
Theoretical Computer Science 812 (2020) 149–159
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Ranked document selection ✩

J. Ian Munro a, Gonzalo Navarro b, Rahul Shah c, Sharma V. Thankachan d,∗
a Cheriton School of Computer Science, University of Waterloo, Canada
b Center for Biotechnology and Bioengineering (CeBiB) & Millennium Institute for Foundational Research on Data (IMFD), Dept. of Computer
Science, University of Chile, Chile
c School of Electrical Engineering and Computer Science, Louisiana State University, USA
d Department of Computer Science, University of Central Florida, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 January 2019
Received in revised form 25 September
2019
Accepted 5 October 2019
Available online 9 October 2019

Keywords:
Document Indexing
Top-k Document Retrieval
Succinct Data Structures

Let D be a collection of string documents of n characters in total. The top-k document
retrieval problem is to preprocess D into a data structure that, given a query (P , k), can
return the k documents of D most relevant to pattern P . The relevance of a document
d for a pattern P is given by a predefined ranking function w(P , d). Linear space and
optimal query time solutions already exist for this problem. In this paper we consider
a novel problem, document selection, in which a query (P , k) aims to report the kth
document most relevant to P (instead of reporting all top-k documents). We present a
data structure using O (n logε n) space, for any constant ε > 0, answering selection queries
in time O (log k/ log logn), and a linear-space data structure answering queries in time
O (log k), given the locus node of P in a (generalized) suffix tree of D. We also prove that
it is unlikely that a succinct-space solution for this problem exists with poly-logarithmic
query time, and that O (log k/ log log n) is indeed optimal within O (n polylogn) space for
most text families. Finally, we present some additional space-time trade-offs exploring the
extremes of those lower bounds.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Document retrieval is a special branch of pattern matching related to information retrieval and web searching. In this
problem, the data consists of a collection of text documents, and the queries refer to documents rather than text positions
[23]. In this paper we focus on arguably the most important of those problems, called top-k document retrieval: Given
D = {d1, d2, d3, ..., dD}, of total length n = ∑D

i=1 |di |, preprocess it into a data structure that, given a pattern P and a
threshold k, retrieves the k documents from D that are most relevant to P , in decreasing order of relevance. The relevance
of a document d with respect to P is captured using any function w(P , d) of the starting positions of the occurrences of P
in d. A popular example of relevance is the term frequency metric, that is, the number of occurrences of P in d. This is a well
studied problem, and an existing linear space data structure can answer queries in optimal time O (k) [32], once the locus

✩ Funded in part by NSERC of Canada and the Canada Research Chairs program; Fondecyt Grant 1-170048, Chile; Basal Funds FB0001, CONICYT, Chile;
Millennium Institute for Foundational Research on Data (IMFD), Chile; and NSF Grants CCF–1017623, CCF–1218904. An early partial version of this paper
appeared in Proc. SWAT 2014 [20].

* Corresponding author.
E-mail addresses: imunro@uwaterloo.ca (J. Munro), gnavarro@dcc.uchile.cl (G. Navarro), rahul@csc.lsu.edu (R. Shah), Sharma.Thankachan@ucf.edu

(S.V. Thankachan).
https://doi.org/10.1016/j.tcs.2019.10.008
0304-3975/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2019.10.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:imunro@uwaterloo.ca
mailto:gnavarro@dcc.uchile.cl
mailto:rahul@csc.lsu.edu
mailto:Sharma.Thankachan@ucf.edu
https://doi.org/10.1016/j.tcs.2019.10.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2019.10.008&domain=pdf

150 J. Munro et al. / Theoretical Computer Science 812 (2020) 149–159
node of P in a generalized suffix tree of D is found. Note that the locus of P can be computed in optimal O (|P |/ logσ n)

time in the RAM model [25], where σ is the alphabet size.

Our Contribution. In this paper we study a new related problem called document selection, where we must return the kth
document of D most relevant to P , that is, the kth element returned by a top-k query (breaking ties arbitrarily). We present
three main results, depending on the amount of space used: (1) We give a data structure that uses O (n logε n) space, for
any constant ε > 0, and answers queries in time O (log k/ log log n), given the locus of P , (2) We give a linear-space data
structure that answers queries in O (log k) time, given the locus of P , (3) We prove that it is highly unlikely that the problem
can be solved in less than linear space within poly-logarithmic time, via a reduction from the position restricted substring
searching problem [17,11]. We also prove that the query time O (log k/ log log n) is indeed optimal within O (|GST| polylogn)

space, where GST is the generalized suffix tree of D, via a reduction from the prefix selection problem [15]. Lastly, we
present some additional space-time trade-offs that explore the limits of these lower bounds.

Advanced Queries. The document selection is useful for various advanced queries. When a user browses ranked results of a
(top-k1) query and asks for the next set of (top-k2) results with k1 < k2, we need to report the top-k2 documents that are
not top-k1. Instead of computing a top-k2 query in time O (|P |/ logσ n +k2), which may be non-optimal if δ = k2 −k1 = o(k2),
our results allow answering this query in time O (|P |/ logσ n + δ log k2) via δ selection queries (note that the cost |P |/ logσ n
is paid only once). Another possible query is to count the number K of documents d with w(P , d) ≥ τ , given P and τ .
This can be answered via doubling search using document selection queries, in time O (|P |/ logσ n + log2 K), assuming
w(P , d) can be computed in constant time given the locus of P . Similarly, we can count or list the documents d with
w(P , d) ∈ [τ1, τ2]. Such queries are important in bioinformatics, for example for motif mining or for avoiding sequences
where P is “over-expressed”, and for data mining in general, for example to estimate the distribution of relevance scores of
certain patterns.

Related Work. The notion of relevance-based string retrieval was introduced by Muthukrishnan [22], who proposed and
solved various problems but not top-k document retrieval. The first data structure for this problem, under the term fre-
quency measure and using O (n log n) words of space, was given by Hon et al. [10]. Later, Hon et al. [12,13] introduced
a linear space structure (O (n) words), that works for general weight functions as described earlier, with query time
O (p + k log k). This was improved to O (p + k) [24,25], and finally to the optimal O (k) [32], all using linear space. Those
times are in addition to the time for finding the locus node of P , locus(P), in the generalized suffix tree of D, GST. The
problem has also been studied in scenarios where less than linear space (i.e., o(n log n) bits) can be used. For example, it
is possible to solve the problem efficiently using n log σ + o(n logσ) bits [27,33], where σ is the alphabet size of the text
(thus n logσ bits are needed to represent the text itself). The results are mostly tailored to the term frequency measure
of relevance, and achieve times of the form O (k polylog n). See [9,12,14,23,28] for more details. Later, Munro et al. [19,21]
showed that an n logσ + o(n logσ) bits space index can be designed for term-proximity based relevance measures as well.
Also see [1,12] for its extensions to the case where the query consists of two or more patterns.

2. The top-k framework

This section briefly describes the linear-space framework of Hon et al. [12] for top-k queries. The generalized suffix tree
(GST) of a document collection D = {d1, d2, d3, . . . , dD} is the combined compact trie of all the non-empty suffixes of all
the documents [34]. The total number of leaves in GST is the same as the total length n of all the documents. For each
node j in GST, pref ix(j) is the string obtained by concatenating the edge labels on the path from the root to node j. The
highest node v satisfying that P is a prefix of pref ix(v) is called the locus of P and denoted locus(P) = v .

Let �i represent the ith leftmost leaf node in GST. We say that a node is marked with a document d if it is either a leaf
node whose corresponding suffix belongs to d, or it is the lowest common ancestor (LCA) of two such leaves. This implies
that the number of nodes marked with document d is exactly equal to the number of nodes in the suffix tree of d (at most
2|d|). A node can be marked with multiple documents. For each node j and each of its marking documents d, define a link
to be a quadruple < doc = d, weight, (origin = j, target) >, where weight = w(pref ix(j)) and target is the lowest proper
ancestor of node j marked with d (a dummy parent of the root node is added, marked with all the documents). See Fig. 1
for an illustration. Since the number of links with document doc = d is at most 2|d|, the total number of links is at most ∑D

i=1 2|di | ≤ 2n. The following is a crucial observation by Hon et al. [12].

Lemma 1. For each document d that contains a pattern P , there is a unique link with origin in the subtree of locus(P), a proper
ancestor of locus(P) as its target, and weight w(P , d).

We say that a link is stabbed by a node j if its origin is in the subtree of j (j itself included) and its target is a proper
ancestor of j. Therefore, the problem of finding the kth most relevant document for P can be reduced to finding the kth
highest weighted link stabbed by locus(P).

J. Munro et al. / Theoretical Computer Science 812 (2020) 149–159 151
Fig. 1. An illustration of GST and links in the top-k framework [12].

3. Super-linear space structure

In this section we start by introducing a basic data structure that uses O (n log n) words and answers queries in O (log n)

time. Then we enhance it to a structure that uses O (n log1+ε n) words, for any constant ε > 0, and O (log n/ log logn) time.
The basic structure will be used in Section 4 to achieve linear space within the same time, whereas the enhanced one will
be reduced to O (n logε n) words. In Section 5 we show how the linear-space structure can be improved to answer queries
in time O (log k) and the enhanced structure in time O (log k/ log log n), thus reaching our final results.

3.1. The basic structure

We prove the following result:

Lemma 2. Given the GST of a text collection of total length n, we can build an O (n log n)-word structure that, given locus(P) and
k, answers the document selection query in time O (logn).

Let N represent the set of nodes in GST and S represent the set of links < doc, weight, (origin, target) > in GST, as
described in Section 2. Next we construct a balanced binary tree T of |S| leaves, so that the ith highest weighted link
(ties broken arbitrarily) is associated with the ith leftmost leaf of T . Notice that n ≤ |S| ≤ 2n. We use S(x) to denote the
set of links associated with the leaves in the subtree of node x ∈ T . The intuition behind our algorithm is that if we can
quickly count the number of links in any S(x) stabbed by locus(P), then the kth smallest weighted link among all links
in S stabbed by locus(P) can be easily computed via a root to leaf traversal of T using O (log n) number of such counting
queries. We now present the details.

Let N(x) denote the set of nodes in GST that are (i) either the origin or the target of a link in S(x), or (ii) the LCA of
two such nodes. Clearly |N(x)| = �(|S(x)|) = �(n/2depth(x)), where depth(x) is the number of ancestors of x (depth of root is
0). With every node x ∈ T , we associate a tree structure GST(x), which is the subtree of GST obtained by retaining only the
nodes in N(x), so that node v is the parent of node w in GST(x) iff v is the lowest proper ancestor of w in GST that also
belongs to N(x). See Fig. 2 for an illustration. The number of nodes and edges in GST(x) is �(n/2depth(x)). Notice that the
same node w ∈ GST may appear in several GST(·)’s. With each node w ∈ GST(x) we associate the following information:

• stab.countx(w): The number of links in S(x) that are stabbed by node w .
• left.ptrx(w): Let xL be the left child of x (in T). Let w L be the highest node in the subtree of w (in GST(x)) that appears

also in GST(xL) (w L can be w itself). Then left.ptrx(w) is a pointer from w ∈ GST(x) to w L ∈ GST(xL). If there exists
no such node w L , then left.ptrx(w) is null.

• right.ptrx(w): Analogous to left.ptrx(w), now considering xR , the right child of x ∈ T , and w R being the highest node in
the subtree of w ∈ GST(x) that appears also in GST(xR).

Note that the space needed for maintaining GST(x) and the associated information is O (n/2depth(x)) words. Added over
all the nodes x ∈ T , the total space occupancy of all GST(·)’s is O (n log n) words. Finally, the following result is crucial for
our data structure (the case of w R and xR is analogous).

Lemma 3. Both w and w L stab the same subset of links of S(xL).

152 J. Munro et al. / Theoretical Computer Science 812 (2020) 149–159
Fig. 2. An illustration of links arranged in the form of a balanced binary search tree. Here the ith leftmost leaf is associated with the ith smallest weighted
link. Node x is associated with GST(x), the subtree of GST induced by the links associated with the leaves under x.

Proof. Otherwise, the target of a link in S(xL) stabbing w L but not w would be higher than w L , below w , and belong to
GST(xL), contradicting the definition of w L . The same happens with the source of a link stabbing w but not w L . �

3.2. Query algorithm for document selection

Assume locus(P) is given. Notice that the tree GST(root) associated with the root of T is the same GST of the
collection. Therefore, stab.countroot(locus(P)) gives the number of documents containing P . If the count is less than k,
there is no kth document to select. Otherwise, let L∗ be the kth highest weighted link stabbed by locus(P). Our query
algorithm traverses T top-down, starting from root and ending at the leaf node associated with link L∗ . Then it reports the
document d∗ corresponding to L∗ .

In our query algorithm, we use x to denote a node in T , w to denote a node in GST(x) and K to denote an integer
≤ k. First we initialize x to the root of T , w to locus(P) and K to k. This establishes the invariant that we have to return
the K th highest weighted link in S(x) stabbed by w . Let xL and xR be the left and right children of x. Then we obtain the
nodes w L ∈ GST(xL) and w R ∈ GST(xR) pointed by left.ptrx(w) and right.ptrx(w), respectively. The following values are then
computed in constant time.

• c = stab.countx(w), the number of links in S(x) stabbed by w .
• cL = stab.countxL (w L), the number of links in S(xL) stabbed by w (or w L).
• cR = stab.countxR (w R), the number of links in S(xR) stabbed by w (or w R).

Notice that c = cL + cR . If cL ≥ K then, by Lemma 3, the K th link below S(x) (or S(xL)) stabbed by w ∈ GST(x) is
the same as the K th link below S(xL) stabbed by w L ∈ GST(xL). Therefore, we maintain the invariant if we continue the
traversal in the subtree of x ← xL with GST(xL) node w ← w L . On the other hand, if cL < K , then by Lemma 3 the K th
link stabbed by w below S(x) is the same as the (K − cL)th link below S(xR) stabbed by w R ∈ GST(xR). In this case,
we maintain the invariant if we continue the traversal in the subtree of x ← xR with GST(xR) node w ← w R and with
K ← K − cL . We terminate the algorithm when x is a leaf, thus K = 1 and x represents L∗ . As the height of T is O (log n)

and the time spent at each node is constant, the total query time is O (log n) and Lemma 2 is proved.

3.3. An enhanced structure

We now prove the following result, which holds in the RAM model of computation, with a computer word of w =
�(log n) bits.

Lemma 4. Given the GST of a text collection of total length n and any constant 0 < ε ≤ 1, we can build an O (n log1+ε n)-word
structure that, given locus(P) and k, answers the document selection query in time O (logn/ log log n).

In order to speed up the structure of Lemma 2, we will choose a step s = ε log log n and build the GST(x) structures
only for nodes x ∈ T whose depth is a multiple of s. Each node w ∈ GST(x) for the selected nodes x will store sufficient
information for the query algorithm to jump directly to the corresponding node x′ at depth depth(x′) = depth(x) + s, instead
of just to xL or xR .

J. Munro et al. / Theoretical Computer Science 812 (2020) 149–159 153
Given x, x′ ∈ T as above (x′ in the subtree of x) and w ∈ GST(x), we define wx′ as the highest node in the subtree of w
that appears also in GST(x′). Let us call x1, x2, . . . , x2s the nodes at depth depth(x) + s that descend from x (or the leaves
below x, if they have depth less than depth(x) + s), ordered left to right in T (i.e., from highest to lowest weights in S(xi)).

Associated to each node w ∈ GST(x), we store 2s pointers ptrx(w)[i] = wxi . We also store the 2s cumulative values
accx(w)[i] = ∑i

j=1 stab.countx j (wx j); note that accx(w)[2s] = stab.countx(w). We will store those accx(w) values in a fusion
tree [7], which takes O (2s) = O (logε n) words of space and solves predecessor queries in accx(w) in constant time. The
space is the same used by array ptrx(w), which added over all the GST(·)’s is O (n log1+ε n) words (even if only one level
out of s in T stores GST(·) structures).

Queries now proceed as in Section 3.2, but now we use the fusion tree to determine, given w ∈ GST(x), which is the
node xi ∈ T that contains the K th link below S(x) stabbed by w . Therefore we can move directly from x to xi and from
w ∈ GST(x) to wi ∈ GST(xi), where wi = ptrx(w)[i]. We also update K ← K − accx(w)[i − 1] (assume accx(w)[0] = 0). Thus
we complete the query in O ((log n)/s) = O (log n/(ε log log n)) constant-time steps and Lemma 4 is proved.

4. Linear space structure

In this section we build on the basic structure of Lemma 2 in order to achieve linear space and logarithmic query time.
At the end, we reduce the space of the enhanced structure to O (n logε n). The results hold under the RAM model.

Lemma 5. Given the GST of a text collection of total length n, we can build an O (n)-word structure that, given locus(P) and k,
answers the document selection query in time O (logn).

To achieve linear space, we replace some of our data structures by succinct ones. We will measure the space in bits,
aiming at using O (n log n) bits overall. The binary tree T can be maintained in O (n log n) bits, where each internal node x
stores an O (log n)-bit pointer to the corresponding tree GST(x) and each leaf stores the document identifier corresponding
to the associated link. The global GST can also be maintained in O (n log n) bits. Therefore, the space-consuming components
are the GST(·)’s and their associated information.

Using well-known succinct data structures [26], the GST(x) tree topologies can be represented in O (1) bits per node
(i.e., O (n logn) bits overall) with constant-time support of all the basic navigational operations required in our algorithm.
We refer to any node w ∈ GST(x) by its pre-order rank, that is, node j means the node with pre-order rank j. The pre-order
rank of the root node of any GST(x) is 1. Next we show how to encode the remaining information associated with each
node in GST(x) using O (1) bits per node.

4.1. Encoding stab.countx(j)

We note that stab.countx(j) is exactly equal to the number of links of S(x) associated with GST(x) that originate in the
subtree of j minus the number of links in S(x) that target any node in the subtree of j (j belongs to its subtree). We encode
this information in two bit vectors: Bx = 10α1 10α2 10α3 . . . and B ′

x = 10β1 10β2 10β3 . . ., where α j (resp., β j) is the number
of links of S(x) originating from (resp., targeting at) node j in GST(x). We augment Bx and B ′

x with structures supporting
constant-time rank/select queries [18]. Notice that

∑
α j = ∑

β j = O (|S(x)|) = O (|GST(x)|). Therefore, both Bx and B ′
x can

be represented in O (1) bits per node.
Now we can compute stab.countx(j) for any j in O (1) time as follows: find the rightmost leaf node j′ in the subtree

of j in O (1) time using the succinct tree representation of GST(x) [26]. Then the number no of links originating from the
subtree of j is equal to the number of 0-bits between the jth and (j′ + 1)th 1-bit in Bx (because j and j′ are preorder
numbers). Similarly, the number nt of links targeted at any node in the subtree of j is equal to the number of 0-bits
between the jth and (j′ + 1)th 1-bits in B ′

x . Using rank/select operations on Bx and B ′
x , no and nt are computed in O (1)

time and stab.countx(j) is given by no − nt .

4.2. Encoding left.ptrx(j) and right.ptrx(j)

We show how to encode left.ptrx(·) for all nodes in GST(x); right.ptrx(j) is symmetric. The idea is to maintain a bit
vector L P such that L P [j] = 1 iff there exists a node jL ∈ GST(xL) such that both j ∈ GST(x) and jL ∈ GST(xL) represent
the same node in GST. We add constant-time rank/select data structures [18] on L P . Since the length of L P is equal to the
number of nodes in GST(x), its space occupancy is O (1) bits per node.

Now, for any given node j ∈ GST(x), the node jL ∈ GST(xL) to which left.ptrx(j) points is the (unique) highest descendant
of j that is marked in L P , thus it can be identified by (1) finding the position j∗ of the leftmost 1-bit in L P [j . . .]; (2)
checking if node j∗ is in the subtree of node j in GST(x); (3) if so, then jL ∈ GST(xL) is equal to the number of 1’s in
L P [1... j∗], otherwise, jL is null. All these operations require constant time, either using the succinct tree operations or the
rank/select data structures. This works because all the nodes in GST(xL) appear in GST(x), in the same order (pre-order).

In summary, the space requirement of our encoding scheme is O (1) bits per node in any GST(x), thus adding to
O (n log n) bits. The query algorithm, as well as its time complexity, remain the same. This completes the proof of Lemma 5.

154 J. Munro et al. / Theoretical Computer Science 812 (2020) 149–159
4.3. Reducing space of the enhanced structure

The space of the enhanced structure of Section 3.3 can be similarly reduced to O (n logε n) words, obtaining the following
result.

Lemma 6. Given the GST of a text collection of total length n and a constant ε > 0, we can build an O (n logε n)-word structure that,
given locus(P) and k, answers the document selection query in time O (logn/ log log n).

For this sake, recalling the definition of x1, . . . , x2s of Section 3.3, we will maintain bit vectors L Pi for i = 1 to 2s , so that
L Pi[j] = 1 iff there exists a node ji ∈ GST(xi) such that both j ∈ GST(x) and ji ∈ GST(xi) represent the same node in GST.
Then each array entry ptrx(j)[i] is computed using L Pi as in Section 4.2. The total space used by all the L Pi bit vectors is
O (2s) = O (logε n) bits per node, adding up to O (n log1+ε n) bits in total.

To compute accx(j)[i], we store bitmaps Bx,1, . . . , Bx,2s and B ′
x,1, . . . , B

′
x,2s , analogous to B and B ′ of Section 4.1. In this

case, Bx,i = 10αi
1 10αi

2 10αi
3 . . ., so that αi

j = ∑i
r=1 s(r), where s(r) is the number of links of S(xr) originating from node

ptrx(j)[i] ∈ GST(xr), and B ′
x,i = 10β i

1 10β i
2 10β i

3 . . ., so that β i
j = ∑i

r=1 t(r), where t(r) is the number of links of S(xr) targeting
at node ptrx(j)[i] ∈ GST(xr). Then, it holds accx(j)[i] = αi

j − β i
j , which is computed in constant time using rank/select

operations. Since it holds αi
j ≤ α j and β i

j ≤ β j for all i values, the total space of these 2s = logε n bitmaps adds up to
O (n log1+ε n) bits.

To carry out predecessor searches on the virtual vector accx(j), we use succinct SB-trees [8, Lemma 3.3]. Given constant-
time access to any accx(j)[i], this structure provides predecessor searches in O (1 + log(2s)/ log log n) = O (1) time and use
O (2s log log n) = O (logε n) bits per node (by adjusting ε). Thus the total space is O (n log1+ε n) bits as well. This concludes
the proof of Lemma 6.

5. Achieving O (log k) query time and better

In this section we first build on the linear-space data structure of Lemma 5 in order to improve its query time to O (log k).
At the end, we show that the result extends to our superlinear-space data structure of Lemma 6, improving its query time
to O (log k/ log log n). Thus we start by proving the following theorem.

Theorem 1. A collection D of documents can be preprocessed into a linear-space data structure that can answer any document
selection query (P , k) in time O (logk), given the locus of pattern P in the generalized suffix tree of D.

Notice that the query time O (log n) in Lemma 5 can be written as O (log k) for k >
√

n. Therefore, we turn our attention
to the case where k ≤ √

n. First, we derive a space-efficient structure D S(δ), which can answer document selection queries
faster, but only for values of k below a predefined parameter δ ≤ √

n. More precisely, structure D S(δ) will satisfy the
following properties:

Lemma 7. The structure D S(δ) uses O (n(log δ + log log n)) bits of space and can answer document selection queries in time O (logδ +
log log n), for k ≤ δ ≤ √

n.

To obtain the result in Theorem 1, we maintain structures D S(δi) with δi = 	n1/2i
 for i = 1, 2, 3, . . . , r, where δr+1 ≤√
log n < δr (therefore r < log log n). The total space needed is O (n

∑r
i=1(log δi + log log n)) = O (n log n) bits (O (n) words).

When k comes as a query, if k > δr+1, we first find h, where δh+1 < k ≤ δh and obtain the answer using D S(δh). The resulting
time is O (log δh + log log n) = O (log k). The case where k < δr+1 is handled separately using other structures in O (1) time
(Section 5.2). We now describe the details of D S(δ).

5.1. Structure D S(δ)

The first step is to identify certain nodes in GST as marked nodes and prime nodes, based on a parameter g = 	δ log n

called the grouping factor. Every gth leftmost leaf is marked, and the LCA of every two consecutive marked leaves is also
marked. Therefore, the number of marked nodes is �(n/g). Nodes with their parent marked are prime. A prime node with
at least one marked node in its subtree is a type-1 prime node, otherwise it is a type-2 prime node. Notice that the highest
marked node in the subtree of any node is unique, if it exists. Therefore, except the root node, every marked node j∗ can
be associated with a unique type-1 prime node j′ , which is the first prime node on the path from j∗ to the root. Notice
that a node can be both prime and marked.

Let j′ be a prime node and j∗ be the highest marked node in its subtree (j∗ exists only if j′ is of type-1, and it can
be that j′ = j∗). We use G(j′\ j∗) to represent the subtree of GST rooted at j′ after removing the subtree of j∗ (j∗ is not
removed). With a slight abuse of notation, we use G(j′\ j∗) to represent the set of nodes within G(j′\ j∗) as well. A crucial
result [32] is that, for any prime node j′ , the number of nodes in G(j′\ j∗) is O (g).

J. Munro et al. / Theoretical Computer Science 812 (2020) 149–159 155
Fig. 3. Categorization of Links [32].

We define prime.parent(j) of any node j in GST as the first prime node j′ on the path from j to the root. Note that
j ∈ G(j′\ j∗), otherwise j would be a (strict) descendant of j∗ and its corresponding j′ would be below j∗ .

It is not hard to determine j′ = prime.parent(j) in constant time and O (n) bits, by sampling the prime nodes in a succinct
tree representation and looking for the lowest sampled ancestor of j [31, Lemma 4.4].

The structure D S(δ) is a collection of substructures ST R(j′) associated with every prime node j′ in GST. If the input
node locus(P) ∈ G(j′\ j∗) and k ≤ δ, we obtain the answer using ST R(j′) in O (log g) = O (log δ + log log n) time. Based on
the type of j′ , we have two cases; we describe the simpler one first.

5.1.1. ST R(j′) associated with a type-2 prime node j′
The structure can be constructed as follows: take G(j′), the subtree rooted at node j′ , and replace the pre-order rank

of each node j by (j − j′ + 1). Also associate a dummy parent node to the root. Then, among the links defined over GST
(Section 2), choose those that originate from the subtree of j′ and: (1) Assign a new value to its origin and target, which is
its original value minus j′ plus 1. The target of some links can be negative; replace those by 0. (2) Replace the weight by
a rank-space reduced value in [1, O |G(j′)|]. Notice that the number of links chosen is O (|G(j′)|). (3) Let d be its document
identifier. Instead of writing d explicitly in 	log D
 bits, use a pointer to one leaf node in G(j′), using 	log |G(j′)|
 bits,
where the suffix corresponding to that leaf belongs to document d.

In summary, we have a tree of (|G(j′)| + 1) nodes and O (|G(j′)|) links associated with it. The information
(origin, target, document, weight) associated with each link is encoded in O (log |G(j′)|) bits. Then ST R(j′) is the struc-
ture described in Lemma 5 over these nodes and links. The space required is O (|G(j′)| log |G(j′)|) = O (|G(j′)| log g) bits.
We maintain structures ST R(j′) for all type-2 prime nodes j′ in total O (n log g) bits, since a node can be in the subtree of
at most one type-2 prime node.

5.1.2. ST R(j′) associated with a type-1 prime node j′
We first identify the candidate set C(j′) of O (g) links, such that for any k ≤ δ, the kth link stabbed by any node j ∈

G(j′\ j∗) belongs to C(j′). Clearly we can ignore the links that do not originate from the subtree of j′ . The links that do can
be categorized into the following types [32]: near-links are stabbed by j∗ , but not by j′; far-links are stabbed by both j∗ and
j′; small-links are targeted at a node in the subtree of j∗; and fringe-links are the others (see Fig. 3).

We include all near-links and fringe-links into C(j′), which are O (g) in number [32, Lemma 8]. All small-links can be
ignored as none of them is stabbed by any node in G(j′\ j∗). Notice that if any node in G(j′\ j∗) stabs a far-link, it indeed
stabs all far-links. Therefore, it is sufficient to insert the top-δ far-links into C(j′). Thus, we have O (g) links in C(j′) overall.

Now we perform a rank-space reduction of pre-order rank of nodes in G(j′\ j∗) as well as of the information associated
with the links in C(j′), as follows:

• The target of those links targeting at any proper ancestor of j′ is changed to a dummy parent node of j′ . Similarly, the
origin of all those links originating in the subtree of j∗ is changed to node j∗ .

• The pre-order rank of all those nodes in G(j′\ j∗), and the corresponding origin and target values of links in C(j′),
are changed to a rank-space reduced value in [0, |G(j′\ j∗)|]. Notice that the new pre-order rank of j′ is 1 and
that of its dummy parent node is 0. We remark that this mapping (and remapping) can be stored separately in
O (|G(j′\ j∗)| log |G(j′\ j∗)|) bits.

• The weights of the links are also replaced by rank-space reduced values.

156 J. Munro et al. / Theoretical Computer Science 812 (2020) 149–159
• Let L be a near- or fringe-link in C(j′) with d its corresponding document. Then there must be at least one leaf �
in G(j′\ j∗) where the suffix corresponding to � belongs to d. Therefore, instead of representing d, we maintain a
pointer to �, which takes only O (log g) bits. This trick will not work for far-links, as the existence of such a leaf node
is not guaranteed. Therefore, we spend log D bits for each far-link, which is still affordable because there are only
O (δ) = O (g/ log n) far-links.

In summary, we have a tree of (|G(j′\ j∗)| + 1) = O (g) nodes with O (g) links associated with it. Then ST R(j′) is the
structure described in Lemma 5 over these nodes and links. The space required is O (g log g) bits. As the number of type-1
prime nodes is O (n/g), the total space to maintain ST R(j′) for all type-2 primes nodes j′ is O (n log g) bits.

5.1.3. Query answering
Given node j = locus(P), we find j′ = prime.parent(j). Then we map node j to the corresponding node in ST R(j′)

and obtain the answer by querying ST R(j′), in O (log g) = O (log δ + log log n) time. The answer may come in the form of
a node in ST R(j′), which is mapped back to GST in order to obtain the associated document. This completes the proof of
Lemma 7.

5.2. Structure for k ≤ δr+1

First, identify the marked and prime nodes in GST with g = δr+1 log n. At every prime node j′ , we explicitly maintain
the candidate set C(j′). This takes O (n)-word space. Then for any k ≤ δr+1, the kth link stabbed by node j can be encoded
as a pointer to the corresponding entry in C(prime.parent(j′)) using 	log |C(prime.parent(j′))|
 = O (log g) = O (log log n)

bits. Therefore, the answers for all k ∈ [1, δr+1] for all nodes in GST can be maintained in additional O (n · δr+1 log log n) =
o(n logn) bits of space. Now the kth link (and its document) stabbed by any query node locus(P) can be obtained from
C(prime.parent(locus(P))) in O (1) time.

5.3. Speeding Up the enhanced structure

The same construction used above can be used to speed up our superlinear-space structure of Lemma 6, simply by
using it instead of the linear-space one of Lemma 5 to implement the structures ST R(j′). The space O (n logε n) words,
or O (n log1+ε n) bits, will become O (g log g logε n) inside the structures ST R(j′), because we will maintain the sampling
step s = ε log log n depending on n, not on g , and use the succinct SB-trees with parameter n, not g . As a result, the total
space per value of δ will be O (n log g logε n) bits, and added over all the values of δ we will have O (n logε n

∑r
i=1(log δi +

log log n)) = O (n log1+ε n) bits, or O (n logε n) words. The time, on the other hand, will be O (1 + log δ/(ε log log n)) on D S(δ),
which becomes O (1 + log k/(ε log log n)) in terms of k. We have proved our final result for the superlinear structure.

Theorem 2. A collection D of documents of total length n can be preprocessed into a data structure using O (n logε n) words of space,
for any constant ε > 0, which can answer document selection queries (P , k) in time O (1 + logk/ log log n), given the locus of pattern
P in the generalized suffix tree of D.

6. Lower bounds

In this section we prove two lower bounds. The first shows that it is highly unlikely that an efficient succinct-space
solution for range selection exists. The second shows, under a somewhat weak model, that O (1 + log k/ log log n) is the best
possible time under O (n polylog n) space.

6.1. Hardness of an efficient succinct solution

One could expect to obtain an index using O (n logσ) bits of space, proportional to the n logσ bits needed to store D,
as achieved for the top-k document retrieval problem. We show, however, that this is very unlikely unless a significant
breakthrough in the current state of the art of computational geometry is obtained, specifically on the three-dimensional
orthogonal range reporting problem. The best known space time trade-offs are O (n log1+ε n) space with O (log log n +output)
time, and O (n log n) space with O ((1 + output) logε n) time [4]. Within linear space, the best known time complexities are
O (n2/3 + output) [16] and O ((n1/3 + output) log n) [30].

Theorem 3. If there exists a data structure using O (n logσ + D polylog n) bits with query time O (|P | polylogn) for document se-
lection (σ being the alphabet size), then there exists a linear-space data structure that can answer three-dimensional range reporting
queries in poly-logarithmic time per query plus per reported point.

Proof. We reduce from the position restricted substring searching (PRSS) problem, which is defined as follows: Index a
given a text T [1, n] over an alphabet set [1, σ], such that whenever a pattern P (of length p) and a range [x, y] comes as a

J. Munro et al. / Theoretical Computer Science 812 (2020) 149–159 157
query, all those occx,y occurrences of P in T [x . . . y] can be reported efficiently. Many indexes offering different space and
query time trade-offs exist [2,17,29].

Hon et al. [11] proved that answering PRSS queries in polylog time and succinct space is at least as hard as performing
3-dimensional orthogonal range reporting in polylog time and linear space. They also showed that if the query pattern is
longer than α = 	log2+ε n
 for some predefined constant ε > 0, an efficient succinct space index can be designed. Therefore,
the harder case arises when p < α. We now show how to answer PRSS queries with p < α via document selection queries
on the following set: D = {d1, d2, d3, ..., d	n/α
}, where di = T [1 + (i − 1)α...(i + 1)α] and |di | = 2α, except possibly for
d	n/α
−1 and d	n/α
 . The score function w(P , di) is i if P appears at least once in di and 0 otherwise. Notice that an
occurrence of any pattern of length at most α overlaps with at least one and at most two documents in D. Therefore,
the previously defined PRSS query on T can be answered via multiple document selection queries on D as follows: first
report all those documents di with w(P , di) ∈ [x/α
, �y/α + 2�]. Then, within all those reported documents, look for other
occurrences of P via an exhaustive scanning. If the time for document selection queries is polylog in the total length of all
documents in D (which is at most 2n), then the time for PRSS query is also bounded by O ((p +occx,y)polylog n). Therefore,
answering document selection queries in polylog time and succinct space is at least as hard as answering PRSS queries in
polylog time and succinct space. �
6.2. A weak lower bound for range selection time

In this section we show that O (1 + log k/ log log n) is the best possible time unless we use more than O (n′ polylog n)

space, where n′ is the number of internal nodes in GST. In most text families, n′ will be �(n), but there are cases, for
example on very repetitive text collections, where it may very well be that n′ = o(n).

Theorem 4. Any data structure using O (n′ polylog n) words of space to solve the document selection problem must have query time
�(1 + log k/ log logn), where n is the collection size and n′ is the number of internal nodes in its GST.

Proof. We reduce from the prefix selection problem [15], which has this lower-bound complexity within O (n polylog n) space.
In this problem we have an array A[1, n] and queries ask for the kth largest element in some prefix A[1, i], for any k and i.
The query time of O (1 + log k/ log log n) is achievable using linear space [5].

Now consider the document set formed by D = n documents where document di = an−ib. The pattern Pi = an−ib appears
in documents d1 to di . We will use O (n) space to precompute the locus nodes of all patterns Pi in GST. Finally, we assign
weight A[i] to the document di .

Then, A[j] is the kth largest element in A[1, i] iff d j is the kth heaviest document among d1, . . . , di , that is, among the
documents where pattern Pi appears. The document selection query gives the answer to the range selection query.

Note that the total length of the documents is �(n2), thus the n values are different in both problems. However, the
GST of this particular collection has n′ = �(n) internal nodes. Note log |GST| = �(log n).

Thus, if we could solve document selection queries in time o(log k/ log log n) within O (n′ polylog n) words of space in any
text collection, we would have a tool to solve any arbitrary prefix selection query in A[1, n] in o(log k/ log log n) time and
within O (n polylog n) words of space, a contradiction. �
7. Further space-time tradeoffs

In this section, we present some additional results that complement the lower bounds of the previous sections. As for
the space lower bound, we show that O (n) bits of space are sufficient if we accept a small error in the ranking. As for the
time, we show that constant-time is possible if we spend space O (n1+ε) for any constant ε > 0.

7.1. Efficient approximate term-frequency based retrieval

In this section, we show how to obtain efficient data structures, both in terms of space as well as the query time, for the
case where the ranking function w(P , d) = TF∗(P , d), where TF∗(P , d) is an approximation of term-frequency TF(P , d) (the
number of occurrences of P in document d). Specifically,

0 ≤ TF∗(P ,d) − TF(P ,d) ≤ 2ε log n, for any constant ε > 0

Our main result is summarized below.

Theorem 5. A collection D of documents of total length n can be preprocessed into a data structure using O (n) bits of space, which can
answer the kth most relevant document for any pattern P w.r.t. the ranking function TF∗(P , ·) in time (logk), given the suffix range of
pattern P in a generalized suffix tree of D.

Proof. Our idea is to first construct a sampled generalized suffix tree of D (denoted by GSTs) as follows: GSTs is a com-
bined compact trie of every (ε log n)th lexicographically smallest suffixes of all the documents in D. Therefore GSTs will be

158 J. Munro et al. / Theoretical Computer Science 812 (2020) 149–159
a trie of (n/ log n) nodes. We then apply our linear space framework over GSTs and obtain an O (n/ log n) words (i.e., O (n)

bits) index. We also maintain a bitmap B[1...n] such that B[i] = 1 iff the ith lexicographically smallest suffix in GST belongs
to GSTs . Structures supporting rank/select queries over B in constant time is also maintained, in additional o(n) bits.

To find the kth link stabbed by locus(P), we first identify the suffix range [sp, ep] of P . Then identify sp′ and ep′ ,
where sp′ is 1 plus the number of 1’s in B[1...sp − 1] and ep′ is the number of 1’s in B[1...ep]. This step requires only
constant time. Now, the kth index stabbed by the LCA of sp′th and ep′th leaves in GSTs is our answer and can be computed
in O (log k) time using our O (n) bit index. This works because the number of suffixes of any document d in GSTs prefixed
by P is at most TF(P , d)/(ε log n) and at least TF(P , d)/(ε log n) − 2. �

The following result can be obtained by applying the framework by Shah et al. [32] over GSTs .

Theorem 6. A collection D of documents of total length n can be preprocessed into a data structure using O (n) bits of space, which
can retrieve the top-k most relevant documents for any pattern P w.r.t. the ranking function TF∗(P , ·) in time O (k), given the suffix
range of pattern P in a generalized suffix tree of D.

7.2. A constant-query-time index

We present the following result in this section.

Theorem 7. A collection D of documents of total length n can be preprocessed into a data structure using O (n1+ε) words of space,
for any constant ε > 0, which can answer document selection queries (P , k) in constant time, given the locus of pattern P in the
generalized suffix tree of D.

Proof. The result can be obtained by several simple modifications of our super-linear space structure described in Section 3.
First, increase the fan out of the basic tree structure to �(nε) instead of limiting by 2. Thus the tree height becomes a
constant and the overall space for the associated information will be linear. Before introducing an additional data structure,
we briefly describe how the query algorithm changes. It is again a root to leaf traversal of T . Let x be a node in T and w
be a node in GST(x). Then to find the K th link stabbed by w , we do the following. For i = 1, 2, 3, ..., degree(x), find

• xi , the ith leftmost child of x
• wi , the node in GST(xi) corresponding to w in GST(x)
• stab.countxi (wi)

Next we compute the smallest c such that
∑c

i=1stab.countxi (wi) ≥ K . Then, instead of asking for the K th link stabbed
by w , it is equivalent to ask for the (

∑c
i=1stab.countxi (wi) − K)th link stabbed by wc . However, the above steps require

O (degree(x)) = O (nε) time, and so does the total query time.
We now show how to achieve constant query time by associating the following information with every node w (as

described above). Store an array Aw [1...nε], such that Aw [i] =stab.countx(w). Also maintain another array A′
w , where

A′
w [i] = ∑i

j=1 Aw [j]. We then maintain a predecessor search structure over A′
w with constant query time. Notice that

there exists such a structure, requiring quadratic space [6]. Therefore by associating an O (n2ε) space structure with w , the
step where we identify wc can be performed in constant time via a single predecessor search query on A′

w . In other-words,
by associating an O (n2ε) space structure with every node in every GST(·), document selection queries can be answered in
constant time. By replacing 2ε by ε , we obtain Theorem 7. �
8. Concluding remarks

We have addressed for the first time the problem of finding the kth document most relevant for a pattern query P
in a collection D of string documents. Given the locus node of P in the generalized suffix tree of D, we show how to
solve the problem in O (log k) time using a linear-space data structure. By using slightly super-linear space, O (n logε n)

for any constant ε > 0, the time decreases to O (1 + log k/ log log n). We remark that our structures can be constructed in
O (n polylog n) time.1 We also prove that it is highly unlikely that a structure using o(n) words with query time O (polylog n)

exists for this problem, and that selection time O (1 + log k/ log log n) is optimal within space O (|GST| polylogn). The ideas
behind our data structure are novel and might find other applications.

A remaining open issue is whether the query time O (log k/ log log n) is optimal in the broader scenario where we can
use O (n polylog n) space. While for most practical text collections the lower bound is useful as is (since |GST| = �(n) in
most text families), we believe that it might be significantly harder to obtain the stronger lower bound. It is not even clear
if it actually holds, as for example in the case of top-k most frequent elements in a range, the problem on lexicographical

1 Here we assume that w(P , d) can be computed in time O (t polylog t) time, where t is the number of occurrences of P in Td .

J. Munro et al. / Theoretical Computer Science 812 (2020) 149–159 159
intervals in a suffix array (which form a hierarchy) can be solved efficiently [32], whereas the problem on arbitrary arrays
is most likely harder [3].

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] S. Biswas, A. Ganguly, R. Shah, S.V. Thankachan, Ranked document retrieval for multiple patterns, Theor. Comput. Sci. 746 (2018) 98–111.
[2] S. Biswas, T.-H. Ku, R. Shah, S.V. Thankachan, Position-restricted substring searching over small alphabets, J. Discret. Algorithms 46–47 (2017) 36–39.
[3] T.M. Chan, S. Durocher, K. Green Larsen, J. Morrison, B.T. Wilkinson, Linear-space data structures for range mode query in arrays, Theory Comput. Syst.

55 (4) (2014) 719–741.
[4] Timothy M. Chan, Kasper Green Larsen, Mihai Patrascu, Orthogonal range searching on the ram, revisited, in: Proceedings of the 27th ACM Symposium

on Computational Geometry, Paris, France, June 13–15, 2011, pp. 1–10.
[5] Timothy M. Chan, Bryan T. Wilkinson, Adaptive and approximate orthogonal range counting, ACM Trans. Algorithms 12 (4) (2016) 45:1–45:15.
[6] M. Crochemore, C.S. Iliopoulos, M. Kubica, M. Sohel Rahman, G. Tischler, T. Walen, Improved algorithms for the range next value problem and applica-

tions, Theor. Comput. Sci. 434 (2012) 23–34.
[7] M.L. Fredman, D.E. Willard, Surpassing the information theoretic barrier with fusion trees, J. Comput. Syst. Sci. 47 (1993) 424–436.
[8] R. Grossi, A. Orlandi, R. Raman, S.S. Rao, More haste, less waste: lowering the redundancy in fully indexable dictionaries, in: Proc. 26th International

Symposium on Theoretical Aspects of Computer Science (STACS), 2009, pp. 517–528.
[9] W.-K. Hon, M. Patil, R. Shah, S.V. Thankachan, J.S. Vitter, Indexes for document retrieval with relevance, in: Space-Efficient Data Structures, Streams,

and Algorithms, 2013, pp. 351–362.
[10] W.-K. Hon, M. Patil, R. Shah, S.-B. Wu, Efficient index for retrieving top-k most frequent documents, J. Discret. Algorithms 8 (4) (2010) 402–417.
[11] W.-K. Hon, R. Shah, S.V. Thankachan, J.S. Vitter, On position restricted substring searching in succinct space, J. Discret. Algorithms 17 (2012) 109–114.
[12] W.-K. Hon, R. Shah, S.V. Thankachan, J.S. Vitter, Space-efficient frameworks for top-k string retrieval, J. ACM 61 (2) (2014) 9.
[13] W.-K. Hon, R. Shah, J.S. Vitter, Space-efficient framework for top-k string retrieval problems, in: Proc. 50th IEEE Symposium on Foundations of Computer

Science (FOCS), 2009, pp. 713–722.
[14] Wing-Kai Hon, Sharma V. Thankachan, Rahul Shah, Jeffrey Scott Vitter, Faster compressed top-k document retrieval, in: 2013 Data Compression Con-

ference, DCC 2013, Snowbird, UT, USA, March 20–22, 2013, pp. 341–350.
[15] A.G. Jørgensen, K.G. Larsen, Range selection and median: tight cell probe lower bounds and adaptive data structures, in: Proc. 22nd Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), 2011, pp. 805–813.
[16] D.T. Lee, C.K. Wong, Worst-case analysis for region and partial region searches in multidimensional binary search trees and balanced quad trees, Acta

Inform. 9 (1977) 23–29.
[17] V. Mäkinen, G. Navarro, Position-restricted substring searching, in: Proc. 7th Latin American Symposium on Theoretical Informatics (LATIN), 2006,

pp. 703–714.
[18] J.I. Munro, Tables, in: Proc. 16th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), 1996, pp. 37–42.
[19] J.I. Munro, G. Navarro, J.S. Nielsen, R. Shah, S.V. Thankachan, Top-k term-proximity in succinct space, Algorithmica 78 (2) (2017) 379–393.
[20] J.I. Munro, G. Navarro, R. Shah, S.V. Thankachan, Ranked document selection, in: Proc. 15th Scandinavian Symposium on Algorithmic Theory (SWAT),

2014, pp. 344–356.
[21] J. Ian Munro, Gonzalo Navarro, Jesper Sindahl Nielsen, Rahul Shah, Sharma V. Thankachan, Top- k term-proximity in succinct space, in: Algorithms and

Computation - 25th International Symposium, Proceedings, ISAAC 2014, Jeonju, Korea, December 15–17, 2014, pp. 169–180.
[22] S. Muthukrishnan, Efficient algorithms for document retrieval problems, in: Proc. 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),

2002, pp. 657–666.
[23] G. Navarro, Spaces, trees and colors: the algorithmic landscape of document retrieval on sequences, ACM Comput. Surv. 46 (4) (2014), article 52.
[24] G. Navarro, Y. Nekrich, Top-k document retrieval in optimal time and linear space, in: Proc. 23rd Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), 2012, pp. 1066–1078.
[25] G. Navarro, Y. Nekrich, Time-optimal top-k document retrieval, SIAM J. Comput. 46 (1) (2017) 89–113.
[26] G. Navarro, K. Sadakane, Fully-functional static and dynamic succinct trees, ACM Trans. Algorithms 10 (3) (2014), article 16.
[27] G. Navarro, S.V. Thankachan, Faster top-k document retrieval in optimal space, in: Proc. 20th International Symposium on String Processing and

Information Retrieval (SPIRE), 2013, pp. 255–262.
[28] G. Navarro, S.V. Thankachan, New space/time tradeoffs for top-k document retrieval on sequences, Theor. Comput. Sci. 542 (2014) 83–97.
[29] Y. Nekrich, G. Navarro, Sorted range reporting, in: Proc. 13th Scandinavian Symposium on Algorithmic Theory (SWAT), 2012, pp. 271–282.
[30] Y. Okajima, K. Maruyama, Faster linear-space orthogonal range searching in arbitrary dimensions, in: Proc. 17th Workshop on Algorithm Engineering

and Experiments (ALENEX), 2015, pp. 82–93.
[31] L. Russo, G. Navarro, A. Oliveira, Fully-compressed suffix trees, ACM Trans. Algorithms 7 (4) (2011), art. 53.
[32] R. Shah, C. Sheng, S.V. Thankachan, J.S. Vitter, Top-k document retrieval in external memory, in: Proc. 21st Annual European Symposium on Algorithms

(ESA), 2013, pp. 803–814.
[33] D. Tsur, Top-k document retrieval in optimal space, Inf. Process. Lett. 113 (12) (2013) 440–443.
[34] P. Weiner, Linear pattern matching algorithms, in: Proc. 14th Annual IEEE Symposium on Switching and Automata Theory, 1973, pp. 1–11.

http://refhub.elsevier.com/S0304-3975(19)30631-0/bib44424C503A6A6F75726E616C732F7463732F4269737761734753543138s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib4269737761734B53543133s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib43444C4D573132s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib43444C4D573132s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib4368616E4C503131s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib4368616E4C503131s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib4368616E573136s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib43726F6368656D6F7265494B5254573132s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib43726F6368656D6F7265494B5254573132s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib46573933s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib474F52523039s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib474F52523039s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib486F6E505354563133s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib486F6E505354563133s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib486F6E5053573130s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib5052535332s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib4A41434D3134s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib4853563039s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib4853563039s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib44424C503A636F6E662F6463632F486F6E5453563133s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib44424C503A636F6E662F6463632F486F6E5453563133s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib4A4C3131s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib4A4C3131s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib4C573737s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib4C573737s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib5052535331s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib5052535331s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib4D756E3936s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib4D756E726F4E4E53543134s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib535741543134s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib535741543134s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib4D756E726F4E4E5354313463s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib4D756E726F4E4E5354313463s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib4D7574683032s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib4D7574683032s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib787878787878s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib4E61766172726F4E3132s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib4E61766172726F4E3132s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib4E4E3137s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib74726565s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib4E61766172726F543133s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib4E61766172726F543133s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib4E54527463733134s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib4E656B726963684E3132s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib4F4D3135s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib4F4D3135s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib524E4F3131s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib4553413133s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib4553413133s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib7473757232303133746F70s1
http://refhub.elsevier.com/S0304-3975(19)30631-0/bib53543733s1

	Ranked document selection
	1 Introduction
	2 The top-k framework
	3 Super-linear space structure
	3.1 The basic structure
	3.2 Query algorithm for document selection
	3.3 An enhanced structure

	4 Linear space structure
	4.1 Encoding stab.countx(j)
	4.2 Encoding left.ptrx(j) and right.ptr x(j)
	4.3 Reducing space of the enhanced structure

	5 Achieving O(k) query time and better
	5.1 Structure DS(δ)
	5.1.1 STR(j') associated with a type-2 prime node j'
	5.1.2 STR(j') associated with a type-1 prime node j'
	5.1.3 Query answering

	5.2 Structure for k <=δr+1
	5.3 Speeding Up the enhanced structure

	6 Lower bounds
	6.1 Hardness of an efﬁcient succinct solution
	6.2 A weak lower bound for range selection time

	7 Further space-time tradeoffs
	7.1 Efﬁcient approximate term-frequency based retrieval
	7.2 A constant-query-time index

	8 Concluding remarks
	References

