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Abstract: This paper proposes a fractional-order sliding mode controller (FOSMC) for the robust
control of a nonlinear process subjected to unknown parametric disturbances. The controller aims to
ensure optimal growth in photobioreactors of native microalgae involved in eutrophication of the
Sinaloa rivers in Mexico. The controller design is based on the Caputo fractional integral-order
derivative and on the convergence properties of a sliding surface. For nonlinear systems, the
proposed FOSMC guarantees convergence to the sliding surface even in the presence of model
disturbances. The proposed controller is compared to an Internal Model Control (IMC) through
numerical simulations.

Keywords: fractional-order control; sliding modes; stabilization; trajectory tracking; eutrophication
control

1. Introduction

Water contamination due to human activity is increasing significantly, hampering our future
development; hence, we should take immediate action and look for sustainable technologies to treat
this vital resource. It is well known that some microorganisms are useful to remediate contaminated
water; for example, microalgae are capable of eliminating organic nitrogen, the normal limiting
substrate in wastewater [1]. Eutrophication refers to a significant increase in the concentration of
nutrients of a given aquatic ecosystem due to human industrial activities. High nutrients availability
leads to considerable proliferation of certain species of algae and higher aquatic plants. Proper control
of microalgae growth either in photobioreactors or in the natural ambient (basins, rivers, and lakes)
can reduce the concentration of pollutants generated by human activities. In Mexico, especially in the
state of Sinaloa, eutrophication is critical. Hence, local authorities are looking for technologies, such
as cultivation of microalgae in open photobioreactors, that can simultaneously aid the reduction of
eutrophication and can be useful in producing biofuels [2].
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The development of model-based automatic controllers for the robust operation of microalgae
bioreactors will aid in the mitigation of water pollution as well as in the production of sustainable
biofuels [3].

Mathematical models that describe the dynamics of algae growth and biofuel production in
bioreactors present several complications such as

• strong nonlinearities; [3–5];
• high sensitivity to key variables (for example, temperature and pH variables) and to uncontrolled

disturbances related to luminous intensity [6–8];
• growth rates highly sensitive to unmeasured disturbances [9,10]; and
• biomass growth generating space distribution and time-decay of incident light [11–13].

Some traditional control and estimation techniques, which are applied in biotechnological processes,
usually do not cope well with unmeasured disturbances, and in some cases, it is difficult to find
conditions that assure disturbance rejection [14–17]. Some previous contributions in the field guarantee
a robust control [18,19]; however, these require perfect knowledge of all the states in the system.
In practice, this is extremely difficult in photobioreactors due to the lack of reliable online measurements
of metabolites and biomass concentrations [20]. On the other hand, Sliding Mode Control (SMC) is
a well-known technique already successfully applied to photobioreactors [19,21]. However, this
technique presents some theoretical and practical complications that hamper its application in
industrial-scale bioreactors such as the monotonous switching feedback produced in the actuators,
causing high-frequency flickering in the control action [21].

Given the above difficulties, it seems that fractional-order algorithms can be useful in the design
of robust and scalable control systems for the culture of microalgae in photobioreactors [22]. Fractional
control is an active research area, where many techniques have been developed to improve its
performance and robustness as well as to combine it with other control methods [23]. Fractional
control has proven to have many advantages over conventional and robust control techniques [24–27],
such as more flexibility, the reduction of undesirable phenomena like chattering, and the generation of
small continuous and derivative control signals. When using fractional-order sliding mode control
(FOSMC), the fractional contribution significantly reduces the pitching effect of the system driven by
the sliding modes [28–30].

Also, internal model control (IMC) has been used successfully to control nonlinear processes
in batch mode. This controller has been designed by simulation and validated experimentally in
alembic batch distillation [31,32]. The main advantages of this controller are the simple design when it
is possible to identify a transfer function, the robustness to parameter model uncertainties, and the
singular tuning parameter [33].

In this work, we design a nonlinear FOSMC system tolerant to internal model disturbances,
based on the methodology proposed in Reference [30], for a microalgae photobioreactor that treats
wastewater to reduce its nitrogen content. The FOSMC performance is evaluated through numerical
simulations and compared to an IMC technique specifically designed for this process [18].

2. Process Modelling

A photobioreactor is a special type of bioreactor where photosensitive living organisms are
cultivated [3]. Despite the complexity of the process dynamics of this system, it is possible to derive a
treatable mathematical model that represents well the main features of the photobioreactor behavior [4].
Applying mass balances, the proposed model considers biomass concentration (represented by x1(t))
and substrate concentration (x2(t)) in the bioreactor [4]. The specific biomass growth rate mostly
defines the bioreactor dynamics; hence, an accurate representation of this term is crucial (see, for
example, Reference [3]). Our growth rate representation includes the substrate concentration and a
complex global condition Σ(·), i.e., µ(x2(t), Σ(·)) = µ(·). This second component incorporates all
those non-modelled effects that have a significant impact on the growth dynamics, such as sudden
changes in pH, luminous intensity, metabolism, temperature, and substrate concentration gradients.
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Biomass and substrate concentration dynamics are given by the corresponding mass balances in
the fed-batch bioreactor:

Accumulation = Inputs-Outputs + Generation-Consumption.

Therefore,

d
dt
(x3(t)x1(t)) = x3(t)µ(·)x1(t),

d
dt
(x3(t)x2(t)) = −α1x3(t)µ(·)x1(t) + α2u(t),

d
dt

x3(t) = u(t), (1)

where x3(t) is the bioreactor volume, α1 is the substrate/biomass yield coefficient, α2 is the substrate
concentration in the inlet stream, and u(t) is the control variable which in this case is the inlet stream
flow-rate. Usually, the volume varies until a desirable steady state is reached (fed-batch operation),
after which the bioreactor is operated in continuous mode (constant volume and equal inlet and outlet
flow-rates). In this paper, we are only concerned with the fed-batch stage. Equation (1) can be written
as follows:

dx3

dt
x1(t) +

dx1(t)
dt

x3(t) = x3(t)µ(·)x1(t),

dx3

dt
x2(t) +

dx2(t)
dt

x3(t) = −α1x3(t)µ(·)x1(t) + α2u(t),

dx3

dt
= u(t), (2)

or, equivalently,

ẋ1 = µ(·)x1(t)−
u(t)
x3(t)

x1(t),

ẋ2 = −α1µ(·)x1(t) +
u(t)
x3(t)

(α2 − x2(t)),

ẋ3 = u(t). (3)

An unknown additive disturbance function Σ(·) = f (pH, T, P,∇x_2(t), I_av(t)) is assumed to be
present in the dynamics of x_1 and x_2, where pH = pH(t), T = T(t) is the temperature, P = P(t) is
the pressure, ∇x_2(t) is the substrate concentration gradient, and ∇I_av(t) is the average luminous
intensity. We consider the following assumption for function Σ(·).

Assumption 1. The disturbance function Σ(·) is bounded by a strictly nonnegative smooth function δ(t),
which is bounded by a positive real number δmax:

|Σ(·)| ≤ δ(t) ≤ δmax. (4)

In addition, we consider that the effect of substrate concentration on biomass growth rate is
well represented by the Monod model. This is one of the most used biomass growth kinetic models,
since it is a good compromise between accuracy and simplicity. Moreover, this kinetic model will
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allow us to develop analytically appropriate feedback control laws that will compensate the effects of
non-modeled disturbances. More precisely, we consider the following model:

µm =
a1x2(t)

x2(t) + a2
, (5)

with µm = µmonod(x2(t)). Thus, it is proposed in this paper that the dynamic complex denoted by µ(·)
is the arithmetic sum of two terms, the Monod kinetics, and the bounded non-modeled disturbance
function:

µ(·) = µm + Σ(·). (6)

Assumption 2. Most dynamic bioreactor models satisfy the bounding condition over the expected disturbances
in the growth rate, since the following triangle inequality is satisfied: |µ(·)|& ≤ |µ_m|+ |Σ(·)| → |Σ(·)| <
|µ(·)| Therefore, δmax < |µ(·)|. The maximum disturbance should be less than the net biochemical reaction rate,
thus ensuring that it will be rejected and that, consequently, the system will be brought to the simplified reference
dynamics given by Monod.

For example, toxic and inhibitory agents, such as excess average light intensity in microalgae
cultivation [2], reduce the growth rate. This effect can be modelled as an unknown function Σ(·) that
is subtracted from the optimal growth rate given by the Monod expression, µm (see Figure 1).

Figure 1. Dynamics obtained using µ(·) = µm + Σ(t); µ(·) = a1x2(t)
a2+x2(t)+a3x2

2
, and µm = a1x2(t)

x2(t)+a2
, with

a1 = 0.026h−1, a2 = 9.82 mg/L, and a3 = 0.0254 lux.L/mg; see Reference [1]. a3 is a constant that
depends on the minimum inhibitory amount of light, Imax.

Replacing Equation (6) into Equation (3) yields the main mathematical model used in this paper:

ẋ1 = µmx1(t)− (
u(t)
x3(t)

+ Σ(t))x1(t),

ẋ2 = −α1µmx1(t) +
u(t)
x3(t)

(α2 − x2(t))− α1Σ(t)x1(t),

ẋ3 = u(t),

µm =
a1x2(t)

a2 + x2(t)
. (7)

Since the disturbance function appears in a bilinear relationship with one of the states of the
system, the effects of the unknown dynamics Σ(·) can be compensated with an appropriate robust
disturbance rejection control technique.
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The optimal steady state is computed based on the Monod kinetics [9,34]; however, disturbance
terms such as Σ(·) drive the system to unwanted suboptimal steady states. This is a commonly
experienced limitation in the control of photobioreactors. In addition, the optimal transition from
batch to continuous mode operation is challenging. In this paper, we propose a control method which
is robust against the disturbance term Σ(·), which is present in the fed-batch stage of the operation of
photobioreactors. We also expect that the control algorithm will be equally effective in the continuous
mode operation stage; hence, the reference model of the control system is the nominal one associated
with the continuous mode operation of the photobioreactor (without disturbances) while the fed-batch
disturbed model will be the plant to be stabilized.

3. A Fractiona-Order Sliding Mode Controller (FOSMC)

Fractional calculus is the extension of classical calculus to derivation and integration operations
using non-integer orders. In the time domain, fractional (non-integer) derivatives and integrals are
defined by the convolution operation. Hence, they are especially suited to representing memory
phenomena, with several applications in science and engineering [35]. In this paper, a factional-order
sliding mode controller (FOSMC) is proposed in order to track a predefined operating path of
a photobioreactor (eutrphying microalgae photobioreactor). The Riemann–Liouville and Caputo
definitions of fractional operators are the most used. In this work, the Caputo definition is used.
According to Reference [36], the Caputo fractional derivative of order β of function φ(t) on the
half-positive real axis is defined as

Dβφ(t) =
1

Γ(n− β)

∫ t

0

φ(n)(τ)

(t− τ)β+n−1 dτ, (8)

where φ(t) is a function assumed to be sufficiently smooth and locally integrable; Γ is is the so-called

gamma function defined as Γ(n) =
∞∫

0

tz−1e−tdt; and n− 1 < β < n, with n being and integer. This

Caputo definition is used the most in engineering applications since this definition incorporates
initial conditions for φ(t) and its integer-order derivatives; this is initial conditions that are physically
appealing in the traditional way. Notice that φ(n)(t) stands for the integer derivative of order n of
function φ(t) in Equation (8). Also, to simplify the notation, we will denote the Caputo fractional
derivative of order β of function φ(t), Dβφ(t), as φ(β). In addition, the fractional integral of order β of
function φ(t) on the half-positive real axis is defined, also in accordance with [36], as

Iβφ(t) =
1

Γ(β)

∫ t

0

φ(τ)

(t− τ)1−β
dτ, (9)

where β is the fractional order defined above. It is important to notice that the notation D−βφ(t) is used
as well as to denote the fractional integral of order β of function φ(t), more precisely D−βφ(t) ≡ Iβφ(t).
The definitions of fractional derivative and fractional integral, as stated above, cannot be used in
practice; thus, numeric methods such as the one based on the Grünwald–Letnikov approach are
commonly used [37].

We consider the following first-order nonlinear perturbed system:

ẋ(t) = f (x) + g(x)u(t) + δ(x), (10)

where f (x) and g(x) are bounded, smooth, and locally integrable functions; u(t) is a scalar input
variable; and δ(x) ∈ R is a disturbance term that satisfies the bound in Equation (4) in Assumption 1.

To design a reference tracking controller, the reference signal x(t)re f = xr is proposed together
with the tracking error:
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e = xr − x. (11)

Based on the sliding mode control methodology [38], the following switching function s is then
proposed:

s(t) = e(t) + k1

t∫
0

e(τ)dτ, (12)

where k1 is a nonzero positive real parameter. The switching function in Equation (12) defines the
sliding surface

s = 0 = e(t) + k1

t∫
0

e(τ)dτ, (13)

for which k1 is selected in such a way that the corresponding first-order differential equation 0 = ė+ k1e
has a solution that exponentially converges to zero; as a consequence, x converges to xr exponentially
when the system dynamics is constrained to the sliding surface in Equation (13).

The nominal system associated to the perturbed system in Equation (10) with δ(x) = 0 for all x is
given by

ẋ(t) = f (x) + g(x)u(t). (14)

In order to attract the dynamics of the system in Equation (10) to the sliding surface in Equation (13)
and based on the strategy proposed in Reference [39], the first-order time derivative of s is set to be the
following (see, for example, Reference [38])

ṡ = −k2 Iβsgn(s)− k3s, (15)

with k2 and k3 being nonzero positive real parameters and sgn(·) being the signum function. On the
other hand, from the switching function in Equation (12) and the nominal system in Equation (14), ṡ is
given by

ṡ = ẋr − f (x)− g(x)u + k1e. (16)

Combining Equations (15) and (16) leads to the following fractional-order sliding mode controller:

u = − 1
g(x)

( f (x) + η(x, xr)), (17)

with
η(x, xr) = −k2 Iβsgn(s)− k3s− ẋr − k1e.

A sufficient condition that assures the attraction of the perturbed nonlinear system in Equation (10) to
the sliding surface in Equation (13) can be given. This is stated in the following theorem.

Theorem 1. Let us consider the perturbed first-order nonlinear system in Equation (10) with a bounded
disturbance δ(x) that satisfies Equation (4). That is, Assumption 1 holds. If the parameter k2 and the bound
δmax satisfy

k2

∣∣∣Iβsgn(s)
∣∣∣ > δmax, (18)
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then the fractional order sliding mode controller in Equation (17) assures the attractiveness of the perturbed
system to the sliding surface s = 0.

Proof. Consider the Lyapunov function candidate

V =
1
2

s2, (19)

which is positive definite. The time derivative of V along the trajectories of the perturbed system
dynamics together with the fractional-order controller in Equation (17) takes the following form:

V̇ = sṡ = s(ẋr − ẋ + k1e) = −k2(Iβsgn(s))s− k3s2 − sδ. (20)

Since s = |s| sgn(s) and sgn(D−βsgn(s)) = sgn(s), for 0 < β < 1 [39], V̇ can be written as

V̇ = k2 |s|
∣∣∣Iβsgn(s)

∣∣∣− k3s2 − sδ. (21)

Now majoring Equation (21) and using the bound δmax in Assumption 1, one obtains

V̇ ≤ −k3s2 − |s| (k2

∣∣∣Iβsgn(s)
∣∣∣− δmax). (22)

Notice that the term k3s2 is always positive. Thus, if condition (18) is satisfied, V̇ < 0 and the
convergence to the surface s = 0 is assured.

Remark 1. The main idea of the fractional-order sliding mode controller design proposed here is to define a
switching function (Equation (12)), together with its first-order derivative (Equation (15)), such that, when the
disturbance appears, s is different from zero and, at that time, the discontinuous control term becomes active and
rejects the disturbance.

Remark 2. From the proof of Theorem 1, it can be noticed that the following sufficient condition allows us to
obtain the attraction of the perturbed nonlinear system to the sliding surface s = 0.

k2

∣∣∣Iβsgn(s)
∣∣∣+ k3 |s| > δmax, (23)

In fact, the condition in Equation (23) shows that a stronger attraction to s = 0 is achieved and
that the attraction is higher for any value of s with k3 6= 0. However, the condition in Equation (23) is
more restrictive since it requires the knowledge of |s| at every time t.

Application to a Photobioreactor

The simplified model of the photobioreactor in Equation (3) represents its dynamics well if
disturbances such as I(t), pH(t), etc. are kept regulated. However, these and other disturbances vary
unexpectedly in experimental photobioreactors, making its control very difficult. Even if the expanded
model in Equation (7) can better represent the complex dynamic behavior of the experimental system,
the disturbance function is a priori unknown. Consequently, this model cannot be used to design a
robust controller. Moreover, developing a control law using this expanded model is difficult. Instead,
in this paper, we use a simplified model that only considers the dynamics of the measured variable
(biomass concentration) to design a FOSMC to achieve robust control of the photobioreactor. This
approach has been successfully used before for robust bioreactor control [9,40], assuring asymptotic
stability of the main state, while the rest of the system is kept bounded. In this paper, we design a
FOSMC to achieve robust tracking of x1(t) to a reference signal while keeping the substrate x2(t) and
the volume x3(t) bounded.

The reduced model used to design the control is given by
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ẋ1 = µmx1 −
x1

x3
u + Σx1, (24)

µm =
a1x2

a2 + x2
,

where x1(t) = x1 ≥ 0, x2(t) = x2 ≥ 0, x3(t) = x3 ≥ 0, u(t) = u ≥ 0, and Σ(t) = Σ. Thus, when
considering an optimal reference biomass dynamics x1,r, the following robust FOSMC is proposed:

u = −(µmx1 + η(x1, x1,r))
x3

x1
,

η(x1, x1,r) = −k2 Iβsgn(s)− k3s− ẋ1,r − k1e,

e = x1,r − x,

s = e + k1.
∫ t

0
e(τ) dτ. (25)

The structure of the designed controller is shown in Figure 2. The numerical simulations carried
out when using this fractional-order controller are given in Section 5.

Figure 2. Conceptual diagram of the photobioreactor control simulation.

4. Internal Model Control (IMC)

The IMC is based on an ideal control system that would force the process output to track its
setpoint suppressing all disturbances. The IMC control algorithm corresponds to the inverse of the
process model [33]. For a first-order plus delay time (FOPDT) transfer function model, the IMC is
given by the following:

CIMC(s) =
τ · s + 1

k · (ε · s + 1)α
, (26)

where τ is the process time constant, k is the process gain, ε is the filter time constant (tuning parameter
of IMC ), and α is the relative order of the inverse of the process model (in this case, α = 1). The transfer
function was obtained using the process reaction curve to a step change in the manipulated variable
around the optimal inlet stream flow-rate (0.018 L/h) in continuous mode operation [1]. Table 1 shows
the fitted parameters of the process model.
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Table 1. Parameters of the Internal Model Control (IMC) applied to the photosynthetic plant.

Parameter Value

k −30,119
θ 1
τ 60.5

5. Numerical Simulation

To assess the effectiveness of the proposed FOSMC controller, a numerical simulation of the
controlled photobioreactor was carried out in Matlab/Simulink using the FOMCON toolbox [37]. The
simulation considered the transition from batch operation to continuous operation. In this transition,
where the photobioreactor operates in fed-batch mode, the controller should ensure that the biomass
concentration follows a predefined path as close as possible despite unmeasured disturbances. This
means that the system in Equation (7) should follow the dynamics of the reference model until the
maximum volume, x3(t), is reached. The reference model is given by the following:

ẋ1r = µmx1(t)− u(t)x1(t),

ẋ2r = −α1µmx1r(t) + u(t)(α2 − x2r(t)),

µmr =
a1,nomx2r(t)

a2,nom + x2r(t)
, (27)

where a1,nom and a2,nom are the nominal model parameters (used in the design of the controller). The
non-modelled disturbance function Σ in Equation (7) represents in our case model parameter changes
due to unmeasured variations in light incidence, pH, and substrate concentration gradients. We
consider that all these disturbances impact only the maximum specific growth rate as an additive term,
i.e., a1(t) = a1,nom + δ(t). It is assumed that this additive term suffers step changes at arbitrary times.
Therefore, the Σ function has the following structure:

ẋ1 = µmx1 −
x1

x3
u + Σx1,

µm =
a1,nomx2

a2 + x2
,

Σ =
δ(t)x2

a2 + x2
. (28)

Since the maximum norm δ(t) and the a2 constant are positive, the maximum Σ disturbance value will
always be limited by the measurable state at the output, so it is possible to expand the FOSMC shown
in Equation (25) for the reduced system in Equation (28), such that a2, δ(t) 6= 0 → ‖Σ‖ ≤ ‖x2‖ ≤
α−1

1 ‖x1‖ ,
Therefore, the trajectory tracking error is e = xr1 − x1. The numerical simulation parameters are

given in the following Table 2.
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Table 2. Simulation parameters of the reference plant and the simulated fed-batch plant, where ur is an
optimal open loop feed flow for the continuous photobioreactor model.

Parameters Plant Reference plant Units

a1,nom 0.027 0.027 h−1

a2 9.25 9.25 mg/L
α1 3.45 3.45 - - -
α2 205 205 mg/L

x1(0) 600 540 mg/L
x2(0) 80 60 mg/L
x3(0) 0.001 NA L
xr1(0) NA 540 mg/L
xr1(0) NA 60 mg/L
x3,max 3 3 L

ur NA 0.001 L/h

A robust FOSMC is proposed for the system in Equation (28) as follows:

u = −(µmx1 + η(·)) x3

x1
,

η(·) = −k2 Iβsgn(s)− k3s− µmxr1 − xr1ur − k1e

s = e + k1

∫ t

0
e(τ) dτ,

µm =
a1,nomx2

a2 + x2
. (29)

The process is simulated in Matlab/Simulink with a variable step Dormand–Prince numerical method.
The simulation experiment considers 500 h of cultivation of the microalgae Spirulina Maxima, according
to real-time experiments taken from the literature, see to Table 3.

Table 3. Parameters of the FOSMC controller applied to the photosynthetic plant.

Parameters Value

k1 5
k2 0.12
k3 0.12

a1,nom 0.027
a2 25
β 0.3, 0.6, 0.9, and 1

δ(t) see Figure 3

The complete nonlinear dynamics of the photobioreactor in Equation (7) is simulated using a
robust FOSMC control law (Equation (29)) in the presence of δ(t) disturbances on parameter a1 (see
Figure 3).
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Figure 3. Dynamics of the disturbance δ(t) assessed in the numerical simulation experiment.

The FOSMC in Equation (29) is much better than optimal open-loop operation in the presence of
disturbances. Basically the same closed-loop dynamics of the biomass (Figure 4), substrate (Figure 5),
and control (Figure 6) were obtained for 5 different values of the integral fractional order (β factors).
However, different sliding surface dynamics were obtained (see Figure 7). β values are key to assuring
convergence of the surface. With β = 0.1, the sliding surface does not converge to zero (Figure 7). In
addition, the fractional-order value affects the speed of convergence of the sliding surface. Values
higher than or equal to 0.9 provide high convergence rates, although with oscillations; β = 0.6 seems
to be a good compromise giving a smooth and fast convergence.
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Figure 4. Biomass dynamics under FOSMC control compared to optimal open-loop operation.



Algorithms 2020, 13, 50 12 of 17

0 50 100 150 200 250 300 350 400 450 500

Time (h)

0

20

40

60

80

100

120

140

N
u

tr
ie

n
ts

 x
2
(t

)(
m

g
/L

)
Plant with FSMC

Reference

Plant with open loop

Figure 5. Substrate dynamics under FOSMC control compared to optimal open-loop operation.
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Figure 6. Control variable dynamics (feed flow, u(t) of Equation (29)).
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Figure 7. Dynamics of the sliding surface ṡ = ė + k1e applying different values of fractional-order
integration.

5.1. Effect of β Value on Performance

To analyze more precisely how β values affect control performance, additional simulations were
carried out with β = 0.9, 0.93, 0.96, 0.99, 1. Performance was assessed using the Integral time absolute
error (ITAE).
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Figure 8 shows that, when β is closer to 1, performance worsens. Hence, fractional-order control
not only eliminates the chattering problem and improves convergence to the sliding surface but also
reduces tracking error.

5.2. Comparison of FOSMC with Internal Model Control (IMC).

Here, the same simulation parameters as above and β = 0.9 were used. The FOSMC has been
compared with an IMC in the simulation of the photobioreactor subjected to the same model parameter
disturbances described above. The IMC is a controller that has been thoroughly studied in the literature.
It has proven to be robust to certain types of disturbances when applied to bioprocess control. The
FOSMC used the mean integration order constant 0.5 and the IMC used the filter time constant ε = 0.1
h (tuned by trial and error).

Figures 8 and 9 show that the FOSMC is superior to the IMC when model parameters are subjected
to disturbances. Even though model parameter (a1(t)) changes at times 100 and 200 h, deviations from
the biomass optimal path started to appear at time 200 h, reaching a maximum deviation at time 340 h.
In turn, the FMSC perfectly tracked the biomass optimal path since it kept the controlled system on the
sliding surface (see to Figures 10 and 11). Several control quality indices were computed to compare
both controllers: the integral of the time-weighted absolute error (ITAE), the integral of the absolute
error (IAE), the integral of the square error (ISE), the integral of the square control signal input (ISI),
and the integral of the absolute control signal input (IAI).
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Figure 8. Effect of β value on ITAE evolution.
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Figure 9. Dynamics of the sliding surface ṡ = ė + k1e applying different values of fractional-order
integration.
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Figure 10. Numerical comparison between the IMC and the FMSC in the presence of parametric
disturbances in a photobioreactor.
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Figure 11. Evolution of the manipulated variables of the two controllers.

These indices also show that the FOSMC performed much better than the IMC. Both control
signals are equally smooth since indices ISI and IAI are practically the same, as shown in Table 4.
Hence, highly nonlinear and complex systems like photobioreactors require robust nonlinear control
techniques, such as the proposed FOSMC, to achieve acceptable performance.

Table 4. Integral criteria for the evaluation of the performance of the controllers at 500 hr of the process
.

Parameter FOSMC IMC
ITAE 740.6 6.04e5
IAE 25 1863
ISE 347 1.59e4
ISI 0.6981 0.6801
IAI 13.53 13.3

6. Conclusions

A fractional-order sliding mode controller (FOSMC) has been proposed for tracking a specified
trajectory in a photobioreactor. This trajectory optimally transferred the bioreactor from batch to
continuous mode of operation. As far as the authors are aware, this is the first time that an FOSMC
algorithm is designed to control a photobioreactor. The FOSMC can assure that the disturbed system
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will converge to a sliding surface despite model parameter disturbances. In addition, it was observed in
simulations that the integration fractional order affects this convergence rate. The proposed algorithm
could also be a good choice to control other highly nonlinear bioreactors.
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