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In this paper, we study a new class of functions, which we call
(𝜔, c)-asymptotically periodic functions. This collection includes asymptoti-
cally periodic, asymptotically antiperiodic, asymptotically Bloch-periodic, and
unbounded functions. We prove that the set conformed by these functions is a
Banach space with a suitable norm. Furthermore, we show several properties of
this class of functions as the convolution invariance. We present some examples
and a composition result. As an application, we prove the existence and unique-
ness of (𝜔, c)-asymptotically periodic mild solutions to the first-order abstract
Cauchy problem on the real line. Also, we establish some sufficient condi-
tions for the existence of positive (𝜔, c)-asymptotically periodic solutions to the
Lasota-Wazewska equation with unbounded oscillating production of red cells.
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1 INTRODUCTION

We say that f is a (𝜔, c)-periodic function if there is a pair (𝜔, c), c ∈ (C ⧵ {0}), w > 0 such that f(t + 𝜔) = cf(t), for all
t ∈ R (see Pinto1). It represents periodic functions with c = 1, antiperiodic functions with c = −1, Bloch waves with
c = eik/𝜔, and unbounded functions for |c| ≠ 1. Linear systems with periodic coefficients produce, by Floquet's theorem,
(𝜔, c)-periodic solutions. This is the case of the famous Hill and Mathieu equations (see Mathieu2 and Zounes and Rand3)

d2𝑦

dt2 + [a − 2q cos(2t)]𝑦 = 0.

Mathieu equation is a linearized model of an inverted pendulum, where the pivot point oscillates periodically in the
vertical direction (see Nayfeh and Mook4). In fluid dynamics, we can find many examples of waves being described by
Mathieu equation. The research of Faraday surface waves is very active (see previous studies5-7).
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Several properties of (𝜔, c)-periodic functions have been obtained in Alvarez et al.8 Also, this class of functions appears
for example when it used the method of Bloch wave decomposition in order to obtain the homogenization of self-adjoint
elliptic operators in arbitrary domains with periodically oscillating coefficients (see Conca and Vanninathan9and Orive
et al10 and the references therein).

In this paper, we introduce the space of (𝜔, c)-asymptotically periodic functions. A continuous function f is said to
be (𝜔, c)-asymptotically periodic function if it can be written as f = g + h where g is a (𝜔, c)-periodic function and h
satisfying c−t/𝜔h(t) goes to zero when t goes to infinite. Note that when c = 1, we obtain the space of asymptotically
periodic functions defined by M. Fréchet11 (see also other works12,13 for additional references), when c = −1, we obtain
the space of asymptotically antiperiodic functions defined in N'Guérékata and Valmorin,14 and when c = eik/𝜔, we obtain
the space of asymptotically Bloch-periodic functions studied in previous works.15,16 Also, it should be noted that the
space of (𝜔, c)-periodic functions are contained in the space of (𝜔, c)-asymptotically periodic functions. Fréchet developed
a remarkable theory in turn to asymptotically almost periodic functions and the solutions of this type in differential
equations, see Fink.17 Then, the new concept of (𝜔, c)-asymptotically periodic functions is important not only by the
unification of several classes of periodicity but also by the projections in the Fréchet theory.

We give several properties of (𝜔, c)-asymptotically periodic functions including a characterization in terms of the asymp-
totically periodic functions, uniqueness of the decomposition, algebraic properties, and the fact that the primitive of a
(𝜔, c)-periodic function is, again, (𝜔, c)-periodic function. Also, we prove a convolution theorem and that the space of
(𝜔, c)-asymptotically periodic functions is a Banach space with the norm ||·||a𝜔c defined below. Furthermore, we prove that
the range of these functions is relatively compact with this norm. A composition result is given, and a variety of examples
are showed. We point out that the asymptotically periodic, asymptotically antiperiodic and asymptotically Bloch-periodic
functions are defined as a subspace of BC(X), while our results includes unbounded functions on R, that is, the cases|c| < 1 and |c| > 1.

The previous results allow to show the existence and uniqueness of (𝜔, c)-asymptotically periodic mild solutions for the
following class of semilinear abstract differential equations

u′(t) = Au(t) + 𝑓 (t,u(t)), t ∈ R,

where A is a closed linear operator defined in a Banach space X which generates a C0-semigroup {T(t)}t≥ 0. The results
can be extended to delayed systems.

Furthermore, we prove the existence of positive (𝜔, c)-asymptotically periodic solutions to the Lasota-Wazewska
equation with (𝜔, c)-asymptotically periodic coefficients

𝑦′(t) = −𝛿𝑦(t) + h(t)e−a(t)𝑦(t−𝜏), t ≥ 0. (1)

Wazewska-Czyzewska and Lasota18 propose this model to describe the survival of red blood cells in the blood of an
animal. In this equation, y(t) describes the number of red cells bloods in the time t, 𝛿 > 0 is the probability of death of a
red blood cell, a(t) is a continuous and positive function which is related with the production of red blood cells by unity
of time, 𝜏 is the time required to produce a red blood cell, h(t) is a continuous and positive function which describes the
generation of red blood cells per unit time.

This paper is organized as follows. In Section 2, we introduce the (𝜔, c)-asymptotically periodic functions and give some
important properties. Also, we show that the space of (𝜔, c)-asymptotically periodic functions is a Banach space with a
suitable norm and the fact that the range of this class of functions is relatively compact with this norm. Convolution
and composition theorems will be proved. Several interesting examples are given. In Section 3, we prove the existence
and uniqueness of (𝜔, c)-asymptotically periodic solutions to the first-order abstract Cauchy problem on R. Finally, in
Section 4, we prove the existence of positive (𝜔, c)-asymptotically periodic solutions to the Lasota-Wazewska model with
(𝜔, c)-asymptotically periodic coefficients. Also, we show that the solution is exponentially stable.

2 (𝜔,c)-ASYMPTOTICALLY PERIODIC FUNCTIONS

Throughout the paper, d ∈ R, c ∈ C ⧵ {0}, 𝜔 > 0, X will denote a complex Banach space with norm || · ||, 𝛺 ⊂ X, and we
will denote the space of continuous functions on [d,∞) by

C([d,∞),X) ∶= {𝑓 ∶ [d,∞) → X ∶ 𝑓 is continuous},
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the space of asymptotic functions as

C0(X) ∶= {h ∈ C([d,∞),X) ∶ lim
t→∞

h(t) = 0},

and
C0(Ω,X) ∶=

{
h ∈ C([d,∞) × Ω,X) ∶ lim

t→∞
h(t, x) = 0 for all x in any compact subset of Ω

}
.

Also we will denote, the space of bounded and continuous functions on R as

BC(X) ∶= {𝑓 ∶ R → X ∶ 𝑓 is bounded and continuous},

the integrable functions in the real line as

L1(R) ∶= {𝑓 ∶ R → R ∶ 𝑓 is integrable},

and the space of continuous functions on R × X by

{𝑓 ∶ R × X → X ∶ 𝑓 is continuous},

where R × X is a Banach space with the norm ||(t, x)|| = max{|t|, ||x||}.

Definition 2.1 (Alvarez et al8). A function g ∈ C([d,∞),X) is said to be (𝜔, c)-periodic if g(t + 𝜔) = cg(t) for all
t ∈ [d,∞). 𝜔 is called the c-period of g. The collection of those functions with the same c-period 𝜔 will be denoted
by P𝜔c([d,∞),X). When c = 1 (𝜔-periodic case) we write P𝜔([d,∞),X) in spite of P𝜔1[d,∞),X). Using the principal
branch of the complex Logarithm (i.e. the argument in (−𝜋, 𝜋]) we define ct∕𝜔 ∶= exp((t∕𝜔) Log (c)). Also, we will
use the notation c∧(t) ∶= ct/𝜔 and |c|∧(t) ∶= |c∧(t)| = |c|t/𝜔.

The following proposition gives a characterization of the (𝜔, c)-periodic functions.

Proposition 2.2 (Alvarez et al8). Let f ∈ C([d,∞),X). Then f is a (𝜔, c)-periodic if and only if

𝑓 (t) = c∧(t)u(t), c∧(t) = ct∕𝜔, (2)

where u(t) is a 𝜔−periodic X-valued function.

In view of (2), for any f ∈ P𝜔c([d,∞),X) we say that c∧(t)u(t) is the c-factorization of f.

Remark 2.3. From Proposition 2.2, we can write all f ∈ P𝜔c([d,∞),X) as

𝑓 (t) = c∧(t)u(t),

where u(t) is 𝜔-periodic on [d,∞). We will call u(t) the periodic part of 𝑓 . With this convention, an antiperiodic func-
tion f can be written as f(t) = (−1)t/𝜔u(t), where u is 𝜔-periodic. For example, 𝑓 (t) = sin t can be considered as an
antiperiodic function, with 𝜔 = 𝜋. As Log(−1) = i𝜋, f has the decomposition f(t) = c∧(t)u(t) where

c∧(t) = (−1)t∕𝜋 = eti = [cos t + i sin t],

and
u(t) = sin t(cos t − i sin t),

which is periodic with period 𝜋.
Let c = e2𝜋i/k for some natural number k ≥ 2 and let f be a (𝜔, c)-periodic function. Then f is a periodic function

with period k𝜔 but, in general can be written as f(t) = e2𝜋ti/k𝜔u(t), where u is a complex periodic function with period
𝜔. In particular if k = 4, a (𝜔, e𝜋i/2)-periodic function f can be at the same time a Bloch wave: f(t + 𝜔) = e𝜋i/2f(t), an
antiperiodic function with antiperiod 2𝜔: f(t + 2𝜔) = −f(t) and a 4𝜔-periodic function: f(t + 4𝜔) = f(t).
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Definition 2.4. A function h ∈ C([d,∞),X) is said to be c-asymptotic if c∧(−t)h(t) ∈ C0(X), that is,

lim
t→∞

c∧(−t)h(t) = 0.

The collection of those functions will be denoted by C0,c(X). Analogously, a function h ∈ C([d,∞)×𝛺,X) is said to be
c-asymptotic if c∧(−t)h(t, x) ∈ C0(𝛺,X), that is,

lim
t→∞

c∧(−t)h(t, x) = 0

for all x in any compact subset of 𝛺. The collection of those functions will be denoted by C0,c(𝛺,X).

Definition 2.5. A function f ∈ C([d,∞),X) is said to be (𝜔, c)-asymptotically periodic if f = g + h where g ∈
P𝜔c([d,∞),X) and h ∈ C0,c(X). The collection of those functions (with the same c-period 𝜔 for the first component)
will be denoted by AP𝜔c(X).

Remark 2.6. The preceding collection includes the asymptotically periodic functions AP𝜔1(X) ∶= {f ∈ C([d,∞),X) ∶
f = g+h, g ∈ P𝜔1([d,∞),X), h ∈ C0(X)}, the asymptotically antiperiodic functions AP𝜔 (−1)(X) ∶= {f ∈ C([d,∞),X) ∶
f = g + h, g ∈ P𝜔 (−1)([d,∞),X), h ∈ C0(X)} and asymptotically Bloch-periodic functions AP𝜔 eik𝜔 (X) ∶= {𝑓 ∈
C([d,∞),X) ∶ 𝑓 = g + h, g ∈ P𝜔 eik𝜔([d,∞),X), h ∈ C0(X)}.

The following proposition gives a characterization of the (𝜔, c)-asymptotically periodic functions.

Proposition 2.7. Let f ∈ C([d,∞),X). Then f is (𝜔, c)-asymptotically periodic if and only if

𝑓 (t) = c∧(t)u(t), c∧(t) = ct∕𝜔, u ∈ AP𝜔(X). (3)

Proof. It is clear that if f(t) satisfies (3) then f is a (𝜔, c)-asymptotically periodic function. In order to show the inverse
statement, let f ∈ AP𝜔c(X). Then there exist g ∈ P𝜔c([d,∞),X) and h ∈ C0,c(X) such that f = g + h. If we write
u(t) ∶= c∧(−t)f(t) = c−t/𝜔f(t), then

u(t) = c∧(−t)g(t) + c∧(−t)h(t) =∶ F1(t) + F2(t).

It follows from Alvarez et al8, Proposition 2.5 that F1 ∈ P𝜔([d,∞),X) and by definition of C0,c(X) we have that F2 ∈
C0(X). Hence u ∈ AP𝜔(X).

Remark 2.8. The decomposition in Definition 2.5 is unique, that is, there exist a unique g ∈ P𝜔c([d,∞),X) and a
unique h ∈ C0,c(X) such that f = g + h. Indeed, suppose that

𝑓 (t) = g1(t) + h1(t) = g2(t) + h2(t), g1, g2 ∈ P𝜔c([d,∞),X), h1, h2 ∈ C0,c(X), t ≥ d.

Then,
u(t) ∶= c∧(−t)𝑓 (t) = c∧(−t)g1(t) + c∧(−t)h1(t) = c∧(−t)g2(t) + c∧(−t)h2(t)

belongs to AP𝜔(X) by Proposition 2.2. By the unique representation of the functions in this space, we have that
c∧(−t)g1(t) = c∧(−t)g2(t) and c∧(−t)h1(t) = c∧(−t)h2(t) and consequently g1(t) = g2(t) and h1(t) = h2(t) for all t ≥ d.

Remark 2.9. Note that if |c| ≥ 1 then C0(X) ⊂ C0,c(X), and consequently P𝜔c([d,∞),X) + C0(X) ⊂ AP𝜔c(X).

As a consequence of Proposition 2.7, we have the following basic properties.

Lemma 2.10. Let 𝛼 ∈ C. Then

(a) (f + g) ∈ AP𝜔c(X) and 𝛼h ∈ AP𝜔c(X) whenever f, g, h ∈ AP𝜔c(X).
(b) If 𝜏 ≥ 0 is constant, then f𝜏(t) = f(t + 𝜏) ∈ AP𝜔c(X) whenever f ∈ AP𝜔c(X).
(c) If 𝑓1 ∈ AP𝜔c1 (X) and 𝑓2 ∈ AP𝜔c2 (X), then 𝑓1 · 𝑓2 ∈ AP𝜔 c1c2 (X).

308



ALVAREZ ET AL.

(d) Let g ∈ P𝜔c(X) and h ∈ C0,c(X) such that g, h ∈ C1([d,∞),X). Then the derivative of f = g + h ∈ AP𝜔c(X) belongs
to AP𝜔c(X).

Proof. The proofs of (a) and (b) are consequence of the definition. We see (c) and (d). For (c) let u1 and u2 in AP𝜔(X)
such that

𝑓1(t) = c∧1 (t)u1(t), 𝑓2(t) = c∧2 (t)u2(t).
Since u1 · u2 ∈ AP𝜔(X), we have that

𝑓1(t) · 𝑓2(t) = c∧1 (t)c
∧
2 (t) u1(t) · u2(t) = (c1c2)∧(t) u1(t) · u2(t).

Hence 𝑓1 · 𝑓2 ∈ AP𝜔 c1c2(X). Now, we show (d). For a fixed t ∈ R and every 𝛽 ≠ 0 with |𝛽| small enough, we have

g′(t + 𝜔) = lim
𝛽→0

g(t + 𝜔 + 𝛽) − g(t + 𝜔)
𝛽

= lim
𝛽→0

cg(t + 𝛽) − cg(t)
𝛽

= cg′(t),

hence g′ ∈ P𝜔c(X). On the other hand, let p ∈ C0(X) such that h(t) = c∧(t)p(t). Then h′(t) = (c∧(t))′p(t) + c∧(t)p′(t).
Since p and p′ goes to zero as t → ∞ and (c∧(t))′

c∧(t)
is constant then c∧(−t)h′(t) → 0 as t → ∞.

Example 2.11. Let X = C, |b| < 2 and h be a bounded function. Consider

𝑓 (t) = 2t sin t + bth(t), t ≥ d.

Then f is a (𝜋,−2𝜋)-asymptotically periodic function. Since c∧(t) = exp
(

t
𝜋

Log(−2𝜋)
)
= 2teit, then by Proposition 2.2

we have that
g(t) = 2teitu1(t)

where
u1(t) = sin t(cos t − i sin t)

is periodic with period 𝜔 = 𝜋. Analogously,
bth(t) = 2teitu2(t),

where

u2(t) =
(

b
2

)t

h(t)(cos t − i sin t)

belongs to C0([d,∞),X). Hence, f has the decomposition

𝑓 (t) = 2t sin t + bth(t) = 2t(cos t + i sin t)

[
sin t(cos t − i sin t) +

(
b
2

)t

h(t)(cos t − i sin t)

]
.

Remark 2.12. If we put h = 1 in Example 2.11, we have that 𝑓 (t) = 2t sin t + bt is a (𝜋,−2𝜋)-asymptotically periodic
function; however, f ∉ P𝜔c([d,∞),X) + C0(X). This implies that AP𝜔c(X) is more general than P𝜔c([d,∞),X) + C0(X).

Remark 2.13. The sum P𝜔c(X) + C0(X) is not direct. Indeed, let 𝑓 (t) = 2−t sin t, t ∈ R. Then f is a nonzero
(2𝜋, 2−2𝜋)-periodic function and belongs to C0(R). Furthermore, note that

g(t) = 2−t sin t + h(t), with lim
t→∞

2th(t) = 0

belongs to P𝜔c(R) + C0,c(R) where c = 2−2𝜋 .

Example 2.14. Let u ∶ [d,∞) → X be a X-valued periodic function with period 𝜔 and v ∶ [d,∞) → X in C0(X).
Let 𝜙 ∶ R → C be a function with the semigroup property, that is, 𝜙(t + s) = 𝜙(s)𝜙(t) for all t, s ∈ R and such that
𝜙(𝜔) ≠ 0. Then

z(t) = 𝜙(t)u(t) + 𝜙(t)v(t), t ≥ d,
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is a (𝜔,𝜙(𝜔))-asymptotically periodic function if the function 𝜑(t) ∶= [𝜙(𝜔)]∧(−t)𝜙(t) is bounded. As a particular case,
we take 𝜙(t) = eikt and obtain the asymptotically Bloch functions.

Remark 2.15. In general, if u is a (𝜔, c)-asymptotically periodic function, and 𝜙 is a function with the semigroup
property such that 𝜙(𝜔) ≠ 0, then z(t) ∶= 𝜙(t)u(t) is a (𝜔, c𝜙(𝜔))-asymptotically periodic if 𝜑(t) ∶= [𝜙(𝜔)]∧(−t)𝜙(t) is
bounded. Moreover, let (uk)k∈N be a sequence of (𝜔, c)-asymptotically periodic functions and (𝜙k)k∈N be a sequence
of functions with the semigroup property and such that 𝜙k(𝜔) = p ≠ 0 for all k ∈ N. Assume that

∞∑
k=1

𝜙k(t)uk(t)

is a uniformly convergent series on R. Then,

𝑓 (t) =
∞∑

k=1
𝜙k(t)uk(t)

is a (𝜔, cp)-asymptotically periodic function if 𝜑k(t) ∶= p∧(−t)𝜙k(t) is bounded for k ∈ N.

The following result shows that, under some conditions, the primitive of a (𝜔, c)-periodic function is also a (𝜔, c)-
periodic function.

Proposition 2.16. Assume that f is a (𝜔, c)-periodic function and b ∈ [−∞,∞). Then F(t) = ∫ t
b 𝑓 (s)ds is a (𝜔, c)-periodic

function if and only if F(b + 𝜔) = 0.

Proof. We have that

F(t + 𝜔) − F(b + 𝜔) = ∫
t+𝜔

b
𝑓 (s)ds − ∫

b+𝜔

b
𝑓 (s)ds

= ∫
t+𝜔

b+𝜔
𝑓 (s)ds

= ∫
t

b
𝑓 (s + 𝜔)ds

= c∫
t

b
𝑓 (s)ds = cF(t).

From here, we conclude that F(t + 𝜔) = cF(t) if and only if F(b + 𝜔) = 0.

Remark 2.17. It follows from Proposition (2.16) that if F(t) = ∫ t
−∞ 𝑓 (s)ds is well defined then F is (𝜔, c)-periodic

whenever f is a (𝜔, c)-periodic function. Analogously, F(t) = ∫ ∞
t 𝑓 (s)ds is (𝜔, c)-periodic whenever f is a (𝜔, c)-periodic

function.

Remark 2.18. The most elementary equation, y′ = f can be studied for f ∈ P𝜔c(X). For |c| ≠ 1 the primitive ∫ t
−∞ 𝑓 (s)ds

(or − ∫ ∞
t 𝑓 (s)ds) is well defined and it is a (𝜔, c)-periodic function.

We recall the following convolution result.

Theorem 2.19. (Alvarez et al8, Theorem 2.7) Let 𝑓 ∈ P𝜔c(R,X) with f(t) = c∧(t)p(t), p ∈ P𝜔(R,X). If k∼(t) ∶=
c∧(−t)k(t) ∈ L1(R), then (k ∗ 𝑓 )(t) = ∫ ∞

−∞ k(t − s)𝑓 (s)ds ∈ P𝜔c(R,X).

We are ready to present the convolution theorem for (𝜔, c)-asymptotically periodic functions.

Theorem 2.20. Assume that d ∈ [−∞,∞). Let f ∈ AP𝜔c(X) with f(t) = c∧(t)p(t), p ∈ AP𝜔(X). If for some k(t) we have
that k∼(t) ∶= c∧(−t)k(t) ∈ L1(R), then

(k ∗ 𝑓 )(t) = ∫
∞

d
k(t − s)𝑓 (s)ds = c∧(t)(k∼ ∗ p)(t).

In particular, k ∗ f ∈ AP𝜔c(X).
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Proof. Since p ∈ AP𝜔(X) then there exist p1 ∈ P𝜔([d,∞),X) and p2 ∈ C0(X) such that p = p1 + p2. Then f = f1 + f2
where f1(t) = c∧(t)p1(t) ∈ P𝜔c([d,∞),X) and f2(t) = c∧(t)p2(t) ∈ C0,c(X). We have

(k ∗ 𝑓 )(t) = ∫
∞

d
k(t − s)𝑓 (s)ds

= ∫
∞

d
k(t − s)𝑓1(s)ds + ∫

∞

d
k(t − s)𝑓2(s)ds

= (k ∗ 𝑓1)(t) + (k ∗ 𝑓2)(t) =∶ I1(t) + I2(t).

From Theorem 2.19, we have that I1 ∈ P𝜔c([d,∞),X). Next, we prove that I2 ∈ C0,c(X), that is, c∧(−t)I2(t) belongs to
C0(X). Indeed, we have that

||c∧(−t)I2(t)|| ≤ |c|∧(−t)∫
∞

d
|k(t − s)|||𝑓2(s)||ds

= |c|∧(−t)∫
∞

d
|k∼(t − s)| |c|∧(t − s)|c|∧(s) ||p2(s)||ds

= ∫
∞

d
|k∼(t − s)| ||p2(s)||ds → 0, (t → ∞),

where we have used that (k ∗ h) ∈ C0(X) provided h ∈ C0(X) (see, eg, Lizama and N'Guérékata12, Theorem 3.3). Now,
from definition of f, we have that (k ∗ f)(t) = c∧(t)(k∼ ∗ p)(t). Hence, (k ∗ f) ∈ AP𝜔c(X).

Example 2.21. Consider the heat equation{
ut(x, t) = uxx(x, t), t > 0, x ∈ R,

u(x, 0) = 𝑓 (x).

Let u(x, t) be a regular solution with u(x, 0) = f(x). Then, it is known that

u(x, t) = 1
2
√
𝜋t ∫

+∞

−∞
e−

(x−s)2

4t 𝑓 (s)ds, t > 0, x ∈ R.

Fix t0 > 0 and assume that f(x) is (𝜔, c)-asymptotically periodic. Then, by Theorem 2.20, we have that u(x, t0) is
(𝜔, c)-asymptotically periodic with respect to x.

We recall (see Alvarez et al8) that the norm in the space P𝜔c([d,∞),X) is given by

||𝑓 ||𝜔c ∶= sup
t∈[0,𝜔]

|||c|∧(−t)𝑓 (t)||.
Theorem 2.22. AP𝜔c(X) is a Banach space with the norm

||𝑓 ||a𝜔c ∶= sup
t≥d

‖‖|c|∧(−t)𝑓 (t)‖‖ ,
Proof. Let (fn) be a Cauchy sequence in AP𝜔c(X). Then, given 𝜖 > 0 there exists N ∈ N such that for all m,n ≥ N we
have ||𝑓n − 𝑓m||a𝜔c < 𝜖.

Since fm, fn ∈ AP𝜔c(X), Proposition 2.7 implies that there exist um,un ∈ AP𝜔(X) such that fm(t) = c∧(t)um(t) and
fn(t) = c∧(t)un(t). Now, note that for m,n ≥ N

||um − un||a𝜔 = sup
t≥d

||um(t) − un(t)||
= sup

t≥d
||c∧(−t)𝑓m(t) − c∧(−t)𝑓n(t)||

= sup
t≥d

|||c|∧(−t)[𝑓m(t) − 𝑓n(t)]||
= ||𝑓n − 𝑓m||a𝜔c < 𝜖.
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It follows that (un) is a Cauchy sequence in AP𝜔(X). Since AP𝜔(X) is complete, then there exists u ∈ AP𝜔(X) such that||un − u||a𝜔 → 0 as n → ∞. Let us define f(t) ∶= c∧(t)u(t). We claim that ||fn − f||a𝜔c → 0 as n → ∞. Indeed,

||𝑓n − 𝑓 ||a𝜔c = sup
t≥d

|||c|∧(−t)[𝑓n(t) − 𝑓 (t)]||
= sup

t≥d
|||c|∧(−t)c∧(t)un(t) − |c|∧(−t)c∧(t)u(t)||

= sup
t≥d

||un(t) − u(t)|| → 0 (n → ∞).

Hence, AP𝜔c(X) is a Banach space with the norm || · ||a𝜔c.

Remark 2.23. Let f ∈ P𝜔c([d,∞),X). Then the set {c∧(−t)f(t) ∶ t ≥ d} is relatively compact in X, that is, given 𝜖 > 0
there exist {xi}k

i=1 in X such that ||c∧(−t)f(t) − xi|| < 𝜖 for some i = 1, … , k and for all t ≥ d.

Next, we have the following composition result.

Theorem 2.23. Let f(t, x) = g(t, x) + h(t, x) where g(t + 𝜔, cx) = cg(t, x) and h ∈ C0,c(X,X). Assume the following
conditions.

(a) ht(z) = c∧(−t)h(t, c∧(t)z) is uniformly continuous for z in any bounded subset of X, uniformly for t ≥ d and ht(z) →
0 as t → ∞ uniformly in z.

(b) There exists a nonnegative bounded function Lf(t) such that

||𝑓 (t, x) − 𝑓 (t, 𝑦)|| ≤ L𝑓 (t)||x − 𝑦||, t ≥ d, x, 𝑦 ∈ X .

If 𝜑 ∈ AP𝜔c(X), then f(·, 𝜑(·)) ∈ AP𝜔c(X).

Proof. Let 𝜑(t) = 𝛼(t) + 𝛽(t) with 𝛼 ∈ P𝜔c([d,∞),X) and 𝛽 ∈ C0,c(X). Then, we have

𝑓 (t, 𝜑(t)) = [𝑓 (t, 𝜑(t)) − 𝑓 (t, 𝛼(t))] + g(t, 𝛼(t)) + h(t, 𝛼(t)) =∶ F(t) + G(t) + H(t).

Note that ||c∧(−t)F(t)|| = |c|∧(−t)||𝑓 (t, 𝜑(t)) − 𝑓 (t, 𝛼(t))||
≤ |c|∧(−t)L𝑓 (t)||𝜑(t) − 𝛼(t)||
= L𝑓 (t)|||c|∧(−t)𝛽(t)|| → 0, t → ∞.

It follows that F ∈ C0,c(X). On the other hand, by Alvarez et al8, Theorem 2.11 we have that G(t) = g(t, 𝛼(t)) belongs
to P𝜔c([d,∞),X). Finally, we prove that H ∈ C0,c(X). From Remark 2.23, we have that K ∶= {c∧(−t)𝛼(t) ∶ t ∈ [d,∞)}
is relatively compact in X. Then for every 𝛿 > 0 there exist x1, … , xk ∈ X such that

c∧(−t)𝛼(t) ∈
k⋃

𝑗=1
B(x𝑗 , 𝛿), t ≥ d. (4)

Consequently, given t ≥ d we can choose j = 1, … , k such that

||c∧(−t)𝛼(t) − x𝑗|| < 𝛿. (5)

Let 𝜖 > 0. Since ht(·) = c∧(−t)h(t, c∧(t) ·) is uniformly continuous on K uniformly for t ≥ d, then taking 𝛿 = 𝛿

(
𝜖

2

)
we obtain that ||c∧(−t)[h(t, c∧(t)c∧(−t)𝛼(t)) − h(t, c∧(t)x𝑗)]|| < 𝜖

2
, (6)

uniformly for t ≥ d. On the other hand, since limt→∞c∧(−t)h(t, c∧(t) ·) = 0 on compact subsets of X, then
limt→∞c∧(−t)h(t, c∧(t)x𝑗) = 0 for j = 1, 2, … , k. Thus, there exists N ∈ N such that for all t ≥ N > d we have

||c∧(−t)h(t, c∧(t)x𝑗)|| < 𝜖

2
. (7)
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Next, for all t ≥ N ≥ d, we have

||c∧(−t)h(t, 𝛼(t))|| ≤ |c∧(−t)h(t, 𝛼(t)) − c∧(−t)h(t, c∧(t)x𝑗)|| + ||c∧(−t)h(t, c∧(t)x𝑗)|| < 𝜖. (8)

Hence,

lim
t→∞

c∧(−t)H(t) = 0.

Consequently, f(·, 𝜑(·)) ∈ AP𝜔c(X).

Example 2.25. Let g(t, x) = u(t)v(x) for all t ≥ d and x ∈ R where v(c) ≠ 0, u is a
(
𝜔,

c
v(c)

)
-periodic function and v is

multiplicative. Suppose that
[

c
v(c)

]∧
(−t) is bounded and h(t, x) ∈ C0,c(Ω,R), (Ω ⊂ R). Thus, if f(t, x) = g(t, x) + h(t, x) is

Lipschitz, then f satisfies the conditions in Theorem 2.23.

3 EXISTENCE OF A (𝜔,c)-ASYMPTOTICALLY PERIODIC SOLUTION FOR
SEMILINEAR ABSTRACT DIFFERENTIAL EQUATIONS IN BANACH SPACES

In this section, we consider the problem of existence and uniqueness of (𝜔, c)-asymptotically periodic mild solutions for
the following class of semilinear abstract differential equations

u′(t) = Au(t) + 𝑓 (t,u(t)), t ∈ R, (9)

where A is a closed linear operator defined in a Banach space X which generates a C0-semigroup {T(t)}t≥ 0 such that there
exist constants M > 0 and 𝛼 > 0 with

||T(t)x|| ≤ Me−𝛼t||x||, t ≥ 0. (10)

A function u ∶ R → X is said to be a mild solution of (9) (see N'Guérékata19) if the function s → T(t − s)f(s,u(s)) is
integrable on (a, t) for each t ≥ a, a ∈ R and

u(t) = T(t − a)u(a) + ∫
t

a
T(t − s)𝑓 (s,u(s))ds, t ≥ a.

The mild solution defined as the first constant variation formula and the solved equation

u(t) = ∫
t

−∞
T(t − s)𝑓 (s, u(s))ds (11)

are not equivalent. However, they are equivalent when we consider c∧(t)-bounded solutions (solutions such that
sup𝜏∈R|||c|∧(−𝜏)u(𝜏)|| < ∞) with |c| > e−𝜔𝛼 and the semigroup generated by A satisfies (10). Indeed, note that for
u ∈ AP𝜔c(X) we have

||T(t − a)u(a)|| ≤ Me−𝛼(t−a)|c|∧(a)|||c|∧(−a)u(a)||
≤ Me−𝛼te𝛼a|c|∧(a) sup

𝜏∈R
|||c|∧(−𝜏)u(𝜏)||

≤ Me−𝛼te
(
𝛼+ log |c|

𝜔

)
a sup
𝜏∈R

|||c|∧(−𝜏)u(𝜏)|| → 0, a → −∞.
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Now, note that if f is a Lipschitz function, then 𝜑(s) ∶= f(s,u(s)) is c∧(s)-bounded. Consider the integral ∫ t
r T(t − s)𝜑(s)ds

for each r < t. Then, ‖‖‖‖‖∫
t

r
T(t − s)𝜑(s)ds

‖‖‖‖‖ ≤ M ∫
t

r
|c|∧(s)e−𝛼(t−s)|||c|∧(−s)𝜑(s)||ds

≤ M sup
𝜏∈R

|||c|∧(−𝜏)𝜑(𝜏)||e−𝛼t ∫
t

r
e
(
𝛼+ log |c|

𝜔

)
sds

≤ Me
log |c|
𝜔

t

𝛼 + log |c|
𝜔

sup
𝜏∈R

|||c|∧(−𝜏)𝜑(𝜏)|| < ∞,

which implies that ∫ t
−∞ T(t − s)𝜑(s)ds is absolutely convergent. These arguments show that

lim
a→−∞

[
T(t − a)u(a) + ∫

t

a
T(t − s)𝑓 (s, u(s))ds

]
= ∫

t

−∞
T(t − s)𝑓 (s,u(s))]ds.

The previous discussion motivates us to consider Equation (11) and the following definition of mild solution.

Definition 3.1. A function u ∶ R → X is said to be a mild solution of (9) if

u(t) = ∫
t

−∞
T(t − s)𝑓 (s,u(s))ds (t ∈ R),

where {T(t)}t≥ 0 is the C0-semigroup generated by A satisfying (10).

Note that every mild solution satisfying (11) is solution of the variation of constants equation.
Since the Equation (9) is defined on R, we will take d = −∞ in (2.22), thus

||u||a𝜔c = sup
t∈R

||c∧(−t)u(t)||.
We recall that a C0-semigroup {T(t)}t≥ 0 is uniformly integrable (o strongly integrable) if ∫ ∞

0 ||T(t)||dt < ∞.

The following result gives us sufficient conditions to obtain a unique mild solution of (9).

Theorem 3.2. Let 𝑓 ∈ C(R × X ,X). Assume the following conditions.

(a) Let f(t, x) = g(t, x) + h(t, x) where h ∈ C0,c(X,X) and g(t + 𝜔, cx) = cg(t, x) for all t ∈ R, for all x ∈ X and for some
(𝜔, c) ∈ R+ × (C ⧵ {0}).

(b) ht(z) = c∧(−t)h(t, c∧(t)z) is uniformly continuous for z in any bounded subset of X, uniformly for t ≥ d and ht(z) →
0 as t → ∞ uniformly in z.

(c) There exists a nonnegative function Lf(t) such that ||f(t, x) − f(t, y)|| ≤ Lf(t)||x− y|| for all x, y ∈ X and for all t ∈ R.
(d) A generates a uniformly integrable C0-semigroup {T(t)}t≥ 0, S∼ is integrable and supt∈R(S∼ ∗ L𝑓 )(t) < 1 where

S∼(t) ∶= |c|−t/𝜔||T(t)||.
Then, Equation (9) has a unique mild solution in AP𝜔c(X).

Proof. We define  ∶ AP𝜔c(X) → AP𝜔c(X) by

(u)(t) = ∫
t

−∞
T(t − s)𝑓 (s,u(s))ds,

for u ∈ AP𝜔c(X) and t ∈ R. By Theorem 2.23, we have that f(·,u(·)) ∈ AP𝜔c(X). If 𝜒(s) is the characteristic function on
(−∞, t], by Theorem 2.20, with k(t) ∶= ||T(t)|| · 𝜒(t) we have u ∈ AP𝜔c(X). Therefore (AP𝜔c(X)) ⊂ AP𝜔c(X). Now, if
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u, v ∈ AP𝜔c(X) we have

||(u) − (v)||a𝜔c = sup
t∈R

‖‖‖‖‖|c|−t∕𝜔 ∫
t

−∞
T(t − s)[𝑓 (s, u(s)) − 𝑓 (s, v(s))]ds

‖‖‖‖‖
≤ sup

t∈R ∫
t

−∞
||T(t − s)|c|−(t−s)∕𝜔|| · L𝑓 (s) · |c|−s∕𝜔||u(s) − v(s)||ds

≤ ||u − v||a𝜔c sup
t∈R ∫

∞

0
S∼(s)L𝑓 (t − s)ds

= sup
t∈R

(S∼ ∗ L𝑓 )(t)||u − v||a𝜔c.

It follows from Banach Fixed Point Theorem that there exists a unique u ∈ AP𝜔c(X) such that u = u, that is u(t) =
∫ t
−∞ T(t − s)𝑓 (s, u(s))ds for all t ≥ a.

Example 3.3. Let A ∶= −𝛼I where 𝛼 > 0 and f as in Theorem 3.2. Then T(t) = e−𝛼tI and we can conclude that for
each f ∈ AP𝜔c(X) the equation

u′(t) = −𝛼u(t) + 𝑓 (t,u(t)), t ∈ R

has a unique mild solution that satisfies

u(t) = ∫
t

−∞
e−𝛼(t−s)𝑓 (s,u(s))ds (12)

and belongs to AP𝜔c(X) whenever |c| > e−𝛼𝜔 and ||S∼ ∗ Lf||∞ < 1.

Corollary 3.4. Let 𝑓 ∈ C(R × X ,X). Assume the hypotheses (a) and (b) of Theorem 3.2 and the following conditions.

(c) There exists a constant Lf > 0 such that ||f(t, x) − f(t, y)|| ≤ Lf||x − y|| for all x, y ∈ X and for all t ∈ R.
(d) A generates a uniformly integrable C0-semigroup {T(t)}t≥ 0, S∼(t) ∶= |c|−t/𝜔||T(t)|| is integrable and L𝑓 < ||S∼||−1

1 .

Then Equation (9) has a unique mild solution in AP𝜔c(X).

Proposition 3.5. Let 𝑓 ∈ C(R × X ,X). Assume the hypotheses (a) and (b) of Theorem 3.2 and the following conditions.

(c) There exists a nonnegative function L𝑓 ∈ L1(R) such that ||f(t, x) − f(t, y)|| ≤ Lf(t)||x − y|| for all x, y ∈ X and for all
t ∈ R.

(d) The operator A generates a uniformly integrable C0-semigroup {T(t)}t≥ 0 such that S∼(t) ∶= |c|−t/𝜔||T(t)|| is integrable
and S∼(t) ≤ M for all t ≥ 0 for some M > 0.

Then Equation (9) has a unique mild solution in AP𝜔c(X).

Proof. We define  ∶ AP𝜔c(X) → AP𝜔c(X) by

(u)(t) = ∫
t

−∞
T(t − s)𝑓 (s,u(s))ds,

for u ∈ AP𝜔c(X) and t ∈ R. By Theorem 2.23, we have that f(·,u(·)) ∈ AP𝜔c(X). If 𝜒(s) is the characteristic function on
(−∞, t], by Theorem 2.20, with k(t) ∶= ||T(t)|| · 𝜒(t) we have u ∈ AP𝜔c(X). Therefore (AP𝜔c(X)) ⊂ AP𝜔c(X). Let

(Fu)(t) ∶= c∧(−t)(u)(t) = c−
t
𝜔 ∫

t

−∞
T(t − s)𝑓 (s,u(s))ds, t ∈ R.

Then, ||(u) − (v)||a𝜔c = sup
t∈R

||(Fu)(t) − (Fv)(t)||.
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Now, if u, v ∈ AP𝜔c(X) we have

||(Fu)(t) − (Fv)(t)|| = ‖‖‖‖‖|c|−t∕𝜔 ∫
t

−∞
T(t − s)[𝑓 (s, u(s)) − 𝑓 (s, v(s))]ds

‖‖‖‖‖
≤ ∫

t

−∞
||T(t − s)|c|−(t−s)∕𝜔|| · L𝑓 (s) · |c|−s∕𝜔||u(s) − v(s)||ds

≤ ||u − v||a𝜔c ∫
t

−∞
S∼(t − s)L𝑓 (s)ds

≤ M||u − v||a𝜔c ∫
t

−∞
L𝑓 (s)ds.

By induction, we can prove that

||(Fnu)(t) − (Fnv)(t)|| ≤ (M||L𝑓 ||1)n

n!
||u − v||a𝜔c.

Since (M||L𝑓 ||1)n

n!
< 1 for n sufficiently large, applying the contraction principle we conclude that  has a unique fixed

point in AP𝜔c(X).

Example 3.6. Let (X; || · ||) = (L2(0, 𝜋), || · ||2),
D(AD) = {u ∈ L2(0, 𝜋) ∶ u′′ ∈ L2(0, 𝜋),u(0) = u(𝜋) = 0},

ADu = Δu = u′′, ∀u ∈ D(AD).

It is well known that AD is the infinitesimal generator of an analytic semigroup {T(t)}t≥ 0 on L2(0, 𝜋) with ||T(t)|| ≤ e−t

for t ≥ 0 (see Lunardi20).
Assume that |c| > 1

e𝜔
. Let

𝑓 (t, x) = a(t) sin(b(t)x) + 𝛽 t cos x =∶ g(t, x) + h(t, x),

with a ∈ P𝜔c(R), |𝛽| < 1 and b ∈ P𝜔
1
c
(R) (in the literature, usually 𝛽 is a power of an exponential ed). Note that

g(t + 𝜔, cx) = cg(t, x) and h ∈ C0,c(X,X) satisfies (b) of Theorem 3.2 if |𝛽|𝜔 < |c|. Now,

||𝑓 (t, x) − 𝑓 (t, 𝑦)||22 ≤ ∫
𝜋

0
|𝑓 (t, x(s)) − 𝑓 (t, 𝑦(s))|2ds

≤ ∫
𝜋

0

[|a(t)||b(t)| + |𝛽|t]2|x(s) − 𝑦(s)|2ds

=∶ [L1(t) + L2(t)]2||x − 𝑦||22.
Note that L1(t) ∶= |a(t)||b(t)| is 𝜔-periodic and therefore bounded. On the other hand, it is obvious that L2(t) ∶= 𝛽 t is
bounded. It follows that there exists Lf such that ||f(t, x) − f(t, y)||2 ≤ Lf||x − y||2.

On the other hand, since |c| > 1
e𝜔

, we have that 1 + 1∕𝜔 log |c| > 0 and therefore

||S∼||1 = ∫
∞

0
|c|−t∕𝜔||T(t)||dt

≤ 𝜔

𝜔 + log |c| < ∞.

Then, by Corollary 3.4, we have that
u′(t) = ADu(t) + 𝑓 (t, x), t ∈ R,

has a unique (𝜔, c)-asymptotically periodic mild solution whenever L𝑓 <
𝜔+log |c|

𝜔
.
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Example 3.7. Let (X; || · ||) = (L2(0, 𝜋), || · ||2) and (AD,D(AD)) as in the preceding example. Suppose that |c| > 1
e𝜔

and
assume that g ∶ R → R is Lipschitz with constant L. As above,||S∼||1 < ∞. Let

𝑓 (t, x) = e−t2 g(x) = 0 + h(t, x).

In this case, the c-periodic part of the function f is zero. On the other hand, ht(z) = c∧(−t)e−t2 g(c∧(t)z) is uniformly
continuous for z in any bounded subset of X and

||ht(z)|| < Le−t2 [||z|| + e𝜔||g(0)||],
which implies that ht(z) → 0 as t → ∞ uniformly in z. Furthermore,

||𝑓 (t, x) − 𝑓 (t, 𝑦)||22 ≤ ∫
𝜋

0
|𝑓 (t, x(s)) − 𝑓 (t, 𝑦(s))|2ds

≤ ∫
𝜋

0
e−2t2 L|x(s) − 𝑦(s)|2ds

=∶ L𝑓 (t)2||x − 𝑦||22.
Note that L𝑓 (t) = Le−t2 belongs to L1(R). Then, by Proposition 3.5 we have that

u′(t) = ADu(t) + 𝑓 (t, x), t ∈ R,

has a unique (𝜔, c)-asymptotically periodic mild solution.

4 LASOTA-WAZEWSKA MODEL WITH UNBOUNDED OSCILLATING
PRODUCTION OF RED CELLS

The theory presented above can be extended to the semilinear abstract problem with delay{
𝑦′(t) = A𝑦(t) + 𝑓 (t, 𝑦(t − 𝜏)), t ≥ 0,
𝑦(t) = 𝜑(t), t ∈ [−𝜏, 0]

where 𝜏 > 0 and for which a mild solution is a solution of integral equation

𝑦(t) = T(t)𝑦(0) + ∫
t

0
T(t − s)𝑓 (s, 𝑦(s − 𝜏))ds, t ≥ 0.

Here, we need to know a history 𝜑. Note that y(t − 𝜏) = 𝜑(t − 𝜏) for t ∈ [0, 𝜏] and if y is (𝜔, c)-asymptotically periodic
then y(t − 𝜏) also is. As an example, we study the important Lasota-Wazewska model with (𝜔, c)-asymptotically periodic
variable coefficients.

The Lasota-Wazewska model is an autonomous differential equation of the form

𝑦′(t) = −𝛿𝑦(t) + he−𝛾𝑦(t−𝜏), t ≥ 0. (13)

Wazewska-Czyzewska and Lasota18 proposed this model to describe the survival of red blood cells in the blood of an
animal. In this equation, y(t) describes the number of red cells bloods in the time t, 𝛿 > 0 is the probability of death of a
red blood cell, h and 𝛾 are positive constant related with the production of red blood cells by unity of time and 𝜏 is the
time required to produce a red blood cell.

In this section, we study the following model:

𝑦′(t) = −𝛿𝑦(t) + h(t)e−a(t)𝑦(t−𝜏), t ≥ 0, (14)
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where 𝜏 > 0, h(t) and a(t) are continuous and positive functions. Equation (14) models several situations in the real life,
see, for example, previous studies21-24 and the references therein. We are looking for positive (𝜔, c)-asymptotically periodic
solutions for certain 𝜔 > 0, c > 0. Let f(t, y) = h(t)e−a(t)y and assume

(a) 𝜏 ≤ 𝜔.
(b) h is (𝜔, c)-asymptotically periodic.
(c) a is (𝜔, 1

c
)-asymptotically periodic.

(d) c > e−𝛿𝜔.
(e) ||ah||∞ < 𝛿.

By (d) and (e) we have that f(t, y) = h(t)e−a(t)y satisfies the hypotheses of Corollary 3.4 since

|𝑓 (t, 𝑦1) − 𝑓 (t, 𝑦2) ≤ |a(t)h(t)||𝑦1 − 𝑦2|, (15)

for y1, y2 > 0 and its (𝜔, c)-periodic part g satisfies

g(t + 𝜔, c𝑦) = cg(t, 𝑦). (16)

By the variation of constant formula

𝑦(t) = e−𝛿t𝑦(0) + ∫
t

0
e−𝛿(t−s)𝑓 (s, 𝑦(s − 𝜏))ds, (17)

and hence y(0) > 0 implies that y(t) > 0. Note that the condition (d) is necessary for positive c-periodic solutions y. In
fact, (17) and h(t) > 0 imply y(t) > e−𝛿ty(0) which evaluated at t = 𝜔 implies (d) since [c − e−𝛿𝜔]y(0) > 0.

Moreover, taking 𝑦(0) = ∫ 0
−∞ e𝛿s𝑓 (s, 𝑦(s − 𝜏))ds, which is well defined, we have that y satisfies

𝑦(t) = ∫
t

−∞
e−𝛿(t−s)𝑓 (s, 𝑦(s − 𝜏))ds. (18)

Then by Corollary 3.4, we have that (18) has a unique solution y* which belongs to AP𝜔c(X). Hence, y* is also solution
of type AP𝜔c(X) of Equation (14). Moreover, y* is exponentially stable. Indeed, for any solution y of (14), z = y− y* satisfies

z′ = −𝛿z + 𝑓 (t, 𝑦) − 𝑓 (t, 𝑦 ∗)
= −𝛿z + 𝑓 (t, 𝑦∗ + z) − 𝑓 (t, 𝑦 ∗).

Note that |𝑓 (t, 𝑦∗ + z) − 𝑓 (t, 𝑦 ∗)| ≤ |a(t)h(t)||z|,
Then, taking ||ah||∞ < 𝛿, z verifies that |z(t)| ≤ e−𝛼(t−t0) sup

t0−𝜏≤s≤t0

|z(s)|
for t ≥ t0 ≥ 0 and 𝛼 = 𝛿 − ||ah||∞.

We have proved the following theorem.

Theorem 4.1. Assume that the conditions (a) to (e) hold. Then, the Lasota-Wazewska model has a unique
(𝜔, c)-asymptotically periodic solution which is exponentially stable.
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