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FRANCISCO ORTEGA CULACIATI

PROFESOR CO-GUÍA:
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APLICACIÓN DE MÉTODOS BAYESIANOS DE INVERSIÓN AL ANÁLISIS DEL
TERREMOTO DE TOCOPILLA (MW 7.7) 2007

El terremoto de Tocopilla (Mw 7.7) 2007 fue el primer gran evento interplaca ocurrido en
la parte sur de la brecha śısmica definida por el gran terremoto de 1877 (Mw 8.8), en la interfaz
entre las placas de Nazca y Sudamericana en el norte de Chile. Este evento fue seguido por
el terremoto de Pisagua (Mw 8.2) en 2014 y su réplica principal (Mw 7.7), ambos rompieron
la parte central de la brecha, produciendo una pequeña fracción del déficit de deslizamiento
potencialmente acumulado en la región desde 1877 sin reducir significativamente la amenaza
śısmica en la zona. Como el problema de la estimación de parámetros de la fuente śısmica
a partir de observaciones en superficie es mal condicionado, se reanaliza el terremoto de
Tocopilla utilizando un enfoque Bayesiano de inversión, que tiene la ventaja de caracterizar
completamente la incertidumbre de los parámetros de la fuente inferidos sin introducir una
regularización adicional a la impuesta por la parametrización de la fuente y utilizando sólo
información a priori justificable f́ısicamente.

En esta tesis se utiliza el algoritmo de muestreo CATMIP (Cascading Adaptive Metropolis
in Parallel) implementado en el software AlTar, junto con los datos geodésicos disponibles
(GPS & InSAR) y una geometŕıa detallada de la placa subductante, para producir una carac-
terización completa del deslizamiento cuasiestático de la fuente del terremoto de Tocopilla.
A diferencia de otros estudios, en este se incluye incertezas observacionales y de la predicción
del modelo f́ısico directo debido a errores en la estructura elástica del medio. Estudios pre-
vios sugieren que una caracteŕıstica geométrica o reológica podŕıa estar actuando como una
barrera a la propagación de la ruptura. En este estudio se incorpora un cambio abrupto en
el manteo del plano de falla basado en modelos recientes de la interfaz de subducción en esa
zona. De la inversión Bayesiana se obtiene un conjunto de modelos con sus probabilidades
asociadas, el cual se analiza calculando modelos representativos, tales como el modelo pro-
medio, mediana y de máxima verosimilitud. Estos modelos, concuerdan con estudios previos
en que la ruptura ocurrió en la parte más profunda del contacto sismogénico, con el mayor
deslizamiento localizado en dos asperezas principales siendo el máximo de 2 ± 0, 6 m. Sin
embargo, el patrón de deslizamiento de estos modelos es más compacto y parte de la zona
de mayor deslizamiento se ubica costa afuera comparado con estudios previos. La solución
encontrada sugiere variaciones abruptas en las propiedades reológicas sobre el contacto de
falla, lo que concuerda con la hipótesis planteada.

Este estudio difiere en el énfasis en la caracterización de las incertezas, correlaciones y/o
dependencias espaciales entre la dislocación en las distintas subfallas. Por ejemplo, la forma
de la distribución en los elementos cercanos a la fosa sugiere una resolución más baja en esa
zona, dado que esos elementos están peor constreñidos por las observaciones.

El método empleado es costoso en términos computacionales, dado que muchos modelos
directos (∼ 1010) son evaluados para representar la solución del problema inverso. Sin em-
bargo, este método ofrece una caracterización completa de las soluciones y sus incertezas.
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2007 EARTHQUAKE ANALYSIS

The Tocopilla (Mw 7.7) 2007 earthquake was the first large interplate event to occur within
the southern end of the seismic gap as defined by the great 1877 (Mw 8.8) earthquake, at the
Nazca - South American plate interface in Northern Chile. This event was followed by the
Pisagua (Mw 8.2) 2014 earthquake and its main aftershock (Mw 7.7) which only ruptured
the central portion of the gap. Those events produced a small fraction of the slip that has
potentially accumulated in the region since 1877, and therefore do not significantly reduce
concerns for earthquake hazard in the region. As the problem of estimating the seismic source
from surface observations is ill-conditioned, we reanalyze the Tocopilla earthquake using a
Bayesian approach, which has the advantage of producing a complete characterization of the
uncertainties of model parameter estimates and being able to find a solution to the inverse
problem without requiring additional regularization, other than that imposed by the model
parameterization itself, and using only physically justifiable a priori information.

We use the sampling algorithm CATMIP (Cascading Adaptive Transitional Metropolis
in Parallel) implemented in the AlTar software, along with available geodetic data (GPS &
InSAR) and a detailed geometry of the subducting plate to produce a complete characteriza-
tion of quasi-static slip at the Tocopilla earthquake source. Differing from other studies, ours
includes observational and physical model prediction uncertainties due to errors in the elas-
tic structure of the media. Previous studies suggest that a geometric or rheological features
might be acting as a rupture propagation barrier updip. Here we incorporate a kink in the
fault plane based in more recent studies of the subduction interface in that zone. The result
in a Bayesian inversion is an ensemble of models with their associated probabilities, which
can be analized using representative models such as the mean, median and the maximum
likelihood model. These models agree with previous studies in which the rupture occurred in
the deepest part of the seismogenic contact, with largest slip located at two main asperities,
obtaining 2± 0.6m as the maximum slip.

However, the rupture is more compact and it is partially offshore compared with the
previous published studies. The more compact solution found suggests abrupt changes in
rheology. We differ too in the emphasis given to slip uncertainty characterization, spatial
correlations and dependencies between the dislocation on different subfaults. For example,
the shaped slip probability distribution for elements close to the trench suggests a lower
resolution, since these elements are less constrained by the observations.

The method employed is costly in computational resources, since many models (∼ 1010)
are evaluated to find the ensemble of slip models that define the solution of the inverse pro-
blem. However, it offers a complete characterization of the solutions and their uncertainties.
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Chapter 1

Introduction

1.1 The Tocopilla Earthquake

The 2007 Mw 7.7 Tocopilla earthquake had a rupture zone located in the plate interface of
the subduction of the Nazca plate under the South - American plate, one of the most active
margins in the world. The Tocopilla earthquake occurred inside the rupture zone of the 1877
great earthquake in northern Chile, an event with estimated magnitude Mw 8.8. (Comte
& Pardo, 1991) that defines the seismic gap of the northern Chile, a region in which large
earthquakes had not ocurred for more than a century (Figure 1.1). Due to the plate tectonic
activity in the region, with a convergence rate near 6.7cm/y, that zone is expected to have
accumulated a large slip deficit, although it is not straightforward how much of it would
manifests as earthquakes (Wyss & Wiemer , 1999), considering the occurrence of other type
of phenomena such as aseismic slip (Pritchard & Simons , 2006).

The Tocopilla (Mw 7.7) earthquake is the first large event occurred since 1877 within
the northern Chile seismic gap, taking place at the southern edge of the gap in the deepest
section of the subduction megathrust (> 30km). Following the Tocopilla earthquake, the
2014 (Mw 8.2) Pisagua earthquake partially broke the central segment of the gap. The 2014
earthquake was studied using optimization inversion techniques by several authors (e.g. Jara
et al., 2018; Yagi et al., 2014; Gusman et al., 2015) and using Bayesian methods by Duputel
et al. (2015). The advantage of the Bayesian approach is that it does not impose a priori
restrictions to the solution, allows to obtain a complete ensemble of solutions and make a
more complete characterization of the uncertainties. The Pisagua earthquake was followed
by a large aftershock of magnitude Mw 7.7 (e.g. Duputel et al., 2015; Schurr et al., 2014;
Leon Rios et al., 2016). The Tocopilla and Pisagua events have released a small fraction
of the slip deficit accumulated in the region (Duputel et al., 2015), remaining still a great
potential for the occurrence of earthquakes of great magnitude.

In order to better understand the mechanical behavior of the subduction interface at
the 1877 seismic gap, we use a fully Bayesian inversion technique to analyze the source of
the 2007 Mw 7.7 Tocopilla earthquake. This method allows to fully explore plausible slip
distributions and characterize uncertainties of estimated model parameters, without requiring
additional regularization (that would bias our estimates), other than that imposed by the
model parameterization and physically justifiable a priori information.
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The Tocopilla earthquake has been characterized by a comprehensive set of geodetic
and seismological observations, allowing a detailed study of the source of the earthquake.
Some of these studies were those conducted by Delouis et al. (2009) from the analysis of
seismological data, and Béjar-Pizarro et al. (2010), using GPS and InSAR observations.
These works conclude that the slip in the source of the earthquake occurs in two main
asperities, coinciding in the lower limit of the rupture zone(50 km). However, these studies
differ slightly in position and dimensions of these asperities. Béjar-Pizarro et al. (2010) puts
the upper limit in a slightly more shallow location compared to Delouis et al. (2009) (depths
of 30 km and 35 km, respectively). Minson (2010) studied the Tocopilla earthquake using
Bayesian methods, that as we will see later, yield an ensemble of models solving the inverse
problem. The representative models show solutions with a maximum slip near 3.0 m.

The work of Béjar-Pizarro et al. (2010) indicates that the fitting between observed de-
formation and the results of the model is not very accurate for the asperity located in the
southern part of the study area. Minson (2010) solved the inverse problem using Bayesian
methods to model the Tocopilla earthquake including the observational source of error, ho-
wever, this analysis can be improved by incorporating errors in the elastic structure of the
propagative medium, as we do in this work.

Figure 1.1: Large subduction earthquakes in southern Peru and northern Chile ocurred since
1868.

In general, with the exception of Minson (2010), the techniques used so far to analyze the
Tocopilla earthquake (e.g., regularized least squares) must impose a bias on the slip solution,
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for example, via the smoothing of slip on the fault. This requires a regularization term to
find the solution of an inverse problem that is inherently ill-conditioned.

More robust results can be achieved using Bayesian inverse methods, which, in contrast
with optimization methods (e.g., least squares), do not require additional regularization to
stabilize the solutions of the inverse problem. This means that the Bayesian methodology
can be done using only physically justifiable a priori information on model parameters, such
as type of fault (e.g inverse fault slip), but does not require imposing artificial biases to the
solution, such as smoothing constraints over model parameters. The Bayesian methodology
allows to deeply explore the possible solutions of the ill-posed inverse problem, as well as to
better characterize uncertainties in the model parameter estimates.

1.2 Bayesian Methods

Bayesian methods are based on Bayes’ Theorem. To solve the inverse problem, it can be
formulated in terms of a set of parameters θ and a set of observations D, as

P (θ|D) =
P (D|θ)P (θ)

P (D)
(1.1)

Formula 1.1 implies that the probability of a model θ given the observed data D is
proportional to the probability of such data D given the model θ, i.e P (D|θ) (the likelihood
function) and a probability distribution of models P (θ), representing the prior knowledge
about the model space. P (D) is the probability of the observed data D, which is a constant
for the entire problem. The last two expressions are much more accessible, since calculating
these simply requires to evaluate the likelihood function, and the probability density function
(pdf) defining a priori information on model parameters. The solution of the inverse problem
is the probability distribution of the model parameters given the observed data D. P (θ|D),
called the a posteriori pdf of model parameters, represents the solution of the inverse problem.

Bayesian methods solve an inverse problem by sampling the a posteriori probability dis-
tribution of model parameters, which produces an ensemble of models, i.e. a set of models
with their probability of being a solution of the inverse problem.

This Bayesian methodology allows to solve problems of both types, linear and nonlinear,
without imposing extra conditions other than physical restrictions. They are costly in com-
putational terms, but have become more manageable in recent decades thanks to advances in
parallel computing, and available hardware such as large scale computational facilities with
thousands of CPU’s or GPGPU hardware.

The additional advantage of Bayesian methods is that they allow to describe in a more
extensive way the errors in the modeling. The uncertainties associated to model parameter
estimates come from several sources, two of the main are: observational errors, associated
to the measurement process of the data used to constrain our models, and second, errors
inherent to the used physical model used (epistemic error). The latter error comes from
the selection of the theory used to represent the physical phenomena being studied and the
variables that constitute it (Tarantola, 2005). Usually the error analysis considers only the
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source of observational error, which may be less significant than epistemic errors present in
the problem (Duputel et al., 2014; Minson, 2010). Not considering epistemic errors leads
to solutions whose predictions overfit the observations, i.e., fitting the errors. Then, model
parameter estimates may contain spurious signals that try to explain the aforementioned
errors. Bayesian methods provide a way to incorporate the epistemic error in the modeling,
which is not an easy task when using other methods.

Exploring the model parameter solution space requires significant computational resour-
ces, since the number of calculations grows enormously with the number of parameters, due
to the so called ’curse of dimensionality’ (Tarantola, 2005). For this reason, it is extre-
mely important to use methods that allow efficient sampling of the a posteriori pdf of model
parameters and take advantage of current parallel computing capabilities. Numerous algo-
rithms have been developed in order to characterize the solution space of the inverse problem
through samples of the a posteriori pdf, most of these based on MCMC (Markov Chain Monte
Carlo) sampling techniques. In this context, the algorithm developed by Minson (2010) in
her doctoral thesis, CATMIP, shows to be the most efficient for geophysical applications.

1.3 CATMIP Algorithm and AlTar

The CATMIP algorithm (Cascading Adaptive Transitional Metropolis in Parallel) is a Baye-
sian sampling algorithm that iteratively approximates the a posteriori distribution of model
parameters of the inverse problem. CATMIP has the advantage of allowing to solve problems
with a large number of parameters, such as the modeling of the seismic source for large eart-
hquakes (Duputel et al., 2015; Simons et al., 2011; Minson et al., 2013). Its implementation
incorporates elements of sampling algorithms such as Metropolis-Hastings, resampling techni-
ques and transitioning from a priori to a posterior pdf’s of model parameters. The CATMIP
algorithm is a technique that allows more complex distributions in the space of model para-
meters; for example, with more than one maximum value. The particularity of this method
is that it allows us to perform calculations efficiently using parallel processing.

We use an implementation of CATMIP, the software AlTar, developed in the Seismological
Laboratory of Caltech, which allows to solve large slip inversion problems by taking advantage
of parallel processing using GPGPU hardware.

The purpose of this thesis is to use Bayesian methods of inversion, in particular AlTar
software, to characterize the solutions of a specific type of problem in Geophysics: the in-
version of the source of earthquakes. The main objective is to apply this methodology to
the detailed re-analysis of the 2007 Tocopilla Earthquake (Mw 7.7), in which we incorporate
epistemic or model prediction errors due to the elastic structure of the media, while there is
a wide data registry that consists of both, spatial geodesy and seismological data.
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1.4 Objectives

1.4.1 General

To apply Bayesian inverse methods to the analysis of the seismic source of the Tocopilla
earthquake 2007 (Mw 7.7), to characterize in a robust way, the solutions and the errors
associated with the parameters of the seismic source model and to analize the source of
the Tocopilla (Mw 7.7) earthquake through a robust characterization of plausible static slip
distributions and associated uncertainties, using fully Bayesian inversion techniques.

1.4.2 Specifics

• To understand how the CATMIP algorithm works, performing tests of its different
stages through analysis based on synthetic models. Also, to understand the scope and
limitations of these methods.

• To test the algorithm applying it to an inverse problem with few parameters, specifically
the hypocenter location of an earthquake, and to analyze the results obtained by the
method.

• To model the seismic source of the 2007 Tocopilla earthquake using the AlTar software
to perform the Bayesian inversion of this problem. The results of this modeling will be
compared with previous works.

Outline of this Thesis

This Thesis has been organized in 5 chapters. A summary of the contents of each chapter is
presented below.

• Chapter 1: Introduction
Introduction to the 2007 Tocopilla earthquake (Mw 7.7) and brief description of the
Bayesian methodology and the CATMIP algorithm. Here we present the problem to
be solved, the inversion of the static slip distribution of the earthquake using the Bay-
esian method CATMIP, including a more complete analysis of uncertainties including
epistemic or model prediction errors.

• Chapter 2: Bayesian Methods
This chapter presents first a brief history and formulation of the Bayesian methods
and a summary of the more relevant Bayesian methods to understand the methodology
employed in this thesis, the CATMIP algorithm. Finally, a section dedicated to graphi-
cally understanding this algorithm and to present tests using synthetic and real data,
showing the stages and performance of the method when solving a simplified version of
the hypocenter determination problem.

5



• Chapter 3: The Tocopilla earthquake
This chapter summarize previous studies of the 2007 Tocopilla earthquake (Mw 7.7)
and the seismotectonic context of this event.

• Chapter 4: Modeling the Tocopilla earthquake
In this chapter we present first the modeling of the 2007 Tocopilla (Mw 7.7) earthquake,
including the setting of the fault geometry, the data set and the inverse problem for-
mulation. Later, in the section dedicated to the results, we show the marginal distri-
butions of static slip obtained from the fully Bayesian inversion of the 2007 Tocopilla
earthquake. The results are presented in conjunction with an analysis that includes
aspects as the sensibility and the uncertainty of the solutions.

• Chapter 6: Conclusions
We summarize the main results, the relevant aspects as the maximum slip, updip,
downdip and the relation with the regional seismotectonic context.
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Chapter 2

Bayesian Methods

Bayesian methods are based on Bayes’ Theorem, named after Thomas Bayes (1702 - 1761),
a philosopher and presbyterate minister whose work in the field of mathematics was redis-
covered posthumously. It was near two years after his death when Richard Price a colleage
and a friend of Bayes corrected his work, making his own contributions and publishing the
article “An Essay towards solving a Problem in the Doctrine of Chances” (Bayes (1763))
highlighting its importance and laying the foundations of Bayesian statistics. However, it
was Pierre-Simon Laplace who in 1774 gave a Bayesian interpretation to the theory of proba-
bility (e.g.McGrayne (2012)), in which the Bayes’ theorem proposes a relationship between
events based on conditional probabilities, relating two events A and B in the form:

P (A|B) =
P (B|A)P (A)

P (B)
(2.1)

Thus raising a relationship between these events, in the sense that the probability of event
A given event B is proportional to the probability of event B given event A, multiplied by
the probability of A.

One of the intriguing aspects of Bayes’ theorem is that it makes it possible to relate the
probability of a cause given its effect with that of the effect given its cause.

For data modeling purposes, if θ is a set of parameters and D the observations. Bayes’
theorem can be formulated as:

P (θ|D) =
P (D|θ)P (θ)

P (D)
(2.2)

P (θ|D) is called the posterior distribution of parameters and it is the probability of a
model θ given the observed data D. P (D|θ) is the probability of observed data given a
model or likelihood function. This function gives a notion of how well data predicted by
a model θ fits the observed data. Finally P (θ) is the probability of a model in absolute
terms and represents the prior knowledge about the model parameters. Evaluating P (θ) and
P (D|θ) is typically much more accessible than P (θ|D). Bayes’ theorem provides tools to
obtain information about phenomena when calculating P (θ|D) absolute probabilities is a
difficult or impossible task.
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Here, Bayesian methods represent P (θ|D) by generating samples of such pdf, which can
become very costly in computational terms for large inverse problems, but have become more
manageable in recent decades thanks to advances in parallel computing.

To use the Bayesian scheme to solve inverse problems it is necessary to define the likelihood
function and the prior probability distribution (prior distribution for short) of the model
parameters. The likelihood function is assumed to have a maximum when the residual
between observed and predicted data has a minimum. If G(θ) is the predicted data as
a consequence of applying a physical model G over a set of parameters θ, dobs is the set of
observed data, and the L2 norm is chosen, the aim is to minimize the function ||G(θ)−dobs||2.
The choice of the L2 norm is consistent with the maximum information entropy information
principle (Jaynes , 1957), which indicates that the normal distribution maximizes entropy
among all other probability distributions. The likelihood function that brings together these
conditions and usually used in this context is:

L(θ) = γe−
1

2
(G(θ)− dobs)

TC−1χ (G(θ)− dobs), (2.3)

where γ is normalization constant coming from the setting of the inverse problem (in
this case a probability of data, coming from Bayes’ theorem). Cχ is the misfit covariance,
summarizing the uncertanties in the modeling. This includes observational (Cd) and model
prediction (Cp) errors. Cd comes from the measurement process and Cp expresses the
uncertainty in the prediction of the model as a consequence of uncertainties in the physical
model.

The continuous formulation of the Bayes’ theorem is in terms of the probability density
functions (pdf’s) as shown in equation 2.4. A posteriori pdf of model parameters f(); is
proposed as a solution of the inverse problem, and the problem emerging from this point is
to generate samples of f .

f(θ|D) = fprior(θ)L(D|θ) (2.4)

The essential tool to solve problems in the Bayesian inversion is sampling, in which an
ensemble of models that are samples of f(θ|D) is generated. Some of the more important
sampling methods will be described in the next section.

2.1 Sampling Methods

In the context of this thesis, we show here some of the most useful sampling methods to
generate samples of a given probability distribution.

2.1.1 Rejection Method

A Rejection method or Acceptance-Rejection method is a technique that generates a set of
samples of a probability distribution by evaluating every sample in an acceptance-rejection
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scheme. Defining f as the probability density function whose distribution is going to be
sampled, this method uses a pdf g as a proposal distribution, such that g multiplied by a
constant c works as an envelope for f , that is, f(x) ≤ cg(x) for every x in the domain (see
Figure 2.1). The first step is to generate a sample x∗ of a distribution g, that sample will be
accepted with probability p = f(x∗)/cg(x∗). To test a sample it is necessary to generate a
uniform random number u in U [0, 1]. The sample is accepted if u < p and rejected otherwise.
This process is repeated until enough samples have been generated (Tarantola, 2005).

Figure 2.1: Scheme showing how a rejection method works. The figure shows two samples x∗
and x′ of the distribution whose pdf is g. A random number is generated between zero and
cg(x). For the sample x∗, this random number fell under f(x∗) (green x), thus the sample
is accepted. In the second case the random number fell outside f(x′) (red x), and then the
sample is rejected.

The following table summarizes the acceptance - rejection method.

Algorithm 2.1 Rejection algorithm

1. Generate a sample x* of g, and evaluate p = f(x∗)/cg(x∗)
2. Generate a random number u in U [0, 1]. If u ≤ p accept the test, and collect the test
sample as part of the ensemble
3. Repeat 1 and 2 until a certain number of samples N is reached.

2.1.2 Metropolis-Hastings Algorithm (MH)

The Metropolis-Hastings algorithm is a sampling method that allows to represent a proba-
bility density function obtaining samples by designing a random walk that produces samples
of the parameter space. This random walk is a sequence in which every step depends on
the previous one, which obeys the definition of a Markov chain. This method was develo-
ped by Nicholas Metropolis, who published along with his team the article called Equation
of State Calculations by Fast Computing Machines (Metropolis & Teller , 1953). Then, in
1970 Wilfred Keith Hastings complemented the technique allowing its use in a wider range
of distributions. The advantage of this algorithm is that it explores the parameter space in a
more efficient way, because it uses the previous accepted sample as a starting point to make
a test step in order to search for the next samples, as shown in algorithm 2.1 below.

Schematically, the Metropolis algorithm can be represented by figure 2.2, where a sequence
of samples is illustrated. In each iteration the algorithm generates a test sample starting from
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Algorithm 2.2 Metropolis-Hastings algorithm

1. Generate a seed sample θ0.
2. Use a proposal distribution q() to generate a test sample θtest.

3. Evaluate the acceptance function α = min
{

f(θtest)
f(θcurrent)

, 1
}

4. Generate a random number u in U [0, 1]. If u ≤ α accept the test, collect the test sample
as part of the ensemble and redefine θcurrent as θcurrent = θtest. If u > α reject the test
sample and repeat the current sample as part of the ensemble.
5. Repeat steps 2-4 until a number of samples is reached.

a current sample (the last accepted one) defining a perturbation from it drawn from a proposal
distribution in order to generate a test model, candidate to be accepted as a sample of the
pdf. Then, it compares the probability density function of the generated candidate with
the corresponding to the current sample. If the pdf value of the test model is greater than
that of the current sample the test model is accepted, as a sample of the pdf but, if this is
not the case, the test model still might be accepted with some probability. This probability
is proportional to the ratio between the value of the pdf of the test model and the current
sample. In this sequence, if the test model is accepted it becomes a new link in the chain, but,
if it is rejected, the last accepted model is repeated (the current sample). When a number
of steps is reached, the chain itself defines an ensemble of models containing the samples of
the pdf and its associated probability.

An advantage of the Metropolis-Hastings algorithm is that it allows to sample multi-
dimensional distributions efficiently. Nevertheless, an issue with this method is that the
obtained samples are correlated, as the sampling process depends on the last sampled model.
Another issue is the tendency to accumulate samples around local maxima of the poste-
rior pdf. A solution for these problems is using an alternative form of this algorithm, the
Metropolis-Hastings in Parallel algorithm (MIP).

Figure 2.2: Scheme from Minson (2010) explaining the Metropolis Algorithm. The figure
shows that a sequence of samples is generated and the accepted ones become part of the
chain (in red). If a sample is rejected, the chain repeats the last accepted one and uses it as a
starting point to find the next candidate. The numbers indicate how many times a repeated
sample appear in the chain.
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2.1.3 Metropolis-Hastings in Parallel (MIP)

In this scheme, multiple Metropolis-Hastings chains are run in parallel, saving only the last
sample of each chain. Even when the net effect of this is actually increasing the number
of calculations, having the proper computational resources, such as parallel processing, for
instance allows to sample the whole pdf and not being stuck in local maxima. The Metropolis
- Hastings in Parallel algorithm allows to distribute the seed models and the exploration
regions of the Markov chains. Another effect of this processing is over the independence of
the obtained samples, this in the sense that every chain is generating samples independently
by contrast with the case in which we use correlated samples from the same chain. Also, if
the Markov Chain MonteCarlo (MCMC) chains are long enough the last sample of the chain
can be considered independent of the initial seed model of the chain.

2.1.4 Transitional Markov Chain Monte Carlo (TMCMC)

When a pdf has some pathological aspects, for example, multimodal pdfs, very peaked pdf,
and pdfs with flat regions, the Metropolis algorithm may not be the best option to generate
an ensemble of sampled models that represent the target probability distribution. Basically,
the Metropolis algorithm, even in a parallel scheme, is prone to oversample some regions of
the model parameter space in a way that makes difficult to explore other regions, as will
be detailed in the next section. This problem can be adressed by adding a transitional
scheme to the previous algorithms to avoid sampling directly pdfs with sharp local or global
maxima, as it does the algorithm called Transitional Markov Chain Monte Carlo (TMCMC).
This method was developed by Ching & Chen (2007) and allows to handle distributions
with extreme characteristics. The algorithm transitions from the prior pdf to posterior pdf
through a series of intermediate pdfs that converge to the posterior pdf. Applied to solve an
inverse problem following a modified version of the Bayes rule, the algorithm achieves the
posterior probability density through the following formulation:

f(θ|D)m ∝ P (θ)P (D|θ)βm ,

m ∈ 0, ...,M

0 ≤ βm ≤ 1, β0 = 0, βM = 1

(2.5)

Where f(θ|D)m is the intermediate pdf of the solution in the parameter space given the
observed data, βm is the annealing variable, increasing its value from 0 to 1. When this latter
value is reached, the expression corresponds to Bayes’ theorem.

This algorithm starts from a prior distribution P (θ) according to the knowledge of the
range of values expected for the parameters θ. Thus, the algorithm needs a function P (θ)
describing this a priori knowledge. In the case of homogeneous information P (θ) represents
a uniform distribution over a domain in the dimension of θ. The distribution in the step
m = 0 will have the form of this a priori pdf. In a certain step the aim is to obtain the
samples of the pdf intermediate posterior pdf from samples of the pdf corresponding to the
one of the previous step. To choose a β for the next iteration value it is desirable that the
distribution changes gradually. So, Ching & Chen (2007) define this condition in terms of
the variation coefficient:
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Cv(ω) =
σ(ω)

ω̄
(2.6)

Where ω is a set of weights associated with the sample in the current iteration obtained
from the ratio between the value of the posterior pdf in the current step and the same function
associated to the previous step. σ(ω) and ω̄ are the standard deviation and the mean of
those weights, respectively.

Here, ω defines the weight that will be used for resampling. This process generates a set
of samples from the samples in the previous annealing iteration, repeating those according to
their density in the intermediate distribution compared with their density in the preceding.
Samples with higher probability appear more often in the set of samples. Naming θm,i as
the i-th sample of the set in the iteration m, the probability to generate a certain sample in
the process of resampling is:

ω(θm,i) =
p(θm,i)p(D|θm,i)βm+1

p(θm,i)p(D|θm,i)βm
= p(D|θm,i)βm+1−βm . (2.7)

Then, this method explores the surroundings of the samples. This, by using the Metropolis
algorithm in such a way that repeated samples will be replaced by a Markov Chain in which
the length of this chain is the number of times that a sample is repeated.

A remarkable aspect of this method is how it defines the proposal distribution for the
step in the random walk. It defines a Covariance matrix:

Σm = c2
N∑
i=1

ω(θi)∑N
i=1 ω(θi)

(θi − θ̄)(θi − θ̄)T ,

θ̄ =
N∑
i=1

ω(θi)θi∑N
i=1 ω(θi)

.

(2.8)

This is a weighted covariance matrix of the sample’s set, where c is a scaling factor to
modulate the size of the step. The previous expression means that the prefered direction for
a step of the proposal distribution will be that in which more samples are present, and the
size of the step will be larger in the directions having more spread sampled model parameter
values at the current iteration of the method.

The following table describe briefly the TMCMC algorithm.

Algorithm 2.3 Transitional Markov Chain MonteCarlo

1. Set m = 0. Generate N samples {θm} = {θ1, ...θN} of the prior PDF f0 = P (θ).
2. Set m = m+ 1. Choose m such that COV [ω] is close to 1.
3. Calculate Σm and cm.

4. Draw N samples from {θm−1} with probability ω. The set of resampled models is
{
θ̂m

}
.

5. Count the number Nrep of repetitions of every sample and starting from one of these
samples generate Nrep models using the Metropolis algorithm.
6. Repeat steps 2 to 5 until βM = 1 is reached.
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2.1.5 CATMIP

Cascading Adaptive Transitional Metropolis in Parallel (CATMIP) is a Bayesian sampling
algorithm developed by Minson (2010) in the context of her doctoral thesis. It takes many
elements of TMCMC, making some important improvements to this scheme, the main one of
them is to add a mechanism for parallelization of the sampling process. Another important
aspect is that the exploration of the parameter space uses a proposal distribution that depends
on the acceptance rate of the previous set of samples obtained using Metropolis Hastings
algorithm. Thus, allowing a larger step on the random walk if the efficiency of the last stage
is higher, but a smaller size in the opposite case. Additionally it incorporates a tool to handle
different sets of data, allowing to use the solution of an inversion using fewer data sets to
obtain a more complete solution of the problem in a procedure called Cascading.

Let be θ the set of parameters, D the observations and f(θ|D) the posterior probability
distribution of the parameters, the fundamental formulation of this algorithm is the same of
TMCMC, defining intermediate distributions of the form:

f(θ|D)m ∝ P (θ)P (D|θ)βm ,

m ∈ 0, ...,M

0 ≤ βm ≤ 1, β0 = 0, βM = 1

(2.9)

For the case β = 1, this formula corresponds to Bayes’s theorem and expresses the fact
that the probability of a certain model θ given the data D is proportional to the probability
of the data given the model. The expression P (D|θ) corresponds to the likelihood function,
which gives a notion of how well the test parameters model the observed data. This function
is usually expressed as L(θ).

The variable βm plays an important role as a transitional variable increasing its value
gradually from 0 to 1. This means that starting from an a priori distribution, where βm = 0,
it progressively reaches the desired distribution given by Bayes’s theorem (the case β = 1).

This algorithm consists of 3 main stages. The first one is the setting of an initial set of
model parameter samples, that is consistent with a priori information over the model para-
meters. Then, the second stage follows an iterative sequence, where the algorithm generates
intermediate distributions. The algorithm reaches the final stage when β = 1 and it obtains
the a posteriori distribution of model parameters.

The CATMIP Algorithm

The inversion requires to define the number of samples N of the a priori pdf fprior(θ) descri-
bing the previous knowledge on the model parameter space, whose determination, in turn,
could be a problem by itself. This opens the question of how many samples are necessary to
adequately sample the distribution, which requires to define some convergence criteria. Once
these properties are settled, the algorithm works as follows.

• Initiation: This stage generates N samples of the fprior(θ) distribution. Here, the sam-
ples can obey additional conditions that are consistent with the definition of fprior(θ),
for example that the summation of all parameters is close to a certain value.
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• Transition: This stage is the iterative part of the program. At the k − th iteration
we have a set of samples θk, associated with an annealing variable βk. The three steps
that follow are repeated sequentially:

1. Choose βk+1: βk+1 is the variable that models the convergence of the model to
the posterior distribution. Each βk is chosen adaptively according to the condition
described in Beck & Zuev (2013):

Cv[ω(θk,i)] = 1, (2.10)

ω(θk,i) =
p(θk,i)p(D|θk,i)βk+1

p(θk,i)p(D|θk,i)βk
= p(D|θk,i)βk+1−βk , (2.11)

where Cv(.) is the coefficient of variation and ω(θk,i), the importance weight as-
sociated to every sample (see equations 2.6 and 2.7 in section about TMCMC).
Then, the condition for βk is:∑Nk

i=1 L(θ
(i)
k )2(βk+1−βk)

(
∑Nk−1

i=1 L(θ
(i)
k )(βk+1−βk))2

=
1

γNk

, (2.12)

where Nk is the number of samples at step k, and γ is a threshold for the effective
sample size γ = N̂ eff

k /Nk, being N̂ eff an estimator of the effective sample size.
The initial value of β is β0 = 0 and the one of the final iteration is βk = 1.

2. Resampling: A resampling is performed by assigning a weight to each sample
of the distribution according to its probability compared to the previous step of
the algorithm. The likelihood function provides a notion of how well the used
parameters used match the observed data. This stage will be based on the work
of Ching & Chen (2007) and consists in generating the set of samples representing
the (k + 1) − th iteration from the set of samples obtained as a result of the
k−th iteration. This process repeats more times those samples with higher weight
according to equation 2.11, as it is represented in figure 2.3.

Figure 2.3: Scheme of operation of the resampling stage. This assigns a probability to each
sample and then generates a new set of samples from them, repeating more times those with
a greater weight.

3. Metropolis Sampler: The main difference between CATMIP and TMCMC is
in this part. In CATMIP, every sample of the set obtained by resampling is
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used as a starting point for a random walk. So this stage uses the Metropolis
algorithm, where the number of steps of the chain and the proposal distribution
must be previously defined. This scheme, in which multiple chains are generated
independently, allows to parallelize the algorithm in the sense that each MCMC
chain can be run independently (in parallel). The proposal distribution for the
step size in the random walk is a Gaussian distribution. The covariance matrix
Σm modulating the step is very similar to the TMCMC (Ching & Chen, 2007), but
it has a scaling factor that depends on the acceptance rate R. If the acceptance
rate is high then the step will be larger, allowing more exploration of the model’s
space. The covariance matrix, Σk is defined as,

Σk = ck
2

N∑
i=1

ω(θi)∑N
i=1 ω(θi)

(θi − θ̄)(θi − θ̄)T

θ̄ =
N∑
i=1

ω(θi)θi∑N
i=1 ω(θi)

ck = a+ bR

(2.13)

where R is the acceptance rate of the Metropolis sampling and a and b are constant
values chosen by performance tests.

• Final: Once β = 1 is reached, the distribution of the solutions space is obtained.
The a posteriori probability density function of the parameters allows to quantify the
error associated with the inversion. this could be represented, for example, through the
sample covariance matrix of each distribution or by quantifying marginal errors from
the sampled models.

The following table summarizes the CATMIP algorithm.

Algorithm 2.4 CATMIP algorithm. Table from Minson (2010)

1. Set k = 0. Generate N samples {θk} = {θ1, ...θN} of the prior pdf f0 = P (θ)
2. Set k = k + 1. Choose βk such that the COV [ω] equals some target value
3. Calculate Σk and ck
4. Draw N samples from {θk−1} with probability ω. The set of resampled models is

{
θ̂k−1

}
5. Use each resampled model θ̂k−1 in

{
θ̂k−1

}
as the seed for generating Nsteps models from

the Metropolis algorithm with proposal density Σm

6. {θk} is comprised of the final model from each Markov chain. Thus the total number of
samples is unchanged.
7. Repeat steps 2 to 6 until βk = 1 is reached

A diagram describing each major iteration of the algorithm is provided in Figure 2.4.

Until now, this chapter has explained why this scheme is adaptive, transitional and how
it uses Metropolis in parallel. Another important aspect of CATMIP is that it allows to deal
efficiently with problems with more than one set of data by using the concept of cascading,
when certain conditions are met. The simplest case is when using two sets of data, where
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Figure 2.4: Diagram of the CATMIP algorithm. This cartoon illustrates one complete cooling
stage of the CATMIP algorithm. The five samples from the previous iteration are resampled
and then an instance of the Metropolis algorithm is run for each of the resulting samples.
Numbers indicate the frequency of each model after resampling. The five red samples com-
prise the posterior distribution for the next iteration of the algorithm. The algorithm is
plotted with very short Markov chains and a 100 percent acceptance rate for simplicity. In
applications, the Markov chains would be much longer and the acceptance rate much lower.
CATMIP scheme taken from Minson et al. (2013).

one set of data D1 depends only of one set of model parameters θ1 and the other set of data
D2 depends on both set of model parameters θ1 and θ2. An example of that setting is the
inversion of the source mechanism of an earthquake considering the static and the kinematic
problem, where D1 and θ1 are static crustal offsets and static slip amplitudes, respectively,
and D2, θ2 are seismograms and model parameters defining the kinematics of the source,
such as rupture speed, rise time, etc.

To asses this problem the formulation of the posterior pdf can be expressed as a decom-
position:

P (θ1,θ2|D1,D2) ∝ P (D1,D2|θ1,θ2)P (θ1,θ2)

∝ P (D1|θ1)P (D2,θ1,θ2)P (θ1)P (θ2)

∝ P (D1|θ1)P (θ1)P (D2,θ1,θ2)P (θ2)

∝ P (θ1|D1)P (D2|θ1,θ2)P (θ2).

(2.14)

The above expression is proportional to P (θ1|D1) the posterior pdf of the simpler pro-
blem. In this manner the problem can be assessed by solving first a simpler problem and
expanding later the problem to add more data and calculate the additional parameters.

The algorithm implements this procedure using the transitional scheme in the following
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manner:

P (θ1,θ2|D1,D2)m,n ∝ P (θ1,D1)mP (D2|θ1,θ2)
αnP (θ2),

0 ≤ αn ≤ 1,
(2.15)

where P (θ1|D1)m is an intermediate distribution of the single problem. This expression
means that the pdf obtained from the simplest problem is used to get the pdf of the complete
problem. Then, the iterative part of this problem can be divided in two steps, as algorithm
2.5 shows.

Algorithm 2.5 Cascading in CATMIP algorithm . Table from Minson (2010)

1. Sample P (θ|D)m ∝ P (θ1)P (D1|θ1)m, 0 < βm < 1
2. Sample P (θ|D)n ∝ P (θ1)P (θ2)P (D1|θ1)P (D2|θ1,θ2)

αn , 0 < αn < 1

2.2 Understanding the CATMIP Algorithm

This section illustrates how the CATMIP algorithm works. With that purpose we implemen-
ted a serial version of the algorithm using Python. First, we show an example in 1D, which
makes possible to visualize the effect of each stage on the distribution and the advantages of
CATMIP over more classical sampling scheme. Then, the algorithm will be applied over a
four-dimensional inverse problem, concretely, to find the hypocenter of an earthquake.

2.2.1 One Dimensional Tests

The CATMIP algorithm (Cascading Adaptive Tempered Metropolis in Parallel) is a Bayesian
method designed to solve inverse problems in an accurate and efficient form. It applies espe-
cially well when the posterior probability distribution of the parameters is difficult and the
number of parameters is big. The kind of difficulty that can appear at the moment of solving
a problem is the presence of extreme characteristics, as multiplicity of local maximums, very
peaked maximums or flat regions with very low probability.

In this section, we will illustrate graphically some key aspects of CATMIP by produ-
cing samples of a known probability density function pdf, that includes some pathological
characteristics as explained in the following.

Recalling Bayes’ theorem, the posterior distribution has the form seen in equation 2.16.
In this equation, the prior probability distribution is P (θ) and the likelihood function is
P (D|θ).

f(θ|D) = γfprior(θ)L(D|θ), (2.16)

The prior information considered is a uniform distribution for P (θ) in a given interval for
θ. The likelihood function P (D|θ) is chosen as a 1D function with two local maxima, as a
sum of a Gaussian and a Laplace function:
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f(θ|µ, b) = α1e
−( θ−µ1

2σ1
)2

+
1

2b
e−|θ−µ|/b. (2.17)

The aim is to sample the posterior distribution illustrating the effect of the processing in
the different stages of the algorithm. Here we consider the values of parameters α1, µ1, α2,
µ2, that can produce a posteriori pdf’s that can have regions of very low probability between
local maxima.

Metropolis-Hastings (Sequential and Parallel)

To understand the role of Metropolis-Hastings in Parallel algorithm in CATMIP, it is useful
to start from the Metropolis algorithm itself, reminding that it works through sampling by
Markov Chains. It generates a chain through successive steps, where the starting point to
generate the next candidate model to be sample of P (θ|D) is the last accepted sampled
model. The size of this step follows a proposal distribution, usually a Gaussian distribution.
If the size of the step is too small, the process tends to obtain samples that are very close
from the last one. This makes easy to clusterize samples around a local maximum, as we
can see in figure 2.5 in an application of the classical Metropolis algorithm. Here, most of
the sampled models (if not all) will lie around to the local maxima of the pdf P (θ|D) that is
closer to the initial model if the average size of the step implied by the proposal distribution
is small compared with the length of the valley of low probability between the two local
maxima of P (θ|D) (see figure 2.5).

(a) (b)

Figure 2.5: Histograms showing the posterior pdfs obtained in two different runs of the
Metropolis algorithm considering different initial models when the distribution has multiple
local maxima. If the size of the step is small, samples tend to cluster in one of them. This
clusterization can be partially solved by increasing the number of elements in the chain or
growing the step for the proposal distribution. In this example the number of elements in
the chain is N = 1000 where the realization is clustering the sampling near a) the Gaussian
b) the Laplacian function. Green vertical lines indicate initial θ model for MH algorithm.

The problem of exploring samples only near a local maxima of P (θ|D) problem can be
addressed by increasing the number of elements in the chain or increasing the size of the
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steps, but at the potential cost of drastically reducing the acceptance rate of the MCMC
chain. Another way to solve this problem is applying a parallel scheme to the algorithm.

(a)

Figure 2.6: Posterior distribution obtained applying the Metropolis algorithm in Parallel
(MIP) to sample the synthetic 1D pdf. This example uses 1000 chains, each one generated
100 steps where only the final sample is saved.

When it is applied, Metropolis in parallel distributes samples in both maxima, but the
proportion is not necessarily balanced. Figure 2.6 shows that the peaked function in the right
side of the graph has more samples. This can be explained thinking in terms of the Markov
chains, that at the begining are distributed almost uniformly and then, when new steps are
tested, the samples move to regions with higher probability. This process is very sensitive
to the width of the region associated to each other local maxima, since more chains start in
these regions, and it is more probable that the chains remain in that neighborhood. But if
the function is very peaked, once a sample is close to the peak it is difficult to escape from
that region. A test sample that moves away from the peak makes very difficult to accept that
sample as part of the chain, because the probability of getting away from the maximum is
proportional to the ratio between the likelihood of the test and the current sample. One way
to solve the problem of unbalanced samples is applying resampling, a process that generates
a set of samples from an existing set, repeating more times the samples with more likelihood,
given by P (θ|D).

Resampling

The resampling is a process that uses a set of samples of a given pdf as a repository to sample
a different pdf, repeating more often the samples that presents higher pdf value according
to the new pdf, and eventually discarding those with lower pdf values. In order to set the
expected frequency of appearance of each sample in the new distribution it is necessary to
assign a weight associated to each sample. This weight is evaluated from the ratio between
the current pdf value and the value of previous pdf. When we incorporate a resampling
previous to Metropolis-Hastings in Parallel, the obtained graph is the following (Figure 2.7).
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(a) without resampling (b) with resampling

Figure 2.7: Histograms showing the posterior probability distribution obtained applying a)
Metropolis in Parallel, b) Resampling and Metropolis in Parallel (MIP).

The resampling redistributes the samples according to their probability in the posterior
distribution.

Figure 2.7 shows that incorporating this process to the studied example, the resulting
ensemble of samples is such that its histogram (normalized) represents much better the target
a posteriori pdf. It is important to note that the resampling is applied before Metropolis in
parallel, as the CATMIP algorithm state.

A relevant aspect that can be noticed from the figure is that the sample set histogram
delineates much better the Gaussian than the Laplacian function.

An intuitive explanation for this phenomenon can be given in terms of the probability
that a sample falls in the vicinity of a rough peak of the pdf. Even when the process of
resampling generates more samples where the samples have more likelihood, the probability
that they reach the most acute point is lower. An improvement to the previously showed
stages is to apply a transitional technique to gradually move samples to those regions.

Transition

The transitional scheme from a priori to a posteriori pdf described in section 2.1.4 refines
the preceding Bayesian methods by changing gradually the sampled distribution from a prior
distribution to the posterior distribution in a sequence of intermediate steps, that produce
intermediate posterior pdf’s.

Incorporating the transitional scheme to the stages previously showed we obtain the
structure of the CATMIP algorithm (without cascading, which applies when the inversion
considers more than one set of data). When we implement the transitional procedure, the
resampling and the Metropolis-Hastings sampling are applied in a sequence of intermediate
steps, where an intermediate pdf is sampled from the models obtained in the previous step.
The obtained ensemble of models for the 1D study case incorporating transition in the form
of logarithmic increasing variable β is shown in the Figure 2.8.
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(a) MIP (b) Resampling and MIP

(c) Transitioning

Figure 2.8: Comparison between posterior probability distributions obtained applying diffe-
rent sampling schemes. Transitional scheme is compared with MIP (Metropolis-Hastings in
Parallel) and MIP adding resampling. The number of samples is N = 1000, in every case,
while the number of steps in MCMC is Nmcmc = 100.

CATMIP

The CATMIP sampling algorithm use the transitional scheme in an adaptive form, such
that the distribution of samples change gradually (equation 2.10) and efficiently. Here, we
incorporate the adaptive transition to the Resampling and Metropolis-Hastings in Parallel
on the resolution of the 1D synthetic problem. The result is shown in figure 2.9, where the
intermediate pdfs obtained through the CATMIP algorithm are shown. The prior distribution
was chosen as a uniform β = 0 and then the algorithm calculates in an adaptive form the next
β values to generate the intermediate distributions. Finally the posterior pdf is reproduced
when β = 1. The cascading part of the algorithm is not tested in these examples because
only one data set was used.
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(a) β = 0 (fprior(θ)) (b) β = 0.24

(c) β = 0.47 (d) β = 0.71

(e) β = 0.94 (f) β = 1

Figure 2.9: Posterior probability distribution obtained applying the CATMIP sampling al-
gorithm to a 1D synthetic problem for different β values. (1000 samples, 100 steps MCMC)

When we use the CATMIP algorithm, or in general any sampling method, for the 1D
synthetic study case with a larger number of samples, we obtain figure 2.10. A larger number
of samples translates in achieving a better representation of the intermediate pdf’s as well
the posterior pdf, in the sense that the histogram of the set of samples resembles in a much
better way the pdf of the distribution being sampled. Thus, by a process of trial and error,
one should determine the best number of samples by analyzing the stability of the marginal
histograms that they produce.
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(a) β = 0 (b) β = 0.24

(c) β = 0.48 (d) β = 0.71

(e) β = 0.95 (f) β = 1

Figure 2.10: Sequence of distributions obtained through the CATMIP algorithm applied to
a 1D synthetic problem. The function shown corresponds to the sum of a Gaussian and a
Laplace function. The number of samples is 50000 and β goes from 0 to 1.
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2.2.2 Test in 4D: Hypocenter location of an earthquake

As part of the initial tests of our implementation of the CATMIP algorithm, we chose a
problem with only a few parameters, which allows to illustrate the way this method works.
We analyze here the inversion of the hypocenter of an earthquake, which is a non-linear
problem where the parameters to be inverted are those that define the hypocenter, that is,
the three spatial coordinates and the origin time. The observations used to solve this problem
are the arrival times of the P and S waves. The formulation of this problem is in terms of the
travel times of the seismic waves, from the source to receivers which is the sum of travel times
on paths in different propagation media. The earthquake location problem can be modelled
using complex velocity models from 3D tomography, however, we will analize the case of
a simple homogeneous halfspace, as the goal is to illustrate in a simple form the inversion
methodology and compare CATMIP with other methods. The forward model that relates
the hypocenter (Eh, Nh, Zh, Th) with the travel times Tp, Ts is described in equations 2.18
and 2.19.

T stationp = Th +

√
(Eh − Estation)2 + (Nh −N station)2 + (Zh − Zstation)2)

vp
(2.18)

T stations = Th +

√
(Eh − Estation)2 + (Nh −N station)2 + (Zh − Zstation)2)

vs
, (2.19)

where (Eh, Nh, Zh) and (Estation, N station, Zstation) denote coordinates of the source and
stations, respectively, Th corresponds to origin time, vp and vs are velocities of p and s waves.

Test with synthetic data: Circular network of seismometers

This example is the synthetic case in which we locate a circular array of stations whose center
has the location of the epicenter of a seismic event (see Figure 2.11), with the source at a
depth of 30 km and that for the inversion we use only the P wave arrival time to determine the
hypocenter location. Because of the symmetry of this problem it has infinite solutions along
the z axis (having a trade-off between source depth and origin time). A particularity of this
problem, is that the region of maximum likelihood (where admissible solutions are) spreads
with depth due to observational uncertainties (we assumed an error of 0.5 seconds for the
P - wave arrival time). Also, we note the peaked form of the spatial distribution of feasible
hypocenters as we approach to the true hypocenter used to generate synthetic data that
constraints our models during the inversion. These conditions make this synthetic example
a good study case to compare the results using different sampling algorithms: Metropolis-
Hastings, Metropolis-Hastings in Parallel (MIP) and CATMIP.

The obtained ensembles of samples resulting from the hypocenter determination inverse
problem using Metropolis-Hastings, Metropolis-Hastings in Parallel (MIP) and CATMIP are
shown in figure 2.12 a, b and c respectively. In this figure, all the presented solutions have the
same amount of samples (N = 1000 samples), so we can compare the obtained distributions in
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similar conditions. The expected behavior is a peaked distribution along the z-axis, spreading
in depth as we move away from origin z-coordinate. The solution obtained using Metropolis-
Hastings for that amount of samples does not represent the expected distribution of the
parameter models. The peaked behavior near the origin of the event is better recovered
when we use CATMIP, as well as the conical shaped form of the distribution representing
the uncertainties on hypocenter location.

The marginal distributions obtained using Metropolis-Hastings, Metropolis-Hastings in
Parallel and CATMIP are shown in figure 2.13, 2.14 and 2.15, respectively.

A relevant aspect that can be noticed from figures 2.13, 2.14 and 2.15 is the depen-
dence between the vertical component of hypocenter location and the origin time. This
dependence, which is the expected behavior of the solution, is poorly recovered using the se-
quential Methopolis-Hastings algorithm, and better described by the results obtained using
Metropolis-Hastings in Parallel and even much better with CATMIP (for the same amount
of samples). A similar observation can be done in terms of the quality of the recovered mar-
ginal histograms for each model parameter, in which CATMIP does a better job by obtaining
smoother or less noisy histograms for the given discretization size used to compute each one
of them.

Figure 2.11: Circular array of stations centered at the epicenter of the synthetic event.
Colored dots indicate time of arrival of P waves, relative to hypocenter time. Note that for
this special case, all stations have the same arrival time of P-waves.
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(a) Metropolis

(b) Metropolis in Parallel

(c) CATMIP

Figure 2.12: 3D plot of hypocentral location for all sampled models using the Metropolis-
Hastings, MIP and CATMIP sampling algorithm. Color shows origin time associated to each
sample. The samples correspond to the N = 1000, in the case of Metropolis-Hastings these
are the final samples of a single Markov chain, while in MIP and CATMIP the resulting
samples corresponds to N = 1000 independent chains, where the number of steps is Nmcmc =
100.
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Figure 2.13: Marginal distributions of the obtained sampled models for the hypocentral
determination problem using the Metropolis-Hastings algorithm. The parameters shown are
E,N,Z coordinates (in km) and origin time T [s]. Diagonal elements show marginal 1D
histograms corresponding to each parameter, and out of diagonal elements show the 2D
histograms associated to parameter pairs. The samples are the final 1000 steps of a Markov
chain of Nmcmc = 5000.
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Figure 2.14: Marginal distributions of the obtained sampled models for the hypocentral de-
termination problem using the Metropolis-Hastings in Parallel algorithm. The parameters
shown are E,N,Z coordinates (in km) and origin time T [s]. Diagonal elements show mar-
ginal 1D histograms corresponding to each parameter, and out of diagonal elements show
the 2D histograms associated to parameter pairs. The number of samples employed was
N = 1000, where each Markov chain has Nmcmc = 500 steps.
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Figure 2.15: Histograms showing marginal pdfs (diagonal elements) and correlation bet-
ween parameters (out of diagonal elements) for the hypocentral determination problem using
CATMIP. The parameters are the components E, N, Z, and the time of occurrence of the
earthquake. The number of samples employed was N = 1000, where each Markov chain has
Nmcmc = 500 steps.
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Test with real data: Intermediate depth event following the Pisagua earthquake.

This example used real data coming from a seismic event within a series of earthquakes
registered after the 2014 (Mw 8.2) Pisagua earthquake (?, . Diana Comte, personal commu-
nication)). The observations used to solve this problem are the arrival times of the P and S
waves at several seismic stations, whose location is indicated in Figure 2.16. Here, we assume
an elastic homogeneous halfspace with vp = 4 km/s and vs = 2.2 km/s.

Figure 2.16: Distribution of seismic stations used for the inversion of the hypocenter location
for the aftershock of the Pisagua earthquake.

The result when we use CATMIP algorithm can be seen in Figure 2.17 where the model
parameters obtained are an ensemble of hypocenter coordinates that better fits the arrival
times. The diagonal boxes of the figure shows 1D histograms representing the marginal
distributions of the model parameters, and the off diagonal boxes are 2D histograms showing
the correlations between pairs of model parameters, all constructed from the set of sampled
models. This illustrates how Bayesian methods allow to characterize the solution, where
relevant characteristics can be obtained, for example, the position of the center, degree of
asymmetry, the size of uncertainty bounds, and the correlation and dependence between
model parameters (Tarantola, 2005).
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Figure 2.17: Histograms showing marginals (diagonal elements) and correlation between pa-
rameters (out of diagonal elements) resulting from the inversion of real data for an aftershock
of the Pisagua earthquake using CATMIP. The parameters are the components E, N, Z, and
the time of ocurrence of the earthquake. The number of samples employed is N = 5000 and
the number of steps of the Markov chains is Nmcmc = 500.

Although, this particular example does not show the full potential of this method (the
distribution does not show pathological characteristics, and we did not incorporate additional
sources of error), it allows to illustrate some key points of the Bayesian formulation of the
inverse problem that will be used in the next chapters. For instance, to better understand
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model parameter uncertainties, and statistical dependence and/or correlations between them.

A limitation of this method and the sampling methods in general, is to determine aspects
as the convergence of the solution, especially when different number of samples are used.
For example, the inversion of the aftershock of the Pisagua earthquake used 5.000 samples
and the distribution changed very little when 10.000 samples were employed, thus ensuring
that 5.000 samples is enough to describe the statistics of the posterior distribution of model
parameters. Such a criteria will used in this thesis to test that the main characteristics of
the solution of the inverse problem.
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Chapter 3

The 2007 (Mw 7.7) Tocopilla
Earthquake

3.1 Seismotectonic context

The Nazca-South America subduction margin is one of the zones with the highest seismicity in
the world. The north of Chile, located in this margin, is characterized by a high convergence
rate, with a value close to 6.7 cm/y (Kendrick et al., 2003). Consequently, that zone presents
a high seismicity rate, that includes the occurrence of large magnitude earthquakes (e.g.,
Ide, 2013), such as the 1877 event, which ruptured a segment more than 500 km long,
with a magnitude close to Mw 8.8 (Comte & Pardo, 1991; Ide, 2013). After the Tocopilla
earthquake many smaller events have occurred in that region, most of them with magnitude
lower than Mw 7 and a few with magnitude higher than Mw 7.4 (Béjar-Pizarro et al., 2010;
Ruiz & Madariaga, 2018), corresponding to the Tocopilla (Mw 7.7) 2007, the Pisagua (Mw
8.2) 2014, and its largest aftershock (Mw 7.7) of 2014. The events occurred after 1877 have
not released the energy potentially accumulated in the region, one of the reasons why that
zone has been characterized as a seismic gap (e.g. Duputel et al., 2015), therefore do not
significantly reduce concerns for continious seismic hazard in the region.

The Tocopilla earthquake spreads as far as the southern edge of the seismic gap at the
Mejillones Peninsula, a zone that apparently acts as a seismic barrier (Béjar-Pizarro et al.,
2010; Victor et al., 2011). Two more events have occurred in the central segment of the 1877
seismic gap, the 2014 (Mw 8.2) Pisagua earthquake and its largest aftershock with magnitude
Mw 7.7 (Duputel et al., 2015). None of the earthquakes occurred in the region have reached
the shallow part near the trench.

Before the 1877 event, in 1868, another large earthquake of similar magnitude occurred in
southern Peru, northwards of the region of 1877 event. Defining a seismic gap that remained
unbroken until 2004 when the Mw 8.4 Arequipa earthquake occurred, rupturing the northern
region of the 1868 seismic gap.

Outside and just south of the 1877 seismic gap, the last big event was the 1995 (Mw 8.1)
Antofagasta earthquake (Pritchard et al., 2002). Here for both, 1877 and 1995 events, the
Mejillones Peninsula acted as a barrier for the northward rupture propagation of the 1995
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and southwards propagation of the 1877 event. Thus, strengthening the idea of the Mejillones
peninsula behaving as a seismic barrier for rupture propagation (Victor et al., 2011; Song &
Simons , 2003) of big earthquakes in that zone.

The continental wedge geometry on the Chilean margin shows a latitudinal segmentation
at the Mejillones peninsula. To a first order differentiating an erosive and accrecionary
margin north and south of the peninsula, respectively. The erosive segment, where the
Tocopilla earthquake occurred, presents low sedimentation and, consequently, the absence
of an accretionary prism, in addition to the presence of normal faults and a steep slope
(Maksymowiczk , 2015).

The region of the subduction megathrust in front of the Mejillones Peninsula shows low
coupling inferred from geodesy (Métois et al., 2013), which is consistent with studies indi-
cating the occurrence of seismic slip in such region after the 1995 Antofagasta earthquake.
(Pritchard & Simons , 2006).

The seismogenic behavior under the Mejillones peninsula is controlled by the presence
of fluids (Pasten-Araya et al., 2018). The Nazca plate in this portion has fractured zones,
whose permeability allows the transportation of water, which in turn modifies the rheologic
properties in the subduction interface. The northern zone of the Mejillones peninsula has
a specially higher concentration of fluids, a fact that can be explained as a consequence of
the subduction of the Mejillones fracture zone (Pasten-Araya et al., 2018). Figure 3.1, from
Pasten-Araya et al. (2018), shows the scheme of these fracture zones. Also, in the north and
central portion of the Mejillones peninsula the seismicity observed is higher, characterized
by the presence of slow earthquakes and repeaters (Poli et al., 2017; Ruiz et al., 2014).
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Figure 3.1: Seismotectonic setting of the Mejillones Peninsula from Pasten-Araya et al.
(2018). Black dashed lines represent the Mejillones fault zone. Dashed blue contours repre-
sent the rupture zone of the 1995 Antofagasta earthquake (Mw 8.1) and red dashed contour
the rupture of the 2007 Tocopilla earthquake (Mw 7.7)

The main differences between the profiles studied by Pasten-Araya et al. (2018) over the
Mejillones peninsula is the fluid content. The seismicity over the Mejillones peninsula was
also studied by Pasten-Araya et al. (2018), as is shown in Figure 3.2. The downdip limit
for seismicity is shallower here than in the rest of the subduction contact zone, being here
∼30km, shallower than typical values ∼45-55 km in depth (Schurr et al., 2012; Tong et al.,
2010).
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Figure 3.2: Seismicity and focal mechanisms under the Mejillones peninsula from Pasten-
Araya et al. (2018). Gray circles represent interplate events, while red circles show intraslab
seismicity. The dashed line corresponds to the mantle wedge. a) Map with seismicity and
b), c) and d) are cross sections showing distribution of seismicity and focal mechanism at
depth northward, on the Mejillones peninsula and southward from the Mejillones peninsula,
respectively.
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The geometry of the slab in the region is characterized by an average subduction angle
close to 20◦ (Béjar-Pizarro et al., 2010; Delouis et al., 2009). A more precise geometry can
be modeled including the results of Contreras-Reyes et al. (2012) from a seismic tomography
profile made in the region close to Tocopilla (profile shown in Figure 3.3). This study con-
cludes that the slab in this zone has a kink where the dip changes abruptly at depths of
about 20 km. Figure 3.4 taken from Contreras-Reyes et al. (2012) shows the inferred slab
geometry and the kink proposed by the authors. Note the approximate change in dip from
10◦ to 22◦. This geometry will be used to represent the megathrust fault contact for the
Bayesian modeling of slip at the source of the 2007 Tocopilla earthquake.

Figure 3.3: Seismotectonic setting of north Chile. Swath bathymetry and topography and
location of the seismic experiment made by Contreras-Reyes et al. (2012) at the region affected
by the Tocopilla earthquake.
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Figure 3.4: Seismic velocity structure of the upper subduction zone. Figure from Contreras-
Reyes et al. (2012) showing two-dimensional velocity–depth model obtained from tomo-
graphic inversion using travel time data.

3.2 Previous studies of the 2007 Tocopilla earthquake

The source mechanism of the 2007 November 14 Tocopilla (Mw 7.7) earthquake has been
analyzed by several authors (e.g. Béjar-Pizarro et al., 2010; Delouis et al., 2009; Peyrat et al.,
2010; Minson, 2010). In the following we will detail more about the work made by Béjar-
Pizarro et al. (2010), Peyrat et al. (2010) and Delouis et al. (2009). For the earthquake
source, all of the aforementioned studies identify two main patches of rupture, each having
a peak slip reaching between 2.6 m to 3.0 m. The main slip patches are located along a 130
km segment, and spans depths from about 25 km to 55 km. The rupture started near the
northern patch and then propagated to the south (Peyrat et al., 2010; Schurr et al., 2012).
The essential aspects of these studies such as data, method, geometry, prior assumptions and
maximum slip obtained are summarized in Table 3.1.
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Summary
Study Minson (2010) Peyrat et al.

(2010)
Béjar-Pizarro
et al. (2010)

Delouis et al.
(2009)

Data GPS and INSAR Teleseismic and
strong motion
data

GPS and InSAR Far field teleseis-
mic data, accele-
rograms

Method CATMIP (static
and kinematic)

kinematic non li-
near inversion

regularized
least squares
with positivity
constraint

non-linear kine-
matic inversion,
simulated anne-
aling

Max Slip 3.015± 0.273 m 1.5
m(teleseismic),
2.6 m (accelero-
metric)

2.5 m (estimated
from image), 1.1
m (average)

1.2 m mean, 3.0
m peak slip

Geometry plane strike 5◦,
dip 20◦, rake 99◦

strike 358◦, dip
26◦, rake 109◦

, 160 × 80 km2

(20 × 20 km2

subfault size)

plane strike , dip
20◦, rake 105◦,
19×12 subfaults
(14×14 km2 sub-
fault size)

strike 0◦, dip
20◦, rake 105◦,
176 subfaults
(12 × 12 km2

subfault size)
Prior assumpti-
ons

498 free params.
Uniform prior
distributions
for the parallel
to rake compo-
nents, Gaussian
distributions for
the perpendicu-
lar component,
Dirichlet distri-
bution for the
initial distributi-
ons.

Two elliptical
slip patches
that ruptured at
constant speed
starting from
the hypocentre.
14 independent
parameters,
seven for each
elliptical patch.

228 patches, rms
similar for both
data sets (GPS
and InSAR)

the parameters
to be inverted
for are the slip
onset time, the
rake angle, and
the amplitudes
of the two trian-
gular functions.
Bounding va-
lues for free
parameters

Table 3.1: Comparison of previous studies of the 2007 Tocopilla event.

These studies employ different methodologies and assumptions for the inversion of the
2007 Tocopilla 7.7 earthquake. For example, Béjar-Pizarro et al. (2010) employed a regulari-
zed least squares with positivity constraints method. The formulation of the inverse problem
using this kind of methodology requires the use of a regularization term, which imposes a
smoothing constraint to the solution. This additional restriction is necessary to mitigate the
instability of the inverse problem, but as a result it imposes a bias in the solution, disregar-
ding potential sharper models. Figure 3.5 shows the slip models obtained by Béjar-Pizarro
et al. (2010) when using GPS and InSAR data separately, and in a join manner. The overall
slip pattern is similar in the three cases, being shallower in the case when using InSAR only.
Additionaly, this study does not present an analysis of the errors on the estimated slip model.
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On the other hand, Minson (2010) developed the Bayesian sampling method CATMIP
and applied it to the study of the 2007 Tocopilla earthquake (Mw 7.7), where the static slip
inversion was made using GPS and InSAR data as constraints on slip. The resulting slip
distribution is shown in Figure 3.6, which represents the ensemble of samples as contoured
lines, indicating the intervals in which a portion of the samples resides, and presents (in gray)
the mean model solution from all sampled models (Figure 3.6). Compared to the optimization
least squares approach, fully Bayesian methods does not require to set smoothing constraints
as prior information in order to stabilize the ill posed inverse problem, as it obtains the
complete ensemble of models that represent all possible solutions (with associated probability)
to the inverse problem, including the model variations that results from the ill conditioning
of the inverse problem. CATMIP, in particular, sample the space of solutions efficiently and
reliably, allowing also a direct characterization of the errors of the estimated solutions.

Figure 3.5: Slip models obtained by Béjar-Pizarro et al. (2010) for the Tocopilla earthquake
using different data sets. (a) Slip inverted from coseismic cGPS data. (b) Slip inverted from
InSAR data. (c) Joint GPS-InSAR inversion. GPS in this case includes 26 d of post-seismic
deformation to span a period comparable to InSAR.
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Figure 3.6: Posterior slip distribution from static modeling from Minson (2010). Two contour
lines are drawn for each patch. Each contour illustrates the range of slip values which contains
67% and 95% of all posterior models. The patches at the corners illustrate the range of slip
values found in the prior distribution. The background grayscale intensity of each patch is
the mean of the slip distribution for that patch. Locations of GPS stations are indicated by
triangles.

In contrast to what is new in this study of the Tocopilla earthquake, the analysis made
by Minson (2010) incorporate only the observational source of error Cd, ignoring the errors
associated to the prediction of the forward model. After that, Duputel et al. (2014) formulate

41



a method to calculate the uncertainties in the prediction of the model Cp from the uncer-
tainties in the variables of the physical model. This error Cp is linearly related to the vector
of model parameters θ, thus, for the inversion of slip of big earthquakes, the uncertainties of
the forward model prediction can be larger than the observational ones. The CATMIP algo-
rithm allows to incorporate the errors on the forward model, updating its estimation based
on the ensemble of model solutions on each iteration of the algorithm, as it approaches the
posterior pdf, it uses the ensemble of models to calculate a representative value of Cp. As an
example of the use of model prediction uncertainties on slip inversion, Duputel et al. (2015)
employed CATMIP to estimate the rupture process of the 2014 (Mw 8.2) Pisagua earthquake
incorporating the errors coming from the definition of the elastic structure of the medium.
In this thesis, we study the 2007 Tocopilla earthquake based on the study made by Duputel
et al. (2014, 2015) to invert the slip distribution on the interplate contact, incorporating the
errors in the determination of wave propagation speeds vp, vs and density ρ.
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Chapter 4

Modeling the 2007 (Mw7.7) Tocopilla
Earthquake

Fault slip associated to earthquake occurrence can cause measurable motion at the surface
of the Earth, such as dynamic transients associated to the passage of seismic waves, as well
as remanent (static) displacements of the Earth’s crust. In order to model and analyze the
source of such surface displacements, we need to define a model of the source and of the
response of the media.

For the Tocopilla earthquake, we will use surface static displacements from space geo-
desy measurements to constrain static slip distributions of the earthquake at the causative
megathrust fault. Here we explain how we set the fault geometry where the source of the
earthquake takes place, the structure of the considered elastic media, and the theoretical
relation between fault slip and crustal surface displacements through the definition of the
Green’s functions of the slip estimation problem.

4.1 Data

The observations used to constrain slip at the source of the Tocopilla earthquake emerge
from the coseismic crustal deformation caused by the earthquake. This deformation can be
measured at the surface of the Earth’s crust by space geodetic instruments, in this case, by a
network of instruments of the Global Positioning System (GPS) and InSAR (Interferometric
Synthetic Aperture Radar) satellites.

By one hand, continuous GPS data measure the 3D displacement field (East, North and
Vertical components), with respect to a given reference frame, on stations of a GPS network
established in the region affected by the Tocopilla earthquake. The position of the antenna
of a GPS station is obtained by a process of trilateration between known coordinates of the
GPS satellites and the coordinates of the antenna to be determined at a given time given by
the reception of an electromagnetic signal transmitted by such satellites (see Figure 4.1a and
Blewitt , 2015, for further details in the GPS measurement technique).

On the other hand, InSAR technique uses interferometry data to measure the relative
deformation along a Line of Sight (LOS) between thousands of points on the Earth’s crust
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and the InSAR satellite antenna (see Figure 4.1b and Simons & Rosen, 2015a, for further
details in the InSAR measurement technique).

(a) GPS acquisition (b) InSAR acquisition

Figure 4.1: a) Scheme of trilateration in which distances between GPS (receiver) antenna
and Satellites is used for positioning of the ground antenna from known satellite coordinates
(Source of image https://openclipart.org/download/191659/GPS-3D- trilateration.svg). b)
Schematic illustration from Osmanoglu et al. (2016) explaining the functioning of the InSAR
acquisition. Undulating lines represent propagation of electromagnetic waves though the Line
of Sight direction. Red portion of the line indicate the extra travelled path due to crustal
motions, from which the displacement along LOS is estimated by the InSAR technique.

4.1.1 GPS data

The GPS data is obtained from the work of Béjar-Pizarro et al. (2010) and corresponds to
co-seismic crustal displacements (three components: east, north and vertical) measured at
11 cGPS stations located between the coast line and nearly 350 km eastwards of the Nazca-
SouthAmerican trench. The remanent co-seismic displacements obtained by analyzing GPS
data within a period between 10 days before and after the Tocopilla earthquake main shock.
Figure 4.2 shows the coseismic displacements measured at the GPS network, as well as their
observational uncertainties.
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(a) GPS inferred coseismic quasiestatic crustal displacements.

(b) Vertical component.

Figure 4.2: GPS data processed by Béjar-Pizarro et al. (2010) and standard deviation as-
sociated to the GPS data. a) Horizontal components indicated with arrows and standard
deviation using ellipses b) Vertical displacement and its standard deviation indicated in co-
lors.
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4.1.2 InSAR data

We use 1 track of InSAR data, courtesy of Sarah Minson. The interferogram used is T096
(descending), from the satellite ENVISAT. As each InSAR image has several thousands of
pixels that are locally highly correlated in space, the data was resampled by Romain Jolivet
using the method developed in Lohman & Simons (2005), in order to produce a reduced,
representative set of a few hundreds of data points (794 data points) resembling coseismic
displacements of the Tocopilla earthquake in the LOS direction. The interferograms covers
the coastal region near Tocopilla in periods that spans a few months before and after the
mainshock event, between April and December 2007.

Figure 4.3 show the resampled InSAR measured displacements in the LOS direction, while
Figures 4.4 and ?? show the observational uncertainties in the form of standard deviation
and covariance for a specific data index. The resampled observations and uncertainties come
from the processing of the InSAR data described in Lohman & Simons (2005).
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Figure 4.3: InSAR data (track 96 - April - Dic 2007) (courtesy of Sarah Minson) (mean LOS
vector (LOSE = 0.406, LOSN = −0.099, LOSU = 0.907)).
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Figure 4.4: Standard deviations in centimeters associated to InSAR data (track 96 d). The
errors are all about 1 cm.
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Figure 4.5: Covariance of the InSAR data set for track 96 d. The figure shows the row 120
of the covariance matrix Cd.

4.2 Fault Geometry and Slip Parameterization

The fault geometry used in this study was modeled from a tomographic profile made by
Contreras-Reyes et al. (2012) in the northern part of the study zone. Besides other models
of the subduction interface (e.g., SLAB 1.0 - Hayes et al., 2012), the Contreras-Reyes et al.
(2012) found an abrupt change in dip in the subducted slab at about 20 km depth, where
the subduction dip angle changes from 10◦ to 22◦ (see Figure 4.6).

We modeled the geometry of the slab (Figure 4.7) by extruding the profile from Contreras-
Reyes et al. (2012) along a latitudinal direction defined by the average strike angle of the
Nazca-SouthAmerican trench (strike of 5◦) in the region affected by the Tocopilla earthquake.
The defined geometry spans 260 km along strike, 180 km along dip, and was discretized in
13× 9 subfaults, along strike and dip directions, respectively.

49



Figure 4.6: Profile obtained by Contreras-Reyes et al. (2012) in red and the fault geometry
extrapolated to model the Tocopilla earthquake (translucent dots).

Figure 4.7: Fault geometry from Contreras-Reyes et al. (2012), parameterized into 13 × 9
subfaults along strike and dip, respectively (only some patches are shown as yellow rectang-
les). Slip directions are shown as rake parallel (λ‖) and rake perpendicular (λ⊥) directions
in one yellow subfault. Red lines and dots inside one of the yellow subfaults, resemble the
sub-subfault subdivision and point sources at the center of each, respectively.
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At each subfault (yellow rectangles in Figure 4.7), slip is assumed to be uniformly distri-
buted (same value of slip across each subfault). Also, slip on each subfault is parameterized to
occur in 2 orthogonal directions, rake-parallel and rake-perpendicular directions. As inferred
directly by their names, the rake parallel direction models slip occurring in a direction that
is parallel to the slip direction implied by the focal mechanism of the Tocopilla earthquake
obtained from GCMT (rake 105◦). The rake perpendicular direction, is a direction that is
orthogonal to the rake parallel one, that also lies within the fault surface.

Each subfault is composed of 3 × 3 sub-subfaults, in which a point source is defined at
their center (see example of red dots indicating point sources in one of the subfaults in Figure
4.7). The number of sub-subfaults is chosen to ensure that the minimum distance between
point sources is at least a quarter of the distance from a point source to an observation point
located at the surface of the Earth. According to the Saint-Venant principle, under such
configuration, the point source representation is enough to model the finite rectangular sub-
subfault. Given the subfault subdivision, the response of the media, for instance static crustal
displacements generated due to slip on every subfault, is computed as the superposition of
the response due to slip on each of the point sources conforming all sub-subfaults of the
given subfault. The representation of these point sources, as well as the discretization over
the fault geometry are shown in Figure 4.7.

4.3 Structural Model of the Medium

We construct a 1D velocity model consisting in a layered elastic half space in order to model
the static displacements of the 2007 (Mw 7.7) Tocopilla earthquake. We use the 1D layered
medium defined by Husen et al. (1999), describing elastic parameters for 15 homogeneous
layers. Figure 4.8 shows the depth dependent values of P-wave speed, vp, S-wave speed, vs,
and density, ρ according to Husen’s model. Particularly, in this study we account for the
uncertainties on the values of the elastic parameters in our modeling. As such model parame-
ters are strictly positive quantities, and we lack further information about their uncertainty,
we consider a fractional error of 10% for each value of the elastic parameters.

Figure 4.8: 1D velocity model: body waves P-wave speed vp, S-wave speed vs, and density ρ
from Husen et al. (1999).
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4.4 Forward and Inverse Problem Formulation for the

Static Slip Inversion Problem

The deformation signal caused by an earthquake can be studied by decomposing it into a
transient motion associated to the passing of seismic waves and a static component repre-
senting the remanent crustal displacements caused by the earthquake. Here, we study the
remanent or static part of the deformation, which we model in terms of the elastic static
response of the crust due to static dislocations occurring at the causative fault of the eart-
hquake. The elastic static response depends on the rheological properties of the propagating
medium representing the Earth’s lithosphere. For the purpose of this work, we use the layered
elastic medium described in section 4.3.

Here we seek to model the static coseismic slip of the Tocopilla earthquake that occurs at
the causative megathrust fault. As described in section 4.2, the fault geometry is discretized
into rectangular subfault elements, in which slip is assumed to be uniform. At each subfault,
the slip vector is parameterized using 2 orthogonal directions along the subfault, a rake
parallel and a rake perpendicular direction (see Figure 4.7). Thus, we represent slip occurring

along each subfault by the components of the slip vector mslip = [m
‖
λ,m

⊥
λ ]T of unknowns to

be determined during the inversion procedure.

The prediction of the slip model mslip, is carried out by calculating the static displa-
cements at selected points on the surface of the Earth’s crust, either the location of GPS
stations or pixels of InSAR resampled interferograms, caused by a given slip field occurring
at the causative fault. The calculation of the surface displacements is performed using the
CPS software package (Computer Programs in Seismology; Herrmann, 2013)), a package of
algorithms designed to study problems in seismology. The functions of this package allows to
calculate the displacements (static and dynamic) at a point on the surface of the Earth due
to a point source causing a perturbation of a stratified medium, using the discrete wavenum-
ber method of Bouchon (1981). By calculating the displacements at all points of interest at
the surface of the Earth due to a unitary dislocation at each subfault, one can construct a
Green’s functions matrix Gslip, and define the forward model that predicts Earth’s surface
coseismic displacements, dpred

slip , given a fault slip distribution parameterized in mslip as,

dpred
slip (mslip) = Gslipmslip (4.1)

Depending on the dataset used, some extra parameters need to be considered in order
to incorporate corrections that need to be performed on the data. For instance, when using
InSAR data, as explained in the following, a linear (or sometimes quadratic) ramp needs to be
removed from the InSAR LOS(Line of sight) displacements in order to correct for errors in the
orientation of the radar antenna of the InSAR satellite. In such case, the model prediction
will need to incorporate such data corrections, and thus the vector of model parameters
(that will generally named θ) will include not only the slip values at the fault, but also the
coefficients that define the ramp used to correct InSAR data, i.e.,

θ = [mT
slip,m

T
ramp]T (4.2)
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In general, we will name the vector of model parameters as θ, regardless that if includes
only the parameters that define slip at the fault, or some other parameters that are needed
to perform the inversion constrained by a certain dataset. Thus, in general we refer to the
forward model prediction using the linear formulation

dpred(θ) = Gθ (4.3)

where G and θ are the Green’s function matrix and the vector of unknown model para-
meteres, respectively. Both include the components associated to the prediction of crustal
displacements due to fault slip and potentially some data corrections if needed, and will be
explained in each case analyzed later in this work.

Once the forward model is set, the inverse problem is defined in terms of a Bayesian
framework (see chapter 2), in which we seek to find an ensemble of model parameters that
represent the a posteriori joint probability density function of model parameters,

fpost(θ) = L(θ)fprior(θ) (4.4)

where L(θ) is the likelihood function of a given model θ measuring how well the model
prediction fits the observations, in which data and model prediction errors are represented
as Gaussianly distributed (see equation 2.3). fpost(θ) and fprior(θ) are the joint probability
distributions representing a posteriori and a priori information states in model parameters,
understanding information states as a representation of the knowledge we have on such model
parameters.

The Bayesian inversion problem is solved using a sampling technique, the CATMIP algo-
rithm (see chapter 2) that allows to find an ensemble of model parameters consisting in a set
of model θ with their associated probabilities to be solution of the posed inverse problem.
Such models are samples of the a posteriori probability density function fpost(θ) in the sense
that, for a large enough number of samples, their multidimensional histogram is proportional
to the values of fpost(θ). We analyze our inversion results for 2 cases, in which coseismic slip
is constrained by GPS inferred crustal displacements of the Tocopilla earthquake, as well as
a case in which, additionally, InSAR inferred LOS displacements are used to constrain fault
slip. In the following we define our model setup, in which we define the Green’s function
matrix G, the vector of data d, the uncertainties of data and forward model prediction, as
well as the corrections needed in order to properly incorporate InSAR data in our analyses.
Particularly, the quantification of uncertainty of the forward model prediction is explained
in section 4.5.

So far, a function package called ESM (Earthquake Source Modeling) has been program-
med to calculate the static Green’s function of the problem and build the Green’s matrix.
Within this package are the necessary modules to model the fault geometry, to give format to
the data and to visualize the results. Besides, this package contains the modules necessary to
make the inversion using the method of regularized least squares, with a positivity restriction,
perform synthetic tests such as the checkerboard test, to prepare all the information needed
for the Bayesian inversion using CATMIP as well as for the analysis and interpretation of
the ensemble of models generated by CATMIP as the solution of the inverse problem.
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4.4.1 Case 1: Fault Slip Constrained by GPS Data

The Green’s function is the response of the system to a unitary perturbation, in this case,
it is the displacement on the surface of the Earth’s crust at all GPS stations generated by
a unitary slip on every slip direction of each subfault in the discretized geometry. This
problem is parameterized such that slip is decomposed in a rake parallel component as well
as a perpendicular to rake component. Then, the linear modeling of the problem in terms
of a G matrix considers the calculation of displacements generated by a unitary slip in this
two components on every subfault.

Let be M the number of subfaults discretizing the fault geometry and N the number
observations. In this case, N corresponds to the total number of measured displacements in
components East, North and Z on all GPS stations. Lets define GSS

ij and GDS
ij the Green

function matrix associated to the prediction of the i-th observation due to slip on the j-th
subfault at the strike slip (SS) and dip slip (DS) directions, respectively. In this case, the
strike used is 5◦ according the slip parametrization seen in section 4.1.

The Green function matrix, for slip parametrized on strike and updip directions can be
written as:

GGPS
0 =


GSS

11 GSS
12 · · · GSS

1M GDS
11 GDS

12 · · · GDS
1M

GSS
21 GSS

22 · · · GSS
2M GDS

21 GDS
22 · · · GDS

2M
...

. . .
... ∗ ...

...
. . .

... ∗ ...
GSS
N1 GSS

N2 · · · GSS
NM GDS

N1 GDS
N2 · · · GDS

NM

 (4.5)

Now we can express the Green’s function matrix for slip ocurring at a rotated direction,
in which one of the orthogonal slip axes coincides with the rake direction obtained from the
GCMT solution for the Tocopilla earthquake (λ = 105◦). The resultant Green’s function
matrix becomes

GGPS =


G
‖
11 G

‖
12 · · · G

‖
1M G⊥11 G⊥12 · · · G⊥1M

G
‖
21 G

‖
22 · · · G

‖
2M G⊥21 G⊥22 · · · G⊥2M

...
. . .

... ∗ ...
...

. . .
... ∗ ...

G
‖
N1 G

‖
N2 · · · G

‖
NM G⊥N1 G⊥N2 · · · G⊥NM

 (4.6)

dGPS =


d1
d2
...
dN

 θ =

(
m
‖
slip

m⊥slip

)
(4.7)

Where G
‖
11 is the first observation predicted by a unitary slip along the rake direction on

the first subfault and G⊥11 the analog for the component perpendicular to rake.
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4.4.2 Case 2: Fault Slip Constrained by GPS and InSAR Data

When using InSAR data it is necessary to incorporate additional parameters to be determined
during the inversion, because the data has not only the deformation signal, but also a signal
that can be usually modeled as a linear or quadratic ramp, representing errors on InSAR
satellite orientation and location during data acquisition. In this case, the ramp will be
modeled as bi-linear, in the form ax+ by+c (Simons & Rosen, 2015a). Thus, we incorporate
three additional parameters to be determined during the inversion for the InSAR dataset.

To perform the inversion the matrix G can be structured using matrix blocks, where each
block model GPS and InSAR data, are:

G =


GGPS

1 0

GInSAR
1 Gramp1

 (4.8)

For the InSAR data, the observations and forward model are chosen so that we seek for
the following relation to hold

dInSAR
obs = dInSAR

slip + dInSAR
ramp (4.9)

where, dInSAR
obs are the LOS displacements at the pixels of the resampled interferograms;

dInSAR
slip = GInSARmslip is the prediction of LOS displacements due to fault slip, and the

prediction of the linear ramp (a, b, c ∈ IR) is dInSAR
ramp = Grampmramp; mramp = [a, b, c];

a, b, c ∈ IR are constants to be determined during the inversion. Then, we have d = Gθ
where G is the one in 4.8, and NSAR is the number of resampled pixels of the interferogram.
So,

dramp = ax + by + c (4.10)

Gramp =


x1 y1 1
x2 y2 1
...

...
...

xNSAR yNSAR 1

 (4.11)

d =

(
dGPS

dInSAR1

)
θ =


mslip

a
b
c

 (4.12)

Note that here, GGPS is a matrix block associated with GPS data. This would be the
G matrix if the data came only from GPS instruments, same as equation 4.6. When using
InSAR data, the matrix is expanded, so additional blocks appear. In the first place, blocks
associated with the response of a unitary slip in the discretized elements of the fault plane,
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as well as the block for the linear ramp correction.

4.5 Calculation of Uncertainties in the Prediction of

the Forward Model

When we are modeling an inverse problem it is necessary to take into account sources of error
that prevent the solution to overfit the observed data. These uncertainties are unavoidable
and they limit the range where solutions are admissible as a result of the problem.

In the Bayesian framework these errors prescribe the proximity of predictions respect to
the observations that will be tolerable to accept for a model in the sampling process. Seen
in the data space, where model predictions occur, these errors represent how wide is the
likelihood function at its local or global maximum values. Underestimating errors leads to
model estimates whose predictions overfit the observed data with the consequence that part
of the estimated models are fitting observational and model prediction errors.

The main sources of error are the observational error, coming from the process of measu-
rement, and the epistemic error, coming from the uncertainties related with the construction
of the physical model used, which typically is a simplified version of the physical process
being modeled.

The observational error is easier to evaluate and obtaining it typically consists in cal-
culating the standard deviation of the measurements, used as observational constraints for
the inverse problem. However, the epistemic error requires a better understanding of the
behavior of the forward model predictions with uncertainties in the variables that constitute
the physical model, and that are not estimated during the inversion (e.g; values of the elastic
parameters of the media)

Duputel et al. (2014) developed an approach that allows to quantify the epistemic or for-
ward model prediction error, which can be used to calculate the error associated with the
physical model prediction in the case of earthquake source determination. The formulation
starts by defining the model G as a transformation that depends on other variables νi descri-
bing the properties of the physical model that are not estimated during the inversion process
and therefore assumed to be known and fixed. The predicted model is the result of applying
G over a set of parameters θ. In the case of this work, νi represents the elastic coefficients of
the layered medium expressed in terms of the propagation speed of body waves and density
(vp, vs and ρ, respectively). Assuming that the true value of these quantities are ν0i we can
express the first order Taylor expansion around these values as,

G(θ, νi) = G(θ, ν0i) + ∆G(θ, ν0i) = G(θ, ν0i) +
∂G

∂νi
(θ, ν0i)(νi − ν0i). (4.13)

To determine how ∆G(θ, ν0) is distributed it is necessary to find a covariance matrix Cν ,
representing uncertainties on the known values of elastic parameters.

As this problem is linear with respect to θ, G(θ, νi) = G(νi)θ and the above expression
can be written as:
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∂G(θ, ν0i)

∂νi
=
∂G(ν0i)

∂νi
θ (4.14)

and ∂G(ν0i)/∂νi is the sensitivity kernel of the problem K, which can be written as

Kik,j =
∂Gik

∂νj
(4.15)

Defining Kν as a matrix where each column is a perturbation in the data predicted as a
result of a perturbation in a variable ν

Kν
ij = Kik,jθk (4.16)

If errors on elastic parameters are distributed according a Gaussian distribution, we can
write the covariance matrix of the model prediction perturbations as

Cp = KνCνK
T
ν (4.17)

Now, if the variables νi are strictly positive, as is the case for elastic parameters, then the
problem can be re-formulated as:

νi = lnµi (4.18)

Where µi is the actual value of the elastic parameter that is strictly positive (i.e, a Jeffreys
parameter, see Tarantola (2005), section 1.2.4 ) we obtain

Cp = KµCµK
µT, (4.19)

where

Kµ
ik,j =

∂Gik

∂ln(µj)
(4.20)

is the sensitivity kernel due to logarithmic perturbation of elastic parameters. Using the
latter formulation, we calculate the sensitivity kernels using a numerical approximation of
the derivatives of G due to logarithmic perturbations of the elastic variables on all layers
around the values defined by Husen et al. (1999). The amount of the logarithmic perturbation
applied to the elastic parameters of the structural model is lnpert = 0.1 (10%).

To calculate the covariance matrix Cp associated to the prediction of the model it is
necessary to evaluate a particular solution for the vector of parameters in every iteration,
until the final distribution is reached. For the first iteration of the algorithm, we use the
model obtained using least squares with positivity constraint using GPS data (see appendix
A).
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4.6 Software AlTar

The software AlTar, named as an acronym for Albert Tarantola, is designed as a framework
to work efficiently on fully Bayesian inversions. It was developed at the Seismological Labo-
ratory of Caltech and was especially designed to deal with large scale problems (hundreds to
thousands of model parameters depending on the computational resources). It applies parti-
cularly for the inversion of earthquake rupture, through the Bayesian sampler defined by the
CATMIP algorithm (Minson et al., 2013). This software uses parallel processing to make the
necessary evaluations to solve the inverse problem. For this purpose it takes advantage of
the ability of Beowulf clusters and GP-GPUs (General Purpose Graphics Processing Unit)
to perform parallel calculations through the use of thousands of processing cores. For this
work we use a computer node with 2 Nvidia Tesla K40 GPGPU processing units with 12GB
of internal RAM and 2800 cuda processors cores, acquired by the proyect ’Proyecto Fondecyt
11140904’.

4.6.1 AlTar Bayesian Inversion

To use this software, from a practical point of view, it is necessary to create a directory, which
in a fixed format contains all the information concerning the inversion. This information
includes the observations, their associated errors and the parameters of the inversion, as well
as the Green’s functions, expressed in a matrix form. All the information about the inversion
must be placed in a subdirectory named config dir. Some of the basic files that work as input
of the program are the following:

data file: File with observations in vector format.

gf file: Green’s functions corresponding to the forward model of the problem in matrix
form.

Cd file: File with the covariance matrix associated to the observational uncertainties of
the entire data set, in the same sequence as the data file.

Optionally we can include the error in the prediction of the forward model. When it is
the case, we need to provide the files with the sensitivity kernels (see next section for its
definition) of the prediction of the forward model representing the uncertainties of each fixed
quantity (e.g. elastic parameters) used in the definition of the Green’s function matrix G.

model.cfg: The configuration file where we set the characteristics of the inversion, as
the number of samples, the number of steps in the chains, and the distributions to be used as
initial and run priors. The initial priors define the initial set of samples used by the program,
the starting models from which model parameter space will be explored during the sampling
process. Instead, the run priors define the distributions used as fprior(θ). An initial prior can
be more restrictive that a run prior, requiring to satisfy a certain condition over the initial
samples, as in this study case, where we impose that the magnitude of the event lies in a
certain range (Minson et al., 2013, using the Dirichlet distribution).

The inversion directory must contain the files altar.cfg specifying how altar works the
problem, for example, if it will be treated in a sequential scheme, using GPU or MPI parallel.
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In the next sections we will analyze the information used as input for AlTar to solve the
inverse problem for the static slip distribution of the Tocopilla earthquake.

4.6.2 Sensitivity Kernels for GPS and InSAR data used in this
study

An optional input for AlTar is a folder with the sensitivity kernels according to the formalism
developed by Duputel et al. (2014). These are used to calculate the uncertainties associated
to the prediction of the physical model.

The matrix Cp expresses how the uncertainties in the definition of G, due to the use of
fixed values for uncertain parameters (e.g., fault geometry, elastic structure, etc.), affects the
predicted data. To calculate Cp the program requires the sensitivity kernels respect to the
uncertain variables of the physical model. These kernels are evaluated using numerical deri-
vatives over G with respect to uncertain elastic properties of the medium. Once calculated,
the covariance in the predicted data associated to these variables (the Cp matrix) is partially
known, being necessary to evaluate a particular model to fully complete the calculation. The
model used is updated in each annealing stage in AlTar, so the error is updated too. The
particular model implemented in AlTar is the mean solution of all the ensemble of sampled
model at a given iteration of the algorithm.

The sensitivity kernels used in this thesis come from the variables vp, vs and ρ in the 15
layers conforming the structure of the medium as defined by Husen et al. (1999). As we lack
the knowledge of the uncertainties of the estimation of the elastic structure of the medium,
we compute Cp using a 10% logarithmic perturbation on actual values of vp, vs and ρ in
order to represent their uncertainties.

A preliminary estimation of Cp can be made by using the described kernels and a parti-
cular model solution obtained using another methodology, in this case, the regularized least
squares method (See appendix A). The estimated model prediction error standard deviation
can be seen in Figure 4.9 for GPS and InSAR (track 96). From the figure we can see that
standard deviations associated to this source of error are close to 2 cm, larger than the ob-
servational errors, which are closer to 1 cm as can be seen in Figures 4.4 and 4.5, for GPS
and InSAR data, respectively.
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(a) Model prediction uncertainties for GPS data

(b) Model prediction uncertainties for InSAR, track 96

(c) Slip model used to compute Cp.

Figure 4.9: Standard deviation of errors in the forward model prediction of GPS (a) and
InSAR (b) data, calculated considering a 10% of error on values of vp, vs, ρ and using a slip
model of the Tocopilla earthquake (c) obtained by a regularized least squares inversion (See
Appendix A).
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4.6.3 Definition of Initial Distributions and Prior Distributions

Before performing an inversion, AlTar requires to define prior distributions. It allows to
generate an initial set of samples using an initial distribution and separately set the prior
distribution of the model parameters that will be used during the sampling process. These
distributions can be settled for the different subsets of parameters based on the knowledge
about the slip components (parallel to rake and perpendicular to rake), as well as the addi-
tional parameters associated with the ramp defined for InSAR data.

The initial distribution chosen for the parameters in the parallel component of slip is the
Dirichlet distribution. This choice incorporates previous knowledge about the magnitude
of the earthquake since it ensures that magnitudes of initial samples will be close to the
previously calculated magnitude for this earthquake, namely Mw 7.7. These samples are a
starting point for the algorithm and do not restrict the moment magnitude of the sampled
models during the next steps of the sampling process.

From the initial distribution the samples are redistributed and new samples are generated
according to the intermediate distributions that converge to the a posteriori distribution of the
model parameters θ. To generate samples they must obey the prior distribution associated
with model parameters in the running process fprior(θ) (as well as the restrictions imposed
by the likelihood function that represents the physics of the forward model). These run
priors must be satisfied during all the sampling process. We will discuss some choices here,
particularly the uniform, Gaussian, and truncated Gaussian distributions.

The uniform distribution means that the samples does not have a bias for a certain value
in an interval. Consequently, all values in the interval have the same probability. This is
usually called state of homogeneous information for cartesian model parameters (Tarantola,
2005, , section 2.4).

The Gaussian distribution has a symmetrical pdf with a maximum value about its mean µ,
and characterized by a variance σ2 limiting the region where most of the probability resides.
For instance, the confidence interval defined by [µ−3σ, µ+3σ] contains near 99% of the total
probability.

Based on previous studies of this earthquake we chose a mean µ = 0 m and σ = 1 m,
therefore the region with higher probability resides in ±3 m. The symmetry of this function
allows to consider a certain amount of backslip as a possible solution, therefore we use a
truncated Gaussian distribution, that able us to limit the backslip set to 0.5 m.

Meanwhile, as we expect little slip to occur in such direction distribution, the distribution
chosen for the perpendicular to rake component of slip is the Gaussian N( µ = 0 m, σ = 0.1
m ) for both, the initial prior and the running process prior. It should be noted at this point
that the acceptance rate depends strongly of the interval chosen for the parallel component
of slip, as will be discussed in the next sections.

Figures 4.10 and 4.11 show the marginal distributions for slip parameters over the fault
geometry for the parallel to rake and perpendicular to rake directions, respectively. Figure
4.10 shows the initial samples of the parallel to rake component of slip, and follow the beta
distribution, which is the marginal of a Dirichlet. In this case, parallel slip amplitudes are
restricted so that the magnitude of the initial samples is close to Mw 7.7. Figure 4.11 shows
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the initial samples for the perpendicular to rake component of slip, which was chosen as
Gaussian.

(a) Marginal histograms in the parallel to rake direction

(b) Lower right corner histogram from a)

Figure 4.10: Marginal histograms representing the distributions of the initial samples gene-
rated for the parallel to rake component of slip a) for the whole fault, and b) for a particular
subfault (lower right corner). The histograms follow the Dirichlet distribution with µ = 7.7
and σ = 0.5. Colorscale represent slip amplitude.
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(a) Marginal histograms in the perpendicular to rake direction

(b) Lower right corner histogram
from a)

Figure 4.11: Initial samples generated for the perpendicular to rake component of slip. The
marginal histograms shown are Gaussians with µ = 0 m and σ = 0.1 m. The number of
samples used is 3 × 106. a) Histogram for the whole fault and b) a particular subfault.
Colorscale represent slip amplitude.

It is important to notice that the slip in the perpendicular to rake component is chosen
as symmetrical and centered in 0 m, by contrast with the parallel to rake component, where
we favored a positive slip. The information we are using here is that the slip corresponds
predominantly to an inverse fault.
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In this section we will discuss the inversion results obtained using the Bayesian metho-
dology implemented in AlTar for estimating static slip distribution of the Tocopilla (Mw
7.7) 2007 earthquake. We contrast the solutions of the static problem obtained in different
cases, incorporating GPS and InSAR data, and using both observational errors and those
corresponding to the prediction of the (forward) physical model.

Recall that, regardless of the linear forward (physical) model, the part of the inverse
problem formulation in which the data has a role is the Likelihood function

L(θ) = γe−
1
2
(Gθ−dobs)

TC−1
χ (Gθ−dobs), (4.21)

where Cχ is the misfit covariance matrix, i.e., associated to the errors of the difference
Gθ− dobs. As mentioned in previous chapters, the misfit covariance matrix is composed as

Cχ = Cd + Cp (4.22)

where Cd and Cp are the covariance matrix associated to observational and forward model
prediction (epistemic) errors, respectively.

Therefore, when performing an inversion accounting only for observational uncertainties,
we assume that the forward model is perfect, thus setting Cp = 0. On the contrary, when
considering both, observational and epistemic uncertainties, Cp = Cp(mslip) and is calcula-
ted using the formalism of Duputel et al. (2014). In both cases, we assemble Cd directly from
the formal uncertainties obtained from the GPS or InSAR measurements, when corresponds.

4.7 Results

4.7.1 Slip Estimates Constrained by GPS Data

In this section we obtain slip estimates constrained solely by GPS observations of static
coseismic surface crustal displacements of the Tocopilla earthquake. Here we will compare
the slip solutions obtained when we account only for observational errors, as well as when we
account for both, observational and epistemic (forward model prediction) errors during the
inversion in order to compare their effect in the solution of the slip estimation problem.

Inversion Accounting only for Observational Uncertainties

The solution of the inverse problem in the Bayesian framework is the joint posterior distribu-
tion of the slip parameters. Particularly, we obtain a numerical approximation of the inverse
problem solution, as we represent the joint posterior distribution by a finite set of its samples,
with their associated posterior distribution pdf values. Regarding the sampling process, the
number of samples is 3.000.000 and each Markov chain has 5.000 steps and we used a uniform
U(−0.5 m, 10 m) distribution for rake parallel slip as the run prior and a Gaussian distribu-
tion N(0 m, 0.1 m) for the rake perpendicular slip prior. The convergence of the CATMIP
algorithm took 41 iterations to reach the posterior pdf of the slip distribution.

From the ensemble of sampled models, constrained in this case by the GPS observations,
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three particular models can be used to represent the whole ensemble: the mean, median and
ML (maximum likelihood) models. These models are shown in Figure 4.12, as the distribution
of slip amplitude for each of the three aforementioned models.

From Figure 4.12, we observe that mean and median slip models are very similar, while
the ML model looks more scattered. Such a behavior is not surprising, as mean and median
models represent the behavior of the ensemble of models, while the maximum likelihood model
is chosen as the slip model that has maximum likelihood value from the ensemble of sampled
models. The mean and median slip models exhibit zones with larger slip distributed in two
main patches located near the coastline in map view, and in the corners of the parameterized
fault surface that are closer to the trench. As we analyze in the following, the first features
(near the coastline) can be interpreted as part of the source of the Tocopilla earthquake, and
the latter features (near trench corners) correspond to inversion artifacts, usually seen in the
edges of the solutions of inverse problems, typically associated to over fitting of observational
or epistemic errors.

On one hand, the slip pattern off the edges of the parameterized fault surface, near the
coastline, exhibit two zones of larger slip that coincide with the two main asperities ruptured
by the earthquake that were also identified by other authors (e.g., Minson, 2010; Béjar-
Pizarro et al., 2010; Delouis et al., 2009; Peyrat et al., 2010).

On the other hand, the aforementioned artifacts can also be related to the finitude of the
fault geometry, in the sense of the sizes of the subfaults in which the fault surface is discretized.
Since there is no data offshore, as we only have onland GPS data, such observations poorly
constrain the slip located at fault portions closer to the trench, because slip in these zones
have displacement predictions that have a small contribution to predicted data of a whole
slip model. So, slip models with high amplitudes near the trench are easily allowed during
the inversion. Such effect will be seen more clearly in the next sections, where we explain the
concept of Sensitivity (Ortega, 2013), which is a measure of how sensitive are the predicted
data to the slip of each element of the fault plane, as well as when we explore the marginal
distributions of slip at each discretized element of the fault surface.

As we are solving the slip estimation problem using a fully Bayesian framework, the solu-
tion of the inverse problem is characterized by the obtained ensemble of samples representing
the joint a posteriori probability distribution of slip at the fault. The obtained ensemble of
samples can also be analyzed by computing the marginal pdf’s of slip on each direction and
subfault and the correlation between such model parameters. For instance, Figure 4.13 shows
the marginal histograms (approximating the corresponding marginal pdf) of rake parallel slip
at each subfault from the ensemble of sampled models obtained during the inversion process.
The zones with higher slip in the inner part of the fault area tend to have more symmetrical
and peaked distributions, which resemble the pdf of a Gaussian or truncated Gaussian dis-
tribution. Such fault regions are surrounded by zones with lower probability for large slip,
in which the slip histogram is more similar to the pdf of a Beta distribution, which is the
marginal of the Dirichlet distribution. This is similar to the marginal distributions seen in
figure 4.10, which can be related to the poor constraint that the data have on slip on such
subfaults with their a priori chosen size, or that the actual slip value is very constrained to
have very low values. The histograms at the corners of the fault show broader distributions
(especially near the trench), indicating a larger error in the determination of slip at such
fault elements.
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The median model was chosen to represent the solutions, since it gives a notion of the
central value of the distribution (slip values have the same probability of being larger or
smaller than the median value ). It better recovers the expected behavior of the slip solution
in the sense that slip at the edges is less likely to show inversion artifacts. The median model
fits the observations as can be seen in Figure 4.14, where the magnitude obtained is Mw 7.87.
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(a) mean

(b) median

(c) ML

Figure 4.12: Map view for the mean of the solutions, median and ML (maximum likelihood)
solution for the slip inverted using GPS data and only the observational source of error. The
dashed line indicates the kink in the fault geometry.
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(a) Marginal histograms in the parallel to rake direction
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(b) Histogram of lower right corner subfault

Figure 4.13: a) Marginal histograms of the slip parameters over the fault geometry in the
case where we consider only the observational source of error in the inversion using GPS data.
The background color indicates the median model obtained from the ensemble of sampled
models. b) Histogram showing the lower right corner element (all the subfaults have the
same interval as b). Horizontal and vertical directions on each plot along strike and along
updip directions respectively.
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(a) median

Figure 4.14: Comparison between observed data and predicted data for the median solution
obtained in the Bayesian inversion using GPS data and incorporating only observational
error. Arrows indicate horizontal displacements and the color of circles is scaled to the
vertical displacement seen in the colorbar (in m).

Inversion Accounting for Observational and Epistemic Uncertainties

Here we present the inversion results for models constrained by GPS data and considering
both, observational and epistemic uncertainties. The latter is represented by the covariance
matrix Cp, that models the uncertainty from the 1D velocity model. Regarding the inversion
algorithm, the inversion was performed using 3.000.000 samples and 5.000 steps in the Markov
chains. We used a uniform U(−0.5 m, 10 m) distribution for rake parallel slip as the run prior
and a Gaussian distribution N(0, 0.1 m) for the rake perpendicular slip prior. The process
took 38 annealing steps to reach the posterior pdf of the slip distribution. As in the previous
case, we show mean, median and ML models in Figure 4.15. We must note that during
the processing of inversions using GPS data the scaling factor regulating the weight of the
covariance matrix of the samples in the model was modified. This scaling factor c = a+ bR
modulates the step size in the random walk, where R is the acceptance rate of the Metropolis
sampling associated to certain chain while a and b are constants defined previously which
depend on the particular problem solved. Applied to earthquake modeling these values were
chosen as a = 1/9 and b = 8/9 by Minson (2010) obtained by performance tests, and those
were the values used by default in AlTar. The configuration of the inversion was modified in
such a way that the scaling factor acceptance weight is higher. We chose a value b = 0.95 and
a rejection weight 0.05. That is because we chose a uniform prior distribution for parallel
to rake components in an interval that makes extremely easy to fall outside the region for
some component of the sample, favoring the rejection. So, making the step size smaller we
increase the probability of acceptance.
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The mean and the median are very similar but differ more notoriously at the edges and
corners of the fault area. The slip pattern of these solutions agree with those describing two
zones of higher slip, with a maximum slip near 2.6 m. This, reached at the southern end
of the rupture zone. These two large slip patches are connected by a shallow slip zone, but
the main rupture occurred deeper than the depth of the abrupt variation in dip in the fault
geometry.

The ML solution presents some extreme characteristics. This is rougher than the other
models and slip at the corners of the discretized fault is even more notorious (Figure 4.15)

Regarding the choice of accounting for uncertainties in the prediction of the forward model
through the covariance matrix Cp, a comparison of mean and median slip distributions from
Figures 4.12 and 4.15, reveal that accounting for epistemic errors drastically reduces the
amount of slip at the edges and corners of the parameterized fault surface, compared to the
case in which we only account for observational uncertainties where we overfit the data.

Also, one of the main differences between the slip models obtained using and not using
the covariance matrix Cp is in the portion connecting the two patches with higher slip at
the source region of the earthquake. Particularly, slip connecting the two main asperities
seems to be shifted offshore with respect to that shown in previously published solutions. As
inferred by this study and previous authors, the downdip kink in the slab geometry proposed
by Contreras-Reyes et al. (2012) might act as a barrier to rupture propagation, assertion that
is true for the case of this earthquake, but needs to be further investigated when a larger
earthquake occurs in the future in such seismogenic region. In the case where we neglect the
epistemic error, we can see two isolated regions of higher slip in the median and mean slip
model, while in the case where we consider this source of error there is a path of non null
slip that joins these two portions.

As in the previous case, the obtained ensemble of sampled models can also be analyzed
by computing the marginal pdf’s of slip on each direction and subfault and the correlation
between such model parameters. For instance, the marginal histograms for rake parallel slip
are shown in Figure 4.16 along with the median model. Figure 4.17 shows the prediction of
the median solution compared with the observed data.

There are differences in the marginal distribution shape depending on the patch location
over the fault contact (seen in Figure 4.16). In zones where the median model shows maximum
slip, the histogram shape is more symmetrical and wider than most of the distributions
located at the surroundings. Most of the patches outside the zone of maximimum slip are
more peaked, narrower and asymmetrical with samples clusterized close to left side of the
slip interval. The shape of these histogramas resemble a beta distribution (see Appendix B).
Histograms in patches close to the trench tend to be wider than in their inner neighbors,
especially at the corners.

From the perspective of finding slip models that represents observations well, the inclusion
of epistemic errors in the Bayesian inversion allows for a much better fit to the GPS coseismic
crustal displacements, as can be observed when comparing the data prediction of the mean
models for the case in which only observational errors are considered (Figure 4.14) and for
the case in which we account also for the forward model prediction uncertainties (Figure
4.17).
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(a) mean

(b) median

(c) maximum likelihood

Figure 4.15: Mean, median and maximum likelihood solution for the slip obtained in the
Bayesian inversion using only GPS data and incorporating both, the observational and epis-
temic error. Dashed- dotted line indicates the kink in the fault geometry along dip. Moment
magnitude is indicated at the top of each panel.
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(a) Marginal histograms in the parallel to rake direction.
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(b) Histogram of lower right corner subfault.

Figure 4.16: a) Marginal histograms of the slip parameters (rake parallel direction) over the
fault geometry in the case when we consider the observational as well as the epistemic source
of error. The color in background indicates the median solution. b) Histogram showing the
lower right corner element (all the subfaults have the same interval as b along the x axis).
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(a) median

Figure 4.17: Comparison between observed data and predicted data for the median solution
obtained in the Bayesian inversion of the 2007 Tocopilla earthquake using GPS data and
observational and epistemic error.
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4.7.2 Results using GPS and InSAR data

When we add InSAR data, the formulation of the problem changes only in relation to the
additional parameters that need to be estimated, as consequence of accounting for corrections
to the InSAR data. Such correction arises because an InSAR image incorporates a systematic
component that is unrelated to deformation, but to the misplacing and uncertainties in the
repeating orbits of the satellites taking the pair of images needed to obtain the InSAR
interferogram. The aforementioned errors add a long wavelength ramp to the estimated LOS
displacements, which is usually modeled as a linear ramp (Simons & Rosen, 2015b). In this
thesis we consider the case in which we add only one track of InSAR (track 96).

As in the previous section, as a first choice we consider a uniform distribution for the run
prior fprior(θ) for rake parallel slip, with limits allowing only little back slip (-0.5 m) and
a maximum amplitude of slip of 10 meters. Then, as a second step we consider instead a
truncated Gaussian distribution1 for rake parallel slip run prior TN(0m, 1m, -0.5m, 10m), in
which we observe substantial improvements in efficiency and quality of solution of the inverse
problem.

In both cases we reweighted the data errors in such a way that the error covariance matrix
of the two sets have the same information content (Minson et al., 2013, and references in
there). We do this in order to fit the two datasets considering that the number of InSAR
observations is larger than the GPS observations, so both datasets have the same importance
in the inversion.

Assuming Gaussian distributed errors, the entropy of a distribution with mean µ and
covariance matrix Cχ is defined as

H(N(µ,Cχ)) =
1

2
log2((2πe)

N |Cχ|) (4.23)

where N is the dimension of the space of the random variable describing the errors.

The weighting factor α applied to the covariance matrix CInSAR
χ seek to equally represent

both data sets in terms of their entropy (using entropy as a measure of information content,
see Ortega (2013) and references therein), then satisfy the following relationship:

ln(|CGPS
χ |) = ln(|αCInSAR

χ |) (4.24)

A similar strategy have been used by other authors considering aspects as the rms of the
different data sets as Béjar-Pizarro et al. (2010). However, InSAR data spans a period of 1
month before and after the coseismic deformation, thus the InSAR data may include other
sources of deformation, such as part of inter-seismic which might be negligible due to the
short time span, but also can contain early post-seismic deformation that might be more
relevant. Therefore, we do not expect to fully explain InSAR data with our modeling.

1A truncated Gaussian distribution is similar to a Gaussian distribution, but values of the random variable
are bounded to a given interval. For instance, TN(0, 1, -1 , 1) is similar to a Gaussian distribution N(0,1)
but with the additional restraint that the value of the random variable can only take values in the interval
[-1, 1].
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Slip Constrained by GPS and InSAR data : Uniform Distribution as Rake Pa-
rallel fprior(θ)

In this case, we perform the inversion using a uniform distribution in U [−0.5m, 10m] as
a prior pdf for the running process (run prior). The number of samples used is 2.000.000
and the number of steps in the Markov chains is 20.000. Note that here we use a reduced
number of samples, 2/3 of the used for the inversion constrained only with GPS data, due
to a memory limitation of the computational resources (available RAM on the Tesla K40
GPGPU cards). The process took 40 annealing steps to reach the posterior pdf.

As we are solving the slip estimation problem using a fully Bayesian framework, the solu-
tion of the inverse problem is characterized by the obtained ensemble of samples representing
the joint a posteriori probability distribution of slip at the fault. The obtained ensemble of
samples can also be analyzed by computing the marginal pdf’s of slip on each direction and
subfault and the correlation between such model parameters. From the ensemble of sampled
models, we compute the mean, median models and select the ML (Maximum Likelihood)
models, that are shown in Figure 4.18. Although those three models are more similar for
this inversion case, probably because we are using longer Markov chains during the sampling
process, for comparison purposes we analyze the median model. The estimated moment
magnitudes are closer to Mw 7.9. The marginal histograms of slip and the median model
are shown in Figure 4.19, and the fit to the GPS and InSAR data, given by the median
slip model, is shown in Figure 4.20. The mean values of the ramp parameters obtained are
a = 3.0 × 10−1cm/100km, b = −5.1 × 10−1cm/100km, c = −2.1 × 100cm, with standard
deviations σa = 2.8× 100cm, σb = 8.1× 10−1cm, σc = 3.5× 100cm.

As a general comment for all representative models shown in Figure 4.18, we retrieve a
similar spatial slip pattern as in the previous inversion. Slip is basically characterized by
two large slip patches. The marginal histograms in these zones of larger slip present a more
symmetrical behavior and higher width than those patches on the surroundings. We observe
that slip at the top corners of the parameterized fault surface is poorly constrained, which
can be seen at the histograms on Figure 4.19. Here, marginal distributions at the top corners
resemble the pdf of a beta distribution (the marginal of a Dirichlet), meaning that slip at
the size of the discretized subfault can not be well resolved, and thus one should use a larger
subfault size at those regions to obtain a better resolved slip value (see Duputel et al., 2014;
Minson et al., 2013, and Appendix in this work.). As an alternative, one could use some
additional prior information that allows to reduce the uncertainty on slip estimation as well
as to reduce the size of the model parameter space in order to make it easier to sample. In
the following section, we use the latter option, as given the available computational resources
and the size of the model parameter space, it is harder for the CATMIP algorithm to find
sampled models that explain well all the GPS and InSAR data, as evidenced in Figure 4.20.
The difference is evidenced also in the acceptance rate of samples being lower when we use a
uniform distribution compared with the case when we use, for example, a truncated Gaussian
(these acceptance rates are 0.7% and 3%, respectively).
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(a) mean

(b) median

(c) maxlik

Figure 4.18: Mean, median and ML solution for the slip obtained from the inversion of the
2007 Tocopilla earthquake using GPS and InSAR data. The slip pattern was obtained using
both, the observational and model prediction error. Moment magnitude is indicated at the
top of each panel.
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(a) Rake Parallel Slip Marginal Histograms

(b) Histogram of lower-right corner sub-
fault

(c) Histograms Ramp parameters

Figure 4.19: a) Marginal histograms of the slip parameters (rake perpendicular direction) over
the fault geometry in the case where we consider the observational as well as the epistemic
source of error in the inversion using GPS and InSAR data with a run prior U(-0.5 m, 10
m). The color in background indicates the median solution. b) Histogram showing the lower
right corner element. c) Marginal normalized histograms for ramp parameters, a, b and c,
respectively.
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(a) Fit of GPS data

(b) Residual InSAR data

Figure 4.20: Fit for horizontal and vertical displacement components of the median solution
resulting from the inversion using GPS and InSAR data with a run prior U(-0.5 m, 10 m)
a) Comparison between the predicted GPS data and the observed GPS data b) Residual
representation of InSAR data in map view with colorbar in cm.
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Slip Constrained by GPS and InSAR Data : Truncated Gaussian Distribution as
Rake Parallel fprior(θ)

In this section we analyze slip inversion results in which a truncated Gaussian distribution
with a priori mean value µ = 0 m, variance σ2 = 1 m and truncation interval [-0.5 m, 10 m] is
used as prior information for rake parallel slip (run prior). There are 2 main reasons for this
choice, that there is a bounded region for slip where the higher probability resides, around
0, so subfaults poorly constrained by the observations will tend to have slip values closer to
0. Also, as we limit rake parallel slip to be reverse (allowing only a small fraction of normal
slip for sampling purposes), when using a uniform prior, the rejection rate of the algorithm
is high as we have several subfaults with slip near 0, thus using a truncated Gaussian, as
it gives larger probability to slip values near 0 (larger than those values at the edges of the
uniform pdf) it considerably reduces the rejection rate of the algorithm as more models tend
to have rake parallel slip values near 0 and less near the edge of the interval (-0.1 m). As
a consequence, we observed that using shorter Markov chains, one could achieve a better
inversion result, thus improving as well the efficiency of the CATMIP sampler to solve for
the slip inversion problem.

For this inversion case, the number of samples is 2.200.000 and the number of steps in the
Markov chains is reduced to 5000. The sampling algorithm took 29 annealing steps to reach
the posterior pdf of slip and InSAR ramp model parameters. Note that the total number of
samples is the maximum allowed by the available computational resources, and the length
of the Markov chains is selected using a trial and error process, so that it is the minimum
number that allows for stability in the estimation of slip marginal distributions.

As we are solving the slip estimation problem using a fully Bayesian framework, the solu-
tion of the inverse problem is characterized by the obtained ensemble of samples representing
the joint a posteriori probability distribution of slip at the fault. The obtained ensemble
of samples can also be analyzed by computing the marginal pdf’s of slip on each direction
and subfault and the correlation between such model parameters. From the ensemble of
sampled models, we compute the mean, median models and select the ML (Maximum Like-
lihood) models, that are shown in Figure 4.21. As those three models are very similar for
this inversion case, for comparison purposes we analyze the mean model. All three estimated
models have magnitudes closer to Mw 7.8. The major differences, comparing with the results
obtained using a Uniform run prior for rake parallel slip, are at the edges of the fault geo-
metry, especially in the fault elements close to the trench. By using the truncated Gaussian
prior, the median slip model at those subfault is much closer to zero, which indicates again
that such subfaults are poorly constrained by the observations dominated by the used prior
information.

The marginal histograms of slip and the mean model are shown in Figure 4.22 for rake
parallel slip and in Figure 4.23 for rake perpendicular slip, respectively. The fit to the GPS
and InSAR data, given by the mean slip model, is shown in Figure 4.24.

The maximum likelihood (ML) model exhibits some rougher characteristics in the edges
of the parameterized fault surface, with some patches with slip higher than 1.0 m. Thus,
suggesting that a larger number of samples must be used during the sampling process in
CATMIP, which is unachievable in this case as we are using all the available computational
resources to perform the Bayesian slip inversion.
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(a) mean

(b) median

(c) maximum likelihood

Figure 4.21: Solutions for mean, median and ML inverted slip using GPS and InSAR data
and a truncated Gaussian as a prior pdf in the running process (µ = 1 m, σ = 1 m and limits
in an interval [-0.5m, 10m]).
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(a) Rake Parallel Slip Marginal Histograms.

(b) Histogram of lower right corner
subfault.

(c) Histograms for ramp parameters.

Figure 4.22: a) Marginal Histograms for parallel to rake component of slip. This inversion
use the epistemic error Cp and a truncated Gaussian as a prior for the running process (not
initial and run priors for the ramp, because results are basically the same after removing
the ramp and using priors obtained using least squares). The background color indicates
the mean solution. b) rake parallel slip histogram for the lower right corner element (all
the subfaults have the same slip intervals along the x axis as in b). c) Histograms for the
parameters associated to the linear ramp a, b and c. Horizontal and vertical directions in (a)
and (b) resemble along strike and along updip directions respectively.
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(a) Rake Perpendicular Slip Marginal Histograms
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(b) Histogram of lower right corner subfault

Figure 4.23: a) Marginal Histograms for the perpendicular to rake component of slip. This
inversion use the epistemic error Cp and a truncated Gaussian as a prior for the running
process (not initial and run priors for the ramp, because results are basically the same after
removing the ramp and using priors obtained using least squares). The background color
indicates the mean solution of slip in m. b) Rake perpendicular slip histogram for the lower
right corner element (all the subfaults have the same slip intervals along the x-axis as in
b). Horizontal and vertical directions in (a) and (b) resemble along strike and along updip
directions respectively.
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From the previous figures, fault regions with higher slip have the highest information gain
in the sense that a posteriori marginal pdf’s for rake parallel slip differentiate the most from
a priori ones (the ones that are most different from the beta pdf’s). If we represent the slip
distribution as the mean slip of the sampled models (Fig 4.21.a ), there are 2 regions at the
interior of the fault surface, located north and south of the slip distribution, that concentrate
most of coseismic slip. Such regions are then identified as the 2 main asperities ruptured by
the Tocopilla earthquake.

At the aforementioned asperities, maximum slip value is close to 2 m and was reached at
the southern asperity, which is a slightly lower value than the slip solutions inferred by other
authors. The northern asperity, located closer to the hypocenter, reached a maximum slip of
about 1.7 m. Both slip regions are connected by a zone of lower slip amplitude compared to
the maximum peak slip.

The representative slip distribution estimated in this work is different from the obtained
by other studies, possibly due to incorporation of epistemic (forward model prediction) errors
and the use of a more detailed geometry for the subduction interface. Most of the rupture
process occurred deeper than the limit of abrupt variation in dip.

The ramp parameters have marginal pdf’s that can be well approximated by the one
of a Gaussian distribution (see Figure 4.23c). The mean value of the ramp parameters are
a = 1.6 × 10−1 cm/100 km, b = −1.29 × 10−1 cm/100km, c = 1.08 × 100cm, with standard
deviations σa = 6.1× 10−1 cm, σb = 1.6× 10−1 cm, σc = 7.5× 10−1 cm.

Regarding the fit to the GPS and InSAR datasets, observed and predicted GPS data
as well as misfit residuals for InSAR data (dInSAR −GInSARmslip −Grampmramp) obtained
using the mean model and the observed data are shown in figure 4.24 a,b, respectively. In
addition, InSAR data LOS displacement prediction of the mean ramp values, ramp corrected
InSAR observations of LOS displacements and mean slip model InSAR LOS displacements
prediction are shown in Figures 4.25, 4.26 and 4.27, respectively. Here we must note, that
for this inversion case, in which we use the truncated Gaussian distribution as (run) prior
information, the mean slip model estimated from the ensemble of sampled models fits much
better the GPS and InSAR data, compared with the slip estimates obtained with uniform
prior. The moment magnitude in this case is Mw = 7.83 We analyze the origin of such
differences in the next section of this work.
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(a) Fit to GPS data, mean model from the ensemble of sampled models constrained
by GPS and InSAR data.

(b) Residual track 96, using mean model from the ensemble of
sampled models constrained by GPS and InSAR data.

Figure 4.24: a) Comparison between observed and predicted GPS data for the horizontal and
vertical static displacements. b) Residual of InSAR data (track 96).
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Figure 4.25: Predicted InSAR LOS displacements due to the mean linear ramp estimated
from the ensemble of sampled models.

Figure 4.26: InSAR LOS displacements resulting from subtracting the mean linear ramp
obtained by the inversion from the InSAR data (track 96).
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Figure 4.27: Predicted InSAR LOS displacements by the mean slip model
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4.8 Discussion

In this section we analyze and discuss the results obtained applying the Bayesian methodology
to the inversion of the 2007 Mw 7.7 Tocopilla earthquake in terms of the characterization of
the uncertainties of model parameter estimates, fault slip and InSAR ramp correction.

4.8.1 Error and Resolution Analysis

In this section we show the full potential of the Bayesian inversion methodology, the ability to
fully characterize and analyze uncertainties on model parameter estimates without making
any assumptions on the functional form of their probability distribution pdf’s. Here we
analyze the distribution of errors of estimated slip and InSAR ramp parameters in terms of
their marginal errors as well as to understand the dependence, correlations and trade-offs
between estimated model parameters.

On one hand, estimated slip models presented in the previous sections show broader rake
parallel slip pdf’s in the edges of the fault that are closer to the trench, zones that show mean
or median models with slip in those regions that can be interpreted as artifacts (see Figures
4.19a and 4.22a) due to the size of the discretization of the fault geometry in such regions
and the poor constraint that onland data has on slip in those fault edges near the trench.

On the other hand, the zones with higher slip located apart from the edges, near the center
of the fault surface, have higher values of co-seismic slip, associated to the main asperities
ruptured by the Tocopilla earthquake (see Figures 4.19a and 4.22a). Also, such region exhibits
higher uncertainties, possibly due to the use of epistemic or forward model prediction errors,
that are larger for larger values of fault slip (see Figure 4.28). This region with higher
uncertainty is spread out compared with the solutions shown previously, especially for the
northern asperity. The maximum uncertainty is about 0.6 m for rake parallel slip and 0.9 m
for rake perpendicular slip, being the latter similar to the prior uncertainty set for such slip
direction across the fault (1.0 m).

The marginal uncertainties allow to characterize confidence intervals for slip and ramp
parameters in terms of the mean/median values and the standard deviation of model pa-
rameters. However, in order to make a complete characterization of errors we need also
to understand dependency and/or correlations between model parameter estimates. For in-
stance, covariances associated to some particular fault slip parameters can be seen in figures
4.29, 4.30 and 4.31, where we show the behavior for the parallel to rake component of slip
as well as the perpendicular to rake component. In the latter figures, we can see that the
perpendicular to rake solutions are not correlated with the neighbors, while in the case of the
parallel to rake component the amount of dependence/correlation depends on the location
of the fault slip patch. The errors in these patches exhibits an anticorrelation with the neig-
hbors, as can be seen from the direction of the arrows in the above mentioned figures. Patches
close to the zone with larger slip show more anticorrelation with the immediate neighbors.
That means that we have a trade-off between slip on adjacent fault patches. For instance,
for a given representative slip model (mean or median) perturbations on such model due to
observational or epistemic errors that produce higher slip on a given fault patch, tend to
produce also perturbation that leads to smaller slip at the adjacent fault slip patch.
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Figure 4.32 shows correlation between ramp parameters as 2D histograms. Ramp para-
meters describe the linear plane ax+by+c incorporated in the modeling to take into account
the additional offset in observed LOS because of the processing of InSAR data. Parameters
a and b are the longitudinal and latitudinal slope describing the plane, respectively, and c is
a constant value describing a uniform plane. Diagonal elements in Figure 4.32 show the 2D
histogram of every ramp parameter (represented in a 2D histogram as a 45◦ colored line),
while out of diagonal elements show 2D histograms between different ramp parameters. The
figure shows a low anticorrelation between a and b, a larger anticorrelation between a and
c, and low positive correlation between b and c. To better understand some of these results
it is necessary to consider the distribution of measurement points, which is not balanced
in the longitudinal and latitudinal directions, being more spread in latitude. This distribu-
tion shows a constrain to a greater degree of the linear ramp slope in latitudinal direction b
compared to the longitudinal slope a (as can be seen in Figure 4.22.c). Most of the InSAR
observations are accumulated near the coast line, especially near the Mejillones Peninsula,
then, this region contributes to a greater degree to fit the ramp parameters. The larger
anticorrelation between a and c indicates a tradeoff between the longitudinal slope and the
constant plane to explain the observations. Each longitudinal slope a value is associated to
a plane which keeps constant values in latitude, and locally behaves like a constant plane
which compites with the contant plane associated to c. The correlation between parameters
can be visualized as 2D histograms resulting from applying the Bayesian methodology as can
be seen in Figure 4.32
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(a) parallel

(b) perpendicular

Figure 4.28: Standard deviation associated to the slip estimated parameters over the fault
geometry for the case constrained with GPS and InSAR data using a Truncated Gaussian
slip prior. a) Parallel to rake component of slip b) Perpendicular to rake component of slip.
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(a) parallel

(b) perpendicular

Figure 4.29: Covariance for subfault 33 considering both, the a) parallel to rake and b)
perpendicular to rake component.
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(a) parallel

(b) perpendicular

Figure 4.30: Covariance for subfault 50 considering both, a) the parallel to rake and b)
perpendicular to rake component of slip.
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(a) parallel

(b) perpendicular

Figure 4.31: Covariance for subfault 100 considering both, a) the parallel to rake and b)
perpendicular to rake component of slip.
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Figure 4.32: Correlation between ramp parameters forming a linear ramp ax + by + c shown
as 2D marginal histograms. Color scale indicates counts of model parameters on each bin of
the 2D histogram normalized to the maximum count on each plot. Aspect ratio for plots on
each row of the figure is 1:1 in order to compare each model parameter with all others in the
row.

Figures 4.33 and 4.34 show the anticorrelation of slip when plotting 2D marginal histogram
for slip at two adjacent fault patches located at the top left corner of the fault (near trench) as
well as at the center of the fault (near coast), where the maximum co-seismic slip is estimated,
for the inversion cases in which Uniform and Truncated Gaussian distributions are set for
run priors, respectively. 2D marginal distributions for pairs of neighboring fault patches near
trench and near the center of the fault, are shown in Figures 4.33b, 4.34b and 4.33c, 4.34c,
respectively. In all cases we observe anticorrelation between slip at adjacent subfaults, where
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the amplitude of the uncertainties is larger for slip at subfaults closer to the trench. Also,
we observed that when using the Truncated Gaussian distribution for the prior distribution,
uncertainties are much more reduced at the fault elements near the trench, implying that
slip at the near trench fault regions is much less constrained by the data, as the change of
prior information, from Uniform to Truncated Gaussian distribution, influenced greatly the
outcome of the inversion. This phenomenon is barely noticeable for fault elements near the
coast, implying that the inverse problem solution is dominated by the information provided
by the data in those regions.

An aspect that can be noticed from the mean slip model, is that it has a fault region,
between the trench and depths where maximum slip occurs, exhibiting a very small amount
of normal slip (See Figure 4.22). This is not surprising, as we allow little backslip in our
prior distribution. However, the estimated normal slip may be related to the appearance
of small reverse slip at the near trench subfaults. As both of them are further away from
onland GPS and InSAR observations, each of the described slip features produce surface
displacement fields with long wavelengths that might be canceling each other, i.e., there is a
trade off between slip at the aforementioned neighboring regions, allowing to have very low
normal and reverse slip.

The marginal histograms in the edges show a behavior similar to a Beta function (which is
the marginal of a Dirichlet distribution). The Dirichlet distribution describes problems where
the sum of variables lie in a certain range, so the zones where Beta distributions appear can
be associated to a tradeoff between parameters in neighboring fault patches. As described in
Duputel et al. (2014), a possible interpretation for this behavior is that the resolution length
(the size of slip features that we can solve with the available data) is larger than the size
of the subfaults in these regions ( 20 km in this case). Duputel et al. (2014) suggests that
the resolution length can be found by fitting the estimated marginal distribution to the pdf
defining a Beta distribution, allowing to find the number of adjacent subfaults so that slip
at such set of faults follows a Dirichlet distribution in which the sum of slip at the set of
subfaults is well constrained. In this case, we have a 2D geometry where we identify this
behavior outside the zone with larger slip associated to the coseismic slip, near the edges of
the parameterized fault surface. The results could be re-processed so that the histograms in
these zones represent the mobile average in a set of patches, where such mobile average is
calculated over the ensemble of sampled models. Figure 4.35 shows the marginal histograms
resulting from this operation. We can see from the figure that those averaged patches present
a behavior more similar to a Gaussian, with a mean value closer to zero, thus defining a slip
model that is better constrained across the fault. This process could be considered as a
spatially variable posterior smoothing of slip across the fault by calculating local spatial
averages of sampled models, in which the amount of smoothing is based on the amount of
the constraint on slip provided by the observations. Here we must note that smoothing is
applied only at the fault portions where is needed, in opposition to regularized least squares
inversions, where smoothing is needed across all the fault in order to be able to obtain a
single (smoothed) slip estimate.

In both cases, whether using Cp or not, the fitting of the GPS data is far from the
expected considering their errors represented by 1-σ ellipses in Figure 4.2. This could be
related to the high slip values observed in the corners of the fault slip, and it is discussed
later when we incorporate InSAR data in our analysis.
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(a) Marginal Histograms for parallel to rake direction

(b) 2D histogram (c) 2D histogram

Figure 4.33: Marginal histograms for rake parallel slip when using Uniform priors. (a)
marginal rake parallel slip histogram for each subfault. (b) and (c) show 2D histograms
between slip at pairs of adjacent subfaults near the trench (b) and near the region of larger
co-seismic slip (c) indicated by purple and green squares in (a), respectively.
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(a) Marginal Histograms for parallel to rake direction

(b) 2D histogram (c) 2D histogram

Figure 4.34: Marginal histograms for rake parallel slip when using Truncated Gaussian priors.
(a) marginal rake parallel slip histogram for each subfault. (b) and (c) show 2D histograms
between slip at pairs of adjacent subfaults near the trench (b) and near the region of larger
co-seismic slip (c) indicated by purple and green squares in (a), respectively.
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(a) Marginal Histograms parallel to rake component
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(b) Histogram of lower right corner

Figure 4.35: a) Marginal histograms obtained averaging patches in the trench border. The
first four cells along dip show histograms averaging the neighbor patches that form a cross
centered in the original patch. b) rake parallel slip histogram for the lower right corner
element (all the subfaults have the same slip intervals along x axis as in b).
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4.8.2 Limitations of the Bayesian Inversion and the Option of a
Sensitivity Analysis

An important limitation of the Bayesian methodology is the requirement of costly computati-
onal resources, since billions of forward model evaluations are needed to obtain the posterior
ensemble of models resolving the inverse problem. The number of evaluations for the inver-
sions performed in this thesis was ∼ 1011 − 1012, with execution times between 15 and 70
hours. The slip estimates presented in this work were obtained using a computer node with
2 Tesla K40 GPGPU cards, that cost about 12.000.000 Chilean pesos.

The determination of the number of samples and the length of chains takes into account
the number of data sets included, since the incorporation of a new data set makes necessary
to reduce the number of samples due to the hardware limitations. For example, using only
GPS data, the number of samples employed was 3.000.000, while this number decreased to
2.000.000 when 1 InSAR track was incorporated.

Observing examples where Bayesian modeling have been used, we can notice that these
methods are expensive in terms of hardware and execution time. For example, Duputel et al.
(2015) modeled the 2014 Pisagua earthquake using static GPS, InSAR, tsunami, tide gauges,
high-rate GPS, and strong motion data, employing ∼ 1010 models to obtain the ensemble of
parameter model solutions using 90 GPGPU and 24 hrs of execution time.

Given those limitations, an stability analysis can be restrictive in terms of hardware and
execution time. Therefore, we will discuss the obtained solutions in terms of a Sensitivity
analysis (Ortega, 2013) that can be done in a single desktop workstation. Also, this analysis
provides a tool to evaluate the importance of each data set in the prediction of the model.

As it was discussed in previous sections, estimated slip at fault elements near the trench
present greater variability compared with elements closer to the coastline. Also, at the
near trench fault regions, estimated slip models present artifacts that can be related to the
sensitivity of slip at the border elements of the fault.

From Ortega (2013), the sensitivity of fault slip is defined as the diagonal matrix

S =
√
diag(GTC−1χ G) (4.25)

where each diagonal element of S quantifies the sensitivity of slip at each discretized element
of the fault. In order to easily interpret sensitivity, we will assume a simplification in which all
observational and model prediction errors are independent and identically distributed (iid),
i.e., the misfit covariance matrix is the diagonal matrix Cχ = σ2

oI. With this simplification,
we can write the sensitivity of rake parallel slip at the i-th fault discretization as

si =
1

σo

√
G
‖
:i

T
G
‖
:i =

1

σo

∥∥∥G‖:i∥∥∥
2

(4.26)

where G
‖
:i is the vector formed by the i-th column of the Green’s function matrix for rake

parallel slip G‖. Figures 4.36 and 4.37 show the slip sensitivity calculated at each element of
the fault surface for rake parallel and rake perpendicular slip directions, respectively. Note
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that slip sensitivity varies about one order of magnitude between trench and coastline regions
of the fault, being lower in the edges of the fault surface closer to the trench, and higher for
those closer to the zones where we obtained the maximum slip (near the coastline). The
lower sensitivity at the fault elements closer to the trench can be explained as a consequence
of the lack of offshore observations, as all of them are located on land.

On one hand, slip sensitivity si can be interpreted from a model prediction viewpoint. As
si is the norm of the Green’s functions for slip on a given slip direction and subfault, it is a
measure of how much 1 meter of slip in a single subfault “moves” (causes displacements) the
whole GPS network and/or InSAR pixels location. So, as the sensitivity for fault elements
near the trench is about 10 times smaller than at the elements near the coast, we need 10
meters of slip at a near trench subfault to produce a similar amount of displacement caused
by 1 meter of slip at a near coast subfault. Thus, slip perturbation located near the trench,

have a much lower impact on the data misfit (
∥∥Gθ− dobs

∥∥2
2
), than slip near the coast,

implying that near trench estimated slip will have larger uncertainties. Such a behavior can
be observed in Figure 4.33, where the spread of the marginal distribution of rake parallel
slip is much larger at the fault elements near the trench. Note that we do not observe this
behavior when we use a Truncated Gaussian distribution for the run priors (see Figure 4.34),
as such prior tries to set slip as small as possible, providing a constraint on slip amplitude
on each subfault.

On the other hand, we can see sensitivity from a perspective based on the amount of the
constraint on fault slip provided by the data. Here, in order to explain small variations in
data, due to observational or model prediction errors, the amount of slip required to explain
such data variations is 10 times larger if using fault elements near the trench, compared to
using near coast fault elements. Thus, data errors, might produce larger slip variations at
fault portions near the trench, than near the coast, such as the artifacts observed in some of
our slip model estimates.

It is important to note that the sensitivity is not the same for the two data sets. An
explanation is that they do not incorporate the same components of deformation, therefore
they do not constrain fault slip in the same manner. GPS data measures 3 displacement
components E, N and Vertical, while InSAR measures only those in the direction of LOS.
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(a) All data

(b) GPS

(c) InSAR track 96

Figure 4.36: Sensitivity of parallel to rake component of slip when considering a) all datasets
b) GPS and c) InSAR only.
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(a) All data

(b) GPS

(c) InSAR track 96

Figure 4.37: Sensitivity of the perpendicular to rake component of slip when considering a)
all datasets b) GPS and c) InSAR only.
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4.8.3 Comparison with other studies

The median solution obtained using GPS and InSAR data (using one descending track and
incorporating the epistemic error) shows a zone with high slip in a smaller region offshore
respect to previously obtained solutions (fig 4.38.a, 4.38.b). The zone with the highest slip
spans an area beyond the coastal edge close to the southern asperity. Nevertheless, to analyze
this result it is necessary to have in mind the role of the error in the result. If we consider this
error, the solution covers a range of likely solutions, probably containing a solution similar to
the result obtained by Béjar-Pizarro et al. (2010) using Regularized Least Squares, since the
slip values in this solution reside in the interval defined by the standard deviation (Figure
4.38.d). This is probably the case too for the solution obtained by Minson (2010), taking
into account the finer discretization. On the other hand, to fully characterize the error it is
necessary to consider the correlation between patches. This is shown in figures 4.29, 4.30 and
4.31, where we can notice the almost null correlation between patches in the perpendicular
to rake component and the anticorrelation between adjacent patches for the parallel to rake
component. The latter means that larger slip in a certain patch makes more probable a
smaller slip in the neighbors, making less likely solutions where the entire region has larger
slip than the mean.

Slip estimates obtained with optimization methodologies (e.g., Least Squares) usually use
smoothing as prior information. Thus biasing slip estimates towards smooth models, so it
is expected that the zone with higher slip covers a broader region on the fault geometry,
compared with the “true” region that slipped during the earthquake. Then, it makes sense
that the representative solution obtained using this Bayesian methodology presents a more
compact slip area, due to lack of smoothing during the inversion. It should be noted that
the results of the Bayesian inversion do not exclude the smoothed solutions obtained using
Regularized Least Squares, in fact they are present in the ensemble of models characterizing
the solution, but the likelihood associated to those models is lower than the one obtained for
the representative models. The completeness of the solution is an advantage of the Bayesian
methodology over more typically used methods, not requiring for it the incorporation of
additional biases, more than those physically justifiable by the setting of the inverse problem.

The result obtained is in agreement with those obtained by Duputel et al. (2015) studying
the 2014 Pisagua earthquake, which is a region more compact compared with other studies
of the same earthquake.

A first difference that can be noticed from the modeling made by Minson (2010) using
Bayesian methods is in the fault geometry employed. We set a fault geometry following slab
feautures from Contreras-Reyes et al. (2012) that covers the region reaching the trench, then,
we can show that the rupture did not reach the shallower part of the subduction contact.

Additionally, we can see that the portion of higher slip lies downdip from the limit indi-
cating the change in dip in the subducting plate, which reinforce the idea of this limit acting
as a seismic barrier for the updip propagation of the rupture, as we can see in Figure 4.38.c

The updip limit of the rupture area is close to 30km depth, deeper that the kink in the
slab identified at 20 km depth. The updip limit seems to be well constrained almost in the
entire rupture zone, as we can see from the uncertainties close to this limit. By contrast, the
downdip limit seems to be not so constrained, especially in the region close to the northern
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asperity. The downdip limit is between 45 km, for the southern asperity and 50 km for the
northern.

This result can interpreted as a tendency of the rupture to propagate close to this singular
feature in the fault geometry in this region, or a coupling context that favored the propagation
close to this singularity. Both cases has different implications for tsunami hazard, and should
be studied in more detail.

Solutions shown by other authors suggest a trenchward propagation of the rupture in the
zone close to the Mejillones peninsula, reaching very shallow depths, which is likely produced
by smoothing constraints used for least squares inversions. On the contrary, as we do not
use prior smoothing constraints, estimated slip in this study presents an abrupt decay in the
region where there is an expected change in dip interpreted as a barrier to updip seismic
rupture propagation.
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Figure 4.38: a) and b) show the solutions for slip obtained by a)Minson (2010) and b)Béjar-
Pizarro et al. (2010). c) shows the median d) show the median solution obtained in this
thesis using Bayesian inversion and d) presents the map indicating the standard deviation.
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Chapter 5

Conclusions

The Bayesian methodology employed to solve the coseismic static slip generated by the
2007 Mw 7.7 Tocopilla earthquake allows to find an ensemble of plausible solutions, solving
the inverse problem in a more complete and robust form without imposing non-physical
restrictions, such as artificial regularization terms (e.g., smoothing) that produce a bias on
slip estimates. These solutions can be represented as marginal distributions of model solutions
and can be visualized pointing out the pdfs obtained, from which aspects like the number
of maxima, and the possible tradeoffs between parameters can be seen. This method allows
to incorporate additional sources of error which could be difficult to deal with when more
traditional methods are used (e.g., least squares). Besides, it allows better characterization
of uncertainties in the resulting parameters. Additionally, the solutions can be represented
as an statistical estimator, as the mean, median or MAP solution (maximum a posteriori).

Also, this method allows to visualize aspects about the resolution over the fault area
from the shape of the obtained distributions. Zones with distributions similar to the pdf of
a Beta distribution can be associated to a lower resolution and consequently the size of the
fault discretization in those regions should be larger. Because of this behavior, sometimes
a posteriori spatial smoothing is recommended in fault regions poorly constrained by the
data due to excessive refinement of the discretization (too small elements). The resolution
length or size of the region to perform the local spatial averages can be estimated from the
shape of the beta distribution, and after the application of the local average the resulting
distributions are smoothed. In a word of caution, we note that this procedure differs in great
manner from smoothing used to find regularized least squares solutions, in which the latter is
chosen arbitrarily and homogeneously across the fault, whereas with the Bayesian posterior
local averages, smoothing is applied only at some fault portions and in an amount justified
by the statistics of the ensemble of sampled models.

The Bayesian methodology is costly in computational terms, making difficult to use this
technique to solve efficiently an inverse problem with limited computational resources, espe-
cially when the number of parameters is big. The number of models to be evaluated by these
methods usually is high, as in this case, where we evaluated ∼ 1011 models, taking the order
of 1-3 days to perform the inversion using GPS and 1 InSAR track.

The main results obtained using the Bayesian methodology applied to the rupture pro-
cess of the Tocopilla earthquake, and incorporating the epistemic source of error can be
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summarized as follows:

• The rupture of the Tocopilla earthquake occurred in the deepest part of the seismo-
genic contact, with largest slip located at two main asperities. Our results agree with
previous studies, but differ in the details of the estimated slip and that we produce a
full characterization of errors for slip estimates.

• The representative slip model solutions obtained for the 2007 Tocopilla earthquake
using the Bayesian methodology present more compact features compared with previous
studies, which can be interpreted as a consequence of the absence of smoothing during
the modeling. This allows to identify in a better way, without smoothing, regions on
the contact area where the rupture occurred, information valuable to better understand
rheology features about the fault contact.

• Slip connecting the two main asperities seems to be offshore respect to the previously
published solutions.

• The maximum slip obtained is close to 2.0± 0.6 m located in the southern patch. This
slip maintains similar values towards the coast, downdip the limit of dip change, along
which the slip values decay to the north.

• Moment magnitudes obtained using representative models as the average of all ensemble
models, median and the maximum likelihood model are closer to Mw 7.8 and Mw 7.9.

• As inferred by this study and previous authors, the downdip kink in the plate interface
geometry (Contreras-Reyes et al., 2012) might act as a barrier to rupture propagation,
but this claim needs to be further tested.

• The updip limit obtained is close to 30 km, better constrained than the downdip limit,
which is more spread, especially in the northern patch.

• Neglecting the epistemic error associated with layered earth model conducts to solu-
tions where the main zones of maximum slip are more localized in the two patches
characterizing the solution. When we incorporate this source of error, the solution is
more spread, in the form of a more notorious bridge between the main asperities.

• The model representing the ensemble of solutions for the 2007 Tocopilla earthquake
agree with previously hypothesized tectonic features, for example the southern barrier
in the Mejillones peninsula and the updip barrier, which can be related with the change
in geometry properties. This study suggest that theses changes in rheology could be
more abrupt than in the previous studies. In the case of the southern edge of the
rupture propagation it is even more noticeable that slip occurred below the geometric
/rheologic limit.

For example a possible hypothesis is that the rupture tends to propagate towards
singularities like the kink in the slab, this acting as a seismic barrier. This could
have implications in the management of seismic hazard, specially for tsunami hazard.
Data from future events needs to be processed to confirm (or discard) this hypothesis.
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Appendix A

Inversion Using Regularized Least
Squares

A.1 Formulation of the Regularized Least Squares Pro-

blem

Previous to run the Bayesian inversion of the quasistatic slip of the 2007 Mw 7.7 Tocopilla
earthquake a series of inversions were performed using regularized least squares with a re-
striction of positivity. The aim of these previous tests was to check the results obtained in
published studies using the least squares method as well as to check the calculation of the
Green’s functions.

The positivity constraint requires the use of coordinate axes to insure that the rake is
located in the positive quadrant of this system. The axes have been chosen so that the rake
is approximately at a 45◦ angle between them. The azimuthal angle used is 5◦ while the
angles of the coordinate system are 60◦ and 150◦.

The formulation of the inverse problem in this case is in terms of the minimization of the
function:

min
θ
||Wx(Geθ− d)||22 + ε2||[Wh(Hθ− h0)]||22 + ||γ[Wδθ]||22

S.A mi ≥ 0 ∀i θ =


mslip−‖
mslip−⊥
A1

B1

C1


(A.1)

Where θ is the set of slip parameters incorporating additional parameters in the case
when InSAR data are considered, Wx is a weighting matrix accounting the fitting errors,
This matrix comes from the Cholesky decomposition of the fitting covariance matrix C−1χ ,
where Cχ = Cd + Cp , with Cp = 0.05 × Cd. This weighting matrix is multiplied by
the residual Geθ − d. The second term corresponds to the Tickonov regularization (order
2), where H is the Laplacian operator, h0 is a zero vector and Wh a weighting matrix
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accounting the sensitivity regularization (Ortega, 2013). γ is a coefficient associated to a
second regularization, this one associated to the difference between components of slip in
two directions. Wδ is a matrix applied to θ to obtain a vector measuring the differences
between perpendicular components of slip. The tests carried out consider the previous inverse
formulation using different geometries, such as a rectangular fault, slab 1.0 and the geometry
obtained by Contreras-Reyes et al. (2012), assuming a half space and the 1D velocity model
Husen et al. (1999). Here we will show the case of the bent geometry used in this thesis
Contreras-Reyes et al. (2012) and the stratified model of the seismogenic zone of northern
Chile from Husen et al. (1999), which is an elastic structure consistent in 15 layers. Figure
A.1 shows the slip obtained using regularized least squares with a positivity constraint when
we use only GPS data. Solutions depends on the chosen regularization factor ε, and the slip
pattern smooths as this factor increases its value. The γ factor is chosen as 1. Figure A.2
shows the fitting between observed and synthetics.

When we incorporate InSAR data from track 96d to the GPS data, the obtained solutions
are similar to those obtained using only GPS data as we see in Figure A.3. The main difference
is that the patches of maximum slip are separated by a region of very low slip values for a
low regularization factor. Figures A.2 and A.5 show the comparison between observed and
synthetic GPS displacements and the residuals for InSAR dataset.

108



(a) ε = 0.03

(b) ε = 0.11

(c) ε = 0.36

Figure A.1: Slip obtained for the 2007 Tocopilla earthquake using GPS data and a regularized
least squares with a positivity constraint method for different regularization factor ε.
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(a) ε = 0.03

(b) ε = 0.11

(c) ε = 0.36

Figure A.2: Comparison between observed and predicted horizontal and vertical static dis-
placements as a result of the inversion of the 2007 Tocopilla earthquake using GPS data and
the regularized least squares method with a positivity constrain for different regularization
factor ε
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(a)

(b)

(c)

Figure A.3: Slip obtained from the inversion the 2007 Mw 7.7 Tocopilla earthquake using
GPS and InSAR data and a regularized least squares with a positivity constraint method for
different regularization factor ε.
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(a)

(b)

(c)

Figure A.4: Fit of GPS data set from the inversion the 2007 Tocopilla earthquake using
GPS and InSAR data (track 96) and a regularized least squares with a positivity constraint
method for different regularization factor ε.
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(a)

(b)

(c)

Figure A.5: Residual for InSAR ALOS displacements obtained from the inversion of the 2007
Tocopilla earthquake using GPS and InSAR data (track 96) for the InSAR prediction.
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When we use the regularized least squares method it is necessary to define a criterion
for the selection of the regularization factor ε. Usually this criterion is based on the use of
the L-Curve, which compares ‖Wx(Geθ − d)‖ with ‖Wh(Hθ − h0)‖, choosing the model
which generates an inflexion point in the L-curve (Figure A.6), balancing the residual with
the regularization term. Nevertheless, this criterion does not obey any physical constraint,
but an heuristical condition, adding a bias to the solution.

Figure A.6: L curve for the least squares problem with a positivity constraint when GPS
and InSAR data from track 96 are used to invert the slip of the 2007 Tocopilla earthquake.
Numbers identify order index for the regularization factor ε.
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Appendix B

Dirichlet Distribution

B.1 Dirichlet Distribution

Dirichlet distribution is used as initial prior distribution for the parallel to rake component
of slip in the inversion using AlTar, to take into account the previous knowledge about the
magnitude of the 2007 Tocopilla earthquake (Mw 7.7). These initial samples are a starting
point for the exploration of the model parameter space. Choosing a set of samples that
incorporates previous information about the expected slip distribution makes more likely to
accept the samples in posterior stages, but do not restrict the later sampling, as the samples
are constrained by the run priors of the processing. In this case, the Dirichlet distribution
ensures that initial samples have a magnitude close to Mw7.7.

In this section we will explain briefly the Dirichlet distribution and why we use it as the
prior distribution for initial samples of the slip parallel to rake.

The Dirichlet distribution is a continuous multivariate probability distribution defined by
the pdf

f(x1, x2, ..., xk, α1, α2, ..., αk) =
K∏
i=1

1

B(α)
x
(αi−1)
i (B.1)

Where α is a vector parametrizing the pdf, B(α) a normalization and xi is a set of random
numbers in which the sum of components is 1. (α) is defined as,

B(α) =
K∏
i=1

Γ(αi)

Γ(
∑k

i=1 αi)
(B.2)

The marginal distribution of the Dirichlet is the Beta function, which is illustrated in
Figure B.1.
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(a)

Figure B.1: Figure from Minson et al. (2013) illustrating the Dirichlet distribution for diffe-
rent amount of subfaults (1, 2, 4 and 8). The total amount of slip is constrained to 1 m, and
the number of samples is 10000.

Applied to the inversion of the 2007 Tocopilla earthquake the condition of a magnitude
close to a certain value implies a Dirichlet distribution respect to the seismic moment of the
initial samples. The slip in that case is as we can see in Figure B.2. The slip decrease its
values in depth as the shear modulus increase to ensure that the seismic moment will be
close to a constant value. Figure B.2.c shows the distribution of magnitudes for the initial
samples, where we can notice they are around Mw 7.7.
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(a) Marginal histograms slip distribution

(b) Scale of marginal histograms

(c) Histograms magnitude

Figure B.2: a) Marginal distributions of initial slip samples employed in the inversion of the
Tocopilla earthquake using AlTar. The number of samples is 106 (color indicates the mean
value of the samples) b) Scale of the histogram located in the lower right corner c) Histogram
of magnitudes for initial samples.
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