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ABSTRACT

A detailed analytic and numerical analysis of the interaction between two bubble skyrmions has been carried out. Results from
micromagnetic calculations show a strong dependence of the parameters of the skyrmion magnetic profile as a function of the
magnetostatic interaction. The magnetic core and edge-width sizes of the skyrmion increase or decrease depending on the relative
position between the skyrmions and the uniaxial perpendicular anisotropy. In particular, when a magnetic disk is over another,
there is a transition from a Bloch-like skyrmion configuration to a Néel-like skyrmion configuration as the distance between the
disks decreases, as a consequence of the magnetostatic interaction. Therefore, it is possible to stabilize a bubble skyrmion with a
Néel configuration without the Dzyaloshinskii-Moriya interaction. Thus, these results can be used for the parameters control of
the skyrmions in magnetic spintronic devices that need to use these configurations.

Introduction
During the last decade, a great deal of attention has been focused on the study of the magnetic skyrmions in magnetic
structures because they have potential applications in magnetic storage devices of high density, spintronic devices,
etc.1–6. For example, in nanostructures such as nanodisks it is possible to find different type of skyrmions, like Néel,
Bloch or bubble configurations, among others. The Néel and Boch skyrmion configurations can be obtained by
introducing a Dzyaloshinskii-Moriya interaction due to the strong spin-orbit coupling between two materials1,2, 4, 7.
Similarly, the bubble skyrmions can be stabilized through an uniaxial magnetic anisotropy perpendicular to the
plane of the disk8–12.

It is interesting to note that the magnetic particles possess a long-range magnetostatic field, which is present in
the formation of a great variety of magnetic textures like vortices or skyrmions. Recently, arrays of bubble skyrmions
in nanodisks with perpendicular anisotropy have been proposed for the implementation of spintronic devices13–16.
In these systems, it should be emphasized that the interaction between the skyrmions through the magnetostatic
field can be strong depending on their locations2,17. In terms of analysis, the interaction between bubble skyrmions
can be decomposed as the magnetostatic field interaction of cores and edges. This magnetostatic interaction could
even influence their movements and may also affect their magnetic structures17,18 affecting the operation of the
device. Therefore it becomes necessary to study in detail the interaction between two bubble skyrmions.

Hence, in this paper, we study the magnetostatic interaction between two magnetic dots that have a magnetic
bubble skyrmion. They are stabilized by an effective anisotropy without the Dzyaloshinskii-Moriya interaction.
Specifically, we focus our attention on the skyrmion core and edge that vary in size as a function of the magnetostatic
interaction between these two magnetic dots. Based on micromagnetic calculations and micromagnetic simulations,
we have carried out numerical calculations, in which we have observed a strong variation of the parameters of
the skyrmion magnetic profile. The magnetic core and the edge-width sizes of the skyrmion increase or decrease
depending on the relative position between the skyrmions and the uniaxial perpendicular anisotropy. In particular,
it is possible to stabilize bubble skyrmions with a Néel-like skyrmion magnetic profile when a magnetic disk is over
another, in the absence of the Dzyaloshinskii-Moriya interaction. This transition from the Bloch-like skyrmion
configuration to the Néel-like skyrmion configuration is due to the magnetostatic interaction between the magnetic
disks. These results could be useful for the realization of future bubble skyrmion devices.
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Theory
We start with two dots that have a magnetic Co/Pt bubble skyrmion configuration. These dots are separated,
center to center, by a horizontal distance x and a vertical distance z, as shown in Fig. 1. The skyrmions are then
allowed to interact through the magnetostatic interaction. Each magnetic dot has a radius R, a height H, and an
effective magnetic uniaxial anisotropy perpendicular to the plane of the dot characterized by Ku > 0. The magnetic
parameters for each dot are Ms = 500 kA/m and A = 1.5× 10−11 J/m, so that the exchange length is equal to
Lex =

√
2A/µ0M2

s ≈ 9.8 nm19. We approach the study of these systems with the micromagnetic theory by using
analytical and numerical calculations, and micromagnetic simulations.

Figure 1. Schematic representation of two bubble skyrmions separated, center to center, by a horizontal distance x
and a vertical distance z. They are coupled by the magnetostatic interaction.

The micromagnetic simulations are performed with the Object Oriented Micromagnetic Framework (OOMMF)
code20. We consider that each dot has a thickness H = 10 nm and a radius R= 300 nm, a cubic mesh size of 2×2×2
nm3 and the Gilbert damping constant equal to 0.5. To obtain the minimum energy configuration, we consider
different initial states of the magnetization such as vortex, in plane, out of plane, and skyrmion configurations. To
relax the system into the most stable configuration, we use the Euler method.

0.1 Horizontal separation between two magnetic disks with low anisotropy
In the first place, we consider two disks, with low magnetic anisotropy, separated by a horizontal distance (x > R)
and in the same plane (z = 0). From the micromagnetic simulations, we propose a magnetic profile of the form
of a Bloch-like skyrmion characterized by a magnetization that rotates in the plane and perpendicular to the
radial direction, i.e., ~M (~r) = Ms[mφ (ρ) φ̂+mz (ρ) ẑ], where Ms is the saturation magnetization of the dot, and
m2
φ(ρ) +m2

z(ρ) = 1. Then, the analytical and numerical calculations are done by parameterizing the magnetization
function for the bubble skyrmion in cylindrical coordinates by12,21

mB1
z (ρ) =


δ+ (1− δ)

(
1− ρ2

α2

)4
0< ρ≤ α

δ α < ρ≤ β

δ−g (1 + δ)
(

1− (R−ρ)2

(R−β)2

)4
β < ρ≤R

(1)

where g is a parameter related to the maximum value of the z component of the magnetization in the edge of the
disk and takes the value between 0 and 1. δ is related to the plateau of the z component of the magnetization
observed in the OOMMF simulations. α and β are related with the beginning and ending of the plateau, respectively
[mB1

z (α) =mB1
z (β) = δ]. The abbreviation B1 in the superindex of mz is used with the aim of referring to a Bloch-like

skyrmion. Figure 2 illustrates the z-component of the magnetization of the magnetic profile for Ku = 143 kJ/m3.
The top row illustrates a comparison between the analytic magnetic profile given by Eq. (1) and the magnetic
profile obtained by the micromagnetic simulation with OOMMF. The bottom row illustrates a top view of the
magnetization obtained with OOMMF. Figures 2(a) and 2(d) considers an isolated magnetic dot. Figures 2(b)
and 2(e) considers the strongest magnetostatic interaction between two disks with a parallel-configuration of the
magnetic bubbles with x= 610 nm that we have studied. Figures 2(c) and 2(f) considers the strongest magnetostatic
interaction between two disks with an anti parallel-configuration of the magnetic bubbles with x= 610 nm that we
have studied. The analytical magnetic profile shows a very good agreement with the micromagnetic simulations
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when the disk is isolated. We observe a difference between the analytical and numerical value where the z component
of the magnetization is equal to zero of approximately 6%. Therefore, these OOMMF simulations suggest that the
cylindrical angular variation in the magnetic profile of these bubble skyrmions can be disregarded in first approach
when they are interacting by the magnetostatic interaction, as suggest Figs. 2(d), 2(e), and 2(f). Hence, for simplicity,
in the analytical analysis below we will consider that their magnetic profiles do not depend on the polar angle.
Therefore, we use the magnetic profile given by Eq. (1) when z = 0 and Ku = 143 kJ/m3.

Figure 2. Comparison between the analytic magnetic profile given by Eq. (1) and the magnetic profile obtained by
the micromagnetic simulation with OOMMF with R= 300 nm, H = 10 nm, Ku = 143 kJ/m3, and z = 0. Magnetic
profile of (a) an isolated disk, (b) two parallel B1 configuration with x= 610 nm, and (c) two antiparallel B1
configuration with x= 610 nm. In addition, Figures 2(d), 2(e), and 2(f) show a top view of the minimum energy
configuration obtained by OOMMF for the Figures 2(a), 2(b), and 2(c), respectively.

The total magnetic energy of two disks with the B1 configuration, EB1
tot, is given by the sum of the exchange,

magnetostatic, and anisotropy energies, whose forms are suggested by the micromagnetic theory22. The exchange
energy for the bubble skyrmion with the B1 configuration, EB1ex , is given by12

EB1
ex = 2πHA

[∫ α

0
f1(ρ)ρdρ+

(
1− δ2) ln

(
β

α

)
+
∫ R

β
f2(ρ)ρdρ

]
, (2)

where A is the stiffness constant. The functions f1(ρ) and f2(ρ) in Eq. (2) are

f1(ρ) =
1−
[
(1− δ)ζ4

1 (ρ) + δ
]2

ρ2 + 64(1− δ)2ρ2ζ6
1 (ρ)

α4
(

1−
[
(1− δ)ζ4

1 (ρ) + δ
]2) , (3)

f2(ρ) =
1−
[
δ−g(δ+ 1)ζ4

2 (ρ)
]2

ρ2 + 64g2(δ+ 1)2 (1− ζ2(ρ))ζ6
2 (ρ)

(R−β)2
(

1−
[
δ−g(δ+ 1)ζ4

2 (ρ)
]2) , (4)

with ζ1(ρ) = 1− ρ2/α2 and ζ2(ρ) = 1− (R− ρ)2/(R−β)2. The magnetostatic contribution is given by the self-
magnetostatic interaction for every dot defined by Em,self, and the magnetostatic interaction between the dots called
Em,int. The self magnetostatic interaction is Em,self = (µ0/2)

∫
~M(~r) · ~∇Uself(~r)dv, where Uself(~r) is the magnetostatic

potential in a dot due to the magnetization of the same magnetic dot22. Observing that there are not volumetric
charges in the magnetic profile of Eq. (1) [~∇· ~M(~r) = 0], then Em,self has the form12

EB1
m,self = πµ0M

2
s

∫ ∞
0

dq [F1 (q) +F2 (q)]2
(

1−e−qH
)
, (5)
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where F1 (q) and F2 (q) are

F1 (q) = F11(q)J1(qβ) +F12(q)J1(qα) +F13(q)J2(qα), (6)

F2 (q) =
∫ R

β
ρJ0(qρ)mB1

z (ρ)dρ, (7)

where F11(q) = βδ/q, F12(q) = 384(δ− 1)
(
48− q2α2)/(q7α5), and F13(q) = 4608(δ− 1)

(
q2α2−16

)
/(q8α6). The

magnetostatic interaction between the two dots is given by Em,int = µ0
∫
~M(~r) · ~∇Uint(~r)dv, where Uint(~r) is the

magnetostatic potential in a dot due to the magnetization of the other magnetic dot22. Then Em,int with the
magnetic profile given by Eq. (1) is equal to:

EB1
m,int (x,z) =−πµ0M

2
s σAσB

∫ ∞
0

dqJ0(qx) [F1 (q) +F2 (q)]2 e−q(H+z)g(q,H,z), (8)

where the letters A and B represent the dot A and the dot B, respectively. σA and σB take values ±1, and their
values define if the magnetization profile is given by Eq. (1) (value +1) or minus the magnetization profile given
by Eq. (1) (value −1). In essence we can parametrize the skyrmions with two orientations, namely, up or down.
When σA = σB the configuration is called parallel, and when σA 6= σB the configuration is called anti-parallel. The
function g(q,H,z) is:

g(q,H,z) =
{(

1−2eqH +e2qz) 0≤ z < H(
eqH −1

)2
z ≥H

(9)

The anisotropy contribution, Eani, is given by Eani =−Ku
∫
m2
z(ρ)dv. Then, Eani, with the magnetic profile given

by Eq. (1), is12:

EB1
ani =−2πKuH

(
α2

18 −
(R−β)2g2

18 + 32768
109395(R−β)g2R+f3(δ)

)
, (10)

where f3(δ) is equal to

f3(δ) = f31δ+f32δ
2, (11)

f31 =
(
− (R−β)2g2

9 + (R−β)2g

5 + 65536(R−β)g2R

109395 − 256(R−β)gR
315 + 4α2

45

)
, (12)

f32 =
(
− (R−β)2g2

18 + (R−β)2g

5 + 32768(R−β)g2R

109395 − 256(R−β)gR
315 + R2

2 −
13α2

90

)
. (13)

Hence, the expression of the total energy of the system is equal to

EB1
tot = 2EB1

ex + 2EB1
m,self + 2EB1

ani +EB1
m,int. (14)

This expression, Eq. (14), depends on the parameters x, z, δ, g, α, and β. Therefore, to obtain the energy of the
system, we need to minimize EB1

tot as a function of the parameters δ, g, α, and β; for a fixed R, H, x, z, and Ku.

0.2 Horizontal separation between two magnetic disks with high anisotropy
In this section we consider two disks, with high magnetic anisotropy, separated by a horizontal distance (x > R)
and in the same plane (z = 0). From the micromagnetic simulations, we propose a magnetic profile of the form
~M (~r) =Ms[mφ (ρ) φ̂+mz (ρ) ẑ], where the magnetic profile for mz (ρ), is given by8

mB2
z (ρ) = tanh

(
ρ−γ

∆

)
, (15)

where b = γ and c = R−γ are the core and the edge-width of the magnetic bubble skyrmion, respectively. The
abbreviation B2 in the superindex of mz is used with the aim of referring to a Bloch-like skyrmion configuration.
Figure 3 illustrates the z-component of the magnetization of the magnetic profile for R= 300 nm, H = 10 nm, and
Ku = 150 kJ/m3. The top row illustrates a comparison between the analytic magnetic profile given by Eq. (15) and
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the magnetic profile obtained by the micromagnetic simulation with OOMMF. The bottom row illustrates a top
view of the magnetization obtained with OOMMF. Figures 3(a) and 3(d) considers an isolated magnetic bubble.
Figures 3(b) and 3(e) consider the magnetostatic interaction between two disks with a parallel-configuration of the
magnetic bubbles with x= 610 nm. Figures 3(c) and 3(f) consider the magnetostatic interaction between two disks
with an anti parallel-configuration of the magnetic bubbles with x= 610 nm. The analytical magnetic profile shows a
very good agreement with the micromagnetic simulation when the disk is isolated. We observe a difference between
the analytical and numerical value where the z component of the magnetization is equal to zero of approximate
7%. Therefore, these OOMMF simulations suggest that the cylindrical angular variation in the magnetic profile of
these bubble skyrmion can be disregarded when they are interacting by the magnetostatic interaction, as suggest
Figs. 3(d), 3(e), and 3(f). Hence, for simplicity, in the analytical analysis below we will consider that their magnetic
profiles do not depend on the polar angle. Therefore, we use the magnetic profile given by Eq. (15) when z = 0 and
Ku = 150 kJ/m3.

Figure 3. Comparison between the analytic magnetic profile given by Eq. (15) and the magnetic profile obtained by
the micromagnetic simulation with OOMMF with R= 300 nm, H = 10 nm, Ku = 150 kJ/m3, and z = 0. Magnetic
profile of (a) an isolated disk, (b) two parallel B2 configuration with x= 610 nm, and (c) two antiparallel B2
configuration with x= 610 nm. In addition, Figures 3(d), 3(e), and 3(f) show a top view of the minimum energy
configuration obtained by OOMMF for the Figures 3(a), 3(b), and 3(c), respectively.

The total magnetic energy of the system with the B2 configuration for the dots, EB2
tot, is given by the sum of the

exchange, magnetostatic, and anisotropy energies, whose form are suggested by the micromagnetic theory22. The
exchange energy for the bubble skyrmion configuration with the B2 configuration, EB2ex , is given by

EB2
ex = 2πHA

∫ R

0

(
∆2 +ρ2)sech2 (γ−ρ

∆
)

∆2ρ2 ρdρ. (16)

The self-magnetostatic energy with the B2 configuration is

EB2
m,self = πµ0M

2
s

∫ ∞
0

dq

[∫ R

0
J0 (qρ)mB2

z (ρ)ρdρ
]2(

1−e−qH
)
. (17)

The magnetostatic interaction between the two dots is

EB2
m,int (x,z) =−πµ0M

2
s σAσB

∫ ∞
0

dqJ0(qx)
[∫ R

0
J0 (qρ)mB2

z (ρ)ρdρ
]2

e−q(H+z)g(q,H,z). (18)
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The anisotropy contribution is:

EB2
ani =−πHR2Ku−2πHKu

(
∆2 ln

[
cosh

(
γ−R

∆

)
sech

( γ
∆

)]
+ ∆R tanh

(
γ−R

∆

))
. (19)

Therefore, the total energy expression of the system with the B2 configuration for the dots is equal to

EB2
tot = 2EB2

ex + 2EB2
m,self + 2EB2

ani +EB2
m,int. (20)

This expression, Eq. (20), depends on the parameters x, z, γ, and ∆. Therefore, to obtain the energy of the system,
we need to minimize EB2

tot as a function of the parameters γ and ∆; for a fixed R, H, x, z, and Ku.

0.3 Vertical separation between two magnetic disks
In this section we consider two disks, separated by a vertical distance (z > H) and in the same axis (x= 0). Our
micromagnetic simulations show that the magnetic configuration of each dot changes from a Bloch-like skyrmion
configuration to a Néel-like skyrmion configuration as the distance between the dots decreases. In a Néel-like
skyrmion the magnetization rotates in the plane parallel to the radial direction, then we propose a magnetic profile
of the form ~MA (~r) =−Msmρ (ρ) ρ̂+Msmz (ρ) ẑ and ~MB (~r) =Msmρ (ρ) ρ̂+Msmz (ρ) ẑ, for the dot A and for the
dot B, respectively. We have that m2

ρ(ρ) +m2
z(ρ) = 1 and mz (ρ) is given by Eq. (15). Figure 4 illustrates the

z-component of the magnetization of the magnetic profile for z = 30 nm and Ku = 150 kJ/m3. Figure 4(a) illustrates a
comparison between the analytic magnetic profile and the magnetic profile obtained by the micromagnetic simulation
with OOMMF. Figure 4(b) shows a top view of the magnetization of the two dots. Figure 4(c) shows a schematic
representation of the front view of the magnetization of both dots.

Figure 4. Magnetization of the minimum energy state for two dots, one over the other, with R= 300 nm, H = 10
nm, Ku = 150 kJ/m3, x= 0, and z = 30 nm. (a) Comparison between the analytic magnetic profile of the Néel-like
skyrmion configuration and the magnetic profile obtained by the micromagnetic simulation with OOMMF. (b) Top
view of the magnetization obtained by OOMMF for the two dots. (c) Schematic representation of the front view of
the magnetization of the two dots.

The total magnetic energy of the system with the Néel-like skyrmion configuration for the dots, ENtot, is given
by the sum of the exchange, magnetostatic, and anisotropy energies. The abbreviation N is used with the aim
of referring to a Néel-like skyrmion. The exchange energy for the two dots with the N configuration, ENex, is the
same given by the B2 configuration, i.e., ENex = EB2ex . The self-magnetostatic energy in this case, comes from the
superficial and volumetric magnetic charges. Then, the self-magnetostatic energy is:

ENm,self =πµ0M
2
s

∫ ∞
0

dq
(
qH+e−qH −1

)(∫ R

0
mρ(ρ)J1(qρ)ρdρ

)2

+πµ0M
2
s

∫ ∞
0

dq
(

1−e−qH
)(∫ R

0
mz(ρ)J0(qρ)ρdρ

)2

(21)
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The magnetostatic interaction between the two dots is equal to:

ENm,int (x= 0,z) =−πµ0Ms

∫ ∞
0

dqe−q(H+y)(eqH −1)2

(∫ R

0
mρ(ρ)J1(qρ)ρdρ

)2

−πµ0Ms

∫ ∞
0

dqe−q(H+y)(eqH −1)2

(∫ R

0
mz(ρ)J0(qρ)ρdρ

)2

−2πµ0Ms

∫ ∞
0

dqe−q(H+y)(eqH −1)2
∫ R

0
mz(ρ)J0(qρ)ρdρ

∫ R

0
mρ(ρ)J1(qρ)ρdρ. (22)

The anisotropy contribution of the N bubble skyrmion configuration is equal to the B2 bubble configuration, i.e.,
ENani = EB2

ani. Therefore, the total energy expression of the system with the N configurations for the two dots at
x= 0 is equal to

ENtot = 2ENex + 2ENm,self + 2ENani +ENm,int. (23)

This expression, Eq. (23), depends on the parameters x, z, γ, and ∆. Therefore, to obtain the energy of the system,
we need to minimize ENtot as a function of the parameters γ and ∆; for a fixed R, H, x, z, and Ku.

Results and Discussion
We start with two Co/Pt magnetic dots with geometrical parameters R= 300 nm and H = 10 nm. The center of the
dot A is set up at the origin x= z = 0. With these parameters, we study two scenarios in the following subsections:
the disks adjacent to each other is when the dot B is at x > 2R and z = 0 (dots in the same plane) and the disks
vertically stacked corresponds to x= 0 and z > H (dots in the same axis z). In the following sections we study and
discuss the magnetostatic interaction energy and also the dependence of the parameters of the skyrmion, the core
size b and the end-width size c, as a function of the distance between the dots. The analytical values for the core
(ba) and the end-width (ca) sizes were obtained by minimizing the total magnetic energies given in the last section.
The numerical values for the core (bs) and the end-width (cs) sizes were obtained by OOMMF simulations.

0.4 Horizontal separation between two magnetic disks with bubble skyrmion configurations, x > 2R and z = 0.
In this section we study the magnetostatic interaction between two disks where the disks are one beside another, i.e.,
according to Fig. 1, z = 0 and the distance between their centers is x > 2R. Figure 5 illustrates the magnetostatic
interaction energy normalized by µ0M

2
sL

3
ex, Em,int = Em,int/(µ0M

2
sL

3
ex), as a function of x for Ku = 143 kJ/m3

and 150 kJ/m3. In this configuration, the magnetostatic interaction energy is negative when σA 6= σB , so that the
two skyrmions are oriented antiparallel. Similar results were obtained with magnetic vortices in disks, where the
antiparallel alignment of the vortices have the lowest magnetostatic energy24,25. The orientation of the skyrmions is
energetically favorable because the magnetic field lines produced at the edge of one of the skyrmions, can naturally
and immediately match the orientation of the magnetization and magnetic field produced at the closest edge of the
other skyrmion, minimizing the energy associated with the magnetostatic interaction (similar explanation is observed
in two coupled vortices, where the magnetic cores close the magnetic field lines24,25). For this reason, we start to
analyze the antiparallel configuration in this subsection, as it corresponds to the configuration of lowest energy.

To study the dependence of the core size, b, and the edge-width size, c, of the two skyrmions as a function of x,
we will choose the two following regimes. The first one is when Ku = 143 kJ/m3 and we use the configuration B1
[Eq. (1)]. The second one is when Ku = 150 kJ/m3 and we use the configuration B2 [Eq. (15)]. Figure 6 illustrates
the parameters of the skyrmions, b and c, as a function of x. Figure 6(a) considers Ku = 143 kJ/m3 and Figure 6(b)
considers Ku = 150 kJ/m3. We observe a good agreement between the analytical calculation and the numerical
simulations. When the distance between the disks decreases, the edge-width size of the skyrmions increases while
the size of the cores decreases. This behavior can be explained by the following argument: when the two magnetic
disks (skyrmions A and B) are near each other, the magnetization directions for the edges of A and B are oriented
antiparallel, allowing the magnetostatic field produce by one skyrmion to naturally close at the edge of the other
skyrmion. This results in a decrease of the magnetostatic energy making the system to be more stable. When the
skyrmions are close to each other, it is energetically favorable to have a relatively large edge c. However, when the
disks are moved away from each other, the magnetostatic interaction between them is reduced compared to the
other energy terms, so that c begins to decrease until it reaches the value corresponding to an isolated skyrmion.
In order to explain the behavior of the core of the skyrmion, we must first consider that the magnetic interaction
between the core A and the edge-width B is stronger than the interaction between the core A and the core B. This
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Figure 5. Normalized magnetostatic interaction energy as a function of the horizontal separation x between the two
disks with the antiparallel bubble skyrmion configurations for different anisotropies. The symbols represent the
numerical points at different anisotropies. The lines are obtained by fitting these numerical points. The square (blue
solid line) represents Ku = 143 kJ/m3 and the dot (red dashed line) represents Ku = 150 kJ/m3. Every disk has
h= 10 nm /Lex ≈ 1.02 and r = 300 nm/Lex ≈ 30.67.

is because the magnetic volume due to the magnetization perpendicular to the plane of the disk from the cores is less
than the magnetic volume from the the edge-widths, and also because the distance between the core A and the core
B is greater than the distance between the core A and the edge-width B. If we focus on the magnetic interaction
between the core of the skyrmion A and the edge-width of the skyrmion B when they are close together, we see that
both magnetization directions are the same. Such parallel configuration is not favorable, so that it is energetically
favorable to have a small magnetic volume, i.e, the size of the core, b, should be small. For the purpose of increasing
b, the magnetostatic interaction should diminish, therefore, we have to increase x. The opposite behavior occurs
for the cores of the magnetic disk that have magnetic vortices, i.e., the core radius of the vortices decreases as the
distance between them increases. This discussion for the vortices is analogous to what happens with the edges of
the skyrmions, which correspond to the strongest interaction in this scenario, see Refs.24,25. Analogously to the
edge-width size, the core size of each skyrmion takes the value of an isolated disk when the separation distance is
large enough to consider the magnetostatic interaction energy between the disks equal to zero.

Figure 6. The core, b (ba from the analytic model and bs from the micromagnetic simulations), and the edge-width,
c (ca from the analytic model and cs from the micromagnetic simulations), sizes of two disks with the antiparallel
bubble skyrmion configurations as a function of x at h= 10 nm /Lex ≈ 1.02 and r = 300 nm/Lex ≈ 30.67. The
anisotropy is (a) Ku = 143 kJ/m3 and (b) Ku = 150 kJ/m3.

From an application point of view, both antiparallel and parallel configurations are well worth investigating,
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because the core orientation of the skyrmion can be used to encode binary information and could be either up
or down, depending on the information. For this reason, in addition to the previous study of the antiparallel
configuration, the parallel configuration of two skyrmions with a horizontal separation is investigated. Figure 7
illustrates the normalized magnetostatic interaction energy, as a function of x for 143 kJ/m3 and 150 kJ/m3. In this
configuration, the magnetostatic interaction energy is positive.

Figure 7. Normalized magnetostatic interaction energy as a function of the horizontal separation x between the two
disks with the parallel bubble skyrmion configurations for different anisotropies. The symbols represent the
numerical points at different anisotropies. The lines are obtained by fitting these numerical points. The the square
(blue solid line) represents Ku = 143 kJ/m3 and the dot (red dashed line) represents Ku =150 kJ/m3. Every disk
has h= 10 nm/Lex ≈ 1.02 and r = 300 nm/Lex ≈ 30.67

Figure 8 illustrates the parameters of the skyrmions, b and c, as a function of x. Figure 8(a) corresponds to
Ku = 143 kJ/m3 and Figure 8(b) corresponds to Ku = 150 kJ/m3. In both cases, when the distance between the
disks decreases, the edge-width size of the skyrmions decreases while the core size increases. We observe a good
agreement between the analytical calculation and the numerical simulations. This can be explained through the
core-edge and edge-edge interaction. The strongest interaction is between the edges and it is unfavorable, so the
parameter c decreases when x decreases. On the another hand, the edge-core interaction is favorable, then the
parameter b increases when x decreases.

Figure 8. The core, b (ba from the analytic model and bs from the micromagnetic simulations), and the edge-width,
c (ca from the analytic model and cs from the micromagnetic simulations), of two disks with the parallel bubble
skyrmion configurations as a function of x for h= 10 nm/Lex ≈ 1.02 and r = 300 nm/Lex ≈ 30.67. The anisotropy is
(a) Ku = 143 kJ/m3 and (b) Ku = 150 kJ/m3.
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0.5 Vertical separation between two magnetic disks with bubble skyrmion configurations, x= 0 and z > H
In this section we study two disks where one disk is over the other, i.e., x= 0 and z > H. To study the magnetic
parameters b and c of the bubble skyrmions, first we need to know the magnetic configuration of the dots when the
vertical distance z varies. The configuration with minimum energy occurs when the bubble skyrmions are oriented
parallel to each other, since both the directions of the core magnetization and also the directions of the edge-width
magnetization of the bubble skyrmions are the same. Analogous results have been reported in stacked ferromagnetic
disks with magnetic vortices, where the parallel alignment of the vortices have the lowest magnetostatic energy26,27.
For this reason, we study the parallel configuration, σA = σB , as this is the configuration of lowest energy. Figure 9(a)
shows the normalized total energy for the two magnetic configurations (B1 and N) as a function of z for Ku = 143
kJ/m3. We observe that the bubble skyrmion with the B1 configuration is observed when the disk are isolated until
the disks have a separation of z ≈ 8.02Lex. For z lower than z = 8.02Lex, we observe the N configuration for the
disks. Figure 9(b) illustrates de normalized total energy for the configurations B2 and N as a function of z for
Ku = 150 kJ/m3. We observe that a distance z = 8.41Lex, there is a transition from the B2 configuration to the N
configuration as z decreases. Then, for both anisotropies, we observe that the bubble skyrmion configuration with a
Néel-like skyrmion configuration is stabilized by the magnetostatic interaction, without the Dzyaloshinskii-Moriya
interaction, i.e., there is a transition from the Bloch-like to the Néel-like configuration.

Figure 9. Normalized total energy as a function of the vertical distance z between the two disks for (a) Ku = 143
kJ/m3 and (b) Ku = 150 kJ/m3, at x= 0. The symbols represent the different configurations: B1 (dots), B2
(triangles), and N (squares).

Figure 10. The core, b, and the edge-width, c, sizes of two disks with the parallel bubble skyrmion configurations as
a function of z at h= 10 nm /Lex ≈ 1.02 and r = 300 nm/Lex ≈ 30.67. (a) The anisotropy is Ku = 143 kJ/m3.
(b)The anisotropy is Ku = 150 kJ/m3.

Figure 10 shows the variation of the magnetic parameters b and c of the two skyrmions as a function of z. We
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consider Ku = 143 kJ/m3 and Ku = 150 kJ/m3 for Fig. 10(a) and Fig. 10(b), respectively. By decreasing the
distance between the disks, the cores sizes of the skyrmions increase for z < 7.16Lex for Ka = 143 kJ/m3 and all the
study range of z for Ka = 150 kJ/m3. However the edge-width sizes of the skyrmions decrease for z < 7.16Lex for
Ka = 143 kJ/m3 and all the study range of z for Ka = 150 kJ/m3. To understand this behavior for these zones, we
observe the magnetic charges (related to the normal component of ~M) on the surfaces of the magnetic disks. We
will call B the upper disk and A the lower disk. Both disks have a parallel magnetic configuration. We consider that
they are very close together so that z ≈H. Disk A has a magnetic charge −q on the top surface of the edge-width
while disk B has a magnetic charge q on the bottom surface of the edge-width. This configuration is stable because
the interaction between the disks reduces the magnetic energy causing that the core sizes of the skyrmions increase.
For this reason the core sizes of the skyrmions increase when z decreases because opposite magnetic charges are
attracted. The edge-width sizes decrease because for close distance the condition b+ c=R occurs. From Fig. 10(a)
or Ka = 143 kJ/m3, we observe that the analytical model for z > 7.16Lex does not reproduce the behavior of the
core and edge width sizes. The reason is that the magnetic profile for Ka = 143 kJ/m3 is more complex. Figure (11)
illustrates a comparison between the analytical profile of mz and the micromagnetic simulations for Ku = 143 kJ/m3.
We observe that the magnetic profiles of mz obtained by micromagnetic simulations, for the B1 configuration, are
different from the analytical profile that we consider, i.e., there is a continuous transition from the Néel configuration
(with mφ = 0 and mρ 6= 0) to the Bloch configuration (with mφ 6= 0 and mρ = 0).

To finalize, we did not consider the case of antiparallel configuration when one disk is over the other. The reason
is that we did not observe this configuration in the micromagnetic simulation performed by OOMMF when the disks
have a strongly magnetostatic interaction.

Figure 11. Component z of the normalized magnetization at different vertical distance z of two disks with the
parallel bubble skyrmion configuration. The top row is for Ku = 143 kJ/m3 and the bottom row is for Ku = 150
kJ/m3. Each disk has h= 10 nm /Lex ≈ 1.02 and r = 300 nm/Lex ≈ 30.67.

Conclusions
In summary, by means of an analytic model and numerical calculations, we have studied the dependence of the
core and edge-width sizes for two magnetic disks, that have a bubble skyrmion configuration, that are interacting
by the magnetostatic interaction. By using different ansatz for the magnetic profile of a bubble skyrmion, it was
possible to obtain an expression for the magnetostatic interaction energy between the two disks. We observed that
the magnetic parameters that describe a skyrmion vary in different ways depending on the location of the disks.
When the disks are separated by a horizontal distance, the configuration with minimum energy corresponds to the
skyrmions that have an anti-parallel orientation. Results show that if the horizontal distance decreases, the core
sizes of the skyrmions decrease and the edge-width sizes of the skyrmions increase. These results can be explained
by the magnetic interactions between the magnetostatic fields created by the magnetizations of the cores and the
edge-widths of the skyrmions. When one disk is over the other, the configuration with minimum energy corresponds
to skyrmions that have a parallel orientation. As the vertical distance decreases, we observe that the bubble skyrmion
configuration with a Néel-like skyrmion configuration is stabilized by the magnetostatic interaction, without the
Dzyaloshinskii-Moriya interaction, i.e., there is a transition from the Bloch-like to the Néel-like configuration. Thus,
these results can be used in the fabrication of future magnetic devices in which two or more bubble-type skyrmions
are present.
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