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Abstract

The accelerated growth of aquaculture has caused environmental impacts in many

countries. Examples include the use of large volumes of water, discharge of efflu-

ents with high nutrient content, the occupation of large areas, natural habitat

alternation and the escape of exotic species. Biofloc technology (BFT) is an aqua-

culture tool that requires minimal water exchange, promotes the nutrient recy-

cling optimizing resources and produces natural food in situ by forming

suspended microbial aggregates in the water (bioflocs). These microorganisms

provide multiple benefits such as water quality control, pathogen resistance and

nutritional supplementation. Species such as Litopenaeus vannamei and tilapia

have been successfully applied in BFT. In addition, there are also an increasing

number of studies focused on alternative species with promising results. This

paper describes essential aspects of biofloc technology, its application in aquacul-

ture and the potential to extend its benefits to new aquaculture species such as

Chilean river shrimp Cryphiops caementarius. This paper describes the future

challenges of this technology as well as opportunities for its application.
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Introduction

Biofloc technology (BFT) is a production tool for aquacul-

ture based on zero or minimal water exchange that can

reduce discharges of nutrient-rich effluents into the envi-

ronment as well as the negative impacts associated with the

escape of cultivated species and the spread of disease

(Wasielesky et al. 2006; Avnimelech, 2007; Samocha et al.

2007). This technology has been successfully applied in

freshwater fish such as tilapias (Oreochromis aureus,

O. niloticus, O. mossambicus) (Avnimelech et al. 1989;

Avnimelech, 1999; Brol et al. 2017; Verster, 2017), marine

crustaceans such as Litopenaeus vannamei (Burford et al.

2004; Wasielesky et al. 2006; Samocha et al. 2007), Penaeus

monodon (Anand et al. 2013, 2014, 2017) and freshwater

prawn like Macrobrachium rosenbergii (Asaduzzaman et al.

2008; Crab et al. 2010a). This technology has been devel-

oped mainly in tropical and subtropical geographical areas

that have abundant natural light for omnivorous organisms

that encompass certain stages of production or the entire

life cycle (Neal et al. 2010).

In recent years, research and scientific publications on

BFT have intensified, both in species with commercial value

and other candidate species that could benefit from the

application of this technology. These include freshwater

fish such as Clarias gariepinus (Putra et al. 2017), Labeo

rohita (Mahanand et al. 2013) and Rhamdia quelen (Poli

et al. 2015). Other species of commercial interest such as

the ornamental fish Carassius auratus (Faizullah et al. 2015)

and Pseudotropheus saulosi (Harini et al. 2016), as well as

the sea cucumber Apostichopus japonicus (Chen et al.

2018b), belonging to the Phylum Echinodermata, account
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for a wide range of potential species that can be cultivated

with BFT.

Among the future challenges of this technology are the

exploration and validation of its potential to cultivate new

species that require alternative models of commercial or

small-scale aquaculture production. Such approach can

also be applied to vulnerable species as a tool for both stock

recovery and repopulation in wild. Based on data previ-

ously collected, the river shrimp Cryphiops caementarius is

an endemic species in Northern Chile and Southern Peru

that has great commercial potential (Meruane et al. 2006a,

b) and social impact (Acu~na et al. 2003). In Chile, this spe-

cies is classified as vulnerable in the wild species classifica-

tion register (RCE, Ministerio de Medio Ambiente, 2011)

and is also listed in the International Union for the Conser-

vation of Nature (De Grave et al. 2013) as a species of con-

cern. C. caementarius belong to the Family Palaemonidae,

as same as those of the genus Macrobrachium, such as

M. rosenbergii, M. carcinus and M. americanum. Omnivo-

rous species with marked territorial behaviour are relevant

for the implementation and validation of BFT.

A fundamental aspect of aquaculture is the acquisition of

juvenile individuals. The process for obtaining juveniles is

attainable in Chile since reproduction control exists to

maintain broodstock. This premise ties into the themes of

aquaculture diversification and small-scale systems, which

projects the development of the aquaculture industry in the

Northern part of the country while considering new pro-

ductive models for technologies and species of interest for

research and commercialization. As such, C. caementarius

is considered as a candidate species for diversification and

small-scale aquaculture in continental waters since repro-

duction control is now feasible (Morales & Meruane, 2012;

Moreno et al. 2012; Rojas et al. 2012) along with juvenile

production (Morales, 1997; Morales et al. 2006; Meruane

et al. 2006a,b). It is therefore possible to bring this aquacul-

ture proposal using BFT as an alternative model for

sustainable and environmentally friendly aquaculture

development, with a high potential to expand into arid

areas of Northern Chile.

The objectives of this paper are to describe (i) the princi-

ples, essential aspects and applications of biofloc technology

in aquaculture; (ii) the potential to extend BFT benefits to

new candidate species such as the Northern freshwater

shrimp C. Caementarius; and (iii) describe the opportunities

and future challenges that such technology currently faces.

History of biofloc technology

The biofloc production system was developed as an alterna-

tive to the conventional aquaculture production systems

(extensive and semi-extensive) that are used in the cultiva-

tion of commercial species such as shrimp and tilapia; and/

or as a tool during early cultivation during nursery phases.

The BFT was originated in the 1970s at the French Research

Institute for Exploitation of the Sea (IFREMER), located in

Tahiti, French Polynesia, where Gerard Cuzon was one of

the pioneers and in partnership with private companies

from the United States of America (Emerenciano et al.

2012b; Anjalee-Devi & Madhusoodana-Kurup, 2015). It

was later expanded to commercial shrimp farms (e.g. in

Tahiti, Sopomer farm). In the 1990s, scientific studies and

commercial pilot-scale trials began at the Waddell Maricul-

ture Center in the United States of America with penaeid

shrimp led by J. Stephen Hopkins and with finfish at the

Technion-Israel Institute of Technology led by Yoram Avn-

imelech (Emerenciano et al. 2013d). In the mid-2000s, two

major research centres began several studies that were fun-

damental to the development of BFT technology in South

America at Federal University of Rio Grande-FURG (Bra-

zil) research centre led by Wilson Wasielesky and North

America in the Texas A&M University (Corpus Christi

Campus, USA) led by Tzachi Samocha both focused on

penaeid shrimp. Thanks to the training of human resources

in these institutions, various professionals spread BFT

knowledge and implemented commercial farms worldwide.

There was a significant increase in number of scientific

publications on the subject of biofloc technology worldwide.

The number has increased from less than 10 in 2009 to more

than 100 publications in 2018, with studies conducted

mainly in Brazil, China, the United States of America, Mex-

ico and India (Scopus, 2019), helping to strengthen the tech-

nology and boost the industry. Another important factor for

such progress was the wide range of courses and lectures

offered in both scientific and commercial events for the sci-

entific community, academia and aquaculturists. However,

despite the progress and benefits of BFT as reported by the

scientific community and academia, there is still room for its

commercial expansion. For example, in Indonesia, it is esti-

mated that only 20–25% of shrimp production has occurred

using biofloc technology (Thong, 2014). Among the reasons

behind such scenario are the higher implementation and

production costs (e.g. electricity) compared to traditional

land-based systems, and the complexities in management

and implementation of the technology, which requires

greater technical knowledge and permanent monitoring of

water quality (Avnimelech, 2015).

It is important to note that the application of biofloc

technology has focused on primarily omnivorous aquatic

organisms. Assessments of candidate species for BFT

should include their adaptability to intensive farming con-

ditions, the phase of their production cycle and (i) toler-

ance to low-medium levels of ammonia nitrogen, nitrite

and suspended solids (Samocha et al. 2007; Baloi et al.

2013; Schveitzer et al., 2013a,2013b; Samocha 2019); (ii)

possess an adequate morphological structure that will
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enable the cultivated species to graze the bioflocs properly

(Kim et al. 2015); (iii) capacity to digest and assimilate the

microbial aggregates (Azim et al. 2003; Avnimelech, 2006;

Smith & Sanderson, 2008; Kent et al. 2011); and (iv) good

market value. In this sense, any candidate species must

meet certain basic criteria to be considered for cultivation

with the use of BFT.

As of 2015, Chile began the first studies on BFT applica-

tion with Cryphiops caementarius, an endemic freshwater

shrimp, whose cultivation technology facilitates the man-

agement of juvenile production. These studies were con-

ducted by researchers from the Aquaculture Department of

Universidad Cat�olica del Norte (UCN-Chile) (FONDEF

ID15I10353, 2018). In this project, the purpose was to eval-

uate the technological feasibility of the Northern river

shrimp culture C. caementarius using the basics of biofloc

technology. The aquaculture development for this species

in the Northern zone of Chile should consider as an envi-

ronmental restriction the situation of scarcity of natural

water resources, as well as the aridity condition of the terri-

tory. The technological feasibility of cultivation considers

BFT, because it allows the development of cultivation sys-

tems with a reduced water exchange, with a reuse of nutri-

ents, an adequate water quality and the formation of

bioflocs, which can be used as a complementary and per-

manent food by the shrimp. In this way, it is possible to

considering an innovative small-scale aquaculture model,

with a native species, feasible to develop in arid zones

where this species is distributed.

Basics of biofloc technology

Biofloc technology is an aquaculture production system as

recirculating aquaculture systems (RAS), cage farming,

pens and earth ponds. It is also the basic functional unit of

the system, made up of heterogeneous aggregates of organic

matter comprising a wide range of microorganisms such as

chemoautotrophic and heterotrophic bacteria, cyanobacte-

ria, archaea, viruses, microalgae, yeasts and fungi, as well as

invertebrates such as rotifers, protozoa, amoebas, cope-

pods, cladocera, ostracods, annelids and nematodes, all of

which may be included in bioflocs or move freely in the

water column (Hargreaves, 2006; De Schryver et al. 2008;

Avnimelech, 2009; Browdy et al. 2012; Monroy-Dosta et al.

2013; Lara et al. 2016; Mart�ınez-C�ordova et al. 2016;

Ahmad et al. 2017; Becerril-Cort�es et al. 2018; Sgnaulin

et al. 2018). Other components that form parts of the bio-

flocs are organic matter particles such as uneaten food, fae-

ces, remains of dead organisms, suspended exoskeletons,

organic polymers and colloids that, together with microor-

ganisms, form conglomerates of variable size from a few

microns to millimetres (De Schryver et al. 2008; Harg-

reaves, 2013). The bioflocs are held together in a flexible

matrix of exo-polysaccharides (mucus) that are secreted by

bacteria, as well as by the presence of filamentous microor-

ganisms or the electrostatic attraction between the particles

that compose it (Hargreaves, 2013). Additionally, typical

biolocs have irregular shapes with a fine texture that makes

them easily compressible, deformable and with a porosity

over 99% (Chung & Lee, 2003; Chu & Lee, 2004). Bioflocs

are denser than water so they tend to sink at a relatively

slow rate of 1–3 m h�1 (Sears et al. 2006).

Among the three main roles of bioflocs are (i) water

quality control, (ii) the constitution of a food supplement

for cultivated species and (iii) microbial competition with

pathogens (Hargreaves, 2013). These advantages have been

reported by different researchers who emphasize different

aspects, mainly in shrimp farming. Several studies have

therefore reported that BFT promoted higher reproductive

outcomes in penaeid shrimp (Emerenciano et al. 2012b,

2013a,b) and freshwater fish (Ekasari et al. 2013; Ekasari

et al. 2016), improvements on fish larvae (Ekasari et al.

2015; Garc�ıa-R�ıos et al. 2019) and shrimp larvae perfor-

mance (De Lorenzo et al. 2016) as a result of better sanitary

conditions and enhanced immune systems (Wasielesky

et al. 2006; Xu & Pan, 2013). The zero or limited water

exchange also improve the farm biosecurity and reduce the

spread of diseases (McIntosh et al. 2000; Wasielesky et al.

2006; Crab, 2010; Moss et al. 2012). As such, microbial

communities associated with BFT not only recycle the

nitrogen compounds in water but also protect against

pathogens such as AHPND in shrimp (Hostins et al. 2019)

and ectoparasites in tilapia (Emerenciano et al. 2013d)

while also enhancing feed utilization and the growth of

cultured organisms (Kim et al. 2014).

Maintenance of water quality and Carbon:
Nitrogen (C:N) ratio

Water quality control occurs primarily through the removal

of toxic forms of nitrogen such as ammonium and nitrite

(Asaduzzaman et al. 2008; Ray et al. 2010) by microbial

communities present in culture ecosystems (Avnimelech,

1999) such as heterotrophic, photoautotrophic and

chemoautotrophic organisms (Ebeling et al. 2006). The pro-

portion and predominance of some of these groups of

microorganisms are due to the interaction of different biotic

and abiotic factors, exhibiting an ecological succession over

time that is part of the biofloc formation and development

process (Yusoff et al. 2002; Mart�ınez-C�ordova et al., 2015).

A practical way to distinguish the evolution of microbial

composition in BFT-based culture system is based on the

colour of the medium. When a culture is started from zero

(clear water), normally microalgae predominate shortly

first giving the water a green and brown colour. Due to

high water transparency, light penetration and nutrient
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availability, this first stage is predominantly photoau-

totrophic which should not last more than three weeks.

Through the application of external carbon sources and

exogenous bacteria (known as probiotics or bioremedia-

tors), changes in colour might occur over time, indicating

that heterotrophic bacteria are predominating over

microalgae (Hargreaves, 2013), for example, from green to

brown in freshwater conditions or in specific marine condi-

tions dominated by green chlorophytes. The heterotrophic

bacteria use the carbon available as energy source and

ammonia nitrogen as nitrogen for protein synthesis (Har-

graeves, 2013). Based on this considering that the efficiency

of nitrogen uptake by the bacteria is approximately 40%

(Rittmann & McCarty, 2001), such systems can be inter-

vened by stimulating heterotrophic bacteria in the medium

with a C:N ratio >10:1 (Emerenciano et al. 2017), which in

most cases requires the application of external carbon

sources to achieve it.

In addition, after 6–8 weeks the stabilization of nitrifying

bacteria also occurs (Emerenciano et al. 2017) and this phe-

nomenon can be easily identified by means of nitrification

curves (Ebeling et al. 2006). At this point, the exogenous

carbon sources addition should be reduced or even elimi-

nated to avoid an excess of nutrient input and consequently

bioflocs in the medium. This excess can lead a reduced

levels of dissolved oxygen, an increase in nitrogen

compounds and injuries to animal’s gills (Ray et al. 2010;

Scheveitzer et al. 2013a).

The monitoring and control of water quality parameters

as well as the balance between carbon and nitrogen (C:N)

present in the medium are crucial to the success of the

stages described above (Avnimelech, 1999). Depending on

this relationship, a correct microbial succession is sup-

ported with the growth of heterotrophic, nitrifying and/or

microalgae bacteria by converting ammonium nitrogen

into microbial protein, nitrate or microalgae biomass,

respectively (Avnimelech, 1999; Ebeling et al. 2006). The

conversion of ammonium to microbial protein consumes

less dissolved oxygen compared to the requirements for

nitrification (Avnimelech, 2006; Ebeling et al. 2006). The

growth rate and yield of microbial biomass per unit of het-

erotrophic bacteria are ten times higher than nitrifying bac-

teria (Hargreaves, 2006). Microalgae have an equally

important role not only because their nutritional role but

also because they are efficient in the removal of phosphorus

and nitrate while also can partially contribute to the

removal of ammonium (Collazos-Lasso & Arias-Castel-

lanos, 2015). The microbial community associated with

BFT is not only able to treat the water from nitrogenous

wastes, but also improve fish/shrimp feed utilization and

growth (Azim & Little, 2008; Kim et al. 2014) for those spe-

cies with adequate morphological structure enabling to

graze the microbial aggregates (Kim et al. 2015).

Another significant finding regarding the C:N ratio is

that shrimp and teleostean fish are ammonotelic organisms

that, on average, assimilate about 20–30% of the nitrogen

present in food (Jiang et al. 2000; Avnimelech & Ritvo,

2003). The remaining fraction is lost as nitrogen waste,

mainly as ammonium through gill excretion, which is a

compound that is soluble and toxic at very low concentra-

tions (Emerenciano et al. 2017). Thus, one of the main fac-

tors controlling the level of nitrogenous wastes in the

culture environment is the C:N ratio. This control is much

more evident, especially in the early stages of cultivation

where nitrifying communities are not yet fully established.

This relationship depends mostly on the proportion of

these elements in the formulated feed and on external car-

bon sources. In general, artificial feeds that contain 30–45%
protein represent a C:N ratio of approximately 11 to 6:1.

For example, a balanced feed containing 35% protein has a

C:N ratio of about 8:1. In order to support the develop-

ment of heterotrophic bacteria that provide a faster and

more stable ammonium removal pathway, it is necessary to

intervene in culture medium by applying an external car-

bon sources (Deng et al. 2018), elevating the C:N ratio to at

least 10:1, or even as high as 20:1 (Hargreaves, 2013). Such

differences in ratio will depend on stock density applied,

period (days) of culture, selection of species, among others.

This procedure promotes the natural productivity (Crab

et al. 2010a), and due to an increase in microbial biomass,

the oxygen demand also increases proportionally. In this

sense, the dissolved oxygen and pH levels tend to decrease,

and such factors need to be consider and controlled since

they can cause yields constraints (De Schryver et al. 2008).

The selection of external carbon sources needs to address

some requirements such as easy access in the local market,

low costs and standardized formats (liquid, powder, flour).

Furthermore, they must be easily soluble or miscible in

water, labile and with good bioavailability for bacterial

activity. Adequate palatability and digestibility should also

be considered, but a fundamental criterion is a high pro-

portion of carbon (over 30 % on average) with a minimum

amount of nitrogen. Therefore, sources rich in carbohy-

drates are the most desirable.

The application of various external carbon sources influ-

ences water quality, animal behaviour, and the quality and

composition of biofloc (Crab et al. 2010a; Monroy-Dosta

et al. 2013; Wei et al. 2016). The most commonly used car-

bon sources are mainly derived from industrial processes or

waste by-products. The sources most commonly used in a

variety of studies associated with BFT are sucrose, dextrose

(a simple carbohydrate obtained from starch), glycerol (by-

product of biodiesel), glucose, acetate, starch, cellulose,

molasses (mainly as sucrose), wheat flour, cornflour, rice

bran (cellulose) and tapioca (derived from the cassava

plant), among others (Table 1). The most commercially
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Table 1 Different carbon sources used in biofloc technology system in different studies worldwide

Carbon Sources Species References

Acetate, glucose, glycerol Macrobrachium rosenbergii Crab et al. (2010a)

Beet molasses Cyprinus carpio Najdegerami et al. (2016)

Brewery residues, cassava flour, sugarcane

molasses, wheat bran

Litopenaeus schmitti Fugimura et al. (2015)

Cellulose, sorghum Oreochromis niloticus Avnimelech et al. (1989)

Corn flour Oreochromis niloticus, O. aureus Milstein et al. (2001)

Corn meal Oreochromis niloticus,

O. mossambicus, O. andersonii

Day et al. (2016)

De-oiled oil palm kernel meal Litopenaeus vannamei Syamala et al. (2017)

Dextrose Litopenaeus vannamei Gaona et al. (2011), De Lorenzo et al. (2016)

Dextrose, molasses Litopenaeus vannamei Suita (2009), Suita et al. (2015)

Glucose Oreochromis niloticus Long et al. (2015)

Glucose, glycerol Oreochromis sp. Ekasari et al. (2010)

Glucose, glycerol, starch Litopenaeus vannamei Wei et al. (2016)

Glycerol Clarias gariepinus Dauda et al. (2018a)

Glycerol, molasses, sucrose Litopenaeus vannamei Ray and Lotz (2014)

Glycerol, rice bran, sucrose Clarias gariepinus Dauda et al. (2017)

Longan powder (LP), poly-hydroxybutyrate-

hydroxyvalerate/LP (PHBVL), Poly(butylene

succinate)/LP (PBSL)

Oreochromis niloticus Li et al. (2018a)

Molasses Farfantepenaeus brasiliensis De Souza et al. (2014)

Molasses Litopenaeus vannamei Burford et al. (2004), Samocha et al. (2007),

Krummenauer et al. (2011)

Molasses Litopenaeus vannamei Godoy et al. (2012), Da Silva et al. (2013)

Molasses Litopenaeus vannamei Schveitzer et al. (2013a,b), Ekasari et al. (2014a),

Maia et al. (2016), Xu et al. (2016)

Molasses Oreochromis sp. Widanarni et al. (2012), Ekasari et al. (2015),

Cavalcante et al. (2016)

Molasses Penaeus monodon Panjaitan (2004)

Molasses cane sugar, dextrose, rice bran Litopenaeus vannamei Serra et al. (2015)

Molasses, coffee waste, dry moringa Carassius auratus Castro et al. (2016)

Molasses, coffee waste, rice brand Oreochromis niloticus Becerril-Cort�es et al. (2018)

Molasses, rice bran Farfantepenaeus brasiliensis Emerenciano et al. (2012a)

Molasses, rice bran Litopenaeus vannamei Maic�a et al. (2012), Zhao et al. (2016)

Molasses, rice bran Litopenaeus vannamei Vilani et al. (2016)

Molasses, rice powder Oreochromis niloticus Maya Guti�errez et al. (2016),

Castro Mej�ıa et al. (2017)

Molasses, starch, wheat flour, mixture of them Litopenaeus vannamei Khanjani et al. (2017)

Molasses, tapioca, tapioca by-product, rice bran Litopenaeus vannamei Ekasari et al. (2014b), Azhar et al. (2016)

Molasses, wheat bran Farfantepenaeus duorarum Emerenciano et al. (20113a)

Molasses, wheat bran Farfantepenaeus paulensis Emerenciano et al. (2011)

Poly-B-hydroxybutyric acid, glucose Oreochromis niloticus Luo et al. (2017)

Rice bran, ground bread crumb, corn meal Oreochromis niloticus Wankanapol et al. (2017)

Rice flour Penaeus monodon Anand et al. (2013)

Rice flour, molasses Penaeus monodon Kumar et al. (2017)

Starch Litopenaeus vannamei Liu et al. (2014)

Starch Oreochromis spp. Avnimelech (2007), Crab et al. (2009)

Sucrose Litopenaeus vannamei Kuhn et al. (2010), Ray et al. (2011),

Xu and Pan (2012, 2013, 2014)

Sucrose Marsupenaeus japonicus Zhao et al. (2012)

Sugar beet molasses, sugar, corn starch Cyprinus carpio Bakhshi et al. (2018)

Sugarcane molasses, tapioca flour, wheat flour Litopenaeus vannamei Rajkumar et al. (2015), Pamanna et al. (2017)

Tapioca flour Penaeus monodon Hari et al. (2004), Hari et al. (2006)

Tapioca starch M. rosenbergii x, O. niloticus Asaduzzaman et al. (2009)

Tapioca starch Macrobrachium rosenbergii Asaduzzaman et al. (2008),

Asaduzzaman et al. (2010)
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used sources are molasses and flours derived from edible

plants, due to their low cost and accessibility. Molasses can

be used to provide more stable control of ammonium,

which may be due to the presence of secondary non-carbo-

hydrate components such as minerals and amino acids that

may contribute to the heterotrophic bacteria growth (Cur-

tin & Lane, 1983). However, the composition of molasses

may vary greatly depending on the processing technologies

used, water content and sugar cane variety (OECD, 2011).

In addition, some biodegradable polymers such as polyhy-

droxybutyrate (PHB) and other sources have recently been

explored as new carbon sources for the production of

bioflocs in bioreactors (Li et al. 2018a).

Biofloc as a nutritional supplement

Concerning the role of bioflocs as a food supplement, many

studies have reported the benefits of these aggregates by

increasing feed utilization, improving feed conversion (Da

Silva et al. 2013; Furtado et al. 2015), growth (Wasielesky

et al. 2006; Azim & Little, 2008; Emerenciano et al. 2011;

Emerenciano et al. 2012a) and stimulation of digestive

enzyme activity (Xu & Pan, 2012; Durigon et al. 2019). All

of these factors have been shown to optimize the animal

growth and survival by improving their health, enhance the

immune systems (Xu & Pan, 2013; Panigrahi et al. 2019a,b)

and provide high antioxidant activity (Kim et al. 2014).

In some BFT studies, enzyme activity has been used to

evaluate the response to feed consumption. Protease, amy-

lase and lipase activity have been reported where exogenous

enzymes produced by the constituent bacteria of biofloc

and ingested by shrimp appear to increase the activity of

endogenous enzymes (Yu et al. 2007; Wang 2007; Anand

et al. 2014). Similar effects have been detected in Cyprinus

carpio cultivated with BFT (Bakhshi et al. 2018). Enzyme

activity helps to break down proteins, carbohydrates and

other macromolecules, which facilitates digestibility and

nutrient absorption by cultured shrimp (Xu & Pan, 2012).

Studies conducted by Cardona et al. (2015a) with

L. stylirostris in BFT showed higher levels of enzyme activ-

ity and higher gene expression for amylase and trypsin,

with a growth rate that was 4.4 times higher than that of

shrimp cultivated in clear water. These results are consis-

tent with those recorded by Anand et al. (2014) who

observed higher amylase and protease activity in Penaeus

monodon juveniles cultivated with a supplementary biofloc

diet, which obtained higher growths rates compared to the

control group.

Biofloc is a natural food source available 24 hours a day

(Avnimelech, 2007). The microbial protein and lipid com-

ponents are considered the main nutritional contributions

(Tesser et al. 2019) although unknown growth factors may

also occur (Emerenciano et al. 2012b). The cultured organ-

isms have a permanent supply of in situ live food (Avnim-

elech 2007) in which the biological renewal rate of biofloc

may last <24 hours, indicating that new bioflocs are created

while the old ones are captured and mineralized (Avnim-

elech & Kochba, 2009). Due to constant nutrient recycling,

BFT acts as a fresh source of feed supplement, optimizing

the intake of balanced feed and improving the growth rates

(Tacon et al. 2002; Burford et al. 2004; Ju et al. 2008a; Kuhn

et al. 2010). According to Burford et al. (2004), the contri-

bution in nitrogen retention derived from the natural pro-

ductivity or bioflocs was between 18-29% in adult shrimp

of Litopenaeus vannamei cultivated with biofloc technology

in commercial farms in Central America.

The nutritional value of biofloc is closely related to the

microbial community that composes it (Ju et al. 2008b;

Ekasari et al. 2010; Widanarni et al. 2010). The biochemical

composition is affected by several factors such as light

exposure, temperature, pH, carbon sources and salinity

(Maic�a et al. 2012; Emerenciano et al. 2013d; Mart�ınez-

C�ordova et al. 2015). In general, the nutritional composi-

tion of biofloc is characterized by high protein levels rang-

ing between 14% and 50%, followed by carbohydrates and

lower lipids between 1.2% and 9% (Mart�ınez-C�ordova

et al., 2015). Although a trend exists in the expected values

of biofloc proximate analysis (e.g. crude protein and carbo-

hydrates around 30%, lipids and ashes less than 3.0% and

30%, respectively), several other factors may contribute to

diverse results such as species and feed type (protein con-

tent, feedstuff, etc.), biofloc size (Ekasari et al. 2014a) and

Table 1 (continued)

Carbon Sources Species References

Tapioca, starch, plant cellulose Pelteobagrus vachelli Deng et al. (2018)

Tapioca, wheat, corn, sugar bagasse Labeo rohita Ahmad et al. (2016)

Wheat flour Apostichopus japonicus Chen et al. (2018a)

Wheat flour Oreochromis niloticus Azim and Little (2008)

Wheat flour Penaeus monodon Anand et al. (2014)

Wheat flour Penaeus semisulcatus Megahed (2010)

Wheat flour, molasses Litopenaeus vannamei Peixoto et al. (2018)

Wheat milling by-product, rice bran Oreochromis niloticus Mansour and Esteban (2017)
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the C:N ratio applied. The intensity and frequency of feed-

ing also play a role, which explains a wide range of values

found in the literature (Table 2).

In regard to essential fatty acids obtained from biofloc

biomass, the omega-3 contributions of docosahexaenoic

acid (DHA) and eicosapentaenoic acid (EPA) may repre-

sent between 0.2% and 0.77%, as well as linolenic acid

(ALA) with value ranging from 0.65% to 3.3%. For omega-

6, arachidonic acid (ARA) may range from 0.3% to 3.55%

and linoleic acid (LA) with 1.5% to 16.68% (Emerenciano

et al. 2013d). Moreno-Arias et al. (2018) indicate that the

amino acid and fatty acid composition of biofloc and

shrimp cultivated in BFT are independent of the composi-

tion of the formulated feed used.

Additionally, bioflocs can provide minerals such as iron,

zinc, magnesium, potassium, phosphorus, calcium and

sodium (Rajkumar et al. 2015). It has also been known to

contain essential amino acids such as leucine, valine, isoleu-

cine, phenylalanine, threonine, histidine and tryptophan

(Kuhn et al. 2010; Emerenciano et al. 2013a) with limited

amounts of arginine, cysteine and methionine (Ju et al.

2008a). A study carried out by Ekasari et al. (2014a)

reported deficiencies in the biofloc based on the essential

amino acid index (EAAI) for Litopenaeus vannamei, and

Table 2 Proximate composition of biofloc based on published data according to bibliographic references

Species Protein

Content

Food (%)

Crude

Protein (%)

Carbohydrates (%) Lipids (%) Crude

Fibre (%)

Ash (%) References

Shrimp

Farfantepenaeus brasiliensis 40 30.4 29.4 0.5 0.8 39.2 Emerenciano et al. (2012a)

Farfantepenaeus duorarum 35 28.0–30.4 18.1–22.7 0.5–0.6 3.1–3.2 35.8–39.6 Emerenciano et al. (2013a)

Farfantepenaeus paulensis 30.4 0.5 0.8 39.2 Ballester et al. (2010)

Fenneropenaeus indicus 18–23 51–62 17–22 – 4–3 Megahed and Mohamed (2014)

Litopenaeus schmitti 16–18 – 1.5–2.4 – 54–72 Fugimura et al. (2015)

Litopenaeus vannamei – 35–51 – 10–15 – 21–32 Chamberlain et al. (2001)

Litopenaeus vannamei 35 31.2 – 2.6 – 28.2 Tacon et al. (2002)

Litopenaeus vannamei 25–35 31.1 23.6 0.49 – 44.8 Wasielesky et al. (2006)

Litopenaeus vannamei 35–40 26–41.9 – 1.2–2.3 – 18.3–40.7 Ju et al. (2008a)

Litopenaeus vannamei 40 30.4 – 1.9 12.4 38.9 Ju et al. (2008b)

Litopenaeus vannamei – 49 36.4 1.13 12.6 13.4 Kuhn et al. (2009)

Litopenaeus vannamei 45 38.8 25.3 <0.1 16.2 24.7 Kuhn et al. (2010)

Litopenaeus vannamei 42.5 28.8–43.1 – 2.1–3.6 8.7–10.4 22.1–42.2 Maic�a et al. (2012)

Litopenaeus vannamei 35 27.3 �31.6 – 3.7–4.2 – 43.7–49.4 Xu and Pan (2012)

Litopenaeus vannamei 35 18.4–26.3 20.2–35.7 0.3–0.7 2.1–3.4 34.5–41.5 Emerenciano et al. (2013b)

Litopenaeus vannamei 15.7 – 1.6 – – Schveitzer et al. (2013a,b)

Litopenaeus vannamei 24.3–36.7 18.3–20.3 – 1.4–1.9 16.6–27.1 – Jatob�a et al. (2014)

Litopenaeus vannamei – 50.6–53.5 – 3.8–4.0 – 7.4–7.5 Rostika (2014)

Litopenaeus vannamei 35 21.3–32.1 – 1.6–2.8 – 43.4–61.4 Xu and Pan (2014)

Litopenaeus vannamei 34.5 46–53.6 – 0.6–0.9 12.9–16.7 14.9–25 Rajkumar et al. (2015)

Litopenaeus vannamei 31.4–31.8 – 1.4–1.6 – Suita et al. (2015)

Litopenaeus vannamei 42 41.2–35.5 37.7–47.6 4.2–8.5 – 12.4–15.2 Wei et al. (2016)

Macrobrachium rosenbergii – 28–43 29–50 2.3–5.4 – 17–27 Crab et al. (2010b)

Penaeus monodon – 12–42 – 2–8 – 22–46 Soares et al. (2004)

Penaeus monodon – 24.3 – 3.5 3.1 32 Anand et al. (2014)

Fish

Carassius auratus 32 21.9 20.5 1.0 – 51.4 Faizullah et al. (2015)

Carassius auratus 29.8 3.2 19.1 Zhang et al. (2018)

Clarias gariepinus 31.3–33.3 0.5–0.8 – 6.7–6.8 Dauda et al. (2017)

Clarias gariepinus 32.6–44.3 5.8–10.8 – 4.6–7.0 Dauda et al. (2018a)

Oreochromis niloticus 24–35 38 – 3.2 6 12–13 Azim and Little (2008)

Oreochromis niloticus 46 41.1 1.0 – 6.1 Long et al. (2015)

Oreochromis niloticus 35 30.2–48 – 2.0–2.5 3.9–29.1 6.7–16.5 Becerril-Cort�es et al. (2018)

Oreochromis niloticus – 28.1–35.3 – 5.1–6.7 – – Li et al. (2018a)

Oreochromis sp. 40 28–33 – 6–9 – 7–13 Ekasari et al. (2010)

Oreochromis sp. – 39.7–48.1 – 12.6–24.3 3.1–4.5 25.2–28.7 Widanarni et al. (2012)

Oreochromis sp. – 23.7–25.4 32.2–39 2.6–3.5 – 33–40.4 L�opez-El�ıas et al. (2015)

Pseudotropheus saulosi – 20.5 21.2 0.5 – 52.4 Harini et al. (2016)
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determined that the limited amino acids are arginine, and

to a lesser extent, leucine and methionine, while those for

Oreochromis niloticus are methionine, arginine and lysine.

Meanwhile, Ju et al. (2008a) showed that the concentration

of free amino acids such as alanine, glutamate, arginine and

glycine that would act as attractants in shrimp diets (Nunes

et al. 2006) is present in biofloc. On the other hand, the

vitamins reported in the biofloc analysis are niacin, thi-

amine (B1), riboflavin, vitamin B12 and vitamin E (Emeren-

ciano et al. 2013d); however, it can be deficient in vitamin

C (Crab et al. 2012). Besides, several bioactive components

such as carotenoids, chlorophylls, polysaccharides, phytos-

terols, bromophenols, taurine and liposoluble vitamins

were reported in BFT (Ju et al. 2008a). Furthermore, some

researchers have suggested the existence of unknown or

unidentified growth-promoting factors that would explain

higher growth rates (Ju et al. 2008a; Kuhn et al. 2010)

compared to conventional systems.

Biofloc production alternatives

Biofloc in situ

This form of biofloc production is the most common and

based on the direct participation of cultivated aquatic

organisms in the nitrogen transformation and recycling

chain. In these systems, the fish or shrimp are capable of

consuming and assimilating the balanced feed while also

generating nitrogenous wastes, which together with the car-

bon available in the environment, provide nutrient sources

for the microbial community. These combined factors

allow for the production of new protein biomass that will

then be available for consumption in the form of bioflocs.

This continuous sequence of biotransformations enables

the recycling and reuse of the nitrogen present in the pro-

tein of the balanced feed. Da Silva et al. (2013) determined

in L. vannamei that 39.1% from the nitrogen incorporated

as shrimp feed and molasses was absorbed by the shrimp

raised in biofloc system. In order to evaluate the protein

content of biofloc for new tissue formation in cultivated

organisms, a series of tools have been used such as nitrogen

stable isotopes (d15N). Evaluations carried out on pelletized

feed, biofloc and the muscle of Oreochromis niloticus con-

firmed that high levels of d15N in fish muscle came from

bioflocs (Avnimelech & Kochba, 2009), suggesting that

48% of the fish’s nitrogen comes from the microbial aggre-

gates. In productive terms, this means that the protein con-

version efficiency goes from 4:1 in a conventional system to

2:1 in a BFT system (Avnimelech, 2009). A study conducted

by Burford et al. (2004) used nitrogen isotopes (d15N) and
concluded that the estimated proportion of nitrogen reten-

tion in Litopenaeus vannamei in biofloc was between 18%

and 29%. Meanwhile, Cardona et al. (2015a) using natu-

rally occurring stable isotopes of nitrogen (d15N) and

carbon (d13C) concluded that in juvenile L. stylirostris, 37%

to 40% of the nutrients used for new tissue formation came

from natural productivity (bioflocs) and also stimulated

the digestive enzyme activity and improved the growth per-

formance. Additionally, Suita et al. (2015) evaluated the

biofloc contribution in post-larvae of L. vannamei using

d15N and d13C, highlighting the positive effect on the qual-

ity of organisms and water presumably because of varia-

tions on the microbial community, resulting in a superior

growth performance of L. vannamei when cultured in BFT

systems.

The maintenance and continuity of biofloc in situ are

based on the ability of cultivated organisms (e.g. fish or

crustacea) to form part of the trophic chain by capturing

and consuming the bioflocs. Initially, the consumption of

balanced feed and the excretion of nitrogenous wastes

enable the continuous production of new bioflocs. How-

ever, in order to accelerate the starting point in a new pro-

cess of development of biofloc, an inoculum of a pre-

existing mature biofloc can be used (Krummenaeur et al.

2014; Martins et al. 2014; Thong, 2014). By the other hand,

a new biofloc can be started from scratch, and in this case,

it is necessary to know the characteristics of the water and

then determine the fertilizers and appropriate doses of

nutrients that will provide the necessary C:N ratio and the

regulation of the alkalinity, pH and other parameters, if

necessary.

Biofloc ex situ

This form of production is done in units specially designed

for the production of the bioflocs. Some of these units are

known as sequencing batch reactors (SBR), whose charac-

teristic is that they work independently or in the absence of

cultivated species (De Schryver & Verstraete, 2009; Kuhn

et al. 2009, 2010; Ruan et al. 2011; Luo et al. 2013). The

levels of total suspended solids in SBR are higher compared

to in situ production systems, since the absence of the tar-

get crop species can intensify production. The limits are

therefore only based on the bacteria inside the bioreactors.

These devices are considered as ‘biofloc factories’, which

allow for the continuous and independent production of

bioflocs. These aggregates are then added to the production

systems and serve as feed for fish and shrimp. In some

cases, effluents from other aquaculture systems (such as

RAS) are used and considered as a nutrient source for the

ex situ production (Kuhn et al. 2010; Santaella et al. 2018).

They are presented as an environmentally friendly way to

recycle nutrients and to produce high-quality natural food

(Emerenciano et al. 2013d). In these cases, attempts are

made to take advantage of the nutritional and immunologi-

cal properties of the aggregates (Kuhn et al. 2009;

Mart�ınez-C�ordova et al. 2016), or for technical reasons,
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since ex situ production offers advantages by independently

producing bioflocs and would allow better control over the

nutritional profile of the aggregates (Crab et al. 2010a).

Biofloc as a feed ingredient

An alternative application is the use of biofloc as a balanced

feed ingredient, either directly produced in reactors (ex

situ) or collected as excess from decanting ponds or clari-

fiers associated with aquaculture production units with

BFT (in situ). Once collected, the biofloc can be decanted

or filtered into a small diameter mesh (e.g. 10 µm), cen-

trifuged, dried and converted into a fine powder (Kheti

et al. 2017). Another mechanism is through a freeze-drying

process, in which biofloc samples are immediately placed in

a freezer at �80°C and then processed in freeze-drying

equipment (Arias-Moscoso et al. 2016). While this process

provides better maintenance of the biochemical properties

of the bioflocs, the high cost may be a limiting factor.

Dry or freeze-dried biofloc can be used as an ingredient

of the balanced feed and be supplied as part of the diet,

providing a source of protein that acts as an alternative of

replacement to fish meal or other protein sources while tak-

ing advantage of its nutritional qualities (Ju et al. 2008b;

Kuhn et al. 2009; Bauer et al. 2012; Anand et al. 2014; Kheti

et al. 2017; Lee et al. 2017). A study by Shao et al. (2017)

showed that a 15% substitution of fish meal with biofloc

obtained similar results in shrimp growth compared to the

control group without replacement, which is equivalent to

the optimal levels of replacement found by Valle et al.

(2015). In studies done by Anand et al. (2017), it was con-

cluded that adding 4% to 8% biofloc supplementation to

the diet in Penaeus monodon produced immunomodulatory

effects and improvements in the physiological condition of

shrimp. This field of research has high potential because

the nutritional properties of the aggregates can be varied

and optimized according to the form or production

method of the bioflocs.

Ability of cultivated organisms to graze the biofloc

At present, the most cultivated species in BFT have com-

mon characteristics such as morphologically specialized

structures and the ability to graze the suspended bioflocs.

In this sense, tilapia are one of the most successfully culti-

vated species in BFT. Tilapia posses structures called micro-

branchiospines (Beveridge et al. 1988) that allow filter the

water and capture the bioflocs (L�opez P�erez et al. 2013;

Verster, 2017). Studies by Smith and Sanderson (2008)

show that suspended particles in the medium that pass

through the oropharyngeal cavity of tilapia are captured by

a viscous and transparent mucous secretion, which pro-

duces an aerosol filtration mechanism. Tilapia use this

function to capture smaller particles, ranging from a few

microns to millimetres in diameter. Therefore, filtration by

sieving through the gill rakers along with mucus is the

mechanisms involved in capturing the bioflocs suspended

in the medium, which explains the favourable responses of

tilapia when grown with BFT.

The most commercially produced shrimp is L. vannamei.

In studies carried out by Kent et al. (2011) based on an

examination of setae from third maxillipeds with electron

microscopy, they suggested that juveniles are capable of

selecting and consuming suspended food particles approxi-

mately 10 µm in diameter using these net-like setae. With

such structures, these shrimp can capture diatoms such as

Thalassiosira and Amphiprora, whose sizes are approxi-

mately 10 µm. This ability would explain the high adapta-

tion to suspended biofloc systems.

Structures that can efficiently capture particles have also

been documented for other species. Such structures in

freshwater prawn Macrobrachium rosenbergii can capture

particles between 250 and 1200 µm (Barros & Valenti,

2003). For silver carp Hypophthalmichthys molitrix, Schroe-

der (1978) reported the separation of the gill rakers was

between 20 and 50 µm and enables to capture biofloc.

Odum (1968) reported that Mugil cephalus could capture

particles smaller than 10 µm. Research has been conducted

in recent years to evaluate the adaptation of these two fish

species in systems based on biofloc technology (Zhao et al.

2014; Vinatea et al. 2018).

Aquaculture species studied with bft

A review update

Research on shrimp has focused on species of commercial

and/or social interest from the time they were conducted.

These species include Fenneropenaeus merguiensis (Aqua-

cop, 1975), L. vannamei (McIntosh, 2000), Penaeus mon-

odon (Hari et al. 2006), Farfantepenaeus paulensis

(Emerenciano et al. 2007) and Litopenaeus setiferus

(Emerenciano et al. 2009). Subsequently, biofloc technol-

ogy has been extended to other species of the Family

Penaeidae, such as Penaeus semisulcatus (Megahed, 2010),

F. brasiliensis (Emerenciano et al. 2012a), F. duorarum

(Emerenciano et al. 2013a,c), L. stylirostris (Emerenciano

et al. 2012b), L. schmitti (Fugimura et al. 2015), Marsupe-

naeus japonicus (Zhao et al. 2012), Fenneropenaeus indicus

(Megahed & Mohamed, 2014), F. chinensis (Kim et al.

2015) and Metapenaeus monoceros (Kaya et al. 2019). As for

freshwater species, the prawn Macrobrachium rosenbergii is

the only species of the Family Palaemonidae about which

scientific publications associated with BFT have been pub-

lished, making its commercial application known. To sum-

marize, publications on crustaceans (Table 3) have been

developed in three families: Artemiidae, Palaemonidae and
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Penaeidae with a total of 16 species representing the major-

ity (14) of the Family Penaeidae.

Several studies based on BFT have been developed on

freshwater fish species of the Family Cichlidae, including

Oreochromis aureus (Avnimelech et al. 1989), O. mossambi-

cus (Avnimelech, 2007) and O. niloticus (Azim & Little,

2008; Brol et al. 2017). Other fish groups of commercial

importance that have been the subject of scientific literature

are those belonging to the Family Cyprinidae, notably the

species Tinca tinca (Carb�o & Celades, 2010), Carassius

auratus (Wang et al. 2015), and Cyprinus carpio (Najdeger-

ami et al. 2016). There were also studies done on two of

India’s major carp Catla catla (Prajith, 2011) and Labeo

rohita (Mahanand et al. 2013). Similarly, studies have been

done on three catfish species, the American catfish Ictalurus

punctatus (Green, 2010), the South American catfish Rham-

dia quelen (Poli et al. 2015) and the African catfish Clarias

gariepinus (Yusuf et al. 2015), belonging to the families

Ictaluridae, Heptateridae and Clariidae, respectively. In

addition to these studies, research is also being done on

native fish from South America, such as Colossoma macrop-

omum (Itani, 2010), Piaractus brachypomus (Poleo et al.

2011) and Brycon orbignyanus (Sgnaulin et al. 2018),

belonging to the Family Characidae. Also added are the fish

Arapaima gigas, belonging to the Family Arapaimidae

(Maravi, 2009) and Prochilodus magdalenae, belonging to

the Family Prochilodontidae (Roa-L�azaro et al. 2017). As

for ornamental fish species, studies have been done on Poe-

cilia reticulata (Sreedevi & Ramasubramanian, 2011),

Scatophagus argus (Liu et al. 2014), Carassius auratus

(Faizullah et al. 2015), Pseudotropheus saulosi (Harini et al.

2016), Xiphophorus maculatus (Boaventura, 2016) and Pun-

tius conchonius (De Lara et al. 2017). There are also studies

as recently as 2018 that have been conducted on Anguilla

spp (glass eels) (Sukardi et al. 2018) and Anguilla mar-

morata (Li et al. 2018b).

In marine fish species, BFT improved immune func-

tions and reduces stress in Paralichthys olivaceus juveniles

(Kim et al. 2018). Ekasari et al. (2014a) evaluated the

effects of biofloc in different trophic levels including

Oreochromis niloticus (Chordata), Litopenaeus vannamei

(Arthropoda) and Perna viridis (Mollusca). Another

example of this is a study published on Apostichopus

japonicus (Chen et al. 2018a) or sea cucumber, belonging

to the Phylum Echinodermata, further extending the

range of potential species that can be cultivated with

biofloc (Table 4).

Additionally, studies have been conducted that combine

the cultivation of two or more species such as Macro-

brachium rosenbergii and Oreochromis niloticus (Asaduzza-

man et al. 2009) as well as in cultures that integrate

noncompeting species such as Aristichthys nobilis,

Table 3 BFT applications in different crustaceans species based on data published according to bibliographic references

Family Species Historical and chronological bibliographical reference

Artemiidae Artemia franciscana Crab et al. (2010b), Nguyen et al. (2013), Ronald et al. (2014)

Palaemonidae Macrobrachium rosenbergii Asaduzzaman et al. (2008), Crab et al. (2010a), Prajith (2011), P�erez-Fuentes et al.

(2013), P�erez-Rostro et al. (2014), Ballester et al. (2017), Miao et al. (2017), Negrini et al. (2017)

Penaeidae Farfantepenaeus brasiliensis De Souza et al. (2012), Emerenciano et al. (2012a), De Souza et al. (2014), Hostins et al. (2015),

Maga~na-Gallegos et al. (2018)

Farfantepenaeus duorarum Emerenciano et al. (2013a)

Farfantepenaeus paulensis Emerenciano et al. (2007), Ballester et al. (2010), Emerenciano et al. (2011)

Fennerpenaeus chinensis Kim et al. (2015), Kim et al. (2015)

Fenneropenaeus indicus Megahed and Mohamed (2014), Effendy et al. (2016), Megahed et al. (2018)

Litopenaeus schmitti Fugimura et al. (2015)

Litopenaeus setiferus Emerenciano et al. (2009)

Litopenaeus stylirostris Emerenciano et al. (2012b), Cardona et al. (2015a), Cardona et al. (2015b), Cardona et al. (2016a),

Cardona et al. (2016b)

Litopenaeus vannamei McIntosh (2000), Tacon et al. (2002), Burford et al. (2004), Hari et al. (2006), Wasielesky et al. (2006),

Samocha et al. (2007), Ju et al. (2008a), Mishra et al. (2008), Kuhn et al. (2009), Suita (2009),

Kuhn et al. (2010), Krummenauer et al. (2011), Maic�a et al. (2012), Xu and Pan (2012),

Emerenciano et al. (2013b), Ekasari et al. (2014b), Jatob�a et al. (2014), Liu et al. (2014),

Rostika and Sudaryono (2014), Rajkumar et al. (2015), Serra et al. (2015), Maia et al. (2016),

Vilani et al. (2016), Wei et al. (2016), Xu et al. (2016), Panigrahi et al. (2018)

Marsupenaeus japonicus Zhao et al. (2012)

Metapenaeus monoceros Kaya et al. (2019)

Penaeus merguiensis Aquacop (1975)

Penaeus monodon Hari et al. (2004), Panjaitan (2004), Soares et al. (2004), Hari et al. (2006), Arnold et al. (2009),

Anand et al. (2013) Anand et al. (2014), Anand et al. (2017), Kumar et al. (2017)

Penaeus semisulcatus Megahed (2010)
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Hypophthalmichthys molitrix and Cyprinus carpio from

China (Zhao et al. 2014) (Table 5).

Candidate species: the case of river shrimp Cryphiops

caementarius in Chile

Cryphiops caementarius (Molina, 1782) (Decapoda: Palae-

monidae), known locally in Chile as the Northern river

shrimp, is the most commercially important freshwater

crustacean of Northern Chile and Southern Peru, with a

restricted geographical distribution between 10�S and 32�
55’S (Bahamonde & Vila, 1971). Due to its high commer-

cial value as well as its high social and economic impor-

tance in Chile and Peru, this palaemonid has been

subjected to excessive exploitation for years, impacting its

natural populations throughout the Chilean territory

(Meruane et al. 2006b). It is reported as a species in danger

of extinction in Chile’s Valpara�ıso and Metropolitan

Regions, and vulnerable for the rest of its distribution (Jara

et al., 2006).

Table 4 BFT applications in fish, sea cucumber and green mussel based on data published according to bibliographic references

Family Species Historical and chronological bibliographical reference

Anguillidae Anguilla spp. Li et al. (2018b), Sukardi et al. (2018)

Arapaimidae Arapaima gigas Maravi (2009)

Atherinopsidae Chirostoma jordani Castro-Mej�ıa et al. (2016)

Bagridae Pelteobagrus vachelli Deng et al. (2018)

Characidae Brycon orbignyanus Sgnaulin et al. (2018)

Colossoma macropomum Itani et al. (2010)

Piaractus brachypomus Poleo et al. (2011), Abad et al. (2014), Chaverra et al. (2017)

Cichlidae Etroplus suratensis Thilakan et al.(2019)

Oreochromis aureus, O. niloticus,

O. mossambicus, Hibridos

Avnimelech and Mokady (1988), Avnimelech et al. (1989), Avnimelech (1999),

Milstein et al. (2001), Avnimelech (2007), Azim and Little (2008), Crab et al. (2009),

Widanarni et al. (2012), Ekasari et al. (2014a), Ekasari et al. (2015), Long et al. (2015),

Cavalcante et al. (2016), Mansour and Esteban (2017), Verster (2017), Li et al. (2018a)

Oreochromis niloticus,

O. mossambicus, O andersonii

Day et al. (2016)

Poecilia reticulata Sreedevi and Ramasubramanian (2011)

Pseudotropheus saulosi Harini et al. (2016)

Clarias gariepinus Abu Bakar et al. (2015), Yusuf et al. (2015), Hapsari (2016), Rostika et al. (2016),

Dauda et al. (2017), Putra et al. (2017), Dauda et al. (2018a), Fauji et al. (2018),

Romano et al. (2018)

Cyprinidae Carassius auratus Faizullah et al. (2015), Wang et al. (2015), Castro et al. (2016), Zhang et al. (2018)

Catla Catla Prajith (2011)

Cyprinus carpio Sarker (2015), Najdegerami et al. (2016), Bakhshi et al. (2018)

Labeo rohita Prajith (2011), Mahanand et al. (2013), Sangotra et al. (2015), Ahmad et al. (2016),

Kamilya et al. (2017), Kheti et al. (2017)

Labeo victorianus Magondu et al. (2013)

Pimephales promelas Park et al. (2017)

Puntius conchonius De Lara et al. (2017)

Tinca tinca Carb�o and Celades (2010), Vinatea et al. (2018)

Heptapteridae Rhamdia quelen Poli et al. (2015), Pereira et al. (2016), Rocha et al. (2017)

Ictaluridae Ictalurus punctatus Green (2010), Schrader et al. (2011), Green and Schrader (2015),

Green and McEntire (2017)

Moronidae Morone chrysops and

M. saxatilis (h�ıbrido)

Green et al. (2017)

Mugilidae Liza carinata Magdy et al. (2016)

Mugil cephalus Vinatea et al. (2018)

Paralichthyidae Paralichthys olivaceus Kim et al. (2018)

Pangasiidae Pangasianodon hypophthalmus Nguyen et al. (2017)

Poeciliidae Xiphophorus maculatus Boaventura (2016)

Prochilodontidae Prochilodus magdalenae Atencio et al. (2015), Roa-L�azaro et al. (2017)

Scatophagidae Scatophagus argus Liu et al. (2014), Khanh et al. (2018)

ECHINODERMATA

Stichopodidae Apostichopus japonicus Chen et al. (2018a, 2018b, 2018c)

MOLLUSCA

Mytilidae Perna Viridis Ekasari et al. (2014a)
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The artificial production of C. caementarius juveniles has

been investigated for several years by different authors

(Rivera & Meruane 1987; Morales, 1997; Morales et al.,

2006; Meruane et al., 2006b), and its commercial escalation

has only been achieved in the last 12 years (Morales et al.,

2006; Meruane et al., 2006a; Morales & Meruane, 2012).

Defining biological factors such as the duration of its larval

development cycle, which includes 18 stages of zoea (Mor-

ales et al., 2006), in addition to the development of opera-

tional aspects such as the standardization of feeding

protocols and the use of indicators of larval condition has

been key to finalizing the validation of results and the con-

solidation of culture technology (Morales et al., 2006;

Meruane et al., 2006b; Morales & Meruane, 2012). C. cae-

mentarius completes larval development at 25 °C of tem-

perature and salinities between 15 and 20 psu (Rivera &

Meruane 1987). This species has a larval stage that naturally

occurs in estuaries or the sea, while for metamorphosis

freshwater is required.

Chile currently produces juveniles of C. caementarius on

experimental scale. The reproduction in captivity maintains

the stock according to different river’s, and the juvenile

maintenance is carried out until reach 10 mm cephalotho-

racic length (CL) size. Recently, different studies have been

initiated in the nursery phase up to market size using BFT

technology.

In this sense, as a contribution to aquaculture diversifica-

tion in Chile, the Universidad Cat�olica del Norte in

Coquimbo through a project financed with funds from the

Ministry of Education of Chile (FONDEF ID15I10353,

2018). In 2015 began preliminary studies on the develop-

ment of biofloc technology applied to river shrimp (Fig. 1).

The main updated result in the cited project corresponds to

the work with specimens of C. caementarius with an average

weight of 9.89 � 2.82 g. (density of 300 gm�2), use of food

formulated with 57.73% protein and a feed ration at a rate

of 5% of the total shrimp biomass per pond. At 60 days of

experimentation, the highest average survival was obtained

in the biofloc system (93%) compared to the control sys-

tems with clear water (87%). Likewise, a higher growth

level of 5.96% was obtained. The general water quality

recorded in the experimental biofloc systems was 25 mg L-

1 of VF; 0.5 to 1.0 mg L-1 TAN; 0.03 to 1.0 mg L-1 NO2
- -

N; 7.0 to 8.6 mg L-1, NO3
- -N; 5 to 8 mg L-1 OD; 228 to

295 mg of CaCO3L
-1; 7.6 to 8.6 pH and 23 � 2°C (FON-

DEF ID15I10353, 2018). Values considered appropriate for

the species studied (Meruane et al. 2006a,b).

Previous studies showed that commercial-scale cultiva-

tion of this species would contribute to sustainable produc-

tion by reducing pressure on natural populations (Meruane

et al. 2006a). The commercial production of C. caementar-

ius larvae and juveniles under captive conditions has

resulted in greater size uniformity, survival and growth

Table 5 BFT applications in polycultures or integrated multitrophic

aquaculture system (IMTA) based on data published according to biblio-

graphic references

Polycultures-IMTA Species Historical and

chronological

bibliographical

reference

Penaeidae Litopenaeus vannamei+ Legarda

et al. (2019)Mugilidae Mugil curema

Penaeidae Litopenaeus vannamei + Poli

et al. (2019)Cichlidae Oreochromis nilocitus +

(Sarcocornia ambigua)

Cichlidae Clarias gariepinus + Dauda

et al. (2018b)Cyprinidae Hypsibarbus wetmorei ♂ +

Barboides gonionotus ♀
Palaemonidae Macrobrachium rosenbergii + Asaduzzaman

et al. (2009),

Reinoso (2016)

Cichlidae Oreochromis niloticus

Characidae Piaractus brachypomus + Bru (2016)

Cichlidae Oreochromis niloticus

Penaeidae Litopenaeus vannamei + Liu

et al.(2014)Scatophagidae Scotophagus argus

Cyprinidae Aristichthys nobilis +

Hypophthalmichthys molitrix +

Cyprinus carpio

Zhao

et al. (2014)

Palaemonidae Macrobrachium rosenbergii + Prajith (2011)

Cyprinidae Catla catla + Labeo rohita

(a) (b)

Figure 1 Male specimen (a) and first shrimps of Cryphiops caementarius (b), produced with BFT in Chile (FONDEF ID15I10353, 2018)
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during production cycles in tanks (Morales et al. 2006).

This species is characterized by its territorial behaviour and

omnivorous eating habits that, in the natural environment,

include organic matter, aquatic insects, aquatic plants and

other small organisms such as fish larvae and crustaceans

(Meruane et al. 2006a).

Initial results indicate the BFT as an alternative that

could be implemented in arid areas such as Northern Chile

for C. caementarius grow-out (Meruane et al. 2006b). Such

species is one of the main natural freshwater resources

traded in the national market and is considered a gourmet

resource in the local market. C. caementarius was consid-

ered among twenty Chilean as the one with the potential

for aquaculture production implemented in arid zones. Ini-

tial results up to commercial size (40 to 45 gr) demon-

strated satisfied survival, growth and water savings

(CORFO 2016). In this sense, the Northern river shrimp

raised in BFT could be an alternative for the development

of small-scale aquaculture in arid zones and feasible areas

of Chile.

In biofloc systems, the main advantages when compared

to traditional systems are the feed and water savings, as well

as improvements on biosecurity. In addition, the C. cae-

mentarius showed a high tolerance to environmental vari-

ables such as suspended solids, ammonium, nitrites,

nitrates, alkalinity, hardness, temperature and pH, thus

demonstrating as a species with adequate characteristics for

cultivation in BFT. On the other hand, research focus in

terms of juveniles nursery duration and densities that opti-

mize growth and uniformity is still scarce. A good reference

species where this technology has been tested and demon-

strated promising results is the giant Malaysian freshwater

prawn Macrobrachium rosenbergii. Such species belonging

to the same family both live in freshwater and share similar

territorial behaviour. Some studies have been developed to

determine the benefits of BFT on the commercial cultiva-

tion of M. rosenbergii, evaluating the addition of carbon

sources and the nutritional value of biofloc as a food sup-

plement (Asaduzzaman et al. 2008; Crab et al. 2010a;

P�erez-Fuentes et al. 2013; P�erez-Rostro et al. 2014). Cer-

tainly, more research needs to be done to clarify the opti-

mal performance conditions in BFT for freshwater shrimps

in different phases.

Future challenges

Biofloc technology has proven to be an environmentally

friendly technology that optimizes the productivity of culti-

vated species. During the last two decades, research has

intensified significantly, but such an increase has not been

reflected proportionally at the commercial level. More

research is needed to understand the complexity of the

biofloc ecosystem (e.g. microbial relations, gut health,

physiological and immune interactions). In addition, in a

commercial scale we deal with some complexity in terms of

production management and water quality monitoring/in-

terpretations. In this sense, knowledge and skills are still

limited and need to be addressed to support the technol-

ogy.

Another subject that requires further investigation

involves to determine the tolerance levels in terms of

water quality of new culture species when raised to bio-

floc technology. In general, the reference tolerance levels

derived from conventional systems that use clear water

or water exchange and are not necessarily applicable to

organisms that are cultivated BFT with zero or limited

water exchange and high levels of solids and interacting

microbiota. In most cases, scientific investigations are

small-scale studies developed under controlled laboratory

conditions, in most of the cases far from commercial

conditions. The interacting factors are more diverse, thus

hindering the technology transfer process and implemen-

tation on a larger scale. The inherent gap between these

two production scales could explain the disparity of

some results. In this sense, it is necessary to scale-up

from experimental to commercial conditions. Economic

analysis performed on commercial scale is key to deter-

mine the cost and feasibility of modules or farm’s imple-

mentation. High energy demand for adequate aeration,

water movement (keep the bioflocs in suspension),

pumping and the maintenance of adequate levels of

solids certainly limits the BFT system implementation.

Alternative energy sources such as solar panels, wind

turbines and gas produced through biodigesters are ave-

nues to be considered. Other areas of research are the

genetic selection of species or cohorts with better adapt-

ability to intensive or super-intensive biofloc cultivation.

Studies are also needed to understand disease resistance

(e.g. Vibrio sp.) and the application on native species.

Exploring the potential of biofloc technology in the

shrimp C. caementarius will allow the aquaculture devel-

opment in arid areas and promote a social responsibility

with environmental concerns.
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