
MNRAS 493, 3178–3193 (2020) doi:10.1093/mnras/staa325
Advance Access publication 2020 February 4

Deep transfer learning for star cluster classification: I. application
to the PHANGS–HST survey

Wei Wei,1,2‹ E. A. Huerta,1,3‹ Bradley C. Whitmore,4‹ Janice C. Lee,5

Stephen Hannon ,6 Rupali Chandar,7 Daniel A. Dale,8 Kirsten L. Larson,5

David A. Thilker ,9 Leonardo Ubeda,4 Médéric Boquien,10 Mélanie Chevance,11
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ABSTRACT
We present the results of a proof-of-concept experiment that demonstrates that deep learning
can successfully be used for production-scale classification of compact star clusters detected
in Hubble Space Telescope (HST) ultraviolet-optical imaging of nearby spiral galaxies (D �
20 Mpc) in the Physics at High Angular Resolution in Nearby GalaxieS (PHANGS)–HST
survey. Given the relatively small nature of existing, human-labelled star cluster samples, we
transfer the knowledge of state-of-the-art neural network models for real-object recognition
to classify star clusters candidates into four morphological classes. We perform a series of
experiments to determine the dependence of classification performance on neural network
architecture (ResNet18 and VGG19-BN), training data sets curated by either a single expert
or three astronomers, and the size of the images used for training. We find that the overall
classification accuracies are not significantly affected by these choices. The networks are
used to classify star cluster candidates in the PHANGS–HST galaxy NGC 1559, which was
not included in the training samples. The resulting prediction accuracies are 70 per cent,
40 per cent, 40–50 per cent, and 50–70 per cent for class 1, 2, 3 star clusters, and class 4 non-
clusters, respectively. This performance is competitive with consistency achieved in previously
published human and automated quantitative classification of star cluster candidate samples
(70–80 per cent, 40–50 per cent, 40–50 per cent, and 60–70 per cent). The methods introduced
herein lay the foundations to automate classification for star clusters at scale, and exhibit the
need to prepare a standardized data set of human-labelled star cluster classifications, agreed
upon by a full range of experts in the field, to further improve the performance of the networks
introduced in this study.
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1 IN T RO D U C T I O N

Human visual classification of electromagnetic signals from as-
tronomical sources is a core task in observational research with a
long established history (Cannon & Pickering 1912, 1918; Hubble
1926, 1936; de Vaucouleurs 1963). It has been an essential means
by which progress has been made in understanding the formation
and evolution of structures from stars to galaxies. However, in the
modern era of ‘Big Data’ in Astronomy, with unprecedented growth

� E-mail: weiw2@illinois.edu (WW); elihu@illinois.edu (EAH);
whitmore@stsci.edu (BCW)

in electromagnetic survey area, field of view, sensitivity, resolution,
wavelength coverage, cadence, and transient alert production, it has
become apparent that human classification is no longer scalable
(LSST Science Collaboration 2009; Abbott et al. 2016). This
realization has motivated the use of machine learning techniques
to automate image classification (Ball et al. 2008; Banerji et al.
2010; Carrasco Kind & Brunner 2013; Kamdar, Turk & Brunner
2016; Ishak 2017; Kim & Brunner 2017). Some of these machine
learning algorithms have been integrated into widely used methods
for image processing, such as the neural networks (NNs) trained
for star/galaxy separation in the automated source detection and
photometry software SEXTRACTOR (Bertin & Arnouts 1996). Other
applications of machine learning for image classification include the
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use of so-called decision trees (Weir, Fayyad & Djorgovski 1995;
Suchkov, Hanisch & Margon 2005; Ball et al. 2006; Vasconcellos
et al. 2011; Sevilla-Noarbe & Etayo-Sotos 2015) and support vector
machines(Fadely, Hogg & Willman 2012; Małek et al 2013; Solarz
et al. 2017).

Visual object recognition has also been a core research activity in
the computer science community. For instance, the PASCAL VOC
challenge was initiated to develop software to accurately classify
about 20 000 images divided into 20 object classes (Everingham
et al. 2015). Over the last decade, deep learning algorithms have
rapidly evolved to become the state-of-the-art signal-processing
tools for computer vision, to the point of surpassing human
performance. The success of deep learning algorithms for image
classification can be broadly attributed to the combination of
increasing processing speed and the availability of very large data
sets for training; i.e. graphics processing units (GPUs) to train,
validate, and test NN models; and curation of high-quality, human-
labelled data sets, such as the ImageNet data set (Deng et al.
2009), which has over 14 million images divided into more than
1000 object categories.

The ImageNet large scale visual recognition challenge (Rus-
sakovsky et al. 2015) has driven the development of deep learning
models that have achieved breakthroughs for image classification. In
2012, the network architectureAlexNet (Krizhevsky, Sutskever &
Hinton 2012) achieved a ∼ 50 per cent reduction in error rate in the
ImageNet challenge – a remarkable feat at that time that relied on
the use of GPUs for the training of the model, data augmentation
(image translations, horizontal reflections, and mean subtraction),
as well as other novel algorithm improvements that are at the core of
state-of-the-art NN models today, e.g. using successive convolution
and pooling layers followed by fully connected layers at the end of
the NN architecture.

Within the next 2 yr, the architectures VGGNet (Simonyan &
Zisserman 2014) and GoogLeNet (Szegedy et al. 2015) continued
to improve the discriminative power of deep learning algorithms
for image classification using deeper and wider NN models, and
innovating data augmentation techniques such as scale jittering.
Furthermore, GoogLeNet provided the means to further improve
image classification analysis by introducing multiscale processing,
i.e. allowing the NN model to recover local features through smaller
convolutions, and abstract features with larger convolutions. In
2015, the ResNet (He et al. ) model was the first architecture
to surpass human performance on the ImageNet challenge. In
addition to this milestone in computer vision, ResNet was also
used to demonstrate that a naive stacking of layers does not
guarantee enhanced performance in ultradeep NN models, and may
actually lead to sub-optimal performance for image classification.

In view of the aforementioned accomplishments, research in deep
learning for image classification has become a booming enterprise in
science and technology. This vigorous program has led to innovative
ways to leverage state-of-the-art NN models to classify disparate
data sets. This approach is required because most applications of
deep learning for image classification rely on supervised learning.
That is, NN models are trained using large data sets of labelled
data, such as the ImageNet data set. In astronomical research,
to enable the morphological classification of galaxies, the deep
NN model developed by Dieleman, Willett & Dambre (2015)
was trained on ∼55 000 galaxy images, each with 40–50 human
classifications from the Galaxy Zoo 2 (Willett et al. 2013) online
crowdsourcing project. This model was developed for the Galaxy
Challenge competition in 2013–14 on the Kaggle platform, and
took first place out of 326 entries. Given that data sets of that nature

are challenging to obtain, deep ‘transfer’ learning has provided the
means to classify entirely new data sets by fine-tuning a pre-trained
NN model with the ImageNet data set.1

While deep transfer learning was initially explored to classify
data sets that were of similar nature to those used to train state-of-
the-art NN models, the first application of deep transfer learning
of a pre-trained ImageNet NN model to classify small data
sets of entirely different nature was presented in George, Shen &
Huerta (2017, 2018), where a variety of NN models were used
to report state-of-the-art image classification accuracy of noise
anomalies in gravitational wave data. That study triggered a variety
of applications of pre-trained ImageNet deep learning algorithms
to classify images of galactic mergers (Ackermann et al. 2018), and
galaxies (Domı́nguez Sánchez et al. 2018; Barchi et al. 2019; Khan
et al. 2019), to mention a few examples.

Building upon these recent successful applications of deep
transfer learning for image classification in physics and astron-
omy, in this paper we demonstrate that deep transfer learning
provides the means to classify images of compact star clusters
in nearby galaxies obtained with the Hubble Space Telescope
(HST). We show that this approach yields classification accuracies
on par with work performed by humans, and has the potential
to outperform humans and traditional machine learning. A ma-
jor motivation of this work is to determine whether these deep
transfer learning techniques can be used to automate production-
scale classification of candidate star clusters in data from the
Cycle 26 HST-Physics at High Angular Resolution
in Nearby GalaxieS (PHANGS2) Survey (PI: J.C. Lee, GO-
15654) for which observations commenced in 2019 April. HST-
PHANGS is anticipated to yield several tens of thousands of star
cluster candidates for classification, only about a half of which will
be true clusters. Encoding classification systems in NNs will also
improve the consistency of the classifications, and reduce the im-
plicit impacts of subjectivity and subtle differences in classification
systems adopted by different individuals (i.e. it can reduce both
random and systematic errors in the classifcations).

This paper is organized as follows. In Section 2, we summarize
the objectives of star cluster classification, and describe the current
classification system, which we employ in this paper. A review of
the consistency between human classifications across prior studies is
provided to establish the accuracy level to be achieved or surpassed
by deep learning in this initial proof-of-concept experiment. In
Section 3, we describe the imaging data and classifications used
to train our NN models, and then provide an overview of the NN
models employed in this work. We report our results in Section 4.
We conclude in Section 5 with a summary of the results and next
steps for future work.

2 C LASSI FI CATI ON O F C OMPACT STAR
CLUSTERS IN N EARBY G ALAXI ES

The objects of interest in this study are compact star clusters and
stellar associations in galaxies at distances between 4 and 20 Mpc.
The physical sizes of compact clusters are characterized by effective
radii between 0.5 pc and about 10 pc (Portegies Zwart, McMillan &
Gieles 2010; Ryon et al. 2017). Ryon et al. (2014) report that
the distribution of effective radii of young (�10 Myr), massive
compact star clusters peaks between 2 and 3 pc based on HST

1A brief overview of transfer learning is presented in Appendix B.
2www.phangs.org
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LEGUS observations of NGC 1313 (D ∼ 4 Mpc) and NGC 628
(D ∼ 10 Mpc). Hence, only with the resolution of HST3 can such
objects be distinguished from individual stars and separated from
other star clusters in galaxies beyond the Local Group. 4 The sizes
of stellar associations, which dominate the young stellar population,
span a wider range with sizes from a few pc to ∼100 pc (Portegies
Zwart et al. 2010; Gouliermis 2018).

Early attempts at classifying clusters in external galaxies with
HST imaging focused mainly on old globular clusters, for example,
the swarm of thousands of globular clusters around the central
elliptical galaxy in the Virgo Cluster, M87 (Whitmore et al. 1995).
This was a fairly straightforward process since the background was
smooth and the clusters were well separated. With the discovery of
super star clusters in merging galaxies (e.g. Holtzman et al. 1992),
the enterprise of the identification and study of clusters in star-
forming galaxies using HST began, despite the fact that crowding
and variable backgrounds in such galaxies make the process far
more challenging. Studies of normal spiral galaxies pushed the
limits to fainter and more common clusters (e.g. Larsen 2002;
Chandar et al. 2010). In all these early studies, the primary objective
was to distinguish true clusters from individual stars and image
artefacts, and there were essentially no attempts to further segregate
the clusters into different classes.

An exception, and one of the first attempts at a more detailed
classification, was performed by Schweizer et al. (1996), who
defined nine object types and then grouped them into two classes:
candidate globular clusters and extended stellar associations. More
recently, Bastian et al. (2012), who studied clusters using HST
imaging of the M83 galaxy, classified star clusters as either
symmetric or asymmetric. Their analysis retained only symmetric
clusters, which they posited were more likely to be gravitationally
bound. Following this work, many studies in the field, most notably
the Legacy ExtraGalactic Ultraviolet (UV) Survey (LEGUS; Calzetti
et al. 2015a) began differentiating clusters into two or three different
categories, so that they could be studied separately or together
depending on the goals of the project (see also the review by
Krumholz, McKee & Bland-Hawthorn 2018, and their discussion
of ‘exclusive’ versus ‘inclusive’ cluster catalogues).

The LEGUS project also employed machine learning techniques
for some of their cluster classification work (Messa et al. 2018,
Grasha et al. 2019). This pioneering work will be discussed in
Section 5.

3The WFC3/UVIS point-source function (PSF) full width at half-maximum
(FWHM) is 0.′′067 at 5000 Å.
4We note that for a high-signal-to-noise cluster it is possible to measure the
broadening of the image (and hence the size of the source) to a fraction
of the FWHM of the PSF of a star. The FWHM of a star using WFC3 is
about 1.8 pixel (1.3 pc at D = 4 Mpc, and 6.4 pc at 20 Mpc). A significant
amount of testing has been done on ACS and WFC3 images using software
like ISHAPE (Larsen 1999), and much published work (including Ryon et al.
2017) has confirmed that this broadening can be measured down to about
0.2 pixel, corresponding to size limits of ∼0.3 pc, ∼0.6 pc at distances of
5 Mpc, 10 Mpc. Extending to 15 and 20 Mpc, the upper end of distance
range covered by the PHANGS survey, the cluster size limits are 0.8 and
1.1 pc. Per the ISHAPE manual, at 5 Mpc, this is calculated as 0.2 pixel
∗ 0.04 (arcsec pixel−1)∗ 24 pc arcsec−1 ∗ 1.48 = 0.28 pc (where 1.48 is
a conversion factor given in the ISHAPE manual when assuming a King
profile specifically). Hence, if the peak sizes for clusters are in the 2–3 pc
range, the vast majority of cluster will be resolved for most of the galaxies
in PHANGS–HST.

In LEGUS, cluster candidates are sorted into four classes as
follows (Adamo et al. 2017; Cook et al. 2019):

(i) Class 1: compact, symmetric, single central peak, radial
profile more extended relative to point source

(ii) Class 2: compact, asymmetric, or non-circular (e.g. elon-
gated), single central peak

(iii) Class 3: asymmetric, multiple peaks, sometimes superim-
posed on diffuse extended source

(iv) Class 4: not a star cluster (image artefacts, background
galaxies, pairs and multiple stars in crowded regions, stars)

We adopt the same classification system for this paper. In
general, we refer to class 1, 2, and 3 as ‘compact symmetric
cluster,’ ‘compact asymmetric cluster,’ and ‘compact association’,
respectively. Examples of objects in each of these classes are shown
in Fig. 1.

2.1 Consistency among classifications

The stated goal of this work is to provide cluster classifications via
deep transfer learning models that achieve accuracy levels at least
as good as other star cluster classifications in the literature, both by
human visual inspection and by application of quantitative selection
criteria. In this section, we establish this ‘accuracy’ level, which we
define as the consistency between different classifications for the
same cluster populations as reported in the literature, as well as
relative to classifications homogeneously performed by one of us
(Bradley C. Whitmore, hereafter BCW.).

A first look at the overall consistency between the clusters
catalogued by different studies, but based on the same data and same
limiting magnitude, is provided by the work on M83 by Bastian
et al. (2012), Whitmore et al. (2014), and Chandar et al. (2014).
Comparisons reported in those papers show that about ∼70 per cent
of the clusters are in common between the studies. Later, Adamo
et al. (2017) performed a similar comparison for the spiral galaxy
NGC 628 for the catalogues from LEGUS and Whitmore et al.
(2014), and finds an overlap of ∼75 per cent. Finally, the LEGUS
study of M51 by Messa et al. (2018) finds an overlap of 73 per cent
in common with a study by Chandar et al. (2016).

These results are not based only upon detailed analysis of human-
versus-human cluster classifications for individual objects; they
are statistical measures of overlap between samples where a mix
of human classification/identification, and automated star/cluster
separation based on the concentration index (i.e. the difference in
magnitude in a 1 versus 3 pixel radius) were used across the studies.

To more directly evaluate human-versus-human cluster classifi-
cations alone, we start with a comparison of the NGC 3351 cluster
catalogue from the LEGUS sample (performed by BCW and team
member Sean Linden, who was trained by BCW) with a new version
of the NGC 3351 cluster catalogue independently constructed by
PHANGS–HST5 (performed by BCW alone). This might be viewed
as a test of the consistency that might be expected if the same (or
very similar) classifiers return to the same data set after a passage of
several years. We find an 80 per cent agreement between category 1
objects, 53 per cent for category 2, and 56 per cent for category 3. If

5PHANGS–HST has expanded imaging coverage of NGC 3351 to produce
greater overlap with PHANGS–ALMA CO observations of the galaxy, and
is developing new star cluster catalogues for the fields. See Section 3.1 for
an overview of the catalogue construction.
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Figure 1. Examples of each of the four cluster classifications illustrated with HST/WFC3 imaging. The top four rows show star clusters from NGC 4656,
which are part of the training set, while the bottom four rows show clusters from recent PHANGS–HST observations of the spiral galaxy NGC 1559, which
form our proof-of-concept test sample, and are not used for training. The first two columns show false-colour RGB images for context: the first column displays
a 299p × 299p RGB image (R = F814W, G = F438W + F555W, B = F275W + F336W) and the second column shows only the centre 50p × 50p of the
RGB image (184pc × 184pc for NGC 1559, for example). The centre 50p × 50p of individual NUV–U–B–V–I HST images, which are used as input to the
pre-trained NN models for further training (tuning) and evaluation, are shown in the grey scale in the last five columns (from left to right, 50p × 50p images
taken with filters F275W, F336W, F438W, F555W, and F814W). We also experiment with 25p × 25p and 100p × 100p images, as discussed in Sections 3
and 4.

we combine category 1 and 2 objects (which is what many authors
do for their analysis), the agreement is 88 per cent.

We next compare classifications assigned by BCW for NGC 4656
to those provided in the LEGUS public cluster catalogue, which
provides the mode of classifications made by three other LEGUS
team members (trained by BCW, A. Adamo, and H. Kim). Results
are shown in Fig. 2.

If we combine only the class 1 + 2 clusters (to exclude compact
associations that has a higher rate of confusion with class 4 non-
clusters), the total match fraction is 67 per cent. For the individual
classes, the consistency of the assignments varies from 66 per cent,
37 per cent, 40 per cent, and 61 per cent for class 1, 2, 3, and 4,
respectively. Hence, the agreement for the BCW classifications
versus the mode of classifications from three LEGUS team members

MNRAS 493, 3178–3193 (2020)
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Figure 2. Comparisons between star cluster candidate classifications made
by BCW and the mode of classifications made by three other LEGUS
team members (trained by BCW, A. Adamo, and H. Kim) provided in
the LEGUS public star cluster catalogue for NGC 4656. Each panel shows
the distribution of classifications given in the LEGUS catalogue for BCW
labelled class 1 (top, symmetric compact clusters), class 2 (upper middle,
asymmetric compact clusters), class 3 (lower middle, compact associations),
and class 4 (bottom, non-clusters) objects.

for NGC 4656 is slightly lower than the comparisons between BCW
and BCW (and Linden) for NGC 3351. Other galaxies where a
similar comparison has been made between the BCW classifications
and LEGUS 3-person (consensus) classifications (i.e. NGC 4242,
NGC 4395N, and M51) result in similar numbers.

In summary, comparing between a wide range of different cluster
classification methods, but for the same data sets, we find typical
agreements in the range 40 per cent (e.g. when comparing class
2 or class 3 objects alone) to 90 per cent (e.g. when combining
class 1 + 2 for repeat classifications of cluster catalogues by the
same, or very similar, classifiers). For the individual classes, the
‘accuracy’ levels that we adopt to be achieved or surpassed for
our deep learning studies proof-of-concept demonstration are 70–
80 per cent, 40–50 per cent, 40–50 per cent, and 60–70 per cent for
class 1, 2, 3, and 4 objects, respectively.

3 DATA A N D M E T H O D S

In this section, we describe the data sets used to train, validate,
and test our deep learning algorithms, and give an overview of
the NN models used. We approach this initial work as a proof of
concept demonstration, with the intention of performing further
optimization and more detailed tests in future work.

3.1 Star cluster catalogues

A key point is that the training and testing of the NNs presented here
are based on a pre-selected sample of cluster candidates where a
large fraction of unresolved (point) sources has been first discarded.
In past work, such candidate samples have served as the starting
point for visual classification by humans to remove remaining
interlopers, and to characterize the morphologies of verified clusters
as described above. The construction and selection methodolgy for
cluster candidate samples used here follow most of the procedures
adopted for the LEGUS project (Calzetti et al. 2015b) as described
in Adamo et al. (2017).

To briefly review, the procedure includes detection using the
SEXTRACTOR program (Bertin & Arnouts 1996) on a white light
image; filtering out most stars by requiring the concentration index6

to be greater than a value determined based on training set of isolated
point sources and clusters for each galaxy; requiring detections
with photometric errors less than 0.3 mag in at least four filters;
and selecting objects brighter than −6 mag in F555W (total Vega
magnitude). Again, this results in a cluster candidate list that is
then examined visually to remove artefacts (e.g. close pairs of
stars, saturated stars and diffraction spikes, background galaxies,
etc.). The primary tool used for the visual classification is the
IMEXAMINE task in IRAF. See Fig. 3 in Adamo et al. (2017)
for a graphic description of the use of IMEXAMINE and the
classification into four categories.

For most of the LEGUS star cluster catalogues, which have
been publicly released through the MAST archive,7 classifications
are performed by three different team members and the mode is
recorded as the final consensus value (i.e. the 29 fields in Table 2).
The LEGUS classifiers were trained by BCW, A. Adamo, and H.
Kim. For additional eight fields, classifications were performed
primarily by a single team member, i.e. coauthor BCW.8 As of
2019 July, classifications for 4 of the 8 HST fields primarily
inspected by BCW are available from the LEGUS public archive
(Table 1). BCW also independently classified two fields with
LEGUS consensus classifications to enable consistency checks (e.g.
Fig. 2), bringing the total to 10 galaxies in the sample with BCW
classifications.

The construction of a preliminary cluster catalogue for the
first galaxy observed in the PHANGS–HST program NGC 1559
generally follows the methods used for LEGUS. The primary
differences are that a F555W image was used instead of a white
light image (which is more prone to small differences in alignment
of different filters and the presence of very close pairs of stars with
different colours), and a false-colour image from the Hubble Legacy
Archive (Whitmore et al. 2016) was simultaneously examined to
help classify the clusters. A magnitude limit of −7.5 in the V band
was used for NGC 1559, reflecting its larger distance (19 Mpc: A.
Reiss, private communication) relative to the average distance of the
LEGUS galaxies. A detailed presentation of the PHANGS–HST star
cluster and association candidate selection methods will be provided
in the PHANGS–HST survey paper (Lee et al., in preparation) and
catalogue papers (e.g. Larson et al., in preparation; Thilker et al., in
preparation; Whitmore et al., in preparation).

6(CI = difference in magnitude between an aperture with 1 or 3 pixel).
7https://archive.stsci.edu/prepds/legus/dataproducts-public.html
8S. Linden, who was trained by BCW, assisted in classifications for sources
in NGC 3351, NGC 3627, and NGC 5457).
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Figure 3. Top panels: Prediction, averaged over 10 models, of ResNet18 (left) and VGG19-BN (right) trained on 80 per cent of the data described in Table 1
and then tested on 20 per cent of the data reserved for validation testing and not used for training. Note that in these confusion matrices each column corresponds
to a predicted class, whereas each row corresponds to an actual class. Correct classification results are given along the diagonal from the top left to bottom
right of the matrices. The colour bar indicates the number of evaluation images used. Bottom panels: Same as top panels, but for data in Table 2.

3.2 Image data and curation

As input for the NN training, we use postage stamps extracted
from HST imaging taken in five broad-band filters. Sample postage
stamps are presented in the last five columns of Fig. 1.

LEGUS obtained HST observations with WFC3 in 2013-2014
(GO-13364; PI Calzetti), and combined those data with ACS data
taken in previous cycles by other programs to provide NUV-U-B-
V-I coverage for a sample of 50 galaxies with 63 fields.

PHANGS–HST (GO-15654; PI Lee) began observations on 2019
April 6, and is also obtaining observations with similar exposure
times in the NUV-U-B-V-I filters. The first galaxy to be observed
is NGC 1559.

Bearing in mind that the NN models used in this study (i.e.
VGG19-BN and ResNet18; see next section) were pre-trained
with the ImageNet data set, in which images are resized to
299 × 299 × 3, we follow best coding practices of NN training, and
curate our data sets so that star cluster images have size 299 × 299
pixels.

However, given that star clusters subtend only about several to a
dozen HST WFC3 pixels, we focus the training on a small area (see
Fig. 1).

We first extract regions of 50 × 50 HST/WFC3 pixels centred
on the star cluster candidate, which are then resized to fit in an
299 × 299 pixel area for the training. With WFC3’s pixel size of
0.04 arcsec, each region corresponds to a physical width between
∼40 and ∼100 pc for our sample of galaxies. To test whether the

size of the cropped HST image influences the accuracy, we also
extract regions that are half and twice as large as 50 HST/WFC3
pixels across.

Procedurally, from the HST mosaics, a .fits image ‘postage stamp’
centred on each target cluster is cropped from each of the NUV–U–
B–V–I bands.

The five resultant stamps for each cluster candidate are then stored
in individual header data units within a single multi-extension FITS
(multi-extension fits) file. We note that if there was no observation
of the cluster in one of the filters, all pixel values for that particular
filter’s postage stamp were set to zero. If there was no observation
in more than one filter, the cluster was removed from our sample,
consistent with the candidate selection criteria.

3.3 Neural network models

The available star cluster data sets are small compared to the
data sets used to successfully train state-of-the-art NN models for
image classification. Thus, we use two NN models, VGG19 (Si-
monyan & Zisserman 2014) with batch normalization (VGG19-BN)
and ResNet18 (He et al. 2016), pre-trained with the ImageNet
data set (see Section 1), and then use deep transfer learning9 to
leverage the knowledge of these models to classify real-object

9A brief overview of transfer learning is presented in Appendix B.
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Table 1. Number of sources in each of the 10 HST LEGUS fields that have
been primarily classified by BCW. The number in each of morphological
classes described in Section 2 is given. The total number of clusters with
detection in at least four filters (a requirement for inclusion in the training and
testing) are given in the last row of the table. In total, 80 per cent of the latter
(randomly selected) are used for training, and the remaining 20 per cent are
reserved for validation testing. Distances compiled by Calzetti et al. (2015a)
are listed.

Field D (Mpc) Class 1 Class 2 Class 3 Class 4

NGC3351a 10.0 118 80 95 325
NGC3627 10.1 403 175 164 837
NGC4242a 5.8 117 60 14 42
NGC4395Nb 4.3 8 19 21 20
NGC4449 4.31 120 261 213 0
NGC45a 6.61 45 52 20 43
NGC4656b 5.5 83 125 47 173
NGC5457C 6.7 287 108 81 436
NGC5474a 6.8 48 95 34 144
NGC6744N 7.1 164 143 58 210

Total 1393 1118 747 2230
N ≥ 4 1271 1013 738 2125

Notes. aClassification primarily determined by BCW are available in the
public release of the LEGUS cluster catalogues.
bIndependent classifications determined by BCW for fields for which
LEGUS consensus classifications are available through the LEGUS public
archive (Table 2).

images to our task at hand, namely, the morphological classification
of star clusters.

Regarding batch normalization for VGG19: the weights of each
layer in a NN model change throughout the training phase, which
implies that the activations of each layer will also change. Given that
the activations of any given layer are the inputs to the subsequent
layer, this means that the input distribution changes at every step.
This is far from ideal because it forces each intermediate layer
to continuously adapt to changing inputs. Batch normalization is
used to ameliorate this problem by normalizing the activations of
each layer. In practice, this is accomplished by adding two trainable
parameters to each layer, so the normalized output is multiplied
by a standard deviation parameter, and then shifted by a mean
parameter. With this approach only two parameters are changed for
each activation, as opposed to losing the stability of the network
by changing all the weights. It is expected that through this method
each layer will learn on a more stable distribution of inputs, which
may accelerate the training stage.

Both NN architectures, VGG19-BN and ResNet18 have three
input channels. However, since the star cluster candidates have
images taken in five broad-band filters, we concatenate two copies of
the same NN architecture. The merged NNs have six input channels
in total, so we set the input to the last channel to be constant zeros.
We also apply one more matrix multiplication and an element-
wise softmax function (see Appendix A; Goodfellow, Bengio &
Courville 2016) to make sure that for each candidate cluster the
output is a vector of size 4, representing the probability distribution
over the four classes under consideration. We choose this particular
combination given its simplicity and its expected performance for
image classification.

We use the pre-trained weights, except those for the last layers, of
VGG19-BN and ResNet18 provided by PYTORCH (Paszke et al.
2019) as the initial values for the weights in our models. The weights
for the last layers in VGG19-BN and ResNet18 and the last fully

Table 2. Same as Table 1, but for the 29 HST LEGUS fields, which have
been classified by three people, and have star cluster catalogues available
through the LEGUS public archive. The number in each of the morphological
classes, as determined by the mode of these three people’s classifications, is
given.

Field D (Mpc) Class 1 Class 2 Class 3 Class 4

NGC1313E 4.39 42 95 122 386
NGC1313W 4.39 85 191 210 373
NGC1433 8.3 51 61 56 138
NGC1566 18.0 258 214 261 328
NGC1705 5.1 16 13 13 54
NGC3344 7.0 119 118 159 161
NGC3738 4.9 49 93 86 214
NGC4656 5.5 93 91 78 169
M51 7.66 363 502 365 1261
NGC5253 3.15 20 37 23 154
NGC628C 9.9 334 357 326 542
NGC628E 9.9 92 80 87 122
NGC6503 5.27 71 96 131 172
NGC7793E 3.44 32 76 83 62
NGC7793W 3.44 51 84 86 78
IC4247 5.1 1 4 3 37
IC559 5.3 9 12 4 18
NGC4395N 4.3 8 12 19 19
NGC4395S 4.3 31 64 42 31
NGC5238 4.51 4 4 1 9
NGC5477 6.4 5 9 9 49
UGC1249 6.9 13 35 40 133
UGC4305 3.05 16 29 40 147
UGC4459 3.66 2 5 3 20
UGC5139 3.98 2 7 7 23
UGC685 4.83 7 4 3 6
UGC695 10.9 4 7 6 94
UGC7408 6.7 19 16 11 32
UGCA281 5.9 2 9 4 34

Total 1799 2325 2278 4866
N ≥ 4 1795 2315 2265 4841

connected layers are randomly initialized. We use cross-entropy as
the loss function10 andAdam (Kingma & Ba 2014) for optimization.
The learning rate is set to 10−4. The batch size for ResNet18 is
32, and for VGG19-BN is 16.

Batch size and batch normalization refer to two distinct con-
cepts. One epoch corresponds to all the training examples being
passed both forward and backward through the NN only once,
while the batch size is the number of training examples in one
forward/backward pass. For instance, we may divide a training data
set of 100 images into four batches, so that the batch size is 25
sample images, and four iterations will complete one epoch. On
the other hand, batch normalization is a technique used to improve
the stability of the learning algorithms. The details are described in
Appendix C.

Finally, following deep learning best practices, we quantify the
variance in classification performance of our models by training
them 10 times independently and then presenting the mean accura-
cies and the corresponding standard deviations. We also compute
the Shannon entropy Shannon (1948) of the output distribution

10A loss function is used to evaluate and diagnose model optimization
during training. The penalty for errors in the cross-entropy loss function is
logarithmic, i.e. large errors are more strongly penalized.
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Table 3. Number of sources in the PHANGS–HST observation of NGC
1559 that have been classified by BCW. This cluster sample is used to test the
NNs trained as described in Section 4.1 as a proof-of-concept demonstration
for production scale classification of PHANGS–HST compact clusters and
associations.

Field D (Mpc) Class 1 Class 2 Class 3 Class 4

NGC1559 19.0 302 252 162 710

over the four star cluster classes to quantify the uncertainty in each
individual NN model’s prediction.

3.4 Training experiments

We perform a series of experiments to test how the accuracy of
the NN model for predicting the morphological classification of
candidate star clusters depends on the following characteristics of
the training sample:

(i) origin of classifications: primarily classified by BCW (Ta-
ble 1) or the mode of three LEGUS classifiers (Table 2);

(ii) size of images used for training: 25p × 25p, 50p × 50p, 100p
× 100p

(iii) imaging filters: NUV, U, B, V, I.

Transfer learning is used to train the NN models using a random
selection of 80 per cent of the samples described in Tables 1 and 2
separately, and the remaining 20 per cent is reserved for validation.
In total, this results in training samples of about 1000, 800, 600,
and 1700 class 1, 2, 3, 4 objects primarily classified by BCW,
and about 1400, 1800, 1800, 3900 objects with LEGUS consensus
classifications.

Absolute values of pixels are rescaled to be in the range [0, 1],
to avoid the brightness of the sources from becoming a parameter
in the classification. During training, we use several standard data
augmentation strategies, such as random flips, and random rotations
in the range [0, 2π ] to make sure that the trained NNs are robust
against those transformations. Taking into account the batch size
mentioned above for ResNet18 and VGG19-BN, and bearing in
mind that we trained the models using about 10 000 batches, this
means that the nets were exposed to 320 000 and 160 000 images,
respectively. Note, however, that the data augmentation techniques
used during the training stage may produce very similar images to
the actual star cluster images curated for this analysis.

To investigate whether networks trained in this manner can be
used to automate classification of star clusters in the PHANGS–HST
data set in the future, we test the networks on the first observations
obtained by PHANGS–HST of the spiral galaxy NGC 1559. The
PHANGS–HST NGC 1559 observations provide 302, 252, 162, and
710 class 1, 2, 3, 4 objects, as classified by BCW (Table 1).

4 R ESULTS

We present four sets of results in this section.
In Section 4.1, we present the classification accuracy for the

four categories of star clusters candidates relative to classifications
primarily determined by BCW and those based on the mode of
classifications performed by three LEGUS team members. We also
present the uncertainty quantification analysis of those models (i.e.
due to random weight initialization).

In Section 4.2, we quantify the robustness of our NN models
to generalize to star cluster images in different galaxies, choosing

the PHANGS–HST observations of NGC 1559 as the driver of this
exercise as discussed above.

In Section 4.3, we report on whether the classification accuracy
depends on the size of the images used for network training.

In Section 4.4, we report on relative importance of different
filters for image classification in our resulting deep learning
models.

4.1 Does prediction accuracy depend on the origin of the
classifications?

It is often useful to approach a problem using multiple methods
to check how sensitive the results are to the chosen method. For
example, the use of both ResNet18 and VGG19-BN architectures
in this paper allows us to see which one provides better results, but
as we will show next, the results are quite robust no matter which
is used. We use a similar strategy in this section by examining
the results from training using two different classification samples,
namely the BCW sample (see Table 1) and the LEGUS-consensus
(three classifiers) sample (see Table 2). While the BCW sample
might be expected to have greater internal self-consistency since
it was performed by a single experienced classifier, averaging the
results of three less-experienced classifiers might be expected to
reduce the random noise. Hence, it is not obvious which approach
might give better results in this pilot project. In the long run, the
development of a much larger standardized data base using a full
range of experienced classifiers, as discussed in Section 5, may be
required to make significant improvements.

First, we quantify the performance of our models for classification
accuracy when we fine-tune the models to determine whether the
transfer learning was effective at learning the morphological fea-
tures that tell apart the four classes of star clusters, and to assess the
robustness of the optimization procedure for image classification.
As described above, to fine-tune the models pre-trained with the
ImageNet data set, the weights of the last layers and the last fully
connected layers of the VGG19-BN and ResNet18 models are
randomly initialized. The process is performed separately for the
data sets described in Tables 1 and 2 to examine the dependence of
the results on the origin of the classifications.

The results based on training with classifications primarily
determined by BCW are presented in the top row of confusion
matrices in Fig. 3, for both the ResNet18 and VGG19-BN models,
with mean classification accuracy taken as the average over 10
individual trainings from scratch. As a reminder, the reported
accuracies are based on classification of a random set of 20 per cent
of the overall sample that was not included in the training (the
‘validation’ sample). Likewise, the results based on training with the
mode of classifications performed by three LEGUS team members
are presented in the bottom row in Fig. 3.

The main result is that the classification accuracies for the
validation samples are comparable for both ResNet18 and VGG19-
BN networks, as well as for both training samples. Reading along
the diagonal of the confusion matrices presented in Fig. 3, for the
models trained on the objects primarily classified by BCW, the
accuracies for ResNet18 are 76 per cent, 58 per cent, 60 per cent,
and 71 per cent for classes 1, 2 ,3, and 4 objects, respectively,
and 71 per cent, 64 per cent, 60 per cent, 69 per cent for VGG19-BN.
Similarly, for the networks trained on the mode of classifications
performed by three LEGUS members the accuracies are 78 per cent,
54 per cent, 58 per cent, 66 per cent for ResNet18 and 76 per cent,
54 per cent, 57 per cent, 69 per cent for VGG19-BN. This provides
evidence that our proof-of-concept NN models are resilient to the
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Table 4. Prediction of ResNet18 on 20 per cent of the data in Table 1 reserved for validation
testing and not included in the training, averaged over 10 models. The averaged predictions
from Fig. 3 are repeated, but now the standard deviations are also shown. The number of
validation images for each class are listed in the final column.

Class 1 (per cent)
Class 2

(per cent)
Class 3

(per cent) Class 4 (per cent) Total

BCW Class 1 76.0 ± 4.2 17.9 ± 4.4 1.7 ± 0.7 4.4 ± 1.4 254
BCW Class 2 19.4 ± 3.5 58.2 ± 5.3 7.9 ± 3.5 14.6 ± 3.0 202
BCW Class 3 0.3 ± 0.5 16.3 ± 5.4 59.9 ± 6.8 23.4 ± 5.6 147
BCW Class 4 7.0 ± 2.1 6.9 ± 2.9 15.2 ± 3.1 70.9 ± 4.8 425

Table 5. As Table 4, but now using VGG19-BN.

Class 1 (per cent)
Class 2

(per cent)
Class 3

(per cent) Class 4 (per cent) Total

BCW Class 1 70.9 ± 6.2 23.0 ± 4.8 1.1 ± 0.7 5.0 ± 1.9 254
BCW Class 2 13.3 ± 4.3 63.8 ± 4.8 9.4 ± 2.9 13.6 ± 3.6 202
BCW Class 3 0.5 ± 0.7 14.0 ± 6.3 59.8 ± 7.5 25.6 ± 7.4 147
BCW Class 4 6.5 ± 2.4 8.1 ± 2.6 16.3 ± 3.8 69.1 ± 6.8 425

choice of data used for training and validation despite the fact
that the two samples were (i) labelled by different classifiers; and
(ii) include different parent galaxies at a wide range of distances
(4–10 Mpc for the objects primarily classified by BCW, and 4–
18 Mpc for the sample with LEGUS consensus classifications.) Our
findings indicate that notwithstanding these seemingly important
differences, the prediction accuracies using these two independent
data sets are fairly consistent.

The variance in the 10 independent classification measurements
provide measure of the robustness of the models. The variances for
our NN models trained on the classifications primarily determined
by BCW are given in Tables 4 and 5. In all cases, the variances are
between 4 and 8 per cent. The variances for LEGUS classifications
are comparable.

4.2 How accurately can the models predict classifications for
clusters in galaxies not included in the training sample?

To further assess the robustness and resilience of our NN models,
we use them to classify images from a galaxy not included in
the original training data set, namely the PHANGS–HST target
NGC 1559 (see Table 3). This galaxy is about two to four times
further away than the galaxies in either of the training samples,
with the notable exception of NGC 1566, which is at a comparable
distance to NGC 1559 (18 versus 19 Mpc), and included the sample
with consensus classifications from three LEGUS team members
(Table 2). Results are presented in Fig. 4 and Tables 6 and 7.

Notwithstanding these differences, we again notice that all mod-
els produce comparable results. Reading along the diagonal of the
confusion matrices presented in Fig. 4, for the models trained on the
objects primarily classified by BCW, the accuracies for ResNet18
are 73 per cent, 38 per cent, 40 per cent, 75 per cent for class 1, 2 ,3,
and 4 objects, respectively, and 74 per cent, 42 per cent, 52 per cent,
67 per cent for VGG19-BN. Likewise, for the networks trained on
the mode of classifications performed by three LEGUS members
the accuracies are 70 per cent, 41 per cent, 48 per cent, 62 per cent
for ResNet18 and 70 per cent, 45 per cent, 52 per cent, 52 per cent
for VGG19-BN.

For all models, the performance for NGC 1559 class 1 star clusters
is at or above the 70 per cent level. The classification accuracy of the
BCW-based models is similar to their performance on the validation
samples (i.e. Fig. 3). Meanwhile for NGC 1559 class 1 star clusters
the performance of the models trained on the LEGUS consensus
classifications are 6–8 per cent lower relative to the classification of
the validation samples. On the other hand for class 2 star clusters, the
accuracies hover around the 40 per cent level, and are the lowest of
the four classes. The accuracies for the models trained on the objects
primarily classified by BCW drop by ∼20 per cent: from 58 per cent
(test subset sample) to 38 per cent (NGC 1559) for ResNet18, and
from 64 per cent to 42 per cent for VGG19-BN. Similarly, those
trained on the LEGUS consensus classifications drop, although by
only ∼10 per cent: from 54 per cent to 41 per cent for ResNet18, and
from 54 per cent to 45 per cent for VGG19-BN. The accuracies for
the NGC 1559 class three star clusters are at the 40–50 per cent level,
a ∼10 per cent drop for all models relative to the performance on the
test subsets. Finally, for the class 4 non-clusters, the models trained
on the objects primarily classified by BCW perform comparably, i.e.
at the 70 per cent level, while those trained on the LEGUS consensus
classifications drop to the 50–60 per cent level.

4.2.1 Uncertainty calculations through entropy analysis

Another method to investigate the uncertainty in the models’ pre-
dictions is through the computation of entropy using the probability
distributions for each of the cluster classes we are trying to classify,
which is an output of the models. Intuitively, the more pronounced
the peak is in the probability distribution, the more confident the NN
is about its prediction, and in this case, the entropy calculated from
the prediction probability distribution will be lower. For example,
if the probability distribution is only concentrated on one class,
the network network in this case is 100 per cent certain about its
prediction and the entropy would be zero, i.e. there is no uncertainty.
On the other hand, if the prediction assigned the same probability
for all the for classes under consideration equally, we would have
maximum uncertainty in this case, since for the given input image,
all the four classes are equally possible to be the predicted classes,
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Deep Learning for star cluster classification 3187

Figure 4. Top panels: Same as Fig. 3, but now the models trained on the classifications primarily determined by BCW (Table 1) are applied to predict
classifications for candidates in PHANGS–HST observations of NGC 1559, a galaxy that was not included in the training samples. As before, results were
obtained after averaging over 10 models. Bottom panels: Same as top row, but for models trained on the mode of classifications performed by three LEGUS
team members (Table 2).

Table 6. Prediction of ResNet18 trained on star clusters primarily classified by BCW
(Table 1) for candidates in spiral galaxy NGC 1559 from the PHANGS–HST program, averaged
over 10 models. Each row shows the averaged predictions (same as shown in top left-hand
panel of Fig. 4), but now together with the standard deviations from the 10 models. The number
of objects classified is given in the last column. This experiment was performed to test the
ability of this neural network model to generalize to images from galaxies not included in the
training sample. It is notable that NGC 1559 is roughly twice as far away as any of galaxies in
the BCW training sample.

Class 1 (per cent)
Class 2

(per cent)
Class 3

(per cent) Class 4 (per cent) Total

BCW Class 1 72.8 ± 7.6 11.2 ± 3.8 1.4 ± 0.6 14.6 ± 5.1 302
BCW Class 2 23.8 ± 4.3 38.1 ± 5.9 9.0 ± 4.0 29.2 ± 4.7 252
BCW Class 3 1.0 ± 0.5 9.8 ± 4.2 40.1 ± 7.1 49.1 ± 6.1 162
BCW Class 4 4.6 ± 1.4 6.5 ± 1.8 14.1 ± 3.1 74.8 ± 3.5 710

Table 7. As Table 6, but now using VGG19-BN.

Class 1 (per cent)
Class 2

(per cent)
Class 3

(per cent) Class 4 (per cent) Total

BCW Class 1 73.8 ± 4.8 10.4 ± 3.5 3.1 ± 1.3 12.7 ± 4.4 302
BCW Class 2 20.9 ± 6.4 42.3 ± 7.9 13.3 ± 2.6 23.5 ± 8.0 252
BCW Class 3 0.7 ± 0.6 8.3 ± 3.3 52.2 ± 5.9 38.9 ± 7.5 162
BCW Class 4 6.1 ± 2.4 8.3 ± 3.3 18.3 ± 3.0 67.3 ± 6.8 710
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Figure 5. The uncertainty in the neural network’s prediction is quantified
by the entropy of the predicted probability distribution over the four star
cluster image classes considered in this analysis. For a random guess over
the four classes, the entropy is ln (4) ≈ 1.39. The lower the entropy, the
higher the confidence the neural network has about its prediction. The panel
shows the predicted entropy value for each NGC 1559 image with which
we classified with our VGG19-BN model, trained on the objects primarily
classified by BCW given in Table 1. The x-axis shows the binned values
of the entropy values, whose frequency of occurrence is indicated on the
y-axis. To make clear that the area of each histogram is normalized to one,
the y-axis label is explicitly labelled ‘Normalized distribution.’.

and in this case, the maximum entropy is ln (4) ≈ 1.39. Fig. 5 shows
the distribution of the entropies for the predictions of VGG19-BN
when tested on NGC 1559 images.

4.3 How does classification accuracy depend on size of
training images?

To quantify the importance of image size for star cluster classi-
fication, we train our NN models again, but with two additional
cropping sizes: 25 × 25 pixels and 100 × 100 pixels. In Fig. 6, we
present results from training on the sample with LEGUS consensus
classifications (again, where 80 per cent of the sample is used for
training and 20 per cent for testing), where the results presented
earlier from our fiducial experiments with 50 × 50 pixels postage
stamps are repeated to facilitate comparison. We present results
based on the LEGUS consensus classifications as the range of
distances of the galaxies (from 3.1 to 18 Mpc; Table 2) is inclusive
of the range spanned by the sample primarily classified by BCW
(Table 1). Hence, the physical scales subtended by the cropped
images span from 16 pc (for 25 × 25 pixel images at 3.1 Mpc) to
360 pc (for 100 × 100 pixel images at 18 Mpc).

There are no significant differences between the results for
the different cropping sizes. These results indicate that our NN
models are resilient to this particular data curation choice. We
see variations at the level of ∼ 5 per cent, which is within the
expected variation in the performance of the NN models due
to random weight initialization, as indicated in Tables 4 and 5.
Results for the models trained with objects primarily classified by
BCW are consistent. The results also do not change if the NN
models are trained with postage stamps using random cropping
sizes ranging from 25 × 25 pixels to 100 × 100 pixels (i.e. a random
cropping size is chosen for each object in the training and testing
sample).

4.4 Classification accuracy as a function of imaging filter

We have also quantified what filter has the leading contribution
for classification accuracy. To do so, we perform the following
experiment: using NGC 1559 images as testing data set, we
produced five different testing data sets in which one filter was set to
zero. We then fed these five different testing data sets, one at a time,
to our NN models trained with objects primarily classified by BCW
and quantified which missing filter leads to the most significant
drop in classification accuracy. As shown in Fig. 7, the key filter is
F555W.

This finding is expected, since the human classifications primarily
rely on the F555W image (e.g. using DS9 and imexamine), with
colour images (F814, F555, F336W) generated by the Hubble
Legacy Archive providing supporting morphological information.
Therefore, our NN models seem to use insights similar to human
vision to classify star cluster images.

5 D I S C U S S I O N A N D C O N C L U S I O N S

Using homogeneous data sets of human-labelled star cluster images
from the HST, we have leveraged a new generation of NN models
and deep transfer learning techniques for morphological classifica-
tion of compact star clusters in nearby galaxies to distances of ∼
20 Mpc. These results are very promising.

(i) Through all of the experiments presented here with multiple
training sweeps for each NN model, we see that the classification
accuracy is similar for both architectures studied, i.e. ResNet18
and VGG19-BN pre-trained with the ImageNet data set where the
weights of the last layers and the last fully connected layers are
randomly initialized.

(ii) Somewhat surprisingly, the performance of the models is
relatively robust to the origin of the human classifications used, the
particular galaxies included in the training sample, and the cropping
size of the training images (spanning physical sizes of 16–360 pc).
Irrespective of whether the models are trained on a sample primarily
classified by one expert (BCW) with galaxies at distances 2–4 times
closer than the star cluster candidates to be evaluated in PHANGS–
HST galaxy NGC 1559; or trained on the mode of classifications
from three individuals where the sample does include a galaxy at
a distance similar to NGC 1559; the results are comparable. The
prediction accuracies for NGC 1559, which was not included in
the training samples, are at the level of 70 per cent:40 per cent 40–
50 per cent for the class 1, 2, and 3 star clusters. However, the
BCW-trained networks have a higher performance in classification
of the class 4 non-clusters in NGC 1559 (70 per cent versus 50–
60 per cent). This might be expected since the classifications for
NGC 1559 were also performed by BCW, and may be due to a higher
level of self-consistency in the training and testing classification data
sets.

(iii) Most importantly, despite training with relatively small data
sets, the performance of the networks presented here is competitive
with the consistency achieved in previous human and quantitative
automated classification of the same star cluster candidate samples
(Section 2.1). Thus, this work provides a proof-of-concept demon-
stration that deep transfer learning can be successfully used to auto-
mate morphological classification of star cluster candidate samples
using HST UV-optical imaging being obtained by PHANGS–HST.

This work represents a milestone in the use of deep transfer
learning for this area of research, and represents progress from
initial machine learning experiments described in Grasha et al.
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Figure 6. Left column: VGG19-BN model classification results for cropping size 25 × 25, 50 × 50 and 100 × 100. Right column: as before, but now for
ResNet.

(2019) and also discussed in Messa et al. (2018). Grasha et al.
(2019) experimented with the use of an ML algorithm for classifying
the approximately 11 000 clusters in the spiral galaxy M51, based
on a human classified training set with ∼2500 clusters from the
LEGUS sample. While the recovery of class 1 and 2 clusters is
fairly good (in the range 60–75 per cent in the Grasha and Messa
studies, and comparable to the prediction accuracies presented here)
recovery of class 3 clusters is poor, with an apparently significant
anticorrelation.

To attempt to further improve upon the models presented here,
future work will include training with the largest star cluster
candidate sample possible (i.e. combining all samples used for this
proof-of-concept demonstration plus classifications for objects in

several galaxies in PHANGS–HST). Improvement in classification
accuracy also requires the development of a standarized data set
of human-labelled star cluster classifications, with classifications
agreed upon by a full range of experts in the field, to be used
as the basis for future network training. This effort would benefit
from a classification challenge, where experts can come to detailed
agreement on the morphological features that constitute the criteria
for classification (e.g. to establish full decision trees, such as those
used for Galaxy Zoo by citizen scientists), and explicitly describe
where they disagree and why. A review of differences in star cluster
definitions between research groups, and their possible impact on
conclusions about star cluster formation and evolution, can be found
in Krumholz et al. (2018). The ultimate goal is to use deep learning

MNRAS 493, 3178–3193 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/493/3/3178/5722127 by U
niversidad de C

hile user on 03 June 2020
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Figure 7. Left column: ResNet model classification results when the indicated filter is removed from the composite image. Right column: as before, but now
for VGG19-BN. The greatest drop in the accuracies occurs when the V-band filter is removed.
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techniques to not only rapidly produce reliable classifications and
speed the time to science, but to significantly advance the field
of star cluster evolution. Given the discussion in Krumholz et al.
(2018), this requires that deep learning networks are trained on
such standardized data sets, broadly adopted by workers in the
field.

With this study, we open a new chapter to explore in earnest the
use of deep transfer learning for the classification of very large data
sets of star cluster galaxies in ongoing and future electromagnetic
surveys, and application to the new PHANGS–HST data being
obtained now.
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APP ENDIX A : STATISTICAL FOUNDATIONS
OF DEEP LEARNING CLASSIFIERS

Within the framework of statistical learning, an image X can be
modelled as a random matrix that takes value in set X , and the
corresponding class can be treated as a random variable Y that takes
value in set Y . Since we use 299 × 299 images with five channels,
we treat a cluster image as random matrix of size 299 × 299 × 5.
Similarly, as we are trying to classify the images into four classes, Y
is a discrete random variable that takes values in Y with cardinality
|Y| = 4.

We assume that the star images and the corresponding class labels
follow some unknown but fixed joint probability distribution, with
the probability density function fXY(x, y). We also use �Y to denote
set of all possible distribution over Y . Since in our case, |Y| = 4,
we have �Y = {π = (π1, π2, π3, π4) :

∑4
i=1 πi = 1, πi ≥ 0, ∀i ∈

[4]}.
Under these conventions, the goal of classification is to find a

classifier or function h : X → �Y that minimizes the expectation
of the cross entropy between the predicted and the ground truth
probability mass distribution (pmf) over the classes given the input
image X, namely,

L(h) = E[H (h(X), fY |X(·|X))] (A1)

=
∫

H (h(X), fY |X(·|x))fX(x)dx, (A2)

where fX(x) is the marginal distribution of X over X , and H is the
cross entropy between the predicted and the ground truth pmf over
classes,

H (h(x), fY |Y (·|x)) = −
4∑

i=1

fY |X(Y = i|x) log([h(x)]i), (A3)

and the fY|X(y|x) is the conditional distribution of Y given X.
In most cases, we only know the empirical distribution f̂XY (x, y)

of (X, Y) and f̂Y |X(y|x) of Y, which are determined by the empirical

data. So, the quantity we can directly minimize is

L̂(h) = Ê[H (hX(·), f̂Y |X(·|X))] (A4)

=
∫

H (hx(·), f̂Y |X(·|x))f̂X(x)dx , (A5)

In practice, if the choice of h(·) is arbitrary, then finding an optimal
solution is computationally unfeasible. Therefore, we often restrict
the searching space to a class of parametrized functions, hw(·), where
w is a vector of parameters. In this case, the optimization problem
can be posed as

w∗ = argminwL̂(hw) . (A6)

The choice of the parametrized function class is critical to the
success of any statistical learning algorithm. In recent years, a deep-
layered structure of functions has received much attention (LeCun,
Bengio & Hinton 2015; Goodfellow et al. 2016):

hw(x) = hwn
(hwn−1 (· · · hw1 (x))), (A7)

where n is the number of layers or the depth. Usually, we choose,
hwi

(x) = g(wi x), where wi is a matrix, x is an input vector, and g(·)
is a fixed non-linear function, e.g. max { ·, 0} (also known asReLU),
tanh (·), etc., which is applied element-wise. For the classification
problems, we usually apply the so-called softmax function after the
last linear transformation. The softmax function on a vector x is a
normalization after an element-wise exponentiation:

softmax(x)i = exp(xi)∑n

i=1 exp(xi)
, ∀i = 1, ..., n, (A8)

where n is the length of x.
This function class and its extensions, also dubbed NNs, com-

bined with simple first-order optimization algorithms such as
stochastic gradient descent (SGD), and improved computing hard-
ware, has lead to disruptive applications of deep learning (LeCun
et al. 2015; Goodfellow et al. 2016).

APPENDI X B: D EEP TRANSFER LEARNING

In practice, equation (A6) is usually iteratively solved using variants
of SGD. Thus, the choice of initial value for weights w is critical
to the success of the training algorithm. If we have some prior
knowledge about what initial wights m w0 works better, then it
is highly possible that the numerical iteration can converge faster
and return better weights w. This is the idea behind deep transfer
learning (Bengio 2011; Goodfellow et al. 2016).

For a deep learning NN, such as the one defined by equation (A7),
the layered structure can be intuitively interpreted as different levels
of abstraction for the learned features. In other words, layers that
are close to the input learn lower level features, such as different
shapes and curves in the image, and layers that are close to the final
output layer learn higher level features, such as the type of the input
image. Suppose we have a trained model that works well in one
setting, with probability distribution f

(1)
XY , and now we would like

to train another model in a different setting, with with probability
distribution f

(2)
XY . If the images drawn from the distributions f

(1)
XY

and f
(2)
XY share some features, then it is possible to transfer weights

from the model trained on images sampled from f
(1)
XY , to the model

that we would like to train, using images sampled from f
(2)
XY , with

the assumption that the weights from the model trained on images
sampled from f

(1)
XY , can also be useful in extracting features from

images drawn from the distribution f
(2)
XY . So, instead of training

the second model from scratch, we can initialize the weights of the
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second model to those of the first model that we trained in a different
setting (e.g. distribution f

(1)
XY ), and utilize the common features we

have already learned in the previous setting.

APPEN D IX C : BATCH NORMALIZATION

The weights of each layer in a NN model change throughout the
training phase, which implies that the activations of each layer will
also change. Given that the activations of any given layer are the
inputs to the subsequent layer, this means that the input distribution
changes at every step. This is far from ideal because it forces each in-
termediate layer to continuously adapt to its changing inputs. Batch
normalization is used to ameliorate this problem by normalizing the
activations of each layer. In practice, this is accomplished by adding
two trainable parameters to each layer, so the normalized output is
multiplied by a standard deviation parameter, and then shifted by
a mean parameter. With this approach, only two parameters are
changed for each activation, as opposed to losing the stability of the
network by changing all the weights. It is expected that through this
method each layer will learn on a more stable distribution of inputs,
which may accelerate the training stage.
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