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ESTRATEGIA DE MUESTREO BASADO EN TEORIA DE INFORMACIÓN PARA LA
RECUPERACIÓN DE IMÁGENES GEOLOGICAS: MODELAMIENTO, ANÁLISIS, E

IMPLEMENTACIÒN

Las herramientas Geoestadísticas se han convertido en el estándar para la caracteri-
zación de la distribución espacial de estructuras geológicas subterráneas. Sin embargo, el
problema de recuperación de imágenes en regímenes de bajas tasas de adquisición con-
tinúa siendo una tarea desafiante. En la última década, se han desarrollado diversos
métodos alternativos para el diseño experimental en estos regímenes, proveyendo nuevas
perspectivas para alcanzar mejoras en el desempeño en tareas de reconstrucción y carac-
terización de imágenes geológicas. Con base en estos logros, un nuevo desafío recae en
incorporar herramientas del estado del arte en procesamiento de señales y modelamiento
estocástico para mejorar este tipo de problemas de inferencia. Esta tesis ha propuesto un
estudio profundo de problemas inversos a bajas tasas de muestro con un fuerte enfoque
en Geociencias y, en particular, en la reconstrucción de canales binarios de permeabilidad
y tareas de control de ley en el contexto de planificación minera de corto plazo.

En este trabajo, la formulación y análisis experimental del problema de Posicionamiento
Optimo de Sensores (OSP) han sido investigados en el contexto de modelos categóricos
2-D con dependencia espacial. En mineria, este problema intenta encontrar la mejor
forma de distribuir las mediciones para optimizar el muestreo/localización de recursos en
áreas de exploración y explotación minera. Este trabajo ha apuntado a la formalización
del problema OSP para un numero dado de mediciones disponibles. La caracterización de
la incertidumbre es una pieza central de esta formalización. En particular, OSP ha sido
abordado desde la perspectiva de minimizar la incertidumbre remanente y mediante la im-
plementación de algoritmos secuenciales capaces de estimar dicha incertidumbre. El uso
de conceptos de teoría de información (IT ) como entropía condicional ha sido considerado
para caracterizar la incertidumbre relacionada con modelos geológicos condicionados a la
adquisición de datos, y su aplicación en una estrategia de muestreo preferencial orientada
a mejorar la inferencia geoestadística en regímenes de bajas tasas de adquisición. La conje-
tura ha sido que las locaciones basadas en IT -OSP se distribuyen en la zona de transición
de campos aleatorios categóricos, mejorando el desempeño en tareas de recuperación de
imágenes comparado con esquemas de muestro no adaptivos clásicos.

A nivel experimental, un algoritmo secuencial regularizado ha sido implementado para
aproximar el muestro IT -OSP para mostrar las ventajas de este principio. El enfoque
propuesto proporciona realizaciones basadas en simulaciones multipunto con variabilidad
reducida para modelos de facies geológicos categóricos en regímenes de muestreo críticos.
Finalmente, el desempeño de los procesos de inferencia bajo las estrategias de muestreo
propuestas ha sido evaluado en escenarios prácticos realistas para las tareas de control de
ley en el contexto de planificación de corto plazo.
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AN INFORMATION-THEORETIC SAMPLING STRATEGY FOR THE RECOVERY OF
GEOLOGICAL IMAGES: MODELING, ANALYSIS, AND IMPLEMENTATION

Geostatistical tools have become the standard for characterizing the spatial distribution
of geological subsurface structures. However, the problem of image recovery for regimes
with low acquisition rates still poses a complex issue. In the last decade, several alternative
methods for experimental design at low sampling rates has been developed providing
insights into the use of additional prior information to achieve better performance in the
reconstruction and characterization of geological images. Based on these achievements,
a new challenge is to incorporate tools from the state of art in signal processing and
stochastic modeling to improve this kind of inference problems. This thesis proposed
a comprehensive study of inverse problems at low sampling rates with strong focus on
Geosciences and, in particular, for the reconstruction of binary permeability channels and
for grade control tasks in short term planning.

In this work, the formulation and experimental analysis of the Optimal Sensor Place-
ment (OSP) problem has been investigated in the context of categorical 2-D models
with spatial dependence. In the mining exploration and production area, this problem
attempts to find the best way of distributing measurements (or samples) to optimize sens-
ing/locating resources in areas of mining and drilling. This work aims at formalizing the
OSP problem for a given amount of available measurements. The characterization of the
uncertainty is a central piece of this formalization. In particular, the OSP problem is ad-
dressed from the perspective of minimizing the remaining field uncertainty and sequential
algorithms are proposed to solve it.

The use of information theoretic (IT ) concepts such as conditional entropy has been
studied to characterize the uncertainty related to a geological model conditioned to the
acquisition of data (well logs), and its application in a preferential sampling strategy
oriented to improve geostatistical inference at low acquisition rates. The conjecture has
been that locations based on IT -OSP are distributed on transition zones of categorical
fields, achieving better performance in tasks of image recovery than standard classical
non-adaptive sensing schemes.

In the experimental side, a regularized greedy sequential algorithm is proposed to
approximate the proposed IT -OSP sampling to show this principle. The proposed ap-
proach provides realizations based on multiple point simulations with reduced variability
for geological categorical facies models in the critical low sampling regime.

Finally, the performances of different inference processes under the proposed sampling
strategies are evaluated in some practical realistic scenarios for tasks related with grade
control in short term planning.
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"The scientific theorist is not to be envied. For Nature, or more precisely experiment, is
an exorable and not very friendly judge of his work. It never says ’yes’ to a theory. In

the most favorable cases it says ’Maybe’, and in the great majority of cases simply ’No’.
If an experiment agrees with a theory it means for the latter ’Maybe’, and if it does not

agree it means ’No’. Probably every theory will some day experience its ’No’ - most
theories, soon after conception."

Entry into memory book for Professor Kammerling-Onnes, November 11, 1922.
Quoted in Dukas and Hoffmann, Albert Einstein, the Human Side, p.18.

With an everlasting love, In memory of Elba del Carmen Bustos Alarcón
and Hugo Felipe Santibáñez Salazar
and Julia Teresa Salazar Fuentealba

and Blanca Flor Leal Tapia
and Mercedes Tapia Tapia

and C. P. R. E.
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Chapter 1

Introduction

1.1 Context

In complex real scenarios the task of recovering an underlying phenomenon or system (for
example, a variable from an industrial process, or a model or a mathematical object of an
environment to be studied) from measurements could be extremely hard and surrounded
by numerous sources of uncertainty (Boucheron, Stéphane et al, 2005; Chiles and Delfiner,
2012; Cover and Thomas, 2006; Gray and Davisson, 2004; Kay, 1993; Kochenderfer et al,
2015; Moon and Stiriling, 2007; Scheidt and Caers, 2009; Vapnik, 1999). In general, this
task could be formulated as an inverse problem and relies on the interplay between the
acquired information of the system (termed data or measurements), and the assumptions
made about the underlying model, variable or phenomenon to be estimated (typically
summarized in terms of a set of parameters). Some general categories for this problem
are summarized in Table 1.1. Typically, the inverse problem reduces to finding the best
or simplest explanation from the data, describing an attempt to estimate a model or phe-
nomenon coherent with the available evidence (Santamarina and Fratta, 2005). In this
context, prior knowledge about the nature of the problem implies describing in math-
ematical terms the information available about the problem that is complementary to
data.

Table 1.1: Forward and Inverse problems in engineering and science

Forward Problems Inverse Problems
System Design Convolution System identification Deconvolution

Input: Known Known Known Unknown
System: To be designed Known Unknown Known
Output: Predefined Unknown Known Known
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1.1.1 Inverse Problem and Sensing

In an inverse problem, the general relationship between the distribution of the set of
parameters to be estimated (denoted by X and related with the target hidden variable)
and the observations or measurements, denoted by Y, is often described by a complex
and non-linear forward relationship given by the function g(·) in Eq. (1.1). Therefore the
data acquisition process (a sensing process) is described by:

Y = g(X). (1.1)

Some level of uncertainty can be added in the relationship (1.1) by incorporating a
noise component, obtaining a more realistic observation model that offers a probabilistic
mapping between Y and X.

Y = g(X) + ν. (1.2)

Then the inverse problem can be formulated as follows: given Y , consistent with
a forward model g(X), the objective is to estimate X with some criterion. As X is
unknown, an objective function that measures the discrepancies or error between Y and
g(X) is required. The standard metric is the square error. In addition, the problem could
be ill-posed meaning that many possible sets of solutions are consistent with Y and the
observation model.

In this context, a classical objective function to implement the inverse problem has the
following form:

G(Y,X, g(·)) = ‖Y − g(X)‖p , (1.3)

where ‖·‖p denotes the p norm. In addition, when the problem is ill-posed some form of
regularization is added to Eq. (1.3) (Davis et al, 1995; Magnant, 2011).

1.1.2 Inverse Problems in the Context of Sampling

In a wide range of applications, X belongs to a high dimensional space, which makes
unfeasible or at least impractical its full observation. Thus, considering X as a signal
residing in a high dimensional space RN , only a finite number of measurements m is
available with m << N , Y ∈ Rm, obtaining the following sampling model:

Y = A(X) + η, (1.4)

where the function A(·) represents the sampling scheme and η is the noise associated to
the measurements.
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Traditional linear sampling signal processing theory (Proakis and Manolakis, 1996)[sec-
tion 1.4.2] states that data acquisition systems require to sample signals at a rate exceed-
ing twice the highest spatial/temporal frequency for the purpose of losslessly recovering a
band limited signal. This is the principle behind the majority of imaging acquisition and
audio recorders. However, in many practical problems only m << N measurements are
accessible to recover X (i.e. solve the ill-posed problem) from Eq. (1.4), and consequently
an error in the recovery is introduced.

1.1.3 Inverse Problems in Geosciences: A Sampling Problem

In the context of many relevant inverse problems inGeosciences, the relationship expressed
by a model like Eq. (1.4) needs to be stipulated from a physical model, or estimated from
empirical evidence and a statistical model that connects the observed (sampled) data Y
from a set of parameters representing X.

An important task and the main focus of this thesis is the problem of reservoir charac-
terization (Kitanidis, 1997; Oliver et al, 2008; Onwunalu and Durlofsky, 2009; Strebelle
and Zhang, 2004). In the characterization of a reservoir, as the one shown in Fig. 1.1, sev-
eral variables are relevant to describe a physical phenomenon including discrete ones such
as fluid filling indicators, rock or sediments types, and continuous ones such as porosity
and permeability (Kitanidis, 1997; Oliver et al, 2008; Strebelle and Zhang, 2004). One of
the main challenges lies on the fact that no direct observations (or just a reduced amount
of these observations) are available leading to the use of indirect correlated data for the
inference of X.

Figure 1.1: Example of a 3-D geological reservoir. By Minnesota Control Pollution
Agency, https://www.pca.state.mn.us/karst-outreach. Accessed 01 May 2019.

In Geosciences, an accurate description of the spatial distribution of a subsurface model
is essential for reservoir characterization, which plays a key role for exploration and pro-
duction in the mining industry (Bangerth et al, 2005, 2006; Güyagüler Baris, 2002; Krause
et al, 2006; Oliver et al, 2008; Onwunalu and Durlofsky, 2009). In the context of the model
in Eq. (1.4), the limited access to measurements makes the inference of X a very challeng-
ing problem. In particular, the aforementioned sampling problem implies that geophysical
inverse problems are typically undetermined. Therefore, characterizing a reservoir as the
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one shown in Fig. 1.1 up to some level of accuracy requires the use of several sources of in-
formation, such as: wells (direct samples), production data, and seismic data (Güyagüler
Baris, 2002; Krause et al, 2008a; Olea, 1984; Oliver et al, 2008). Seismic data is usually
available at large scale (low spatial resolution) and it is provided for the entire reservoir.
However, this data is sampled on a coarse grid with several sources of uncertainties and
noise. On the other hand, Well observations consist on well logs taken from a process
illustrated in Fig. 1.2. Wells are sampled on a fine grid in a specific path of interest pro-
viding excellent spatial resolution. The uncertainty associated with these measurements
is significantly smaller than seismic data. However, well data is sparse and only available
in very restricted areas (provided by the existing wells) because it is a very expensive
process.

Figure 1.2: Sampling Devices in Mining.
Left: Example of a well sampling scheme. Right: Example of an actual well sampling system. Left image by GCZ

ingenieros S.A.C. 2016, http://www.gczingenieros.com/productos.php?id=18, Accessed 01 May 2019. Right image by
RTV.es, http://www.rtve.es/fotogalerias/odisea-33-mineros-atrapados-chile/56175/maquina-del-plan-alcanza-519-metros-

rescate-33-mineros-chile/29/, Accessed 01 May 2019

In the case of production data, the information is acquired along the production pro-
cess in production wells. This kind of data takes into account global factors related with
features of reservoir that makes a great difference with the other two sensing modalities
(Abellan and Noetinger, 2010; Handwerger et al, 2016; Man and Jarzyna, 2013; Oliver
et al, 2008; Raef et al, 2015; Strebelle and Zhang, 2004). This information, also known as
historical data, considers numerous scenarios which produces a large volume of information
about the system. This information has been used very successfully to implement pre-
dictive based inference such as the history matching approaches (Kitanidis, 1997; Oliver
et al, 2008; Scheidt and Caers, 2009). It is important to mention that although it is a
very relevant and interesting topic, production data has not been used or considered for
the purpose of this thesis.

1.1.4 Geosciences and Uncertainty

As it was mentioned before, the information sources about the reservoir characterization
contain uncertainties (Güyagüler Baris, 2002; Onwunalu and Durlofsky, 2009; Wellmann,
2013). Therefore, several techniques have been developed in order to estimate, quantify,
and represent these uncertainties (Bangerth et al, 2006; Krause et al, 2008a). In general,
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the access to noiseless observations of the subsurface structures is not possible because
direct measurements are limited in number and these are unevenly distributed. Based on
the above, the geological characterization is performed by using several indirect informa-
tion sources (Kitanidis, 1997; Oliver et al, 2008). In this context, a stochastic modeling
of the problem is essential to capture the uncertainties in the inference process (Bangerth
et al, 2006).

Reservoir properties at various grid locations (pixels on a discrete two or three di-
mensional representation) are largely unknown, hence each property of interest at every
grid block (or pixel) is modeled as a random variable whose variability is described by a
probability measure (Blackwell, 1998; Brus and Heuvelink, 2007; Gao et al, 1996; Lloyd
and Atkinson, 1998). The reservoir characterization relies not only on a reduced portion
of available data but also on their spatial disposition. This rises the importance of sensing
placement as a task that is intrinsic in the formulation of the inverse problem in Eq. (1.4).
This task of optimal sensing design is the main focus of this thesis.

1.2 Problem Statement

In this thesis, the focus is on the characterization of subsurface structures from spatial
observations and the role that sampling and inference strategies could jointly have in this
task.

For Geosciences, the global outcome corresponds to the characterization of an unknown
complex reservoir field by the description of its individual components (such as high num-
ber of structures, facies1 and properties in the subsurface). The focus of this work is the
recovery of a single subsurface property described by a 2-D regularized variable sampled
in the spatial domain (see Fig. 1.4). The characterization of these kinds of structures is
relevant for mineral prospecting, mine planning, and production stages where the number
of available observations is severely restricted by technical and economical factors. Based
on the above, the integration of adaptive sensing schemes and an appropriate inference
methodology provides a promising solution to improve classical geostatistical inference
that are based on non-adaptive sampling strategies (Güyagüler Baris, 2002; Krause, 2008;
Krause et al, 2008a, 2009).

Beyond the prospecting context described above, both exploitation by mineral blasting
and short-term mine planning could also benefit from the use of an adaptive sensing
strategy for inference. While blast hole drilling systems has been focused on efficient
drilling instead of high precision sampling, short term mine planning uses a medium term
sampling strategy to choose mining units based on estimated distribution of ore and waste.
Units classified as ore will be sent to the plant while waste units will be sent to the waste
dump. Mistakes in this classification task have a significant impact on economic outcome
of the productive process, and an adaptive sensing strategy could improve the inference
and consequently the economic impact of a mining project.

1rock structures recognized by its composition or fossil content and mapped by these characteristics.
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1.2.1 Channelized Structures

In the first part of this thesis, a classical geosciences scenario related with subsurface
channels systems is explored. As previously shown in Fig. 1.1, several continuous or
discrete variables could be related with channelized structures, where characterizing the
extent and location of channels is relevant to infer petrophysical properties of the rock
structure (porosity, permeability, etc.). In addition, a statistical model is used as part of
the forward model describing the channelized structures, where a non-stationary assump-
tion is needed to reproduce channel-like features (Oliver et al, 2008; Remy et al, 2009).
An example of a realization of this model is presented in (Fig. 1.3).

Figure 1.3: Categorical permeability channel.
Example of a 2-D representation of a categorical channelized permeability field.

1.2.2 The Problem

Formally, the image model is a numerical representation of the spatial distribution of a
subsurface attribute, such as thickness, permeability, porosity, or flow rate (Kitanidis,
1997; Lam, 1983; Matheron, 1971). The general process of image reconstruction or char-
acterization (i.e. inference of the spatial distribution) is described in Fig. 1.4, where
given a reduced number of observations the main goal is to infer the underlying image or
some significant feature such as first and second order statistics, connectivity, or transport
metrics of the image.

Sam-

pling

System

Infer-

ence

System

Figure 1.4: Basic inverse problem scheme.
Example of a basic scheme of inverse problem related with 2-D channelized structures characterization.

The inverse problem of characterizing a field based on few measurements can be as-
sessed from two angles: i) from the point of view of the inference (i.e. given an appropriate
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sensing scheme) the target is to infer some global and local properties of the field every-
where from the samples; ii) from the point of view of experimental design or sensing
design, the optimal sensing schemes optimizing m << N observations is the problem of
finding the best positions for the observations in order to maximize the information to
recover the signal X. This problem is usually termed as Optimal Sensor Placement (OSP)
(Krause, 2008; Krause et al, 2011; Olea, 1984).

1.3 Hypotheses

The main hypotheses of this work are:

1. In Geostatistics, at low sampling regimes, the incorporation of prior information
(based on MPS and training images) in the design of sampling strategy improves
the performance with respect to classical sampling approaches.

2. Adaptive sensing schemes can be integrated in the inference to improve the state-
of-the-art of geological field characterization.

3. Information measures are accurate predictors of the complexity of simulation tasks,
and can be used to improve inference for the type of decisions carried out in planning
and production stages.

1.4 Objectives

1.4.1 Main Objective

The main objective for this research is to enhance the reconstruction of images describing
2-D categorical regionalized variables by the use of new sensing strategies that takes into
account uncertainty reduction as a criterion and the use of previously sampled data and
side information from a statistical model of the field. The focus of this research is on
regionalized variables with several spatial dependence assumptions by taking advantage
of its spatial structure and other sources of expert knowledge of the media of interest.

1.4.2 Specific Objectives

The specific objectives addressed in this work are:

• Formalize a general theoretical framework for optimal sampling design with focus
on, but not limited to, categorical variables.
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• Develop an adaptive sensing design framework using joint entropy and mutual in-
formation to measure uncertainty and spatial structure.
• Compare the performance of the full combinatorial sampling strategy with the se-

quential and the adaptive sequential strategies within sampling design framework
for the optimal information decision task.
• Study some stopping criterion for each sampling strategy as a function of the ca-

pacity of the field as a measure of its complexity.
• Evaluate proposed sampling strategy on Markov random field models on finite al-

phabet for regionalized random variables as a controlled scenario to validate the
proposed method.
• Evaluate the proposed sampling strategy in a practical realistic context of grade

control for short-term planning.

1.5 Contribution of this Thesis

In this thesis, a new information driven formulation of a sampling strategy is proposed by
formalizing some of the preliminary ideas introduced by Wellmann (2013). In particular,
a sampling framework that integrates both sampling data in a sequential scheme and the
statistical information obtained from training images in the context of MPS is proposed.
The use of maximum entropy as a criterion for preferential sampling is proposed in this
thesis as a concrete alternative to classical non-adaptive sampling schemes.

On the specifics, a new adaptive sequential empirical maximum entropy sampling
(AdSEMES ) 2 approach is formulated and implemented by integrating information the-
oretic concepts. This sampling strategy can be seen as an adaptive way to locate the
samples on the positions that maximizes discrimination about the transition zones of
facies that determines the underlying phenomenon. In particular, three maximum en-
tropy sampling frameworks have been formalized and implemented within the context of
regionalized categorical variables with spatial dependencies.

In specific, the contributions presented in this work answer the following questions.

• Given K available measurements, what is the best disposition of theses measure-
ments from an information perspective (in the sense of uncertainty reduction)?
• Given an image model, is there a sampling regime where optimal sampling can

outperform classical sampling approaches?
• How the previous gain is determined by the complexity of the statistical model of

the field?
• What is the best inference methodology for the proposed optimal sensing strategy?
• If the inference methodology is based on MPS, can entropy and mutual information

be good predictors of its performances?

2Or regularized adaptive maximum information sampling (RAMIS ) strategy.
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1.5.1 Summary of the results

The main contribution of this research is the formalization of the task of optimal sampling
for the statistical simulation of a discrete random field addressed from the perspective of
minimizing the posterior uncertainty of non-sensed positions given the information of the
sensed positions. In particular, information theoretic measures are adopted to formalize
the problem of optimal sampling design for field characterization, where concepts like
information of the measurements, average posterior uncertainty, and the resolvability of
the field are introduced. The use of the entropy and related information measures are
justified by connecting the task of simulation with a source coding problem, where it is
well known that entropy offers a fundamental performance limit. On the application, a
one-dimensional Markov chain model is explored where the statistics of the random object
are known, and then the more relevant case of multiple-point simulations of channelized
facies fields is studied, adopting in this case a training image to infer the statistics of a
non-parametric model. On both contexts, the superiority of information-driven sampling
strategies is proved in different settings and conditions, with respect to random or regular
sampling. The details of this contribution are presented in Chapter 3, and a published
article (Santibañez † F et al, 2019).

The second main contribution of this thesis is a method to select sampling locations in
an advanced drilling grid for short-term planning and grade control in order to improve
the correct assessment (ore-waste discrimination) of blocks. The sampling strategy is
based on a regularized maximization of the conditional entropy of the field, an objective
function that formally combines global characterization of the field with the principle of
maximizing information extraction for ore-waste discrimination. This sampling strategy
is applied to three real cases, where dense blasthole data is available for validation from
several benches. Results show relevant and systematic improvement with respect to the
standard regular grid strategy, where for deeper benches the gains in image inference are
more prominent. The details of this contribution are presented in Chapter 4 of this thesis.
These results are part of a scientific article (Santibañez-Leal † F et al, 2019).

Publications on ISI Journals and International Conferences

• Journal article 2019a: Santibañez † F, Silva JF, Ortiz JM (2019) Sampling strate-
gies for uncertainty reduction in categorical random fields: Formulation, mathe-
matical analysis and application to multiple-point simulations. Mathematical Geo-
sciences 51:579–624. Published.
• Journal article 2019b: Santibañez-Leal † F, Silva JF, Ortiz JM (2019) Improving

short term planning and grade control with an entropy-based adaptive sampling
strategy. Natural Resources Research online first:1–35. Submitted, Under revision.
• Journal article 2019: Calderon* H, Santibañez* † F, Silva JF, Ortiz JM, Egaña A

(2019) Geological facies recovery based on weighted `1-regularization. Mathematical
Geosciences online first:1–46. Accepted.
• International Conference Paper 2016: Calderón H, Santibanez F, Silva JF, Ortiz

JM, Egaña A (2016) Channelized facies recovery based on weighted compressed

9



sensing. In: 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop
(SAM), Rio de Janerio, Brazil, July 10-13, 2016, pp 1–5, doi: 10.1109/SAM.2016.
7569627, URL https://doi.org/10.1109/SAM.2016.7569627. Published. Oral
presentation performed by Santibáñez. Rio de Janeiro, Brasil. Jul. 2016.

1.6 Thesis Organization

The rest of this thesis is organized in two main chapters that present the main contribution
of this work.

Chapter 2 summarized the general background in Geostatistics related with the re-
search performed in this work.

Chapter 3 introduces the formalization of the optimal sampling decision problem and
the proposed regularized adaptive sampling strategy. The relation between sampling
strategies and uncertainty reduction is described in order to formulate the proposed adap-
tive sampling methodology. Both analytic and experimental studies are conducted on
different scenarios. Finally some practical considerations are addressed and results are
presented that demonstrated the advantages of the propose method.

Chapter 4 presents a new methodology for optimal sampling in the context of ore-waste
discrimination. The problem of optimal sampling is formalized in this binary decision
context and a novel methodology is proposed. The objective considers both the image
recovery and the economic impact of the project.

Chapter 5 concludes with a summary of this thesis work, and offers directions and
discussion for future research. Finally, the appendices contain complementary material
that support the presentation of this work.
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Chapter 2

General Background and Related
Topics

In Geostatistics the community has developed several statistics tools in order to achieve
good estimations for describing structures with spatial dependence such as channelized
fields. In this section the state-of-art of multi-point simulations (Sec. 2.1), and sensing
design (Sec. 2.2) is summarized.

2.1 Geostatistical Analysis and Inference

In recent decades, geologists have achieved realistic representations of the internal struc-
ture of reservoirs considering complex and heterogeneous geological environments through
the use of Geostatistics (Arpat and Caers, 2007b; Bittencourt and Horne, 1997; Holden
et al, 1998; Journel and Kyriakidis, 2004; Man and Jarzyna, 2013; Strebelle and Zhang,
2004). Geostatistics deal with spatially correlated data such as geological facies, reservoir
thickness, porosity, and permeability (Calderón et al, 2016; Calderon* et al, 2019; Oliver
et al, 2008; Raef et al, 2015). Geostatistics tools allow to evaluate potential exploration
of a reservoir and its production, where one of the main issues is to determine relevant
samples location.

More specifically, the term Geostatistics refers to a branch of spatial statistics that is
concerned with the analysis of an unobserved spatial phenomenon X = {X(u,v) : (u, v) ∈
D ⊂ R2} (for the 2-D case), where D denotes a geographical region of interest (see Fig.
1.1). When the spatial coordinates are discretized the subset D is comprised by only
N positions allowing the representation of the field as the collection X = {Xi : i ∈
{1, . . . , N}}. Therefore, Geostatistics deal with stochastic processes defined in a region
D, with D ⊂ Rd and considering d = 1, 2, or 3. For continuous valued stochastic
fields, a classical assumption is that the field X is modeled by a stationary and isotropic
Gaussian process (GP), with zero mean, constant variance σ2 and autocorrelation function
ρ(Xi, Xi+h;φ) = E{Xi ·Xi+h} given by ρ(Xi, Xi+h;φ) = ρ(‖ h ‖;φ), ∀{i} ∈ D (Abellan and
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Noetinger, 2010; Blackwell, 1998; Gao et al, 1996; van Groenigen et al, 1999). Typically
for inference, the Regionalized Variable(RV ) X is known at M limited locations that is
denoted by Xf = {Xf(m) : m = 1 : M}. The goal is to estimate from Xf at unsampled
locations. At every location, the RV is interpreted as a random variable, the goal is to
infer the conditional distribution of X at unsampled locations. More details about this
inference process will be presented in Sec. C.1 of this document. For completeness, the
following subsections provide a general overview of some of the tasks and techniques used
for this inference process.

2.1.1 Two-Point Statistics

When large amount of measurements are available, it is a common practice to use inter-
polation techniques around the observed data (Kitanidis, 1997). One of theses techniques
is Kriging (Abellan and Noetinger, 2010; Blackwell, 1998; Gao et al, 1996; van Groenigen
et al, 1999), Kriging is an interpolation technique that uses variogram of X (second order
statistics) (Lam, 1983) as shown in Fig. 2.1. The variogram is a representation of the
spatial correlation of a two or three dimensional model (Abellan and Noetinger, 2010).
Classical Kriging approaches are based on two-point statistics (Kitanidis, 1997). The var-
iographic analysis measures only facies continuities between two regionalized variables,
failing in the effective representation of curvilinear or multiscale structures that requires
the inference of joint correlations of facies at multiple variables positions. Thus, these
techniques based on variograms reproduction tend to fail in the modeling of realistic geo-
logical facies that can not be represented by stationary Gaussian fields. In practice, these
models are unable to properly represent long-range properties of subsurface fields, mis-
representing the real reservoir connectivity. This mismodelling issue translates in poor
reservoir characterization for exploration and production tasks (Bangerth et al, 2005;
Olea, 1984; Ortiz and Deutsch, 2004).

Figure 2.1: Example of a classical variographic analysis.
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2.1.2 Object-based Simulation

Both geologists and engineers have a keen interest in local scale details describing reser-
voir heterogeneities. For this challenging task, stochastic simulations provide an appro-
priate tool with special emphasis in the regime when a small level of data is available
(Kitanidis, 1997; Lam, 1983). An initial approach considered by the Geostatistics com-
munity for stochastic simulation has been based on object-based simulation (Chilés and
Delfiner, 1999; Holden et al, 1998). This method simulates many spatial variables by the
superposition of some predefined geometric patterns (e.g. discs, sinusoids, manifolds).
Predefined geological shapes require to be manually selected by an expert. In contrast
to the variographic analysis presented before, object-based methods provides realistic fa-
cies structures, but the selection and acquisition of an appropriate conditioning data is a
critical limitation (Chilés and Delfiner, 1999; Holden et al, 1998).

2.1.3 Multi-Point Simulations MPS

In regimes of low data acquisition, the standard approach to the geostatistical inference
involves the generation and analysis of multiple point simulations (MPS ) (Huang et al,
2013; Ortiz and Deutsch, 2004; Scheidt and Caers, 2009). These are realizations of a spa-
tial model conditioning on the available data (direct samples). This process is conducted
by replicating patterns from a training image (Ortiz and Deutsch, 2004; Remy et al, 2009).

Geostatistical simulations provide a powerful and computationally efficient tool to
reproduce more faithfully and realistically the spatial variability observed in a model
when a small numbers of measurements are available (Ortiz and Deutsch, 2004; Remy
et al, 2009). A simple illustration of this process is shown in Fig. 2.2. Another important
dimension of this approach is that, Geostatistical simulations lead to many realizations of
a reservoir model that can be conditioned to geologic, seismic and production data. These
models (or realizations) provide appropriate representations of geological heterogeneities
integrating various types of data at different scale and with different precisions. Finally,
in any regime of data, expert knowledge is required to validate and to interpret the use
of Geostatistical simulations (Bangerth et al, 2006; Oliver et al, 2008).
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Figure 2.2: Example of a simulation based system.

2.1.4 Comparison of the Inference Techniques

Concerning deterministic Kriging, this technique provides solutions that are good close
to conditioning data. Object-based approaches, on the other hand, provides acceptable
solutions for the reproduction of geological shapes. However, none of theses methods is
good at both contexts (Bangerth et al, 2005; Lam, 1983; Olea, 1984; Ortiz and Deutsch,
2004). ClassicalMPS was developed to combine the strengths of the two previously stated
approaches. MPS methodology recreates a realistic realization of the target field keeping
the flexibility of pixel based simulation methods. At the same time, honoring well or
seismic data is feasible at the initial stage of the simulated process. Furthermore, MPS
realizations can reproduce complex and realistic geologic structures by the estimation of
simultaneous statistics at multiple positions from the reference model (training image).

For completeness, more details about MPS can be found in the App. C.1

2.2 Methods used for Sensing Design in Geostatistics

The selection of the best informative observations for an inference task is a critical problem
in statistical signal processing, with numerous applications in inference and decision:
temperature and light monitoring (Davis et al, 1995; Krause, 2008), sensing contamination
in a river (Christakos and Killam, 1993; Christodoulou et al, 2013; Gutjahr, 1991), mining
exploration (Aspie and Barnes, 1990; McBratney and Webster, 1981; Ortiz and Magri,
2014), collaborative robotic networks design (Krause, 2008; Zidek et al, 2000), statistical
experimental design (Magnant, 2011; McBratney et al, 1981; Olea, 1984; Vasát et al,
2010), among many others (Bangerth et al, 2006; Bittencourt and Horne, 1997; Guestrin
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et al, 2005; Krause et al, 2006, 2008a; Xu et al, 2017). In general, this optimization
problem is NP-hard, which is very critical at low acquisition rates.

2.2.1 Sensor Placement Strategies

In the context of facies recovery in Geostatistics, the focus has been on the scenario of
pixel based measurements that model well logs. Here, the sensing design reduces to the
optimal well placement (OWP) problem. In a nutshell, OWP finds the most proper
locations to take measurements by drilling wells in the field of interest. The related
more general problem of optimal sensor placementOSP is an active area of research in
communications (Krause et al, 2009, 2011) and machine learning (Guestrin et al, 2005;
Krause et al, 2008b). OSP (and OWP in particular) states the optimal (or near optimal)
systematic way to take measurements in order to maximize the inference performance
in some metric. For example, Fig. 2.3 illustrates the design in terms of two sensing
approaches in a recovery based system.

Figure 2.3: Sensing design example and its effect on reconstruction of the field.
Upper row: an arbitrary structured sensing scheme (left) and the achieved reconstruction by the measures at this scheme
locations (right). Lower row: a near optimal sensing scheme (left) and the achieved reconstruction by the measures at this
scheme locations (right). The real image corresponds to the fig. 1.3

2.2.2 Another Sampling Techniques

Some approaches in the literature have proposed preferential sampling schemes oriented
to optimize productivity (production functionals) and economic factors (Bangerth et al,
2005, 2006; Onwunalu and Durlofsky, 2009). Several optimization methods have been
proposed to achieve some of these optimal functionals such as adjoint-based gradient
(Onwunalu and Durlofsky, 2009), simultaneous perturbation stochastic approximation
(SPSA) (Bangerth et al, 2006), finite difference gradient (FDG) (Bangerth et al, 2006),
very fast simulated annealing (VFSA) (Bangerth et al, 2006), binary genetic algorithm
(bGA) (Onwunalu and Durlofsky, 2009), continuous or real-valued GA (cGA) (Onwunalu
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and Durlofsky, 2009), and particle swarm optimization (PSO) (Onwunalu and Durlofsky,
2009).

While these economical and functional factors are important for specific applications,
the idea of global uncertainty reduction is more fundamental and it could also have a
positive impact on the improvement of economical and functional factors (Krause et al,
2006). In this context, Wellmann (Wellmann, 2013) proposed the use of information
theoretic principles in the geostatistical analysis of a map making task. In this specific
problem, a direct connection between conditional entropy and its applicability to the
characterization of the uncertainty of regionalized variables has been shown. On the
theoretical side, Wellmann (Wellmann, 2013) proposed that, in a categorical stochastic
field, the regionalized variables with higher conditional entropy are located in the facies
transition zones, implying that this information metric is relevant for detecting facies
transitions.

A related topic in signal recovery in an under-sampled setting is presented in the App.
C.2 for the case of sparse signal reconstruction based on linear measurements.
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Chapter 3

Sampling Strategies for Uncertainty
Reduction in Categorical Random
Fields: Formulation, Mathematical
Analysis and Application to
Multiple-Point Simulations

The task of optimal sampling for the statistical simulation of a discrete random field
is addressed from the perspective of minimizing the posterior uncertainty of non-sensed
positions given the information of the sensed positions1. In particular, information theo-
retic measures are adopted to formalize the problem of optimal sampling design for field
characterization, where concepts like information of the measurements, average posterior
uncertainty, and the resolvability of the field are introduced. The use of the entropy and
related information measures are justified by connecting the task of simulation with a
source coding problem, where it is well known that entropy offers a fundamental per-
formance limit. On the application, a one-dimensional Markov chain model is explored
where the statistics of the random object are known, and then the more relevant case of
multiple-point simulations of channelized facies fields is studied, adopting in this case a
training image to infer the statistics of a non-parametric model. On both contexts, the
superiority of information-driven sampling strategies is proved in different settings and
conditions, with respect to random or regular sampling.

1The content of this chapter is based on the Santibañez † F, Silva JF, Ortiz JM (2019) Sampling
strategies for uncertainty reduction in categorical random fields: Formulation, mathematical analysis and
application to multiple-point simulations. Mathematical Geosciences 51:579–624. Published
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3.1 Introduction

The recovery of an image from scarce measurements is at the core of many reconstruction
problems in geosciences. In many contexts direct measurements are very expensive and
consequently this inference task needs to be addressed in regimes where only scarce infor-
mation from sensed data is available. In geostatistics, this lack of information from data
has been addressed in the context of multiple-point statistics by the use of a prior sta-
tistical model estimated from a training image (Arpat and Caers, 2007a; Guardiano and
Srivastava, 1993; Mariethoz and Caers, 2014; Ortiz and Deutsch, 2004; Strebelle, 2002;
Wu et al, 2008). The idea is to use prior information to interpret the measurements and
to provide realistic scenarios of the underlying field uncertainty. This prior information
is represented by a probability model on the pixel space, the so-called multiple-point sta-
tistical model, that is used in conjunction with the available data to create independent
and identically distributed (i.i.d.) realizations of the model conditioned on the measure-
ments. In practice, MPS simulates non-sensed values in an inductive way by estimating
the conditional probability of a non-sensed location given the values of the sensed and
the previously simulated locations. This conditional probability is inferred from a train-
ing image. Therefore the recovery or characterization of non-sensed locations is obtained
by a collection of conditional simulations where there is an intrinsic uncertainty that is
captured by a set of feasible solutions (simulations). This stochastic recovery is justi-
fied from the fact that the focus is the regime of scarce measurements that translates in
a significant posterior uncertainty after the measurements. It is evident that this high
posterior uncertainty regime is not adequately represented by one solution, for instance
the conditional mean attributed to the estimation problem (Gray and Davisson, 2004).
Simulations, provide a more adequate way of representing the intrinsic uncertainty of the
field and realistic features from the training image (Mariethoz and Caers, 2014).

In order to properly characterize the random field considered, samples must be repre-
sentative. This is usually achieved by having a non-preferential sampling through a regu-
lar or quasi-regular grid (squared or rectangular) of sensed locations (Rossi and Deutsch,
2014) or a fully random scheme (Wellmer, 1998). However, in practice in the case of
categorical fields, knowledge about the location of transitions between categories is key to
predict the economic performance of the reservoir or mineral deposit. A classical approach
considers a two-stage approach. First, a wide-space regular grid is sensed to delineate fa-
vorable areas, and then relevant areas are characterized with a denser, but still regular
grid (Kennedy, 1990).

This work departs from this non-preferential principle and asks the question about the
role of preferential sampling in MPS. In this context, the first objective is to evaluate the
benefits of a preferential strategy and, secondly, to uncover the role of the training image
in this task and how this model can be used to improve the decision of where to measure.
The main conjecture is that there is a sampling regime where the role of the model is
relevant to determine where to measure and that, consequently, an adaptive sampling
strategy can improve the performance of MPS.

In order to formalize this idea, the problem of sampling design (or sensing placement)
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is addressed from an information perspective (Cover and Thomas, 2006; MacKay, 2002),
posting it as the problem of reducing the uncertainty of non-sensed positions given the
information provided by the sensed positions. This sampling principle is inspired by the
work of Wellmann (2013), where information theoretic measures are proposed as a way
to quantify potential reduction in uncertainties given a new sample in the context of a
general geological model. To formalize the notion of uncertainty and information in this
simulation context, the role of the Shannon entropy is studied following the works of
Wellmann (2013); Wellmann and Regenauer-Lieb (2012). In particular, it is shown that
the entropy offers a way of expressing the complexity of the simulation task. For that,
the simulation problem is interpreted as the problem of characterizing a typical set where
its cardinality can be seen as an indicator of the complexity of this task (See App. A.1).
Therefore, the sampling design can be posted as the problem of minimizing the entropy
of the posterior distribution of non-sensed positions given the sensed data (Sects. 3.4 and
3.5). Interestingly, the optimal sampling (OS) problem in this framework is the problem
of selecting the more informative positions, in the sense suggested in (Wellmann, 2013,
Sec.4), that is the positions that after being measured provide (in average) the highest
reduction in the uncertainty of the problem (Cover and Thomas, 2006).

On the application and validation of these ideas, a first exploration of a known scenario
(one-dimensional Markov chain model) is studied where the entropy and related quanti-
ties can be computed with high precision. From this analysis, the benefits of preferential
sampling are confirmed with respect to non-preferential solutions and, at the same time,
insights are obtained into the way OS solutions are distributed in the pixel space. Inter-
estingly, a link with quasi-regular sampling is presented as there is a case (non-adaptive)
where this solution is optimal in the sense of reducing uncertainty under a Markov model
assumption.

Moving on to the adoption of these sampling ideas in the task of multiple-point sim-
ulation (MPS), an information-driven sampling strategy is proposed that addresses some
practical limitations that are not present in the idealized setting where the model is as-
sumed to be known. The main difficulty in implementing the OS strategy in this context
comes from the need to estimate the model statistics from a training image. This leads
to two main issues: one associated with the statistical inference errors of pattern statis-
tics and the other with the algorithmic complexity of inferring statistics as new sensed
locations become available. To address them, a solution is proposed with a compound
objective function that reflects a compromise between the global and local characteriza-
tion of the field. The local component emphasizes the most informative non-sensed areas
typically around the transition zones of the true field, while the global component en-
forces a more uniform sampling of the domain. This preferential scheme is evaluated for
three channelized facies models and in a range of sampling rates. Results are compared
with two non-preferential solutions. Results show concrete evidences of the benefits of
preferential sampling both in the sense that the obtained simulations are closer (in av-
erage) to the true image (bias) and also in that simulations show less variability in the
non-sensed positions measured in terms of the average conditional entropy (variance). As
expected, the magnitude of the gain depends on the complexity of the model. Finally,
if only the surroundings of transition zones are analyzed, which can be considered the
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most relevant areas for facies characterization, the improvements given by the proposed
preferential solution are even more significant for the three models explored.

The rest of this chapter is organized as follows. Section 3.2 offers an overview for two
important topics that are closely related with this work on: uncertainty characterization
for geological models and sampling design. Section 3.3 introduces some basic information
quantities that will be adopted for the formalization of the optimal sensing problem.
Section 3.4 presents the general problem of optimal sampling (OS) and Section 3.5 extends
this formulation to its adaptive sensing variation that is essential to apply it in the context
of conditional simulations. Section 3.6 presents the preliminary study of one-dimensional
Markov chain and Section 3.7 addresses the main application in MPS. Finally, conclusions
and final remarks are presented in Section 3.8. Some complementary material is relegated
to the Appendices.

3.2 Related Works on Geological Uncertainty and
Sampling Design

The analysis and quantification of uncertainty in geological models have been systemati-
cally addressed by the geo-scientific community (Goovaerts, 2001; Gutjahr, 1991; Scheidt
and Caers, 2009; Wellmann and Regenauer-Lieb, 2012). In this context, the Shannon
entropy has been proposed to visualize and analyze spatial uncertainties in the context
of structural maps and complex three-dimensional spatial geological models (Goodchild
et al, 1994; Wellmann and Regenauer-Lieb, 2012; Wellmann et al, 2010). Preliminary
association between geostatistics and information theory can be found in (Peschel and
Mokosch, 1991), where the relationship between information entropy and the estimation
variance of geostatistical methods is established under a joint Gaussian assumption for
the model. More recently, (Wellmann, 2013) proposed the adoption of conditional en-
tropy and mutual information to quantify spatial dependencies and spatial uncertainty
reduction (attributed to the information) of a measurement (a drilling well) considering
a typical geological model. In addition, (Schweizer et al, 2017) considers the entropy as a
measure to assess structural uncertainties by the comparison of multiple model interpre-
tations and the subsequent track of changes across built models. Here the entropy is used
to understand how a three-dimensional geological model evolves as new data of increasing
complexity is integrated in the analysis.

Considering the problem of optimal sensor placement (or sampling design), this is a
fundamental problem that has been addressed in numerous contexts. For instance a clas-
sical task in signal processing is the sampling problem (Eldar, 2015), where the objective
is to recover the signal from a under-sampling set of measurements (typically linear mea-
surements) (Candes et al, 2006c; Donoho, 2006; Founcart and Lai, 2009; Vershynin, 2012).
In this context, the optimal sampling design has been systematically addressed for the
objective of full signal recovery (or perfect reconstruction) (Boyko et al, 2014; Candes,
2008; Candes et al, 2006b) and the problem of estimating the signal using a mean square
error criterion (Bui et al, 2015; Cohen et al, 2009). On this area, compressed sensing (CS)
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provides concrete results concerning the optimal sampling scheme, the reconstruction al-
gorithms and the minimum number of samples needed to achieve optimal performance
for signal recovery under some assumption about the structure of the signal (Baraniuk
et al, 2008; Candes, 2008). Other widely explored application is in the context of sensor
networks, where the problem of optimal sensor placements has been addressed systemat-
ically and the literature is rich (Bangerth et al, 2005, 2006; Guestrin et al, 2005; Krause
et al, 2006, 2008a,b, 2011).

Closer to the area of application of this work, the problem of sensor placement has
been addressed in the context of underground CO2 monitoring (Magnant, 2011), geo-
logical investigation (Xu et al, 2017), waterloss detection in a water distribution net-
work (Christodoulou et al, 2013) and kriging for continuous Guassian fields (Abellan and
Noetinger, 2010; Cressie et al, 1990; Marchant and Lark, 2007; Peschel and Mokosch,
1991; Zidek et al, 2000). In this last geostatistical context, the problem has been tradi-
tionally addressed for continuous variables by the minimization of the estimation variance
coming from kriging or some of its variants (Brus and Heuvelink, 2007; Cressie et al, 1990;
Gao et al, 1996; Marchant and Lark, 2007; McBratney and Webster, 1981; McBratney
et al, 1981; Olea, 1984; Vasát et al, 2010) or from an economic utility function of this
uncertainty (Aspie and Barnes, 1990). One line of work addressed the problem by us-
ing heuristics or by splitting it into a set of sequential decisions. Simulated annealing
(Christakos and Killam, 1993; van Groenigen et al, 1999; Norrena and Deutsch, 2002),
genetic algorithms (Bittencourt and Horne, 1997) or particle swarm optimization (Af-
shari et al, 2014), numerical sparse approaches (Magnant, 2011) are among the typical
approaches to overcome the complexity of the problem. On the other hand, (Abellan
and Noetinger, 2010) proposed the use of information theory to formulate the optimal
sampling design where the utility function selects the points that maximize the difference
between the prior and posterior density of the model parameters given the measurements.
They evaluate this approach in the context of kriging of a full Gaussian model where the
Kullback-Leibler divergence (KLD) is used to measure the discrepancy between the prior
and posterior density. In the context of geological prediction, the principle of maximum
entropy sampling under a Markov assumption for the model was proposed for the dispo-
sition of observations points in (Xu et al, 2017) and the same principle was also presented
for the context of longitudinal sensing (meaning acoustic, pressure and flow sensors) for
water-loss detection in a water distribution network in (Christodoulou et al, 2013).

The extension of some of the information theoretic formulations for sampling design
presented above (like the one proposed for kriging in the context of a multivariate Gaus-
sian assumption in (Abellan and Noetinger, 2010), or the maximum entropy principle
proposed under the Markov assumptions in (Xu et al, 2017) for geological investigation)
to the problem of conditional simulations of categorical random fields using multiple-
point statistics to the best of the knowledge of the authors has not been addressed in the
literature and constitute the objective of the rest of the exposition.
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3.3 Preliminaries: Notation and Basic Concepts

A random variable (and a random vector) will be denoted by capital letters, for example
X(w) : (Ω,P) −→ A where µX denotes the distribution of X in the alphabet A. Focusing
on the finite alphabet case, µX(x) for all x ∈ A will be a short-hand for the probability
mass function (pmf). When considering a joint vector (X, Y ) in A×B, with µX,Y denoting
its joint distribution and µX|Y (·|y) the conditional distribution of X given Y = y in A.
Finally P(A) denotes the collection of probabilities defined in A.

3.3.1 Information Measures

Let X be a random variable with values in a finite alphabet A and probability measure
µX ∈ P(A). The Shannon entropy of X (Shannon, 1948) (or alternatively of µX) is a
measure of the uncertainty or non-resolvability of X given by

H(X) ≡ H(µX) ≡ −
∑

x∈A

µX(x) log2 µX(x). (3.1)

This object has been widely studied on information theory, where the convention from
general theoretical formulation is to use the integer 2 as the base of the logarithm. The
Shannon entropy offers fundamental performance bounds to many coding problems (Cover
and Thomas, 2006). Other important concepts are conditional entropy and mutual infor-
mation (Cover and Thomas, 2006). Consider two random variables X and Y with values
on finite alphabets A and B, respectively, and joint distribution µX,Y in P(A×B). Then,
the entropy of X given Y = y ∈ B from (3.1) is given by

H(X|Y = y) ≡ H(µX|Y (·|y)) ≡ −
∑

x∈A

µX|Y (x|y) log2 µX|Y (x|y). (3.2)

The average value of H(X|Y = y) (Cover and Thomas, 2006) with respect to the statistics
of Y is defined as the conditional entropy of X given Y

H(X|Y ) ≡
∑

y∈B

µY (y)H(X|Y = y). (3.3)

From Jensen’s inequality (Cover and Thomas, 2006), it is well-known that H(X|Y ) ≤
H(X) where the equality is achieved, if and only if, X and Y are independent. Therefore,
the basic principle is that conditioning always reduces the uncertainty. In information
theory, the reduction of uncertainty is attributed to information, and consequently, the
mutual information of X and Y is defined precisely by

I(X;Y ) ≡ H(X)−H(X|Y ) ≥ 0. (3.4)

Then I(X;Y ) is the average reduction of uncertainty of X by the process of sensing
(measuring) values of Y . The mutual information is a symmetric measure (Cover and
Thomas, 2006), that is H(Y ) − H(Y |X) = H(X) − H(X|Y ). Thus, the alternative
interpretation can be used by changing the role between X and Y .
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3.3.2 Entropy as an Indicator of Simulation Complexity

It is possible to show with some formality that the entropy H(X) has an operational
meaning for the task of simulating X using n i.i.d. realizations (see App. A.1). This in
the sense that the minimum number of n-block samples needed to represent almost all the
probability of the phenomenon scales like ≈ 2n·H(X), indicating an exponential rate that
is fully determined by H(X). From this angle, the task of simulating X1 is more complex
than simulating X2 if H(X1) > H(X2). The derivation of this result comes from a natural
connection between the task of i.i.d. simulation and the problem of almost lossless source
coding (Cover and Thomas, 2006) and, in particular, a connection with the celebrated
concept of typical sequences introduced by Shannon (Shannon, 1948) to prove numerous
coding theorems. For completeness, this material is presented in App. A.1 of this thesis.

3.3.3 A Basic Sensing Decision Problem

Here an illustration of a binary sensing problem is posted for the task of i.i.d. simulation
that is helpful to understand the formulation of the sensing problem presented in Sects.
3.4 and 3.5. Let X denote a finite alphabet random variable (with values in A) to be
characterized through i.i.d. samples. Before performing the simulation, one out of two
possible finite alphabet random variables Y1 and Y2 with values in the same alphabet B can
be measured. Both random variables, Y1 and Y2, have a joint distribution with the target
random variable X, and the problem is to choose optimally one of them before doing the
i.i.d. simulations of X. Here the joint distribution µX,Yj was assumed as non-trivial in
the sense that µX,Yj 6= µX × µYj , in other words, that I(X;Yj) > 0 from (3.4).

From the previous section, the complexity of the i.i.d. simulation task is proportional
to the entropy of its marginal distribution. Therefore if Yj = y ∈ B is observed, the
complexity of creating i.i.d. samples of X, is given by

H(X|Yj = y) = H(µX|Yj(·|y)) = −
∑

x∈A

µX|Yj(x|y) log2 µX|Yj(x|y). (3.5)

As the specific value that Yj will take is a priori unknown, the average complexity is
considered with respect to the probability of Yj, that is,

H(X|Yj) =
∑

y∈B

µYj(y) ·H(X|Yj = y). (3.6)

Then the minimum cost decision for simulating X conditioned on a sensed variable taken
from the set {Y1, Y2} is obtained from

j∗ = arg min
j∈{1,2}

H(X|Yj) (3.7)

= arg max
j∈{1,2}

H(X)−H(X|Yj) (3.8)

= arg max
j∈{1,2}

I(X;Yj). (3.9)
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The solution in (3.7) can be interpreted as selecting the sensed variable that minimizes
the posterior uncertainty (in average) of X after taking the measurement in (3.7). Alter-
natively, (3.9) is equivalent to the problem of selecting the sensed variable that has the
highest mutual information with X or the highest reduction between the prior and the
posterior uncertainty in (3.8). In fact, if comparing the complexity of the task of simulat-
ing X with and without the ability of optimally sensing over the set {Y1, Y2}, there is a
reduction in complexity quantified by H(X)−H(X|Yj∗) which is precisely I(X;Yj∗), the
highest point-wise mutual information between X and the set {Y1, Y2} stated in (3.9).

3.4 Sampling Strategies for Uncertainty Reduction

In this section, the decision principle in Sect. 3.3.3 is extended to the case of characterizing
a random field from a finite collection of measurements or pixel-based samples. In this
work, only the squared two dimensional problem is addressed for a sake of simplicity,
but no limitations exist to extend it to more complex problems (e.g., three-dimensional
rectangular grids).

3.4.1 Problem Setting

The object to be characterized is a random field corresponding to a collection of finite
alphabet random variables. X̄ = {Xi,j : (i, j) ∈ [M ]× [M ]} where [M ] ≡ {1, ..,M}. For
every position in the array (i, j), Xi,j is a random variable with values in a finite alphabet
A and marginal probability µXi,j

∈ P(A). The collection X̄ is equipped with its joint
probability denoted by µX̄ in P(AM2

).

Following the task in Sect. 3.3.3, the optimal sampling problem can be posted as a
minimum cost decision problem, where the cost is the complexity to characterize a random
object in terms of i.i.d. samples. More formally, for a given number k ≤M2 of positions
to be sensed in the pixel-domain [M ]× [M ], let Fk ≡ {f : {1, .., k} → [M ]× [M ]} be the
collection of functions that select k-elements from [M ] × [M ]. Every f ∈ Fk represents
a sampling rule of size k that defines the positions to be sensed in the field, denoted by
If ≡ {f(1), f(2), ..., f(k)} ⊂ [M ]× [M ]. In particular for f ∈ Fk, let

Xf ≡ (Xf(1), Xf(2), .., Xf(k)), (3.10)

denote the sensed random vector with values in Ak and let

X̂f ≡ (Xi,j : (i, j) ∈ [M ]× [M ] \ {f(1), f(2), .., f(k)}) (3.11)

denote the non-sensed random vector with values in AM2−k. In this context, given some
specific sensed values x̄ = (x1, .., xk) ∈ Ak, the complexity of simulating the non-sensed
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position X̂f is given by (see Sect. 3.3.2)

H(X̂f |Xf = x̄) = H(µX̂f |Xf
(·|x̄))

= −
∑

ȳ=(y1,..,yM2−k)∈AM2−k

µX̂f |Xf
(ȳ|x̄) · log2 µX̂f |Xf

(ȳ|x̄). (3.12)

In general, there is no access to the specific realization of Xf when evaluating the rule.
Consequently, the cost associated to f is the average posterior uncertainty with respect
to the statistic of Xf given by

H(X̂f |Xf ) =
∑

x̄=(x1,..,xk)∈Ak

µXf
(x̄) ·H(X̂f |Xf = x̄). (3.13)

Then, the minimum cost decision rule associated to characterize the field with k sensed
positions is given by

f ∗k = arg min
f∈Fk

H(X̂f |Xf ). (3.14)

3.4.2 The Equivalent Maximum Information Strategy

As mentioned in previous sections, uncertainty of the field after measuring translates into
information. Therefore, there is a meaningful interpretation of (3.14) as a problem of
maximum information extraction. The amount of information that provides a decision
rule f ∈ Fk about X̄, is defined as the reduction of the uncertainty induced in X̄ after
taking the measurements in average. Thus, the information of f to resolve X̄ is

I(f) ≡ I(X̄;Xf ) = H(X̄)−H(X̄|Xf )

= H(X̄)−H(X̂f |Xf ), (3.15)

where H(X̄) is the Shannon entropy of the entire field (before the measurements) or the
a priori uncertainty of X̄ given by

H(X̄) = H(µX̄) = −
∑

x̄=(xi,j)(i,j)∈[M ]×[M ]∈AM2

µX̄(x̄) · log2 µX̄(x̄), (3.16)

and the last equality in (3.15) comes from the chain rule of the entropy (Cover and
Thomas, 2006) and the fact that X̄ = (Xf , X̂f ). By definition, I(f) is a particular case
of the mutual information (Cover and Thomas, 2006), which implies that I(f) ≥ 0 and
I(f) ≤ H(X̄). An interesting case to consider is when I(f) = H(X̄). This implies that
H(X̂f |Xf ) = 0, which is equivalent to say that X̂f is a deterministic function of Xf (Cover
and Thomas, 2006) and, consequently, the sensing rule f perfectly resolves X̄ with no
remaining uncertainty.

Then, the optimal rule stated in Eq.(3.14) can be posted from (3.15) as

f ∗k = arg max
f∈Fk

I(f), (3.17)
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which has the nice interpretation of maximizing the information to resolve X̄ with k
measurements.

Another interpretation of the decision problem in (3.14) can be provided using the
chain rule of the entropy (Cover and Thomas, 2006). From the chain rule, for any f ∈ Fk

the joint entropy H(X̄) can be decomposed as the sum of the marginal entropy of the
sensed pixels H(Xf ) and the conditional entropy H(X̂f |Xf ). Consequently from (3.15),

f ∗k = arg max
f∈Fk

H(Xf ), (3.18)

which is the problem of choosing the k positions that jointly lead to the highest a priori
(before the measurements) entropy.

Remark 1 Summarizing, the problem of minimizing the posterior Shannon entropy after
taking the measurements in Eq. (3.14) is equivalent to the problem of finding the k
measurements that maximize the information to resolve X̄ in Eq. (3.17), which is also
equivalent to finding the subset of k measurements that maximize the a priori uncertainty
before taking the measurements in Eq. (3.18).

Finally, after solving the optimal sensing rule of size k, the resulting posterior uncer-
tainty is given by

H(X̂f∗k
|Xf∗k

). (3.19)

On the other hand, the reduction on the uncertainty (prior minus posterior entropy),
attributed to the information of f ∗k to resolve X̄, is given by

I(f ∗k ) = H(X̄)−H(X̂f∗k
|Xf∗k

) = H(Xf∗k
) ≥ 0. (3.20)

3.4.3 The Iterative Sequential Rule

The optimal sensing rule in its three presentations in (3.14), (3.17) and (3.18) is a combi-
natorial problem and, consequently, impractical for relatively large fields. In this section,
the sequential (non-adaptive) maximum information scheme (SMIS) is proposed as an
iterative solution based on the principle of one-step-ahead sensing. The idea is to con-
struct a sub-optimal sensing rule in an incremental fashion to reduce the complexity of
the decision task to something polynomial in the size of the problem and, therefore, that
can be implemented in practice.

In this context, for k = 1, the optimal rule reduces to finding one position in the array
solution of

(i∗1, j
∗
1) = arg min

(i,j)∈[M ]×[M ]
H((Xp,s : (p, s) 6= (i, j))|Xi,j) (3.21)

= arg max
(i,j)∈[M ]×[M ]

H(X̄)−H((Xp,s : (p, s) 6= (i, j))|Xi,j) (3.22)

= arg max
(i,j)∈[M ]×[M ]

H(Xi,j), (3.23)
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where (3.21) comes from (3.14), (3.22) from (3.17) and (3.23) from (3.18).

For k = 2, the principle of the one-step ahead approach fixes (i∗1, j
∗
1) and finds the next

position in the array as the solution of

(i∗2, j
∗
2) = arg min

(i,j)∈[M ]×[M ]\{(i∗1,j
∗
1 )}

[

H((Xp,s : (p, s) 6= (i, j), (p, s) 6= (i∗1, j
∗
1))|Xi,j, Xi∗1,j

∗
1
) ] (3.24)

= arg max
(i,j)∈[M ]×[M ]\{(i∗1,j

∗
1 )}

[ H((Xp,s : (p, s) 6= (i∗1, j
∗
1))|Xi∗1,j

∗
1
)

−H((Xp,s : (p, s) 6= (i, j), (p, s) 6= (i∗1, j
∗
1))|Xi,j, Xi∗1,j

∗
1
) ] (3.25)

= arg max
(i,j)∈[M ]×[M ]\{(i∗1,j

∗
1 )}

H(Xi,j|Xi∗1,j
∗
1
). (3.26)

Again, the first problem minimizes the posterior uncertainty after taking the next mea-
surement, the second maximizes the information gain of the next measurement, and the
last finds the point that maximizes the a priori uncertainty (conditioning to previous data,
in this case Xi∗1,j

∗
1
), which is the simplest principle to implement in practice.

Iterating this inductive rule, the k-measurement (after solving (i∗1, j
∗
1), (i∗2, j

∗
2) , .. ,

(i∗k−1, j
∗
k−1)) is the solution of SMIS at stage k, that is,

(i∗k, j
∗
k) = arg max

(i,j)∈[M ]×[M ]\{(i∗l ,j
∗
l ):l=1,..,k−1}

H(Xi,j|Xi∗1,j
∗
1
, .., Xi∗k−1,j

∗
k−1

). (3.27)

Therefore, with this sequence of optimal positions {(i∗l , j∗l ) : l = 1, .., k}, for every k ∈
{1, ..,M2}, the sequential rule f̃ ∗k ∈ Fk can be constructed by

f̃ ∗k (1) = (i∗1, j
∗
1), f̃ ∗k (2) = (i∗2, j

∗
2), ..., and f̃ ∗k (k) = (i∗k, j

∗
k). (3.28)

Figure 3.1 illustrates the inputs needed to solve (3.27), that is, the statistical model
and previous positions, and Fig. 3.2 the sequential set of problems and their interplay to
obtain f̃ ∗k (·) in (3.28).

In general, the rule in Eq. (3.27) can reach its maximum at multiple locations, giving
rise to multiple feasible solutions. In this context, a random selection from feasible loca-
tions will be used in practice. This is made in order to exclusively use entropy metrics as
the source of preferential sampling.

Concerning the information of this sequential rule, the following can be stated:

PROPOSITION 1 The information of f̃ ∗k to resolve the field {Xi,j} (using the definition
in (3.15)) is given by

I(f̃ ∗k ) = H(X̄)−H(X̄|Xf̃∗k
) = H(X̄)−H(X̂f̃∗k

|Xf̃∗k
)

= H(Xi∗1,j
∗
1
, .., Xi∗k−1,j

∗
k−1
, Xi∗k,j

∗
k
)

= H(Xi∗1,j
∗
1
) +H(Xi∗2,j

∗
2
|Xi∗1,j

∗
1
) + · · ·+H(Xi∗k,j

∗
k
|Xi∗1,j

∗
1
, .., Xi∗k−1,j

∗
k−1

), (3.29)

and, consequently, the information gain of this approach is additive in the sense that

I(f̃ ∗k )− I(f̃ ∗k−1) = H(Xi∗k,j
∗
k
|Xi∗1,j

∗
1
, .., Xi∗k−1,j

∗
k−1

) ≥ 0. (3.30)
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Figure 3.1: Diagram of the inputs and statistical information (model) needed to solve
the sequential rule in Eq. (3.27)

(The proof is presented in App. A.2)

Remark 2 Note that the information gain from k− 1 to k measurements in (3.30) is the
solution of (3.27) in the iteration k of the sequential rule.

Finally after obtaining the optimal sequential rule, the remaining uncertainty (or pos-
terior entropy) of the field is given by

H(X̂f̃∗k
|Xf̃∗k

) = H(X̄)− I(f̃ ∗k ), (3.31)

where I(f̃ ∗k ) is given in Proposition 1.

Remark 3 From the definitions in (3.17) and (3.28), it is simple to show that the com-
binatorial rule fk is better than the sequential rule f̃ ∗k in the sense that

I(f̃ ∗k ) ≤ I(f ∗k ). (3.32)

It is possible to conjecture that the information loss (I(f ∗k )−I(f̃ ∗k ))k=1,..,M2 is proportional
to how much spatial dependency is presented in the joint distribution of field X̄. To the
extreme, it is simple to prove for a field with no inter-pixel dependency, in the senses that
µX̄((xi,j)(i,j)∈[M ]×[M ]) = Π(i,j)∈[M ]×[M ]µXi,j

(xi,j), that
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Figure 3.2: Flow diagram to determine the sampling rule f̃ ∗k (·) in Eq. (3.28)

I(f̃ ∗k ) = I(f ∗k ), (3.33)

and the sequential solution is an optimal solution of (3.17) (see details in App. A.3).

3.5 The Adaptive Sensing Problem

In this section, the adaptive maximum information sampling (AMIS) is introduced as an
adaptive sensing variation for the sequential strategy elaborated in Sect. 3.4.3. The adap-
tive nature of this variation comes from the practical observation that in the sequential
step, for instance after deciding the k − 1 positions, the optimizer of the next sensing
decision at stage k can have access to the actual measurements of the field taken on the
previous positions. This is a realistic consideration in the context of MPS because it is
the way in which the conditional simulations are performed, that is, the non-sensed pixels
are simulated based on the conditional probability using the “specific values of sensed
data". Consequently, it is natural to consider both the previously decided positions and
the measurements of the field taken on those positions when selecting the position of the
next sample.

Formally, instead of considering the information gain in average, with respect to the
statistics of the random vector (Xi∗1,j

∗
1
, Xi∗2,j

∗
2
, . . . , Xi∗k−1,j

∗
k−1

) in (3.27), an adaptive strategy
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can condition on the specific values previously measured at the k − 1 positions. Then,
assuming access to the “true data" (x1, .., xk−1) ∈ Ak−1 of the image at the positions
(ia1, j

a
1 ), .., (iak−1, j

a
k−1), the next position is the solution of the AMIS approach, given by

(iak(x1, .., xk−1), jak(x1, .., xk−1)) =

arg max
(i,j)∈[M ]×[M ]\{(ial ,j

a
l ):l=1,..,k−1}

H(Xi,j|Xia1 ,j
a
1

= x1, .., Xiak−1,j
a
k−1

= xk−1). (3.34)

To distinguish this solution from (3.27), the difference on the definitions on (3.2) and (3.3)
should be noted. In particular, the solution in (3.34) is a function of the following set of
marginal conditional distributions in P(A)

{
µXi,j |Xia1 ,ja1

,..,Xia
k−1

,ja
k−1

(·|x1, .., xk−1) : (i, j) non-sensed at iteration k − 1
}

(3.35)

and, consequently, of the measured data (x1, .., xk−1). In other words, the decision at
iteration k is a function of the sensed values of the previous positions, contrasting with
the sequential approach in (3.27) that does not depend on the values of the previous
samples.. Therefore this scheme is adaptive in the sense that it uses information of
previously sampled data.

Remark 4 Another interpretation of this adaptive rule is thinking on the sequential
decision in (3.34) as a one step prediction problem (Gray and Davisson, 2004), where
the target is to predict the most informative position to resolve the field based on the
probability model µXnon−sensed−stage−k|Xsensed−stage−k

(· | conditioned on the sensed data at
stage k) in Eq.(3.35). This means that at any step of the rule, the probability model
needs to the updated by incorporating the new data point, and then a one-step-ahead
prediction problem is addressed with an adaptive model. Note that this is not the case of
the sequential principle in Sect. 3.4.3, where the model of the field is fixed in all the stages
and, consequently, this rule addresses a k-stage prediction in a sequence of one-steps to
find the set of more informative positions to resolve the field in average.

3.5.1 Pseudo code to implement the Adaptive Rule

The implementation of (3.34) for k > 1 involves the following basic steps:

1. Having the joint distribution of the field µX̄ , the positions (ia1, j
a
1 ) , .., (iak−1, j

a
k−1) ∈

[M ]× [M ] and previous sensed values (x1, .., xk−1) ∈ Ak,

2. Computing the conditional distributions µXi,j |Xia1 ,ja1
,..,Xia

k−1
,ja
k−1

(·|x1, ..,

xk−1) ∈ P(A) for each (i, j) ∈ [M ]× [M ] \
{

(ia1, j
a
1 ), .., (iak−1, j

a
k−1)

}
,

3. Computing the entropies hi,j = H(µXi,j |Xia1 ,ja1
,..,Xia

k−1
,ja
k−1

(·|x1, .., xk−1)) for all (i, j) ∈
[M ]× [M ] \

{
(ia1, j

a
1 ), .., (iak−1, j

a
k−1)

}
,

4. Solving the problem max(i,j)∈[M ]×[M ]\{(ial ,j
a
l ):l=1,..,k−1} hi,j.
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This process determines (iak(x1, .., xk−1), jak(x1, .., xk−1)). The initial condition k = 1 is
equivalent to solve (3.21).

With this procedure, the adaptive rule of size k that has access to the information of
the data (x1, .., xk−1) ∈ Ak−1, denoted by f̃ak (·|x1, .., xk−1) ∈ Fk, can be constructed in the
following way:

f̃ak (1|x1, .., xk−1) = (i∗1, j
∗
1)→ (solution of (3.21) )

f̃ak (2|x1, .., xk−1) = (ia2(x1), ja2 (x1))

. . .

f̃ak (k|x1, .., xk−1) = (iak(x1, .., xk−1), jak(x1, .., xk−1)). (3.36)

In addition, it is simple to verify that for all k > 1

f̃ak (1 : k|x1, .., xk−1) =

(f̃ak−1(1 : k − 1|x1, .., xk−2), (iak(x1, .., xk−1), jak(x1, .., xk−1))), (3.37)

where f̃a1 (1) = (i∗1, j
∗
1). For clarity, Fig. 3.3 illustrates at a higher level the inputs and

output relationship obtained when solving (3.34) and Fig. 3.4, the way this basic block
is executed and the information flow in the process to obtain the adaptive rule f̃ak (·) in
(3.37).

3.5.2 Analysis of the Information Gain

The reduction of uncertainty or the information gained to resolve the field, attributed
to the adaptive decision rule that solves (3.34), given the previous positions (ia1, j

a
1 ) , .. ,

(iak−1, j
a
k−1) and their data (x1, .., xk−1), at the stage k is denoted and expressed by

I(f̃ak , (x1, .., xk−1))︸ ︷︷ ︸
information gain

≡ H(X̂f̃ak−1
|Xf̃ak−1

= (x1, .., xk−1))
︸ ︷︷ ︸
entropy of the prior model at stage k − 1

−

H(X̂f̃ak−1
|Xiak,j

a
k
, Xf̃ak−1

= (x1, .., xk−1)),
︸ ︷︷ ︸

minimum posterior entropy when selecting (iak, j
a
k ) at stage k − 1

= H(Xiak,j
a
k
|Xia1 ,j

a
1

= x1, .., Xiak−1,j
a
k−1

= xk−1) ≥ 0, (3.38)

where (iak, j
a
k) is a short-hand for the solution of (3.34) that is a function of (x1, .., xk−1).

In fact, by using the information quantities introduced in Sect. 3.3, I(f̃ak , (x1, .., xk−1))
is precisely the mutual information between X̂f̃ak−1

(the vector of non-sensed positions at
the stage k − 1) and Xiak,j

a
k
(solution of (3.34)) conditioned by Xf̃ak−1

= (x1, .., xk−1).

From Remark 4 one can anticipate that the adaptive principle should perform better
than the sequential principle to resolve the field, because it is using a source of information
(the data) that is not considered in the pure sequential approach. To give some evidence
on this, the following simple result is stated.
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Figure 3.3: Diagram of the inputs and statistical information (model) needed to solve
the adaptive rule in Eq. (3.34)

PROPOSITION 2 Consider the model µX̄ ∈ P(AM2
) of the field X̄ and a set of fixed

positions (i1, j1) , .. , (ik−1, jk−1). To resolve the next position, the sequential rule that
solves (i∗k, j

∗
k) from (3.27) is contrasted with the adaptive rule that solves (iak(x1, .., xk−1),

jak(x1, .., xk−1)) using the side information of the values measured at positions (i1, j1), .. ,
(ik−1, jk−1) denoted by (x1, .., xk−1) in (3.34). Then, for any sensed sequence (x1, .., xk−1) ∈
Ak−1 having that

H(Xi∗k,j
∗
k
|Xi1,j1 = x1, .., Xik−1,jk−1

= xk−1)
︸ ︷︷ ︸

inf. gain of the sequential rule

≤

H(Xiak(x1,..,xk−1),jak (x1,..,xk−1)|Xi1,j1 = x1, .., Xik−1,jk−1
= xk−1)

︸ ︷︷ ︸
inf. gain of the adaptive rule

. (3.39)

Consequently, taking the average on both sides of (3.39), with respect to the realizations
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Figure 3.4: Flow diagram to determine the sampling rule in Eq. 3.37

of the sensed data X(i1,j1), .., X(ik−1,jk−1) using the model µX̄ , it provides the following
identity

H(Xi∗k,j
∗
k
|Xi1,j1 , .., Xik−1,jk−1

) ≤ (3.40)
EY1,..,Yk−1

{
H(Xiak(Y1,..,Yk−1),jak (Y1,..,Yk−1)|Xi1,j1 = Y1, .., Xik−1,jk−1

= Yk−1)
}

where Y1, .., Yk−1 ∼ µXi1,j1
,..,Xik−1,jk−1

.

Equations (3.39) and (3.40) show the role of having access to the data in reducing
the uncertainty of the field, as the information gain of the adaptive rule is better point-
wise, that is, for any sequence of sensed data, and consequently in average. This result
is expected and completely consistent with the fact that the adaptive rule has access to
the true model to make a decision (the non-sensed variables conditioned on a specific
realization of the sensed ones), while the sequential rule does not have access to the
realization and, consequently, it acts over an average objective function. This fact can be
observed by looking at the objective function of (3.27) and (3.34) and definition of the
conditional entropy (see Sect. 3.2).

Remark 5 It is important to note that Proposition 2 compares the sequential and adap-
tive rules assuming that the same path has been followed until stage k. This is not the
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case when inducing the sequential and adaptive rule inductively, as the paths will likely be
different. The comparison of the schemes in this general scenario remains an interesting
and challenging problem to be solved.

3.6 Case Study: A Binary Markov Chain

This section is devoted to the application of the proposed sequential rules in an emblematic
and simple model of spatial dependency: the finite length Markov chain. Under this
scenario of known statistics, the idea is to provide insights about the information-driven
placement solutions as well as their performance.

A Markov chain is a simple and powerful structure to model random variables with
spatial dependencies. In geology and geostatistics, Markov chains have been used to
represent discrete regionalized variables such as lithologies or facies (Elfeki and Dekking,
2001; Ostroumov et al, 2005; Zhang and Li, 2008). Because of their simplicity and wide
use, Markov chains offer a fantastic context to analyze the structure (in terms of spatial
locations) and the performance of the optimal sampling rules elaborated in Sects. 3.4 and
3.5. Specifically, the case of X̄ = (X1, .., XN) being a finite length binary Markov chain
with values in A = {0, 1} is considered.

3.6.1 The Sequential Maximum Information Strategy (SMIS)

Beginning by applying the iterative sequential rule presented in Sect. 3.4.3, the k-stage
of this problem (assuming the previous sample locations are known) is

i∗k = arg max
i∈[N ]\{i∗l :l=1,..,k−1}

H(Xi|Xi∗1
, .., Xi∗k−1

). (3.41)

To solve (3.41), the weak Markov property (Norris, 1997) can be used as if i /∈ fk−1 ={
i∗1, .., i

∗
k−1

}
only the closest variables in Xf̃∗k−1

= (Xi∗j
: 1 ≤ j ≤ k − 1) determine the

conditional entropy in (3.41). More formally, if i > min fk−1, denoting by l(i, k − 1) ≡
max {t ∈ fk−1 : t < i} the closest index before of i in fk−1, and if i < max fk−1, denoting
by r(i, k − 1) ≡ max {t ∈ fk−1 : t < i} the closest index after of i in fk−1, then:

PROPOSITION 3 Assuming that X̄ is a finite length Markov Chain and min fk−1

< i < max fk−1, it follows that

H(Xi|Xi∗1
, .., Xi∗k−1

) = H(Xi|Xl(i,k−1), Xr(i,k−1)). (3.42)

Otherwise, if i > max fk−1 then H(Xi|Xi∗1
, .., Xi∗k−1

) = H(Xi|Xl(i,k−1)), and if i < min fk−1

then H(Xi|Xi∗1
, .., Xi∗k−1

) = H(Xi|Xr(i,k−1)).

The proof is a direct consequence of the weak Markov property and it is detailed in
the App. C.5.
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Proposition 3 shows the local nature of conditioning under the Markov assumption.
In particular, if considering two consecutive sensed variables, Xi∗j

and Xi∗j+1
, the non-

sensed variables in this range (Xh : i∗j < h < i∗j+1) only dependent on these two ex-
treme objects from (3.42). In addition, it is simple to verify that the conditional entropy
H(Xh|Xi∗j

, Xi∗j+1
) is proportional to the distances |h − i∗j | and |h − i∗j+1|. Thus, for a

symmetric stochastic matrix, the maximal conditional entropy over (Xh : i∗j < h < i∗j+1)
corresponds to the variable located at the center of (Xh : i∗j < h < i∗j+1) (see Fig. 3.5).

Extrapolating this behavior implies that the solution of (3.41) has a symmetric struc-
ture, where the optimal placement strategy locates samples uniformly over the interval [N ]
with a specific dyadic structure, see Fig. 3.5. This sampling principle can be summarized
as follows: the solution of the stage k in (3.41) is the non-sensed position that divides
symmetrically the largest interval of non-sensed position induced by previous samples in
fk−1 as it can be seen in Fig. 3.5. Only for clarity, this result is presented for a short
Markov chain of 100 variables.

3.6.2 Empirical Analysis

For this analysis, N = 1000 and a symmetric stochastic matrix A with transition prob-
ability β = 0.01 and X1 uniformly distributed in {0, 1} are considered. The SMIS
scheme { f̃ ∗k : k = 1, .., N} in (3.41) is compared with a random sampling strategy
{ f rand

k : 1, .., N } that selects N positions with a uniform distribution over [N ]. As a
performance indicator, C(fk) is introduced as the information of fk to resolve the field in
(3.15) normalized by the entropy of the entire field H(X̄). In particular,

C(fk) ≡
I(fk)

H(X̄)
=

∑k−1
i=2 H(Xf(i)|Xf(i−1)) +H(Xf(1))∑N

i=2H(Xi | Xi−1) +H(X1)
∈ [0, 1]. (3.43)

To provide insight note that: C(fk) = 0 means that the k-measurements produce no
reduction in uncertainty, and C(fk) = 1 means that there is no remaining uncertainty to
be resolved after taking the k-measurements, that is, H(X̃fk |X̄fk) = 0.

The second expression in the equation (3.43) is obtained by the fact that I(fk) =
H(Xfk) in (3.20), the chain rule of the entropy (Cover and Thomas, 2006) and the Markov
assumption, where for simplicity it is assumed that fk(1) < fk(2) < . . . < fk(k).

In terms of structure, Fig. 3.5 shows that SMIS has the expected dyadic structure.
Remarkably, this structure is independent of the value of β and the initial distribution of
X1, meaning that this rule is somehow universal over symmetric one-dimensional Markov
processes. On the other hand, in terms of performance, Fig. 3.6 shows that when k is very
small, there is no significant difference between the random scheme and SMIS, however the
difference is clearer for larger k. In addition, the sampling methods show little variability
between different realizations (in fact the 20 individual curves for SMIS seem to be just
one apparent curve, only in the middle section of the figure is possible to appreciate a
little variance in the SMIS curves). Finally, the benefit of the SMIS rule is more significant
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Figure 3.5: Conditional entropies given the sensed positions for a binary Markov chain.
Top: after the first 10 samples. Bottom: after 18 samples. β = 0.01. Under the curves
the actual realizations of the Markov chains are presented

for a scenario with more spatial dependencies, that is β = 0.01, where the field can also
be resolved with a smaller number of measurements, as expected. Note that the case of
β = 0.5 is closer to the i.i.d. case where in theory no difference should be expected between
SMIS and a fully random approach. Note further that the difference between SIMS and
random sampling resolvability capacity reaches its maximum at different sampling rates,
depending on the probability of transition of the Markov processes.
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In conclusion under the Markov assumption and with symmetric transition matrices,
SMIS resembles a quasi-regular sampling, where the principle is to cover, as much as
possible, the position space [N ] meaning that all positions are equally relevant. It is then
remarkable than in the case of a Markov chain that models non-trivial causal dependen-
cies, this non preferential solution is achieved with SMIS. This can be understood from
the fact that the minimization is applied over the remaining uncertainty (or maximizing
information of the measurements) in average, with no specific conditioning on the val-
ues of the sensed data. As presented in the next section, conditioning on the data will
completely change the optimal sampling in terms of structure.

3.6.3 The Adaptive Strategy AMIS

For the adaptive sequential rule in Sect. 3.5, the Markov assumption simplifies the condi-
tional entropy used to solve the iterative step in (3.34). In particular, if fak−1 =

{
ia1, .., i

a
k−1

}

denotes the set of previous samples at stage k with known measurements {x1, .., xk−1}, it
follows that:

PROPOSITION 4 Assuming that X̄ is a finite length Markov Chain and min fak−1

< i < max fak−1, then

H(Xi|(Xia1
, .., Xiak−1

) = (x1, .., xk−1))

= H(Xi|Xl(i,k−1) = xl(i,k−1), Xr(i,k−1) = xr(i,k−1)). (3.44)

Otherwise, if i > max fak−1 then H(Xi|(Xia1
, .., Xiak−1

) = (x1, .., xk−1)) =

H(Xi|Xl(i,k−1) = xl(i,k−1)), and if i < min fak−1 thenH(Xi|(Xia1
, .., Xiak−1

) =H(Xi|Xr(i,k−1) =
xr(i,k−1)).

The proof is a direct consequence of the weak Markov property (Norris, 1997), and it
is omitted for sake of space.

As the solution in (3.34) relies on both the Markov model and the sensed data, a de-
viation from the dyadic structure presented in Sect. 3.6.1 can be observed. Figure 3.7
shows the remaining conditional entropy H(Xi|Xia1

= x1, .., Xiak−1
= xk−1) and the sample

distributions of fak−1 =
{

ia1, i
a
2, .., i

a
k−1

}
where it is clear the non-regularity of the solution

attributed to the spatial distribution of the data. From the performed analysis, using
numerous simulations of the field, adaptation happens in the sense that the samples tend
to be located around the transition zones between zero-one values. The reason is that
zones around sensed positions that show transitions have more conditional uncertainty
under the Markov assumption and, consequently, are more informative. This observation
is very relevant because it shows that the adaptive scheme is able to put more samples
on the areas close to the transitions. Importantly, this adaptive scheme provides bet-
ter resolvability of the field and better recovery of non-sensed data than the sequential
approach. The details are presented in App. A.4.
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Figure 3.6: Uncertainty reduction for 20 realizations of the Markov chain. Continuous
curves: SMIS; boxplots: random sampling. Top: β = 0.01, Bottom: β = 0.8

3.7 Application to Multiple-Point Simulations

In this section, the AMIS strategy in Sect. 3.5 is adopted as the main framework for
preferential sampling in the context of MPS (Mariethoz and Caers, 2014). In particular,
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Figure 3.7: Distribution of the conditional entropy of non-sensed locations given the
sensed pixels at k = 18, using AMIS. β = 0.01. Under the curve, the actual realization of
the binary Markov chain is presented

the target is to study the applicability and effects of this sampling scheme for the problem
of multiple-point conditional simulation of a binary field.

The main difficulty to execute this decision rule in MPS is the fact the joint distribution
of the field µX̄ ∈ P(AM2

) is unknown (see Sect. 3.5.1). Instead, only a training image
and a non-parametric approach (computing the frequency of occurrence of multiple-point
patterns in the training image) are available to estimate a set of conditional probabilities
of the form µ̂Xi,j |XS

(xi,j|xS) where i, j ∈ [M ] × [M ] is a position to be simulated, S ⊂
[M ] × [M ] denotes the conditioning positions (attributed to sensed data or previously
simulated data), and xi,j ∈ A and xS = (xi,j : (i, j) ∈ S) ∈ A|S|.

Therefore, the estimated probabilities of the form µ̂Xi,j |XS
(xi,j|xS) allow to address

the basic sensing problem in (3.34).For clarity, it is important to note that MPS uses
µ̂Xi,j |XS

(xi,j|xS) to simulate Xi,j conditioned on XS = xS. Here the same model is used to
select the most informative position in the sensing stage that is previous to the simulation
stage. Revisiting the pseudo code presented in Sect. 3.5.1 and adopting the same notation,
given a set of previous position (ia1, j

a
1 ), .., (iak−1, j

a
k−1) and their respective sensed values

(x1, .., xk−1), the conditional probabilities in (3.35) are estimated from the training image
(the practical details of this process are relegated to Sect. 3.7.2) obtaining

{
µ̂Xi,j |Xia1 ,ja1

,..,Xia
k−1

,ja
k−1

(·|x1, .., xk−1) : (i, j) non-sensed at iteration k − 1
}

for step 2 of this process. Then, the steps 3 and 4 follow directly to obtain (iak(x1, .., xk−1),
jak(x1, .., xk−1)) in (3.34).
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In addition, the sequential rule in Sect. 3.4.3 is implemented as an alternative to the
adaptive rule. The problem is that this rule requires the joint distribution (see the defini-
tion in (3.3) and (3.23)), which is not directly available in MPS. A way to circumvent this
issue is to use the analysis of the one-dimensional Markov model, where its non-adaptive
maximum information rule can be extended to the two-dimensional case. In particular,
under a generalized Markov assumption (with an isotropic conditional structure), the
SMIS rule in (3.41) distributes the measurements in a structured way covering the sam-
pling space uniformly, see Fig. 3.5. This approximation will be considered because it
precisely captures one of the standard non-preferential sampling strategies used in MPS.

3.7.1 Proposed Preferential Sampling Strategy for MPS

Finally, the preferential sampling solution proposed in this work for MPS is a combination
between the pure adaptive maximum information sampling strategy (AMIS ) in (3.34) and
a non-adaptive rule reminiscing of the SMIS strategy in (3.27) under a Markov assumption
presented in Sect. 3.6.1.

Let Sk−1 = {(ial , jal ) : l = 1, .., k − 1} denote the collection of the sampled locations
obtained by the proposed adaptive sampling strategy at the stage k− 1 of the algorithm.
Here, XSk−1

= (Xia1 ,j
a
1
, .., Xiak−1,j

a
k−1

) corresponds to the sensed random vector indexed by
Sk−1, and xSk−1

= (x1, .., xk−1) denotes the measurements taken at Sk−1 in Ak−1. Thus,
the regularized AMIS rule (RAMIS ) for stage k is the solution of

(̂iak(α, xSk−1
), ĵak(α, xSk−1

)) = arg max
(i,j)∈[M ]×[M ]\Sk−1

α ·H(Xi,j|XSk−1
= xSk−1

)

+ (1− α) ·D((i, j), Sk−1). (3.45)

The first term H(Xi,j|XSk−1
= xSk−1

) in the RHS of (3.45) is the same information term
in (3.34), while the second term is a regularization term to promote uniform sampling by
using a distance criterion from (i, j) to the set Sk−1 by

D((i, j), Sk−1) = min
(̃i,j̃)∈Sk−1

d((i, j), (̃i, j̃)), (3.46)

where d((i, j), (̃i, j̃)) ≡
√

(̃i− i)2 + (j̃ − j)2. In this work (3.46) is used as a regularization
term, however a mean distance from Xi,j to the set Sk−1, or others group distance metrics
could be used as well (Scheidt and Caers, 2009).

The motivation of using this mixed solution in (3.45) instead of the pure adaptive
solution (α = 1) comes from the analysis of the Markov chain presented in App. A.4.
In that context, when the number of samples is very small, structured sampling is better
than adaptive sampling, but this changes as the number of samples increases, as measured
by the field resolvability (conditional entropy of non-sensed position given sensed data)
and the recovery of non-sensed values from sensed data. This is presented in Fig.A.1 at
the App. A.4 and Fig. A.2 at the App. A.5. This suggests that there is an optimal
mixture between structured and adaptive sampling which is what is proposed in (3.45).
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3.7.2 Practical Considerations for the Estimation of
H(Xi,j|XSk−1

= xSk−1
)

Two practical aspects about the implementation of the RAMIS rule in (3.45) require
attention. The first comes from the effect of estimating H(Xi,j|XSk−1

= xSk−1
) in (3.45)

for which the SNESIM algorithm (Strebelle and Zhang, 2004) is used. The second comes
from the computational cost of this scheme as in every stage of (3.45) the full vector
(H(Xi,j|XSk−1

= xSk−1
))(i,j)∈[M ]×[M ]\Sk−1

has to be updated.

Regarding the first point, it is well-known that the larger the pattern the fewer the
occurrences within the dimension of a training image (Remy et al, 2009). Hence large
scale patterns will be poorly represented in general. To circumvent this issue SNESIM
defines a searching ellipsoid characterizing the maximum pattern sizes to be considered
(Huang et al, 2013; Remy et al, 2009). Here, for all models an ellipsoid with size 1

3
of

the image size will be used. Outside this covering zone around sensed positions, the max-
imum entropy value (equal to 1 for this binary problem) is adopted, corresponding to
areas statistically poorly represented. Consequently at very low sampling regimes, large
non-sensed areas far from sensed positions will have maximum entropy values and, con-
sequently, the regularization term in (3.45) within these areas will dominate the RAMIS
decision, that is, there is a structured sampling regime for the case of very small sampling
rate, as expected.

On the second point, the estimation of H(Xi,j|XSk−1
= xSk−1

) for each (i, j) ∈ [M ] ×
[M ]\Sk−1 in every iteration of (3.45) ended up being extremely computationally expensive
and impractical, in particular for large fields and small sampling regimes. To address this
issue, the estimation of the conditional entropies is made, by computing it using SNESIM,
only every K iterations at the stages k = 1, K, 2K, .... This estimation is denoted by
(Ĥk(Xi,j|XSk−1

= xSk−1
))(i,j)∈[M ]×[M ]\Sk−1

.

For intermediate stages, for example for k ∈ {2, .., K − 1}, the values ofH(Xi,j|XSk−1
=

xSk−1
) in (3.45) are approximated, based on a neighborhood of influence obtained (a

priori) from the training image and the value of this entropy estimated at stage k− 1. In
particular, for each k = 2, .., K − 1 a local update of the conditional entropy is performed
by the rule

Ĥk(Xi,j|XSk−1
= xSk−1

) = Ĥk−1(Xi,j|XSk−2
= xSk−2

)︸ ︷︷ ︸
conditional entropy of the previous stage k − 1

− I(Xi,j;Xîak−1,ĵ
a
k−1

), (3.47)

where I(Xi1,j1 ;Xi2,j2) = IStationary(i2 − i1, j2 − j1) and IStationary(dI, dJ) represents the
mutual information between two positions in the field assuming stationarity and estimated
from thousands of unconditional realizations generated with SNESIM. For completeness,
a formal justification for the adoption of this approximation is presented in App. A.5.

To illustrate these mutual information maps, Fig. 3.8 shows the link between the spatial
complexity of the training image and dependence of the obtained mutual information
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maps for the three models considered in the further analysis (a single channelized model
SC1, and two multichannel models, MC1 and MC2, with different spatial complexity).
From this result, training images with a higher complexity have more concentrated local
mutual information dependencies than less complex training images. Thus, for models
with greater spatial complexity, the effect of knowing an isolated measurement has a much
more local effect in reducing global uncertainty.

Figure 3.8: Proposed training images. Top: example of TIs, Bottom: mean MI maps
estimated from 200 realizations. From left to right: Models SC1, MC1, MC2. Color
maps, Top: Red is channel presence; Bottom: Linear from blue (low MI) to bright yellow
(max. MI)

In summary, the RAMIS based decision at stage k goes as follows

(̂iak(α, xSk−1
), ĵak(α, xSk−1

)) = arg max
(i,j)∈[M ]×[M ]\Sk−1

α · Ĥk(Xi,j|XSk−1
)

+ (1− α) ·D((i, j), Sk−1). (3.48)

3.7.3 Pseudo-code of the RAMIS solution

The pseudo-code that summarizes the proposed framework is shown here in order to clar-
ify the workflow in the MPS application.
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Algorithm 1: Pseudo code that implements the adaptive framework from rules in
(3.45).

1 Initialization
2 Choose training image TI, reference image X̄, the regularization term α, the batch size r,

and number of samples to take K
/* Output: set of sampled positions */

3 fK = ∅
/* Inputs and internal variables. Hk Estimated Remaining entropy

considering k − 1 samples */
4 Hk = ones(size(X̄)), D = inf(size(X̄)), distMean = inf
5 Computation
6 for k ← 1 to K do
7 fk−1 ← fK

/* Update MPS simulations from previous available samples */
8 if Criterion_To_Update_MPS_Realizations(k, r) then
9 Hk = Estimated_Entropy_from_MPS_&_Samples(TI,Xfk−1

, size(X̄), fk−1)
10 D = Estimated_Distances_From_Sampled_Locations(size(X̄), fk−1)
11 distMean = Mean(D)

12 else
13 Hk = Hk − Local_Mutual_Informationempirical(fk−1(k − 1))
14 D = D. ·Radial_Attenuation_Centred_At_Location(size(X̄), distMean, k − 1)

/* Set of current available position to sample. The complement set of
the previously sampled locations */

15 f̂k−1 = Complement_Set_Of_F (fk−1)
/* Regularized Criterion by Mixing of Entropy and Distance */

16 M = α · Hk + (1.0− α) · D
/* Choose a location randomly from the set of non sampled locations with

maximal value for the objective function */
17 fK(k) = Select_Random_Location_From_Maximum_Criterion(Mf̂k−1

)

3.7.4 Experimental Setting and Validation

The remaining sections evaluate the performance of the RAMIS sampling framework in
(3.48) in terms of resolvability of the field, by the conditional entropy of non-sensed
position given the sensed values, and also in terms of the average error between the true
field and the simulations obtained with MPS across different sampling rates and facies
models.

For that, 3 channelized 2-D binary facies models are studied with different levels of spa-
tial complexity: one single channel and two multi-channel structures with predominantly
horizontal orientation. These channelized structures were obtained by unconditional sim-
ulations using the geostatistical software SGeMS by the SNESIM algorithm (Huang et al,
2013; Remy et al, 2009) providing a synthetic scenario of study. The database was built
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from channelized 2-D images of size 200× 200. For the analysis, from the synthetic real-
izations, some images are considered as ground truth for testing while thousands of others
are used as training images for statistical estimation of the fields.

For the proposed adaptive approach that solves (3.48), the entropies of non-sensed val-
ues were estimated by using the empirical distribution from a set of 600 MPS conditional
simulations.

For performance evaluation two metrics were considered: resolvability and simulation
error. Thus, considering a rule f of size k that has sensed the positions Sk ⊂ [M ]× [M ]
with values xSk

∈ {0, 1}k, the resolvability of f is the average conditional entropy over
the non-sensed positions, given by

R(f, xSk
) ≡ average(H(Xi,j|XSk

= xSk
)(i,j)∈[M ]×[M ]\Sk

)

=
1

M2 − |Sk|
∑

(i,j)∈[M ]×[M ]\Sk

H(Xi,j|XSk
= xSk

) (3.49)

If (xi,j)i,j is the true image, then the simulation error induced from f is the average
error over the non-sensed positions of the simulations given by

E(f, (xi,j)i,j) ≡
1

M2 − |Sk−1|
∑

(i,j)∈[M ]×[M ]\Sk

EXi,j

{
(xi,j −Xi,j)

2 |XSk
= xSk

}

=
1

M2 − |Sk−1|
∑

(i,j)∈[M ]×[M ]\Sk

EXi,j

{
1Xi,j 6=xi,j

|XSk
= xSk

}

=
1

M2 − |Sk−1|
∑

(i,j)∈[M ]×[M ]\Sk

P {Xi,j 6= xi,j|XSk
= xSk

}︸ ︷︷ ︸
Conditional Error Probability

. (3.50)

From (3.50), E(f, (xi,j)i,j) corresponds to the average frequency of error in detecting the
true non-sensed value (oracle) with the values simulated with MPS, over the non-sensed
locations.

3.7.5 Selecting the Regularization Parameter α

The regularization parameter α ∈ (0, 1) in (3.48) offers a way of controlling the tradeoff
between adaptive and non-adaptive sequential sampling. Fig. 3.9 depicts two maps
that show the information and regularization terms (see the right hand side of (3.48)).
Remarkably as expected, the information term shows preferential locations around the
transitions and, consequently, through (3.48) adaptation to the underlying field when
α > 0. Furthermore, the regularization term offers a non-adaptive type of regular pattern
covering uniformly the space [M ] × [M ]. Therefore, the solution α = 0 reduces to the
structured sampling (see Fig. 3.9, right).
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Figure 3.9: Estimated maps for the model SC1 at k = 100. Upper Row, Left: Reference
Image, Right: Sampled Locations. Lower Row, Left: Entropy Map (α = 1), Right:
Distance Map (α = 0). Color maps, linear from blue to bright yellow (from low to high
entropy or distances)

Figure 3.10 illustrates the resolvability in (3.49) and average frequency of error on
detecting non-sensed positions in (3.50) for the RAMIS solutions as a function of α for
the case of 500 samples (1.25% of the image size). For the three models, a consistent
improvement can be observed for a mixed solution with α in the range [0.7− 0.8]. More
generally, as seen in Fig. 3.11, the performance improves by the use of a mixed approach
as it was expected from the Markov analysis. While in the regime of very few samples the
gain attributed to the mixed solutions is not that significant, it increases as the sample
number grows (from 0.5% to 2% samples). Finally, the improvement continues but is less
noticeable as the sampling rate increases (see the curves in Fig. 3.11 close to the 10% ),
which is justified since the missing information of non-sensed locations for both schemes
is extremely low.

Looking more carefully at the role of the model complexity in this analysis, a positive
correlation between the performance gain of the best proposed scheme with respect to the
pure structured sampling (α = 0) and the field spatial complexity is observed.
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Figure 3.10: Performance of non-sensed positions under RAMIS as a function of α, after
500 samples. Top: Resolvability, Bottom: Mean error. Average curves for 50 independent
train-test sets

For example, as summarized in Table 3.1, considering a sampling rate of 1.25% (500
samples), for the three models under analysis the optimal mixing parameter is around
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Table 3.1: Global Performance Improvement after sampling 1.25% of positions (500 Sam-
ples in images of size 200 by 200 pixels). Here, the outcome for α providing the best
performance for each model is presented.

Model Mean Metric
Reference

Performance
(%)

Optimal
Performance

(%)

Absolute
Improvement

(%)

Relative
Improvement

(%)
Model SC1
(α : 0.75)

Entropy 14.0 8.7 5.3 37.85
Pixel Error 6.4 3.8 2.6 40.63

Model MC1
(α : 0.70)

Entropy 37.8 33.7 4.1 10.85
Pixel Error 16.8 11.8 5.0 29.76

Model MC2
(α : 0.65)

Entropy 55.1 51.0 4.1 7.44
Pixel Error 28.0 23.7 4.3 15.3

α ≈ 0.7. Comparing the mixed solution with respect to the pure regular sampling (ref-
erence performance for α = 0.0), the proposed solution achieved an overall performance
improvement in terms of both absolute gain in resolvability reduction and mean pixel
error. Finally, Fig.3.11 presents those gains in performance for the three models and for
an extended sampling regime but considering images of size 50 by 50 pixels. Here, in
terms of resolvability, α ≈ 0.7 is consistently a good solution for every model and for a
large range of sampling rates.

3.7.6 Comparison with non preferential sampling methods

Finally, the proposed framework is compared (using the regularization parameter α = 0.7)
with two non-preferential sampling schemes provided by a uniform sampling of the space
and the regular grid sampling, which is achieved with the implemented algorithm when
α = 0. For this analysis, a sampling rate in the realistic range of 0% - 2% of the field is
evaluated. For the performance analysis, the resolvability is considered, that is, the pixel
average conditional entropy of non-sensed positions given the sensed position values in
(3.49), and the frequency error of the simulation of non-sensed positions given in (3.50).
For the computation (estimation) of these two indicators, 600 conditional MPS simulations
are used to estimate conditional entropies and the frequency of errors. Finally, in order
to obtain representative results for the three models used, the average performance across
50 scenarios is studied, where in each scenario a different training and a test image are
selected from a collection of unconditional simulations.

Equipped with these two indicators, a global and a local analysis of the results are
conducted. For the global analysis, the average indicator (conditional entropies and sim-
ulation error) for the complete set of non-sensed positions is computed, and for the local
analysis, the focus is on the transition zones between low and high values of the true
image. This local analysis seems more relevant from the point of view of resolving the
categorical nature of channelized fields, because transition zones define the problem. In
fact any adaptive sampling method needs to address a compromise between resolving lo-
cally or resolving globally the field and, consequently, it is insightful to consider these two
regimes of analysis. For the local indicator, the true image is used to define zones around
the transitions to compute the average indicator. In particular, all pixels at a distance no
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Figure 3.11: Resolvability of non-sensed positions using RAMIS approach as a function
of sampling rate for different values of α. (Top left) SC1, (Top right) MC1, (Bottom)
MC2

higher than 5 pixels from the line of transitions are considered to define the local zones,
as can be seen in Fig. 3.12.

Figure 3.12: Example of the masks used to define transitions in channelized images. 5
pixels around the transitions are considered. From left to right: models SC1, MC1, and
MC2. Color maps, solid yellow is the mask
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Figure 3.13: Experimental performance for model SC1 in terms of (left) Remaining
Entropy reduction and (right) Estimation error. Top: global performance. Bottom: local
performance. Sampling rates from [0% − 1.25%] with α = 0.7. Mean behavior over 50
realizations

Analysis of the Single-channel Model

Starting with the single-channel model, Fig. 3.13 shows the trend of the average perfor-
mance (globally and locally) of the studied sampling approaches with the adopted metrics
as a function of the sampling rate from 0% to 1.25%.

Remarkably for all the sampling regimes, the improvements obtained by the mixed
adaptive approach in terms of resolvability and frequency of error both globally and
locally are significant and systematic. It is important to highlight that the local gain
is substantial, meaning that the information driven adaptive strategy helps to better
characterize transition zones than a pure random or a structural sampling. The local
gain is very significant in the regime of 0%− 1.25% sampling rate for both metrics. This
important gain in local characterization does not imply detrimental performance at the
global level, which is relevant because this implies that the price of putting samples locally
around transitions does not degrade the resolvability and estimation of zones far from the
transitions. In conclusion, for the single channel model, a significant gain is observed in
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Figure 3.14: Remaining Entropy maps for model SC1 using 600 realizations of the sam-
pling process. Top: maps using the first 100 samples. Bottom: maps using the first 500
samples. Left to right: RAMIS, quasi-regular, and random sampling. Color maps, linear
from blue (low remaining entropy) to bright yellow (high remaining entropy)

the ability to recover the true image from the adoption of the proposed adaptive scheme.

To illustrate these improvements at the global level, it can be observed that the non
preferential sampling schemes require a sampling rate of 0.875% (350 samples) to obtain
a conditional entropy of 0.2 (see Fig. 3.13), while the proposed approach only requires a
sampling rate of 0.45% (180 samples) to achieve the same objective. A similar trend is
observed for the simulation error, where the proposed method requires a sampling rate of
0.375% (150 samples) to achieve a simulation error of 0.1 while the classical approaches
require a rate in the order of 0.75% (300 samples). Therefore, the adaptive strategy offers
a reduction of 50% on the number of samples to achieve similar results than with non
preferential sampling. If considering the local performance, the reduction in sampling rate
is even more dramatic.

Finally, Fig. 3.14 shows a map of the conditional entropies for the three sampling
methods at the sampling rates of 0.25% and 1.25%, respectively, showing the effectiveness
of the proposed scheme as it presents better resolvability (smaller conditional entropies)
on the transition zones.

Analysis of the Multi-channel Models

For the case of multi-channel models, the results are reported in Figs. 3.15 and 3.16. First,
it is important to comment on the dependency of these results on the model complexity.
As expected the number of samples required to achieve the same reconstruction error
and resolvability increases with the complexity of the model. For example, for the single

50



channel model the proposed method can achieve a resolvability of 0.2 with a sampling
rate of only 0.45% (180 samples). On the multi channel models, the proposed method
requires sampling rates over 2% (800 samples) (see Figs. 3.17 and 3.18). For this reason,
in all these experiments a higher number of samples, from 1− 800, is considered.

In general, the RAMIS approach shows consistently better performances in resolvability
and simulation errors than the conventional non-adaptive scheme globally and locally.
As it was shown before for the single-channel model, this performance improvement is
more important locally near transition zones, where the inference task is known to be
more challenging, than far from the transition zones. However the regime of gains and
their magnitude are reduced compared with the results obtained for the single-channel
model. The reason could be that for higher complexity models a much higher sampling
rate is needed to move the problem to a regime where adaptive samples make a significant
contribution in the characterization of the field. In particular, there is a range from 0−100
samples for the first multi-channel model where no major differences in performances are
observed globally between the implemented method and the non-adaptive schemes (see
Fig. (3.15)). This regime increases to 0−200 samples for the second multi-channel model
in Fig.3.16. Despite this observation, the local gains are relevant and significant and there
is a regime of higher sampling rate where the RAMIS method shows a gain in resolvability
and in the rate of detecting non-sensed positions from the simulations.
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Figure 3.15: Experimental performance for model MC1. Left: Remaining Entropy re-
duction, Right: Estimation error. Top: global performance. Bottom: local performance.
Sampling rates from [0%− 2%] with α = 0.7
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Figure 3.16: Experimental performance for the model MC2. Left: Remaining Entropy
reduction, Right: Estimation error. Top: global performance. Bottom: local performance.
Sampling rates from [0%− 2%] with α = 0.7

Figure 3.17: Remaining Entropy maps from 600 realizations for model MC1. Top: using
only the first 100 samples. Bottom: for the first 800 samples. Left to right: RAMIS,
quasi-regular, and random sampling. Colormap: same as fig 3.14

52



Figure 3.18: Remaining Entropy maps from 600 realizations for model MC2. Top: using
only the first 100 samples. Bottom: using the first 800 samples. Left to right: RAMIS,
quasi-regular, and random sampling. Colormap: same as fig 3.14

3.8 Discussion and Final Remarks

In this chapter, the role of preferential sampling is explored for the task of multiple-
point simulation (MPS). For this, the problem of optimal sampling is formalized and
addressed from a maximum information extraction perspective. This sampling principle
has the ability to locate the samples adaptively on the positions that extract maximum
information for the task of characterizing the underlying field. A formal justification is
provided for adopting this information-driven sampling criterion and show its practical
benefits for MPS in the context of simulating channelized facies models. Interestingly, this
preferential sampling locates samples adaptively on the transition between facies and this
improves the performance of conventional MPS algorithms and, consequently, it can be
integrated into the framework of MPS. In conclusion, preferential sampling can contribute
in MPS even at very small sampling regimes, and as a corollary, the training image can
be used constructively not only to simulate non-sensed positions, but also to decide where
to measure next.

The Appendix A provides details of the implementation and formalization of the pro-
posed methods presented in this chapter.
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Chapter 4

Improving Short-Term Planning and
Grade Control with an
Entropy-based Adaptive Sampling
Strategy

Grade control and short-term planning determine the performance of a mining project.
Improving this decision, by collecting the most informative samples (data) may have sig-
nificant financial impact on the project. In this research, a method to select sampling
locations is proposed in an advanced drilling grid for short-term planning and grade con-
trol in order to improve the correct assessment (ore-waste discrimination) of blocks. The
proposed sampling strategy is based on a regularized maximization of the conditional
entropy of the field, functional that formally combines global characterization of the field
with the principle of maximizing information extraction for ore-waste discrimination1.
This sampling strategy is applied to three real cases, where dense blast-hole data is avail-
able for validation from several benches. Remarkably, results show relevant and systematic
improvement with respect to the standard regular grid strategy, where for deeper benches
in the field the gains in ore-waste discrimination are more prominent.

Short-term planning and grade control aim at determining the optimum assignment of
each block of material in a mine, considering the potential economic profit, complying with
the mine plan and the constraints in the mine and processing facilities. This assignment
can be a specific process, a stockpile or the waste dump. In this chapter, the analysis has
been limited to the binary decision case of ore sent to the processing plant or waste sent
to the dump. In this context, the grade and other properties of each block are estimated
from samples located in its neighborhood. In most open pit mines, these samples are
taken where blast-holes are drilled. Two important considerations about this estimation
procedure are:

1The content of this chapter is based on the Santibañez-Leal † F, Silva JF, Ortiz JM (2019)
Improving short term planning and grade control with an entropy-based adaptive sampling strategy.
Natural Resources Research online first:1–35. Submitted. Under Revision
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• The block grade estimation involves a change of support, that is the volumetric
support of the samples is usually much smaller than that of the block; and
• The block grade is estimated based on the most current information, which during

production is the sampled grades obtained at blast-holes.

Because of these considerations, the estimation technique of the block grade must ac-
count for the support effect as the block ordinary kriging is typically used to determine
the block grade. Secondly, the fact that the assignment of the block to a specific desti-
nation is based on an estimation from limited data, means that sampling errors in that
information impair the final assignment (Chiles and Delfiner, 2012, p. 7) (Abzalov et al,
2010), which is known as information effect (Chiles and Delfiner, 2012, p. 442)

Short-term planning and grade control are almost always based on samples taken
from a pseudo-regular grid of blast-holes. These samples suffer from high errors due
to numerous factors: poor sample recovery near the collar of the blast-hole, delimitation
error by including the subdrill, and careless applications of sampling procedures since
production has priority and the area must be freed prior to loading explosives (Francois-
Bongarcon, 1983; Ortiz et al, 2012; Pitard, 1993). Poor sample quality leads to extremely
large economic losses, which increase when geological domains are poorly understood or
when estimation of the block grades suffers from large errors (Magri and Ortiz, 2000).
These sources of uncertainty are hidden, but have a significant impact in the financial
performance of mining projects (Magri et al, 2010, 2011; Ortiz and Deutsch, 2004).

Regarding the information used for grade control, most applications in mining deal with
a regular grid, and optimization is aimed at determining the spacing of the samples to
comply with some measures of quality (Ortiz and Magri, 2014). These measures of quality
are often linked to the kriging variance, as the measure of performance of the estimation
(Blackwell, 1998; Hassanipak and Sharafodin, 2004; Lloyd and Atkinson, 1998; McBratney
and Webster, 1981; McBratney et al, 1981; Vasát et al, 2010). The use of geostatistical
simulation allows to consider uncertainty that may be a function of the block grade,
accounting for the proportional effect (Journel and Kyriakidis, 2004).

Furthermore, although in most applications conventional two-point simulation meth-
ods, such as sequential Gaussian or sequential indicator simulation are used, some authors
have introduced the use of multiple-point geostatistical simulation in mining applications
(Boisvert et al, 2008; Ortiz, 2003; Ortiz and Deutsch, 2004). These methods require the
use of a training image (Mariethoz and Caers, 2014), which is commonly built from an
analogue, outcrop or a geological interpretation (Boisvert et al, 2008). Data driven train-
ing images can also be used (Ortiz and Deutsch, 2004; Silva Maureira, 2015) and are
precisely the approach taken in this study.

Advanced drilling considering a reverse circulation (RC) drilling rig has been studied
as an option to improve the quality of the samples for short-term planning and grade
control, and to provide grades and other geological information in advance to build a
reliable model for decision-making. This approach has led to improved financial returns
(Magri et al, 2010, 2011; Ortiz and Magri, 2014; Ortiz et al, 2012) and allows the use of
more sophisticated tools to build the short-term plan, such as cokriging or cosimulation to
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account for multivariate relationships. Furthermore, advanced drilling allows a character-
ization of the geological features of the rock (lithology, alteration, mineralization), hence
these samples can be used to improve and update the geological interpretation. Advanced
drilling is normally applied considering a regular drilling grid with a spacing wider than
the blast-hole spacing. From the high quality samples obtained in the advanced drilling
grid, a short-term model can be built using geostatistical estimation (kriging or cokriging)
or simulation (Journel, 1974). The simulation approach has usually relied on a multiGaus-
sian method and to the best knowledge of the authors, multiple-point geostatistics has
not been applied in grade control. Cost functions that account differently for the costs of
misclassification as ore or waste have also been used frequently in mining (Deutsch et al,
2000; Dimitrakopoulos and Godoy, 2014; Journel and Kyriakidis, 2004; Verly, 2005).

This work presents a new methodology for short-term planning sampling and grade
control based on the selection of the sampling locations that are the most informative
in terms of ore-waste discrimination. The proposal aims at characterizing the contact
between ore and waste, by learning from the data of previously mined benches the location
and geometry of the contact, and determining the best locations to be sampled at the
current bench. The implementation of this principle results in an irregular grid of samples.
Furthermore, the sample locations adapt to the local conditions of the problem. New
samples are drilled at locations that have the highest conditional entropy based on the
available samples (within the bench) and on the spatial continuity of the ore and waste
blocks. This last component of the model is cleverly estimated from previously mined
benches. On the specifics, an algorithm is adopted to this problem to select the best
locations, previously introduced by the authors in Santibañez † F et al (2019), (Section
4.1). This methodology is applied to three real scenarios and then the results for each case
are analyzed, showing the performance improvement with respect to an advanced regular
sampling grid. Then, the limitations and potential economic benefits of this approach are
discussed and some final conclusions are provided.

4.1 Entropy-based Adaptive Sampling Strategy

In this section, the proposed method for determining the best sample locations over a
binary two-dimensional field is reviewed. This strategy is based on a regularized maximum
entropy sampling problem presented in Santibañez † F et al (2019), which provides a
sampling scheme that maximizes the information extracted from the measurements.

4.1.1 Maximum Entropy Sampling

To formalize the problem, let consider a 2-D field with unknown spatial correlation.
Notice that this spatial correlation may be fully characterized by a variogram or may
require higher order statistics to be described (Mariethoz and Caers, 2014; Ortiz, 2003).
Then, and without loss of generality, the regionalized variable X is a 2-D random array
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of variables representing a discrete image of finite size A ·B,

Xu,v : (Ω,P)→ A = {0, 1} ∀(u, v) ∈ [A]× [B], (4.1)

with values in the finite alphabetA (limited here to the binary case), and (Ω,P) describing
the sample space and the probability measure for the stochastic regionalized variable.

Adopting the concept of entropy as a measure of uncertainty of a random variable
(Cover and Thomas, 2006), an algorithm that finds the placement rule f through optimal
reduction of the posterior entropy after doing measurements is proposed. For any given
numberK ≤ A·B of sample positions to be taken, let FK ≡ {f : {1, .., k, .., K} → [A]× [B]}
be the collection of functions that select K-elements in [A] × [B]. Then for any f ∈ FK

(sampling rule of size K) let’s denote the measured random vector by:

Xf ≡ (Xf(1), Xf(2), . . . , Xf(K)), (4.2)

and the remaining non-measured random vector by,

Xf ≡ (Xi : i ∈ [A]× [B] \ f). (4.3)

In this context, the conditional posterior entropy of Xf given Xf measures the remaining
uncertainty of the field X after sensing the position in Xf (Cover and Thomas, 2006). It
can be computed as the joint entropy of the entire process minus the joint entropy of the
variables measured by f , as shown in Eq. (4.4).

H(Xf |Xf ) = H(X)−H(Xf ). (4.4)

Then, the optimal decision of size K is the solution of

f ∗K ≡ arg min
f∈FK

H(Xf |Xf ), (4.5)

which minimizes the uncertainty of the field after K measurements. Interestingly, adopt-
ing some information theory identities (Cover and Thomas, 2006), the optimal decision
in (4.5) is equivalent to the solution of the maximum entropy problem (Santibañez † F
et al, 2019):

f ∗K = arg max
f∈FK

H(Xf ) (4.6)

that finds the K positions that jointly lead to the highest a priori (before the measure-
ments) entropy. This principle is easier to implement as it requires marginal distributions
and not the complete joint distribution of X, model for the implementation of the Eq.
(4.5).

The Sequential Adaptive Strategy From the general principle in Eq.(4.6), the focus
is on the realistic sequential problem where the decision is taken sample by sample, and
furthermore, the measurements taken in previous iteration of the algorithm are considered
to upgrade the model (or adapt the model to the data) in the next iteration. Considering
the set of previous sensed position f ∗k = ((i1, j1), ..., (ik, jk)) and the measurements of
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the field X taken at those selected places, i.e., x̄ = (x1, .., xk), the solution of the k + 1
position is given by the maximum entropy principle in (4.6) conditioned on X(i1,j1) = x1,..,
X(ik−1,jk−1) = xk−1 and X(ik,jk) = xk, i.e.,

(ik+1, jk+1) = arg max
(i,j)∈[A]×[B]\{(il,jl):l=1,..,k}

H(Xi,j|Xf∗k
= x̄), (4.7)

where f ∗k+1 = (f ∗k , (ik+1, jk+1)) ∈ Fk+1. Then iterating this rule from k = 1, .., K offers
an adaptive and sequential solution for the problem of selecting the more informative K
positions of the field.

The Regularized Adaptive Strategy The adaptive solution in Eq. (4.7) requires
the knowledge of the statistics of X. In practice, this model is not available requiring to
find a way to infer this model from empirical data. In the proposed solution, a training
image is required that is deemed to represent the spatial continuity of the random function
describing the spatial correlations in the underlying spatial model, and from this a model
is estimated using conditional multiple point simulations (Mariethoz and Caers, 2014;
Ortiz and Deutsch, 2004). In particular, a set of conditional probabilities of the form
µ̂Xi,j |XS

(xi,j|xS) are estimated, where i, j ∈ [A]×[B], S ⊂ [A]×[B] denotes the conditioning
positions (attributed to sensed data), and xi,j ∈ A and xS = (xi,j : (i, j) ∈ S) ∈ A|S|,
which is the information needed to implement (4.7).

Finally, a convex combination between the maximal entropy adaptive criterion in (4.7)
and a regularization principle that promotes uniform covering of the sampling space is
proposed. It has been found that a mixed rule that promotes a compromise between
selecting the most informative points (from the conditional model and previous data)
and a good cover of the sampling space is better than the rule based on a pure adaptive
principle (Santibañez † F et al, 2019). More precisely, let Sk = {(ial , jal ) : l = 1, .., k}
denote the collection of k positions previously obtained. XSk

=
{
Xia1 ,j

a
1
, .., Xiak,j

a
k

}
denote

the random vector at the locations Sk, and xSk
= {x1, .., xk} be the data collected at Sk.

Then, the regularized rule is the solution of

(iak, j
a
k) =

arg max
(i,j)∈[A]×[B]\Sk−1

α ·H(Xi,j|XSk−1
= xSk−1

) + (1− α) ·D((i, j), Sk−1). (4.8)

Note that the second term promotes a uniform sampling by using a distance criterion

D((i, j), Sk−1) = min
(̃i,j̃)∈Sk−1

d((i, j), (̃i, j̃)), (4.9)

where d((i, j), (̃i, j̃)) ≡
√

(̃i− i)2 + (j̃ − j)2. Therefore, the proposed regularized rule
corresponds to a global maximin strategy.
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4.2 Optimal Sampling for Grade Control

In grade control the target is to define the destination of every single block in the current
mining bench. In order to achieve this task, the estimated grade of the block is considered
and compared with the Cut-Off grade. The Cut-Off grade corresponds to the minimum
grade required for a block to be considered for processing (expecting a positive economical
benefit). Therefore, a block found to be above this Cut-Off grade is considered to be ore,
while a block below this grade is considered to be waste. Then, the grade control relies
on a binary decision even when the value of the block grade corresponds to a continuous
variable.

The Cut-Off grade can be established by various methods. Its selection is related to
a certain production objective, such as the use of resources or economic benefit. These
objectives give rise to different types of targets, such as maximizing global economic
benefits, immediate benefits and so on. The Cut-Off grade does not have a fixed or
predefined value, but instead it corresponds to a strategic variable that has important
implications in the design and production of the mine.

The application of the adaptive sampling strategy to grade control is described in this
section by considering a scenario where several benches are to be mined in a sequential
process. The sampling strategy is used with the objective of improving the prediction
of ore-waste contact in successive working benches. For every bench, the method works
in two stages: first, the general features of the field are learned through a coarse regular
sampling grid; then, the sampling adapts to the features learned from the regular grid and
aims at characterizing the contacts between ore and waste for a better characterization of
non-sensed blocks as learned from the benches previously mined out. In each bench, the
process is applied sequentially, where current samples are used to make decisions about
the subsequent locations to be sampled.

4.2.1 Proposed Methodology for Sampling

Considering a collection of M benches, where every bench is indexed by m ∈ {1, · · · ,M}
an it is a rectangular grid, i.e., a 2-D image, denoted by Imgrade ∈ RAxB of size A x B. On
each bench m, K measurements will be taken to infer a model of the mineral distribution
of non-sampled blocks at this bench. Therefore, the main problem is to define the best
K locations using the framework presented in Section 4.1. From these K samples an
estimation is made on all the non-sensed blocks of the bench producing what is defined as
the block model. Finally, a hard threshold is applied on the block model using a Cut-Off
grade to create a binary 2-D image denoted by Imo−w ∈ AAxB (with |A| = 2), where,
consequently, non-sensed blocks are classified as ore or waste.

In the initial stage of this process (m = 1), the upper bench is considered. As no
preliminary data is available from previous benches, the conditional entropies are drawn
from an i.i.d distribution of ore and waste for implementing Eq. (4.8). This worst case

59



scenario in terms of prior information for the inference, reduces Eq. (4.8) to the classical
near regular sampling, since its second term in Eq. (4.9) dominates the optimization
promoting distance as a criterion where a uniform coverage of the space is the optimal
solution. Thus for the bench m = 1, K samples are distributed in a regular grid. An
empirical estimation of the remaining (non sensed) mineral grades is performed by 2-D
kriging. Finally, after applying the Cut-Off grade the image I1

o−w is obtained.

For benches m = 2, . . . ,M , the use of the previously estimated binary block model
Im−1
o−w for bench m−1 is used as the training image (model) for inference of the conditional
entropies used in Eq.(4.8) in the current bench. The key assumption made on this selection
is that the previous bench m − 1 reflects the spatial distribution of the ore and waste
blocks more accurately than the i.i.d. assumption made on the initial stage (m = 1).
Using Im−1

o−w as a training image along with MPS, in particular the SNESIM algorithm,
and the previous k − 1 measurements at the current bench m, it is possible to estimate
the entropy map, Ĥm,k, for this bench. This is required for the implementation of the
sampling rule in Eq.(4.8). The selection rule for the k-th sample at bench m given the
previously sampled locations Smk−1 corresponds to the solution of:

(iak, j
a
k)m =

arg max
(i,j)∈[M ]×[M ]\Sm

k−1

αĤm,k(Xm
i,j|Xm

Sm
k−1

= xSm
k−1

) + (1− α) D((i, j), Smk−1). (4.10)

The solution of Eq.(4.10) places the new samples in the locations with an optimal bal-
ance between maximum conditional entropy (information criterion) and the maximum
distance to previously sampled positions (regularization). It is important to mention that
in the proposed practical implementation of Eq.(4.8), the adaptive sequential sampling
strategy selects a new batch of s samples at every sampling step. This iterative strategy is
repeated until the K samples are obtained. For completeness, a schematic representation
of the sampling rule in (4.10) is illustrated in Fig. 4.1. Finally, the pseudo-code of the
implementation of Eq.(4.10) is presented in App. B.1.

4.2.2 Classification Process

Concerning the final ore-waste classification, after theK samples are taken in every bench,
ordinary kriging is performed using the routine provided in GSLIB (Deutsch and Journel,
1998). A variogram model is fit in each case over the full bench, performing the estimation
by using a minimum of minS samples and a maximum of maxS, with a search radius of
radS [m]. A block discretization of nA×nB×nZ points per block is used. The resulting
estimated block model for the bench is binarized by applying a Cut-Off grade. The
resulting binary model (image Imo−w) represents the estimated ore and waste blocks that
are used in short-term planning.
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Figure 4.1: Schematic diagram of the sampling rule (4.10).

4.3 Case Studies and Experiments

The proposed methodology has been applied to three different cases, two of them coming
from the same ore deposit. The corresponding databases consist of drill-hole composites
widely spaced and denser blast-hole samples, which are used to validate the sampling
strategy. The two projects correspond to massive porphyry copper deposits that are
currently under operation (more details can be found in Section 4.3.1).

In this section, the implementation parameters are provided and the results of the first
case study are described in detail. For sake of space, only the relevant results for the
other two cases are presented.

4.3.1 Database Description

Case studies 1 and 2 come from the same mining project, but from different areas of the
open pit. These areas have already been mined out, providing blast-hole samples to test
the hypothesis that adaptive sampling can achieve better discrimination between ore and
waste than classical regular sampling. For this mining project, the available blast-hole
database consists of nearly regularly spaced samples taken in a grid of approximately 10m
by 10m. The database contains areas without samples, therefore, it was split into two
informed sectors to generate case studies 1 and 2. On the other hand, case study 3 comes
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Table 4.1: Summary statistics.

Case Study 1 Case Study 2 Case Study 3
Drill-hole Blast-hole Drill-hole Blast-hole Drill-hole Blast-hole
Samples Samples Samples Samples Samples Samples

Count 2045 19752 747 95815 2368 158772
Mean 1.07 1.18 0.34 0.42 0.57 0.48
Std. dev. 0.67 0.78 0.47 0.56 0.55 0.58
Minimum 0.13 0.01 0.01 0.00 0.00 0.00
Maximum 7.24 9.90 4.04 35.00 4.04 35.00

Table 4.2: Case study coordinates. Elevations represent the centers of the considered
benches.

Case Study 1 Case Study 2 Case Study 3
Min Max Min Max Min Max

East 24550 24730 72200 72550 72600 72900
North 25100 25550 83100 83500 83100 83600
Elevation 3860 3940 2405 2455 2415 2465

from a different mining project with similar sampling conditions.

Blast-hole data are migrated to a regular grid creating 6 consecutive benches uniformly
sampled for each case study. From the selected X-Y section of the raw information pro-
vided by the blast-hole samples, a set of dense benches has been created that completely
describe the ore distribution of the 3-D deposit.

The basic statistical information used to build the case studies is summarized in Table
4.1 and Table 4.2.
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Figure 4.2: Grade mineral distributions and basic statistics for the available blast-holes.
From left to right: CS1, CS2, CS3.

Table 4.3: Summary Parameters SNESIM.

Case Study 1 Case Study 2 Case Study 3

Number of benches (M) 6 6 6
Min data for kriging 4 4 4
Max data for kriging 16 16 16
Max data per octant 0 0 0
(0 : not used)
Maximum search radii [80,80,10] [80,80,10] [80,80,10]
(x, y, z)
Min data for kriging 10 10 10

The statistical distributions of blast-holes grades present in the analyzed case studies
are described in Fig. 4.2, along with their basic statistics.

4.3.2 Construction of Validation Block Model

From the unevenly distributed blast-hole and drill-hole data, a fully informed block model
is obtained by performing block ordinary kriging using the kt3d routine of GSLIB. Finally,
six consecutive benches were considered as ground truth for every case study by consider-
ing the blocks inferred from the densely sampled available information. The parameters
for the kriging estimation are presented in Table 4.3.

In order to illustrate the density of available information for every single bench, Figs.
4.3 and 4.4 show the drill-hole composites and blast-hole samples for the first case study.
The block model estimated by ordinary kriging is displayed for these data in Fig. 4.5.
Systematic descriptions of the other two case studies can be found in Appendix B.2.

63



Figure 4.3: Drill-hole samples data for case study 1. From left to right: Benches 1-6.
Colormap denotes the grade of Cu.

Figure 4.4: Blast-hole data for case study 1. From left to right: Benches 1-6. Colormap:
the same as in Fig. 4.3.

Figure 4.5: Ground truth estimated from drill-holes and blast-holes samples for case study
1. From left to right: Benches 1-6. Colormap: the same as in Fig. 4.3.
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Figure 4.6: Samples for Case Study 1. From left to right: Benches 2-6. Top: Kriging
from structured sampling. Down: Kriging from adaptive sampling using Cut-Off grade
1.012%. Colormap: Describe batch of samples in the order of the performed sampling.

4.3.3 Experimental Results: Adaptive Sampling Strategy

As mentioned, the value for the Cut-Off grade corresponds to an operational decision,
then in order to demonstrate the benefit of the proposed sampling approach, results for
different Cut-Off grade values are presented.

Case Study 1

To illustrate the implementation and outcomes of the adaptive sampling strategy, full
details are provided for the first case study. For case studies 2 and 3 only summary
figures and results are presented, in the understanding that the procedure is similar to
that illustrated for case study 1.

For each sampling strategy, 9% of the available locations for each bench were sampled
(K = 0.09 ∗ Am ∗ Bm). For case study 1 the proposed samples are presented in Fig. 4.6.
The outcomes for kriging estimation from the proposed samples are displayed in Fig. 4.7
for the benches 2, 3, 4, 5 and 6. Three Cut-Off grade values, corresponding to the three
quartiles of the grade distribution, were considered to evaluate the differences between the
classical structured sampling (STR) and the proposed adaptive sampling (ADA) approach
(Fig. 4.8).

From the results presented in Fig. 4.9, it is clear that the number of misclassified
blocks is reduced with the adaptive sample in comparison with the structured classical
approach.
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Figure 4.7: Estimated grade for Case Study 1. From left to right: Benches 2-6. Top:
Kriging from structured sampling. Down: Kriging from adaptive sampling using Cut-Off
grade 1.012%. Colormap: the same as in Fig. 4.3.
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Figure 4.8: Estimated grade control for Case Study 1. From left to right: Benches
2-6. From top to bottom: Ground truth, structured sampling, adaptive sampling using
Cut-Off grade 1.012%.

Figure 4.9: Confusion Matrix for Case Study 1. From left to right: Benches 2-6. Top:
Structured sampling. Down: Adaptive sampling using Cut-Off grade 1.012%.
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Table 4.4: Performance Error Summary for Case Study 1.

Case Study 1
Cutoff grade 1.102 Cutoff grade 1.241 Cutoff grade 1.518
STR ADA STR ADA STR ADA

Bench 2 0.112 0.069 0.133 0.114 0.059 0.055
Bench 3 0.138 0.106 0.104 0.102 0.066 0.064
Bench 4 0.109 0.082 0.091 0.086 0.053 0.051
Bench 5 0.084 0.048 0.086 0.083 0.090 0.083
Bench 6 0.111 0.060 0.127 0.108 0.109 0.097

Table 4.5: Performance Error Summary for Case Study 2.

Case Study 2
Cutoff grade 0.220 Cutoff grade 0.445 Cutoff grade 0.692
STR ADA STR ADA STR ADA

Bench 2 0.048 0.043 0.100 0.096 0.112 0.080
Bench 3 0.039 0.032 0.109 0.097 0.091 0.068
Bench 4 0.037 0.034 0.078 0.066 0.057 0.045
Bench 5 0.055 0.038 0.036 0.024 0.036 0.026
Bench 6 0.031 0.015 0.025 0.010 0.013 0.010

4.3.4 Performance Assessment

Binary Image Inference Performance We begin by comparing the performances in
terms of image recovery achieved by the proposed adaptive sampling strategy with respect
to the classical structured sampling. The results are summarized in the Tables 4.4, 4.5
and 4.6 for case studies 1, 2, and 3, respectively. Here the performance is evaluated in
the binary ore-waste estimated image for each bench by computing the proportion of
misclassified blocks.

From the point of view of the binary allocation of blocks (as ore or waste), the adaptive

Table 4.6: Performance Error Summary for Case Study 3.

Case Study 3
Cutoff grade 0.115 Cutoff grade 0.273 Cutoff grade 0.486
STR ADA STR ADA STR ADA

Bench 2 0.067 0.048 0.060 0.039 0.067 0.054
Bench 3 0.039 0.031 0.057 0.030 0.030 0.014
Bench 4 0.049 0.029 0.052 0.033 0.054 0.049
Bench 5 0.051 0.037 0.053 0.041 0.053 0.034
Bench 6 0.037 0.021 0.047 0.035 0.038 0.034
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Table 4.7: Economical Profit Estimation for Case Study 1. In MM US$.

Case Study 1
Cutoff grade 1.102 Cutoff grade 1.241 Cutoff grade 1.518
STR ADA STR ADA STR ADA

Bench 2 33.574 34.146 13.483 13.726 2.675 1.737
Bench 3 28.581 28.462 10.419 9.439 1.284 2.520
Bench 4 33.562 34.150 15.423 16.114 6.295 5.792
Bench 5 41.065 41.590 23.272 23.814 11.174 11.502
Bench 6 46.401 47.135 27.623 28.165 16.420 15.427

Global 183.183 185.483 90.221 91.257 37.849 36.977

Table 4.8: Economical Profit Estimation for Case Study 2. In MM US$.

Case Study 2
Cutoff grade 0.220 Cutoff grade 0.445 Cutoff grade 0.692
STR ADA STR ADA STR ADA

Bench 2 49.281 49.320 23.729 23.992 6.096 6.704
Bench 3 39.309 39.458 16.727 16.362 -5.363 -4.555
Bench 4 47.299 47.262 23.257 23.646 8.957 9.425
Bench 5 36.460 36.703 19.278 19.181 10.392 10.714
Bench 6 9.790 9.994 1.145 1.330 -4.058 -3.937

Global 182.139 182.735 84.137 84.512 16.023 18.351

sampling based method provides a better overall classification of the blocks. This behavior
is consistent for the proposed cut-off grades along all three case studies presented.

In general, as the procedure advances down the benches (as m increases), then the
improvement increases as well in terms of the reduction of error as compared to the clas-
sical sampling method. Thus, the adaptive strategies outperform the classical sampling
method, achieving a consistent improvement over all benches.

It is worth mentioning that it is possible to improve the performance of the proposed
technique by feeding the model for the training image of bench m with all the information
available from the previous benches (1, ..,m − 1) instead of just from the bench above
(bench m− 1).

Economic Performance In order to provide a summary of the economic impact related
with the sampling strategy in the ore/waste selection process, a brief evaluation of profit is
presented taking into consideration some relevant scenarios. The variables and estimations
considered for this economic analysis are detailed in Appendix B.4. The achieved results
are summarized in Tables 4.7, 4.8, and 4.9.
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Table 4.9: Economical Profit Estimation for Case Study 3. In MM US$.

Case Study 3
Cutoff grade 0.115 Cutoff grade 0.273 Cutoff grade 0.486
STR ADA STR ADA STR ADA

Bench 2 17.685 17.974 17.382 17.371 3.059 2.419
Bench 3 11.577 11.674 10.136 11.130 -2.159 -1.943
Bench 4 10.651 10.904 9.772 10.213 -2.440 -2.553
Bench 5 14.629 14.859 14.111 13.993 1.192 1.725
Bench 6 16.038 16.288 15.316 15.262 3.136 3.964

Global 70.580 71.699 66.717 67.969 2.787 3.611

Although in some benches the economic results are variable, the overall result obtained
shows a systematic improvement over the classic sampling scheme.

Even though the binary assignment as ore/waste is systematically better with the
proposed adaptive approach (ADA) in terms of mean global error, the current grades are
not considered for this evaluation. Therefore, cases can be found where when block grades
are close to the Cut-Off value, then the classification may fail and the economic value for
the bench may decrease.

Negative profits may occur when the processing plants lack ore, and marginal material
must be sent to fulfill the production requirements, which may have a negative value,
but will likely be higher than dumping these blocks in the waste dump. Now, in most
practical cases the Cut-Off will be defined to generate profit, rather than minimize the
loss.

4.4 Chapter Conclusions

In this chapter,the problem of optimal sampling in the context of short-term planning
and the task of classifying blocks to be processed as waste or ore has been addressed.
The problem has been formalized and its validation has been presented through the use
of subsets of actual mining data.

The proposed methodology takes advantage of the information available from the lo-
cations previously sampled, allowing to improve the performance as compared with the
classical non-adaptive sampling schemes that has been used for advanced drilling tasks.
The proposed strategy has been validated with real blasting data from the exploitation
of two copper mines.

From the results obtained across the three analyzed scenarios, it is possible to see that
in terms of both error in image reconstruction and global economic value, the proposed
methodology achieves better performance than the regular grid based sampling strategy.
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The Appendix B provides details of the implementation and formalization of the pro-
posed methods presented in this chapter.
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Chapter 5

Conclusions

In this thesis the role of preferential sampling has been systematically addressed for the
task of geological facies recovery using multiple-point simulation (MPS ) and for the prob-
lem of short-term planning in mining. In the context of facies recovery using simulations,
the task of optimal sampling is formalized and addressed using a maximum information
extraction criterion. This sampling principle has the ability to locate samples adap-
tively on the positions that extract maximum information for the objective of resolving
the underlying field. A formal justification is provided in this thesis for adopting this
information-driven sampling criterion as well as concrete ways of implementing this prin-
ciple in practice. In addition, the practical benefits for MPS in the context of simulating
channelized facies models is demonstrated using synthetic data and real geological fa-
cies. Importantly, this strategy locates samples adaptively on the transition between
facies which improves the performance of conventional MPS algorithms. In conclusion,
this work shows that preferential sampling can contribute in MPS even at very small
sampling regimes and, as a corollary, demonstrates that prior models (obtained form a
training image) can be used effectively not only to simulate non-sensed variables of the
field, but to decide where to measure next.

Furthermore, the proposed sampling strategy has been adapted to the problem of
short-term planning for the task of classifying blocks to be processed as waste or ore
in the production stage of a mining project. The problem has been formalized using
the principle of maximum information extraction criterion and the obtained solutions was
validated using three data sets of real mining projects. Importantly, the proposed method-
ology takes advantage of the information available from the previously sampled locations,
allowing to improve the performance as compared with some of the classical non-adaptive
sampling schemes used for advanced drilling tasks. From the results obtained across these
three real scenarios explored in this thesis, it is possible to see that the proposed method-
ology achieves better performances than sampling in a structured regular grid (used as a
conventional rule for sampling) in terms of both error in image reconstruction and global
economic value, when considering the economic revenue of processing the ore and dumping
the waste.
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It is important to emphasize that no previous work have addressed the optimal sensing
problem covered in this thesis for characterization of geological fields in the context of
MPS. Overall the main contribution of this thesis relies on the formulation of the sensing
design problem and, as a result of that, the adoption of an adaptive sensing strategy for
the characterization of a geological phenomenon. One of the salient aspect of this solution
is that the proposed sampling strategy actively uses MPS simulations for the estimation
of the field statistics. At a higher level, this work confirms the fact that MPS simulations
can be used to estimate empirical representations of the statistics of regionalized variables
for better inference and decision.

5.1 Future Work

Although the presented work was focused on 2-D binary channelized structures (geological
facies), the applied principles are general and it can be extended to the characterization
and recovery of other geological signals with spatial structure in under sampling contexts.
There are many directions where this idea could be applied and it is an interesting direc-
tion of future research to explore the full potential of this framework. On the specifics, it
would be interesting to apply the proposed strategy to scenarios with multiple categories
and to use techniques for geostatistical continuous simulation to extend the proposed
methodology to continuous variables. Another direction of future work is to study alter-
native geostatistical simulation tools that could provide more effective estimations of the
multi-point patterns (for example using direct sampling). In this direction, the option
of estimating the statistics of the model directly from the training image (performing a
refined pattern search instead of simulating data) is a very promising.

Finally, although the developed concepts, ideas and algorithms have been developed for
inverse problems in geostatistics, the results are applicable to a wide range of disciplines
where similar sampling problems need to be faced, included but not limited to design
of communication networks, optimal integration and communication of swarms of robots
and drones, remote sensing.

Part of the material developed in this thesis has been left out of the main document for
reasons of space. Many of these results were significant and therefore the final appendix
of this document is dedicated to cover some of these results.
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Appendix A

Complementary Material for
Chapter 3

The following sections provide details of the implementation and formalization of the
proposed methods presented in the chapter 3.

A.1 App. I: Entropy as an Indicator of Simulation
Complexity

Here, a formal interpretation of the Shannon entropy as an indicator of complexity is
elaborated when the task is to simulate or create a collection of independent and identically
distributed (i.i.d.) realizations of a finite alphabet random variable. For that, a connection
between simulation and the task of almost lossless source coding (Cover and Thomas, 2006,
Chaps. 3.2 & 3.3) will be presented, from which the entropy is a fundamental performance
indicator (Cover and Thomas, 2006; Shannon, 1948).

A.1.1 The Operational Complexity Indicator for Simulation

Considering a finite alphabet random variable X taking values in A with probability
µX ∈ P(A), the simulation problem of length n ≥ 1 corresponds to the generation of n-
samples in An from the product (or n-fold) distribution µnX ≡ µX×µX×· · ·µX ∈ P(An).

A covering argument is considered to stipulate the complexity of simulating i.i.d. re-
alizations of µnX in the product space An. More precisely, the cardinality of the smallest
subset of sequences in An that captures almost all the probability with respect to µnX , is
proposed as a natural indicator of the complexity of simulating µnX in An. This notion
can be captured with the following set of definitions:
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Definition 1 For ε > 0, B ⊂ An is ε-typical for µnX , if µnX(B) ≥ 1− ε.

Definition 2 For ε > 0, the size k is said to be ε-feasible for µnX , if there is B ⊂ An that
is ε-typical for µnX and |B| ≤ k.

Definition 3 Finally, considering n i.i.d. samples, an indicator of the complexity of µx
is given by

k(ε, µnx) ≡ min {k : k is ε-feasible for µnX} . (A.1)

Adopting these concepts, in particular k(ε, µnx), a scenario where a higher number of
sequences is needed to capture almost all the probability is more complex (from the point
of view of creating i.i.d. simulations), than a case where fewer sequences are needed
for the same covering objective. This idea matches the notion of typical set proposed by
Shannon to prove source coding theorems (Shannon, 1948). In this context, an interesting
aspect to pay attention is the exponential growth of k(ε, µnx) in the process of making n
arbitrarily large. It is simple to note that k(ε, µx) grows with n and it is upper bounded
by |A|n, therefore log2 k(ε, µnx) ≤ n log2 |A| and, consequently, taking the limits on the
number of simulations the basic upper bound is

lim sup
n−→∞

1

n
log2 k(ε, µnx) ≤ log2 |A| . (A.2)

This means that k(ε, µnx) grows (with n) at most exponentially with an exponential rate
given by log2 |A|. The next result in (A.3) stipulates that the precise exponential rate of
k(ε, µnx) (as n goes to infinity) approaches H(µx), when making ε arbitrary small, in the
sense that

lim
ε−→0

lim
n−→∞

1

n
log2 k(ε, µnx) = H(µX). (A.3)

A.1.2 Derivation of The Representation Result in (A.3)

To show the identity in (A.3), it is useful to introduce a stronger notion of achievable rate
for the entire i.i.d. process {µnX : n ≥ 1} that is commonly used in the context of almost
lossless fixed-rate source coding (Cover and Thomas, 2006, Chap.3) and (Yeung, 2002,
Chap.4).

Definition 4 For the i.i.d. simulation of µX , the rate r > 0 is said to be achievable
for {µnX : n ≥ 1}, if there is a sequence of sets {Bn ⊂ An : n ≥ 1} that captures all the
probability in the stronger sense that

lim
n→∞

µnX(Bn) = 1,

and
lim sup

n→∞

1

n
log2 |Bn| ≤ r.
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Definition 5 In this context, the minimum achievable rate for {µnX : n ≥ 1} is

R∗(µX) ≡ min {r : r > 0 is achievable for {µnX : n ≥ 1}} .

From the Definitions, it is direct to show that lim supn−→∞
1
n

log2 k(ε, µnx) ≤ R∗(µX)
for all ε > 0 and consequently,

lim sup
ε−→0

lim sup
n−→∞

1

n
log2 k(ε, µnx) ≤ R∗(µX). (A.4)

Remarkably for the i.i.d. context, it is well-known that the limit in the left-hand side of
(A.4) is well-defined and matches R∗(µX). Furthermore, this expression reduces to the
entropy of µx. This result was proved in the original paper of Shannon (Shannon, 1948)
and it is highlighted in the following result:

THEOREM 1 (Shannon, 1948) limε−→0 limn−→∞
1
n

log2 k(ε, µnx) = R∗(µ) = H(µX).

Therefore, the main conclusion of this analysis is that the Shannon entropy determines
the complexity of simulating a finite alphabet probability in the precise operational sense
defined in Definitions 3 and 5.

The proof of Theorem 1 is a direct consequence of the celebrated (weak) asymptotic
equipartition property (AEP), first stated by Shannon and proved for the i.i.d. case in
(Shannon, 1948). A systematic and clear exposition of this property and the proof of The-
orem 1 can be found in (Cover and Thomas, 2006, Chap.3) and (Yeung, 2002, Chap.4) in
the context of what is known in information theory as the Shannon source coding theorem.
To conclude this part, it is important to elaborate some observations and implications
about Theorem 1:

1. This result shows that there is a collection of sequences {Bn ⊂ An : n ≥ 1} that
captures asymptotically all the probability, that is, the collection is typical in the
sense that limn→∞ µ

n
X(Bn) = 1, and its cardinality grows exponentially at a rate

that is precisely the entropy of µX , that is, as n goes to infinity |Bn| ≈ 2n·H(µx).

2. If H(µX) < log2 |A|, then the collection of typical sequences, mentioned in the
previous point, is an arbitrary small fraction of all the possible sequences, in the
sense that

|Bn|
|An| ≈

2n·H(µx)

2n·log2|A|
= 2−n·(log2|A|−H(µx)) −→ 0. (A.5)

Note that the cardinality ratio in (A.5) goes to zero exponentially with n at a rate
given by log2 |A| − H(µx) > 0. Then for a i.i.d process {µnX : n ≥ 1} with entropy
strictly smaller than log2 |A| there is a tiny fraction of sequences that characterize
the i.i.d. process induced by µX . Here, log2 |A| is the maximum entropy only
achieved by the uniform distribution on A (Cover and Thomas, 2006).

3. For the achievability part of this result, Shannon proposes a specific collection of
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typical sequences given by

Bn(ε) =

{
(x1, .., xn) ∈ An :

∣∣∣∣−
1

n
log2 µ

n
X(x1, .., xn)−H(µX)

∣∣∣∣ ≤ ε

}
. (A.6)

that as n goes to infinity has the following properties (Cover and Thomas, 2006):

(a) it is a typical set: limn→∞ µ
n
X(Bn(ε)) = 1.

(b) if (x1, .., xn) ∈ Bn(ε) then

2−n·(H(µX)+ε) ≤ µnX(x1, .., xn) ≤ 2−n·(H(µX)−ε).

(c) (1− ε)2n·(H(µX)−ε) ≤ |Bn(ε)| ≤ 2n·(H(µX)+ε).

Here, Achievability refers to the construction of a sequence that is typical and
achieves a rate smaller or equal to the entropy (Cover and Thomas, 2006). Thus,
the relevant aspect of this construction is the fact that as n progresses to infinity the
elements of this typical set become uniformly distributed. Considering ε sufficiently
small, for all (x1, .., xn) ∈ Bn(ε), then:

µnX(x1, .., xn) ≈ 2−n·H(µX) ≈ 1

|Bn(ε)| .

Then within this set Bn(ε), which is typical, all its elements have the same prob-
ability. This means that when making i.i.d. samples of the model µnX and n is
sufficiently large, a single sample of this typical set (that happens with very high
probability), has the same probability than any other element of the set. Conse-
quently from this fact, it is clear that the size of this typical set plays a major role
from the point of view of specifying the complexity of the simulation task, which is
formalized on the concept of minimum achievable rate in Definition 5, and that is
precisely given by H(µX).

A.2 App. II: Proof of Proposition 1

Proof. After obtaining the sequential rule f̃ ∗k ∈ Fk to solve the adaptive sensing rule of
size k, the remaining posterior uncertainty is given by

H(X̂f∗k
|Xf∗k

). (A.7)

and, the reduction on the uncertainty, concerning to the information of f̃ ∗k to resolve X̄
is given by

I(f̃ ∗k ) = H(X)−H(X̂f̃∗k
|Xf̃∗k

) = H(Xf̃∗k
) ≥ 0. (A.8)

As the sets X̂f̃∗k
and Xf̃∗k

conform a partition of X,

H(X) = H(X̂f̃∗k
, Xf̃∗k

). (A.9)
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In addition, by the chain rule of entropy

H(X) = H(Xf̃∗k
) +H(X̂f̃∗k

, Xf̃∗k
). (A.10)

Applying (A.9) and (A.10), the information gain of the rule f̃ ∗k can be rewritten by

I(f̃ ∗k ) = H(Xf̃∗k
) +H(X̂f̃∗k

, Xf̃∗k
)−H(X̂f̃∗k

|Xf̃∗k
)

= H(Xf̃∗k
)

= H(Xf̃∗k (1), Xf̃∗k (2), .., Xf̃∗k (k))

= H(X(i∗1,j
∗
1 ), X(i∗2,j

∗
2 ), .., X(i∗k,j

∗
k)) (A.11)

The expression (A.11) can be rearranged by using the chain rule as:

I(f̃ ∗k ) = H(X(i∗1,j
∗
1 )) +

k∑

h=2

H(X(i∗h,j
∗
h)|X(i∗1,j

∗
1 ), .., X(i∗h−1,j

∗
h−1)). (A.12)

Finally, using (A.12), the information gain difference between the sampling steps k and
k − 1 is given by

I(f̃ ∗k )− I(f̃ ∗k−1) = H(X(i∗1,j
∗
1 )) +

k∑

h=2

H(X(i∗h,j
∗
h)|X(i∗1,j

∗
1 ), .., X(i∗h−1,j

∗
h−1))

−H(X(i∗1,j
∗
1 ))−

k−1∑

h=2

H(X(i∗h,j
∗
h)|X(i∗1,j

∗
1 ), .., X(i∗h−1,j

∗
h−1))

= H(X(i∗k,j
∗
k)|X(i∗1,j

∗
1 ), .., X(i∗k−1,j

∗
k−1)). (A.13)

A.3 App. III: Optimality of the Sequential Rule for
Fields with no Inter-Pixel Dependency

Proof. For a field X̄ with no inter-pixel dependency, every random variable Xi,j is sta-
tistically independent of others variables in the sense that H(Xi1,j1|Xi2,j2) = H(Xi1,j1),
for all (i2, j2) ∈ [M ] × [M ] \ {(i1, j1)}. Then, by the independence bound on entropy
(theorem 2.6.6 in (Cover and Thomas, 2006)), the posterior field entropy associated with
the application of the optimal rule f ∗k posted in (3.18) is given by,

H(Xf ) =
∑

(i,j)∈f∗k

H(Xi,j) (A.14)

Thus, for a field with no inter-pixel dependency (nipd), the optimal sampling rule of size
k can be state as

f ∗,nipd
k = arg max

f∈Fk

∑

(i,j)∈f

H(Xi,j), (A.15)
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which, by the non negativity of the entropy, is the problem of choosing the k positions
with the highest a priori entropy.

In the case of the iterative sequential rule, the k-measurement is now given by,

(i∗,nipd
k , j∗,nipd

k ) = arg max
(i,j)∈[M ]×[M ]\{(i∗,nipd

l ,j∗,nipd
l ):l=1,..,k−1}

H(Xi,j), (A.16)

which correspond to choose the location with the k-th highest a priori entropy. Therefore,
the sequential rule f̃ ∗,nipd

k ∈ Fk can be obtained by

f̃ ∗,nipd
k (1) = (i∗,nipd

1 , j∗,nipd
1 ), (A.17)

f̃ ∗,nipd
k (2) = (i∗,nipd

2 , j∗,nipd
2 ),

...,

f̃ ∗,nipd
k (k) = (i∗,nipd

k , j∗,nipd
k ).

Finally, by construction, the optimal combinatorial rule is equal to the sequential approach
under the assumption of statistical independence,

f̃ ∗,nipd
k = f ∗,nipd

k . (A.18)

meaning that in this scenario the optimal sampling can be achieve by the sequential
approach. This simple case summarizes the nature of the optimal sampling approach
that tries to resolve the locations with highest uncertainty in order to increase the average
knowledge of the global field. As the inter-pixel dependency increases and the multiple-
point statistics of the field becomes more complex, to take into account the high order
conditional entropies becomes essential to avoid locations with redundant information.

A.4 App. IV: Analysis of the Adaptive Sampling
Scheme for the Markov Chain Case

Here, the AMIS { f̃ak (·|·) : k ∈ [N ] } in (3.36) is compared with the SMIS approach
{ f̃ ∗k (·) : k ∈ [N ] } in (3.28). This comparison is performed in the context of a finite
length one-dimensional Markov source presented in Sect. 3.6 in terms of field resolvability
(resolution of uncertainty) and the estimation of non-sensed positions. To evaluate the
quality on resolving non-sensed position from the information of sensed position, the
conditional entropy conditioning on the data is used, given a sensed rule fk and its sensed
data xf = (x1, .., xk−1) ∈ Ak−1,

H(X̂fk |Xf = xf ). (A.19)

By extending the result in Proposition 4, there is a simple algorithm to compute (A.19)
by the Markov assumption not reported here for the space constraint.
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Figure A.1: Remaining conditional entropy by considering the previous sampled locations
and its measurements. Symmetric transition matrix (β = 0.2)

Also the problem of estimating non-sensed position from the sensed data is consid-
ered for which the minimum mean square error estimator (MMSE) is applied given
by the conditional mean (Gray and Davisson, 2004). Given fk and its sensed data
xf = (x1, .., xk−1) ∈ Ak−1, the MMSE estimator of X̂fk from Xf = xf is given in closed
form by E(X̂f |Xf = xf ) ∈ AN−k, which is a function of xf . This problem reduces to
compute point-wise the expectation for every non-sensed position given Xf = xf , which
is a simple task under the Markov assumption.

A.5 App. V: Analysis of the Partial Update of Con-
ditional Entropies

It can been argued that the use of the partial update of the conditional probabilities
proposed in Sect. 3.7 can be justified in the context of SMIS in (3.27). Considering the
stage k − 1 and k of this algorithm, for an arbitrary unmeasured location, the focus is
to evaluate the conditional entropy H(Xi,j|Xi∗1,j

∗
1
, .., Xi∗k−2,j

∗
k−2

) for the stage k − 1, and
H(Xi,j|Xi∗1,j

∗
1
, .., Xi∗k−2,j

∗
k−2
, Xi∗k−1,j

∗
k−1

) for the stage k. Thus, the point-wise reduction of
conditional entropy for the location (i, j) from the stage k − 1 to the state k is given by

∆H(k−1)⇀k(Xi,j) = H(Xi,j|Xi∗1,j
∗
1
, .., Xi∗k−2,j

∗
k−2

)

−H(Xi,j|Xi∗1,j
∗
1
, .., Xi∗k−2,j

∗
k−2
, Xi∗k−1,j

∗
k−1

)

= I(Xi,j|Xi∗1,j
∗
1
, .., Xi∗k−2,j

∗
k−2

;Xi∗k−1,j
∗
k−1

) (A.20)
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Figure A.2: Estimation error considering the previous sampled locations and its mea-
surements. Symmetric transition matrix with β = 0.1. Top: Random Sampling vs AMIS
Method, Bottom: SMIS vs AMIS
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where, for k = 2 it is clear that the reduction in entropy corresponds exactly to mutual
information

∆H(1)⇀2(Xi,j) = H(Xi,j)−H(Xi,j|Xi∗1,j
∗
1
)

= I(Xi,j;Xi∗1,j
∗
1
). (A.21)

As the algorithm works in the search for new measurements, the mutual information
is conditioned on previous measurements and, consequently, the approach used in the
entropy map update deteriorates. However, recalculating the entropy maps every 20
samples has provided satisfactory results.
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Appendix B

Complementary Material for
Chapter 4

B.1 App. I: Pseudocode

The implemented pseudo-code that summarizes the proposed framework is shown here.
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Algorithm 2: Pseudo code implementing the adaptive framework from rules in (4.8).
1 Initialization
2 Reference image X̄, the regularization term α, the batch size r, the threshold tshgrade for

ore-waste selection and the number of samples to take K
/* Output: set of sampled positions */

3 f benchK = ∅
/* Inputs and variables. Hk Estimated Remaining entropy for k − 1 samples

*/
4 Hk = ones(size(X̄)), D = inf(size(X̄)), distMean = inf
5 Computation
6 for bench← 1 do
7 f1

K = Regular_Sampling_Approach(K)

8 X̂1 = Kriging_From_Samples(f1
K)

9 Î1 = X̂1 ≥ tshgrade

10 for bench← 2 to B do
/* Estimate initial TI from the upper bench */

11 T̂ I
bench ← Îbench−1

/* Init the adaptive sampling process */
12 f benchK = ∅ , fK = ∅
13 for k ← 1 to K do
14 f benchk−1 ← fK

/* Update MPS simulations from previous available samples */
15 if Criterion_To_Update_MPS_Realizations(k, r) then
16 Hk =

EntropyEstimated_by_MPS_&_Samples(T̂ I
bench

, Xbench
fk−1

, size(X̄bench), f benchk−1 )

17 D = Estimated_Distances_From_Sampled_Locations(size(X̄), f benchk−1 )

18 distMean = Mean(D)

19 X̂bench = Kriging_From_Samples(f benchk−1 )

20 Îbench = X̂1 ≥ tshgrade

21 T̂ I
bench ← Î1

22 else
23 Hbench = Hbench − Local_Mutual_Informationempirical(f

bench
k−1 (k − 1))

24 D = D. ·
Radial_Attenuation_Centred_At_Location(size(X̄bench), distMean, k − 1)

/* Set of current available position to sample. The complement set
of the previously sampled locations */

25 f̂ benchk−1 = Complement_Set_Of_F (f benchk−1 )

/* Regularized Criterion by Mixing of Entropy and Distance */
26 M = α · Hbench + (1.0− α) · D

/* Choose a location randomly from the set of non sampled locations
with maximal value for the objective function */

27 f benchK (k) = Select_Random_Location_From_Maximum_Criterion(Mf̂bench
k−1

)
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B.2 App. II: Detailed Database

B.2.1 Case Study 2

For case study 2, the available drill-hole samples and blasting samples for the 6 benches are
shown in fig. B.1 and fig. B.2 respectively. The ground truth was created using the software
kt3d (fig. B.3).

Figure B.1: Drill-hole samples data for case study 2. From left to right: Benches 1-6.
Colormap: the same as in Fig. 4.3.

Figure B.2: Blast-hole data for case study 2. From left to right: Benches 1-6. Colormap:
the same as in Fig. 4.3.

Figure B.3: Ground truth estimated from drill-holes and blast-holes for case study 2.
From left to right: Benches 1-6. Colormap: the same as in Fig. 4.3.
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B.2.2 Case Study 3

The 6 benches for case study 3 are shown in the fig. B.4 and the fig. B.5 describing the available
drill-holes and blast-holes, respectively. The reference dense benches created by kriging analysis
are shown in fig. B.6.

Figure B.4: Drill-hole samples data for case study 3. From left to right: Benches 1-6.
Colormap: the same as in Fig. 4.3.

Figure B.5: Blast-hole data for case study 3. From left to right: Benches 1-6. Colormap:
the same as in Fig. 4.3.

Figure B.6: Ground truth estimated from drill-holes and blast-holes for case study 3.
From left to right: Benches 1-6. Colormap: the same as in Fig. 4.3.
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B.3 App. III: Additional Experimental Results

Case study 1: Cut-Off grade 1.241%

With Cut-Off grade 1.241%, Figs. B.7, B.8 and B.9 describe the outcome.

Figure B.7: Samples for Case Study 1. From left to right: Benches 2-6. Top: Kriging
from structured sampling. Down: Kriging from adaptive sampling using Cut-Off grade
1.241%.

Figure B.8: Estimated grade for Case Study 1. From left to right: Benches 2-6. Top:
Kriging from structured sampling. Down: Kriging from adaptive sampling using Cut-Off
grade 1.241%.
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Figure B.9: Estimated grade control for Case Study 1. From left to right: Benches
2-6. From top to bottom: Ground truth, structured sampling, adaptive sampling using
Cut-Off grade 1.241%.

Figure B.10: Confusion Matrix for Case Study 1. From left to right: Benches 2-6. Top:
Structured sampling. Down: Adaptive sampling using Cut-Off grade 1.241%.
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Case study 1: Cut-Off grade 1.518%

Considering the Cut-Off grade 1.518%, the outcome for the benches 2,3,4,5 and 6 is described
in Figs. B.11, B.12 and B.13.

Figure B.11: Samples for Case Study 1. From left to right: Benches 2-6. Top: Kriging
from structured sampling. Down: Kriging from adaptive sampling using Cut-Off grade
1.518%.

Figure B.12: Estimated grade for Case Study 1. From left to right: Benches 2-6. Top:
Kriging from structured sampling. Down: Kriging from adaptive sampling using Cut-Off
grade 1.518%.
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Figure B.13: Estimated grade control for Case Study 1. From left to right: Benches
2-6. From top to bottom: Ground truth, structured sampling, adaptive sampling using
Cut-Off grade 1.518%.

Figure B.14: Confusion Matrix for Case Study 1. From left to right: Benches 2-6. Top:
Structured sampling. Down: Adaptive sampling using Cut-Off grade 1.518%.
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Confusion Matrices for Case Study 2

Figure B.15: Confusion Matrix for Case Study 2. From left to right: Benches 2-6. Top:
Structured sampling. Down: Adaptive sampling using Cut-Off grade 0.22%.

Figure B.16: Confusion Matrix for Case Study 2. From left to right: Benches 2-6. Top:
Structured sampling. Down: Adaptive sampling using Cut-Off grade 0.445%.
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Figure B.17: Confusion Matrix for Case Study 2. From left to right: Benches 2-6. Top:
Structured sampling. Down: Adaptive sampling using Cut-Off grade 0.692%.

Confusion Matrices for Case Study 3

Figure B.18: Confusion Matrix for Case Study 3. From left to right: Benches 2-6. Top:
Structured sampling. Down: Adaptive sampling using Cut-Off grade 0.115%.
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Figure B.19: Confusion Matrix for Case Study 3. From left to right: Benches 2-6. Top:
Structured sampling. Down: Adaptive sampling using Cut-Off grade 0.273%.

Figure B.20: Confusion Matrix for Case Study 3. From left to right: Benches 2-6. Top:
Structured sampling. Down: Adaptive sampling using Cut-Off grade 0.486%.
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B.4 App. IV: Economic Evaluation

In order to perform a realistic evaluation of cost and profit several considerations must be defined
for the mining and waste processing. In particular, in this work the variables summarized in
table B.1 have been considered, where a range of realistic values for these variables is proposed.
This analysis takes into account the block size (fixed to 1000 m3, the same block size used
in the experimental section), the mining cost by mined ton, the metallurgical recovery, and
the stripping ratio (the proportion of tons of expected waste material and ore material). For
the purpose of the present analysis, the economic costs considered were the processing cost by
processed ton, the price and selling cost per pound of copper.

Table B.1: Variables Considered in the Profit Analysis.

Variable Symbol Initial Value Units Range

Block size sizeb 1000 m3 -
Density db 2.70 t/m3 2.3 - 2.9
Mining cost Costm 3.0 US$/tmined 1.70 - 3.50
Stripping ratio Sr 2.50 - 2.50 - 3.00
Processing cost Costp 10.00 US$/tprocessed 7.00 - 12.00
Price of a lb of Cu PriceCu 2.30 US$/lb 2.50 - 2.10
Selling cost by lbCu Costs 0.50 US$/lb 0.30 - 0.55
Metallurgical recovery Rm 85.00 % 80.00 - 90.00

In practice, the CutOff grade, Cg, can be defined by,

Cg =
10000 · (Costm ∗ (1 + Sr) + Costp)

(PriceCu − Costs) ·Rm · 2204.6
, (B.1)

where the value 2204.6 corresponds to the conversion factor from pounds to tons.

Given the set of values for the considered parameters, then it is possible to estimate the
profit of a block. In the one hand, for a block with an estimated grade under the Cut-Off
grade value, for simplification it has been defined that the cost to process the waste block in the
dump facilities is considered equal for each dumped block without taking into account its actual
mineral grade or another variables. For this brief analysis, the revenue from dumping the block
is zero (in practice if the block has a zero profit, since it has already been mined then it could
be considered as stock pile). Thus:

Prof itd = −Costm (B.2)

In the other hand, in the case of a block estimated as ore (estimated block grade is above
the Cut-Off grade), then it is processed by the mine and its benefit is calculated considering
the content of metal in percentage of tons of copper as,

Contm =
Gradeb
100.0

· sizeb · db (B.3)
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The content of recovered metal in tons of copper is estimated as

Contrm =
Contm ·Rm

100.0
(B.4)

Then, the revenue from mining the block is estimated by,

Revmb = Contrm · 2204.6 · (PriceCu − Costs), (B.5)

while the processing cost of the block is estimated as

Costpb = sizeb · db · (Costm + Costp). (B.6)

Finally, the profit of the processed block is defined by,

Prof itpb = Revmb − Costpb . (B.7)

Therefore, from Eq. (B.2), Eq. (B.7) and the cost of processing ore and waste blocks, it is
possible to estimate the profit or loss of any block.

Considering the Cut-Off grade of the experimental analysis and Eq. (B.1), the appropriate
economic parameters have been estimated. The initial values shown in Table B.1 are provided
as an example to obtain the CutOff grade as the first quartile in Case Study 1. For each case
study and for every empirical CutOff grade, the best set of parameters has been estimated in
order to perform the economic analysis.

Then, from the experimental data the profit of every block has been evaluated in the proposed
scenarios for the sampling strategies under analysis. Given an estimated bench block model from
a specific sampling strategy, then the economic profit can be calculated as the sum of the profit
for each block conforming this bench.
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Appendix C

Complementary Information and
Development

The following sections summarize several additional information required to contextualize the
information presented in this thesis, but not included in the main text for the sake of fluency
for the reader.

C.1 Details on MPS

C.1.1 MPS and the role of Training Images

MPS incorporates a prior model by the use of a training image. It can be defined as a 2-D or
3-D valid realization of a field with the same structures that the target field (e.g. structures like
channels, reefs, bars, dikes, oriented facies) representing the full range of possible shapes and
its scales. MPS was proposed for going beyond two-point statistics (Guardiano and Srivastava,
1993) using training images to describe the full range of structures present in the geological field.
Therefore, training images allow to model complex geological features and their connectivity.
The training image must be considered as a conceptual representation of the geological field
instead of an actual realization of it, providing only relative spatial information of the distribution
of variables of interest in the field (Scheidt and Caers, 2009).

The generation and selection of training images is an important challenge for the MPS
methodology. A classical option is the simulation of unconditioned realizations using object-
based approaches where an expert user defines the facies shapes and dimensions of interest. In
order to select an appropriate training image from a set of available ones, a consistency check
has been proposed to compare and validate available well data (Strebelle and Zhang, 2004).

Due to the limited size of training images only the inference of a very reduced portion of
the real multiple-point statistics is accurate. Therefore, statistics for large scale structures are
usually ignored because this can lead to undesired discontinuities.
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C.1.2 Statistics from MPS Process

It is important to note that training images are a source of expected patterns in the target field.
For example, let X = {Xi : i ∈ {1, . . . , N}} be a categorical field to be simulated, with z0, . . . , zr
different states defining the alphabet of an individual variable, Xi. The more classical MPS
process is sequential by producing one pixel at time. In particular, a random path is defined to
explore all positions to be simulated in the field (excluding sensed data positions, if available).
Then the position simulated at a given time becomes conditioning data for the positions to be
explored later in the path sequence. More precisely, let Xj denotes an unsampled variable, a
context based rule is required to define the c closest and most relevant context for Xj that is
denoted by XS = {XS1 = xS1 , . . . , XSc = xSc}. These selected variables are chosen from the
initial available data and from previously simulated variables in the path. Then, the probability
that Xj has the state z conditioning n the context XS is estimated by the Bayes rule:

p(Xj = z|XS = xS) =
p(Xj = z,XS = xS)

p(XS = xS)
. (C.1)

In Eq. (C.1) p(Xj = z,XS = xS) and p(Xj = z) are estimated from the aforementioned
training image. In particular, p(XS = xS) = #(xS)

N with N the number of pixels of the training
image (in this case equal to the size of the target field to be simulated), and #(xS) is the
number of occurrences of the specific data pattern xS in the training image. The probability
p(Xj = z,XS = xS) can be estimated as a pattern with one additional conditioning. Then, the
conditional probability associated to the occurrence of state z at location {j} can be estimated
by:

p(Xj = z,XS = xS) =
#(xS,j)

N
(C.2)

with #(xS,j) the number of occurrences of the pattern including the conditioning data and the
central variable Xj with the specific value z. Thus, evaluating the expression (C.2) for the z
possible values allows drawing a realization of the stochastic process for the explored variable.

C.2 Details of additional methods for Signal Recov-
ery

C.2.1 Methods used in Sparse Signal Recovery

In this section we explore some available methods oriented to obtain a reconstruction of a signal
from a small amount of measurements under assuming a sparse or compressible model for these
signals.
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Sparse Signal Recovery

The recovery formulations have a close relation with the inverse problem presented in Eq. (1.4),
because the target is the reconstruction of the signal X from the observations YSampled. In
previous sections, signal reconstruction is not addressed because in the regime m << N this is
an ill-posed problem.

While the above is correct in general, recent results on Compressed Sensing (CS ) theory
provides novel insights for signal reconstruction under the assumptions of desired properties on
the signal itself and in the sensing scheme, such as the sparsity at X and the incoherence at the
sensing matrix A (Candes et al, 2006a; Eldar and Kutyniok, 2012).

The CS theory has found applications on several areas such as signal representation, func-
tional approximation, spectral estimation, cartography, medical imaging, speech signal process-
ing, and sparse channel estimation (Elad, 2010; Eldar and Kutyniok, 2012; Starck et al, 2010).

Basic formulation

CS attempts to determine the minimal number of observations YSampled required to a stable
reconstruction of a sparse1 signal (with sparsity S). Considering a linear system, in Eq.(1.4)
each individual observation is the inner product of the signal X, of size N , with a row vector in
the sensing matrix A as shown in Eq.(C.3).

YSampled = A ·X + η. (C.3)

The simplest approach for the noiseless case correspond to solve the `0 minimization problem:

(P0) min
X∈RN

‖X‖0 subject to YSampled = A ·X. (C.4)

For the noisy case:

(P0n) min
X∈RN

‖X‖0 subject to ‖YSampled −A ·X‖2 ≤ η. (C.5)

The norm ‖ · ‖0 counts the non-zero entries of the signal X while the norm ‖ · ‖2 denotes
euclidean norm.

The optimization problems formulated in Eq.(C.4) and Eq.(C.5) are NP hard. Due this fact,
two main types of methods have been proposed in the last decade to achieve a practical solution.

In the one hand, greedy algorithms like (Orthogonal) Matching Pursuit ((O)MP) or Thresh-
olding methods perform approximations to obtain a suboptimal solution. Thresholding method
estimates the inner products of the target signal X with all sensing atoms2 finding the largest

1A signal is k-sparse in the canonical domain, if it has at most k terms different than zero
2Row vectors conforming the sensing system in the linear model in Eq.(C.3)
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Table C.1: Summary of classical greedy approaches

Goal: An approximated estimation of X from YSampled = A ·X. Aj denotes columns of A and A†Λ the pseudo-inverse of

AΛ

OMP Thresholding
initialize: R = YSampled, Λ = ∅
find: k = arg maxj |〈r, Aj〉| find: The collection Λ of indices providing
update: Λ = Λ ∪ {i}, largest sparse representation by

R = YSampled −AΛA
†
ΛYSampled |〈YSampled, Aj〉|

iterate until R based stopping criterion
output: X = A†ΛYSampled output: X = A†Λ · YSampled

ones (in the absolute values) and finally calculating the orthogonal projection onto the span of
the selected atoms. The OMP method is a sequential approach that selects the most repre-
sentative atom (i.e. the one with largest absolute inner product with the signal residual) and
estimates the signal by updating the residual (the misrepresented part of the observations) by
the cumulative selection of atoms. See more details in Table C.1.

On the other hand, another alternative to address the (P0) and (P0n) is by a convex relaxation
of the `0 norm. For the noiseless case, we obtain the relaxed problem termed Basis Pursuit (BP):

(P1) min
X∈RN

‖X‖1 subject to YSampled = A ·X. (C.6)

The noisy version of (P1) is described by the expression termed Basis Pursuit Denoising
(BPDN ):

(P1n) min
X∈RN

‖X‖1 subject to ‖YSampled −A ·X‖2 < η. (C.7)

Here, `1-norm is calculated as ‖X‖1 =
∑ |Xi|.

The main goal of the CS theory is to find guarantees of (near)perfect reconstruction and
the associated sufficient conditions. Revolutionary results have established that under certain
conditions greedy and BP approaches achieves guarantees for perfect reconstruction (Boyko
et al, 2011; Candes et al, 2006a). For BPDN, it is required that the sensing matrix A obeys a
uniform uncertainty principle, which refers to the presence of well-conditioned submatrices in
A.

Formally, let Λ ⊂ {1, . . . , N} be a collection of indices and the AΛ a submatrix of A con-
structed using the columns of A indexed by Λ. Then, the local isometry constant δΛ = δΛ(A)
is defined as the smallest value satisfying Eq. (C.8) for all vectors X supported on Λ.

(1− δΛ)‖X‖22 ≤ ‖AΛX‖22 ≤ (1 + δΛ)‖X‖22 (C.8)

Finally, the (global) restricted isometry property (RIP) is defined by he following constant:
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δS = δS(A) := sup
|Λ|=S

δΛ(A), S ∈ N. (C.9)

If A has a small restricted isometry constant, i.e. δS(A) ≤ 1/2, then A satisfies a uniform
uncertainty principle (Candes et al, 2006a).

An important theorem for BPDN states that if A satisfies δ3S(A) + 3δ4S(A) < 2 for some
S ∈ N, and the noisy observations accomplish YSampled = A · X + ξ for some ‖ξ‖2 ≤ η, then
the signal X# (solution of the problem (P1n)) satisfies Eq. (C.10) for an appropriate value of
C which only depends on δ3S and δ4S constants (Eldar and Kutyniok, 2012).

‖x# − x‖2 ≤ Cη. (C.10)

In fact, if δ4S ≤ 1/3 then C ≤ 15.41. In addition, the formulation related with the Eq. (C.10)
ensures exact reconstruction for the noiseless problem (P1) with η = 0.

While these strong guaranties are only applicable for matrices satisfying the required princi-
ple, in practical cases few sensing schemes allow to reach perfect reconstruction. However, CS
literature remarks that with high probability a m × N random matrix where the columns are
drawn from distributions with certain concentration properties (such as gaussian distributions),
would have small restricted isometry constants δS when m = O(S log(N/S)).

General Approach for Sparse Reconstruction

Conceptually, CS methodology poses a problem that arises quite naturally. The underlying
idea corresponds to a regularized problem where the goal is to honor the available observations
YSampled while trying to find the simplest solution. In (P0n) honoring of observations is carried
out by bounding the Euclidean error while the simplicity of the solution is achieved by minimizing
`0-norm or `1-norm.

It is possible to propose a more general scheme for this regularization approach. The compro-
mise between fitting observations and simplicity can be subsumed by the following unconstrained
convex minimization problem.

(PG) min
X∈RN

∥∥∥∥C
−1
2
u · (YSampled −A ·X)

∥∥∥∥
p

+ γ · ‖W ·X‖q . (C.11)

This regularization problem promotes simplicity using `q-norm on the target signal X. In
addition, a weighting matrix W can be used to incorporate some prior information about the
preponderance of some entries of X.

Honoring the observations can be achieved by the `p-norm of the observation error YSampled−
A·X. The use of the matrix C

−1
2
u allows working with signals that have some level of correlation.

Approaches that consider the noisy scenario are usually termed as Noisy Compressive Sensing
(NCS ) approaches.
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The problem (P1n), known as Least-absolute shrinkage and selection operator (LASSO), is
a version of (PG) by `1-norm regularization with a quadratic constraint (Boyko et al, 2011).

min
X∈RN

γ ‖X‖1 +
1

2
· ‖A ·X − YSampled‖22 . (C.12)

As previously presented, it approach finds the vector X with minimum `1-norm that comes
close to explaining the observations YSampled.

An alternative approach called Dantzig Selector searchs the minimum `1-norm but with
bounded residual correlation (Candes and Tao, 2007), as can be seen in the following expression:

min
X∈RN

‖X‖1 subject to
∥∥∥A† · (A ·X − YSampled)

∥∥∥
∞
≤ ε. (C.13)

If the underlying target signal is a 2-D image, an alternate recovery approach is promoting
sparsity on gradients of the signal instead of the signal itself. The 2-D gradient can be calculated
from total variations (TV ), where a possible definition is given by:

TV (X) :=
∑√

(Dh;ij ·X)2 + (Dv;ij ·X)2

ij
=
∑
‖Dij ·X‖2ij

. (C.14)

Where Dh;ij denotes the gradients on horizontal orientation and Dv;ij the vertical ones. Then,
the total variations based BPDN (TV-BPDN ) approaches is defined by:

min
X∈RN

TV (X) subject to ‖YSampled −A ·X‖2 < η. (C.15)

Finally, the TV-Dantzig Selector regularization problem can be written as:

min
X∈RN

TV (X) subject to
∥∥∥A† · (A ·X − YSampled)

∥∥∥
∞
≤ ε (C.16)

Although these combinations of regularization factors do not have known theoretical guaran-
tees (as the case of CS ), in practical applications of image processing they have demonstrated
good performances (Chambolle and Caselles, 2010).
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The rest of this chapter is dedicated to the detail of some results and formulations presented
in this thesis

C.3 Resolvability Capacity of the random field X

It is interesting to analyze an indicator of the complexity of the field in terms of the capacity to
resolve its uncertainty withK preferential measurements from rule f . Let define the resolvability
capacity of X with K-measurements as:

CK ≡
I(f∗K)

H(X)
∈ [0, 1], (C.17)

for all K ∈ [N ]. This is the ratio between the information gain of the best sensor-placement rule
and the whole entropy of the random field. The two extreme cases are CK = 0, which implies
that the K-measurements produces no reduction in uncertainty, and CK = 1, which implies that
there is no remaining uncertainty after taking the K-measurements, i.e., H(Xf∗K |Xf∗K

) = 0. In
general, CK has the following properties:

PROPOSITION 5 For any arbitrary random field X:

1. CK+1 ≥ CK , ∀K ∈ {1, . . . , N − 1}.

2. CN = 1, and it can be defined that C0 = 0.

Hence, {CK : K ∈ [N ]} is a monotonically increasing sequence and its profile gives an insight
of how simple (or complex) is to resolve the information of X in the process of taking K-optimal
measurements.

C.3.1 Resolvability Capacity of the Iterated Principle

It is simple to show that the optimal solution fK is better than the iterative solution f̃∗K in the
sense of information to resolve X. More precisely, for all K ∈ {1, . . . , N}

I(f̃∗K) ≤ I(f∗K). (C.18)

Consequently, a concrete way to evaluate how much is lossed in the reduction of the un-
certainty between the combinatorial optimal scheme {fK : K ≥ 1} and the iterative scheme{
f̃∗K : K ≥ 1

}
, is given by the difference between CK in Eq. (C.17) and the resolvability capac-

ity for the iterated solution f̃∗K , given by:

C̃K ≡
I(f̃∗K)

H(X)
∈ [0, 1]. (C.19)
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In this thesis, it has been conjectured that the information loss (CK − C̃K)K=1,...,N is pro-
portional to how much spatial dependency is presented in the joint distribution of field X. In
one extreme, it is simple to prove that for a field with no inter-pixel (spatial) dependency, i.e.,
PX(X) = Πi∈[N ]PXi(Xi), obtaining:

CK = C̃K , (C.20)

and furthermore, the iterative solution is optimal: f̃∗K = f∗K for all K.

C.3.2 RAMIS and Resolvability Capacity Properties

In order to quantify the level of knowledge on the media given an optimal sampling f∗K =

{(i1), . . . , (iK)} the next properties for CK =
H(Xf∗K

)

H(X)
are posted:

• Deterministic Variable⇒ CK , 1, ∀K ∈ {1, . . . , N}

• CK+1 ≥ CK ,∀K ∈ {1, . . . , N}

• C0 , 0

• CN = 1

In the case of a media with known statistics the estimation of conditional entropy and the
consequent RAMIS rule can be reduced. The simplest cases correspond to fields with ID or IID
joint probabilities where:

H(Xf ) =
∑

i∈f
H(Xi)

(Only IID)
= | f | ·H(Xi∗) (C.21)

and the resolvability capacity is reduced to:

CK =

max
fK∈FK

H(XfK )

H(X)

(Only for IID)
=

K ·H(Xi∗)

N ·H(Xi∗)

=
K

N

In real scenarios the field under analysis incorporates some level of spatial interdependence. A
case of interest for the presented work is associated with Markov random fields MRFs where the
spatial dependence can be characterized by Markov chains, while the spatial scope of interaction
can be defined by the incorporation of Cliqués. In simulation of fields with spatial dependence
MRFs provide an useful tool (Cross and Jain, 1983) as illustrated in figure C.1 but here the
focus is in the use of MRFs to empirically estimate the spatial dependence in the field.
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Figure C.1: Synthetic image by MRF modeling (Cross and Jain, 1983).

By the use of approximations of Cliqués, the joint probability models can be described by
considering a markovian property. For example, defining bu,v = xi with i ∈ [N ] and (u, v) ∈
[M ]x[M ] as a mapping transform (from the original stochastic field space without specific spatial
order to a sorted 2-D space) and assuming a Cliqué with only vertical and horizontal dependence
of unitary distance (N (bu,v)={bu−1,v ,bu,v−1,bu+1,v ,bu,v+1}), it is possible to reduce the joint probability
of a specific spatial variable by only considering the interaction with the members of it Cliqué
(only four variables in the neighborhood of this example). A realistic characterization of the
Cliqué will provides better estimation for the joint entropy while a simplified version of the
Cliqué will offer more computationally affordable implementations. Thus,

PX(X) ==
∏

(j,k)∈[NxN ]

Ψ(bj,k,N (bj,k)), (C.22)

where Ψ(bj,k,N (bj,k)), and considering the Joint Entropy as:

H̃(Ψj,k)=
∑

bj,k∈A
Ψj,k log(Ψj,k)onN (C.23)

implies that: H(X) =
k∑

l=1

H̃(Ψiljl)

In the case of resolvability capacity for MRFs the target is to study definitions based on

Cliqués: Ck =

max
fk∈Fk

k∑

l=1

H̃(Ψiljl)

M2∑

l=1

H̃(Ψiljl)

C.3.3 Stopping Rule via CK Evolution

A key topic related with adaptive sampling strategies is to determine a robust method for
stopping the sampling process. The objective is to set a limit on the number of samples. For
this a stopping criteria has been proposed based on the resolvability capacity of the field.
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In particular, the use of the monotonically increasing sequence C̃K has been proposed in the
iterative sampling scheme. Using the Eq. (C.19), the change in the resolvability capacity factor,
after taking an additional measure, is given by:

∆C̃K = C̃K − C̃K−1 (C.24)

=
I(f̃∗K)− I(f̃∗K−1)

H(X)

∝ H(Xi∗K
|Xi∗1

, . . . , Xi∗k−1
)

The use of this proportional version is supported by the fact that the joint entropy for the
field X is the same throughout the sensing process, but inaccessible in practical applications.
Therefore, H(X) can be considered as a scale factor and, consequently, it could be omitted as
shown in Eq. (C.24). For the iterative approach, C̃K is a monotonically decreasing sequence as
K → N . In particular, when C̃klimit

= 0 for a klimit ∈ 1, . . . ,K the remaining non measured
N−klimit random variables are deterministically determined by the variables indexed by the rule
f̃∗klimit

. Then, no more information will be obtained for the random field by additional measures
and the sensing process must be truncated.

From monotonically increasing nature of C̃K , ∆C̃K is a monotonically decreasing sequence
as K → N . Finally, when ∆C̃k = 0 after k sequential measures, no more information will be
obtained from the field by additional measures and the sensing process must be truncated.
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C.4 On Regionalized variables with spatial depen-
dence

Here, it has been worked either without any kind of spatial dependence for random variables or
only with very simple assumptions over it dependence for regionalized random variables. The
target is to develop and complement a formalization and practical reduction for this kind of
dependence.

C.4.1 MRF models and Cliqué structure estimation

When the spatial dependence is headed by a markovian property it is possible to reduce the
conditional probabilities by only considering conditionals on the Cliqué of the variable of interest:

P (Xi|X i) ≡ P (Xi|XCL(i)) (C.25)

Where CL(i) correspond to the Cliqué associated to the random variable Xi at the position
i.

C.4.2 Cliqué estimation and Mutual Information

Given again a random field X = {Xi : i ∈ [N ], the current goal is to define the multi-point
conditional probability in terms of two-point conditional probability:

P (Xi|X i) = f({P (Xi|Xk); ∀k ∈ [N ] \ i}) (C.26)

Using Bayes rule provides the following conditional probabilities:

P (Xi|X i) =
P (Xi, X

i)

P (X i)

=
P (X)

P (X i)

=
P (X{i,k}|X{i,k})P (X{i,k})

P (X{i,k}|Xk)P (Xk)

=
P (X{i,k}|X{i,k})
P (X{i,k}|Xk)

P (Xi|Xk) (C.27)

Eq. (C.27) shows that P (Xi|X i) can be rewritten in terms of P (Xi|Xk) for any k in the
complement subset. By using this property it is possible to derive a combination of P (Xi|Xk)
that is equal to multi-point conditional probability.
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P (Xi|X i)|IXi | =
∏

k∈I
Xi

P (X{i,k}|X{i,k})
P (X{i,k}|Xk)

P (Xi|Xk) (C.28)

Where IXi represent the set of indexes of X i. Using the |IXi |th-root in both sides of Eq.
(C.28), obtaining:

P (Xi|X i)︸ ︷︷ ︸
multi-point prob.

=
∏

k∈I
Xi

(
P (X{i,k}|X{i,k})
P (X{i,k}|Xk)

) 1
|I
Xi |

︸ ︷︷ ︸
α{i,k}

P (Xi|Xk)
1
|I
Xi |

︸ ︷︷ ︸
two-point prob.

(C.29)

That is close to the target of a two point version of the required conditional probabilities, as it
was stated in Eq. (C.26).

C.4.3 Multi-point and Two-Point Mutual Information relation

Applying the definition for mutual information and Eq. (C.29) the following relations can be
obtained,

I(Xi;X
i)

= H(Xi)−H(Xi|X i)

= H(Xi) +
∑

{Xi,Xi}∈A|X|
P (Xi, X

i) logP (Xi|X i)

= H(Xi)

+
1

|IXi |
∑

k∈I
Xi

∑

{Xi,Xi}∈A|X|
P (Xi, X

i)
(

logP (X{i,k}|X{i,k})

+ logP (Xi|Xk)

− logP (X{i,k}|Xk)
)

= H(Xi) +
1

|IXi |
∑

k∈I
Xi





∑

{Xi,Xi}∈A|X|
P (Xi, X

i) logP (X{i,k}|X{i,k})

+
∑

{Xi,Xi}∈A|X|
P (Xi, X

i) logP (Xi|Xk)

−
∑

{Xi,Xi}∈A|X|
P (Xi, X

i) logP (X{i,k}|Xk)





= H(Xi)−
1

|X i|
∑

k∈I
Xi

(
H(Xi|Xk) +H(X{i,k}|X{i,k})−H(X{i,k}|Xk)

)
(C.30)
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Note that H(Xi|Xk) +H(X{i,k}|X{i,k})−H(Xk|X{i,k}) can be rewritten using mutual infor-
mation property, H(X|Y ) = H(X)− I(X;Y ).

H(Xi|Xk +H(X{i,k}|X{i,k})−H(X{i,k}|Xk)

= H(Xi)− I(Xi;Xk) +H(X{i,k})− I(X{i,k};X
{i,k})−H(X{i,k}) + I(Xk;X

{i,k})

= H(Xi)− I(Xi;Xk)− I(X{i,k};X
{i,k}) + I(Xk;X

{i,k}) (C.31)

Then, the expression of Eq. (C.30) can be sorted in three kinds of components:

I(Xi;X
i) =H(Xi)

− 1

|X i|
∑

k∈I
Xi

H(Xi)− I(Xi;Xk)− I(X{i,k};X
{i,k}) + I(Xk;X

{i,k})

=


 1

|X i|
∑

k∈I
Xi

I(Xi;Xk)




︸ ︷︷ ︸
one and two-point statistics

+


 1

|X i|
∑

k∈I
Xi

I(X{i,k};X
{i,k})




︸ ︷︷ ︸
higher order statistics

−


 1

|X i|
∑

k∈I
Xi

I(Xk;X
{i,k})




︸ ︷︷ ︸
redistributable term

(C.32)

Multi-point conditional probability can be extended for a lower order subset Xk,J where
J ⊂ [N ]2 and k /∈ J .

P (xk|Xk,J) =


 ∏

l∈I
Xk,J

P (Xk,l,J |Xk,l)

P (Xk,l,J |xl)
P (xk|xl)




1
|I
Xk,J |

(C.33)

This also extends the multi-point mutual information for lower order subset Xk,J .

I(xk;X
k,J) =


 1

|Xk,J |
∑

l∈I
Xk,J

I(xk;xl)


+


 1

|Xk,J |
∑

l∈I
Xk,J

I(Xl,k;X
l,k,J)


−


 1

|Xk,J |
∑

l∈I
Xk,J

I(xl;X
l,k,J)


 (C.34)

Using Eq. (C.34), in Eq. (C.32), recursively, it is obtained that:
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I|X|(xi;X
i) =


2H(Xi) +H|X|−1

∑

k∈IX
k 6=i

H(xk)




︸ ︷︷ ︸
marginal entropies

−


 1

|X| − 1

∑

k∈I
Xi

I(xi;xk) +

(
N

N − 1
− 1

(N − 1)!

)
 ∑

k∈I
Xi

∑

j∈I
Xi,k

I(xk;xj)






︸ ︷︷ ︸
two-point statistics


|X|−1∑

m=1

1

(m− 1)!

∑

s1∈IX
s1 6=s0

...
∑

sm∈IX
sm 6=s0,...,sm−1

I(Xsm,sm−1 ;Xs0,...,sm)




︸ ︷︷ ︸
remaining higher order statistics

(C.35)

C.5 Markovian 1D Scenario

A 1D markov chain provides a simple sequence of random variables with spatial dependence.
In literature, Markov chains are applied in geology and geostatistics to represent discrete re-
gionalized variables such as lithologies or facies. It is required to note that markovian model do
not use variograms or auto-covariance functions in order to measure the spatial structures as
most of the available models do. Instead, a markovian model provides a natural way to impose
conditional probabilities. It is important, because conditional probabilities could be interpreted
geologically much easier than variogram or other mathematical tools.

C.5.1 1-D Markovian Spatial model

The proposed model is the one dimensional array described in Fig. C.2. In this setting, the
regionalized variable is composed by N random variables. The array represents N locations with
statistical dependence. The final goal is to characterize the conditional statistics of a specific
unsampled random variable given a set of sampled locations. In the proposed empirical version
of Optimal well placement (the implemented version of AdSEMES or RAMIS ), the conditional
statistics are estimated from the number of pattern occurrences in training image.

X1 X2 . . . Xi−1 Xi Xi+1 . . . XN−1 XN

Figure C.2: 1-D regionalized variable.
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1-D Markov Chain

In the markovian scenario, the probabilistic model exhibits the following spatial dependence:
given the present, the future is independent of the past. For the proposed setting, see Fig. C.2,
a past-present-future sorting has been imposed from location 1 to the location N.

Let X1, X2, , . . . , , Xi−1, Xi, Xi+1, , . . . , , XN−1, XN be a sequence of random variables taking
values in a state space (A =

{
a1, a2, . . . , a|A|

}
). Then, the markovian property states that:

Pr(Xi = ak| Xi−1 = al, Xi−2 = am, . . . , X1 = ap) = Pr(Xi = ak| Xi−1 = al). (C.36)

In addition, under the assumption of stationarity and time invariance, the transition proba-
bility is given by:

pl,k = Pr(Xi = ak|Xi−1 = al). (C.37)

From this transition probability the 1-D markov chain can be described by its transition
matrix:

p =

∣∣∣∣∣∣∣∣∣∣∣∣

p1,1 p1,2 . . . . . . p1,|A|
p2,1 . . . . . .
. . . . . . . . .

. . . pl,k . . .
. . . . . . . . .
p|A|,1 . . . . . . p|A|,|A|

∣∣∣∣∣∣∣∣∣∣∣∣

(C.38)

with pl,k denoting the probability of transition from al to ak, ∀l, k ∈ {1, . . . , |A|}. This tran-
sition probability is called single step transition because is related with the transition between
two consecutive elements of the sequence of random variables, {Xi}. Extending this idea, the
transition probability can be characterized relating elements, in the random sequence, separated
by M steps by the multiplication of the single step transition matrix by itself M times. Thus:

Pr(Xi = ak|Xi−M = al, Xi−M−1 = am, . . . , X1 = ap) = Pr(Xi = ak|Xi−M = al) =
(
pM
)
l,k
.

(C.39)

Joint probability mass of the sequence {Xi}

For a 1-D markov chain the joint probability mass function can be written as:

p(x1, x2, . . . , xN ) = p(x1) ·
N∏

r=2

p(xr|xr−1) (C.40)
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Then, the Joint Entropy for the sequence {Xi}, using the theorem 2.5.1 in Cover and Thomas
(2006), is described by:

H(X1, X2, . . . , XN ) =
N∑

i=1

H(Xi|Xi−1, Xi−2 . . . , X1) =
N∑

i=1

H(Xi|Xi−1) (C.41)

The conditional probability can be given from the transition matrix p. For the two point
joint probability p(xi, xi−1) , using the fact that p(xi, xi−1) = p(xi−1) ·p(xi | xi−1). Finally, given
the marginal entropy for the initial state X1, the remaining marginal can be expressed by:

p(xi) =
∑

xi−1∈A
p(xi−1) · p(xi | xi−1) (C.42)

Conditioning to a subset of states

The main challenge is to apply the proposed OSP approach to the 1-D markov chain. As
presented in sec. 3.5, the entropy based OSP can be stated in several equivalent ways. First,
given a subset of previously measured locations (or at least selected to be measured), the target
is to find the non measured location with maximum entropy, X∗i = argmaxH(Xi | XMeasured).
Alternatively, it can be asked for the location minimizing the posterior entropy for the remaining
non measured locations, X∗i = argminH(XNoMeasured \ i | XMeasured,i). These formulations
require the joint pmf s of the random variables at the unmeasured locations conditioned to the
subset of the variables at the measured locations, p(xi | xMeasured) or p(xNoMeasured | xMeasured),
respectively.

Conditioning to any arbitrary subset of states

Let
{
Xbj

}
and

{
Xaj

}
be two disjoint subsets denoting the past and the futures variables

conditioning the state Xi. Then the measured locations can be represented by XMeasured ={
Xbj

}⋃{
Xaj

}
, as illustrated in Fig. C.3.

. . . Xb1 . . . Xb2 . . . bB . . . Xi . . . Xa1 . . . Xa2 . . . XaA . . .

Figure C.3: Measured Variables in separated past and future subsets.

Then, the target conditional entropy for the state Xi, can be defined as:

H(Xi |
{
Xbj

}
,
{
Xaj

}
)

= −
∑

{
xbj

}
∈AB

∑

xi∈A

∑

{xaj}∈AA

p(
{
xbj
}
, xi,

{
xaj
}

) · log p(xi |
{
xbj
}
,
{
xaj
}

)

(C.43)

111



Furthermore, it is possible to rewrite (C.43) by using the definition of the conditional en-
tropy as the expected value of the entropies of the conditional distributions, averaged over the
conditioning random variables [Chapter 2.2, Cover and Thomas (2006)].

H(Xi |
{
Xbj

}
,
{
Xaj

}
)

=
∑

{
xbj

}
∈AB

∑

{xaj}∈AA

p(
{
xbj
}
,
{
xaj
}

) ·H(Xi |
{
Xbj

}
=
{
xbj
}
,
{
Xaj

}
=
{
xaj
}

)

(C.44)

In one hand, to evaluate the expression from (C.43), it is required to work in the conditional
pmf of the state Xi. Thus, using the relationship of the joint pmf and the conditional pmf :

p(xi |
{
xbj
}
,
{
xaj
}

) =
p(
{
xbj
}
, xi,

{
xaj
}

)

p(
{
xbj
}
,
{
xaj
}

)

=
p(
{
xbj
}
, xi, xa1 , xa2 , . . . , xaA)

p(
{
xbj
}
, xa1 , xa2 , . . . , xaA)

=
p(xaA |

{
xbj
}
, xi, xa1 , xa2 , . . . , xaA−1) · p(

{
xbj
}
, xi, xa1 , xa2 , . . . , xaA−1)

p(xaA |
{
xbj
}
, xa1 , xa2 , . . . , xaA−1) · p(

{
xbj
}
, xa1 , xa2 , . . . , xaA−1)

by markovian property =
p(xaA | xaA−1) · p(

{
xbj
}
, xi, xa1 , xa2 , . . . , xaA−1)

p(xaA | xaA−1) · p(
{
xbj
}
, xa1 , xa2 , . . . , xaA−1)

=
p(
{
xbj
}
, xi, xa1 , xa2 , . . . , xaA−1)

p(
{
xbj
}
, xa1 , xa2 , . . . , xaA−1)

(C.45)

From Eq. (C.45), the effect of the most future state, XaA , vanishes for the markovian property
and the presence of the closer future state, XaA−1 . Furthermore, iterating the same principle for
the rest of the variables in the subset of future states, it can post that:

p(xi |
{
xbj
}
,
{
xaj
}

) =
p(
{
xbj
}
, xi, xa1)

p(
{
xbj
}
, xa1)

= p(xi |
{
xbj
}
, xa1)

(C.46)

From the above result, for a markovian chain, given a subset of future states, xaj , conditioning
the present state, Xi, then the present state depends only the nearest future state that is part
of the subset. The essence of this result was presented by Elfeki and Dekking (2001) by the
formulation of the conditional probability p(xi | xi−1, xN ).

In Eq. (C.46), it is required to reduce the dependence related with the subset of past states.
Thus,
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p(xi |
{
xbj
}
,
{
xaj
}

) =
p(
{
xbj
}
, xi, xa1)

p(
{
xbj
}
, xa1)

=
p(xa1 |

{
xbj
}
, xi) · p(

{
xbj
}
, xi)

p(xa1 |
{
xbj
}

) · p(
{
xbj
}

)

by markovian property =
p(xa1 | xi) · p(

{
xbj
}
, xi)

p(xa1 |
{
xbj
}

) · p(
{
xbj
}

)

=
p(xa1 | xi) · p(xi |

{
xbj
}

) · p(
{
xbj
}

)

p(xa1 |
{
xbj
}

) · p(
{
xbj
}

)

(C.47)

Then, simplifying and applying the markovian property Eq. (C.47) can be reduced to:

p(xi |
{
xbj
}
,
{
xaj
}

) =
p(xa1 | xi) · p(xi |

{
xbj
}

)

p(xa1 |
{
xbj
}

)

by markovian property =
p(xa1 | xi) · p(xi | xbB )

p(xa1 | xbB )

(C.48)

In other words,

p(xi |
{
xbj
}
,
{
xaj
}

) = p(xi | xbB , xa1) (C.49)

Summarizing the last results, conditioning a state Xi by any subset of states reduce to
conditional bivariate pmf s only relating Xi to the nearest past and to the nearest future states
inside the set of measured variables.

In the other hand, to calculate the required conditional entropy, the joint pmf is needed,
p(
{
xbj
}
, xi,

{
xaj
}

). Applying Eq. (C.40):

p(
{
xbj
}
, xi,

{
xaj
}

)

= p(xb1) ·
[
B∏

h=2

p(xbh | xbh−1
)

]
· p(xi | xbB ) · p(xa1 | xi) ·

[
A∏

h=2

p(xah | xah−1
)

]
(C.50)

In short, Eq. (C.48) and Eq. (C.50) can be expressed in terms of marginal and two points
conditional probabilities. At this point, all the information required to efficiently calculate
Eq. (C.43) is available, and consequently it is possible to solve the MES rule. All conditional
probabilities, in Eq. (C.48) and Eq. (C.50), can be estimated from the transition matrix by
the n-step transition probabilities from Eq. (C.39). In addition, the marginal probabilities for
p(xb1) required in Eq. (C.50), can be iteratively calculated (Cover and Thomas, 2006) by:
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p(xi) =
∑

xi−1∈A
p(xi−1) · p(xi|xi−1) (C.51)

In brief, as expected for a 1-D Markov chain, all the conditional entropy characterization
relies on the transition matrix and the initial marginal distribution for the state X1.

In addition, using Eq. (C.49) the target entropy of the conditional distribution for the state
Xi, can be defined as:

H(Xi |
{
Xbj

}
=
{
xbj
}
,
{
Xaj

}
=
{
xaj
}

)

= −
∑

xi∈A
p(xi |

{
xbj
}
,
{
xaj
}

) · log p(xi |
{
xbj
}
,
{
xaj
}

)

by Eq. (C.49) = −
∑

xi∈A
p(xi | xbB , xa1) · log p(xi | xbB , xa1)

= H(Xi | XbB = xbB , Xa1 = xa1) (C.52)

Then, from Eq. (C.44) and Eq. (C.52), the conditional entropy can be formulated as:

H(Xi |
{
Xbj

}
,
{
Xaj

}
) =

∑
{
xbj

}
∈AB

∑

{xaj}∈AA

p(
{
xbj
}
,
{
xaj
}

) ·H(Xi | XbB = xbB , Xa1 = xa1)

(C.53)

A preliminary attempt to reduce the Eq. (C.53) consisted in properly separating the condi-
tional variables:

H(Xi |
{
Xbj

}
,
{
Xaj

}
)

=
∑

{
xbj

}
\xbB∈A

B−1

∑

xbB∈A

∑

{xaj}\xa1∈AA−1

∑

xa1∈A
[

p(
{
xbj
}
\ xbB , xbB ,

{
xaj
}
\ xa1 , xa1) ·H(Xi | XbB = xbB , Xa1 = xa1) ]

By Bayes =
∑

{
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}
\xbB∈A

B−1

∑

xbB∈A

∑

{xaj}\xa1∈AA−1

∑

xa1∈A
[

p(xbB , xa1 |
{
xbj
}
\ xbB ,

{
xaj
}
\ xa1) · p(xbB , xa1) ·H(Xi | XbB = xbB , Xa1 = xa1) ]

=H(Xi | XbB , Xa1) ·
∑

{
xbj

}
\xbB∈A

B−1

∑

xbB∈A

∑

{xaj}\xa1∈AA−1

∑

xa1∈A
[

p(xbB , xa1 |
{
xbj
}
\ xbB ,

{
xaj
}
\ xa1) ]

=H(Xi | XbB , Xa1) (C.54)
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Only for these two conditioning variables:

H(Xi | XbB , Xa1) =−
∑

xbB∈A

∑

xi∈A

∑

xa1∈A

[(

p(XbB = xbB) · p(Xi = xi | XbB = xbB) · p(Xa1 = xa1 | Xi = xi)

) · log p(Xi = xi | XbB = xbB , Xa1 = xa1)] (C.55)

Finally, using Eq. (C.48):

H(Xi | XbB , Xa1) =−
∑

xbB∈A

∑

xi∈A

∑

xa1∈A

[(

p(XbB = xbB) · p(Xi = xi | XbB = xbB) · p(Xa1 = xa1 | Xi = xi)

) · log
(
p(xa1 | xi) · p(xi | xbB)

p(xa1 | xbB)

)]
(C.56)
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C.6 Formulation and Implementation of Noisy Sparse
Promoting Solvers

Given sampling schemes provided by OSP, its comparison with some sparse promoting
oriented schemes has been proposed by the modification of classical L1 minimizers solver
(available in the L1 magic and CVX software). The contribution has been focused on
formulating the signal recovery process as a generalized sampling problem. The idea relies
on to take advantage of the sparse nature of channelized structures, the reduced spatial
variations of the 2-D images in the proposed database and the use of a prior statistical
model as an additional source of information related with spatial dependencies and pixel
uncertainty.

Therefore, applying principles from Noisy compressive Sensing (NCS ) to the recon-
struction of binary channels of permeability for the estimation of the model, it is possible
to use MPS realizations as a source of statistical data. In particular, it allows the esti-
mation of variance and covariance of the target regionalized variables.

C.6.1 NCS and Whitening process

The main idea supporting this preliminary work was to consider the noise associated to
measurements in the sparse recovery solver.

The noise associated to measurements has been incorporated in the sparse recovery
solver relaxing the search space. In this way, given a small amount of noisy measurements
from geologic data (mmeasures from a field of N variables, withm << N), the target is to
reconstruct the actual channel. While traditional CS approaches deal with time-invariant
sparse signals without error in measurements, the motivation was supported by the next
hypothesis: 1) NCS provides a theory of signal recovery from highly incomplete noisy
information, and 2) MPS could provide information about signal variability required to
the noise characterization on NCS framework.

Thus, a preliminary framework of NCS has been implemented and validated oriented
to improve MPS performance. Standard CS implementation for channelized binary struc-
tures was proposed and implemented for others members of the IDS Lab 3. The reader
is referred to Calderón et al (2015) for more details on this approximation. Classical
conditions and theory of NCS was described in sections C.2.1 and C.2.1.

Here, previous works are extended in order to consider noisy measures, providing a
framework to noise characterization. In order to apply the theory of NCS a signal model
with white noise is required, then a whitening process is needed to use the proposed meth-
ods. Thus,the next sensing model has been considered:

3Information and Decision Systems Laboratory, IDS Lab, at Electrical Engineering Department, Uni-
versidad de Chile.
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I = Φ · Z (C.57)
X = I(:) (C.58)

YSampled = A ·X + ξ (C.59)

with

• Z (M x M) : Signal in transformed domain (in this case a 2-D DCT coefficients
matrix of size 200 x 200)
• Φ (M x M) : Transform matrix (inverse DCT in this work)
• I (M x M) : Image in canonical domain
• X (N x N) : Vectorization of signal in image domain (N = M x M , in this case

40000)
• A (m x N) : Sampling matrix (m vectors randomly taken from N x N Identity

matrix)
• YSampled (m x 1) : vector of m measurements (including Hard and Soft Data)
• ξ (m x 1) : vector of noise in measurements, with covariance matrix Cv and mean
ξmean.

At this point the Eq. (C.59) only differs from Calderón et al (2015) approach in the
incorporation of noise component. Here, the noise ξ would be a spatially correlated noise,
requiring a whitening pre-processing.

A signal model with zero mean noise has been described by the subtraction of the
mean of noise ξmean obtaining:

YSampled − ξmean = A ·X + ξ − ξmean (C.60)

Defining zero mean variables and rewriting the expression in Eq. (C.61) is:

Y0 = A ·X + ξ0 (C.61)

From Eq. (C.61) it is required an additional process to obtain a model with a non
correlated noise. In order to achieve a sensing model under white noise and assuming the
existence of an invertible covariance matrix for ξ0 the next formulation has been achieved:
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C
−1
2
v · Y0 = C

−1
2
v · A ·X + C

−1
2
v · ξ0 (C.62)

C
−1
2
v · Y0 = C

−1
2
v · A ·X + η (C.63)

Ŷ = C
−1
2
v · A ·X + η (C.64)

Finally, replacing the vectorization process:

Ŷ = C
−1
2
v · A · V EC(Φ · Z) + η (C.65)

The Eq. (C.65) fits the classical framework of NCS for signals under white noise model.
The selection of the sampling matrix A satisfies isotropic property, the vectorization pro-
cess V EC(·) retain spatial dependence in the regionalized field, the basis DCT provides
a domain where the signal is compressible, and Cv is estimated as the experimental co-
variance of realizations of MPS.

C.6.2 On Noisy Compressive Sensing Performance

NCS theory has been a motivation to study the spatial co-dependencies of the regionalized
variable of interest. heretofore, how MPS can help in achieving this task have been
investigated and it generated a preliminary analysis of how the incorporation of spatial
dependence improves sparse promoting algorithms.

Statistical Analysis from MPS

Using the data base of multichannel MC1 model, obtained 200 MPS realizations has
been obtained from several sampling rates. For each sampling regime, the second order
statistics has been estimated. As shown in fig. C.4 the field variance in low rate sampling
regimes is higher than in regimes with more measurements. In the extreme case of 0.1%
measurements, the variance at most field positions was extremely uncertain. As the
measurements increased a reduction of non local variance has been observed, thereby the
powerful of spatial conditioning from MPS has been validated.
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Figure C.4: Statistics from simulations.
For scenarios considering 0.1 %, 0.5 %, 1 %, 2 %, 3 %, 4 %, and 5 % of hard data measures.

As expected for MPS, these preliminary outcomes shown that statistical analysis from
MPS realizations provides some kind of information about the variability of the value of a
non measured pixel from the knowledge of positions and values of hard data measurements.
This validate the use of MPS realizations as an estimation of the spatial covariance
between regionalized variables conforming the stochastic field.

In next subsections several attempts of incorporating information from MPS realiza-
tions in the NCS problem has been explored. The main idea was to provide an estimation
of covariance matrix and to use it in whitening process.

NCS. Naive Approach I. what Covariance?

The most simple assumption was considered that there was no correlation between re-
gionalized variables, and that all variables was modeled incorporating only withe noise
with zero mean and the same variance for all the regionalized variables. Under this as-
sumption the variance noise at each individual variable was estimated directly by pixel
variance estimation from MPS realizations.

At standard CS approaches only measurements are considered as input to the recon-
struction methods and no one knowledge is given for unmeasured regionalized variables.
The incorporation of MPS allows no only statistical analysis for global stochastic field,
but also the opportunity of considering simulated regionalized variables as noisy virtual
measures.

Here most naive NCS approach correspond to consider the model from Eq. (C.65) but
with C

−1
2
v equal to the identity matrix of proper size. Thus, using a mixture of hard data

measures and simulated virtual measures in standard CS does not take advantage of the
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statistical information provided for the proposed MPS analysis because all measurements
are considered without uncertainty. The above entails that the CS reconstruction would
be more close to the specific MPS realization than to the real target image.

Figure C.5: Performance Analysis of Naive Approach of NCS by only relaxing restrictions
on soft data.
From an initial amount of hard data measurements some level of soft virtual measurements are added from simulations
and then CS and naive NCS approaches are applied. Upper row SNR analysis, lower row SSIM analysis.From left to

right : initial 1% of hard data , initial 2% of hard data, and initial 3% of hard data.

As shown in fig. C.5, partial results on the most naive NCS approach present a lower
performance than classical CS. As reference the performance of MPS is shown by the
statistics of simulations (mean and variance), CS curves consider hard data and soft data
as fixed measures while NCS allows some uncertainty for these measures. For SSIM
indicator all reconstructions curves has very close performance, while for SNR indicator
the classical CS achieves a better global performance.

Without incorporating spatial correlations on the regionalized variables no advantage
from NCS theory has been achieved. Including uncertainty on measures only increase
the searching space for the optimization algorithms. Thus, the next motivation was to
include additional constraints promoting desired features on the regionalized variables.

The next step has corresponded to incorporate proposed amendments from section
C.2.1. Using alternate recovery models promoting sparsity on signal gradients instead on
the signal itself.

In figure C.6, several configurations of hard and virtual data are presented but con-
sidering reconstruction approaches using total variation. In terms of visual inspection
is possible to appreciate an improvement in the performance of NCS. This behavior is
confirmed by analysis of the metrics SNR and SSIM as shown in fig. C.7.
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Figure C.6: Examples of outcomes for NCS without considering spatial dependence.
From left to right: Target field image, hard data plus simulated data (HD+SD level), standard CS reconstruction for

HD+SD, NCS for HD+SD by Dantzig selector approach, NCS for HD+SD by Dantzig selector and TV approach. Rows:
Different levels of hard data and simulated data from MPS realizations: 1 % HD plus 0 % SD, 1 % HD plus 9 % SD, 2 %

HD plus 8 % SD, 4 % HD plus 6 % SD, 5 % HD plus 5 % SD, 5 % HD plus 10 % SD
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Figure C.7: Performance Analysis of Naive Approach of NCS by only relaxing restrictions
on soft data adding TV as sparsity promoting approach.
From an initial amount of hard data measurements some level of soft virtual measurements are added from simulations
and then CS and naive NCS approaches are applied. Upper row SNR analysis, lower row SSIM analysis.From left to

right : initial 1% of hard data , initial 3% of hard data, and initial 4% of hard data.

NCS. Naive Approach II. Spatial Independence

Here, regionalized variables are considered independent but for each pixel the noise vari-
ance is estimated from the empirical variance by the values simulated at this pixel. Thus
far only qualitative results has been obtained at this point which account for an apparent
improvement in the method’s ability to capture something of the structure of original
image (figs. C.8, C.9, C.10 and C.11).

Figure C.8: Example of NCS reconstruction under assumption of independence: SC1.
Hardata 0.1 %. True Image. Standard CS. NCS by quadratic constraints. NCS by Dantzig selector.
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Figure C.9: Example of NCS reconstruction under assumption of independence: MC1.
Hardata 0.1 %. True Image. Standard CS. NCS by quadratic constraints. NCS by Dantzig.

Figure C.10: Example 1 of NCS reconstruction under assumption of independence: MC2.
Hardata 0.1 %, Soft data 29.9 %. True Image. Standard CS. NCS by quadratic constraints. NCS by Dantzig selector.

Figure C.11: Example 2 of NCS reconstruction under assumption of independence: MC2
Hardata 0.1 %, Soft data 3.9 %. True Image. Standard CS. NCS by quadratic constraints. NCS by Dantzig selector.

NCS. Approach III. Full Covariance

Here, regionalized variables are considered with its full spatial dependence. The spatial
dependence requires a dense covariance matrix of size N by N demanding more compu-
tational resources. Thus far only qualitative results has been obtained which account for
an apparent improvement in the method’s ability to capture both global structure and
deltails of original image from low sampling regimes (figs. C.12 and C.13).
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Figure C.12: Example 1 of NCS with full covariance estimation: MC2.
Hardata 0.1 %, Soft data 3.9 %. True Image. Standard CS. NCS by quadratic constraints. NCS by Dantzig selector.

Figure C.13: Example 2 of NCS with full covariance estimation: MC2.
Hardata 1 %, Soft data 99 %. True Image. Standard CS. NCS by quadratic constraints. NCS by Dantzig selector.
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Nomenclature

A Alphabet

Ck Resolvability Capacity

Cv Covariance Matrix

H(X) Shannon’s entropy of X

f Set of k measurements

facies Rock structures recognized by its composition or fossil content and mapped
by these characteristics

f c Complement of f

Fk Set of all f of size k

f(l) l-th measurement in f

PX Joint Probability of X

k Number of measurements

PXij
Marginal Probability of Xij

N 1D random array size

[N ]× [N ] Available positions set for a square 2-D image

Rm Metallurgical Recovery

X Regionalized Variable (R.V.)

Xf X subset within f

Xi,j R. V. in (i, j) position
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Special Terms

ADA ADAptive sampling approach.
AdSEMES Adaptive Sequential Empirical Maximum Entropy Sampling.
AEP Asymptotic Equipartition Property.
AMIS Adaptive Maximum Information Sampling.

bGA binary Genetic Algorithm.
BP Basis Pursuit.
BPDN Basis Pursuit DeNoising.

cGA continuous or real-valued GA.
COg Cut-Off grade.
CS Compressive Sensing.

DCT Discrete Cosine Transform.

FDG Finite Difference Gradient.

GA Genetic Algorithm.
GP Gaussian Process.
GSLIB Geostatistical Software Library.

HD Hard Data (i.e. Samples or measurements).

i.d. Identically Distributed.
i.i.d. Independent Identically Distributed.
IT Information Theory (or Information Theoretic).

LHS Left Hand Side of an equation.

MC Multiple Channel.
MES Maximum Entropy Sampling.
MI Mutual Information.
MMSE Minimum Mean Square Error estimator.
MP Matching Pursuit.
MPS Multiple point simulations.
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MRF Markov Random Field.

NCS Noisy Compressive Sensing.
nipd No Inter-Pixel Dependency.
NP Non deterministic Polynomial time.

OMP Orthogonal Matching Pursuit.
OSP Optimal Sensor Placement.
OWP Optimal Well Placement.

pdf Probability Density Function.
pmf Probability Mass Function.
PSO Particle Swarm Optimization.

RAMIS Regularized Adaptive Maximum Information Sampling.
RHS Right Hand Side of an equation.
RIP Restricted Isometry Property.
RV Regionalized Variable.

SC Single Channel.
SD Soft Data (i.e. weak samples and simulated data).
SGEMS Stanford GEostatistical Modeling Software.
SMIS Sequential (non-adaptive) Maximum Information Sampling.
SNESIM Single Normal Equation SIMulation.
SNR Signal to Noise Ratio.
SPSA Simultaneous Perturbation Stochastic Approximation.
SSIM Structural Similarity Index Measure.
STR STRuctured sampling approach.

TI Training Image.
TV Total Variations.

VFSA Very Fast Simulated Annealing.
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