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Abstract
We give new criteria for weak and strong invariant closed sets for differential inclusions in
R

n, and which are simultaneously governed by Lipschitz Cusco mapping and by maximal
monotone operators. Correspondingly, we provide different characterizations for the associ-
ated strong Lyapunov functions and pairs. The resulting conditions only depend on the data
of the system, while the invariant sets are assumed to be closed, and the Lyapunov pairs are
assumed to be only lower semi-continuous.
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1 Introduction

In this paper, we investigate (weak and strong) invariant closed sets S ⊂ R
n with respect to

the following differential inclusion, given in R
n,

ẋ(t) ∈ F(x(t)) − A(x(t)), a.e. t ≥ 0, x(0) = x0 ∈ cl(dom A), (1)
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where F : Rn ⇒ R
n is a Lipschitz Cusco multifunction; that is, a Lipschitz continuous set-

valued mapping with nonempty, convex and compact values, and A : Rn ⇒ R
n is a maximal

monotone operator. Hence, the values of the right-hand side may by empty or bounded.
There is no restriction on the initial condition x0 that can be any point in the closure of the
domain of A, possibly not a point of the domain of definition of A. The sets S are required
to satisfy the following condition

�S(x) ⊂ S ∩ dom A, ∀x ∈ dom A, (2)

where �S refers to the projection operator on S. This condition has been used in many
works; see, for instance, [10], where the author is concerned with flow invariance charac-
terizations for differential equations, with right-hand-sides given by nonlinear semigroup
generators in the sense of Crandall- Liggett (see [20]). It is clear that condition (2) holds
whenever S ⊂ dom A. When dealing with weak invariant closed sets, we shall require some
usual boundedness conditions on the invariant set, relying on the minimal norm section of
the maximal monotone operator A.

Equivalently, we also characterize (strong) Lyapunov functions and, more generally, a-
Lyapunov pairs associated to the differential inclusion above. Our criteria are given by
means only of the data of the system, represented by the multifunction F and the operator
A, together with first-order approximations of the invariant sets candidates, using Bouligand
tangent cones or, equivalently, Fréchet or proximal normal cones, and first-order (gen-
eral) derivatives of Lyapunov functions candidates, using directional derivatives, Fréchet or
proximal subdifferentials.

There is a long and rich history on the invariance and Lyapunov functions theory, which
deals with different variants of differential inclusion (1). We refer the reader to [16, 24] and
references therein for more details on this subject. In the current paper, our aim is to gather
in one framework two different kinds of dynamic systems that were studied separately in
the literature, at least in what concerns Lyapunov stability. The first kind of these dynamic
systems is governed exclusively by Cusco multifunctions, giving rise to a natural extension
of the classical differential equations, stated in the form

ẋ(t) ∈ F(x(t)), a.e. t ≥ 0, x(0) = x0 ∈ R
n. (3)

The consideration of differential inclusions rather than differential equations allows more
useful existence theorems, as revealed by Filippov’s theory for differential equations with
discontinuous right-hand-sides [26]. Stability of such systems; namely, the study of Lya-
punov functions and invariant sets, has been extensively studied and investigated especially
during the nineties by many authors; see, for example, [16, 17, 24] , as well as [7, 8, 27] (see,
also, the references therein). For instance, complete characterizations for invariant closed
sets for (3) can be found in [16] in the finite-dimensional setting, and in [17] for Hilbert
spaces. It is worth recalling that only the upper semicontinuity of the Cusco mapping F is
required for the weak invariance, while Lipschitz continuity is used for the strong invariance
(see [17]). The results in [16] also have been adapted in [19] to the following more general
differential inclusion (for T ∈ [0,+∞] )

ẋ(t) ∈ F(t, x(t)) − NC(t)(x(t)), a.e. t ∈ [0, T ], x(0) = x0 ∈ C(0), (4)

where C(t) is a uniformly prox-regular sets in R
n and NC(t) is the associated normal cone.
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The other kind of systems that is covered by (1) concerns differential inclusions governed
by maximal monotone operators or, more generally, by (single-valued) Lipschitz continuous
perturbations of maximal monotone operators, written as

ẋ(t) ∈ f (x(t)) − A(x(t)), a.e. t ≥ 0, x(0) = x0 ∈ cl(dom A). (5)

This system can be seen as perturbations of the ordinary differential equation ẋ(t) =
f (x(t)), where A could represent some associated control action. In this single-valued and
Lipschitz continuous setting, weak and strong invariance coincide since differential inclu-
sion (1) possesses a unique solution. Compared to (3), the right-hand-side in (5) can be
unbounded, or even empty. A typical example of (5) occurs when A is the Fenchel subdif-
ferential of a proper, lower semicontinuous convex function (see [1]). System (5) has been
extensively studied; namely, regarding existence, regularity and properties of the solutions
[11], while Lyapunov stability of such systems has been initiated in [31]; see, also, [2, 4,
5] for recent contributions on the subject. Different criteria using the semi-group generated
by the operator A can also be found in [30], where Lyapunov functions are characterized as
viscosity-type solutions of Hamilton-Jacobi equations, and in [12], using implicit tangent
cones associated to the invariant sets candidates.

It is worth observing that (1) is a special case of the following more general differential
inclusion

ẋ(t) ∈ F(t, x(t)) − A(t)(x(t)), a.e. t ≥ 0, x(0) = x0 ∈ cl(dom A(0)(·)), (6)

where A and F are also allowed to move in an appropriate way with respect to the time vari-
able, and satisfy some natural continuity and measurability conditions. Existence of solution
of (6) have been also studied in [6, 34] among others. In particular, [6] considers similar
systems as the one in (6), with A being independent of t , and requiring strong assumptions
on the multifunction F . In [34] the authors assume that F is a single-valued mapping, Lips-
chitz continuous with respect to the second variable, while the minimal section mapping of
the maximal monotone operators A(t) is assumed uniformly bounded.

In [23–25], the authors provide many characterizations for weak and strong invariant
sets, associated to the following differential inclusion

ẋ(t) ∈ F(t, x(t)), a.e. t ≥ 0,

for a multivalued-mapping F with the so-called one-sided Lipschitz condition ([21]; see
also [22], and [33] for other extensions). The standard hypotheses in these papers require
that the mapping F has non-empty and compact values. In our case, as a sum of a Lipschitz
continuous mapping and a monotone operator, the right-hand side in (1) also defines a one-
sided Lipschitz mapping, but, due to the general nature of the maximal monotone operator
A, it may have empty and unbounded values.

Other interesting criteria for weak invariance results are obtained in [13] for (1) in the
setting of Banach spaces, and by assuming that F is only upper semi-continuous. The crite-
ria used in the last work are given by means of the so-called A-quasi-tangents that involve
the semigroup generated by the operator A.

The main (strong-) invariance result of this work is given in Theorem 2, where we prove
that a closed set S is strong invariant for (1) if and only if

(v − A(x)) ∩ TS(x) �= ∅, ∀v ∈ F(x), ∀x ∈ S ∩ dom A,

if and only if

sup
ξ∈NS(x)

sup
v∈F(x)

inf
x∗∈A(x)

〈ξ, v − x∗〉 ≤ 0, ∀x ∈ S ∩ dom A.
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Therefore, only the data of (1) are evoked for the characterization of strong invariant sets,
namely, the operator A and the mapping F , together with the geometric structure of the
set S, which is modeled by the normal and the tangent cones. In particular, when A ≡
0, the above characterizations reduce to the ones obtained in [16], and when F is single-
valued, we recover the results of [4] and [5] (at least in the finite-dimensional setting). The
characterization of weak invariant sets, which is given in Theorem 3, is also new.

The above invariance results are translated into characterizations of Lyapunov functions
and pairs in Theorem 4, where, among many characterizations, we prove that a given pair
of lower semi-continuous functions V,W, is a strong Lyapunov pair for (1) if and only if,
for all x ∈ dom V ,

sup
ξ∈∂P V (x)

sup
v∈F(x)

inf
x∗∈A(x)

〈ξ, v − x∗〉 + W(x) ≤ 0 (7)

and

sup
ξ∈∂P,∞V (x)

sup
v∈F(x)

inf
x∗∈A(x)

〈ξ, v − x∗〉 ≤ 0.

The last condition is superfluous when the operator A is locally bounded, as we show in
Corollary 1.

Consequently, for being small, compared to the Fréchet or the Mordukhovich subdif-
ferentials (or even the gradient for differentiable functions), the proximal subdifferential
provides the most sharp characterization for Lyapunov pairs. However, for differentiable
functions, and despite that the inclusion ∂P V (x) ⊂ {∇V (x)} could be strict, it can be
deduced from Corollary 1 that property (7) alone suffices.

The consideration of nonsmooth Lyapunov functions would permit more flexibility in
the choice of Lyapunov functions, as the following example shows.

Example 1 In (1), we put A ≡ 0 and let F be any multivalued mapping such that (1) admits
solutions. We are going to show that for any Lipschitz continuous function W : Rn → R+
and any a ≥ 0, there exists a function V such that (V ,W) is a weak a-Lyapunov pair; that
is, for every x ∈ R

n there is a solution x(·; x) such that

eatV (x(t; x)) +
∫ t

0
W(x(s; x))ds ≤ V (x), ∀t ≥ 0; (8)

consequently, the function V is a (weak) Lyapunov function.
For this aim, we define the value function V on R

n as

V (x) =: inf

{∫ +∞

0
eatW(x(t))dt : ẋ(t) ∈ F(x(t)), x(0) = x

}
.

Observe that for F(x) = −2x, a = 1 and W(x) = ‖x‖, the solution of (1) is given by
x(t; x) = e−2t x, so that

V (x) =
∫ +∞

0
et e−2t dt‖x‖ = ‖x‖, (9)

and V is not differentiable at 0 in the case of the Euclidean norm (or at every point having
some zero components in the case of l1 norm).
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Next, we assume that the infimum above is always attained. Given x ∈ R
n and t ≥ 0,

we choose a solution x(·; x) for V (x). Then, since x(· + t; x) is feasible for V (x(t; x)),

V (x(t; x)) ≤
∫ +∞

0
easW(x(s + t; x))ds = e−at

∫ +∞

t

easW(x(s; x))ds

≤ e−atV (x) − e−at

∫ t

0
easW(x(s; x))ds,

and (8) follows.

Example 2 (Nonholonomic integrator; see [15]) The following system, given in R
3 as

ẋ(t) := (ẋ1(t), ẋ2(t), ẋ2(t)) ∈ F(x(t)) := {(u, v, x1(t)v − x2(t)u) : u2 + v2 ≤ 1},
does not admit a smooth Lyapunov function.

The paper is organized as follows: After Section 2, reserved to give the necessary notation
and present the main tools, we make in Section 3 a review of the existence theorems of
differential inclusion (1), and establish some first properties of the solutions. In Section 4
we characterize weak and strong invariant closed sets with respect to (1), while in Section 5,
criteria for strong Lyapunov pairs are provided.

2 Notation andMain Tools

In this paper, the notations 〈·, ·〉 and ‖·‖ are the inner product and the norm in R
n, respec-

tively. For each x ∈ R
n and ρ ≥ 0, B(x, ρ) is the closed ball with center x and radius ρ; in

particular, we denote Br := B(θ, r) where θ is the origin vector in R
n. Given a nonempty

set S ⊂ R
n, we denote by cl(S), int(S), co S, conv S and cl(conv)S the closure, the inte-

rior, the convex hull and the closed convex hull of S, respectively. We denote by ‖S‖ the
nonnegative real number define by

‖S‖ := sup{‖v‖ : v ∈ S}.
The projection mapping onto S is defined as

�S(x) := {s ∈ S : ‖x − s‖ = dS(x)},
where dS(x) := inf{‖x − s‖ : s ∈ S} is the distance function to S. If S is a closed set, then
�S(x) �= ∅ for every x ∈ R

n. We denote by S◦ := �S(θ) the minimal norm vector in S.
The indicator function of S is defined as

IS(x) :=
{

0 if x ∈ S

+∞ if x /∈ S,

and the support function of S is defined as

σS(x) := sup{〈x, s〉 : s ∈ S},
with the convention that σ∅ = −∞. Given a function ϕ : Rn → R∪ {+∞}, its domain and
epigraph are defined by

dom ϕ := {
x ∈ R

n : ϕ(x) < +∞} ;
epi ϕ :=

{
(x, α) ∈ R

n+1 : ϕ(x) ≤ α
}

.

We say ϕ is proper if dom ϕ �= ∅; lower semicontinuous (lsc for short) if epi ϕ is closed. We
denote by F(Rn) the set all proper and lsc functions.
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Next, we introduce some basic concepts of nonsmooth and variational analysis. Let ϕ ∈
F(Rn) and x ∈ dom ϕ. We call ξ ∈ R

n a proximal subgradient of ϕ at x, written ξ ∈
∂P ϕ(x), if

lim inf
y→x,y �=x

ϕ(y) − ϕ(x) − 〈ξ, y − x〉
‖y − x‖2

> −∞.

A vector ξ ∈ R
n is said to be a Fréchet subgradient of ϕ at x, written ξ ∈ ∂F ϕ(x) if

lim inf
y→x,y �=x

ϕ(y) − ϕ(x) − 〈ξ, y − x〉
‖y − x‖ ≥ 0.

The Mordukhovich (or limiting) subdifferential of ϕ at x is defined as

∂Lϕ(x) :=
{

lim
n→∞ξn : ξn ∈ ∂P ϕ(xn), xn → x, ϕ(xn) → ϕ(x)

}
,

and the singular subdifferential of ϕ at x as

∂∞ϕ(x) :=
{

lim
n→∞αnξn : ξn ∈ ∂P ϕ(xn), xn → x, f (xn) → f (x), αn ↓ 0

}
.

The Clarke (or generalized) subdifferential of ϕ at x is

∂Cϕ(x) := cl{co{∂Lϕ(x) + ∂∞ϕ(x)}}.
In the case x /∈ dom ϕ, by convention we set ∂P ϕ(x) = ∂F ϕ(x) = ∂Lϕ(x) = ∅. We have
the classical inclusions ∂P ϕ(x) ⊂ ∂F ϕ(x) ⊂ ∂Lϕ(x). If ϕ is locally Lipschitz continuous
around x, then ∂∞ϕ(x) = {θ} and

∂Cϕ(x) = conv ∂Lϕ(x).

The generalized directional derivative of ϕ at x in the direction v is defined by

ϕ0(x; v) := lim sup
y→x,t↓0

ϕ(y + tv) − ϕ(y)

t
.

We have that
ϕ0(x; v) = sup

ξ∈∂Cϕ(x)

〈ξ, v〉, ∀v ∈ R
n.

We also remind the lower Dini (or contingent) directional derivative of ϕ at x ∈ dom ϕ in
the direction v ∈ R

n, which is given by

ϕ′(x; v) := lim inf
t→0+,w→v

ϕ(x + tw) − ϕ(x)

t
.

From the definition of the proximal and the Fréchet subdifferentials, it is easy to prove that

σ∂P ϕ(x)(·) ≤ σ∂F ϕ(x)(·) ≤ ϕ′(x; ·), ∀x ∈ dom ϕ. (10)

The proximal, the Fréchet, and the Mordukhovich normal cones are defined, respectively, by

NP
S (x) := ∂P IS(x), NF

S (x) := ∂F IS(x), NL
S (x) := ∂LIS(x). (11)

We also define the prox-singular subdifferential ∂P,∞ϕ(x) of ϕ at x as those elements ξ ∈
R

n such that
(ξ, 0) ∈ NP

epi ϕ(x, ϕ(x)).

The Bouligand tangent (or contingent) cone to S at x is defined as

TB
S (x) :=

{
v ∈ H : ∃ xk ∈ S, ∃ tk → 0, s.t. t−1

k (xk − x) → v as k → +∞
}

.
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Next we recall some basic concepts and properties of maximal monotone operators. For a
multivalued operator A : Rn ⇒ R

n, the domain and the graph are given, respectively, by

dom A := {x ∈ R
n : A(x) �= ∅}, graph A := {(x, y) : y ∈ A(x)};

to simplify, we may identify A to its graph. The operator A is said to be monotone if

〈y1 − y2, x1 − x2〉 ≥ 0 for all (xi, yi) ∈ graph A, i = 1, 2.

If, in addition, A is not properly included in any other monotone operator, then A is said to
be maximal monotone. In this case, for any x ∈ dom A, A(x) is closed and convex; hence,
(A(x))◦ is singleton. By the maximal property, if a sequence (xn, yn)n ⊂ A is such that
(xn, yn) → (x, y) as n → +∞, then (x, y) ∈ A.

Take f ∈ L1(0, T ;Rn) for T > 0. The differential inclusion given in R
n as

ẋ(t) ∈ f (t) − A(x(t)), a.e. t ∈ [0, T ], x(0) = x0 ∈ cl(dom A),

always has a unique solution x(·) := x(·; x0) (see [11]), that satisfies for a.e. t ∈ [0, T ]
d+x(t)

dt
:= lim

t ′↓t

x(t ′) − x(t)

t ′ − t
= f (t+) − �A(x(t))(f (t + 0)),

where f (t+) := lim
h→0,h �=0

1
h

∫ t+h

t
f (τ )dτ .

Finally, we recall Gronwall’s Lemma

Lemma 1 (Gronwall’s Lemma [2]) Let T > 0 and a, b ∈ L1(t0, t0 + T ;R) such that
b(t) ≥ 0 a.e. t ∈ [t0, t0 + T ]. If, for some 0 ≤ α < 1, an absolutely continuous function
w : [t0, t0 + T ] → R+ satisfies

(1 − α)w′(t) ≤ a(t)w(t) + b(t)wα(t), a.e. t ∈ [t0, t0 + T ],
then

w1−α(t) ≤ w1−α(t0)e

∫ t
t0

a(τ)dτ +
∫ t

t0

e
∫ t
s a(τ )dτ b(s)ds, ∀t ∈ [t0, t0 + T ].

3 Solutions of the System

In this section, we investigate and review some properties of the solutions of differential
inclusion (1), that is given by

ẋ(t) ∈ F(x(t)) − A(x(t)), a.e. t ≥ 0, x(0) = x0 ∈ cl(dom A),

where A : H ⇒ H is a maximal monotone operator and F is an L-Lipschitz Cusco
mapping.

Definition 1 A continuous function x : [0, ∞) → R
n is said to be a solution of (1) if it is

absolutely continuous on every compact subset of (0,+∞) and satisfies

ẋ(t) ∈ F(x(t)) − A(x(t)), a.e. t ≥ 0, x(0) = x0 ∈ cl(dom A).

The following characterization will be useful in the sequel.

Proposition 1 A continuous function x : [0, ∞) → R
n is a solution of (1) iff x(·)

is absolutely continuous on every compact subset of (0,+∞), and for every T > 0
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there exists a function f ∈ L∞(0, T ;Rn) with f (t) ∈ F(x(t)) a.e. t ∈ [0, T ], such
that

ẋ(t) ∈ f (t) − A(x(t)), a.e. t ∈ [0, T ], x(0) = x0 ∈ cl(dom A). (12)

Proof The sufficient condition is clear and, so, we only need to justify the necessary part.
Suppose that x(·) is any solution of (1) and fix T > 0. Since F is Lipschitz and x(·) is
continuous, there exists m > 0 such that F(x(t)) ⊂ Bm for all t ∈ [0, T ]. We define the
set-valued mapping G : [0, T ] ⇒ R

n as

G(t) := [ẋ(t) + A(x(t))] ∩ F(x(t)) =
[
[ẋ(t) + A(x(t))] ∩ Bm

]
∩ F(x(t)).

We are going to check that G is measurable. Since operator A is maximal monotone, the
mappings

x �→ An(x) := A(x) ∩ Bn, n ≥ 1,

are upper semi-continuous, and so are the mappings

t �→ An(x(t)) := A(x(t)) ∩ Bn, n ≥ 1,

due to the continuity of the solution x(·). Then, due to the relation A(x(t)) =
∪n∈NAn(x(t)), we deduce that the multifunction t �−→ A(x(t)) is measurable. Since
ẋ(t) = limn→+∞ n(x(t + 1

n
) − x(t)) for a.e. t ∈ [0, T ], ẋ(·) is measurable, and we deduce

that the multifunction t �−→ [ẋ(t) + A(x(t))] ∩ Bm is measurable. Similarly, the multi-
function t �−→ F(x(t)) is measurable. Consequently, according to [14, Proposition III.4],
the mapping G is measurable, and we conclude from [14, Theorem III.6] that G admits a
measurable selection; i.e., a measurable function f : [0, T ] → R

n such that

f (t) ∈ G(t) = [ẋ(t) + A(x(t))] ∩ Bm ∩ F(x(t)) ⊂ F(x(t)), a.e. t ∈ [0, T ].
Hence, ẋ(t) ∈ f (t) − A(x(t)) and ‖f (t)‖ ≤ ‖F(x(t))‖ ≤ m, so that f ∈ L∞(0, T ;Rn).

The next theorem shows that differential inclusion (1) has at least one solution whenever
x0 ∈ cl(dom A). We use the following lemma, which is a particular case of [7, Theorem A].

Lemma 2 Let G : Rn ⇒ R
n be a Lipschitz multifunction with nonempty, convex and com-

pact values, and let x ∈ R
n, v ∈ G(x). Then there exists a Lipschitz continuous selection f

of G such that f (x) = v.

Theorem 1 Differential inclusion (1) has at least one solution.

Proof Fix x0 ∈ cl(dom A) and, according to Lemma 2 , let f be a Lipschitz continuous
selection of F . Then the differential inclusion

ẋ(t) ∈ f (x(t)) − A(x(t)), a.e. t ≥ 0, x(0) = x0,

admits a unique solution x(·), which is absolutely continuous on every compact subset of
(0,+∞) (see e.g. [9, 11]). It follows that x(·) is also a solution of differential inclusion
(1).
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We also give some further properties of the solutions of differential inclusion (1), which
will be used in the sequel. Given a set S ⊂ H and x ∈ dom A we denote

(S − A(x))◦ :=
⋃
s∈S

(s − A(x))◦ = {
s − �A(x)(s) : s ∈ S

}
.

Proposition 2 Fix x0 ∈ cl(dom A) and let x(·) := x(·; x0) be any solution of (1). Then the
following assertions hold:

(i) x(t) ∈ dom A, for every t > 0, and for a.e. t ≥ 0

d+x(t)

dt
:= lim

h↓0

x(t + h) − x(t)

h
∈ (F (x(t)) − A(x(t)))◦ .

Conversely, if x0 ∈ dom A, then for any v ∈ [F(x0) − A(x0)]◦ there exists a
solution y(·) of (1) such that

y(0) = x0,
d+y(0)

dt
= v.

(ii) There exists a real number c > 0 such that for any x0 ∈ dom A and any solutions
x(·) := x(·; x0) and y(·) := y(·; x0) of (1), one has for all t ≥ 0

‖x(t) − x0‖ ≤ 3(‖F(x0)‖ + ∥∥A◦(x0)
∥∥)tect ,

‖x(t) − y(t)‖ ≤ 4(‖F(x0)‖ + ∥∥A◦(x0)
∥∥)tect .

Consequently, for every T > 0 there exists ρ > 0 such that

x(t) ∈ B(x0, ρ), ∀t ∈ [0, T ].

Proof (i) According to Proposition 1, for each T > 0 there exists some f ∈ L∞(0, T ;Rn)

with f (t) ∈ F(x(t)) a.e. t ∈ [0, T ], such that x(·) is the unique solution of (12); hence, by
[11] we deduce that x(·) satisfies x(t) ∈ dom A for all t ∈ (0, T ) , and

d+x(t)

dt
= (

f (t+) − A(x(t))
)◦

, a.e. t ∈ (0, T ), (13)

where f (t+) := limh→0 h−1
∫ h

0 f (t + τ)dτ . Moreover, given ε > 0 there exists some h > 0
such that for a.e. τ ∈ (0, h) we have

f (t + τ) ∈ F(x(t + τ)) ⊂ F(x(t)) + L ‖x(t + τ) − x(t)‖B ⊂ F(x(t)) + εLB,

and so lim
h→0+

1
h

∫ h

0 f (t + τ)dτ ∈ F(x(t)) + εLB (this last set is convex and closed). Hence,

as ε goes to 0 we get f (t+) ∈ F(x(t)), and (i) follows from (13).
Conversely, we assume that x0 ∈ dom A and take v ∈ [F(x0) − A(x0)]◦. We choose

w ∈ F(x0) such that v = w − �A(x0)(w). According to Lemma 2, there exists a Lipschitz
continuous selection f of F such that f (x0) = w. Then the unique solution y(·) of the
following differential inclusion

ẏ(t) ∈ f (y(t)) − A(y(t)), y(0) = x0,

satisfies
d+y(0)

dt
= f (x0) − �A(x0)(f (x0)) = w − �A(x0)(w),

and the proof of (i) is complete.
(ii) Let x(·) be a solution of differential inclusion (1) , with x(0) = x0, and fix T > 0. Then
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by Proposition 1 there exist functions k, g ∈ L1(0, T ;Rn) such that k(t) ∈ F(x(t)), g(t) ∈
A(x(t)), and

ẋ(t) = k(t) − g(t), a.e. t ∈ [0, T ] .

We also choose by Lemma 2 a Lipschitz continuous mapping f : Rn → R
n, with Lipschitz

constant c (c ≥ L), and consider the unique solution z(·) of the differential inclusion

ż(t) ∈ f (z(t)) − A(z(t)), a.e. t ≥ 0, z(0) = x0.

So, for any t ≥ 0 one has
∥∥∥ d+z(t)

dt

∥∥∥ ≤ ect
∥∥∥ d+z(0)

dt

∥∥∥ and

∥∥∥∥d+z(0)

dt

∥∥∥∥ = ∥∥(f (x0) − A(x0))
◦∥∥ ≤ ‖F(x0)‖ + ∥∥A◦(x0)

∥∥ ,

so that

‖z(t) − x0‖ ≤
∫ t

0
ecτ

∥∥∥∥d+z(0)

dt

∥∥∥∥ dτ = ect − 1

c

∥∥∥∥d+z(0)

dt

∥∥∥∥
≤ ect − 1

c
(‖F(x0)‖ + ∥∥A◦(x0)

∥∥) (14)

≤ tect (‖F(x0)‖ + ∥∥A◦(x0)
∥∥). (15)

By the Lipschitz continuity of F we choose a function w(·) : [0, T ] → R
n such that

w(t) ∈ F(z(t)), ‖k(t) − w(t)‖ ≤ L ‖x(t) − z(t)‖ , ∀t ∈ [0, T ] . (16)

Then we obtain

〈ẋ(t) − ż(t), x(t) − z(t)〉
= 〈

k(t) − g(t) − f (z(t)) + �A(z(t))(f (z(t))), x(t) − z(t)
〉

= 〈k(t) − f (z(t)), x(t) − z(t)〉 + 〈−g(t) + �A(z(t))(f (z(t))), x(t) − z(t)
〉

︸ ︷︷ ︸
≤0, by the monotonicity of A

≤ 〈k(t) − w(t), x(t) − z(t)〉 + 〈w(t) − f (z(t)), x(t) − z(t)〉
≤ L ‖x(t) − z(t)‖2 + 2 ‖F(z(t))‖ ‖x(t) − z(t)‖ (by (16))

≤ L ‖x(t) − z(t)‖2 + 2
( ‖F(x0)‖ + L ‖z(t) − x0‖

) ‖x(t) − z(t)‖
≤ L ‖x(t) − z(t)‖2 + 2

(
‖F(x0)‖ + (ect − 1)(‖F(x0)‖ + ∥∥A◦(x0)

∥∥)
)

‖x(t) − z(t)‖
≤ L ‖x(t) − z(t)‖2 + 2(‖F(x0)‖ + ∥∥A◦(x0)

∥∥)ect ‖x(t) − z(t)‖ .

Consequential, from the Gronwall Lemma we get, for every t ≥ 0,

‖x(t) − z(t)‖ ≤ 2(‖F(x0)‖ + ∥∥A◦(x0)
∥∥)tect ,

which together with (15) give us

‖x(t) − x0‖ ≤ 3(‖F(x0)‖ + ∥∥A◦(x0)
∥∥)tect ,

and, for every other solution y = y(·; x0),

‖x(t) − y(t)‖ ≤ ‖x(t) − z(t)‖ + ‖y(t) − z(t)‖ ≤ 4(‖F(x0)‖ + ∥∥A◦(x0)
∥∥)tect ;

that is the conclusion of (ii) follows.
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4 Strong andWeak Invariant Sets

In this section, we give explicit characterizations for a closed set S ⊂ R
n to be strong or

weak invariant for differential inclusion (1),

ẋ(t) ∈ F(x(t)) − A(x(t)), a.e. t ≥ 0, x(0) = x0 ∈ cl(dom A),

where A : H ⇒ H is a maximal monotone operator and F is an L-Lipschitz Cusco map-
ping. Invariance criteria are written exclusively by means of the data; that is, multifunction
F and operator A, and involve the geometry of the set S, using the associated proximal and
Fréchet normal cones.

Definition 2 Let S be a closed subset of Rn.

(i) S is said to be strong invariant if for any x0 ∈ S ∩ cl(dom A) and any solution x(·; x0)

of (1), we have
x(t; x0) ∈ S, ∀t ≥ 0.

(ii) S is said to be weak invariant if for any x0 ∈ S ∩ cl(dom A), there exists at least one
solution x(·; x0) of (1) such that

x(t; x0) ∈ S, ∀t ≥ 0.

Since any solution of differential inclusion (1) lives in cl(dom A) (Proposition 2), we
may assume without loss of generality that S is a closed subset of cl(dom A). We shall need
the following two lemmas.

Lemma 3 (e.g. [4, Lemma A.1]) Let S ⊂ R
n be closed. Then for every x ∈ R

n \ S we have

∂LdS(·)(x) ∈
{x − �S(x)

dS(x)

}
and ∂CdS(·)(x) ∈ conv

{x − �S(x)

dS(x)

}
.

Lemma 4 Let ϕ : Rn → R be an l -Lipschitz continuous function. Then for every x ∈ R
n

we have
ϕ(x + v) ≤ ϕ(x) + ϕ0(x; v) + o(‖v‖), v ∈ R

n.

Proof We proceed by contradiction and suppose that for some α > 0 and sequence (vn)n ⊂
R

n \ {θ} converging to θ it holds

ϕ(x + vn) − ϕ(x) > ϕ0(x; vn) + α ‖vn‖ for all n ≥ 1. (17)

Without loss of generality, we can assume that vn‖vn‖ → v �= θ . Then

ϕ(x + vn) − ϕ(x) = ϕ
(
x + vn − ‖vn‖ v + ‖vn‖ v

) − ϕ(x + vn − ‖vn‖ v)

+ϕ(x + vn − ‖vn‖ v) − ϕ(x)

≤ ϕ
(
x + vn − ‖vn‖ v + ‖vn‖ v

) − ϕ(x + vn − ‖vn‖v)

+l ‖(vn − ‖vn‖v)‖ .

Hence, from inequality (17) one gets

ϕ
(
x + vn

) − ϕ(x + vn − ‖vn‖ v)

‖vn‖ + l

∥∥∥∥ vn

‖vn‖ − v

∥∥∥∥ ≥ ϕ0
(

x; vn

‖vn‖
)

+ α,

which as n → ∞ leads us to the contradiction ϕ0(x; v) ≥ ϕ0(x; v) + α > ϕ0(x; v).
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Before we state the main strong invariance theorem we give the following result:

Proposition 3 Let S ⊂ cl(dom A) satisfy condition (2), and take x0 ∈ S. If there is some
ρ > 0 such that for any x ∈ B(x0, ρ) ∩ S ∩ dom A,

sup
ξ∈NP

S (x)

sup
v∈F(x)

inf
x∗∈A(x)

〈ξ, v − x∗〉 ≤ 0, (18)

then given any solution x(·; x0) of (1), there exists T > 0 such that x(t; x0) ∈ S for every
t ∈ [0, T ].

Proof Let x(·) := x(·; x0) be any solution of differential inclusion (1), so that for some
T1 > 0 we have

x(t) ∈ B
(
x0,

ρ

3

)
∩ dom A, a.e. t ∈ [0, T1], (19)

where ρ > 0 is as in the current assumption, and so (by condition (2))

�S(x(t)) ⊂ B

(
x0,

2

3
ρ

)
∩ S ∩ dom A ⊂ B(x0, ρ) ∩ S ∩ dom A for a.e. t ∈ (0, T1]. (20)

We denote the function η : [0, T1] → R as

η(t) := d2
S(x(t)).

Fix ε > 0. Since the function d2
S(·) is Lipschitz continuous on each bounded set and x(·) is

absolutely continuous on [ε, T1], function η is also absolutely continuous on [ε, T1]; hence,
differentiable on a set T0 ⊂ [ε, T1] of full measure (we may also suppose that (20) holds for
all t ∈ T0). We pick t ∈ T0 so that, according to Lemma 4, for all s > 0

d2
S(x(t + s)) = d2

S(x(t) + ẋ(t)s + o(s))

≤ d2
S(x(t) + ẋ(t)s) + o(s)

≤
(
dS(x(t)) + sd0

S(x(t); ẋ(t)) + o(s)
)2 + o(s)

≤ d2
S(x(t)) + 2dS(x(t))d0

S(x(t); ẋ(t)s) + o(s), (21)

While by Lemma 3 we have

dS(x(t))d0
S(x(t); ẋ(t)) = dS(x(t)) max

ξ∈∂Cd(x(t))
〈ξ, ẋ(t)〉 (22)

≤ max
u∈�S(x(t))

〈x(t) − u, ẋ(t)〉.

Let us write ẋ(t) as ẋ(t) = v − w for some v ∈ F(x(t)) and w ∈ A(x(t)), and fix
u ∈ �S(x(t)) (⊂ B(x0, ρ) ∩ S ∩ dom A by (20)). By the Lipschitz continuity of F we
choose some v′ ∈ F(u) such that

∥∥v − v′∥∥ ≤ L ‖x(t) − u‖ = LdS(x(t)).

Since x(t) − u ∈ NP
S (u), by the current hypothesis of the theorem there exist w′ ∈ A(u)

such that

〈x(t) − u, v′ − w′〉 ≤ 0,
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which in turn yields, due to the monotonicity of A,

〈x(t) − u, ẋ(t)〉 = 〈x(t) − u, v − w〉
= 〈x(t) − u, v − v′〉 + 〈x(t) − u, v′ − w′〉

+〈x(t) − u,w′ − w〉
≤ L ‖x(t) − u‖2 = Ld2

S(x(t)).

Thus, continuing with (21) and (22) we arrive at

η(t + s) ≤ η(t) + 2Lη(t)s + o(‖s‖),
which implies that η̇(t) ≤ 2Lη(t). Hence, by the Gronwall Lemma, we obtain that η(t) ≤
η(ε)e2L(t−ε) for all t ∈ T0, or, equivalently, η(t) ≤ η(ε)e2L(t−ε) for all t ∈ [ε, T1]. Then, as
ε goes to 0 we conclude that η(t) = 0 for all t ∈ [0, T1], which proves that x(t) ∈ S for all
t ∈ [0, T1].

We give the required characterization of strong invariant closed sets with respect to
differential inclusion (1).

Theorem 2 Let S be a closed subset of cl(dom A) satisfying relation (2). Then the following
statements are equivalent, provided that NS = NP

S or NF
S and TS = TB

S , or TS = conv TB
S .

(i) S is strong invariant for differential inclusion (1).
(ii) For every x ∈ S ∩ dom A, one has

v − �A(x)(v) ∈ TS(x), ∀v ∈ F(x). (23)

(iii) For every x ∈ S ∩ dom A, one has

[v − A(x)] ∩ TS(x) �= ∅, ∀v ∈ F(x). (24)

(iv) For every x ∈ S ∩ dom A, one has

sup
ξ∈NS(x)

sup
v∈F(x)

〈ξ, v − �A(x)(v)〉 ≤ 0. (25)

(v) For every x ∈ S ∩ dom A, one has

sup
ξ∈NS(x)

sup
v∈F(x)

inf
x∗∈A(x)

〈ξ, v − x∗〉 ≤ 0. (26)

(vi) For every x ∈ S ∩ dom A, one has

sup
ξ∈NS(x)

sup
v∈F(x)

inf
x∗∈A(x)∩B‖F(x)‖+‖A◦(x)‖

〈ξ, v − x∗〉 ≤ 0. (27)

Proof The implication (ii) ⇒ (iii) and (vi) ⇒ (v) are trivial, while the implications
(ii) ⇒ (iv) and (iii) ⇒ (v) come from the relation TS(x) ⊂ (NF

S (x))∗ for all x ∈ S. The
implications (v) (with NS = NP

S ) ⇒ (i) is a direct consequence of Proposition 3.
(i) ⇒ (ii). To prove this implication we suppose that S is strong invariant and take

x0 ∈ S ∩ dom A and v ∈ F(x0). According to Lemma 2, there exists a Lipschitz continuous
selection f of F such that f (x0) = v, and so there is a unique solution x(·) of the following
differential inclusion,

ẋ(t) ∈ f (x(t)) − A(x(t)), a.e. t ≥ 0, x(0) = x0.
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It follows that x(·) is also a solution of differential inclusion (1), so that x(t) ∈ S for any
t ≥ 0. Then we get

v − �A(x0)(v) = (f (x0) − A(x0))
◦ = d+x(0)

dt

= lim
t↓0

x(t) − x0

t
∈ TB

S (x0) ⊂ TS(x0).

(iv) ⇒ (vi). This implication holds since for any x ∈ dom A and v ∈ F(x) we have that∥∥�A(x)(v)
∥∥ ≤ ∥∥�A(x)(v) − A◦(x)

∥∥ + ‖A◦(x)‖
= ∥∥�A(x)(v) − �A(x)(θ)

∥∥ + ‖A◦(x)‖
≤ ‖v‖ + ‖A◦(x)‖ ≤ ‖F(x)‖ + ‖A◦(x)‖ .

The proof of the theorem is complete.

The following proposition, which provides the counterpart of Proposition 3 for the weak
invariance, is essentially given in [24, Theorem 1]. The specification of the interval on which
the solution remains in S also comes from the proof given in that paper.

Proposition 4 Let S ⊂ dom A be closed and take x0 ∈ S such that, for some r,m > 0,

‖A◦(x)‖ ≤ m, ∀x ∈ S ∩ B(x0, r). (28)

Assume that for all x ∈ S ∩ B(x0, r),

sup
ξ∈NS(x)

inf
v∈F(x)

inf
x∗∈A(x)∩Bm+‖F(x)‖

〈ξ, v − x∗〉 ≤ 0. (29)

Then there exists a solution x(·; x0) of (1) such that x(t; x0) ∈ S for every t ∈ [0, T ] with
T = r

3

(
m + sup

x∈B(x0,r)∩S

‖F(x)‖
)−1

.

Consequently, we obtain the desired characterization of weak invariant sets with respect
to differential inclusion (1). Recall that A◦ is said to be locally bounded on S if for every
x ∈ S we have

m(x) := lim sup
y→x,y∈S

∥∥A◦(y)
∥∥ < +∞. (30)

Theorem 3 Let S ⊂ dom A be a closed set such that A◦ is locally bounded on S. Then the
following statements are equivalent provided that TS and NS are the same as the ones in
Theorem 2 :

(i) S is weak invariant for differential inclusion (1).
(ii) For every x ∈ S, one has

∪v∈F(x)

[
v − A(x) ∩ Bm(x)+‖F(x)‖

] ∩ TS(x) �= ∅. (31)

(iii) For every x ∈ S, one has

sup
ξ∈NS(x)

inf
v∈F(x)

inf
x∗∈A(x)∩Bm(x)+‖F(x)‖

〈ξ, v − x∗〉 ≤ 0. (32)

Proof (i) ⇒ (ii). Given an x0 ∈ S we choose a solution x(·) := x(·; x0) of (1) that belongs
to S. Fix ε > 0. By (30) and the current assumption we also choose ρ > 0 such that∥∥A◦(x)

∥∥ ≤ m(x0) + ε for all x ∈ B(x0, ρ) ∩ S.
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Then for any x ∈ B(x0, ρ) ∩ S and any v ∈ F(x) we get∥∥�A(x)(v)
∥∥ ≤ ∥∥�A(x)(v) − A◦(x)

∥∥ + ∥∥A◦(x)
∥∥ ≤ ‖F(x)‖ + m(x0) + ε.

Let T > 0 be such that x(t) ∈ B(x0, ρ) ∩ S for all t ∈ [0, T ], so that for all v ∈ F(x(t))

and t ∈ [0, T ] we have ∥∥�A(x(t))(v)
∥∥ ≤ ‖F(x(t))‖ + m(x0) + ε;

hence, by Proposition 2(i),

ẋ(t) ∈ F(x(t)) − A(x(t)) ∩ B‖F(x(t))‖+m(x0)+ε a.e. t ∈ [0, T ], (33)

and x(·) is Lipschitz continuous on [0, T ] (observing that B‖F(x(t))‖+m(x0)+ε ⊂
B‖F(x0)‖+Lρ+m(x0)+ε). Take an element w ∈ Limsupt↓0t

−1(x(t) − x0) (this Painleve-
Kuratowski upper limit is nonempty, due to the Lipschitz continuity of x(·)). Then, since
the mappings x �→ A(x) ∩ B‖F(x)‖+m(x0)+ε and x �→ F(x) are upper semicontinuous, by
using (33) we get

w ∈ Limsupt↓0
1

t

∫ t

0
ẋ(τ )dτ

⊂ Limsupt↓0

⎛
⎝co

⎛
⎝ ⋃

τ∈[0,t]
F(x(τ)) − A(x(τ)) ∩ B‖F(x(τ))‖+m(x0)+ε

⎞
⎠

⎞
⎠

⊂ F(x0) − A(x0) ∩ B‖F(x0)‖+m(x0)+ε, (34)

and we conclude that, as ε goes to 0 (observe that v is independent of ε),

w ∈ F(x0) − A(x0) ∩ B‖F(x0)‖+m(x0).

Thus, (ii) follows, due to the obvious fact that Limsupt↓0t
−1(x(t) − x0) ⊂ TS(x0).

(iii) ⇒ (i). Fix x0 ∈ S. By (30) we choose r, m > 0 such that m(x) ≤ m for every
x ∈ S ∩ B(x0, r). It suffices to prove that the following quantity is equal to +∞,

T := sup{T : ∃ x(·; x0) a solution of (1) such that x(t; x0) ∈ S, ∀t ∈ [0, T ]}.
According to Proposition 4, there exist some T1 > 0 and a solution x1(·; x0) of differential
inclusion ( 1) such that x1(t; x0) ∈ S for all t ∈ [0, T1]; hence, T ≥ T1 > 0.

We proceed by contradiction and assume that T < +∞. By Proposition 2, we let r1 > 0
be such that for every solution x(·; x0) of (1) we have

x(t; x0) ∈ B(x0, r1), ∀t ∈ [0, T ].
We set

k := sup
x∈B(x0,r1+1)

‖F(x)‖ + sup
x∈B(x0,r1+1)∩S

∥∥A◦(x)
∥∥ ,

so that k < +∞, due to (30) and the compactness of the set B(x0, r1+1)∩S. By definition of

T , for 0 < ε < min
{

1
3k

, T
}

we choose a solution xε(·; x0) of (1) such that xε(t; x0) ∈ S for

all t ∈ [0, T − ε]. We put y0 := xε(T − ε; x0) ∈ B(x0, r1) ∩ S, so that B(y0, 1) ⊂
B(x0, r1 + 1) and the following relations follows easily

‖A◦(y)‖ ≤ sup
u∈B(x0,r1+1)∩S

‖A◦(u)‖ =: m1, ∀y ∈ S ∩ B(y0, 1),

sup
ξ∈NS(y)

inf
v∈F(y)

inf
x∗∈A(y)∩Bm1+‖F(y)‖

〈ξ, v − x∗〉 ≤ 0 for all y ∈ S ∩ B(y0, 1).
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Then, according to Proposition 4, there exists a solution x2(·; y0) of (1) such that x2(t; y0) ∈
S for all t ∈

[
0, 1

3k

]
. Consequently, the function z(·; x0) defined as

z(t; x0) :=
{

xε(t; x0) if s ∈ [0, T − ε],
x2(t − T + ε; y0) if s ∈ [T − ε, +∞[,

is a solution of (1) and satisfies z(t; x0) ∈ S for all t ∈ [0, T̃ ] with T̃ := T + 1
3k

− ε > T ,
which contradicts the definition of T . Hence T = ∞, and S is weak invariant.

We close this section by an example to illustrating the use of the previous invariance
results, namely Theorem 4, in getting the existence of solutions for a system governed by
the sum of a Cusco mapping and the normal cone to a prox-regular set. This new idea is
exploited with further details in [3].

Example 3 We consider the following differential inclusion, given in R
n,

ẋ(t) ∈ F(x(t)) − NC(x(t)), a.e. t ≥ 0, x(0) = x0 ∈ C, (35)

where F is as before; i.e., an L-Lipschitz Cusco mapping, C is a closed r-uniformly prox-
regular set of Rn; that is, due to the finite-dimensional setting, the projection mapping onto
C is single-valued in the region of points that are of at most distance r from C, and NC(x),
x ∈ C, is the proximal normal cone to C at x (see (11)); that is,

NC(x) := NP
C (x) = {ξ ∈ R

n : ∃σ ≥ 0 s. t. 〈ξ, y − x〉 ≤ σ‖y − x‖2, ∀y ∈ C}
(we removed the superscript P from NP , because NP

C = NF
C = NL

C in the current case.).
We refer to [32] for a detailed analysis of these concepts. When the set C also depends on
the time, the system above always admits a solution (see, for instance, [28]), and is referred
to as a sweeping process (see [29]).

Most of the works on sweeping processes use approximate schemes based on the
Moreau-Yoshida regularization of the indicator function of the set C ([28]), or discrete
schemes as in [18, 29]. Here, we are going to prove this existence result using Theorem 4.

Towards this aim, we suppose for the sake of simplifying the presentation that C is
bounded; hence, for being L-Lipschitz and Cusco, the mapping F is uniformly bounded on
the set C.

In the first step, we recall an easy fact that comes from the prox-regularity of the set C

(see [3, Lemma 4.1]):

Step 1: for each m > 0 large enough, there exists a maximal monotone operator AC such
that C ⊂ domAC ⊂ cl(conv C); hence, C and AC satisfy condition (2), and

NC(x) ∩ Bm + m

r
x ⊂ AC(x) ⊂ NC(x) + m

r
x, ∀x ∈ C. (36)

Step 2: we consider the following differential inclusion, given in R
n,

ẋ(t) ∈ F(x(t)) + m

r
x(t) − AC(x(t)), a.e. t ≥ 0, x(0) = x0 ∈ C. (37)

Then, due to Theorem 1, differential inclusion (37) has at least one solution.
Step 3: we use Theorem 2(v) to prove that the set C is invariant for (37). Indeed, we

choose m large enough such that ‖F(y0)‖+L‖y−y0‖ ≤ m for all y, y0 ∈ C (C is
assumed to be bounded). Next, we take x ∈ C, ξ ∈ NC(x), v ∈ F(x), and, using
the L-Lipschitzianity of the Cusco mapping F , pick an element v0 ∈ F(x0) such
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that ‖v −v0‖ ≤ L‖x −x0‖. Hence, the projection point z := �NC(x)(v) ⊂ NC(x)

satisfies

‖z‖ ≤ ‖v‖ ≤ ‖v0‖ + ‖v − v0‖ ≤ ‖F(x0)‖ + L‖x − x0‖ ≤ m.

So, by (36), there exists some x∗ ∈ AC(x) such that z + m
r
x = x∗. Moreover,

since v − z is in the negative dual cone of NC(x), we obtain that〈
ξ, v + m

r
x − x∗〉 = 〈ξ, v − z〉 ≤ 0.

Consequently, according to Theorem 2(v), the set C is invariant for (37).
Step 4: we conclude that differential inclusion (35) has a solution. Absolutely, this follows

by combining Steps 1, 2 and 3 as follows. By Step 2, there exists a solution x(·) :=
x(·; x0) of (37). Since C is invariant for (37), thanks to Step 3, we have that x(t) ∈
C for all t ≥ 0, and so, using (36), for a.e t ≥ 0

ẋ(t) ∈ F(x(t)) + m

r
x(t) − AC(x(t)) ⊂ F(x(t)) − NC(x(t));

that is, x(·) is a solution of (35).

5 Strong a-Lyapunov Pairs

In this section, we use the invariance results of the previous section to characterize strong
a-Lyapunov pairs with respect to differential inclusion (1),

ẋ(t) ∈ F(x(t)) − A(x(t)), a.e. t ≥ 0, x(0) = x0 ∈ cl(dom A),

where A : H ⇒ H is a maximal monotone operator and F is an L-Lipschitz Cusco
mapping.

Definition 3 Let V,W : Rn → R ∪ {+∞} be lsc functions such that W ≥ 0 and let a ≥ 0.
We say that (V ,W) is a strong a-Lyapunov pair for (1) if for any x0 ∈ cl(dom A) we have

eatV (x(t; x0)) +
∫ t

0
W(x(τ ; x0))dτ ≤ V (x0), ∀t ≥ 0, (38)

for every solution x(·; x0) of (1).

The following lemma shows that the non-regularity of the functions V,W candidates to
form a-Lyapunov pairs is mainly carried by the function V . For k ≥ 1 we denote

Wk(x) := inf
z∈Rn

{W(z) + k ‖x − z‖}. (39)

Lemma 5 Given a function W : R
n → R+ ∪ {+∞}, Wk defined in (39) is k-Lipschitz

continuous, and we have Wk(x) ↗ W(x) for all x ∈ R
n. Moreover, if x(·; x0) is a solution

of differential inclusion (1), then W satisfies inequality (38) iff Wk does for all k ≥ 1.

Proof The first statement of the lemma is known (see, e.g., [16]), and the second statement
of the lemma follows easily from Fatou’s lemma.

Lemma 6 Consider the operator Â : Rn×R
3 → R

n+3 and the function Ṽ : Rn+1×R+ →
R ∪ {+∞} defined as

Â(x, α, β, γ ) := (A(x), θR3), Ṽ (x, α, β) := eaβV (x) + α, (40)
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together with the mappings F̂k : Rn+3 → R
n+3, k ≥ 1, given by (recall (39))

F̂k(x, α, β, γ ) := (F (x),Wk(x), 1, 0).

Then Â is maximal monotone with dom Â = dom A × R
3, F̂k is Lipschitz continuous

with constant
(
L2 + k2

) 1
2 , and consequently, the following differential inclusion possesses

solutions, {
ż(t) ∈ F̂k(z(t)) − Â(z(t)), a.e. t ≥ 0,

z(0) = Z0 = (x0, y0, z0, w0) ∈ cl(dom A) × R
3,

(41)

and every solutions is written as

z(t; Z0) = (x(t; x0), y0 +
∫ t

0
Wk(x(τ ; x0))dτ, z0 + t, w0),

for a solution x(·; x0) of (1).

We need the following result which provides us with a local criterion for strong
a-Lyapunov pairs.

Proposition 5 Let V, W : Rn → R ∪ {+∞} be two proper lsc functions such that dom V ⊂
dom A,W ≥ 0 and let a ≥ 0. Fix x0 ∈ dom V and assume that for some ρ > 0 we have,
for all x ∈ B(x0, ρ),

sup
ξ∈∂P V (x)

sup
v∈F(x)

inf
x∗∈A(x)

〈ξ, v − x∗〉 + aV (x) + W(x) ≤ 0, (42)

sup
ξ∈∂P,∞V (x)

sup
v∈F(x)

inf
x∗∈A(x)

〈ξ, v − x∗〉 ≤ 0. (43)

Then there exists some T > 0 such that for every solution x(·; x0) of differential inclusion
(1) one has

eatV (x(t; x0)) +
∫ t

0
W(x(τ ; x0))dτ ≤ V (x0), ∀t ∈ [0, T ].

Proof First, by Proposition 2(ii) we let c > 0 be such that for any solutions x(·) := x(·; x0)

of (1) it holds

‖x(t) − x0‖ ≤ 3(‖F(x0)‖ + ∥∥A◦(x0)
∥∥)tect for all t ≥ 0,

and choose T > 0 such that

3(‖F(x0)‖ + ∥∥A◦(x0)
∥∥)T ecT ≤ ρ. (44)

As in Lemma 6, we define the proper and lsc function Ṽ : Rn+1 × R+ → R ∪ {+∞} as
Ṽ (x, α, β) := eaβV (x) + α, so that epiṼ is closed and satisfies

epi Ṽ ⊂ dom V × R
3 ⊂ dom A × R

3 = dom Â,

where Â is also defined as in Lemma 6; hence, condition (2) is obviously satisfied for
epi Ṽ .

Claim We claim that for any given z̃ := (x1, y1, z1, w1) ∈ epiṼ with ‖x1 − x0‖ < ρ, there
exists small enough ε > 0 such that for each (x, y, z, w) ∈ B(z̃, ε) ∩ epi Ṽ , (ξ̃ , −κ) ∈
NP

epi Ṽ
(x, y, z, w), and (v,Wk(x), 1, 0) ∈ F̂k(x, y, z, w) there exists x∗ ∈ A(x) such that

〈(ξ̃ , −κ), (v − x∗,Wk(x), 1, 0)〉 ≤ 0. (45)
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Indeed, with z̃ as in the claim let us choose ε > 0 such that

(x, y, z, w) ∈ B(z̃, ε) ∩ epi Ṽ ⇒ x ∈ B(x0, ρ).

Let (x, y, z, w), (ξ̃ ,−κ), and (v,Wk(x), 1, 0) be as in the claim, so that x ∈ B(x0, ρ) ∩
dom V and v ∈ F(x), as well as κ ≥ 0 (see [16, Exercise 2.1]). We may distinguish two
cases:

(i) If κ > 0, then w = Ṽ (x, y, z) and, without loss of generality, we may suppose that
κ = 1. Hence, ξ̃ = (eazξ, 1, aeazV (x)) ∈ ∂P Ṽ (x, y, z) for some ξ ∈ ∂P V (x).
Consequently, by the current hypothesis there exists x∗ ∈ A(x) such that

〈ξ, v − x∗〉 + aV (x) + Wk(x) ≤ 〈ξ, v − x∗〉 + aV (x) + W(x) ≤ 0.

In other words, we have (v − x∗,Wk(x), 1, 0) ∈ F̂k(x, y, z, w) − Â(x, y, z, w) and

〈(ξ̃ , −1), (v − x∗,Wk(x), 1, 0)〉 = 〈(eazξ, 1, aeazV (x),−1), (v − x∗,Wk(x), 1, 0)〉
= eaz〈ξ, v − x∗〉 + Wk(x) + aeazV (x)

= eaz(〈ξ, v − x∗〉 + aV (x) + Wk(x))

+(1 − eaz)Wk(x) ≤ 0,

and (45) follows.
(ii) If κ = 0, then ξ̃ ∈ ∂P,∞Ṽ (x, y, z) and, so, (ξ̃ ,−κ) = (ξ, θR3) for some ξ ∈

∂P,∞V (x). Then, by arguing as in the paragraph above, the current hypothesis yields
some x∗ ∈ A(x) such that 〈ξ, v − x∗〉 ≤ 0. Hence, (v − x∗, Wk(x), 1, 0) ∈
F̂k(x, y, z, w) − Â(x, y, z, w) and

〈(ξ̃ , 0), (v − x∗,Wk(x), 1, 0)〉 = 〈ξ, v − x∗〉 ≤ 0; (46)

that is, (45) follows in this case too. The claim is proved.

Now, we take a solution x(·; x0) of (1), so that

z(·; z0) := (x(·; x0),

∫ ·

0
Wk(x(τ ; x0))dτ, ·, V (x0)),

with z0 := (x0, 0, 0, V (x0)), becomes a solution of (41). Then, from the claim (with z̃ :=
z0) above and Proposition 3, there exists some t̄ > 0 such that

z(t; z0) ∈ epiṼ , ∀t ∈ [0, t̄];
that is,

T := sup{t ≥ 0 : such that z(s; z0) ∈ epiṼ ∀s ∈ [0, t]} > 0. (47)

Let us show that T ≥ T , where T is defined in (44). We proceed by contradiction and
assume that T < T . Then, because (by Proposition 2(ii))

‖x(T ; x0) − x0‖ ≤ 3(‖F(x0)‖ + ‖A◦(x0)‖)T ecT < ρ,

and z(T ; z0) = (x(T ; x0),
∫ T

0 Wk(x(τ ; x0))dτ, T , V (x0)) ∈ epi Ṽ , from the claim above
(with z̃ := z(T ; z0)) and Proposition 3, there exists some t1 > 0 such that z(t; z(T ; z0)) ∈
epiṼ for all t ∈ [0, t1]. Thus, z(t + T ; z0) = z(t; z(T ; z0)) ∈ epi Ṽ for every t ∈ [0, t1],
and we get a contradiction to the definition of T .

Finally, from (47) we get

eatV (x(t; x0)) +
∫ t

0
Wk(x(τ ; x0))dτ ≤ V (x0), ∀t ∈ [0, T ].
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Moreover, because T is independent of k, by taking the limit as k → ∞ we arrive at (as
Wk(x) ↗ W(x), by Lemma 5)

eatV (x(t; x0)) +
∫ t

0
W(x(τ ; x0))dτ ≤ V (x0), ∀t ∈ [0, T ],

which is the desired inequality.

We give now the desired characterization of strong a-Lyapunov pairs.

Theorem 4 Let V,W, and a be as in Proposition 5, and let ∂ stand for either ∂P or ∂F .
Then the pair (V ,W) is a strong a-Lyapunov pair for (1) iff for all x ∈ dom V

sup
ξ∈∂V (x)

sup
v∈F(x)

inf
x∗∈A(x)

〈ξ, v − x∗〉 + aV (x) + W(x) ≤ 0, (48)

sup
ξ∈∂P,∞V (x)

sup
v∈F(x)

inf
x∗∈A(x)

〈ξ, v − x∗〉 ≤ 0. (49)

Proof To prove the sufficiency part, we take x0 ∈ dom V and a solution x(·; x0) of
differential inclusion (1). By Proposition 5 there exists some T > 0 such that

eatV (x(t; x0)) +
∫ t

0
W(x(τ ; x0))dτ ≤ V (x0), ∀t ∈ [0, T ]. (50)

It suffices to prove that the following quantity is +∞,

T := sup{s ≥ 0 : (50) holds ∀t ∈ [0, s]}.
Otherwise, if T is finite, then x(T ; x0) ∈ dom V (because V is lsc), and again from Propo-
sition 5 we find η > 0 such that for all t ∈ [0, η], using the semi-group property of
x(·; x0),

ea(t+T )V (x(t + T ; x0)) +
∫ t+T

0
W(x(τ ; x0))dτ

≤ eaT

(
eatV (x(t + T ; x0)) +

∫ t+T

T

W(x(τ ; x0))dτ

)
+

∫ T

0
W(x(τ ; x0))dτ

≤ eaT V (x(T ; x0)) +
∫ T

0
W(x(τ ; x0))dτ ≤ V (x0),

and we get the contradiction T ≥ T + η. Hence, T = +∞ and (50) holds for all t ≥ 0,

showing that (V ,W) forms a strong Lyapunov pair for differential inclusion (1).
To prove the necessity of the current conditions, we start by verifying (48) with ∂ = ∂F .

We fix x0 ∈ dom V (⊂ dom A) and v ∈ F(x0), and, according to Proposition 2, we choose

a solution x(·; x0) of differential inclusion (1) such that d+x(0;x0)
dt

= v − �A(x0)(v). Thus,
since (V ,W) is assumed to be a strong a-Lyapunov pair for (1), we obtain for every t > 0

V (x(t; x0)) − V (x0)

t
+ eat − 1

t
V (x(t; x0)) + 1

t

∫ t

0
W(x(τ ; x0))dτ ≤ 0,

which give us, as t ↓ 0,

σ∂F V (x0)(v − �A(x0)(v)) ≤ V ′(x0; v − �A(x0)(v))

≤ lim inf
t↓0

V (x(t; x0)) − V (x0)

t
≤ −aV (x0) − W(x0).
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Hence, (48) follows with either ∂ = ∂F or ∂ = ∂P . To verify (49) we fix x0 ∈ dom V, v ∈
F(x0) and ξ ∈ ∂P,∞V (x0); that is, (ξ, 0) ∈ NP

epiV (x0, V (x0)). According to Proposition

2, we choose a solution x(·; x0) of differential inclusion (1) such that d+x(0;x0)
dt

= v −
�A(x0)(v). Since (V ,W) is strong a-Lyapunov for differential inclusion (1), one has that
(x(t; x0), e

−atV (x0)) ∈ epi V for all t ≥ 0. Then, by the definition of the proximal normal
cone, there exists η > 0 such that for all small t ≥ 0

〈(ξ, 0), (x(t; x0), e
−atV (x0)) − (x0, V (x0))〉

≤ η
( ‖x(t; x0) − x0‖2 + (e−at − 1)2|V (x0)|2

)
,

and so

〈ξ, x(t; x0) − x0〉 ≤ η
( ‖x(t; x0) − x0‖2 + (e−at − 1)2|V (x0)|2

)
.

Hence, by dividing on t > 0 and taking limits as t ↓ 0, we obtain that

〈ξ, v − �A(x0)(v)〉 ≤ 0,

as we wanted to prove.

We give in the following corollary other criteria for strong a-Lyapunov pairs for (1).
Recall that A◦ is said to be locally bounded on dom V if condition (30) holds for all x ∈
dom V ; that is, for every x ∈ dom V we have

m(x) = lim sup
y→x,y∈dom V

‖A◦(y)‖ < +∞.

We also observe that the function m is upper semicontinuous at every x ∈ R
n such that

m(x) < +∞; that is,

lim sup
y→x,y∈dom V

m(y) = m(x).

Corollary 1 Let V,W, and a be as in Proposition 5, and let ∂ stand for either ∂P , ∂F , or
∂L. If A◦ is locally bounded on dom V, then (V ,W) is a strong a-Lyapunov pair for (1) iff
one of the following statements holds.

(i) For any x ∈ dom V ,

sup
ξ∈∂V (x)

sup
v∈F(x)

inf
x∗∈A(x)∩B‖F(x)‖+m(x)

〈ξ, v − x∗〉 + aV (x) + W(x) ≤ 0.

(ii) For any x ∈ dom V ,

sup
v∈F(x)

V ′(x; v − �A(x)(v)) + aV (x) + W(x) ≤ 0.

(iii) For any x ∈ dom V ,

sup
v∈F(x)

inf
x∗∈A(x)∩B‖F(x)‖+m(x)

V ′(x; v − x∗) + aV (x) + W(x) ≤ 0.

Proof (ii) ⇒ (iii). This implication follows since that for any x ∈ dom V (⊂ dom A) any
v ∈ F(x)

‖�A(x)(v)‖ ≤ ∥∥A◦(x)
∥∥ + ∥∥�A(x)(v) − A◦(x)

∥∥ ≤ m(x) + ‖F(x)‖ .
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(iii) ⇒ (i). When ∂ stands for either ∂P or ∂F this implication follows from the relation
σ∂P V (x)(·) ≤ σ∂F V (x)(·) ≤ V ′(x; ·). If ∂ = ∂L, we take ξ ∈ ∂LV (x) and v ∈ F(x), and
choose sequences (xi) and (ξi) such that

xi
V→ x, ξi ∈ ∂P V (xi), ξi → ξ as i → ∞;

moreover, due to the upper semi-continuity of m at x and m(x) < +∞, by assumption, we
may assume up to a subsequence that

m(xi) ≤ m(x) + 1

i
, ∀i ∈ N.

By the Lipschitz continuity of F we also choose a sequence (vi)i≥1 such that vi ∈ F(xi)

and vi → v. Since (i) holds with ∂ = ∂P , for each i there exists x∗
i ∈ A(xi)∩B‖F(xi )‖+m(xi )

such that

〈ξi, vi − x∗
i 〉 + aV (xi) + W(xi) ≤ 0. (51)

Then, since the maximal monotone operator A has a closed graph, and (x∗
i )i is bounded, we

assume w.l.o.g. that

x∗
i → x∗ ∈ A(x) ∩ Bm(x) as i → ∞.

So, by passing to the limit in (51) as i → ∞, and using the lower semicontinuity of W, we
obtain that

〈ξ, v − x∗〉 + aV (x) + W(x) ≤ 0,

which shows that (i) holds when ∂ = ∂L.
(i) ⇒ (V ,W) is a strong a-Lyapunov pair for (1). According to Theorem 4 we only

need to show that (49) holds. We fix x ∈ dom V, ξ ∈ ∂P,∞V (x) and v ∈ F(x). There exist
sequences (xi)i , (ξi)i , and (αi)i such that

xi
V→ x, ξi ∈ ∂P V (xi), αi ↓ 0, αiξi → ξ as i → ∞.

By arguing as in the last paragraph above there also exists a sequence (vi)i such that vi ∈
F(xi) and vi → v as i → ∞. Moreover, using the current assumption on A◦, there exists
m > 0 such that supi m(xi) ≤ m. Now, by assumption (ii), for each i ∈ N there exists a
sequences x∗

i ∈ A(xi) ∩ B‖F(xi )‖+m(xi ) ⊂ A(xi) ∩ B‖F(xi )‖+m and

〈ξi, vi − x∗
i 〉 + aV (xi) + W(xi) ≤ 0. (52)

By using again that A has a closed graph, and that x∗
i → x∗ ∈ A(x), by multiplying the last

inequality above (52) by αi and next taking limits as i → ∞, we arrive at (49). The proof
of the corollary is finished since (ii) is a necessary condition for strong a-Lyapunov pairs,
as we have shown in the proof of Theorem 4.

We revisit Example 3 to show how can Theorem 4 (or, more precisely, its Corollary 1)
be applied to study the stability of sweeping processes (more details can be found in [3]).
Let us then retake system (35), which is given as

ẋ(t) ∈ F(x(t)) − NC(x(t)), a.e. t ≥ 0, x(0) = x0 ∈ C,

with C ⊂ R
n being a bounded closed r-uniformly prox-regular set. Then, due to Corollary

1, the statement of the following example follows by arguing as in Example 3 (observing
that (35) is equivalent to (37) and that A◦

C is bounded on C, as comes from (36)).
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Example 4 (Example 3 continued) A lsc function V : Rn :→ R∪{+∞} such that dom V ⊂
C is a strong Lyapunov function for (35) iff there exists some k ≥ 0 such that, for all
x ∈ dom V ,

sup
ξ∈∂P V (x)

sup
v∈F(x)

inf
x∗∈NC(x)∩Bk

〈ξ, v − x∗〉 ≤ 0.

6 Conclusion

The main contribution of this paper consists in providing primal and dual criteria for strong
and weak invariant closed sets (Theorems 2 and 3), and for strong Lyapunov functions
(Theorem 4 and Corollary 1), associated to differential inclusions (1). As in the classical
invariance results, as one can consult in [16], the presented criteria are expressed in terms
of the associated Hamiltonians. The novelty of this work lies in the consideration of differ-
ential inclusions that are governed by the sum of a Lipschitz Cusco mapping and a maximal
monotone operator (yielding a one-sided Lipschitz multifunction, as in [24]); thus, allow-
ing the right-hand side to have empty or unbounded values. We have confined ourselves
to the finite-dimensional setting, because for the need of a Lipschitz continuous selection
theorem, which is valid only in such a setting. Hence, our objective for a close future will
be to go beyond this difficulty and extend the current results, for instance, to the Gelfand
triple, where we expect that the Lyapunov stability approach could give some satisfactory
results, especially for the study of the regularity of the solutions of differential inclusions
(and partial differential equations). We also plan to extend this study to similar differential
inclusions but with time-depending right-hand sides.
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