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Abstract
Solving combinatorial optimization problems is of great interest in the areas of computer science and operations research. 
Optimization algorithms and particularly metaheuristics are constantly improved in order to reduce execution times, increase 
the quality of solutions and address larger instances. In this work, an improvement of the binarization framework which uses 
the K-means technique is developed. To achieve this, a perturbation operator based on the K-nearest neighbor technique is 
incorporated into the framework with the aim of generating more robust binarized algorithms. The technique of K-nearest 
neighbors is used for improving the properties of diversification and intensification of metaheuristics in its binary version. 
The contribution of the K-nearest neighbors perturbation operator to the final results is systematically analyzed. Particle 
Swarm Optimization and Cuckoo Search are used as metaheuristic techniques. To verify the results, the well-known mul-
tidimensional knapsack problem is tackled. A computational comparison is made with the state-of-the-art of metaheuristic 
techniques that use general mechanisms of binarization. The results show that our improved framework produces consistently 
better results. In this sense, the contribution of the operator which uses the K-nearest neighbors technique is investigated 
finding that this operator contributes significantly to the quality of the results.

Keywords Combinatorial Optimisation · Machine Learning · Metaheuristics · KNN · K-means · Knapsack

1 Introduction

Decision making in complex systems is a cross-cutting 
activity in different areas of engineering and management. 
Many of these decisions require evaluating a very large com-
bination of elements as well as having to solve a combi-
natorial optimization problem (COP) to find a feasible and 
satisfactory result. Examples of COP are found in the areas 
of logistics Korkmaz et al. [32], transportation García et al. 
[25], machine learning Al-Madi et al. [2] biology Guo et al. 
[27], and many others. Depending on the problem defini-
tion, many COPs can be categorized as NP-hard. Among 
the most successful ways to address such problems, a com-
mon solving way is to simplify the model in order to try to 
solve instances of small to medium size through exact tech-
niques, or addressing them through heuristic or metaheuris-
tic algorithms. This last solving option allows to deal with 
large-size problems, but without ensuring the optimality of 
the solutions. Therefore, research lines that allow obtaining 
robust algorithms associated with the solution of COPs are 
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of great interest in the areas of computer science and opera-
tions research.

During the last decade, important investigation lines have 
explored the hybridization among different optimization 
techniques with the goal of obtaining more robust meth-
ods in terms of quality of solutions and convergence times. 
In the literature, the main hybridization proposals are: (i) 
matheuristics, which combine heuristics or metaheuristics 
with mathematical programming Caserta and Voß [6], (ii) 
hybrid heuristics, the combination between different heu-
ristic or metaheuristic methods Talbi [51], (iii) simheuris-
tics, that combine simulation and metaheuristics Juan et al. 
[30], and (iv) the hybridization between metaheuristics and 
machine learning. The latter hybridization field between 
machine learning and metaheuristics is an emerging research 
line in the area of operations research. In this sense, we find 
that the combination can occur such that metaheuristics help 
machine learning algorithms to improve their results (e.g., 
[9, 62]) or in the opposite direction where machine learn-
ing techniques help in the robustness of metaheuristic algo-
rithms (e.g., [16]). The details of the hybridization forms are 
specified in Sect. 2.1.

In this article, inspired by the mentioned research lines, 
we explore the application of an automatic learning algo-
rithm in a perturbation operator to improve the diversifica-
tion and intensification properties of a given metaheuristic 
when addressing combinatorial optimization problems. The 
contributions of this work are detailed below:

– An improvement of the automatic learning binarization 
framework designed in García et al. [24] is proposed in 
order to allow metaheuristics commonly defined and 
used in continuous optimization addressing COP effi-
ciently. This framework uses the k-means unsupervised 
learning technique to perform the binarization process 
and in this article, the nearest K-neighbors technique is 
included to improve the diversification and intensifica-
tion properties of a given metaheuristic. The selected 
metaheuristics are particle swarm optimization (PSO) 
and cuckoo search (CS). Their selection is based on the 
fact that they are commonly used in continuous optimiza-
tion and allow an easy way to adjust their parameters in 
continuous spaces. In this sense, theoretical models of 
PSO convergence already exist.

– These hybrid metaheuristics are applied to the well-
known multidimensional knapsack problem (MKP). This 
problem has been extensively studied, and because of 
that, small, medium, and large instances are available 
in the literature. We have utilized the large instances as 
the ones used to evaluate the contribution of the KNN 
perturbation operator. On the other hand, the MKP has 
numerous practical real-world applications, such as com-
puter scheduling programs in multiprogramming envi-

ronments, allocation of shelf space to a consumer product 
in retail stores, the capital-budgeting problem, among 
many others.

– For a proper evaluation of our hybrid algorithms first, we 
use a parameter estimation method developed in García 
et al. [24] to determine the best metaheuristic configura-
tions. Subsequently, experiments are developed with the 
aim of shedding light on the contribution of the KNN 
operator in the framework. Finally, our hybrid algorithms 
are compared with the latest generation binarization 
frameworks. For this purpose, we use the larger problems 
of the OR-Library1. The numerical results show that our 
hybrid algorithms achieve highly competitive results.

The rest of the article is structured as follows. Section 3 
describes the MKP and some of its applications. In Sect. 2, 
a state-of-the-art hybridization between the areas of machine 
learning and metaheuristics is provided and main binariza-
tion methods are described. Later, in Sect. 4, the proposed 
hybrid algorithm is detailed. The results of the contribution 
of the KNN operator are provided in Sect. 5. To evaluate the 
quality of our results, in Sect. 6 we provide a comparison 
with algorithms that use generic binarization mechanisms. 
Finally, in Sect. 7 conclusions and some future lines of 
research are given.

2  Related works

2.1  Hybridizing metaheuristics with machine 
learning

When it comes to integrating machine learning and 
metaheuristics, two large groups can be mainly indicated. 
The first group corresponds to metaheuristic techniques for 
improving the performance of machine learning algorithms. 
The second covers machine learning algorithms for enhanc-
ing metaheuristics performance. For the first group, we find 
four main areas of application: improving clustering algo-
rithms, feature selection applications, improving classifica-
tion algorithms and strengthening regression algorithms. 
The summary of the integration between these two areas is 
shown in Fig. 1.

In the case of clustering algorithms, a variety of methods 
has been reported. One of the main problems that presents 
a greater algorithmic complexity, corresponds to the search 
of centroids for grouping in a better way the set of studied 
objects. Since this problem is NP-hard, approximate meth-
ods have been proposed to address it. In this regard, there 

1 OR-Library: http://www.brunel.ac.uk/mastjjb/jeb/orlib/mknapinfo.
html.
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is a long list of studies in this area, however, in recent years 
the focus has moved to solving applied problems. In Mann 
and Singh [40], an improved artificial bee colony algorithm 
was applied to solve the problem of energy-efficient cluster-
ing in a wireless sensor network. In Mirghasemi et al. [42] 
we found the use of particle swarm optimization and fuzzy 
C-means to perform segmentation of images with noise. The 
planning of helicopter transportation of employees to the 
production platforms of oil and gas was studied in de Alva-
renga Rosa et al. [14], using a cluster search metaheuris-
tic. In that work, the metaheuristic approach was compared 
with a general-purpose solver (i.e., CPLEX), indicating that 
the former produces better, more stable solutions in shorter 
computational time. Another interesting application in logis-
tics management corresponds to the management policy of 
warehousing and item assignment. In Kuo et al. [33], a PSO 
algorithm was applied for the item assignation problem in 
a synchronized zone order picking system. Finally, in Kuo 
et al. [34] a clustering method based on metaheuristics was 
proposed to solve a client segmentation problem.

A major difficulty in the learning process of a machine 
learning algorithm is related to the dimension of the data-
set. The inadequate handling of the dimension of the data-
set can involve problems such as under or over-fitting plus 
large amounts of computations necessary for its training. 
Because of its definition, feature selection is a combinatorial 
problem and has been effectively addressed by metaheuristic 
algorithms. In Ahmad et al. [1], metaheuristic algorithms 
were compared with traditional feature selection methods, 

applying them to datasets used in sentiment analysis. The 
selection of features is fundamental in real-time data stream 
mining problems; e.g., in Fong et al. [18] an accelerated PSO 
was proposed to efficiently address feature selection. A self-
adaptive PSO was developed in Xue et al. [56] to address 
the large-scale feature selection problem in classification.

The problems of classification and regression form an 
important group of problems that are usually addressed 
through supervised learning techniques. The contribution 
of metaheuristics in supervised learning algorithms in both 
classification and regression problems has been significant. 
Metaheuristics have contributed to the improvement of 
algorithms such as support vector machine, artificial neural 
networks, decision trees, logistic regression, among oth-
ers. In Chou and Thedja [11], a classification system was 
proposed that integrates a firefly algorithm with the least 
squares support vector machine technique to apply it to geo-
technical problems. Classification systems applied to health-
care using metaheuristic algorithms and big data techniques 
are detailed in Tsai et al. [52]. In Fernandes et al. [17], 
metaheuristics were used to design an enhanced probabilistic 
neural network algorithm. In regression problems, for exam-
ple, by applying metaheuristics in time series using sliding-
window in Chou and Nguyen [9], they design a model to 
predict the stock prices of Taiwan’s construction companies. 
In Chou and Pham [10], by using the firefly algorithm, the 
parameters of least squares support vector regression are 
optimized for enhancing prediction accuracy in engineering 
design. The shear strength prediction in reinforced concrete 

Fig. 1  General scheme: com-
bining machine learning and 
metaheuristics. Adapted and 
extended from Calvet et al. [5]
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deep beams was addressed in Chou et al. [8]. In that article, 
they propose a firefly algorithm integrated with a support 
vector machine algorithm for accurately predicting shear 
strength.

On the other hand, the contribution of machine learn-
ing techniques to strengthen metaheuristic algorithms has 
been important. In this case, we distinguish two large groups 
according to the way they are integrated. A first group cor-
responds to specific integrations where the techniques of 
machine learning are inserted through an operator into one 
of the metaheuristic modules. The second group corresponds 
to general integrations where the machine learning technique 
works as a selector of different metaheuristic algorithms, 
choosing the most appropriate one for each instance.

In the case of a specific integration, we find integrations 
in different modules of metaheuristics. For example, dur-
ing the initialization of solutions, performing the tuning of 
parameters, in the binarization of continuous metaheuristics, 
also machine learning is used in the population management, 
etc. In the tuning of parameters, in De Jong [15] the author 
applies a dynamic tuning approach for adapting the param-
eters depending on the instance and the evolution of the 
algorithm. A chess rating method was applied in Veček et al. 
[55]. That method was compared with other techniques such 
as f-race showing a good performance. In Ries and Beullens 
[45], a decision tree was used to perform the tuning of the 
parameters. Usually, the mechanism of solution initialization 
of a metaheuristic is done in a random way or using some 
heuristic. However, there are attempts to use machine learn-
ing in the initialization of solutions. In Li et al. [36], a case-
based reasoning was used to initialize a genetic algorithm 
and apply it to the weighted circles layout problem. Hopfield 
neural networks were used in Yalcinoz and Altun [57] to 
initiate solutions of a genetic algorithm that were used to 
solve the economic dispatch problem. With regards to popu-
lation management, the main line of research is related to 
extracting information from the solutions previously visited 
in the search space and identifying the regions that have 
the greatest potential to exploit them. In the literature, we 
can observe the use of clustering techniques to improve the 
exploration of the search space Streichert et al. [49]. Also, 
the use of case-based reasoning techniques was investi-
gated in Santos et al. [46] in order to identify subspaces of 
searches to solve the single-vehicle routing problem. In Jin 
et al. [29], an incremental learning technique was used to 
apply this to the constrained portfolio optimization problem. 
Finally, a research area with a lot of activity corresponds to 
designing binary versions of algorithms that work naturally 
in continuous spaces to enable them to work on combina-
torial problems. In this area, the application of clustering 
techniques in García et al. [20] to perform the binarization 
has been proposed. In García et al. [21, 22], the percentile 
concept and the ranking of the solutions were used to obtain 

binary algorithms from continuous algorithms. In García 
et al. [20] the distributed computing framework Apache 
Spark was applied to generate distributed versions of the 
binarized algorithms.

Concerning general integrations, we can point out three 
main groups: algorithm selection, hyperheuristics, and coop-
erative strategies. In the case of algorithm selection, the 
objective is to choose from a portfolio of algorithms together 
with a set of characteristics associated with each instance of 
the problem. In Smith-Miles et al. [48] meta-learning tech-
niques were used with the goal of proposing a methodology 
to measure the strengths and weaknesses of algorithms that 
solve optimization problems in different instances. The berth 
scheduling problem at bulk terminals was addressed in de 
León et al. [16] by using a machine-learning-based algo-
rithm selection approach. The goal of hyperheuristics is to 
automate the design of heuristic or metaheuristic methods to 
address a wide range of problems. In Tyasnurita et al. [53], 
an artificial neural network was used to improve the perfor-
mance of hyperheuristics when solving different instances 
of the vehicle routing problem. The problem of nurse roster-
ing was addressed in Asta et al. [3] through a tensor-based 
hyperheuristic algorithm. Finally, in Damaševičius and 
Woźniak [13] a hyperheuristic was designed which allows 
integrating different nature-inspired algorithms. Coopera-
tive strategies consist of combining algorithms in a parallel 
or sequential way in order to obtain more robust methods. 
Cooperation can be completed by sharing a complete solu-
tion or part of it. In Cadenas et al. [4], a centralized coop-
erative strategy was developed where knowledge was mod-
eled through fuzzy rules. In Martin et al. [41], a distributed 
framework based on agents was proposed. Each agent cor-
responds to a metaheuristic, where the agent has the ability 
to adapt through direct cooperation. This framework was 
applied to the permutation flow shop problem.

2.2  Binarization methods

Nowadays, there is a series of metaheuristic algorithms that 
are designed to work in continuous spaces. Among the most 
prominent, Particle Swarm Optimization (PSO) and Cuckoo 
Search (CS) can be marked as some of the most used ones. 
On the other hand, the existence of a large number of NP

-hard combinatorial problems motivates the investigation 
of robust mechanisms that allow adapting these continuous 
algorithms to discrete versions.

In a review of the state-of-the-art of binarization tech-
niques Crawford et al. [12], two approximations were iden-
tified. A first approach considers general methods of bina-
rization. In those general methods, there is a mechanism 
that allows transforming any continuous metaheuristic into 
a binary one without altering the metaheuristic operators. 
In this approach, the main frameworks used are transfer 
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functions and angle modulation. The second approach cor-
responds to binarizations where the way of operating 
metaheuristics is specifically altered. Within this second 
approach, techniques such as Quantum binary and Set-based 
approaches can be highlighted.

Transfer functions: The simplest and most widely used 
binarization method corresponds to the transfer functions. 
The transfer functions were introduced by Kennedy and 
Eberhart [31] to generate binary versions of PSO. PSO con-
siders each solution as a particle. This particle has a position 
given by a solution for some iteration and a velocity which 
corresponds to the vector obtained from the difference of the 
particle position in two consecutive iterations. The transfer 
function is a very simple operator and relates the velocity 
of the particles in PSO with a transition probability. The 
transfer function takes values from ℝn and generates tran-
sition probability values in [0, 1]n . The transfer functions 
force the particles to move in a binary space. Depending 
on its shape, these are usually classified as S-Shape Yang 
et al. [59] and V-Shape García et al. [23]. Once the function 
produces the value between 0 and 1, the next step is to use 
a rule that allows obtaining 0 or 1. For this, well-defined 
rules are applied that use the concepts of complement, elite, 
random, among others.

Angle Modulation: This method is based on the family 
of trigonometric functions shown in Eq. (1). These func-
tions have four parameters responsible for controlling the 
frequency and displacement of the trigonometric function.

The first time this method was applied to binarizations was 
in PSO. In this case, the binary PSO was applied to bench-
mark functions. Assume a given binary problem of dimen-
sion n and let X = (x1, x2,… , xn) be a solution. We start with 
a four-dimensional search space. Each dimension represents 
a coefficient of Eq. (1). Then every solution (ai, bi, ci, di) is 
associated to a gi trigonometric function. For each element 
xj the following rule is applied:

Then, for each initial solution of 4 dimensions (ai, bi, ci, di) , 
function gi which is shown in Eq. (1) is applied and then 
Eq. (11) is utilized. As a result, a binary solution of dimen-
sion n (bi1, bi2,… , bin) is obtained. This is a feasible solution 
for our n-binary problem. The angle modulation method has 
been applied to network reconfiguration problems Liu et al. 
[38] using a binary PSO method, to the antenna position 
problem using an angle modulation binary bat algorithm 
Moiz et al. [43], and to a multi-user detection technique 
Swagatam et al. [50] using a binary adaptive evolutionary 
algorithm.

(1)gi(xj) = sin(2�(xj − ai)bi cos(2�(xj − ai)ci)) + di

(2)bij =

{
1 if gi(xj) ≥ 0

0 otherwise

Quantum binary approach: Considering the line of 
research that integrates the areas of Evolutionary computa-
tion (EC) and Quantum computation, there are mainly three 
categories of algorithms Zhang [60]. 

1. Quantum evolutionary algorithms: Corresponds to the 
design of EC algorithms to be applied in a quantum 
computing environment.

2. Evolutionary-designed quantum algorithms: These algo-
rithms try to automate the generation of new quantum 
algorithms using Evolutionary algorithms.

3. Quantum-inspired evolutionary algorithms: This cat-
egory uses quantum computing concepts to strengthen 
EC algorithms.

In particular, the Quantum binary approach belongs to 
Quantum-inspired evolutionary algorithms. Specifically, this 
approach adapts the concepts of q-bits and superposition used 
in quantum computing to work in normal computers.

In the Quantum binary approach method, each feasible 
solution has a position X = (x1, x2,… , xn) and a quantum 
q-bits vector Q = [Q1,Q2,… ,Qn] . Q represents the probabil-
ity of xj taking the value 1. For each dimension j, a random 
number between [0,1] is generated and compared with Qj , if 
rand < Qj , then xj = 1 , else xj = 0 . The upgrade mechanism 
of the Q vector is specific to each metaheuristic.

The main difficulty that general binarization frameworks 
have is related to the concept of Spatial disconnect Leonard 
et al. [35]. Spatial disconnect is originated when nearby solu-
tions generated by metaheuristics in the continuous space are 
not transformed into nearby solutions when applying the bina-
rization process. Roughly speaking, we can think of a loss of 
the continuity of the framework. This phenomenon of Spatial 
disconnect has the consequence that the properties of explo-
ration and exploitation are altered and, therefore, the preci-
sion and convergence of metaheuristics worsen. A study was 
developed on how the transfer functions affect the exploration 
and exploitation properties in Saremi et al. [47]. For angle 
modulation, the study was developed in Leonard et al. [35].

On the other hand, specific binarization algorithms, that 
modify the operators of the metaheuristic, are susceptible to 
problems such as Hamming cliffs, loss of precision, search 
space discretization and the curse of dimensionality Leonard 
et al. [35]. This was studied by Pampara [44] and for the par-
ticular case of PSO by Chen et al. [7]. In the latter, the authors 
observed that the parameters of the Binary PSO change the 
speed behavior of the original metaheuristic.
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3  Applications of the multidimensional 
knapsack problem

The multidimensional knapsack problem (MKP, [19]), is a 
non-deterministic polynomial-time ( NP)-hard combinato-
rial problem that considers multiple resource constraints, 
Garey and Johnson [26] Its goal is to fill a given multi-
dimensional capacity-limited knapsack with a subset of 
items in order to get the maximum benefit associated with 
the profit of each selected item. The selection of items has 
to consider the limitations of resource capacity since each 
element has different resource requirements. Formally, the 
problem is defined as follows.

subject to:

where bi corresponds to the capacity limitation of resource 
i ∈ M . Each element j ∈ N has a requirement of cij regard-
ing resource i as well as a benefit pj . Moreover, xj ∈ {0, 1} 
indicates whether the element is in the knapsack or not, 
j ∈ {1,… , n} , cij ≥ 0 , pj > 0 , bj > 0 , n corresponds to the 
number of items, and m the number of knapsack constraints.

In the rest of this section, with the aim to show the 
importance of solving the MKP, we detail some MKP 
applications in the real world. The first problem to be 
detailed corresponds to the daily photographic scheduling 
(DPS) problem of an earth observation satellite Vasquez 
and Hao [54]. Let F = (f1,… , fm) be a set of candidate 
photographs to be taken the next day by the satellite. Since 
the satellite has more than one camera, the cameras are 
denoted by C = (c1,… , ck) . In order to represent the prob-
lem in a binary form, it is necessary to define the vec-
tor X = (x1,… , xn) , where x1 represents the pair (f1, c1) , 
x2 = (f1, c2) , and so on. Each pair xj = (photograph, cam-
era), associates a profit pj which results from an aggrega-
tion of a series of conditions such as the urgency of the 
photograph, the importance of the client, meteorological 
forecast, etc. In addition, the set of photos, associates a set 
of hard constraints related to the storage capacity, restric-
tions associated with non-overlapping pictures and con-
straints associated with the instantaneous data flow.

The DPS problem model associated with a satellite with 
three mono and one stereo cameras is modeled by expres-
sions (6) to (9):

(3)Maximize P(x1,… , xn) =

n∑

j=1

pjxj.

(4)
n∑

j=1

cijxj ≤ bi, i ∈ {1,… ,m}.

(5)xij ∈ {0, 1}.

where pj ∈ ℤ
+ . and subject to:

where C1 represents the capacity of the knapsack, C2 indi-
cates that each photo is taken by a single camera, and C3 
models flow and overlay constraints, B ∈ {1, 2}.

Another interesting problem related to the MKP is the 
shelf space allocation problem (SSAP) Yang [58]. The idea 
is to manage the shelf space through intelligent systems. 
Properly solving this problem not only decreases the level 
of inventories, but also improves the relationship between 
the seller and the customer. When we consider the SSAP, 
the objective function corresponds to the profit of all prod-
ucts of the store. Additionally, the problem has constraints 
associated with the store’s total storage capacity along with 
maintaining an adequate product mix. Formally, the problem 
is described as follows.

subject to:

A store has n product items determined by a product mix 
decision and these items can be displayed on m shelves. 
Then, xij represents the amount of product i that can be 
located on the shelf j. The length of shelf j is Tj and each 
facing of product i (interpreted as the width of showing i 
once on the shelf), is ai long. To maintain the stock balance 
of each product, lower and upper limits are defined. The 
lower limit Li associated with a product i, is necessary to 
guarantee that customers still find enough units of item i. 

(6)Maximize P(x1,… , xn) =

n∑

j=1

pjxj

(7)
n∑

j=1

cjxj ≤ C1

(8)xi + xj ≤ 1,∀(xi, xj) ∈ C2

(9)xi + xj + xk ≤ B,∀(xi, xj, xk) ∈ C3

(10)xij ∈ {0, 1}

(11)Maximize P(x1,… , xn) =

n∑

i=1

m∑

j=1

pijxij

(12)
n∑

i=1

aixij ≤ Tj, j = {1,… ,m}

(13)Li ≤

m∑

j=1

xij ≤ Ui, i = {1,… , n}

(14)xij ∈ {ℤ+
0
}
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The upper limit Ui of a product i, ensures that an adequate 
space is left for other products.

4  Hybrid algorithm

In this section, the algorithm used to solve the MKP is 
detailed. Our algorithm is composed of two modules: The 
KNN perturbation module diagrammed in the left part of 
Fig. 2 and the binarization module shown in the right part of 
Fig. 2. The KNN perturbation module uses the KNN algo-
rithm in order to obtain the nearest neighbors of a particular 
solution. This module feeds on a subset of data generated in 
the different iterations of the binarization module. The aim 
of the binarization module is to binarize the solutions gener-
ated by continuous swarm intelligence algorithms such as 
PSO and CS. The binarization module uses four operators: 
The solutions initialization operator described in Sect. 4.2, 
the K-means operator detailed in Sect. 4.3, a repair operator 
described in Sect. 4.5, and the KNN perturbation operator 
detailed in Sect. 4.4.

4.1  KNN perturbation module

In this section, the operation of the KNN perturbation mod-
ule is explained in detail. The final goal of this module is to 
calculate, using a measure, the importance of each dimen-
sion in the neighbourhood of the solution when trying to 

solve a particular instance of the MKP. As a measure to esti-
mate importance, a definition similar to the Morris method 
used in Iooss and Lemaître [28] is used. The objective of the 
Morris method is to determine the input variables that are 
most important using a small number of evaluations to per-
form the calculation. The method allows determining linear 
influences, non-linear influences, and interactions between 
the variables.

Consider N points in the search space given by 
S = {Xj∕j ∈ {1,… ,N}} , then we define EEi(X),X ∈ S by:

where X̂i corresponds to the complement, that is, if Xi = 0 
then X̂i = 1 . The previous calculation is performed for each 
of the dimensions of all solutions in S. Then, we calculate 
the statistical indicators average ( �i ) and standard deviation 
( �i ) defined in the Eqs. 16 and 17, respectively.

Then the pair (�, �) has quite clear interpretations depending 
on the combination of: 

(15)EEi(X) = f (X1,… , X̂i,… ,Xd) − f (X)

(16)�i =
1

N

N∑

j=1

|EEi(X
j)|

(17)�i =

√√√√ 1

N

N∑

j=1

(EEi(X
j) − ui)

2

Fig. 2  Flow chart of machine learning swarm intelligence algorithm
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1. Small values of � and � means the variable has a small 
effect on the objective function.

2. Small values of � and high values of � implies that the 
input variable has important non-linear effects.

3. High values of � and small values of � implies that the 
input variable has important linear effects.

4. High values of � and high values of � implies that the 
input variable has important non-linear effects or inter-
action with other variables.

The previously detailed calculations allow us to evaluate the 
exploration of the whole space. However, our objective is to 
evaluate the exploitation capability in the region of a defined 
solution. Therefore, the previous calculations must be adapted 
with the aim of incorporating the concept of the neighbour-
hood into the calculation. This way, to introduce that, we 
use the K-nearest neighbourhood algorithm. This algorithm 
allows us to efficiently obtain the neighbour of a solution. The 
calculation of the mean and the standard deviation is made 
using exclusively the neighbours of the solution. As a starting 
point, the KNN perturbation module is fed with a percentage 
of the solutions generated by the binarization module in each 
iteration. This is shown in Fig. 2 in the Solution iteration data  
arrow. In our specific case, the percentage of solutions was 
25% of the best solutions obtained in each iteration. The idea 
of incorporating 25% of the best solutions aims to use elements 
which belong to the first quartile to determine with this infor-
mation where the solution should be perturbed. Subsequently, 
each time the binarization module needs to execute a perturba-
tion operator, it will deliver to the perturbation module a list of 
solutions so that the perturbation module calculates, for each 
solution, the measure that allows the perturbation to be made. 
Finally, the list of measurements is delivered to the perturba-
tion operator which is responsible for executing the perturba-
tion. This is shown in Fig. 2 on the Solution neighbourhood 
information arrow.

Finally, to perform the calculation of the measure, we con-
sider the value wi of Eq. (18), where �∗

i
 and �∗

i
 , correspond to 

normalized values of the mean and deviation, respectively. The √
2 value is added to the wi values to normalize them between 

0 and 1. The details of the calculation of w for each solution 
are shown in Algorithm 1.

 As input, the algorithm uses the solution (sol) in order to 
obtain its corresponding weights. As an output, the algo-
rithm delivers the weights (ListWeight) associated with 
the solution. The first function to execute corresponds to 
getting the K neighbours which are stored in neighbours. 
Subsequently, with the neighbour list, wi is calculated for 

(18)wi =

√
�∗
i
+ �∗

i√
2

each dimension according to Eqs. 16–18. D represents the 
dimension of sol.

4.2  Initialization operator

In the initialization of the solutions, the heuristic shown in Eq. 
(19) is used. In this equation cij represents the cost of the object 
i in the knapsack j, bj corresponds to the capacity constraint 
of the knapsack j and pi corresponds to the profit of the i ele-
ment. This heuristic was proposed in García et al. [24] and its 
objective is to select the elements that enter the knapsack. The 
construction of a solution starts with the random selection of 
a first element, later it is consulted if it is possible to add new 
elements. If it is possible, from the list of elements that satisfy 
the constraints, the one with the best value according to Eq. 19 
is selected. The process of incorporating elements continues 
until there are no elements that satisfy the constraints. The 
pseudo-code is shown in Algorithm 2.

(19)�i =

∑m

j=1

cij

m(bj−
∑

l∈S clj)

pi
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4.3  K‑means operator

Since PSO and CS are continuous swarm intelligence 
algorithms and the MKP is a combinatorial problem, a 
discretization framework is required. In the literature, two 
large groups of binarization algorithms have been pro-
posed. The first group corresponds to specific adaptations 
of the continuous algorithm that can hardly be applied 
to other continuous algorithms. The second group corre-
sponds to general binarization methods that usually have 
lower performance than the specific methods but allow 
adapting any continuous algorithm. For a detailed review 
of the different techniques, the reader is referred to Craw-
ford et al. [12].

In order to binarize more than one continuous algo-
rithm, in this article we use a general method of binari-
zation based on the k-means unsupervised learning tech-
nique. This technique was chosen because it showed for 
the knapsack problem to be more robust than other general 
binarization techniques such as transfer functions García 
et al. [24]. In Fig. 3 the main stages of the k-means bina-
rization method are considered. The binarization process 
begins with the value of the solutions (s) and their dis-
placements (d) generated by the continuous algorithm. 
This stage is illustrated in the left part of Fig. 3. Because 
the algorithm is continuous, d takes values in ℝn space. 
In the Eq. 20, the update of the solution is presented in 
a general way. The st+1 variable represents the s solution 
of the particle at time t+1. This solution is obtained from 
the solution s at time t plus a d function calculated at time 
t+1. The function d is specific to each metaheuristic and 
produces values in ℝn . For example in Cuckoo Search 
d = 𝛼 ⊕ Levy(𝜆)(x) , and in the PSO algorithm d can be 
written in a simplified form as d = v(x).

Later we used d to perform the binarization. Let di(s(t)) the 
magnitude of the displacement d(s(t)) in the i-th coordinate 
of the solution. Then these displacements are grouped using 
the magnitude of the displacement di(s(t)) . This grouping is 
done using the k-means technique where k represents the 
number of clusters used. This is visualized in the center of 
Fig. 3. Later, for each cluster, we associate a transition prob-
ability f(k) shown on the right axis of the middle chart of 
Fig. 3. Finally, with the value of this probability together 
with Eq. 21, we proceed to make the transitions in the binary 
space. This last part corresponds to the diagram on the right 
in Fig. 3.

4.4  KNN‑perturbation operator

A first operator considered a probability of transition of 0.3 
and a second operator a probability of 0.5. The 0.3 value 
was used based on the result of a previous work García et al. 
[24]. This value was the one performing the best. In the case 
of 0.5, it was used because it is a random operator giving 
same probability of staying or making the transition.

The KNN perturbation operator is executed when the 
perturbation criterion depicted in Fig. 1 is met. The crite-
rion evaluates the number of iterations in which the best 
solution found has not changed. If the iteration threshold is 
exceeded, then the operator is activated. For the implemen-
tation described in this article, the threshold of iterations 
corresponded to 30. The KNN perturbation operator has as 

(20)st+1 = st + dt+1(s(t))

(21)xi(t + 1)∶=

{
x̂i(t), if r and < TP(xi)

xi(t), otherwise

Fig. 3  K-means binarization method
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parameters: the list of current solutions and a value of the 
force of the perturbation � . As an output, it gives us the list 
of perturbed solutions.

The � percentage of the best solutions are sent to the KNN 
perturbation module to calculate the weights that are used 
to perform the perturbation. Later, with the weights in each 
one of the variables, we proceed to perform the perturbation 
of the best solutions. The rest of the solutions are subjected 
to random perturbations handled by the indicator � . This 
was designed thinking that solutions that did not have good 
results were perturbed in a random way to adequately handle 
the diversification of the solutions. Finally, once the solution 
is perturbed, a repair operator is executed in case a restric-
tion is violated or new elements can be incorporated. The 
pseudocode of the KNN perturbation operator is shown in 
Algorithm 3.

4.5  Repair operator

When modifications are made to the solution through the 
K-means or KNN perturbation operators, the solution 
obtained must be verified with respect to compliance with 
its constraints and the possibility of adding new elements. 
To carry that out, a repair operator is used. As an input, 
the operator receives the solution to be repaired. The exit 
of the operator corresponds to the repaired solution. The 
first step in the procedure is to verify if the solution needs 
to be repaired. In the case that it needs to be repaired, by 
using the calculation defined by Eq. (19), we proceed to 
eliminate elements from the solution. Once the constraints 
are satisfied, the next step is to evaluate if new elements can 
be incorporated. For this purpose, we again use Eq. (19) to 

assign a weight to each element and identify the best element 
to incorporate. Once those procedures have been completed, 
the operator returns the repaired solution. The pseudo-code 
of this process is displayed in Algorithm 4.

5  Numerical results

In this section, the results of applying the KNN perturbation 
operator in the machine learning framework are provided. 
As a first step, we describe the methodology used to collect 
the parameters used in our algorithm, and then develop the 
experiments to evaluate its performance.

Our design and experimental development consist of two 
stages. The first stage corresponds to the identification and 
evaluation of the contribution of the KNN perturbation oper-
ator. The second stage aims to study how efficient our hybrid 
proposal is with respect to other binarization frameworks 
that have recently and efficiently solved the MKP.

The dataset2 used to perform the experiments consists 
of instances that have 500 elements (n) and {5, 10, 30} 
constraints (m). The nomenclature used to identify an 
instance is: mkp.m.n-x, where m corresponds to the num-
ber of constraints, n to the total number of elements, and 
x to the instance. Each pair (m, n) gives rise to a data-
set mkp.m.n where each one consists of 30 instances. In 
each mkp.m.n dataset, the 30 instances are divided into 
3 groups depending on the constraints bi = t ×

∑
j∈n aij , 

2 OR-Library: http://www.brune l.ac.uk/mastj jb/jeb/orlib /mknap info.
html.

http://www.brunel.ac.uk/mastjjb/jeb/orlib/mknapinfo.html
http://www.brunel.ac.uk/mastjjb/jeb/orlib/mknapinfo.html
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where t ∈ {0.25, 0.50, 0.75} corresponds to the tightness 
ratio. As algorithms to be binarized, cuckoo search and 
PSO were used. The choice is mainly due to the fact that 
they have been widely and successfully used to solve con-
tinuous optimization problems. For the execution of the 
instances, we use a computer equipped with an Intel Core 
i7-4770 processor with 16GB in RAM. The algorithm is 
programmed in Python 2.7.

5.1  Parameter settings

To perform the parametrization, we use 10 problem 
instances chosen randomly from dataset mkp.5.250. The 
range of parameters explored for the CS case is shown in 
Table 1, in the range column. The k used for the binariza-
tion operator and for the perturbation operator is included. 
The first step for obtaining the adequate parametrization 
is to process the data set with the machine learning swarm 
intelligence algorithm, for each parameter combination. 
Each combination executes the chosen instances of the 
dataset 10 times. With the averages of the 10 results 
obtained for each configuration, we calculate the 4 meas-
urements defined in the Eqs. (22) to (25). Subsequently, for 
each combination, the four measurements are placed on a 
radar chart and the area of the chart is calculated. Finally, 
the configuration that obtains the largest area is chosen. 
The flow chart of the parameter settings is shown in Fig. 4. 

1. The percentage deviation of the best value obtained in 
ten executions compared with the best known value: 

(22)bSolution = 1 −
KnownBestValue − BestValue

KnownBestValue

2. The percentage deviation of the worst value obtained in 
ten executions compared with the best known value: 

3. The percentage deviation of the average value obtained 
in ten executions compared with the best known value: 

4. The convergence time for the best value in each experi-
ment is normalized according to Eq. (25). 

5.2  Contribution of the KNN perturbation operator

In this section, we describe the results of the experiments con-
ducted to evaluate the contribution of the KNN perturbation 
operator. In the case of the K-means binarization, two addi-
tional operators were designed and built to have a baseline. 
These operators execute the binarization process in a random 
way taking into account different fixed probabilities of transi-
tion. A first operator considers a transition probability of 0.3 
and a second operator a probability of 0.5. For the evaluation 
of the KNN perturbation operator, a random operator with a 
probability of perturbation given by the factor � was built addi-
tionally. We recall that the KNN perturbation operator, uses 
KNN along with the Morris measurement at the best 25 % of 
the population and the rest uses a random operator. In addition, 
we use a version of the algorithm, where the KNN perturba-
tion operator is not considered. The nomenclature used is the 
following: km.rand.03 and km.rand.05 are the operators that 

(23)wSolution = 1 −
KnownBestValue −WorstValue

KnownBestValue

(24)

aSolution = 1 −
KnownBestValue − AverageValue

KnownBestValue

(25)nTime = 1 −
convergenceTime − minTime

maxTime − minTime

Fig. 4  Flow chart of parameter setting

Table 1  Parameter setting for 
the Cuckoo search algorithm

Parameters Description Value Range

� Perturbation operator coefficient 30% [30, 40]
N Number of nest 20 [20, 25]
G Number of transition groups K-means operator 5 [4, 5, 6]
K Neighbours number for the perturbation calculus 15 [10, 15]
� Step length 0.01 0.01
� Levy distribution parameter 1.5 1.5
Iteration number Maximum iterations 800 [800]
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allow the evaluation of the binarization of the K-means opera-
tor using probability 0.3 and 0.5, respectively. A first opera-
tor considered a probability of transition of 0.3 and a second 
operator a probability of 0.5. The 0.3 value is used based on 
the result of a previous work García et al. [24]. This value is 
the one which has a better performance. In the case of 0.5, it 
is used because it is a random operator with the same prob-
ability of staying or making the transition. In the case of the 
KNN perturbation operator, we use the operator knn.without 
to represent the case in which we do not use the perturbation 
operator and knn.random in case we use the random perturba-
tion operator. Our original algorithm is denoted with knn.km. 
In the case of the algorithms km.rand.03 and km.rand.05, we 
always use the KNN perturbation operator in its original form. 
In the case of the algorithms knn.without and knn.random, we 
always use the binarization operator K-means in its original 
form; these algorithms were studied in García et al. [24]. This 
way we analyze the incremental contribution of our approach.

For the execution of the experiments, the dataset 
mkp.30.500 was used, which corresponds to the dataset of 
greatest complexity both in the number of restrictions and 
in the number of elements. Each instance of the dataset was 
executed 30 times to have statistical validity and the Wil-
coxon signed-rank nonparametric test was used to evaluate 
if the difference between the results is significant. Table 2 
shows the best value and the average value for all the variants 
mentioned above. In the Wilcoxon test, we compared knn.km 
which corresponds to our original algorithm with: knn.without, 
knn.random, km.random.03 and km.random.05. From Table 2 
it is concluded that the operator knn.km is better in practically 
all instances for the Best value indicator. For the few cases 
where the variants have obtained a better value, to see if that 
value is robust, we use the average indicator. In those cases, 
our algorithm is superior in all instances, indicating that the 
KNN perturbation and K-means binarization operators, con-
tribute in an important way to the robustness of our algorithm. 
The Wilcoxon test indicates that this robustness is statistically 
significant.

To have a better understanding of the contributions of KNN 
perturbation and km binarization operators to the final result, 
we use the indicators Gap(%) and Bestvalue(%) defined in the 
Eqs. (26) and (27), respectively. To simplify the visualization 
of the comparison, the mkp.30.500 dataset was divided into 
three groups using the tightness ratio criterion described at the 
beginning of Section 5.

(26)Gap(%) = 100 ⋅
KnownBestValue − Value

KnownBestValue

(27)Bestvalue(%) = 100 ⋅
BestValue − Value

BestValue

Group 0 corresponds to problems contained between 0 and 
9 including both and have a tightness ratio of 0.25. Group 
1 contains the problems contained between 10 and 19 with 
a tightness ratio of 0.5. Finally, the instances contained 
between 20 and 29 correspond to group 2 with a tightness 
ratio of 0.75. In Fig. 5 the results are displayed using the 
Gap(%) indicator. With this indicator, we can identify in the 
three groups, how the KM operator contributes to improving 
the quality of the results. The knn.random and knn.without 
variants that use the KM operator to perform the binarization 
clearly have a better performance than km.random.03 and 
km.random.05 operators. The KNN perturbation operator 
contribution is also relevant. This is observed by compar-
ing the variant knn.km with knn.random and knn.without in 
Fig. 5.

Additionally, to evaluate the satisfaction of the perturba-
tion condition in the knn.km algorithm, a histogram was 
generated considering the times the criterion is executed. 
The result is shown in Fig. 6. From the histogram, it fol-
lows that for the largest number of instances the criterion is 
executed between 4 and 8 times. On the other hand, 2 was 
the minimum number of times the criterion was executed.

Because we consider different instances when making the 
violin charts, the Gap(%) indicator is not suitable to visual-
ize the dispersion of the results. To evaluate this dispersion, 
we use the Bestvalue(%) indicator. This indicator considers 
the best value obtained by each of the variants and for each 
instance, to compare this with the value obtained from the 
variant in each of the executions. The results are shown in 
Fig. 7. In this figure, when we compare the interquartile 
ranges represented by dotted lines, we see that KNN pertur-
bation and KM binarization operators contribute to decreas-
ing the dispersion of the solutions in the three groups.

Our last experiment consists of evaluating the conver-
gence of the different variants of our algorithm. For this, 
as in the previous cases, we separate the dataset into three 
groups. In each group, we consider the Best value obtained 
for each one of the executed instances every 80 iterations 
and we graph the %-Gap of this value. The results are shown 
in Fig. 8. In that figure, it can be observed that the conver-
gence velocity is relatively similar for all the variants in the 
three groups. Therefore, there is no significant contribution 
from the KNN perturbation and KM binarization operators 
in the convergence of solutions.

6  Comparisons

This section aims to evaluate the performance of the knn.
km algorithm against other binarization-based algorithms 
that have solved the MKP. As datasets, we use problems 
mkp.5.500 and mkp.10.500 of the OR-library. These 
instances after 30.500 correspond to the most difficult 
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Fig. 5  %-Gap comparison between different algorithms for the mkp.30.500 dataset

Fig. 6  Histogram with the 
number of perturbation operator 
executions for an instance
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instances of the library. For the evaluation, we choose 
according to the best of our knowledge the two best binari-
zations that use a general metaheuristics binarization mecha-
nism based on transfer functions. The first of these algo-
rithms corresponds to the Binary Artificial Algae Algorithm 
BAAA  developed by Zhang et al. [61]. This algorithm uses a 
V-shape transfer function as a binarization mechanism. The 
second algorithm is a Binary differential search algorithm 
BDS developed by Liu et al. [37].

In Table 3, we evaluate the performance of our knn.km 
algorithm with BAAA .3 It uses transfer functions as a general 
mechanism of binarization. In particular BAAA  used the 
tanh =

e�|x|−1

e�|x|+1
 function to perform the transfer. The parameter 

� of the tanh function was set to a value 1.5. Additionally an 
elite local search procedure was used by BAAA  to improve 
solutions. As maximum number of iterations BAAA  used 

35000. The computer configuration used to run the BAAA  
algorithm was: PC Intel Core(TM) 2 dual CPU 
Q9300@2.5GHz, 4GB RAM and 64-bit Windows 7 operat-
ing system. In our knn.km algorithm, the configurations are 
the same used in the previous experiments.

In addition, in order to determine if knn.km averages and 
standard deviations are significantly different than averages 
and deviations obtained by the BAAA , we have performed 
Student’s t-test. The t statistic has the following form:

where:

X̂1 : Average of BAAA  for each instance

(28)
t =

X̂1 − X̂2√
(n1−1)SD

2

1
+(n2−1)SD

2

2

n1+n2−2

n1+n2

n1n2

Fig. 7  %-Bestvalue comparison between different algorithms for the mkp.30.500 dataset

3 Best values within our comparison are indicated in bold. This also 
holds for the next table.
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SD1 : Standard deviation of BAAA  for each instance
n1 : number of tests for BAAA  for each instance
X̂2 : Average of knn.km-PSO or knn.km-CS for each 
instance
SD2 : Standard deviation knn.km-PSO or knn.km-CS for 
each instance
n2 : number of tests for knn.km-PSO or knn.km-CS for 
each instance

The t values can be positive, neutral, or negative. The dou-
ble-positive value (++) of t indicates that knn.km is signifi-
cantly better than the other algorithms. In the opposite case 
( −− ), knn.km obtains significantly worse solutions. If t is a 
single positive (+), knn.km shows to be better but not sig-
nificantly. On the other hand, if the result is single negative 
(-), knn.km demonstrates to be worse, but not in a signifi-
cant way. Finally, a neutral value of t depicts equality in the 
results. We stated confidence interval at the 95% confidence 
level. Finally, the Best value and the average results of all 
instances are compared with knn.km using the Wilcoxon test 
to evaluate if the results are significant in the whole dataset.

knn.km-PSO and knn.km-CS outperform practically 
in all problems the BAAA . In the Best value indicator, 
knn.km-PSO was higher in 13 instances, knn.km-CS in 8. 

Additionally in 8 instances knn.km-PSO and knn.km-CS 
obtained the same best value, and in one instance BAAA  
and knn.km-PSO obtained the best value. In the case of the 
average indicator, in 15 instances knn.km-CS outperform 
the other algorithms, in 13 instances it was knn.km-PSO 
and in one case it was BAAA .

In Table 4, we evaluate the performance of our knn.km 
algorithms with TR-DBS ( tanh Random) and TE-DBS 
( tanh Elitist) developed in Liu et al. [37]. DBS used the 
tanh =

e�|x|−1

e�|x|+1
 function to perform the binarization. The 

parameter � of the tanh function was set to a value of 2.5. 
As maximum number of iterations DBS used 10000. For 
DBS, all computational experiments were conducted in 
Matlab 7.5 on a PC equipped with an Intel Pentium Dual-
Core i7-4770 processor (3.40 GHz) with 16GB of RAM 
in the Windows OS. In our knn.km-framework, the con-
f igurations are the same used in the previous 
experiments.

The comparison between the DBS and knn.km algo-
rithms show that for the Best value indicator, TE-DBS 
obtained 19 best values, knn.km-CS 8, TR-DBS 4 and 
knn.km-PSO 2. When the average indicator is observed, 
we see that knn.Km-CS scored 15 best average, TE-DBS 
scored 9, knn.km-PSO 5 and TR-DBS 1. The comparison 

Fig. 8  Evolution of the best objective value for the different variants
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between DBS and the knn.km algorithms shows that for 
the Best value indicator TE-DBS obtained 19 best values, 
knn.km-CS 8, TR-DBS 4 and knn.km-PSO 2. The average 
indicator also indicates that knn.km-CS obtained 15 best 
average, TE-DBS obtained 9, knn.km-PSO 5 and TR-DBS 
1. Furthermore, the Wilcoxon test in the case of the Best 
value indicator points out significant differences only 
between knn.km-PSO and TR-DBS and between knn.km-CS 
and TR-DBS, both cases in favor of the knn.km algorithms. 
When we evaluate the average indicator, we observe that 
knn.km-CS has a significant difference over all other algo-
rithms and, in the case of knn.km-PSO, it exhibits signifi-
cant differences over TR-DBS and TE-DBS.

7  Conclusions

In this work, we have proposed an improved binarization 
framework, which uses the K-means technique to enable 
continuous metaheuristics for COPs. The proposed frame-
work integrates a local perturbation operator based on the 
K-nearest neighbor technique. Using of this approach, par-
ticle swarm optimization and cuckoo search metaheuris-
tics were used to solve the well-known multidimensional 
knapsack problem. In this regard, the computational 
results in the 90 largest instances commonly used in the 
literature showed that the proposed improved framework 

Table 4  OR-Library benchmarks MKP mkp.10.500 

Instance Best TR-DBS TE-DBS knn.km-PSO knn.km-CS

Known Best Avg Best Avg Best Avg Time(s) Best Avg Time

0 117821 114716 114425.4 117811 117801.2 117779 117683.5 763 117801 117697.2 789
1 119249 119232 119223.0 119249 118024.0 119232 119048.2 828 119200 118988.1 761
2 119215 119215 117625.6 119215 117801.4 119194 118876.4 819 119159 118849.7 794
3 118829 118813 117625.8 118813 117801.2 118813 118731.8 783 118802 118701.3 789
4 116530 114687 114312.4 116509 114357.2 116434 116168.9 774 116471 116218.3 812
5 119504 119504 112503.7 119504 117612.8 119483 119301.2 811 119442 119297.2 805
6 119827 116094 115629.1 119827 119827.4 119749 119602.4 769 119764 119608.1 817
7 118344 116642 115531.9 118301 117653.3 118307 118141.8 825 118309 118145.6 808
8 117815 114654 114204.0 117815 115236.4 117801 117577.3 775 117781 117588.1 794
9 119251 114016 113622.8 119231 118295.1 119186 118961.8 826 119196 118951.2 817
10 217377 209191 208710.2 217377 212570.3 217318 217065.1 842 217343 217064.6 837
11 219077 219077 217277.2 219077 218570.2 219036 218901.7 848 219022 218967.7 837
12 217847 210282 210172.3 217377 212570.4 217772 217599.2 859 217797 217691.4 884
13 216868 209242 206178.6 216868 216868.9 216843 216603.2 892 216802 216651.3 901
14 213873 207017 206656.0 207017 206455.0 213814 213524.1 923 213809 213511.2 912
15 215086 204643 203989.5 215086 215086.0 215013 214811.3 821 215021 214931.3 887
16 217940 205439 204828.9 217940 217940.5 217825 217699.1 924 217880 217674.8 912
17 219990 208712 207881.6 219984 209990.2 219825 219547.3 922 219949 219601.3 911
18 214382 210503 209787.6 210735 211038.2 214332 213989.1 886 214346 214014.8 896
19 220899 205020 204435.7 220899 219986.8 220833 220572.1 967 220827 220588.3 1002
20 304387 304387 302658.8 304387 304264.5 304344 304012.7 1007 304351 304062.6 973
21 302379 302379 301658.6 302379 302164.4 302332 302101.6 1004 302263 302177.8 996
22 302417 290931 290859.9 302416 302014.6 302354 302081.7 982 302354 302121.5 995
23 300784 290859 290021.4 291295 291170.6 300743 300497.1 1038 300745 300546.6 1066
24 304374 289365 288950.1 304374 304374.0 304267 304173.1 858 304340 304194.7 984
25 301836 292411 292061.8 301836 301836.0 301730 301604.5 995 301754 301610.4 1084
26 304952 291446 290516.2 291446 291446.0 304905 304783.8 1081 304911 304817.1 1012
27 296478 293662 293125.5 295342 294125.5 296361 296201.3 1047 296437 296307.2 1028
28 301359 285907 285293.4 288907 287923.4 301293 301073.2 988 301313 301112.6 1074
29 307089 290300 289552.4 295358 290525.2 307002 306837.2 1102 307014 306901.3 974
Average 212859.3 206278.2 205310.6 210879.2 209511.0 212797.3 212592.4 898.6 212806.8 212619.8 905.0
p-value with knn.km-PSO 1.86e-05 1.9e-06 0.79 2.2e-04 0.19 2.1e-03
p-value with knn.km-CS 2.59e-05 1.9e-06 0.69 1.8e-04 0.19 2.1e-03
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works competitively compared with the best algorithms 
that implement general binarization techniques. The KNN 
perturbation operator of the algorithm was analyzed and it 
was shown that the operator played a key role in the per-
formance of the algorithm. In particular, for the case of the 
largest dataset mkp.30.500, the use of this operator allows 
improving the results going from average values of 0.14 % 
when a random perturbation operator is used to values of 
0.28 % when the operator is replaced with a KNN pertur-
bation operator. Finally, when comparing our algorithmic 
approach with the best binarization frameworks proposed 
so far for solving the multidimensional knapsack problem, 
it could be observed that our approach is able to improve 
their previous results.

As future work, we plan to investigate the behavior of 
other continuous metaheuristics when introduced in our 
framework. Additionally, it is interesting to apply and assess 
the performance of these hybrid algorithms to other NP

-hard combinatorial problems. Another interesting topic 
worth investigation would be a comparison of different auto-
matic parametrization methods including the one used in this 
paper and, e.g, IRACE López-Ibáñez et al. [39]. In addition, 
it seems interesting to investigate the use of machine learn-
ing techniques to operators that control the size of the popu-
lation in order to reduce convergence times of the optimiza-
tion algorithms. These techniques could find areas where it 
is convenient to intensify or diversify and areas where it is 
not appropriate to do so. On the other hand, we find it chal-
lenging to extend the current work designing perturbation 
operators which use artificial neural network techniques. 
In principle, we can explore perturbation operators which 
use traditional neural networks such as the feedforward or 
recursive neural networks and later extend the perturba-
tion operators to use neural networks with reinforcement 
learning. Finally, it seems useful to explore hybridization in 
another direction, using metaheuristic algorithms that allow 
finding the proper parameterization and topology of a neural 
network automatically when it tries to solve a specific data 
problem.
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