(𝜆)(x) , and in the PSO algorithm d can be
written in a simplified form as d = v(x).

Later we used d to perform the binarization. Let di(s(t)) the
magnitude of the displacement d(s(t)) in the i-th coordinate
of the solution. Then these displacements are grouped using
the magnitude of the displacement di(s(t)) . This grouping is
done using the k-means technique where k represents the
number of clusters used. This is visualized in the center of
Fig. 3. Later, for each cluster, we associate a transition prob-
ability f(k) shown on the right axis of the middle chart of
Fig. 3. Finally, with the value of this probability together
with Eq. 21, we proceed to make the transitions in the binary
space. This last part corresponds to the diagram on the right
in Fig. 3.

4.4 � KNN‑perturbation operator

A first operator considered a probability of transition of 0.3
and a second operator a probability of 0.5. The 0.3 value
was used based on the result of a previous work García et al.
[24]. This value was the one performing the best. In the case
of 0.5, it was used because it is a random operator giving
same probability of staying or making the transition.

The KNN perturbation operator is executed when the
perturbation criterion depicted in Fig. 1 is met. The crite-
rion evaluates the number of iterations in which the best
solution found has not changed. If the iteration threshold is
exceeded, then the operator is activated. For the implemen-
tation described in this article, the threshold of iterations
corresponded to 30. The KNN perturbation operator has as

(20)st+1 = st + dt+1(s(t))

(21)xi(t + 1)∶=

{
x̂i(t), if r and < TP(xi)

xi(t), otherwise

Fig. 3   K-means binarization method

	 International Journal of Machine Learning and Cybernetics

1 3

parameters: the list of current solutions and a value of the
force of the perturbation � . As an output, it gives us the list
of perturbed solutions.

The � percentage of the best solutions are sent to the KNN
perturbation module to calculate the weights that are used
to perform the perturbation. Later, with the weights in each
one of the variables, we proceed to perform the perturbation
of the best solutions. The rest of the solutions are subjected
to random perturbations handled by the indicator � . This
was designed thinking that solutions that did not have good
results were perturbed in a random way to adequately handle
the diversification of the solutions. Finally, once the solution
is perturbed, a repair operator is executed in case a restric-
tion is violated or new elements can be incorporated. The
pseudocode of the KNN perturbation operator is shown in
Algorithm 3.

4.5 � Repair operator

When modifications are made to the solution through the
K-means or KNN perturbation operators, the solution
obtained must be verified with respect to compliance with
its constraints and the possibility of adding new elements.
To carry that out, a repair operator is used. As an input,
the operator receives the solution to be repaired. The exit
of the operator corresponds to the repaired solution. The
first step in the procedure is to verify if the solution needs
to be repaired. In the case that it needs to be repaired, by
using the calculation defined by Eq. (19), we proceed to
eliminate elements from the solution. Once the constraints
are satisfied, the next step is to evaluate if new elements can
be incorporated. For this purpose, we again use Eq. (19) to

assign a weight to each element and identify the best element
to incorporate. Once those procedures have been completed,
the operator returns the repaired solution. The pseudo-code
of this process is displayed in Algorithm 4.

5 � Numerical results

In this section, the results of applying the KNN perturbation
operator in the machine learning framework are provided.
As a first step, we describe the methodology used to collect
the parameters used in our algorithm, and then develop the
experiments to evaluate its performance.

Our design and experimental development consist of two
stages. The first stage corresponds to the identification and
evaluation of the contribution of the KNN perturbation oper-
ator. The second stage aims to study how efficient our hybrid
proposal is with respect to other binarization frameworks
that have recently and efficiently solved the MKP.

The dataset2 used to perform the experiments consists
of instances that have 500 elements (n) and {5, 10, 30}
constraints (m). The nomenclature used to identify an
instance is: mkp.m.n-x, where m corresponds to the num-
ber of constraints, n to the total number of elements, and
x to the instance. Each pair (m, n) gives rise to a data-
set mkp.m.n where each one consists of 30 instances. In
each mkp.m.n dataset, the 30 instances are divided into
3 groups depending on the constraints bi = t ×

∑
j∈n aij ,

2  OR-Library: http://www.brune​l.ac.uk/mastj​jb/jeb/orlib​/mknap​info.
html.

http://www.brunel.ac.uk/mastjjb/jeb/orlib/mknapinfo.html
http://www.brunel.ac.uk/mastjjb/jeb/orlib/mknapinfo.html

International Journal of Machine Learning and Cybernetics	

1 3

where t ∈ {0.25, 0.50, 0.75} corresponds to the tightness
ratio. As algorithms to be binarized, cuckoo search and
PSO were used. The choice is mainly due to the fact that
they have been widely and successfully used to solve con-
tinuous optimization problems. For the execution of the
instances, we use a computer equipped with an Intel Core
i7-4770 processor with 16GB in RAM. The algorithm is
programmed in Python 2.7.

5.1 � Parameter settings

To perform the parametrization, we use 10 problem
instances chosen randomly from dataset mkp.5.250. The
range of parameters explored for the CS case is shown in
Table 1, in the range column. The k used for the binariza-
tion operator and for the perturbation operator is included.
The first step for obtaining the adequate parametrization
is to process the data set with the machine learning swarm
intelligence algorithm, for each parameter combination.
Each combination executes the chosen instances of the
dataset 10 times. With the averages of the 10 results
obtained for each configuration, we calculate the 4 meas-
urements defined in the Eqs. (22) to (25). Subsequently, for
each combination, the four measurements are placed on a
radar chart and the area of the chart is calculated. Finally,
the configuration that obtains the largest area is chosen.
The flow chart of the parameter settings is shown in Fig. 4.

1.	 The percentage deviation of the best value obtained in
ten executions compared with the best known value:

(22)bSolution = 1 −
KnownBestValue − BestValue

KnownBestValue

2.	 The percentage deviation of the worst value obtained in
ten executions compared with the best known value:

3.	 The percentage deviation of the average value obtained
in ten executions compared with the best known value:

4.	 The convergence time for the best value in each experi-
ment is normalized according to Eq. (25).

5.2 � Contribution of the KNN perturbation operator

In this section, we describe the results of the experiments con-
ducted to evaluate the contribution of the KNN perturbation
operator. In the case of the K-means binarization, two addi-
tional operators were designed and built to have a baseline.
These operators execute the binarization process in a random
way taking into account different fixed probabilities of transi-
tion. A first operator considers a transition probability of 0.3
and a second operator a probability of 0.5. For the evaluation
of the KNN perturbation operator, a random operator with a
probability of perturbation given by the factor � was built addi-
tionally. We recall that the KNN perturbation operator, uses
KNN along with the Morris measurement at the best 25 % of
the population and the rest uses a random operator. In addition,
we use a version of the algorithm, where the KNN perturba-
tion operator is not considered. The nomenclature used is the
following: km.rand.03 and km.rand.05 are the operators that

(23)wSolution = 1 −
KnownBestValue −WorstValue

KnownBestValue

(24)

aSolution = 1 −
KnownBestValue − AverageValue

KnownBestValue

(25)nTime = 1 −
convergenceTime − minTime

maxTime − minTime

Fig. 4   Flow chart of parameter setting

Table 1   Parameter setting for
the Cuckoo search algorithm

Parameters Description Value Range

� Perturbation operator coefficient 30% [30, 40]
N Number of nest 20 [20, 25]
G Number of transition groups K-means operator 5 [4, 5, 6]
K Neighbours number for the perturbation calculus 15 [10, 15]
� Step length 0.01 0.01
� Levy distribution parameter 1.5 1.5
Iteration number Maximum iterations 800 [800]

	 International Journal of Machine Learning and Cybernetics

1 3

allow the evaluation of the binarization of the K-means opera-
tor using probability 0.3 and 0.5, respectively. A first opera-
tor considered a probability of transition of 0.3 and a second
operator a probability of 0.5. The 0.3 value is used based on
the result of a previous work García et al. [24]. This value is
the one which has a better performance. In the case of 0.5, it
is used because it is a random operator with the same prob-
ability of staying or making the transition. In the case of the
KNN perturbation operator, we use the operator knn.without
to represent the case in which we do not use the perturbation
operator and knn.random in case we use the random perturba-
tion operator. Our original algorithm is denoted with knn.km.
In the case of the algorithms km.rand.03 and km.rand.05, we
always use the KNN perturbation operator in its original form.
In the case of the algorithms knn.without and knn.random, we
always use the binarization operator K-means in its original
form; these algorithms were studied in García et al. [24]. This
way we analyze the incremental contribution of our approach.

For the execution of the experiments, the dataset
mkp.30.500 was used, which corresponds to the dataset of
greatest complexity both in the number of restrictions and
in the number of elements. Each instance of the dataset was
executed 30 times to have statistical validity and the Wil-
coxon signed-rank nonparametric test was used to evaluate
if the difference between the results is significant. Table 2
shows the best value and the average value for all the variants
mentioned above. In the Wilcoxon test, we compared knn.km
which corresponds to our original algorithm with: knn.without,
knn.random, km.random.03 and km.random.05. From Table 2
it is concluded that the operator knn.km is better in practically
all instances for the Best value indicator. For the few cases
where the variants have obtained a better value, to see if that
value is robust, we use the average indicator. In those cases,
our algorithm is superior in all instances, indicating that the
KNN perturbation and K-means binarization operators, con-
tribute in an important way to the robustness of our algorithm.
The Wilcoxon test indicates that this robustness is statistically
significant.

To have a better understanding of the contributions of KNN
perturbation and km binarization operators to the final result,
we use the indicators Gap(%) and Bestvalue(%) defined in the
Eqs. (26) and (27), respectively. To simplify the visualization
of the comparison, the mkp.30.500 dataset was divided into
three groups using the tightness ratio criterion described at the
beginning of Section 5.

(26)Gap(%) = 100 ⋅
KnownBestValue − Value

KnownBestValue

(27)Bestvalue(%) = 100 ⋅
BestValue − Value

BestValue

Group 0 corresponds to problems contained between 0 and
9 including both and have a tightness ratio of 0.25. Group
1 contains the problems contained between 10 and 19 with
a tightness ratio of 0.5. Finally, the instances contained
between 20 and 29 correspond to group 2 with a tightness
ratio of 0.75. In Fig. 5 the results are displayed using the
Gap(%) indicator. With this indicator, we can identify in the
three groups, how the KM operator contributes to improving
the quality of the results. The knn.random and knn.without
variants that use the KM operator to perform the binarization
clearly have a better performance than km.random.03 and
km.random.05 operators. The KNN perturbation operator
contribution is also relevant. This is observed by compar-
ing the variant knn.km with knn.random and knn.without in
Fig. 5.

Additionally, to evaluate the satisfaction of the perturba-
tion condition in the knn.km algorithm, a histogram was
generated considering the times the criterion is executed.
The result is shown in Fig. 6. From the histogram, it fol-
lows that for the largest number of instances the criterion is
executed between 4 and 8 times. On the other hand, 2 was
the minimum number of times the criterion was executed.

Because we consider different instances when making the
violin charts, the Gap(%) indicator is not suitable to visual-
ize the dispersion of the results. To evaluate this dispersion,
we use the Bestvalue(%) indicator. This indicator considers
the best value obtained by each of the variants and for each
instance, to compare this with the value obtained from the
variant in each of the executions. The results are shown in
Fig. 7. In this figure, when we compare the interquartile
ranges represented by dotted lines, we see that KNN pertur-
bation and KM binarization operators contribute to decreas-
ing the dispersion of the solutions in the three groups.

Our last experiment consists of evaluating the conver-
gence of the different variants of our algorithm. For this,
as in the previous cases, we separate the dataset into three
groups. In each group, we consider the Best value obtained
for each one of the executed instances every 80 iterations
and we graph the %-Gap of this value. The results are shown
in Fig. 8. In that figure, it can be observed that the conver-
gence velocity is relatively similar for all the variants in the
three groups. Therefore, there is no significant contribution
from the KNN perturbation and KM binarization operators
in the convergence of solutions.

6 � Comparisons

This section aims to evaluate the performance of the knn.
km algorithm against other binarization-based algorithms
that have solved the MKP. As datasets, we use problems
mkp.5.500 and mkp.10.500 of the OR-library. These
instances after 30.500 correspond to the most difficult

International Journal of Machine Learning and Cybernetics	

1 3

Ta
bl

e 
2  

O
R-

Li
br

ar
y

be
nc

hm
ar

ks
 M

K
P

m
kp

.3
0.

50
0

In
st

an
ce

B
es

t
kn

n.
km

kn
n.

ra
nd

om
kn

n.
w

ith
ou

t
km

.ra
nd

om
.0

3
km

.ra
nd

om
.0

5

K
no

w
n

B
es

t
A

vg
B

es
t

A
vg

B
es

t
A

vg
B

es
t

A
vg

B
es

t
A

vg

0
11

60
56

11
58

68
11

58
25

.8
0

11
55

26
11

54
05

.2
5

11
55

24
11

54
09

.4
4

11
51

28
11

48
38

.8
5

11
52

80
11

50
00

.2
7

1
11

48
10

11
44

05
11

43
72

.6
5

11
46

67
11

45
40

.8
8

11
43

67
11

42
85

.6
8

11
41

63
11

39
62

.0
7

11
42

81
11

40
87

.1
2

2
11

67
41

11
65

83
11

65
50

.5
9

11
61

58
11

60
74

.2
3

11
61

42
11

60
45

.6
8

11
59

76
11

57
28

.4
2

11
59

70
11

57
42

.0
2

3
11

53
54

11
51

98
11

51
72

.3
7

11
47

82
11

47
07

.8
5

11
47

78
11

47
00

.2
8

11
46

70
11

44
35

.1
4

11
46

07
11

43
53

.8
6

4
11

65
25

11
63

53
11

63
14

.3
9

11
59

95
11

58
71

.5
7

11
59

39
11

58
25

.7
0

11
57

94
11

55
13

.4
6

11
57

94
11

55
39

.6
8

5
11

57
41

11
53

42
11

52
95

.0
6

11
52

44
11

51
30

.9
8

11
55

94
11

55
01

.4
1

11
49

56
11

47
18

.2
2

11
50

84
11

48
45

.4
6

6
11

41
81

11
39

87
11

39
62

.7
6

11
35

93
11

34
94

.5
9

11
36

24
11

35
04

.6
0

11
32

98
11

30
25

.0
3

11
33

15
11

30
37

.6
7

7
11

43
48

11
41

99
11

41
77

.8
7

11
36

26
11

34
98

.4
6

11
35

90
11

34
67

.7
4

11
34

47
11

31
76

.0
9

11
33

39
11

29
90

.3
4

8
11

54
19

11
48

22
11

47
94

.7
8

11
48

00
11

47
13

.7
2

11
48

22
11

47
04

.1
4

11
46

67
11

43
11

.6
1

11
46

13
11

43
24

.8
9

9
11

71
16

11
69

47
11

69
03

.7
0

11
63

82
11

62
96

.7
0

11
63

76
11

62
64

.3
1

11
60

77
11

56
92

.7
0

11
60

77
11

57
96

.4
4

10
21

81
04

21
79

95
21

79
55

.6
7

21
76

29
21

75
50

.0
0

21
77

76
21

76
72

.8
5

21
75

30
21

72
61

.9
3

21
75

56
21

73
15

.1
6

11
21

46
48

21
45

34
21

44
98

.9
6

21
41

10
21

40
23

.8
8

21
38

82
21

37
67

.0
2

21
38

64
21

36
24

.7
3

21
38

82
21

34
95

.4
2

12
21

59
78

21
56

38
21

56
00

.9
8

21
55

88
21

54
69

.6
8

21
56

90
21

55
70

.5
3

21
55

34
21

52
14

.6
1

21
55

34
21

52
87

.8
3

13
21

79
10

21
78

16
21

77
68

.7
8

21
73

60
21

72
83

.7
3

21
73

21
21

71
93

.5
2

21
71

50
21

69
45

.1
8

21
71

44
21

67
72

.0
1

14
21

56
89

21
51

52
21

51
15

.3
1

21
51

19
21

49
95

.5
8

21
51

19
21

50
11

.8
7

21
49

92
21

47
28

.4
3

21
49

16
21

45
70

.6
4

15
21

59
19

21
54

08
21

53
60

.9
0

21
54

08
21

53
14

.5
1

21
52

54
21

51
67

.2
9

21
50

85
21

47
82

.7
7

21
51

13
21

48
50

.5
9

16
21

59
07

21
55

76
21

55
51

.2
5

21
54

53
21

53
29

.9
7

21
55

16
21

54
35

.6
7

21
53

94
21

51
48

.6
6

21
53

14
21

49
19

.9
9

17
21

65
42

21
63

36
21

63
13

.9
4

21
60

64
21

60
00

.5
8

21
58

35
21

57
19

.0
1

21
57

76
21

55
80

.0
9

21
57

76
21

54
26

.4
5

18
21

73
40

21
70

13
21

69
68

.2
3

21
68

16
21

66
90

.7
3

21
69

62
21

68
64

.8
5

21
68

72
21

65
87

.5
8

21
68

82
21

66
88

.8
8

19
21

47
39

21
43

32
21

42
88

.2
3

21
41

61
21

40
87

.1
8

21
40

73
21

39
99

.9
6

21
40

73
21

38
58

.3
3

21
40

33
21

36
58

.8
2

20
30

16
75

30
13

43
30

13
07

.1
8

30
13

47
30

12
17

.2
6

30
12

96
30

12
16

.1
9

30
12

40
30

10
07

.7
8

30
12

19
30

10
07

.4
1

21
30

00
55

29
97

20
29

96
82

.2
7

29
96

92
29

95
66

.1
9

29
96

40
29

95
21

.0
7

29
94

77
29

92
72

.8
6

29
95

36
29

92
61

.8
3

22
30

50
87

30
48

52
30

48
07

.2
1

30
48

15
30

47
08

.5
1

30
48

15
30

47
29

.1
9

30
46

39
30

43
45

.1
9

30
46

63
30

43
42

.6
6

23
30

20
32

30
16

58
30

16
35

.9
3

30
16

33
30

15
50

.1
1

30
15

41
30

14
34

.6
3

30
15

00
30

13
07

.7
5

30
15

06
30

13
15

.4
2

24
30

44
62

30
41

86
30

41
59

.5
1

30
41

49
30

40
51

.4
0

30
41

73
30

40
65

.0
4

30
40

60
30

38
68

.5
8

30
40

48
30

37
60

.0
4

25
29

70
12

29
67

74
29

67
38

.2
4

29
64

50
29

63
87

.0
8

29
64

35
29

63
18

.3
7

29
63

88
29

60
28

.1
7

29
63

84
29

60
68

.8
9

26
30

33
64

30
29

41
30

29
04

.7
7

30
28

99
30

28
39

.4
3

30
28

33
30

27
39

.2
4

30
26

66
30

24
42

.4
6

30
26

66
30

22
96

.3
0

27
30

70
07

30
66

16
30

65
81

.5
6

30
66

16
30

64
87

.1
1

30
64

50
30

63
26

.4
8

30
63

76
30

59
87

.9
5

30
63

49
30

60
47

.1
0

28
30

31
99

30
27

91
30

27
57

.6
2

30
25

72
30

25
10

.7
9

30
25

72
30

24
59

.9
7

30
25

06
30

22
66

.6
3

30
24

70
30

22
53

.3
6

29
30

05
96

30
01

70
30

01
22

.1
5

30
01

29
30

00
55

.0
2

30
01

06
30

00
30

.5
1

30
00

35
29

97
09

.8
6

29
99

91
29

96
04

.2
5

A
ve

ra
ge

21
14

51
.8

7
21

11
85

.1
7

21
11

49
.6

2
21

09
59

.4
3

21
08

61
.7

7
21

09
34

.8
3

21
08

31
.7

4
21

07
77

.7
7

21
05

12
.3

7
21

07
78

.0
7

21
04

88
.6

9
p-

va
lu

e
1.

86
e-

05
1.

79
e-

05
1.

73
e-

06
1.

73
e-

06
6.

34
e-

06
6.

98
e-

06
1.

73
e-

06
1.

73
e-

06

	 International Journal of Machine Learning and Cybernetics

1 3

Fig. 5   %-Gap comparison between different algorithms for the mkp.30.500 dataset

Fig. 6   Histogram with the
number of perturbation operator
executions for an instance

International Journal of Machine Learning and Cybernetics	

1 3

instances of the library. For the evaluation, we choose
according to the best of our knowledge the two best binari-
zations that use a general metaheuristics binarization mecha-
nism based on transfer functions. The first of these algo-
rithms corresponds to the Binary Artificial Algae Algorithm
BAAA​ developed by Zhang et al. [61]. This algorithm uses a
V-shape transfer function as a binarization mechanism. The
second algorithm is a Binary differential search algorithm
BDS developed by Liu et al. [37].

In Table 3, we evaluate the performance of our knn.km
algorithm with BAAA​.3 It uses transfer functions as a general
mechanism of binarization. In particular BAAA​ used the
tanh =

e�|x|−1

e�|x|+1
 function to perform the transfer. The parameter

� of the tanh function was set to a value 1.5. Additionally an
elite local search procedure was used by BAAA​ to improve
solutions. As maximum number of iterations BAAA​ used

35000. The computer configuration used to run the BAAA​
algorithm was: PC Intel Core(TM) 2 dual CPU
Q9300@2.5GHz, 4GB RAM and 64-bit Windows 7 operat-
ing system. In our knn.km algorithm, the configurations are
the same used in the previous experiments.

In addition, in order to determine if knn.km averages and
standard deviations are significantly different than averages
and deviations obtained by the BAAA​, we have performed
Student’s t-test. The t statistic has the following form:

where:

X̂1 : Average of BAAA​ for each instance

(28)
t =

X̂1 − X̂2√
(n1−1)SD

2

1
+(n2−1)SD

2

2

n1+n2−2

n1+n2

n1n2

Fig. 7   %-Bestvalue comparison between different algorithms for the mkp.30.500 dataset

3  Best values within our comparison are indicated in bold. This also
holds for the next table.

	 International Journal of Machine Learning and Cybernetics

1 3

SD1 : Standard deviation of BAAA​ for each instance
n1 : number of tests for BAAA​ for each instance
X̂2 : Average of knn.km-PSO or knn.km-CS for each
instance
SD2 : Standard deviation knn.km-PSO or knn.km-CS for
each instance
n2 : number of tests for knn.km-PSO or knn.km-CS for
each instance

The t values can be positive, neutral, or negative. The dou-
ble-positive value (++) of t indicates that knn.km is signifi-
cantly better than the other algorithms. In the opposite case
( −− ), knn.km obtains significantly worse solutions. If t is a
single positive (+), knn.km shows to be better but not sig-
nificantly. On the other hand, if the result is single negative
(-), knn.km demonstrates to be worse, but not in a signifi-
cant way. Finally, a neutral value of t depicts equality in the
results. We stated confidence interval at the 95% confidence
level. Finally, the Best value and the average results of all
instances are compared with knn.km using the Wilcoxon test
to evaluate if the results are significant in the whole dataset.

knn.km-PSO and knn.km-CS outperform practically
in all problems the BAAA​. In the Best value indicator,
knn.km-PSO was higher in 13 instances, knn.km-CS in 8.

Additionally in 8 instances knn.km-PSO and knn.km-CS
obtained the same best value, and in one instance BAAA​
and knn.km-PSO obtained the best value. In the case of the
average indicator, in 15 instances knn.km-CS outperform
the other algorithms, in 13 instances it was knn.km-PSO
and in one case it was BAAA​.

In Table 4, we evaluate the performance of our knn.km
algorithms with TR-DBS ( tanh Random) and TE-DBS
( tanh Elitist) developed in Liu et al. [37]. DBS used the
tanh =

e�|x|−1

e�|x|+1
 function to perform the binarization. The

parameter � of the tanh function was set to a value of 2.5.
As maximum number of iterations DBS used 10000. For
DBS, all computational experiments were conducted in
Matlab 7.5 on a PC equipped with an Intel Pentium Dual-
Core i7-4770 processor (3.40 GHz) with 16GB of RAM
in the Windows OS. In our knn.km-framework, the con-
f igurations are the same used in the previous
experiments.

The comparison between the DBS and knn.km algo-
rithms show that for the Best value indicator, TE-DBS
obtained 19 best values, knn.km-CS 8, TR-DBS 4 and
knn.km-PSO 2. When the average indicator is observed,
we see that knn.Km-CS scored 15 best average, TE-DBS
scored 9, knn.km-PSO 5 and TR-DBS 1. The comparison

Fig. 8   Evolution of the best objective value for the different variants

International Journal of Machine Learning and Cybernetics	

1 3

Ta
bl

e 
3  

O
R-

Li
br

ar
y

be
nc

hm
ar

ks
 M

K
P

m
kp

.5
.5

00
 

In
st

an
ce

B
es

t
BA

AA
​

kn
n.

km
-P

SO
kn

n.
km

-C
S

K
no

w
n

B
es

t
A

vg
std

B
es

t
A

vg
Ti

m
e(

s)
std

B
es

t
A

vg
Ti

m
e(

s)
std

0
12

01
48

12
00

66
12

00
13

.7
21

.5
7

12
01

34
12

00
89

.3
51

9
36

.4
+

+
(9

.8
)

12
00

96
12

00
79

.1
49

8
19

.7
+

+
(1

2.
3)

1
11

78
79

11
77

02
11

75
60

.5
11

.4
11

78
44

11
77

69
.1

54
1

41
.4

+
+

(2
6.

6)
11

78
37

11
77

58
.1

52
7

46
.2

+
+

(2
2.

7)
2

12
11

31
12

09
51

12
07

82
.9

87
.9

6
12

10
39

12
09

32
.4

53
1

52
.1

+
+

(8
.0

)
12

11
12

12
09

61
.3

49
1

43
.1

+
+

(8
.4

)
3

12
08

04
12

05
72

12
03

40
.6

10
6.

01
12

07
52

12
06

31
.6

49
9

63
.2

+
+

(1
2.

9)
12

07
52

12
06

44
.1

46
7

73
.2

+
+

(1
2.

9)
4

12
23

19
12

22
31

12
21

01
.8

56
.9

5
12

22
80

12
21

87
.1

51
4

61
.4

+
+

(5
.6

)
12

22
80

12
22

01
.4

49
7

41
.2

+
+

(7
.8

)
5

12
20

24
12

19
57

12
17

41
.8

84
.3

3
12

20
07

12
19

00
.1

56
8

46
.1

+
+

(9
.0

)
12

19
82

12
18

41
.2

49
7

31
.3

+
+

(6
.1

)
6

11
91

27
11

90
70

11
89

13
.4

63
.0

1
11

91
13

11
89

71
.1

53
8

46
.3

+
+

(4
.0

)
11

90
94

11
90

01
.1

47
9

38
.3

+
+

(6
.5

)
7

12
05

68
12

04
72

12
03

31
.2

69
.0

9
12

04
63

12
03

41
.1

54
9

55
.1

+
(0

.6
)

12
05

36
12

04
21

.1
48

1
51

.1
+

+
(5

.7
)

8
12

15
86

12
10

52
12

06
83

.6
83

.8
8

12
13

77
12

12
01

.7
57

1
61

.1
+

+
(2

7.
3)

12
13

77
12

12
31

.2
49

2
51

.2
+

+
(3

0.
5)

9
12

07
17

12
04

99
12

02
96

.3
11

0.
06

12
05

24
12

04
01

.3
59

1
73

.2
+

+
(4

.4
)

12
06

85
12

05
01

.8
47

2
48

.5
+

+
(9

.4
)

10
21

84
28

21
81

85
21

79
84

.7
12

3.
94

21
82

96
21

81
93

.1
53

1
74

.1
+

+
(7

.9
)

21
84

22
21

82
81

.5
51

0
71

.4
+

+
(1

1.
3)

11
22

12
02

22
08

52
22

05
27

.5
16

9.
16

22
10

07
22

09
18

.1
59

8
68

.9
+

+
(1

1.
7)

22
10

07
22

09
27

.2
54

8
64

.1
+

+
(1

2.
1)

12
21

75
42

21
72

58
21

70
56

.7
10

4.
95

21
73

56
21

72
31

.7
60

1
67

.1
+

+
(9

.3
)

21
75

28
21

74
27

.1
58

9
58

.1
+

+
(1

6.
9)

13
22

35
60

22
35

10
22

34
50

.9
26

.0
2

22
35

58
22

34
71

.7
62

1
41

.2
+

+
(2

.3
3)

22
35

18
22

34
58

.1
53

1
42

.1
+

(0
.4

3)
14

21
89

66
21

88
11

21
86

34
.3

97
.5

2
21

89
62

21
88

02
.8

65
2

41
.5

+
+

(8
.7

)
21

88
84

21
88

07
.3

57
9

41
.2

+
+

(9
.0

)
15

22
05

30
22

04
29

22
03

75
.9

31
.8

6
22

05
14

22
04

31
.7

66
9

47
.2

+
+

(5
.4

)
22

04
41

22
03

61
.3

54
1

28
.7

−
(1

.8
6)

16
21

99
89

21
97

85
21

96
19

.3
93

.0
1

21
99

43
21

98
01

.3
64

7
53

.6
+

+
(9

.3
)

21
99

43
21

98
02

.1
50

1
41

.3
+

+
(9

.8
)

17
21

82
15

21
80

32
21

78
13

.2
11

5.
37

21
80

94
21

78
91

.3
69

3
55

.1
+

+
(3

.3
)

21
81

94
21

79
92

.1
60

3
51

.2
+

+
(7

.8
)

18
21

69
76

21
69

40
21

68
62

.0
32

.5
1

21
69

40
21

68
58

.3
64

7
42

.4
−

(0
.4

)
21

68
73

21
68

31
.2

58
3

32
.1−

−
(3

.7
)

19
21

97
19

21
96

02
21

94
35

.1
54

.4
5

21
97

04
21

96
21

.6
64

1
47

.1
+

+
(1

4.
1)

21
96

93
21

95
69

.8
62

4
48

.1
+

+
(1

0.
1)

20
29

58
28

29
56

52
29

55
05

.0
76

.3
0

29
57

17
29

56
33

.1
63

1
42

.1
+

+
(8

.1
)

29
57

17
29

56
31

.3
54

1
34

.3
+

+
(8

.2
)

21
30

80
86

30
77

83
30

75
77

.5
13

5.
94

30
80

65
30

79
43

.1
67

8
41

.3
+

+
(1

4.
1)

30
80

77
30

79
57

.1
60

5
48

.3
+

+
(1

4.
5)

22
29

97
96

29
97

27
29

96
64

.1
28

.8
1

29
97

96
29

97
21

.9
71

1
64

.1
+

+
(4

.5
)

29
97

88
29

96
81

.3
53

7
46

.7
+

(1
,7

)
23

30
64

80
30

64
69

30
63

85
.0

31
.6

4
30

64
80

30
64

48
.3

72
1

41
.1

+
+

(6
.7

)
30

64
76

30
64

07
.8

56
7

41
.3

+
+

(2
.4

)
24

30
03

42
30

02
40

30
01

36
.7

51
.8

4
30

02
45

30
02

07
.1

71
2

31
.1

+
+

(6
.3

)
30

02
45

30
01

97
.8

64
9

31
.5

+
+

(5
.5

)
25

30
25

71
30

24
92

30
23

76
.0

53
.9

4
30

25
60

30
24

71
.8

76
1

31
.8

+
+

(8
.4

)
30

24
92

30
24

41
.1

63
1

33
.6

+
+

(5
.6

)
26

30
13

39
30

12
72

30
11

58
.0

44
.3

30
13

22
30

12
51

.7
76

9
35

.4
+

+
(7

.5
)

30
13

22
30

12
52

.1
64

9
35

.8
+

+
(8

.9
)

27
30

64
54

30
62

90
30

61
38

.4
84

.5
6

30
64

30
30

63
26

.1
78

2
51

.3
+

+
(1

0.
4)

30
64

22
30

63
11

.8
28

6
23

.8
+

+
(1

0.
8)

28
30

28
28

30
27

69
30

26
90

.1
34

.1
1

30
28

22
30

27
45

.7
75

7
31

.6
+

+
(6

.5
)

30
28

14
30

27
27

.1
61

4
31

.3
+

+
(4

.4
)

29
29

99
10

29
97

57
29

97
02

.3
31

.6
6

29
98

28
29

97
56

.1
80

1
37

.5
+

+
(6

.0
)

29
99

04
29

97
86

.7
77

1
51

.3
+

+
(7

.7
)

A
ve

ra
ge

21
41

68
.8

0
21

40
14

.2
3

21
38

61
.9

5
70

.5
4

21
41

05
.7

3
21

40
05

.0
4

63
4.

80
49

.3
9

21
41

17
.0

3
21

40
16

.4
1

54
5.

33
43

.3
3

p-
va

lu
e

w
ith

 k
nn

.k
m

-P
SO

3.
16

e-
06

1.
96

e-
06

0.
76

0.
65

p-
va

lu
e

w
ith

 k
nn

.k
m

-C
S

1.
08

e-
05

3.
52

e-
06

0.
76

0.
65

	 International Journal of Machine Learning and Cybernetics

1 3

between DBS and the knn.km algorithms shows that for
the Best value indicator TE-DBS obtained 19 best values,
knn.km-CS 8, TR-DBS 4 and knn.km-PSO 2. The average
indicator also indicates that knn.km-CS obtained 15 best
average, TE-DBS obtained 9, knn.km-PSO 5 and TR-DBS
1. Furthermore, the Wilcoxon test in the case of the Best
value indicator points out significant differences only
between knn.km-PSO and TR-DBS and between knn.km-CS
and TR-DBS, both cases in favor of the knn.km algorithms.
When we evaluate the average indicator, we observe that
knn.km-CS has a significant difference over all other algo-
rithms and, in the case of knn.km-PSO, it exhibits signifi-
cant differences over TR-DBS and TE-DBS.

7 � Conclusions

In this work, we have proposed an improved binarization
framework, which uses the K-means technique to enable
continuous metaheuristics for COPs. The proposed frame-
work integrates a local perturbation operator based on the
K-nearest neighbor technique. Using of this approach, par-
ticle swarm optimization and cuckoo search metaheuris-
tics were used to solve the well-known multidimensional
knapsack problem. In this regard, the computational
results in the 90 largest instances commonly used in the
literature showed that the proposed improved framework

Table 4   OR-Library benchmarks MKP mkp.10.500 

Instance Best TR-DBS TE-DBS knn.km-PSO knn.km-CS

Known Best Avg Best Avg Best Avg Time(s) Best Avg Time

0 117821 114716 114425.4 117811 117801.2 117779 117683.5 763 117801 117697.2 789
1 119249 119232 119223.0 119249 118024.0 119232 119048.2 828 119200 118988.1 761
2 119215 119215 117625.6 119215 117801.4 119194 118876.4 819 119159 118849.7 794
3 118829 118813 117625.8 118813 117801.2 118813 118731.8 783 118802 118701.3 789
4 116530 114687 114312.4 116509 114357.2 116434 116168.9 774 116471 116218.3 812
5 119504 119504 112503.7 119504 117612.8 119483 119301.2 811 119442 119297.2 805
6 119827 116094 115629.1 119827 119827.4 119749 119602.4 769 119764 119608.1 817
7 118344 116642 115531.9 118301 117653.3 118307 118141.8 825 118309 118145.6 808
8 117815 114654 114204.0 117815 115236.4 117801 117577.3 775 117781 117588.1 794
9 119251 114016 113622.8 119231 118295.1 119186 118961.8 826 119196 118951.2 817
10 217377 209191 208710.2 217377 212570.3 217318 217065.1 842 217343 217064.6 837
11 219077 219077 217277.2 219077 218570.2 219036 218901.7 848 219022 218967.7 837
12 217847 210282 210172.3 217377 212570.4 217772 217599.2 859 217797 217691.4 884
13 216868 209242 206178.6 216868 216868.9 216843 216603.2 892 216802 216651.3 901
14 213873 207017 206656.0 207017 206455.0 213814 213524.1 923 213809 213511.2 912
15 215086 204643 203989.5 215086 215086.0 215013 214811.3 821 215021 214931.3 887
16 217940 205439 204828.9 217940 217940.5 217825 217699.1 924 217880 217674.8 912
17 219990 208712 207881.6 219984 209990.2 219825 219547.3 922 219949 219601.3 911
18 214382 210503 209787.6 210735 211038.2 214332 213989.1 886 214346 214014.8 896
19 220899 205020 204435.7 220899 219986.8 220833 220572.1 967 220827 220588.3 1002
20 304387 304387 302658.8 304387 304264.5 304344 304012.7 1007 304351 304062.6 973
21 302379 302379 301658.6 302379 302164.4 302332 302101.6 1004 302263 302177.8 996
22 302417 290931 290859.9 302416 302014.6 302354 302081.7 982 302354 302121.5 995
23 300784 290859 290021.4 291295 291170.6 300743 300497.1 1038 300745 300546.6 1066
24 304374 289365 288950.1 304374 304374.0 304267 304173.1 858 304340 304194.7 984
25 301836 292411 292061.8 301836 301836.0 301730 301604.5 995 301754 301610.4 1084
26 304952 291446 290516.2 291446 291446.0 304905 304783.8 1081 304911 304817.1 1012
27 296478 293662 293125.5 295342 294125.5 296361 296201.3 1047 296437 296307.2 1028
28 301359 285907 285293.4 288907 287923.4 301293 301073.2 988 301313 301112.6 1074
29 307089 290300 289552.4 295358 290525.2 307002 306837.2 1102 307014 306901.3 974
Average 212859.3 206278.2 205310.6 210879.2 209511.0 212797.3 212592.4 898.6 212806.8 212619.8 905.0
p-value with knn.km-PSO 1.86e-05 1.9e-06 0.79 2.2e-04 0.19 2.1e-03
p-value with knn.km-CS 2.59e-05 1.9e-06 0.69 1.8e-04 0.19 2.1e-03

International Journal of Machine Learning and Cybernetics	

1 3

works competitively compared with the best algorithms
that implement general binarization techniques. The KNN
perturbation operator of the algorithm was analyzed and it
was shown that the operator played a key role in the per-
formance of the algorithm. In particular, for the case of the
largest dataset mkp.30.500, the use of this operator allows
improving the results going from average values of 0.14 %
when a random perturbation operator is used to values of
0.28 % when the operator is replaced with a KNN pertur-
bation operator. Finally, when comparing our algorithmic
approach with the best binarization frameworks proposed
so far for solving the multidimensional knapsack problem,
it could be observed that our approach is able to improve
their previous results.

As future work, we plan to investigate the behavior of
other continuous metaheuristics when introduced in our
framework. Additionally, it is interesting to apply and assess
the performance of these hybrid algorithms to other NP

-hard combinatorial problems. Another interesting topic
worth investigation would be a comparison of different auto-
matic parametrization methods including the one used in this
paper and, e.g, IRACE López-Ibáñez et al. [39]. In addition,
it seems interesting to investigate the use of machine learn-
ing techniques to operators that control the size of the popu-
lation in order to reduce convergence times of the optimiza-
tion algorithms. These techniques could find areas where it
is convenient to intensify or diversify and areas where it is
not appropriate to do so. On the other hand, we find it chal-
lenging to extend the current work designing perturbation
operators which use artificial neural network techniques.
In principle, we can explore perturbation operators which
use traditional neural networks such as the feedforward or
recursive neural networks and later extend the perturba-
tion operators to use neural networks with reinforcement
learning. Finally, it seems useful to explore hybridization in
another direction, using metaheuristic algorithms that allow
finding the proper parameterization and topology of a neural
network automatically when it tries to solve a specific data
problem.

Acknowledgements  José García was supported by the Grant
CONICYT/FONDECYT/INICIACION/11180056.

References

	 1.	 Ahmad SR, Bakar AA, Yaakub MR (2015) Metaheuristic algo-
rithms for feature selection in sentiment analysis. In: Science and
Information Conference (SAI), pp 222–226. IEEE

	 2.	 Al-Madi N, Faris H, Mirjalili S (2019) Binary multi-verse opti-
mization algorithm for global optimization and discrete problems.
Int J Mach Learn Cybern 1–21

	 3.	 Asta S, Özcan E, Curtois T (2016) A tensor based hyper-heuristic
for nurse rostering. Knowl-Based Syst 98:185–199

	 4.	 Cadenas JM, Garrido MC, Muñoz E (2009) Using machine
learning in a cooperative hybrid parallel strategy of metaheuris-
tics. Inf Sci 179(19):3255–3267

	 5.	 Calvet L, de Armas J, Masip D, Juan AA (2017) Learnheuris-
tics: hybridizing metaheuristics with machine learning for opti-
mization with dynamic inputs. Open Math 15(1):261–280

	 6.	 Caserta M, Voß S (2010) Metaheuristics: intelligent problem
solving. Springer, Boston, pp 1–38

	 7.	 Chen E, Li J, Liu X (2011) In search of the essential binary
discrete particle swarm. Appl Soft Comput 11(3):3260–3269

	 8.	 Chou J-S, Ngo N-T, Pham A-D (2015) Shear strength predic-
tion in reinforced concrete deep beams using nature-inspired
metaheuristic support vector regression. J Comput Civ Eng
30(1):04015002

	 9.	 Chou J-S, Nguyen T-K (2018) Forward forecast of stock price
using sliding-window metaheuristic-optimized machine-learning
regression. IEEE Trans Industr Inf 14(7):3132–3142

	10.	 Chou J-S, Pham A-D (2017) Nature-inspired metaheuristic opti-
mization in least squares support vector regression for obtaining
bridge scour information. Inf Sci 399:64–80

	11.	 Chou J-S, Thedja JPP (2016) Metaheuristic optimization within
machine learning-based classification system for early warnings
related to geotechnical problems. Autom Constr 68:65–80

	12.	 Crawford B, Soto R, Astorga G, García J, Castro C, Paredes F
(2017) Putting continuous metaheuristics to work in binary search
spaces. Complexity, 2017:Article ID 8404231

	13.	 Damaševičius R, Woźniak M (2017) State flipping based hyper-
heuristic for hybridization of nature inspired algorithms. In: Inter-
national Conference on Artificial Intelligence and Soft Comput-
ing, pp 337–346. Springer

	14.	 de Alvarenga Rosa R, Machado AM, Ribeiro GM, Mauri GR
(2016) A mathematical model and a clustering search metaheuris-
tic for planning the helicopter transportation of employees to the
production platforms of oil and gas. Comput Ind Eng 101:303–312

	15.	 De Jong K (2007) Parameter setting in EAs: a 30 year perspective.
Parameter setting in evolutionary algorithms. Springer, Berlin, pp
1–18

	16.	 de León AD, Lalla-Ruiz E, Melián-Batista B, Moreno-Vega JM
(2017) A machine learning-based system for berth scheduling at
bulk terminals. Expert Syst Appl 87:170–182

	17.	 Fernandes S, Setoue K, Adeli H, Papa J (2017) Fine-tuning
enhanced probabilistic neural networks using metaheuristic-driven
optimization. In: Bio-Inspired Computation and Applications in
Image Processing, pp 25–45. Elsevier

	18.	 Fong S, Wong R, Vasilakos AV (2016) Accelerated PSO swarm
search feature selection for data stream mining big data. IEEE
Trans Serv Comput 9(1):33–45

	19.	 Fréville A (2004) The multidimensional 0–1 knapsack problem:
an overview. Eur J Oper Res 155(1):1–21

	20.	 García J, Altimiras F, Peña A, Astorga G, Peredo O (2018a) A
binary cuckoo search big data algorithm applied to large-scale
crew scheduling problems. Complexity, 2018:Article ID 8395193

	21.	 García, J, Crawford B, Soto R, Astorga G (2017) A percentile
transition ranking algorithm applied to knapsack problem. In: Pro-
ceedings of the Computational Methods in Systems and Software,
pp 126–138. Springer

	22.	 García J, Crawford B, Soto R, Astorga G (2018b) A percentile
transition ranking algorithm applied to binarization of continuous
swarm intelligence metaheuristics. In: International Conference
on Soft Computing and Data Mining, pp 3–13. Springer

	23.	 García J, Crawford B, Soto R, Astorga G (2019a) A clustering
algorithm applied to the binarization of swarm intelligence con-
tinuous metaheuristics. Swarm Evol Comput 44:646–664

	24.	 García J, Crawford B, Soto R, Castro C, Paredes F (2018c) A
k-means binarization framework applied to multidimensional
knapsack problem. Appl Intell 48(2):357–380

	 International Journal of Machine Learning and Cybernetics

1 3

	25.	 García J, Moraga P, Valenzuela M, Crawford B, Soto R, Pinto H,
Peña A, Altimiras F, Astorga G (2019b) A db-scan binarization
algorithm applied to matrix covering problems. Comput Intell
Neurosci, 2019

	26.	 Garey M, Johnson D (1979) A guide to the theory of NP-com-
pleteness. Comput Intractability

	27.	 Guo H, Liu B, Cai D, Lu T (2018) Predicting protein-protein inter-
action sites using modified support vector machine. Int J Mach
Learn Cybernet 9(3):393–398

	28.	 Iooss B, Lemaître P (2015) A review on global sensitivity analysis
methods. Uncertainty management in simulation-optimization of
complex systems. Springer, Berlin, pp 101–122

	29.	 Jin Y, Qu R, Atkin J (2014) A population-based incremental learn-
ing method for constrained portfolio optimisation. In: Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC),
2014 16th International Symposium on, pp 212–219. IEEE

	30.	 Juan AA, Faulin J, Grasman SE, Rabe M, Figueira G (2015) A
review of simheuristics: extending metaheuristics to deal with sto-
chastic combinatorial optimization problems. Oper Res Perspect
2:62–72

	31.	 Kennedy J, Eberhart RC (1997) A discrete binary version of the
particle swarm algorithm. In: Systems, Man, and Cybernetics,
1997. Computational Cybernetics and Simulation., 1997 IEEE
International Conference on, vol 5, pp 4104–4108. IEEE

	32.	 Korkmaz S, Babalik A, Kiran MS (2018) An artificial algae algo-
rithm for solving binary optimization problems. Int J Mach Learn
Cybernet 9(7):1233–1247

	33.	 Kuo R, Kuo P, Chen YR, Zulvia FE (2016a) Application of
metaheuristics-based clustering algorithm to item assignment in
a synchronized zone order picking system. Appl Soft Comput
46:143–150

	34.	 Kuo R-J, Mei C, Zulvia FE, Tsai C (2016b) An application of
a metaheuristic algorithm-based clustering ensemble method to
APP customer segmentation. Neurocomputing 205:116–129

	35.	 Leonard BJ, Engelbrecht AP, Cleghorn CW (2015) Critical con-
siderations on angle modulated particle swarm optimisers. Swarm
Intell 9(4):291–314

	36.	 Li Z-q, Zhang H-l, Zheng J-h, Dong M-j, Xie Y-f, Tian Z-j (2011)
Heuristic evolutionary approach for weighted circles layout. Infor-
mation and automation. Springer, Berlin, pp 324–331

	37.	 Liu J, Wu C, Cao J, Wang X, Teo KL (2016) A binary differential
search algorithm for the 0–1 multidimensional knapsack problem.
Appl Math Model 40(23–24):9788–9805

	38.	 Liu W, Liu L, Cartes D (2007) Angle modulated particle swarm
optimization based defensive islanding of large scale power sys-
tems. IEEE Power Engineering Society Conference and Exposi-
tion in Africa 1–8

	39.	 López-Ibáñez M, Dubois-Lacoste J, Cáceres LP, Birattari M,
Stützle T (2016) The irace package: Iterated racing for automatic
algorithm configuration. Oper Res Perspect 3:43–58

	40.	 Mann PS, Singh S (2017) Energy efficient clustering protocol
based on improved metaheuristic in wireless sensor networks. J
Netw Comput Appl 83:40–52

	41.	 Martin S, Ouelhadj D, Beullens P, Ozcan E, Juan AA, Burke EK
(2016) A multi-agent based cooperative approach to scheduling
and routing. Eur J Oper Res 254(1):169–178

	42.	 Mirghasemi S, Andreae P, Zhang M (2019) Domain-independent
severely noisy image segmentation via adaptive wavelet shrinkage
using particle swarm optimization and fuzzy c-means. Expert Syst
Appl 133:126–150

	43.	 Moiz DZ, AE, Mezioud C, Draa A (2015) Binary bat algorithm:
On the efficiency of mapping functions when handling binary
problems using continuous-variable-based metaheuristics. In:
Computer Science and Its Applications - 5th IFIP TC 5 Interna-
tional Conference, CIIA 2015, Saida, Algeria, May 20-21, 2015,
Proceedings, pp 3–14

	44.	 Pampara G (2012) Angle modulated population based algorithms
to solve binary problems. PhD thesis, University of Pretoria,
Pretoria

	45.	 Ries J, Beullens P (2015) A semi-automated design of instance-
based fuzzy parameter tuning for metaheuristics based on decision
tree induction. J Oper Res Soc 66(5):782–793

	46.	 Santos HG, Ochi LS, Marinho EH, Drummond LMDA (2006)
Combining an evolutionary algorithm with data mining to solve
a single-vehicle routing problem. Neurocomputing 70(1–3):70–77

	47.	 Saremi S, Mirjalili S, Lewis A (2015) How important is a transfer
function in discrete heuristic algorithms. Neural Comput Appl
26(3):625–640

	48.	 Smith-Miles K, Baatar D, Wreford B, Lewis R (2014) Towards
objective measures of algorithm performance across instance
space. Comput Oper Res 45:12–24

	49.	 Streichert F, Stein G, Ulmer H, Zell A (2003) A clustering based
niching method for evolutionary algorithms. Genetic and evolu-
tionary computation conference. Springer, Berlin, pp 644–645

	50.	 Swagatam D, Rohan M, Rupam K (2013) Multi-user detection
in multi-carrier cdma wireless broadband system using a binary
adaptive differential evolution algorithm. Proceedings of the 15th
annual conference on Genetic and evolutionary computation,
GECCO, pp 1245–1252

	51.	 Talbi E-G (2016) Combining metaheuristics with mathematical
programming, constraint programming and machine learning.
Ann Oper Res 240(1):171–215

	52.	 Tsai C-W, Chiang M-C, Ksentini A, Chen M (2016) Metaheuristic
algorithms for healthcare: open issues and challenges. Compu
Electr Eng 53:421–434

	53.	 Tyasnurita R, Özcan E, Shahriar A, John R (2015) Improving
performance of a hyper-heuristic using a multilayer perceptron for
vehicle routing. In: 15th UK Workshop on Computational Intel-
ligence, UK

	54.	 Vasquez M, Hao J-K (2001) A logic-constrained knapsack formu-
lation and a tabu algorithm for the daily photograph scheduling of
an earth observation satellite. Comput Optim Appl 20(2):137–157

	55.	 Veček N, Mernik M, Filipič B, Črepinšek M (2016) Parameter
tuning with chess rating system (CRS-tuning) for meta-heuristic
algorithms. Inf Sci 372:446–469

	56.	 Xue Y, Xue B, Zhang M (2019) Self-adaptive particle swarm opti-
mization for large-scale feature selection in classification. ACM
Trans Knowl Discov Data (TKDD) 13(5):50

	57.	 Yalcinoz T, Altun H (2001) Power economic dispatch using a
hybrid genetic algorithm. IEEE Power Eng Rev 21(3):59–60

	58.	 Yang M-H (2001) An efficient algorithm to allocate shelf space.
Eur J Oper Res 131(1):107–118

	59.	 Yang Y, Mao Y, Yang P, Jiang Y (2013) The unit commitment
problem based on an improved firefly and particle swarm opti-
mization hybrid algorithm. In: Chinese Automation Congress
(CAC), 2013, pp 718–722. IEEE

	60.	 Zhang G (2011) Quantum-inspired evolutionary algorithms: a
survey and empirical study. J Heuristics 17(3):303–351

	61.	 Zhang X, Wu C, Li J, Wang X, Yang Z, Lee J-M, Jung K-H (2016)
Binary artificial algae algorithm for multidimensional knapsack
problems. Appl Soft Comput 43:583–595

	62.	 Zheng B, Zhang J, Yoon SW, Lam SS, Khasawneh M,
Poranki S (2015) Predictive modeling of hospital readmis-
sions using metaheuristics and data mining. Expert Syst Appl
42(20):7110–7120

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Enhancing a machine learning binarization framework by perturbation operators: analysis on the multidimensional knapsack problem
	Abstract
	1 Introduction
	2 Related works
	2.1 Hybridizing metaheuristics with machine learning
	2.2 Binarization methods

	3 Applications of the multidimensional knapsack problem
	4 Hybrid algorithm
	4.1 KNN perturbation module
	4.2 Initialization operator
	4.3 K-means operator
	4.4 KNN-perturbation operator
	4.5 Repair operator

	5 Numerical results
	5.1 Parameter settings
	5.2 Contribution of the KNN perturbation operator

	6 Comparisons
	7 Conclusions
	Acknowledgements
	References

