
Mathematical Programming
https://doi.org/10.1007/s10107-020-01511-3

FULL LENGTH PAPER

Series B

Breaking symmetries to rescue sum of squares in the case
of makespan scheduling

Victor Verdugo1,2 · José Verschae4 · Andreas Wiese3

Received: 31 May 2019 / Accepted: 22 April 2020
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020

Abstract
The sum of squares (SoS) hierarchy gives an automatized technique to create a fam-
ily of increasingly tight convex relaxations for binary programs. There are several
problems for which a constant number of rounds of this hierarchy give integrality
gaps matching the best known approximation algorithms. For many other problems,
however, ad-hoc techniques give better approximation ratios than SoS in the worst
case, as shown by corresponding lower bound instances. Notably, in many cases these
instances are invariant under the action of a large permutation group. This yields the
question how symmetries in a formulation degrade the performance of the relaxation
obtained by the SoS hierarchy. In this paper, we study this for the case of the mini-
mum makespan problem on identical machines. Our first result is to show that Ω(n)

rounds of SoS applied over the configuration linear program yields an integrality gap
of at least 1.0009, where n is the number of jobs. This improves on the recent work by
Kurpisz et al. (Math Program 172(1–2):231–248, 2018) that shows an analogous result
for the weaker LS+ and SA hierarchies. Our result is based on tools from represen-
tation theory of symmetric groups. Then, we consider the weaker assignment linear
program and add a well chosen set of symmetry breaking inequalities that removes a
subset of themachine permutation symmetries.We show that applying 2Õ(1/ε2) rounds
of the SA hierarchy to this stronger linear program reduces the integrality gap to 1+ε,
which yields a linear programming based polynomial time approximation scheme.
Our results suggest that for this classical problem, symmetries were the main barrier
preventing the SoS/SA hierarchies to give relaxations of polynomial complexity with
an integrality gap of 1 + ε. We leave as an open question whether this phenomenon
occurs for other symmetric problems.

Keywords Makespan scheduling · Polynomial optimization · Approximation
algorithms · Symmetry breaking

This work has been partially funded by Fondecyt Projects (Nr. 1170223 and 1181527) and Conicyt (PCI
PII 20150140). An extended abstract of this paper appeared in IPCO 2019 [53].

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-020-01511-3&domain=pdf
http://orcid.org/0000-0001-6353-3128

V. Verdugo et al.

Mathematics Subject Classification 68W25 · 90C22 · 90B35

1 Introduction

The lift-and-project methods are powerful techniques for deriving convex relaxations
of integer programs. The lift-and-project hierarchies, such as Sherali-Adams (SA),
Lovász–Schrijver (LS), and sum of squares (SoS), are systematic methods for obtain-
ing a family of increasingly tight relaxations, parameterized by the number of rounds
of the hierarchy. For all of them, applying r rounds on a formulation with n variables
yields a convex relaxationwith nO(r) variables in the lifted space. Taking r = n rounds
gives an exact description of the integer hull [32], at the cost of having an exponential
number of variables. On the other hand, taking r = O(1) rounds yields a descrip-
tion with only a polynomial number of variables. Arguably, it is not well understood
for which problems these hierarchies, with a constant number of rounds, yield relax-
ations that match the respective best possible approximation algorithm. Indeed, there
are some positive results, but there are also many other strong negative results for
algorithmically easy problems. These lower bounds show a natural limitation on the
power of hierarchies as one-fits-all techniques. Quite remarkably, the instances used
for obtaining lower bounds often have a very symmetric structure [17,31,34,42,44],
which suggests a connection between the tightness of the relaxation given by these
hierarchies and symmetries. The primary purpose of this article is to study this con-
nection for a specific relevant problem, namely, the minimum makespan scheduling
on identical machines.

Minimummakespan scheduling This is one of the first problems considered under
the lens of approximation algorithms [16], and it has been studied extensively. The
input of the problem consists of a set J of n jobs, each having an integral processing
time p j > 0, and a set [m] = {1, . . . ,m} ofm identicalmachines.Given an assignment
σ : J → [m], the load of a machine i is the total processing time of jobs assigned to i ,
that is,

∑
j∈σ−1(i) p j . The objective is to find an assignment of jobs to machines that

minimizes themakespan, that is, the maximum load. The problem is strongly NP-hard
and admits several polynomial-time approximation schemes (PTAS) based on different
techniques, such as dynamic programming, integer programming on fixed dimension,
and integer programming under a constant number of constraints [1,2,11,19,20,22,23].

Integrality gaps Theminimummakespan problemhas two natural linear relaxations,
which have been extensively studied in the literature. The assignment linear program
uses binary variables xi j which indicates whether a job j is assigned to amachine i , for
each i ∈ [m], j ∈ J . The stronger configuration linear program uses a variable yiC for
each machine i and multiset of processing times C , which indicates whether C is the
multiset of processing times of jobs assigned to i . Kurpisz et al. [31] showed that the
configuration linear program has an integrality gap of at least 1024/1023 ≈ 1.0009
even after Ω(n) of rounds of the LS+ or SA hierarchies. On the other hand, Kurpisz
et al. [31] leave open whether the SoS hierarchy applied to the configuration linear
program has an integrality gap of 1+ε after applying a number of rounds that depends

123

Breaking symmetries to rescue sum of squares in the case…

only on the constant ε > 0, i.e., Oε(1) rounds. Our first main contribution is a negative
answer to this question.

Theorem 1 Consider theminimummakespan problemon identicalmachines. For each
n ∈ N, there exists an instance with n jobs such that, after applying Ω(n) rounds of
the SoS hierarchy over the configuration linear program, the obtained semidefinite
relaxation has an integrality gap of at least 1.0009.

Naturally, since the configuration linear program is stronger than the assignment
linear program, our result holds if we apply Ω(n) rounds of SoS over the assign-
ment linear program. The proof of the lower bound relies on tools from representation
theory of symmetric groups over polynomials rings,and it is inspired on the recent
work by Raymond et al. [45] for symmetric sums of squares in hypercubes. It is based
on constructing high-degree pseudoexpectations on the one hand, and by obtaining
symmetry-reduced decompositions of the polynomial ideal defined by the configu-
ration linear program, on the other hand. The machinery from representation theory
allows to restrict attention to invariant polynomials, and we combine this with a strong
pseudoindependence result for a well chosen polynomial spanning set. Our analysis
is also connected to the work of Razborov on flag algebras and graph densities, and
we believe it can be of independent interest for analyzing lower bounds in the context
of SoS in presence of symmetries [44,46,47].

Symmetries andHierarchies Given the relation between hierarchies and symmetries
above, it is natural to explore whether symmetry handling techniques might help to
overcome the limitation given by Theorem 1. A natural source of symmetry of the
problem comes from the fact that the machines are identical: Given a schedule, we
obtain another schedulewith the samemakespan by permuting themachines. The same
symmetries are encountered in the assignment and configuration linear programs,
namely, if σ : [m] → [m] is a permutation and (xi j) is a feasible solution to the
assignment linear program then (xσ(i) j) is also feasible. The same holds for solutions
(yiC) and (yσ(i)C) for the configuration-LP. In other words, these linear programs
are invariant under the action of the symmetric group on the set of machines. The
question we study is the following: Is it possible to obtain a polynomial size linear
or semidefinite program with an integrality gap of at most 1 + ε that is not invariant
under the machine symmetries?We aim to understand if these symmetries deteriorate
the quality of the relaxations obtained from the SoS or SA hierarchies. This time, we
provide a positive answer.

Theorem 2 Consider the problem of scheduling identical machines to minimize the
makespan. After adding linearly many inequalities to the assignment linear program

(for breaking symmetries), 2Õ(1/ε2) rounds of the SA hierarchy yield a linear program
with an integrality gap of at most 1 + ε, for any ε > 0.

Notice that the same result is obtained by applying the SoS hierarchy instead of
SA. The proof of Theorem 2 is based on introducing a formulation that breaks the
symmetries in the assignment program by adding new constraints. The symmetry
breaking constraints enforce that any feasible integral solution of the formulation
respects a lexicographic order over the machine configurations. We show how to

123

V. Verdugo et al.

exploit this to obtain a polynomial time approximation scheme (PTAS) based on the
SA hierarchy. Additionally, we show that by adding a polynomial number of new
constraints, we can obtain a faster approximation scheme, such that poly(1/ε) rounds
of SA suffice. The extra constraints correspond to symmetry breaking inequalities
for a modified instance with rounded job sizes. In particular, the added constraints
are not necessarily valid for the original formulation (which considers the original
job sizes). However, we can show that increasing the optimal makespan by a factor
1+ε maintains the feasibility of at least one integral solution. Thus, by breaking more
symmetries, we make it easier for the hierarchies to produce good relaxations.

We remark that the framework we use for the minimum makespan problem can be,
in principle, studied in other settings where symmetries are present in standard integer
programming relaxations. This strategy opens the possibility of analyzing the effect
of applying symmetry breaking techniques and hierarchies in order to generate strong
linear or semidefinite relaxations.

1.1 Related work

Upper bounds The first application of semidefinite programming in the context
of approximation algorithms is due to Goemans and Williamson for the Max-Cut
problem [15].Of particular interest to ourwork is the SoS based approximation scheme
byKarlin et al. to theMax-Knapsackproblem [24].Theyuse a structuraldecomposition
theorem satisfied by the SoS hierarchy. For a constant number of machines, Levey and
Rothvoss design an approximation scheme with a sub-exponential number of rounds
in the weaker SA hierarchy [37], which is improved to a quasi-PTAS byGarg [12]. The
SoS method has received a lot of attention for high-dimensional problems. Among
them we find matrix and tensor completion [7,43], tensor decomposition [38] and
clustering [27,44].

Lower bounds The first lower bound obtained in the context of positivstellensatz
certificates is by Grigoriev [17], showing the necessity of a linear number of SoS
rounds to refute an easyKnapsack instance. Similar results are obtainedbyLaurent [34]
for Max-Cut and by Kurpisz et al. [28] for unconstrained polynomial optimization.
The same authors show that for a certain polynomial-time single machine scheduling
problem, theSoShierarchy exhibits an unbounded integrality gap even in a high-degree
regime [28,30]. Remarkable are the work of Grigoriev [18] and Schoenebeck [50]
exhibiting the difficulty for SoS to certify the insatisfiability of random3-SAT instances
in subexponential time, and recently there have been efforts on unifying frameworks to
show lower bounds on randomCSPs [5,25,26]. For estimation and detection problems,
lower bounds have been shown for the planted clique problem, k-densest subgraph
and tensor PCA, among others [6,21].

Invariant sumof squares Gatermann andParrilo study how to obtain reduced sumsof
squares certificates of non-negativity when the polynomial is invariant under the action
of a group, using tools from representation theory [13]. Raymond et al. [45] develop on
the Gatermann and Parrilo method to construct symmetry-reduced sum of squares cer-
tificates for polynomials over k-subset hypercubes. Furthermore, the authors make an

123

Breaking symmetries to rescue sum of squares in the case…

interesting connection with the Razborov method and flag algebras [46,47]. Blekher-
man et al. [8] and Laurent [35] provide degree bounds on rational representations
for certificates over the hypercube, recovering as a corollary known lower bounds
for combinatorial optimization problems like Max-Cut. Kurpisz et al. [29] provide a
method for proving SoS lower bounds when the formulations exhibits a high degree
of symmetry.

2 Preliminaries: sum of squares (SoS) and Pseudoexpectations

In what follows we denote by R[x] the ring of polynomials with real coefficients.
Binary integer programming belongs to a larger class of problems in polynomial
optimization, where the constraints are defined by polynomials in the variables inde-
terminates.More specifically, consider the setK of feasible solutions to the polinomial
optimization program defined by

gi (x) ≥ 0 for all i ∈ M, (1)

h j (x) = 0 for all j ∈ J , (2)

x2e − xe = 0 for all e ∈ E . (3)

where gi , h j ∈ R[x] for all i ∈ M and for all j ∈ J . In particular, for binary integer
programming the equality and inequality constraints are affine functions.

Ideals, quotients and square-free polynomials In what follows we give a minimal
introduction to the algebraic elements for polynomial optimization, for a comprehen-
sive treatment see [10]. We denote by IE the ideal of polynomials in R[x] generated
by {x2e − xe : e ∈ E}, and letR[x]/IE be the quotient ring of polynomials with respect
to the vanishing ideal IE . That is, f , g ∈ R[x] are in the same equivalence class of
the quotient ring if f − g ∈ IE , that we denote f ≡ g mod IE . Alternatively, f ≡ g
mod IE if and only if the polynomials evaluate to the same values on the vertices of
the hypercube, that is, f (x) = g(x) for all x ∈ {0, 1}E . Observe that the equivalence
classes in the quotient ring are in bijection with the square-free polynomials in R[x],
that is, polynomials where no variable appears squared. In what follows we identify
elements of R[x]/IE in this way, that is, for p ∈ R[x] we denote by p the unique
square-free representation of p, which can be obtained as the result of applying the
polynomial division algorithm by the Gröbner basis {x2e − xe : e ∈ E}. Given S ⊆ E ,
we denote by xS the square-free monomial that is obtained from the product of the
variables indexed by the elements in S, that is, xS = ∏

e∈S xe. The degree of a polyno-
mial f ∈ R[x]/IE is denoted by deg(f).We say that f is a sum of squares polynomial,
for short SoS, if there exist polynomials {sα}α∈A for a finite family A in the quotient
ring such that f ≡ ∑

α∈A s2α mod IE .

Certificates and SoS method The question of certifying the emptiness of K is hard
in general but sometimes it is possible to find simple certificates. We say that there
exists a degree-� SoS certificate of infeasibility for K if there exist SoS polynomials
s0 and {si }i∈M , and polynomials {r j } j∈J such that

123

V. Verdugo et al.

− 1 ≡ s0 +
∑

i∈M
si gi +

∑

j∈J

r j h j mod IE , (4)

and the degree of every polynomial in the right hand side is at most �. Observe that
if K is non-empty, then the right hand side is guaranteed to be non negative for at
least one assignment of x in {0, 1}E , which contradicts the equality above. In the case
of binary integer programming, if K is empty there exists a degree-� SoS certificate,
for some � ≤ |E | [36,41]. The SoS algorithm iteratively checks the existence of a
SoS certificate, parameterized in the degree, and each step of the algorithm is called a
round. Since |E | is an upper bound on the certificate degree, the method is guaranteed
to terminate [36,41]. Furthermore, the existence of a degree-� SoS certificate can be
decided by solving a semidefinite program. This approach can be seen as the dual
of the hierarchy proposed by Lasserre, which has been studied extensively in the
optimization and algorithms community [9,32,33,48].

Pseudoexpectations To determine the existence of a SoS certificate one solves a
semidefinite program, and the solutions of this program determine the coefficients
of elements in the dual space of linear operators. We say that a linear functional
Ẽ : R[x]/IE → R is a degree-� SoS pseudoexpectation for the polynomial system
(1)–(3), if it satisfies the following properties:

(SoS.1) Ẽ(1) = 1,
(SoS.2) Ẽ(f 2) ≥ 0 for all f ∈ R[x]/IE with deg(f 2) ≤ �,
(SoS.3) Ẽ(f 2gi) ≥ 0 for all i ∈ M , for all f ∈ R[x]/IE with deg(f 2gi) ≤ �,
(SoS.4) Ẽ(f h j) = 0 for all j ∈ J , for all f ∈ R[x]/IE with deg(f h j) ≤ �.

In what follows, every time we evaluate a polynomial in the pseudoexpectation we
are doing it over the square-free representation. We omit the bar notation for sim-
plicity. The next lemma shows that there is a duality relation between degree-� SoS
pseudoexpectation and SoS certificates of infeasibility of the same degree.

Lemma 1 Suppose that K is empty. If there exists a degree-� SoS pseudoexpectation
then there is no degree-� SoS certificate of infeasibility.

The proof of this lemma is a simple check, see also [40]. The minimum value of � for
which there exists a SoS certificate of infeasibility tells how hard is determining the
emptiness ofK for the SoS method. Lemma 1 provides a way of finding lower bounds
on the minimum degree of a certificate, which we use in Sect. 3 for the minimum
makespan problem. There are many examples of problems that are extremely easy
to certificate for humans, but not for the SoS method. For example, given a positive
k ∈ Q\Z, consider the program ∑

e∈E xe = k and x2e − xe = 0 for all e ∈ E . This
problem is clearly infeasible, but there is no degree-� SoS certificate of infeasibility
for � ≤ min{2	k
 + 3, 2	n − k
 + 3, n}, as shown originally by Grigoriev and others
recently using different approaches [17,42].

The Sherali-Adams Hierarchy There is a weaker hierarchy obtained using lin-
ear programming due to Sherali and Adams (SA) [51]. Given disjoint subsets
S, R ⊆ E , consider the polynomial ϕS,R = ∏

i∈S xi
∏

j∈R(1 − x j), and for every

123

Breaking symmetries to rescue sum of squares in the case…

� ∈ {1, . . . , |E |}, let E� = {(S, R) : S, R ⊆ E with |S ∪ R| = � and S ∩ R = ∅}. We
say that a linear functional Ẽ : R[x]/IE → R is a degree-� SA pseudoexpectation for
(1)–(3), if it satisfies the following properties:

(SA.1) Ẽ(1) = 1,
(SA.2) Ẽ(ϕS,R) ≥ 0 for all (S, R) ∈ E�,
(SA.3) Ẽ(ϕS,Rgi) ≥ 0 for all i ∈ M and (S, R) ∈ E� with deg(ϕS,Rgi) ≤ �,
(SA.4) Ẽ(ϕS,Rh j) = 0 for all j ∈ J and (S, R) ∈ E� with deg(ϕS,Rh j) ≤ �.

Observe that by construction it holds that every degree-(�+ 1) SA pseudoexpectation
is a degree-� SA pseudoexpectation as well. Furthermore, it follows directly from
the linearity of Ẽ that deciding whether a degree-� SA pseudoexpectation exists, and
computing one if it exists, can be done by solving a linear program of size |E |O(�)

over the variables yS = Ẽ(xS), for every S ⊆ E with |S| ≤ �. This linear program is
usually known as the �-round or �-level of the SA hierarchy. For a detailed exposition
of this hierarchy we refer to [33]. In the following we refer to low-degree when the
degree (SoS or SA) of a certificate or pseudoexpectation is O(1).

3 Lower bound: symmetries are hard for SoS

In this section we show that the SoS method fails to provide a low-degree certificate of
infeasibility for a certain family of scheduling instances. The programweanalize in this
section is the configuration linear program, that has proven to be powerful for different
scheduling and packing problems [14,52]. Given a value T > 0, a configuration
corresponds to a multiset of processing times such that its total sum does not exceed
T . The multiplicity m(p,C) indicates the number of times that the processing time
p appears in the multiset C . The load of a configuration C is just the total processing
time,

∑
p∈{p j : j∈J } m(p,C) · p and let C denote the set of all configurations with load

at most T . For each combination of a machine i ∈ [m] and a configuration C ∈ C,
the program has a variable yiC that models whether machine i is scheduled with jobs
with processing times according to configuration C . Letting n p denote the number of
jobs in J with processing time p, we can write the following binary linear program,
clp(T),

∑

C∈C
yiC = 1 for all i ∈ [m], (5)

∑

i∈[m]

∑

C∈C
m(p,C)yiC = n p for all p ∈ {p j : j ∈ J }, (6)

yiC ∈ {0, 1} for all i ∈ [m], for all C ∈ C. (7)

Hard instances. We briefly describe the construction of a family of hard instances
{Ik}k∈N for the configuration linear program introduced in [31]. Let T = 1023, and
for each odd k ∈ Nwe have 15k jobs and 3k machines. There are 15 different job-sizes
with valueO(1), eachonewithmultiplicity k. There exist a set of special configurations
{C1, . . . ,C6}, calledmatching configurations, such that the program above is feasible

123

V. Verdugo et al.

if and only if the program restricted to the matching configurations is feasible. The
infeasibility of the latter program comes from the fact that there is no 1-factorization
of a regular multigraph version of the Petersen graph [31, Lemma 2].

Theorem 3 ([31]) For each odd k ∈ N, there exists a degree-	k/2
 SA pseudoexpec-
tation for the configuration linear program. In particular, there is no low-degree SA
certificate of infeasibility.

3.1 A symmetry-reduced decomposition of the scheduling ideal

Given T > 0, the variables ground set for configuration linear program is E = [m]×C,
and the symmetric group Sm acts over the monomials in R[y] according to σ yiC =
yσ(i)C , for every σ ∈ Sm . The action extends linearly toR[y]/IE , and the configuration
linear program is invariant under this action, that is, for every y ∈ clp(T) and every
σ ∈ Sm we have σ y ∈ clp(T). We say that a polynomial f ∈ R[y]/IE is Sm-invariant
if σ f = f for every σ ∈ Sm . When it is clear from the context we drop the Sm in the
notation. If f is invariant we have that f = (1/|Sm |)∑

σ∈Sm σ f := sym(f), which
is the symmetrization of f . We say that a linear functional L over the quotient ring
is Sm-symmetric if for every polynomial f ∈ R[y]/IE we have L(f) = L(sym(f)).
The next lemma shows that when Ẽ is symmetric it is enough to check symmetric
polynomials in condition (SoS.2). Therefore, in this case we restrict our attention to
those polynomials that are invariant and SoS.

Lemma 2 Let Ẽ be a symmetric linear operator over R[y]/IE such that for every
invariant SoS polynomial g of degree at most � we have Ẽ(g) ≥ 0. Then, Ẽ(f 2) ≥ 0
for every f ∈ R[y]/IE with deg(f 2) ≤ �.

Proof Since the operator Ẽ is symmetric, for every f in the quotient ring with
deg(f 2) ≤ � we have Ẽ(f 2) = Ẽ(sym(f 2)). The polynomial sym(f 2) is symmetric,
and it is SoS since sym(f 2) = (1/|Sm |)∑

σ∈Sm σ f 2, which is a sum of squares. Since

deg(sym(f 2)) ≤ �, we have Ẽ(sym(f 2)) ≥ 0 and we conclude that Ẽ(f 2) ≥ 0. ��
In the following we focus on understanding polynomials that are invariant and

SoS. To analize the action of the symmetric group over R[y] we introduce some tools
from representation theory to characterize the invariant Sm-modules of the polynomial
ring [49].Wemaintain the expositionminimally enough for our purposes andwe follow
in part the notation used by Raymond et al. [45]. We say that V is an Sm-module if
there exists a homomorphism ρ : Sm → GL(V), where GL(V) is the linear group
of V . A subspace W of V is invariant if it is closed under the action of Sm , that is,
when w ∈ W and σ ∈ Sm we have that σw ∈ W . We say that an Sm-module W is
irreducible if the only invariant subspaces are {0} andW . We refer to [49] for a deeper
treatment of representation theory of symmetric groups.

Isotypic decompositions A partition of m is a vector (λ1, . . . , λt) such that λ1 ≥
λ2 ≥ · · · λt > 0 and λ1+· · ·+λt = m.We denote by λ � m when λ is a partition ofm.
Any Sm-module has an isotypic decomposition V = ⊕

λ�m Vλ, which decomposes V
as a direct sum of Sm-modules, where each of the subspaces in the direct sum is called

123

Breaking symmetries to rescue sum of squares in the case…

an isotypic component. In the following we introduce a combinatorial abstraction of
the partitions and related subgroups that play a relevant role. A tableau of shape λ

is a bijective filling between [m] and the cells of a grid with t rows, and every row
r ∈ [t] has length λr . In this case, the shape or Young diagram of the tableau is λ. For
a tableau τλ of shape λ, we denote by rowr (τλ) the subset of [m] that fills row r in the
tableau.

Example 1 Letm = 7 and consider the partition λ = (4, 2, 1). The following tableaux
have shape λ,

3
5
1

6
2 7 4

4
3
1

6
7 2 5

In the tableau τλ at the left, row1(τλ) = {1, 2, 7, 4}. In the tableau τ ′
λ at the right,

row3(τ
′
λ) = {4}.

The row groupRτλ is the subgroup of Sm that stabilizes the rows of the tableau τλ,
that is,

Rτλ =
{
σ ∈ Sm : σ · rowr (τλ) = rowr (τλ) for every r ∈ [t]

}
. (8)

Invariant SoS polynomials. We go back now to the case of the configuration linear
program.

Definition 1 (Scheduling Ideal) We define sched to be the ideal of polynomials in
R[y] generated by

{
∑

C∈C
yiC − 1 : i ∈ [m]

}

∪
{
y2iC − yiC : i ∈ [m],C ∈ C

}
. (9)

Recall that the set of polynomials above enforce the machines in the scheduling solu-
tions to be assigned with exactly one configuration. Let Q� be the quotient ring
R[y]/sched restricted to polynomials of degree at most � and let

⊕
λ�m Q�

λ be its
isotypic decomposition. Given a tableau τλ of shape λ, letW�

τλ
be the subspace ofQ�

λ

fixed by the action of the row group Rτλ , that is,

W�
τλ

=
{
q ∈ Q�

λ : σq = q for all σ ∈ Rτλ

}
. (10)

Inwhat followswe sometimes refer to these subspaces as row subspaces. The following
result follows from the work of Gaterman and Parrilo [13] in the context of symmetry
reduction for invariant semidefinite programs. In what follows, 〈A, B〉 is the inner
product in the space of square matrices defined by the trace of AB. Given � ∈ [m],
we denote by Λ� the subset of partitions of m that are lexicographically larger than
(m − �, 1, . . . , 1).

Theorem 4 Suppose that g ∈ R[y]/sched is a degree-� SoS and Sm-invariant
polynomial. For each partition λ ∈ Λ�, let τλ be a tableau of shape λ and let
Pλ = {pτλ

1 , . . . , pτλ
nλ

} be a set of polynomials such that span(Pλ) ⊇ W�
τλ
. Then,

123

V. Verdugo et al.

for each partition λ ∈ Λ� there exists a positive semidefinite matrix Mλ such that
g = ∑

λ∈Λ�
〈Mλ, Z τλ〉, where Z τλ

i j = sym(pτλ

i pτλ

j).

The theorem above is based on the recent work of Raymond et al. [45, p. 324, Theorem
3]. In our case the symmetric group is acting differently from Raymond et al., but the
proof follows the same lines, and it can be found in “Appendix A”. Together with
Lemma 2, it is enough to study pseudoexpectations for each of the partitions in Λ�

separately. We remark that for each partition in λ ∈ Λ� we can take any tableau τλ

with that shape, and then consider a spanning set for its corresponding subspaceW�
τλ
.

In the following, for a matrix A with entries in R[y], we denote by Ẽ(A) the matrix
obtained by evaluating Ẽ on each entry of A.

Lemma 3 Let Ẽ be a symmetric linear operator over R[y]/IE . For each λ ∈ Λ�, let
τλ be a tableau of shape λ and let Pλ = {pτλ

1 , . . . , pτλ
nλ

} be a set of polynomials such
that span(Pλ) ⊇ W�

τλ
. For each λ ∈ Λ�, let Z τλ such that Z τλ

i j = sym(pτλ

i pτλ

j) and

suppose that Ẽ(Z τλ) is positive semidefinite. Then, Ẽ(f 2) ≥ 0 for every f ∈ R[y]/IE
with deg(f 2) ≤ �.

Proof Let g be an invariant SoS polynomial of degree atmost �. ByTheorem4, for each
λ ∈ Λ� there exist a positive semidefinite matrix Mλ such that g = ∑

λ∈Λ�
〈Mλ, Zλ〉.

Therefore, we have that Ẽ(g) = ∑
λ∈Λ�

Ẽ〈Mλ, Zλ〉 = ∑
λ∈Λ�

〈Mλ, Ẽ(Zλ)〉 ≥ 0,

since both Mλ and Ẽ(Zλ) are positive semidefinite for each partition λ ∈ Λ�. By
Lemma 2 we conclude that Ẽ(f 2) ≥ 0 for every f ∈ R[y]/IE with deg(f 2) ≤ �. ��

3.2 Construction of the spanning sets

In this section we show how to construct the spanning sets of the row subspaces in
order to apply Lemma 3, which together with a particular linear operator provides the
existence of a high-degree SoS pseudoexpectation. The structure of the configuration
linear program allows us to further restrict the canonical spanning set obtained from
monomials, by one that is combinatorially interpretable and adapted to our purposes.

Definition 2 (Partial Schedule) Let GS be the directed bipartite graph with vertex
partition given by [m] and C and edges S ⊆ [m] × C. We say that S ⊆ [m] × C is a
partial schedule if for every i ∈ [m] we have δS(i) ≤ 1, where δS(i) is the degree of
vertex i in GS .

We say that S is a partial schedule over H if {i ∈ [m] : (i,C) ∈ S} ⊆ H . We denote
by M(S) the set of machines in {i ∈ [m] : δS(i) = 1}, and we call M(S) the set of
machines incident to S. Sometimes it is convenient to see a partial schedule S as a
function fromM(S) to C, so we also say that S is partial schedule with domainM(S).

Example 2 Let m = 4 and the set of configurations C = {C1,C2,C3}. Then, the set
T = {(1,C1), (2,C1), (4,C2)} is a partial schedule. Themachine i = 3 is not incident
to T . In this case, δT (C1) = 2 since there are two machines, {1, 2}, incident to C1.
The domain of T is M(T) = {1, 2, 4}. The set S = {(1,C1), (1,C2)} is not a partial
schedule since δS(1) = 2.

123

Breaking symmetries to rescue sum of squares in the case…

Proposition 1 If S ⊆ [m] × C is not a partial schedule, we have yS ≡ 0 mod sched.

Proof Since S it is not a partial schedule, there exists a machine i ∈ [m] such that
δS(i) ≥ 2. Therefore, to prove the proposition it is enough to check that yiC yi R ≡ 0
mod sched for every pair of different configurations R,C ∈ C. Given a configura-
tion C ∈ C, we have that

∑
R∈C\{C} yiC yi R ≡ ∑

S∈C\{C} yiC yi R + y2iC − yiC ≡
yiC (

∑
R∈C yi S − 1) ≡ 0 mod sched. On the other hand, y2iC y

2
i R ≡ yiC yi R for every

R ∈ C\{C}. This yields the result. ��
Proposition 2 Let S ⊆ [m] × C be a partial schedule of cardinality at most �. Then,
yS ∈ span({yL : |L| = � and S is a partial schedule}).
Proof Assume that |S| < � since otherwise we are done. Let H ⊆ [m] such that
|H | = � − |S| and δS(h) = 0 for every h ∈ H , that is, H is subset of machines
that is not incident to the edges S in the bipartite graph GS . Observe that since S is
a partial schedule, it is incident to exactly |S| machines. Let CH be the set of partial
schedules with domain H . Since

∑
C∈C yhC ≡ 1 mod sched for every h ∈ H , we

have yS ≡ yS
∏

h∈H
∑

C∈C yhC ≡ ∑
R∈CH yS∪R mod sched. In particular, for every

R ∈ CH we have that S ∪ R is a partial schedule, and deg(yS∪R) = |S| + �− |S| = �.

In the following we construct spanning sets for the row subspaces. Given a tableau
τλ with shape λ, the hook(τλ) is the tableau with shape (λ1, 1, . . . , 1) ∈ Z

m−λ1+1,
its first row it is equal to the first row of τλ and the remaining elements of τλ fill
the rest of the cells in increasing order over the rows. That part is called the tail of
the hook, and we denote by tail(τλ) the elements of [m] in the tail of hook(τλ), and
row(τλ) = [m]\tail(τλ), that is the elements in the first row of the tableau.

Example 3 Let m = 7 and consider the partition λ = (4, 2, 1). The tableau τλ at
the left has shape λ and the tableau at the right is hook(τλ), with shape (4, 1, 1, 1);
row(τλ) = {1, 2, 7, 4} and tail(τλ) = {3, 5, 6}.

3
5
1

6
2 7 4

6
5
3
1 2 7 4

The following lemma gives a spanning set for the row subspaces obtained from
the hook tableau. We denote by symhook(τλ) the symmetrization respect to the row
subgroup of hook(τλ),

symhook(τλ)(f) = 1

|Rhook(τλ)|
∑

σ∈Rhook(τλ)

σ f . (11)

The following lemma provides a spanning set for the row subspace based on the above
family polynomials. The proof follows the lines of [45, Lemma 2].

Lemma 4 Given a tableau τλ, the row subspace W�
τλ

of Q� is spanned by

{
symhook(τλ)(yS) : |S| = � and S is a partial schedule

}
. (12)

123

V. Verdugo et al.

Proof Let A = {q ∈ Q� : σq = q for all σ ∈ Rτλ} and A′ = {q ∈ Q� : σq =
q for all σ ∈ Rhook(τλ)}. By definition, we have thatW�

τλ
⊆ A, and sinceRhook(τλ) is

a subgroup of Rτλ it follows that A ⊆ A′. By Propositions 1 and 2, and the linearity
of the symmetrization operator, we have that A′ is spanned by the set in (12). ��

In the row subgroup Rhook(τλ), the elements of [m] that are in the tail remain
fixed. The rest of the elements on the first row are permuted arbitrarily. In particular,
Rhook(τλ)

∼= Sλ1 . Therefore, any permutation σ in Rhook(τλ) acts over a monomial yS
by separating the bipartite graph GS into those vertices in tail(τλ) that are fixed by σ

and the rest in row(τλ) that can be permuted.

Configuration profiles Observe that bipartite graphs corresponding to different par-
tial schedules are isomorphic if and only if the degree of every configuration is the
same in both graphs.We say that a partial schedule is in γ -profile, with γ : C → Z+, if
for every C ∈ C we have δS(C) = γ (C). Observe that a partial schedule in γ -profile
has size

∑
C∈C γ (C), quantity that we denote by ‖γ ‖. We denote by supp(γ) the

support of the vector γ , namely, {C ∈ C : γ (C) > 0}.
Definition 3 Given a partial schedule T , we say that a partial schedule A over
[m]\M(T) is a (T , γ)-extension if A is in γ -profile. We denote by F(T , γ) the
set of (T , γ)-extensions. In particular, every (T , γ)-extension has size ‖γ ‖.
Example 4 Consider m = 4, C = {C1,C2} and the partial schedule T =
{(2,C1), (3,C2)}. If γ is given by γ (C1) = γ (C2) = 1, we have F(T , γ) =
{{(1,C1), (4,C2)}, {(4,C1), (1,C2)}}. If μ is given by μ(C1) = 1 and μ(C2) = 0,
we have F(T , μ) = {{(1,C1)}, {(4,C1)}}.

Given a partial schedule T and a γ -profile, let BT ,γ be the polynomial defined by

BT ,γ =
∑

A∈F(T ,γ)

yA, (13)

if γ �= 0, and 1 otherwise. In words, the polynomial above corresponds to sum over
all those partial schedules in γ -profile that are not incident to M(T). The following
theorem is the main result of this section.

Theorem 5 Let λ ∈ Λ� and a tableau τλ of shape λ. Then, the row subspace W�
τλ

of
Q� is spanned by

Pλ =
�⋃

ω=0

{
yTBT ,γ : T is partial schedule withM(T) = tail(τλ) and ‖γ ‖ = ω

}
.

(14)

Proof By Lemma 4 it is enough to check that the set of polynomials in (12) is spanned
by those in (14). Let S be a partial schedule of size �. Let tail(S, τλ) be the subset of
S that is incident to the tail of the tableau, that is, {(i,C) ∈ S : i ∈ tail(τλ)}, and let
row(S, τλ) = S\tail(S, τλ) be the edges of the partial schedule S incident to the first
row of the tableau.

123

Breaking symmetries to rescue sum of squares in the case…

Claim 1 symhook(τλ)(yS) = ytail(S,τλ) · symhook(τλ)

(
yrow(S,τλ)

)
.

Observe that tail(S, τλ) is a partial schedule over tail(τλ). Similarly as we did in
Lemma 2, the partial schedule incident to the tail can be completed to be in the span
of partial schedules with domain equal to tail(τλ), that is,

ytail(S,τλ) ≡ ytail(S,τλ)

∏

h∈tail(τλ)\tail(S,τλ)

∑

C∈C
yhC

≡
∑

L∈Ctail(τλ)\tail(S,τλ)

ytail(S,τλ)∪L mod sched

where Ctail(τλ)\tail(S,τλ) is the set of partial schedules with domain tail(τλ)\tail(S, τλ).
Thus, every partial schedule in the summation above have domain tail(τλ) ∪
tail(S, τλ)\tail(S, τλ) = tail(τλ). Therefore, it is enough to check that exists a con-

stant κ such that symrow(τλ)

(
yrow(S,τλ)

)
= κ · Btail(τλ),γ for some profile γ with

‖γ ‖ = �−|tail(S, τλ)|. Recall that |tail(S, τλ)| ≤ � since λ ∈ Λ�. Let γ be the profile
of the partial schedule row(S, τλ). The equality follows sinceσ ∈ Rhook(τλ)

∼= Srow(τλ),
together with the fact that {(σ (i),C) : (i,C) ∈ row(S, τλ)} is a (tail(τλ), γ)-extension
for every permutation in σ ∈ Rhook(τλ). The constant κ is equal to |Rhook(τλ)|. ��
Proof of Claim 1 Observe that for every permutation σ ∈ Rhook(τλ), we have

σ yS =
∏

(i,C)∈tail(S,τλ)

yσ(i)C

∏

(i,C)∈row(S,τλ)

yσ(i)C = ytail(S,τλ)σ yrow(S,τλ),

since the permutation fixes the edges in tail(S, τλ). Therefore, symmetrizing yields
that symhook(τλ)(yS) is equal to

1

|Rhook(τλ)|
∑

σ∈Rhook(τλ)

σ yS = ytail(S,τλ) · 1

|Rhook(τλ)|
∑

σ∈Rhook(τλ)

σ yrow(S,τλ)

= ytail(S,τλ) · symhook(τλ)

(
yrow(S,τλ)

)
.

��

3.3 High-degree SoS pseudoexpectation: Proof of Theorem 1

We now have the ingredients to study the scheduling ideal and we describe the pseu-
doexpectations from Theorem 3, that are the base for our lower bound. Recall that for
every odd k ∈ N, the hard instance Ik has m = 3k machines and the linear operators
we consider are supported over partial schedules incident to a set of six so called
matching configurations, {C1, . . . ,C6}. Consider the Ẽ : R[y]/IE → R such that for
every partial schedule S of cardinality at most k/2,

123

V. Verdugo et al.

Ẽ(yS) = 1

(3k)|S|

6∏

j=1

(k/2)δS(C j), (15)

where (a)b is the lower factorial function, that is, (a)b = a(a−1) · · · (a−b+1), and
(a)0 = 1. The linear operator Ẽ is zero elsewhere. We state formally the main result
that implies Theorem 1.

Theorem 6 For every odd k ∈ N, the linear operator Ẽ is a degree-	k/6
 SoS pseu-
doexpectation for the configuration linear program in instance Ik and T = 1023.

Proof of Theorem 1 For every odd k the instance Ik described in Sect. 3 is infeasible for
T = 1023. By Theorem 6, the operator Ẽ is a degree-	k/6
 SoS pseudoexpectation,
which in turns imply by Lemma 1 that there is no degree-	k/6
 SoS certificate of
infeasibility. For an instance with n jobs, let k be the greatest odd integer such that
n = 15k + �, with � < 30. The theorem follows by considering the instance Ik above
with � dummy jobs of processing time equal to zero. ��

Theorem 3 guarantees that for every k odd, Ẽ is a degree-	k/2
 pseudoexpecta-
tion, and therefore a degree-	k/6
 pseudoexpectation as well. In particular, properties
(SoS.1) and (SoS.4) are satisfied. Since the configuration linear program is constructed
from equality constraints, it is enough to check property (SoS.2) for high enough
degree, in this case � = 	k/6
. To check property (SoS.2) we require a notion of
conditional pseudoexpectations. Given a partial schedule T , consider the operator
ẼT : R[y]/IE → R such that

ẼT (yS) = 1

(3k − |T |)!
6∏

j=1

(k/2 − δT (C j))δS(C j) (16)

for every partial schedule S over themachines [m]\M(T) and zero otherwise.Observe
that if T = ∅ it corresponds to the linear operator Ẽ in (15). The following lem-
mas about the conditional pseudoexpectation in (16) are key for proving that Ẽ is a
high-degree SoS pseudoexpectation. We state the lemmas and show how to conclude
Theorem 6 using them. In particular, in Lemma 7 we prove a strong pseudoindepen-
dence property satisfied by the conditional pseudoexpectations and the polynomials
(13) in the spanning set.

Lemma 5 The linear operator Ẽ is Sm-symmetric.

Lemma 6 Let T be a partial schedule. Then, the following holds:

(a) If S is a partial schedule and T ∩ S = ∅, then Ẽ(yT yS) = ẼT (yS)Ẽ(yT).
(b) If S, R are two partial schedules such that R ∩ S = ∅ and T ∩ (R ∪ S) = ∅, then

ẼT (yR yS) = ẼT (yR)ẼT∪R(yS).
(c) Let γ be a profile with supp(γ) ⊆ {C1, . . . ,C6} and |T | + ‖γ ‖ ≤ k/2. Then,

ẼT (BT ,γ) =
6∏

j=1

1

γ (C j)! (k/2 − δT (C j))γ (C j).

123

Breaking symmetries to rescue sum of squares in the case…

Lemma 7 Let T be a partial schedule and γ , μ a pair of configuration profiles with
|T | + ‖γ ‖ + ‖μ‖ ≤ k/2 and supp(γ), supp(μ) ⊆ {C1, . . . ,C6}. Then,

ẼT (BT ,γBT ,μ) = ẼT (BT ,γ)ẼT (BT ,μ). (17)

Proof of Theorem 6 Let � = 	k/6
. Given a partition λ ∈ λ�, consider the tableau τλ

such that tail(τλ) = [3k−λ1] and row(τλ) = [3k]\[3k−λ1]. The partial scheduleswith
domain [3k − λ1] can be identified with C[3k−λ1], the set of functions from [3k − λ1]
to C. In particular the spanning set in (14) is described byPλ = ⋃�

ω=0

{
yTβT ,γ : T ∈

C[3k−λ1] and ‖γ ‖ = ω
}
.To apply Lemma 3we need to study thematrix Ẽ(Zλ). Recall

that for T , S ∈ C[3k−λ1] and profiles γ, ν with ‖γ ‖, ‖μ‖ ≤ �, the corresponding entry
of the matrix Ẽ(Zλ) is given by

Ẽ

(
sym

(
yT ySβT ,γ βS,μ

))
= Ẽ

(
sym

(
yT∪SβT ,γ βS,μ

))
.

By Lemma 5 the operator Ẽ is symmetric, and therefore,

Ẽ

(
sym

(
yT∪SβT ,γ βS,μ

))
= Ẽ

(
yT∪SβT ,γ βS,μ

)
.

Since both T , S are partial schedules such thatM(T) = M(S), we have that T ∪ S is
a partial schedule if and only if T = S. Thus, the matrix Ẽ(Zλ) is block diagonal, with
a block for each partial schedule T ∈ C[3k−λ1]. For every Θ indexed by the elements
of the spanning set above, we have then

〈
Ẽ(Zλ),ΘΘ�〉

=
∑

T∈C[3k−λ1]

∑

γ :‖γ ‖≤�
μ:‖μ‖≤�

Ẽ

(
yTβT ,γ βT ,μ

)
ΘT ,γ ΘT ,μ.

Since |T | + ‖γ ‖ + ‖μ‖ ≤ 3� ≤ k/2 for every partial schedule T and profiles γ, μ as
above, by applying Lemma 6 (a) and Lemma 7 we obtain that

∑

T∈C[3k−λ1]

∑

γ :‖γ ‖≤�
μ:‖μ‖≤�

Ẽ

(
yTβT ,γ βT ,μ

)
ΘT ,γ ΘT ,μ

=
∑

T∈C[3k−λ1]
Ẽ(yT)

∑

γ :‖γ ‖≤�
μ:‖μ‖≤�

ẼT (βT ,γ)ẼT (βT ,μ)ΘT ,γ ΘT ,μ,

and by rearranging terms we conclude that

〈
Ẽ(Zλ),ΘΘ�〉

=
∑

T∈C[3k−λ1]
Ẽ(yT)

⎛

⎝
∑

γ :‖γ ‖≤�

ẼT (βT ,γ)ΘT ,γ

⎞

⎠

2

≥ 0.

��

123

V. Verdugo et al.

Proof of Lemma 5 Given σ ∈ Sm and a partial schedule S, Ẽ(σ yS) = Ẽ(yσ(S)),
where σ(S) = {(σ (i),C) : (i,C) ∈ S}. In particular, since |S| = |σ(S)| and
profile of S is the same profile of σ(S), it holds Ẽ(yS) = Ẽ(σ yS). Therefore,
Ẽ(yS) = 1

m!
∑

σ∈Sm Ẽ(σ yS) = Ẽ(sym(yS)).

Proof of Lemma 6 Property b) implies a) by taking T = ∅. One can check from the
definition of the lower factorial that (x)a+b = (x)a(x−a)b. Since the partial schedules
R, S and T are disjoint, it holds for every C ∈ C that δR∪S(C) = δR(C) + δS(C) and
δT∪R(C) = δT (C) + δR(C). Therefore,

(3k − |T |)|R∪S| · ẼT (yR yS)

=
6∏

j=1

(k/2 − δT (C j))δR(C j) ·
6∏

j=1

(k/2 − δT (C j) − δR(C j))δS(C j)

= (3k − |T |)|R| · ẼT (yR) · (3k − |T | − |R|)|S| · ẼT∪R(yS),

and the lemma follows since (3k − |T |)|R∪S| = (3k − |T |)|R| · (3k − |T | − |R|)|S|.
We now prove property (c), that is more involved. First of all, observe that for every
H ∈ F(T , γ) the value of ẼT (yH) depends only on T and the configuration profile
γ . More specifically,

ẼT (yH) = 1

(3k − |T |) ‖γ ‖

6∏

j=1

(k/2 − δT (C j))γ (C j),

since |H | = ‖γ ‖ and δH (C j) = γ (C j) for every j ∈ {1, . . . , 6}. Then, ẼT (BT ,γ)

equals |F(T , γ)| times the quantity above. The number of machines that can support
a partial schedule H that extend T is 3k − |T |, and since |H | = ‖γ ‖ the number of
possible machine domains is

(3k−|T |
‖γ ‖

)
. Given a set of machines with cardinality ‖γ ‖,

the number of partial schedules with domain equal to this set of machines and that are
in configuration profile γ are ‖γ ‖!∏6

j=1
1

γ (C j)! . Then, overall, the value of ẼT (BT ,γ)

is equal to

(
3k − |T |

‖γ ‖
)

‖γ ‖! 1

(3k − |T |) ‖γ ‖
·

6∏

j=1

1

γ (C j)! (k/2 − δT (C j))γ (C j)

= (3k − |T |)!
(3k − |T | − ‖γ ‖)! · 1

(3k − |T |) ‖γ ‖
·

6∏

j=1

1

γ (C j)! (k/2 − δT (C j))γ (C j)

=
6∏

j=1

1

γ (C j)! (k/2 − δT (C j))γ (C j),

in the last step we used that for every real x and non-negative integer b, it holds
(x − b)!(x)b = x !. ��

123

Breaking symmetries to rescue sum of squares in the case…

To prove Lemma 7we obtain first a weaker version, that together with a polynomial
decomposition in the scheduling ideal yields to the pseudoindependence result.

Lemma 8 Let T ⊆ [m] × C be a partial schedule.

(a) If ν and ξ are configuration profiles such that supp(ν) ∩ supp(ξ) = ∅ and |T | +
‖ν‖ + ‖ξ‖ ≤ k/2, then ẼT (BT ,νBT ,ξ) = ẼT (BT ,ν)ẼT (BT ,ξ).

(b) If ν and ξ are configuration profiles such that there exists C ∈ {C1, . . . ,C6}
with supp(ν), supp(ξ) ⊆ {C}, and |T | + ‖ν‖ + ‖ξ‖ ≤ k/2, then we have that
ẼT (BT ,νBT ,ξ) = ẼT (BT ,ν)ẼT (BT ,ξ).

Proof In both case if one of the profiles is zero then the conclusion follows. Then,
in what follows assume that ν and ξ are different from zero, and their support is
contained in {C1, . . . ,C6}. Consider ν and ξ satisfying the conditions in (a) and fix
A ∈ F(T , ν). Then,

ẼT (yABT ,ξ) =
∑

B∈F(T∪A,ξ)

Ẽ(yAyB) +
∑

B∈F(T ,ξ)\F(T∪A,ξ)

Ẽ(yAyB),

where the equality holds since F(T ∪ A, ξ) ⊆ F(T , ξ). For every term B ∈
F(T , ξ)\F(T ∪ A, ξ) we have that it is incident to at least one of the machines in
GA. Since every machine inGA is connected to a machine in supp(ν) ⊆ C\supp(ξ), it
follows that A ∪ B is not a partial schedule since at least one machine is connected to
different configurations, and in consequence its pseudoexpectation is zero. Therefore,
the second summation in the equality above is zero. Together with property (b) in
Lemma 6 it implies that

ẼT (yABT ,ξ) =
∑

B∈F(T∪A,ξ)

Ẽ(yAyB) = ẼT (yA) · ẼT∪A(BT∪A,ξ).

Since supp(ν) ∩ supp(ξ) = ∅, we have that for every C j ∈ supp(ξ), δT∪A(C j) =
δT (C j). On the other hand, if C j /∈ supp(ξ) then (x)ξ(C j) = (x)0 = 1 for every real
x . Overall, and together with Lemma 6, it holds that

ẼT∪A(BT∪A,ξ) =
6∏

j=1

1

ξ(C j)! (k/2 − δT∪A(C j))ξ(C j)

=
∏

j∈supp(ξ)

1

ξ(C j)! (k/2 − δT (C j))ξ(C j) = ẼT (BT ,ξ).

Together with the linearity of ẼT we conclude (a). Consider now ν, ξ satisfying the
conditions in (b), and let C ∈ {C1, . . . ,C6} the configuration that supports both
profiles. Without loss of generality suppose that ν(C) ≥ ξ(C). For A ∈ F(T , ν) and
B ∈ F(T , ξ), we have that A ∪ B is always a perfect matching since the profiles are
supported in the same configuration. If B ⊆ A, then the union has profile ν. Then, by
Lemma 6 (c) we have

123

V. Verdugo et al.

ẼT (yABT ,ξ) =
∑

B∈F(T ,ξ)

ẼT (yAyB)

=
∑

B∈F(T ,ξ):B⊆A

ẼT (yA) +
∑

B∈F(T ,ξ):B\A �=∅
ẼT (yAyB\A)

= ẼT (yA)

⎛

⎝
(

ν(C)

ξ(C)

)

+
∑

B∈F(T ,ξ):B\A �=∅
ẼT∪A(yB\A)

⎞

⎠ .

If B \ A �= ∅, the union profile can be parameterized in |B \ A| = ω, and let αω be
the profile such that αω(C) = ω and zero otherwise. Thus,

∑

B∈F(T ,ξ):B\A �=∅
ẼT∪A(yB\A)

=
ξ(C)∑

ω=1

(
ν(C)

ξ(C) − ω

)(
3k − |T | − ν(C)

ω

)
(k/2 − δT (C) − ν(C))ω

(3k − |T | − ν(C))ω

=
ξ(C)∑

ω=1

1

ω!
(

ν(C)

ξ(C) − ω

)

(k/2 − δT (C) − ν(C))ω,

and since (k/2− δT (C)− ν(C))0 = 1, and running the summation over A ∈ F(T , ν)

we obtain over all that

ẼT (BT ,νBT ,ξ) = ẼT (BT ,ν) ·
ξ(C)∑

ω=0

1

ω!
(

ν(C)

ξ(C) − ω

)

(k/2 − δT (C) − ν(C))ω. (18)

Claim 2 Let a and b be two non-negative integers such that a ≤ b. Then, for every
real x,

a∑

ω=0

1

ω!
(

b

a − ω

)

(x − b)ω = 1

a! (x)a .

The claim applied in (18) for x = k/2 − δT (C), a = ξ(C) and b = ν(C) yields the
result, since

ẼT (BT ,νBT ,ξ) = ẼT (BT ,ν) · 1

ξ(C)! (k/2 − δT (C))ξ(C) = ẼT (BT ,ν)ẼT (BT ,ξ).

The claim follows by the Chu-Vandermonde identity [3, p. 59–60],

123

Breaking symmetries to rescue sum of squares in the case…

(x)a =
a∑

ω=0

(
a

ω

)

(x − b)ω(b)a−ω

= a!
a∑

ω=0

(x − b)ω
(b)a−ω

(a − ω)! = a!
a∑

ω=0

(x − b)ω

(
b

a − ω

)

��
Proof of Lemma 7 Given a profile configuration γ and C j ∈ {C1, . . . ,C6}, we denote
by γ j the profile that is zero for every C �= C j and γ j (C j) = γ (C j). In the following,
we prove that the following factorization holds:

ẼT (BT ,γBT ,μ) = ẼT

⎛

⎝
6∏

j=1

BT ,γ jBT ,μ j

⎞

⎠ , (19)

recalling that BT ,ξ = 1 if ξ = 0. Before checking that the decomposition above is
correct, we see how to conclude the lemma from that. Observe that by construction
supp(γ j) ∩ supp(γ�) = ∅ if j �= �, and therefore by Lemma 8 (a), we have

ẼT

⎛

⎝
6∏

j=1

BT ,γ jBT ,μ j

⎞

⎠ =
6∏

j=1

ẼT
(
BT ,γ jBT ,μ j

)
. (20)

Furthermore, since for every j ∈ {1, . . . , 6} we have supp(γ j), supp(μ j) ⊆ {C j }, by
Lemma 8 (b) we have

6∏

j=1

ẼT
(
BT ,γ jBT ,μ j

) =
6∏

j=1

ẼT (BT ,γ j)ẼT (BT ,μ j) =
6∏

j=1

ẼT (BT ,γ j) ·
6∏

j=1

ẼT (BT ,μ j).

By using Lemma 8 (a) the right hand side is equal to

ẼT

⎛

⎝
6∏

j=1

BT ,γ j

⎞

⎠ · ẼT

⎛

⎝
6∏

j=1

BT ,μ j

⎞

⎠ = ẼT (BT ,γBT ,μ),

where in the last equality we used the decomposition in (19) separately for γ and μ.
We check now that the factorization in (19) is always valid. Let S be a partial schedule
disjoint from T and with profile μ and let C j ∈ supp(γ). It is enough to check that

ẼT (BT ,γ yS) = ẼT (BT ,γ jBT ,γ−γ j yS), (21)

since the factorization follows by the linearity of ẼT and by applying iteratively for
every C j ∈ {C1, . . . ,C6} the above factorization. We have that

123

V. Verdugo et al.

ẼT (BT ,γ yS) = ẼT

⎛

⎝
∑

A∈F(T ,γ)

yAyS

⎞

⎠

= ẼT

⎛

⎝
∑

B∈F(T ,γ j)

yB
∑

D∈F(T∪B,γ−γ j)

yD yS

⎞

⎠ .

Fix B ∈ F(T , γ j) and consider a set D ∈ F(T , γ − γ j) \ F(T ∪ B, γ − γ j).
In particular, D is in profile γ − γ j but is incident to at least one machine, say �,
that is also incident to B. Since B is in profile γ j and it has disjoint support from
γ − γ j , the above implies that machine � is incident to different configurations, and
therefore its pseudoexpectation value is equal to zero. That is the contribution to the
pseudoexpectation value of the terms in F(T , γ − γ j) \ F(T ∪ B, γ − γ j) is is
zero. Furthermore, since F(T , γ − γ j) ⊇ F(T ∪ B, γ − γ j), we have that for every
B ∈ F(T , γ j),

ẼT

⎛

⎝yB
∑

D∈F(T∪B,γ−γ j)

yD yS

⎞

⎠

= ẼT

⎛

⎝yB

⎛

⎝
∑

D∈F(T∪B,γ−γ j)

yD +
∑

D∈F(T ,γ−γ j)\F(T∪B,γ−γ j)

yD

⎞

⎠ yS

⎞

⎠

= ẼT

⎛

⎝yB
∑

D∈F(T ,γ−γ j)

yD yS

⎞

⎠ = ẼT (yBBT ,γ−γ j yS).

We conclude by summing over B ∈ F(T , γ j), S ∈ F(T , μ) and using the linearity
of ẼT . ��
Remark It is worth noticing that the lower bound of Theorem 1 translates to the
weaker assignment linear program (see (22)–(23) in Sect. 4, which define the linear
program assign(T)). More precisely, there exists an instance such that, after applying
Ω(n) rounds of the SoS hierarchy to the assignment linear program, the semidefinite
relaxation has an integrality gap of at least 1.0009. This follows by Theorem 1 and a
general result by Au and Tunçel [4]. More details can be found in “Appendix B”.

4 Upper bound: breaking symmetries to approximate themakespan

In the previous sectionwe showed that the configuration linear programhas an inherent
difficulty for the SoS method with low (constant) degree to yield a (1+ ε) integrality
gap (and hence also the weaker assignment linear program below). It is natural to ask
whether there is a way to avoid this lower bound. As suggested by our proof in Sect. 3
and several other lower bounds in the literature [17,31,34,42,44], symmetries seem to
play an role in the quality of the relaxations obtained by the SoS and SA hierarchies.

123

Breaking symmetries to rescue sum of squares in the case…

A natural question is whether breaking the symmetries of a problem or instance might
help avoiding the lower bounds. In what follows we show that this is the case for the
makespan scheduling problem. We leave as an interesting open problem whether this
is the case for other relevant problems.

Symmetry breaking Breaking symmetries is a common technique to avoid algorith-
mic problems of symmetric instances of non-convex programs, in particular integer
programs [39]. Recall that given an optimization problem (P): min{ f (x) : x ∈ X} for
some set X ⊆ R

n and a group G acting on Rn by an action (g, x) �→ gx , we say that
(P) is G-invariant if f (x) = f (gx) and gx ∈ X for all x ∈ X and g ∈ G. Notice
that if x∗ is an optimal solution to (P), then gx∗ is also optimal for every g ∈ G in
this case. Hence, if we add to the formulation any inequality a�x ≤ b that keeps at
least one representative of any given orbit {gx : g ∈ G} for any x ∈ R

n , that is, for
all x ∈ R

n there exists g ∈ G such that a�(gx) ≤ b, then we guarantee that (P’):
min{ f (x) : x ∈ X , a�x ≤ b} contains at least one optimal solution. If such inequality
is not valid for (P), we say that it is a symmetry breaking inequality.1

Application to scheduling We show that we can obtain almost optimal relaxations
in terms of the integrality gap if we add a well chosen set of symmetry breaking
inequalities to a ground formulation and then apply the SA hierarchy (which is even
weaker than SoS). Furthermore, the ground formulation we use is the assignment
linear program. In this LP there are variables xi j indicating whether job j is assigned
to machine i . For an estimate or guess T for the optimal makespan we denote by
assign(T) the formulation given by

∑

i∈[m]
xi j = 1 for all j ∈ J , (22)

∑

j∈J

xi j p j ≤ T for all i ∈ [m], (23)

xi j ≥ 0 for all i ∈ [m], for all j ∈ J . (24)

If we require that T ≥ max j∈J p j then the assignment linear program has an
integrality gap of 2 [54].

Roadmap In Sect. 4.1 we define the symmetry breaking inequalities that we will add
to the assignment linear program. In Sect. 4.2 we will show how to round a feasible
solution of the SA hierarchy with 2Õ(1/ε2) rounds over this program to obtain an
integral solution with makespan (1 + ε)T . In Sect. 4.3 we will show that breaking
some new approximate symmetries, with just O(1/ε5) rounds of the SA hierarchy
suffices to obtain a (1+ ε)-approximate solution, yielding an exponential decrease in
the number of necessary rounds. By approximate symmetries we mean that first we

1 It is worth noticing that such an inequality might not break all symmetries, that is, we do not require that
there is a unique representative of each orbit.

123

V. Verdugo et al.

round similar processing times to the same value, and then add symmetry breaking
inequalities for the new induced symmetries.

4.1 Symmetry breaking inequalities

In order to define our symmetry breaking inequalities we consider a partitioning
obtained by grouping long jobs with a similar processing time. Let ε ∈ (0, 1) such
that 1/ε ∈ Z. We say that a job j ∈ J is long if p j ≥ ε · T , and it is short otherwise.
The subset of long jobs is denoted by Jlong and the short jobs are Jshort = J \ Jlong.
For every q ∈ {1, . . . , (1 − ε)/ε2} we define

Jq =
{

j ∈ Jlong :
(
1

ε
+ q

)

ε2T > p j ≥
(
1

ε
+ q − 1

)

ε2T

}

.

Let s := (1 − ε)/ε2 denote the number of groups of long jobs. The reader may
imagine that for each group Jq with q ∈ [s] we round the size of each job j ∈ Jq to
(1

ε
+ q

)
ε2T . This increases the overall makespan at most by a factor 1+ ε. Also note

that if we can find a schedule for the long jobs with makespan at most (1+ ε)T , then
there is also a schedule for all jobs with makespan at most (1+ ε)T since we can add
the short jobs in a greedy manner (see e.g.,[54]; we assume that assign(T) is feasible
and then

∑
j∈J p j ≤ m · T holds).

Configurations Based on the partition of the long jobs {Jq}q∈[s] we define config-
urations of the long jobs. We say that a configuration C is a multiset of elements in
{1, . . . , s}. Let C denote the set of all configurations. Similarly as in Sect. 3, for a con-
figuration C we define m(q,C) to be the number of times that q appears (repeated) in
C . Intuitively, this means that configuration C contains m(q,C) slots for jobs in Jq .
In what follows, we introduce a set of constraints that guarantees that every integer
solution to assign(T) obeys a specific order on the configurations over the machines,
i.e., there is a total order of the configurationsC such that for two machines i, i ′ ∈ [m]
with i < i ′ the configuration on i is smaller according to this total ordering than
the configuration on i ′. This is a way of breaking the symmetries due to permuting
machines. Formally, we say that a configuration C is lexicographically larger than a
configuration C ′ if there exists q ∈ [s] such that m(�,C) = m(�,C ′) for all � < q
andm(q,C) > m(q,C ′). We denote this by C >lex C ′. In particular, the relation>lex
defines a total order over C.

Integer linear program Let B := 1 + 2smaxq∈[s] |Jq | = O(|J |2). We define an
integer linear program assign(B, T) below in which we enforce that the machines are
ordered according to the relation >lex.

∑

i∈[m]
xi j = 1 for all j ∈ J , (25)

∑

j∈J

xi j p j ≤ T for all i ∈ [m], (26)

123

Breaking symmetries to rescue sum of squares in the case…

s∑

q=1

Bs−q
∑

j∈Jq

(
xi j − x(i+1) j

) ≥ 0 for all i ∈ [m − 1], (27)

xi j ≥ 0 for all i ∈ [m], for all j ∈ J . (28)

To avoid confusion we sometimes use the notation assign(J , B, T) to emphasize
that we are considering the program for the job set J . Given a subset of jobs K ⊆
J such that

∑
j∈K p j ≤ T , we denote by conf(K) the configuration such that for

every q ∈ {1, . . . , s}, m(q, conf(K)) = |K ∩ Jq |. We then say that conf(K) is the
configuration induced by K . In the followingwe show that every integer solution to the
program assign(B, T) obeys the lexicographic order >lex on the configurations over
the machines. More specifically, given a feasible integer solution x ∈ assign(T) and a
machine i ∈ [m], let confi (x) ∈ C be the configuration defined by the job assignment
of x to machine i , that is, for every q ∈ {1, . . . , s}, m(q, confi (x)) = ∑

j∈Jq xi j .

Theorem 7 In every integer solution x ∈ assign(B, T), for every machine i ∈ [m−1]
we have that confi (x) ≥lex confi+1(x).

To prove Theorem 7, we define LB : C → R to be the function such that for every
configuration C ∈ C, LB(C) = ∑s

q=1 B
s−qm(q,C). The important point is that LB

is strictly increasing.

Lemma 9 For two configurations C,C ′ ∈ C with C <lex C ′ we have that LB(C) <

LB(C ′).

Proof Consider two configurations C,C ′ ∈ C such that C <lex C ′. Let q̃ be the
smallest integer in {1, . . . , s} such that the multiplicities of the configurations are
different, that is, m(�,C) = m(�,C ′) for every � < q̃ . Hence it holds that m(q̃,C) <

m(q̃,C ′). In particular, every term up to max{0, q̃ − 1} in the summation defining
LB(C)−LB(C ′) is equal to zero.Byupper bounding the summation frommin{s, q̃+1}
we get that

∑s
q=min{s,q̃+1} Bs−q

(
m(q,C) − m(q,C ′)

)
is at most

s∑

q=min{s,q̃+1}
Bs−q (|m(q,C)| + |m(q,C ′)|)

≤
s∑

q=min{s,q̃+1}
Bs−q · 2|Jq | < B∗ · Bs−q̃−1 < Bs−q̃ ,

and since m(q̃,C ′) − m(q̃,C) ≥ 1 it follows that

s∑

q=q̃

Bs−q (
m(q,C) − m(q,C ′)

)
< Bs−q̃ (

m(q̃,C) − m(q̃,C ′)
) + Bs−q̃

< Bs−q̃ (
m(q̃,C) − m(q̃,C ′) + 1

)
< 0

and hence LB(C) < LB(C ′). ��

123

V. Verdugo et al.

Proof of Theorem 7 Fix a machine i ∈ [m − 1]. Since x is an integral solution in
assign(B, T), we have that confi (x), confi+1(x) ∈ C. The symmetry breaking con-
straints implies that

0 ≤
s∑

q=1

Bs−q (m(q, confi (x)) − m(q, confi+1(x)))

= LB(confi (x)) − LB(confi+1(x)).

Applying Lemma 9 it holds that LB is strictly increasing and therefore we conclude
that confi (x) ≥lex confi+1(x). ��

In general, assign(B, T) isnot Sm-invariant, that is, given a solution to assign(B, T),
if we permute the machines then we do not necessarily obtain another solution for
it. However, it is a valid formulation, in the sense that if there exists a schedule with
makespan atmost T , then assign(B, T) has a feasible integral solution (more precisely,
we retain a representative solution for each orbit). To show this,we can take an arbitrary
schedule of makespan T and reorder the machines lexicographically according to their
configurations.

Lemma 10 If there exists an integral feasible solution to assign(T) then there exists
also an integral feasible solution to assign(B, T).

Proof Since there exists a schedule of makespan at most T , there exists an inte-
gral solution x ∈ assign(T). Since the lexicographic relation defines a total order
over C, there exists a permutation σ ∈ Sm such that for every i ∈ [m − 1],
confσ(i)(x) ≥lex confσ(i+1)(x). Consider the integral solution x̃ obtained by per-
muting the solution according to σ , that is, x̃ = σ x . Then, for every i ∈ [m − 1] it
follows that

∑s
q=1 B

s−q ∑
j∈Jq

(
x̃i j − x̃(i+1) j

)
is equal to

s∑

q=1

Bs−q (
m(q, confσ(i)(x)) − m(q, confσ(i+1)(x))

)

= LB(confσ(i)(x)) − LB(confσ(i+1)(x)) ≥ 0.

The last step holds by Lemma 9. We conclude that x̃ ∈ assign(B, T). ��

4.2 LP based approximation scheme

In this section we prove Theorem 2, i.e., we show that if we apply 2Õ(1/ε2) rounds of
the Sherali-Adams hierarchy to assign(B, T) then the integrality gap of the resulting
LP is at most 1+ε, i.e., if it has a feasible solution then there exists an integral solution
with makespan at most (1 + ε)T . Recall the definition of a SA pseudoexpectation at
the end of Sect. 2; in particular, recall that if a degree-r SA pseudoexpectation exists
for a linear program, then it has a solution after applying r rounds of SA to it. The
main result of this section is the following theorem.

123

Breaking symmetries to rescue sum of squares in the case…

Theorem 8 Consider a value T > 0 and suppose there exists a degree-(1/ε)2/ε
2
SA

pseudoexpectation for assign(B, T). Then, there exists an integral solution in
assign(B, (1 + ε)T) and it can be computed in polynomial time.

In what follows we might omit SA when referring to pseudoexpectations since the
context is clear. Given a degree-r pseudoexpectation Ẽ and a subset A ⊆ [m] × J
with Ẽ(xA) �= 0, we define the A-conditioning to be the linear operator over R[x]/IE
defined by ẼA(xI) = Ẽ(xI xA)/Ẽ(xA), for every I ⊆ [m] × J . We also say that we
condition on A. The following lemma summarises some of the relevant properties of
the conditionings. We refer to [33] for a proof of it as well as a detailed exposition of
the SA hierarchy.

Lemma 11 Let Ẽ be a degree-r pseudoexpectation and let ẼA be the conditioning for
some A ⊆ [m] × J of cardinality at most r . Then

(a) ẼA(xA) = 1 and ẼA(xi j) = 1 for every (i, j) ∈ A.
(b) ẼA is a degree-(r − |A|) pseudoexpectation.
(c) For every B ⊆ [m] × J such that Ẽ(xB) ∈ {0, 1} we have Ẽ(xB) = ẼA(xB).

Stability In the following consider a degree-r pseudoexpectation Ẽ for the program
assign(Jlong, B∗, T), and let {J1, . . . , Js} be the partitioning of Jlong defined above.

Recall that s = (1−ε)/ε2. Our strategy is to find a set A ⊆ [m]×J with |A| ≤ 2Õ(1/ε2)

such that in ẼA for each machine i and for each set Jq ∈ {J1, . . . , Js} an integral
number of jobs from Jq are assigned to i . Since in each set Jq the jobs have essentially
the same length, based on ẼA we can compute an assignment of the long jobs to the
machines of makespan at most (1 + ε)T . In order to find the set A, we will apply
Lemma 11 several times. In the process we will achieve that for some machines i
the number of jobs from some set Jq is integral and does not change if we condition
on further elements from [m] × J . Formally, we define that for some q ∈ {1, . . . , s}
and a ∈ N a machine i is (q, a)-stable in Ẽ if we have

∑
j∈Jq Ẽ(xi j) = a and

∑
j∈Jq ẼA(xi j) = a for any A-conditioning with A ⊆ [m]× J . We say that a machine

i ∈ [m] is q-stable in Ẽ if it is (q, a)-stable for some a ∈ Z+. We will apply the
following lemma over Ẽ several times, until each machine i is q-stable for each
q ∈ {1, ..., s}.
Lemma 12 Consider q ∈ {1, . . . , s}, integers a1, ..., aq , a degree-r pseudoexpectation
Ẽ and a set of consecutive machines {iL , ..., iR}, with r ≥ 1/ε2. Suppose that every
machine i ∈ {iL , . . . , iR} is (q̃, aq̃)-stable in Ẽ for each q̃ ∈ {1, ..., q}. Then, there is
a degree-(r −2/ε2) pseudoexpectation Ẽstab such that each machine i ∈ {iL , . . . , iR}
is q̂-stable in Ẽstab for each q̂ ∈ {1, ..., q + 1}.

Phase 1: Obtaining a good pseudoexpectation We first use Lemma 12 in order
to prove Theorem 8. We prove Lemma 12 later in Sect. 4.2.1. In what follows let
Ẽ be a degree-(1/ε)2/ε

2
pseudoexpectation for assign(B, T). Our algorithm works

in s stages. After stage q we obtain a pseudoexpectation in which each machine
is q̃-stable for each q̃ ∈ {1, . . . , q}. In the first stage we apply Lemma 12 on the
solution Ẽ with iL = 1, iR = m and q = 0, and let Ẽ(0) be the pseudoexpectation

123

V. Verdugo et al.

obtained.Assume by induction that after stage q wehave obtained a pseudoexpectation
Ẽ

(q) in which each machine is q̃-stable for q̃ ∈ {1, . . . , q}. Consider a partition
of [m] given by {M1, . . . , Mk} of the machines such that in Ẽ

(q), for each set M�

with � ∈ {1, . . . , k}, there are integers a�,1, . . . , a�,q such that each machine in M�

is (q̃, a�,q̃)-stable for each q̃ ∈ {1, . . . , q}. Since Ẽ
(q) is a pseudoexpectation for

assign(B, T), which includes the symmetry breaking constraints, themachines in each
set M� are consecutive. Since the possible number of combinations a�,1, . . . , a�,q is
at most (1/ε + 1)q we can find such a partition with k ≤ (1/ε + 1)q . For each
� ∈ {1, . . . , k} we apply Lemma 12. Hence, the total number of rounds in this stage is
at most (1/ε + 1)q · 2/ε2. Denote by Ẽ(q+1) the obtained solution. We continue for s
stages. Let Ẽf be the pseudoexpectation returned by the algorithm. The degree of Ẽf

is at least (1/ε)2/ε
2 −∑s

q=1(1/ε +1)q ·2/ε2 ≥ 0. So in particular, during the process
we can indeed apply Lemma 12 as needed. We showed that the following holds.

Proposition 3 For every q̃ ∈ {1, . . . , s}, every machine is q̃-stable in Ẽf.

Phase 2: Integral assignment for Jlong Based on Ẽ f we define an integral assignment
of the long jobs. Note that for each machine i and each value q ∈ [s], machine i is
q-stable; we define biq := ∑

j∈Jq Ẽ
f (xi j) which is the number of jobs of Jq that are

assigned to i by Ẽ f . Since Ẽ f yields a valid solution to assign(B, T), for each q ∈ [s]
we have that

∑
i∈[m] biq = |Jq |. For each q ∈ [s] we assign now the jobs in Jq to the

machines such that each machine i receives exactly biq jobs from Jq . Intuitively, all
jobs in Jq have essentially the same length (up to a factor 1 + ε), and therefore it is
not relevant which exact jobs from Jq we assign to i , as long as we assign biq jobs in
total. Afterwards, we the short jobs in a standard greedy list scheduling procedure: We
consider the jobs in an arbitrary order and assign each job on a machine that currently
has the minimum load among all machines. Now we are ready to prove Theorem 8 by
showing that the load of every machine is at most (1 + ε)T .

Theorem 8 Let
{
x̄i, j

}
i∈[m], j∈J denote the computed integral assignment of the jobs to

the machines, i.e., x̄i, j = 1 if we assigned job j on machine i and x̄i, j = 0 otherwise.
We first check that for each machine i ∈ [m], we have that

∑s
q=1

∑
j∈Jq x̄i, j p j ≤

(1+ ε)T . Since the solution given by Ẽ f feasible for assign(B, T), for each machine
i we have that

∑s
q=1 biq

(1
ε

+ q − 1
)
ε2T ≤ T . This implies for each machine i that

s∑

q=1

∑

j∈Jq

x̄i, j p j ≤ (1 + ε)

s∑

q=1

∑

j∈Jq

x̄i, j

(
1

ε
+ q − 1

)

ε2T

≤ (1 + ε)

s∑

q=1

(
1

ε
+ q − 1

)

ε2T
∑

j∈Jq

x̄i, j

≤ (1 + ε)

s∑

q=1

(
1

ε
+ q − 1

)

ε2T · biq ≤ (1 + ε)T .

It remains to argue about the short jobs. If the global makespan does not increase while
assigning them greedily, the overall makespan remains at most (1 + ε)T . Otherwise,

123

Breaking symmetries to rescue sum of squares in the case…

the makespan of any two machines differ by at most εT . Since
∑

j p j ≤ mT we
conclude that the makespan is at most (1 + ε)T . ��

4.2.1 Stable conditionings: Proof of Lemma 12

Recall that Ẽ is a degree-r pseudoexpectation with r ≥ 1/ε2. We use the following
strategy to prove Lemma 12. First, we identify the rightmost machine i such that
according to Ẽ with non-zero probability there are 1/ε jobs from Jq+1 assigned to i .
Let i0 be this machine and let A ⊆ [m]× J denote the corresponding pairs (i, j) with
i = i0 and j ∈ Jq+1.We apply Lemma 11 on A. We argue that in the resulting pseudo-
expectation ẼA with non-zero probability there are 1/ε jobs from Jq+1 assigned to
iL , let A′ ⊆ [m] × J denote the corresponding pairs. We apply Lemma 11 on A′ as
well. In the resulting pseudoexpectation ẼA∪A′ , the symmetry breaking constraints in
assign(B, T) ensure that eachmachine i ′ between iL and i0 has exactly 1/ε jobs from
Jq+1 assigned to i and therefore i ′ is (q + 1)-stable. Also, no machine between i0
and iR will ever get 1/ε jobs from Jq+1 assigned to it with non-zero probability, no
matter on which sets A′′ we might condition later. We continue inductively: on the
machines between i0 and iR we look for the rightmost machine i such that according
to ẼA∪A′ with some non-zero probability there are 1/ε − 1 jobs from Jq+1 assigned
to i , etc. There are at most 1/ε iterations in total and in each step the degree of
the pseudo-expectation decreases by at most 2/ε. Therefore, at the end, we obtain a
degree-(r − 2/ε2) pseudo-expectation in which all machines are (q + 1)-stable.

Now we describe our argumentation in detail. First assume that there is no machine
i ∈ {iL , ..., iR} for which there exists a set A ⊆ [m] × J with Ẽ(xA) > 0, |A| = 1/ε,
and where each tuple (h, υ) ∈ A satisfies that h = i and υ ∈ Jq+1. In this case we
define Ẽ

(0) = Ẽ and i0 = iL − 1. Intuitively, in this case in our final assignment
there will be no machine in {iL , ..., iR} that has 1/ε jobs from Jq+1 assigned to it.
We will use later in our induction that Ẽ(0) is a degree-(r − 2/ε) pseudoexpectation.
Otherwise let i0 be the rightmost machine in {iL , ..., iR}, i.e., the machine with largest
index, satisfying the above for some set A. We condition on A and obtain the degree-
(r − 1/ε) SA conditioning ẼA. Recall that by Lemma 11(a) each job υ ∈ Jlong with
(i0, υ) ∈ A is scheduled integrally to i0.

Lemma 13 There exists a set A′ ⊆ [m] × J with ẼA(xA′) > 0, |A′| = 1/ε, and for
every (h, υ) ∈ A′ we have that h = iL and υ ∈ Jq+1.

Proof Assume that this is not the case. Then let A′ denote the set ofmaximum size such
that ẼA(xA′) > 0 and such that each (h, υ) ∈ A′ satisfies that h = iL and υ ∈ Jq+1.
Observe that |A′| ≤ 1/ε by Lemma 11(b), and let ẼA∪A′ be the degree-(r − 2/ε) SA
conditioning. Then, for each job j ∈ Jq it holds that ẼA∪A′(xiL j) = 0, otherwise 0 <

ẼA∪A′(xiL j) = ẼA(xA′xiL j)/ẼA(xA′) and then ẼA(xA′xiL j) = ẼA(xA′∪{(iL , j)}) > 0,
which contradicts the maximality of A′. But then the fractional schedule given by
ẼA′(xi j) for every (i, j) ∈ [m] × Jlong violates the symmetry breaking constraints of
assign(Jlong, B, T), which is a contradiction. ��

Starting from ẼA we condition on A′ (i.e., we applyLemma11) given byLemma13,
obtaining Ẽ(0) = ẼA∪A′ . As a result, machine iL andmachine i0 have both exactly 1/ε

123

V. Verdugo et al.

jobs from Jq assigned to it. Due to the symmetry breaking constraints of the program
assign(Jlong, B, T) this implies that each machine in {iL , ..., i0} has exactly 1/ε jobs
from Jq (fractionally) assigned to it in Ẽ(0).

Lemma 14 For each machine i ∈ {iL , ..., i0} we have ∑
j∈Jq Ẽ

(0)(xi j) = 1/ε.

Proof Machine i0 has 1/ε jobs from Jq assigned to it integrally. If therewas yet another
job j ∈ Jq fractionally assigned to i0 then we could condition on (i0, j) and obtain
a degree-(r − 1/ε − 1) pseudoexpectation, with at least 1/ε + 1 long jobs assigned
to i0, which is a contradiction. The same argument holds for machine iL . The claim
for the machines {iL + 1, ..., i0 − 1} follows by the symmetry breaking constraints in
assign(Jlong, B, T) that enforce the lexicographic ordering over the machines. ��
Proof of Lemma 12 Assumeby induction that for some k ∈ {0, ..., 1/ε−1}weobtained
adegree-(r−∑k

�=1 2(1/ε+1−�))pseudoexpectation Ẽ(k) such that there aremachines
i0, ..., ik ∈ [m] such that for each � ∈ {0, ..., k} we have that i� ≤ i�+1 and each
machinew ∈ {i�−1+1, ..., i�} satisfies∑

j∈Jq Ẽ
(k)(xw j) = 1/ε−�, with i−1 = iL −1

for convenience. Moreover, assume by induction that there is no set Γ ⊆ [m] × Jlong
with Ẽ

(k)(xΓ) > 0 and |Γ | = 1/ε − k such that each (w, j) ∈ Γ satisfies that
w = ik + 1 and j ∈ Jq . The solution Ẽ(0) constructed above satisfies the base case of
k = 0.

Inductive step. Given the solution Ẽ(k) we construct a solution Ẽ(k+1) as follows. Let
ik+1 denote the rightmostmachine larger than ik such that there is a set Ak ⊆ [m]×Jlong
with Ẽ

(k)(xAk) > 0, |Ak | = 1/ε − k − 1, and each tuple (w, υ) ∈ Ak satisfies that
w = ik+1 and υ ∈ Jq . If there is no such machine then we define ik+1 = ik and set
Ẽ

(k+1) = Ẽ
(k) which is a pseudoexpectation of degree r − ∑k+1

�=1 2(1/ε + 1 − �).

Otherwise we condition on Ak and obtain Ẽ
(k)
Ak
, of degree r −∑k

�=1 2(1/ε +1−�))−
(1/ε − k − 1). Following the same lines of Lemma 13 we have that there exists a set
Bk ⊆ [m]× Jlong with Ẽ

(k)
Ak

(xBk) > 0, |Bk | = 1/ε − k−1, and each tuple (h, υ) ∈ Bk

satisfies that h = ik + 1 and υ ∈ Jq . We then define Ẽ
(k+1) = Ẽ

(k)
Ak∪Bk

, which is a

pseudoexpectation of degree r − ∑k+1
�=1 2(1/ε + 1 − �).

Claim 3 For eachw ∈ {ik+1, ..., ik+1}wehave that∑ j∈Jq Ẽ
(k+1)(xw j) = 1/ε−k−1.

We see how to conclude the lemma and then we show check the claim. Since we
chose machine ik+1 to be the rightmost machine with the claimed properties, Ẽ(k+1)

satisfies the induction hypothesis for k + 1. Finally, we define Ẽstab = Ẽ
(1/ε), which

yields that Ẽstab is a pseudoexpectation of degree r−2/ε2, since
∑1/ε

�=1 2(1/ε+1−�) ≤
2 /ε2. That concludes the lemma.

Proof of Claim 3 On machine w = ik + 1 we conditioned on the set Bk due to the
previous claim with |Bk | = 1/ε − k − 1. Therefore

∑
j∈Jq Ẽ

(k+1)(xw j) ≥ 1/ε −
k − 1. On the other hand, if

∑
j∈Jq Ẽ

(k+1)(xw j) > 1/ε − k − 1 then there must

be a pair (w, j) /∈ Bk with Ẽ
(k+1)(xw j) > 0 and j ∈ Jq . But this implies that

Ẽ
(k)(xBk∪{(w, j)}) > 0 which contradicts the induction hypothesis. With the same

123

Breaking symmetries to rescue sum of squares in the case…

reasoning we argue that
∑

j∈Jq Ẽ
(k+1)(xik+1 j) = 1/ε − k − 1. The claim for the

machines in {ik +2, ..., ik+1−1} then follows from the symmetry breaking constraints
in assign(Jlong, B, T) that enforce the lexicographic over the machines. ��

4.3 A faster LP based approximation scheme

In Sect. 4.2 we proved that after applying (1/ε)2/ε
2
rounds of Sherali-Adams to

assign(B, T) we obtain a linear relaxation with an integrality gap of at most 1+ ε. In
this section, we add to assign(B, T) a set of constraints that we refer to as the ordering
constraints, obtaining a linear program that we refer to as order(B, T). Intutitively, we
prove that if we apply only poly(1/") rounds of Sherali-Adams to this new program
then its integrality gap drops to 1 + ε. On the other hand, it might be that there is
no optimal solution (i.e., a solution with makespan OPT) that satisfies the ordering
constraints and in particular it might be that order(B,OPT) does not have a feasible
solution (in contrast to assign(B,OPT) which is always feasible). However, we can
guarantee that order(B, (1 + ε)OPT) is always feasible.

Ordering constraints Roughly speaking, we use a new set of constraints that allow
us to break symmetries due to permutations of jobs in the same class Jq (and not
only the symmetries corresponding to permutations of machines), which is a key
difference to the approach used for the approximation scheme of Sect. 4.2. For each
q ∈ {1, . . . , s} assume that Jq = { jq,1, jq,2, ..., jq,|Jq |} and we impose that the jobs in
Jq are scheduled in this order, i.e., if jobs jq,� and jq,�+1 are scheduled on machines
i ∈ [m] and h ∈ [m] for some � ∈ {1, . . . , |Jq | − 1}, then i ≤ h. To enforce this,
for each q ∈ {1, . . . , s}, each � ∈ {1, ..., |Jq | − 1}, and for each h ∈ [m] we add to
assign(B, T) the constraint

h∑

i=1

xi jq,�
≥

h∑

i=1

xi jq,�+1 . (29)

Denote by order(B, T) the LP obtained by adding the above set of constraints to
assign(B, T). It might be that there is no feasible solution to order(B,OPT). However,
in the following lemma we show that there exists always a solution to order(B, (1 +
ε)OPT).

Lemma 15 There exists a feasible integral solution to order(B, (1 + ε)OPT).

Proof Consider the integral vector x to assign(B,OPT) that stems from the optimal
solution to the given instance. For each machine i ∈ [m] denote by confi (x) its vector
(ai,1, . . . , ai,s) as defined in Sect. 4.2. For each q ∈ {1, . . . , s} we rearrange the jobs
in Jq on the machines such that the resulting schedule satisfies the order constraints
and on each machine the number of jobs from each set Jq stays the same. Given
q ∈ {1, . . . , s}, for each machine i ∈ [m] let biq denote the number of jobs from Jq
on i ∈ [m] in a schedule with optimal makespan OPT. In our new schedule, for each
machine i ∈ [m] we define ciq = ∑i

h=1 bhq and we set c0q = 0. Then we assign
to each machine i ∈ [m] the jobs { jq,ci−1,q+1, ..., jq,ciq }. We repeat this operation for

123

V. Verdugo et al.

every q ∈ {1, . . . , s}. Within each set Jq the processing times of two jobs can differ
by at most ε2OPT. Each machine has at most 1/ε long jobs assigned to it. Therefore,
due to our reassignment of jobs the makespan of the schedule can increase by at most
1
ε

· ε2OPT = εOPT on each machine. This integral schedule yields a solution to
order(B, (1 + ε)OPT). ��
In the remainder of this section we prove the following theorem.

Theorem 9 Consider a value T > 0 and suppose there exists a degree 4/ε5

SA pseudoexpectation for order(B, T). Then, there exists an integral solution for
order(B, (1 + ε)T) and it can be computed in polynomial time.

As before we first construct a solution for the long jobs only and afterwards
argue that we can add the short jobs with only marginal increase of the makespan.
For a degree-r pseudoexpectation Ẽ and a set of machines M∗, we say that M∗ is
focused if each job j ∈ Jlong is either completely assigned to machines in M∗, i.e.,
∑

i∈M∗ Ẽ(xi j) = 1, or to no machine in M∗, i.e.,
∑

i∈M∗ Ẽ(xi j) = 0 and the same
holds for any conditioning obtained from Ẽ.

Overview We first apply Lemma 12 to make sure that each machine is 1-stable.
This partitions the machines into sets {M0, . . . , M1/ε} such that the machines in each
set M� have exactly � jobs from J1. The machines in each set M� are consecutive.
Then, intuitively, for each set M� we take the rightmost machine i and condition
on every single long job on i (so not just on the jobs in J1). As a result, due to the
ordering constraints each setM� is focused. This operation is formalized in Lemma 16.
Then, we observe that for each set of machines M� we obtain a degree-(r − 4/ε3)
pseudoexpectation for order(Jlong,�, B, T , M�) for some set Jlong,� ⊆ Jlong that is
completely independent of all other setsM�′ with �′ �= �. Therefore, we can recurse on
each set of machines M� independently such that the degree of our pseudoexpectation
drops by at most 4/ε3 in each level. Since there are only 1/ε2 levels, it suffices to start
with a pseudoexpectation of degree at most 4/ε5.

Lemma 16 Consider q ∈ {0, 1, . . . , s}, integers a1, ..., aq and a degree-r pseudoex-
pectation Ẽ such that each machine i ∈ [m] is (q̃, aq̃)-stable for each q̃ ∈ {1, ..., q}.
Then there is a degree r − 4/ε3 pseudoexpectation Ẽfocus obtained from Ẽ via condi-
tioning on at most 4/ε3 variables such that each machine in [m] is q̂-stable for each
q̂ ∈ {1, ..., q + 1} and there is a partioning of [m] given by {M1, ..., Mk} of consecu-
tive machines such that for each � ∈ {1, . . . , k} we have that M� is focused and each
machine i ∈ M� is (q̃ + 1, �)-stable.

Proof First, we applyLemma12with the samevalueq, the integers a1, ..., aq , andwith
M∗ = [m]. Let Ẽstab the degree (r −2/ε2) pseudoexpectation obtained. Since Ẽstab is
(q + 1)-stable, we obtain a partition of [m] given by {M0, ..., Mk} with k ≤ 1/ε such
that eachmachine i ∈ M� is (q+1, �)-stable for each � ∈ {0, ..., k}. For � ∈ {0, . . . , k}
we proceed as follows: For each q̃ ∈ {1, . . . , s} let η(q̃, �) be the largest index such
that there is a job jq̃,η(q̃,�) with Ẽ

stab(xi jq̃,η(q̃,�)
) > 0 for some machine i ∈ M�. We

condition on (i, jq̃,�(q̃,�)). More precisely, we iterate over the values q̃ ∈ {1, . . . , s}

123

Breaking symmetries to rescue sum of squares in the case…

and condition on the respective jobs one by one, obtaining a pseudoexpectation Ẽfocus.
Since 2/ε2 − s(1/ε + 1) ≤ 4/ε3 this pseudoexpectation is of degree r − 4/ε3.

We claim that in Ẽ
focus each subset M� with � ∈ {0, . . . , k} is focused. At the

beginning the set [m] is focused. At the first step � = 1, for each q̃ ∈ {1, . . . , s} either
there is no job j ∈ Jq̃ fractionally assigned on a machine in M1 or we conditioned on
the job jq̃,η(q̃,1) with largest index η(q̃, 1). Hence, due to the order constraints, no job
jq̃,η′ with η′ > η(q̃, 1) can be fractionally assigned to a machine in M1. Hence, for
each q̃ ∈ {1, . . . , s} there is a set J̃q̃ ⊆ Jq̃ such that all jobs in J̃q̃ are assigned on M1

and no job in Jq̃ \ J̃q̃ is fractionally assigned. Hence, M1 is focused and [m] \ M1 is
also focused. The remainder follows by induction with the same argument. ��

Algorithm In the remaining fix r = 4/ε5. We take a degree-r -pseudoexpectation for
order(B, T). We first apply Lemma 16 with q = 0 and obtain a solution Ẽ

focus. For
each groupM� with � ∈ {1, . . . , k} denote by Jlong,� the jobs from Jlong assigned onM�

in according to Ẽ
focus. Then, for each � ∈ {1, . . . , k} this yields a pseudoexpectation

Ẽ
focus
� for the program order(Jlong,�, B, T , M�) of degree r − 4/ε3, in which each

machine is 1-stable. Intuitively, we continue recursively on each part. The depth of
this recursion is s. In each level, we condition on at most 4/ε3 variables. Hence, if we
obtain a pseudoexpectation of degree s · 4/ε3 ≤ 4/ε5 in order(B, T) then we obtain
that there exists a solution for order(B, T) that is q-stable for each q ∈ {1, . . . , s}.
Formally, we prove the following lemma by induction.

Lemma 17 Consider q ∈ {0, 1, . . . , s}, integers a1, ..., aq and a degree 4(s − q)/ε3

pseudoexpectation such that each machine i ∈ [m] is (q̃, aq̃)-stable for each q̃ ∈
{1, ..., q}. Then, there is a solution in order(B, T) such that each machine i ∈ [m] is
q̂-stable for each q̂ ∈ {1, . . . , s}.
Proof We prove the lemma by induction. If q = s then the lemma is trivially true.
Now suppose that the lemma is true for some value q + 1. Given a pseudoexpectation
corresponding to solution to order(B, T) we apply Lemma 16 and obtain a solution
Ẽ
focus and the partition {M1, . . . , Mk}. For each � ∈ {1, . . . , k} this yields a pseudoex-

pectation Ẽfocus
� with degree 4(s−q−1)/ε3 such that in Ẽfocus

� eachmachine i ∈ M� is
(q +1, �)-stable and also q̃-stable for each q̃ ∈ {1, ..., q}. On each pseudoexpectation
Ẽ
focus
� with � ∈ {1, . . . , k} we apply the induction hypothesis and obtain a solution

x� ∈ order(Jlong,�, B, T , M�) such that in x� each machine i ∈ [m] is q̂-stable for
each q̂ ∈ {1, . . . , s}. We define the solution to be the direct sum of the solutions x�

over � ∈ {1, . . . , k}. ��
The lemma above yields that if there exists degree 4/ε5 pseudoexpectation to

order(B, T) then there exists a solution x ∈ order(B, T) in which each machine
is q̂-stable for each q̂ ∈ {1, . . . , s}. The assignment of the long jobs to the machines
is identical to the proof of Lemma 12. Finally, we add the short jobs greedily like in
Sect. 4.2. This completes the proof of Theorem 9.

123

V. Verdugo et al.

Appendix A: Proof of Theorem 4

We show how to prove Theorem 4 following the lines in the work of Raymond et
al. [45]. We need a few intermediate results, and the symmetry reduction theorem
from Gaterman and Parrilo [13], stated in our setting.

Theorem 10 ([13]) Suppose that g ∈ R[y]/sched is a degree-� SoS and Sm-invariant
polynomial. For each partition λ � m, let τλ be a tableau of shape λ and let
{bλ

1 , . . . , b
λ
mλ

} be a basis Wτλ . Then, for each partition λ � m there exists a
mλ × mλ positive semidefinite matrix Qλ such that g = ∑

λ�m〈Qλ,Y λ〉, where
Y λ
i j = sym(bλ

i b
λ
j).

Given two partitions λ,μ, we say that λ � μ if λ ≥lex μ and the number of parts
of μ is at least the number of parts of λ. The following lemma is a variant of [45,
Theorem 2] for the action of the symmetric group in our setting. Together with the
theorem of Gatermann and Parrilo this yields Theorem 4.

Lemma 18 The dimension mλ ofQ�
λ in the isotypic decomposition ofQ

� is zero unless
λ ≥lex (m − �, 1, . . . , 1).

Proof Let yS be a monomial of degree at most � with S = {(ik,Ck) : k ∈ [�]}. In
particular, |{ik : k ∈ [�]}| ≤ �. Let τ be any tableau with shape (m − �, 1, . . . , 1),
where the tail of τ contains every elements of {ik : k ∈ [�]}. The subgroup Rτ fixes
S, therefore yS ∈ W�

τ , and we have then

Q� ⊆
⊕

τ :shape(τ)=(m−�,1,...,1)

W�
τ ⊆

⊕

λ�(m−�,1,...,1)

Q�
λ,

where the second containment holds by [45, Lemma 1]. To conclude, observe that if
λ � (m − �, 1, . . . , 1) then λ1 ≥ m − �. Since λ � m, the maximum number of parts
for λ ism−λ1 ≤ �, that is, λ has at most �+1 parts. Therefore, λ� (m− �, 1, . . . , 1)
if and only if λ ≥lex (m − �, 1, . . . , 1). ��
Proof of Theorem 4 Let g ∈ R[y]/sched be a degree-� SoS and Sm-invariant poly-
nomial. By Theorem 10 and Lemma 18, for each λ ∈ Λ� there exists a positive
semidefinite matrix Y λ such that g = ∑

λ∈Λ�
〈Qλ,Y λ〉. Since {bλ

1 , . . . , b
λ
mλ

} ⊆
span(Pλ), there exists a real matrix Tλ such that Tλ(pλ

1 , . . . , p
λ
�λ

) = (bλ
1 , . . . , b

λ
mλ

).

Consider the congruent transformation Mλ = T �
λ QλTλ. In particular, Mλ is also

positive semidefinite. Furthermore, b�Qλb = (Tλp)�Qλ(Tλp) = p�Mλp, where
b = (bλ

1 , . . . , b
λ
mλ

) and p = (pλ
1 , . . . , p

λ
�λ

). That is, g = ∑
λ∈Λ�

〈Qλ,Y λ〉 =
∑

λ∈Λ�
〈Mλ, Zλ〉. ��

Appendix B: SoS Lower Bound for the Assignment Linear Program

We now show that the lower bound of Theorem 1 translates to the assignment linear
program. Recall that the r -th level of the SoS hierarchy corresponds to a semidefinite

123

Breaking symmetries to rescue sum of squares in the case…

program with variables yS for any subset S ⊆ E with |S| ≤ r . The inequalities
defining this program can be obtained by considering properties (SoS.1)–(SoS.4) in
the definition of degree-r SoS pseudoexpectations and identifying Ẽ(xS) = yS ; see
for example [40] for details. For any polytope P ⊆ [0, 1]E , we denote by SoSr (P)

the projection of the r -th level of the SoS hierarchy over yi = y{i} for each i ∈ E . Au
and Tunçel [4, Proposition 1] showed that for any polytope P ⊆ [0, 1]E , if L : RE →
R

E is an affine transformation such that L(x) ∈ [0, 1]E for all elements in the unit
hypercube x ∈ [0, 1]E , then SoSr (L(P)) = L(SoSr (P)). In our case, we consider
the configuration linear program and the assignment linear program within the same
space. Let T be a target makespan and consider

P = R
[m]×J × clp(T) = {(x, y) ∈ R

[m]×J × R
[m]×C : y ∈ clp(T)}.

We define the projection L(x, y) = (x ′, 0) where x ′ is defined as

x ′
i j = 1

n p j

∑

C∈C
m(C, p j) · yiC for all i ∈ [m] and for all j ∈ J .

Notice that x ′ belongs to the assignment linear program, and hence L(P) ⊆
assign(T) × [0, 1][m]×C is within the unit hypercube and the result by Au and Tunçel
can be applied. Therefore,

L(SoSr+1(P)) = SoSr+1(L(P)) ⊆ SoSr (assign(T) × [0, 1][m]×C),

where the last inclusion follows since L(P) ⊆ assign(T)×[0, 1][m]×C and the general
property of the next lemma. We remark that this is enough to get an integrality gap of
1.0009 forΩ(n) rounds of the SoS hierarchy applied to the assignment linear program.

Lemma 19 If P and Q are two polytopes with P ⊆ Q, then SoSr+1(P) ⊆ SoSr (Q).

Proof Let us assume that P = {x ∈ R
n : Ax ≤ b} and Q = {x ∈ R

n : Cx ≤ d} for
some A ∈ R

m×n, b ∈ R
m , C ∈ R

p×n and d ∈ R
p. Let a�

i be the i-th row of A and c�
i

the i-th row of C . We will show that a degree-(r + 1) SoS pseudoexpectation for P is
also a degree-r SoS pseudoexpectation for Q. Indeed, recall that if P ⊆ Q, then every
inequality c�

i x ≤ di , where ci is the i-th row ofC , is a valid inequality for P . Hence, by
Farkas lemma, for each row i ∈ [p] there exists a non-negative vectorγ ∈ R

m such that
ci = γ �A and γ �b ≤ di . Let Ẽ be a degree-(r +1) SoS pseudoexpectation for P . We
need to show that property (SoS.3) is satisfied for every inequality (di − c�

i x) ≥ 0,

with i ∈ [p]. Let f ∈ R[x]/In with deg
(
f 2(di − c�

i x)
)

≤ r . By basic algebraic

manipulation it holds that

Ẽ(f 2(di − c�
i x)) = (di − γ �b)Ẽ(f 2) +

m∑

j=1

γ j Ẽ(f 2(b j − a�
j x)) ≥ 0,

123

V. Verdugo et al.

where the last inequality follows from the construction of γ , the fact that for each

j ∈ [m] we have deg
(
f 2(b j − a�

j x)
)

≤ r + 1, and hence Ẽ(f 2(b j − a�
j x)) ≥ 0

and Ẽ(f 2) ≥ 0. ��

References

1. Alon, N., Azar, Y.,Woeginger, G.J., Yadid, T.: Approximation schemes for scheduling. In: Proceedings
of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 493–500 (1997)

2. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for scheduling on parallel
machines. J. Sched. 1(1), 55–66 (1998)

3. Askey, R.: Orthogonal polynomials and special functions. In: CBMS-NSF Regional Conference Series
in Applied Mathematics, vol 21. SIAM (1975)

4. Au, Y.H.G., Tunçel, L.: Elementary polytopes with high lift-and-project ranks for strong positive
semidefinite operators. Discrete Optim. 27, 103–129 (2018)

5. Barak, B., Chan, S.O., Kothari, P.K.: Sum of squares lower bounds from pairwise independence. In:
Proceedings of the 47th Annual ACM Symposium on Theory of Computing (STOC), pp. 97–106
(2015)

6. Barak, B., Hopkins, S.B., Kelner, J., Kothari, P., Moitra, A., Potechin, A.: A nearly tight sum-of-
squares lower bound for the planted clique problem. In: Proceedings of the 57th Annual Symposium
on Foundations of Computer Science (FOCS), pp. 428–437 (2016)

7. Barak, B., Moitra, A.: Noisy tensor completion via the sum-of-squares hierarchy. In: Proceedings of
the 29th Conference on Learning Theory (COLT), pp. 417–445 (2016)

8. Blekherman, G., Gouveia, J., Pfeiffer, J.: Sums of squares on the hypercube. Math. Z. 284(1–2), 41–54
(2016)

9. Chlamtac, E., Tulsiani, M.: Convex relaxations and integrality gaps. In: Handbook on Semidefinite,
Conic and Polynomial Optimization, pp 139–169. Springer, Belin (2012)

10. Cox,D.A., Little, J.B.,O’Shea,D.: Ideals,Varieties, andAlgorithms:An Introduction toComputational
Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Springer, New
York (2007)

11. Eisenbrand, F., Weismantel, R.: Proximity results and faster algorithms for Integer Programming
using the Steinitz Lemma. In: Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 808–816 (2018)

12. Garg, S.: Quasi-PTAS for scheduling with precedences using LP hierarchies. In: Proceedings of the
45th International Colloquium on Automata, Languages, and Programming (ICALP), pp. 59:1–59:13
(2018)

13. Gatermann, K., Parrilo, P.A.: Symmetry groups, semidefinite programs, and sums of squares. Journal
of Pure and Applied Algebra 192(1–3), 95–128 (2004)

14. Goemans, M., Rothvoß, T.: Polynomiality for bin packing with a constant number of item types.
In: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
830–839 (2014)

15. Goemans, M., Williamson, D.: Improved approximation algorithms for maximum cut and satisfiability
problems using semidefinite programming. JACM 42, 1115–1145 (1995)

16. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 45(9), 1563–1581
(1966)

17. Grigoriev, D.: Complexity of positivstellensatz proofs for the knapsack. Comput. Complex. 10(2),
139–154 (2001)

18. Grigoriev, D.: Linear lower bound on degrees of positivstellensatz calculus proofs for the parity. Theor.
Comput. Sci. 259(1–2), 613–622 (2001)

19. Hochbaum,D.:ApproximationAlgorithms forNP-HardProblems. PWSPublishingCo.,Boston (1996)
20. Hochbaum, D., Shmoys, D.: Using dual approximation algorithms for scheduling problems theoretical

and practical results. JACM 34, 144–162 (1987)
21. Hopkins, S.B., Kothari, P.K., Potechin, A., Raghavendra, P., Schramm, T., Steurer, D.: The power of

sum-of-squares for detecting hidden structures. In: Proceedings of the 58th IEEE Annual Symposium
on Foundations of Computer Science (FOCS), pp. 720–731 (2017)

123

Breaking symmetries to rescue sum of squares in the case…

22. Jansen, K.: An EPTAS for scheduling jobs on uniform processors: using an milp relaxation with a
constant number of integral variables. SIAM J. Discrete Math. 24(2), 457–485 (2010)

23. Jansen, K., Klein, K., Verschae, J.: Closing the gap for makespan scheduling via sparsification
techniques. In: Proceedings of the 43rd International Colloquium on Automata, Languages, and Pro-
gramming (ICALP), pp. 72:1–72:13 (2016)

24. Karlin, A., Mathieu, C., Nguyen, C.: Integrality gaps of linear and semi-definite programming relax-
ations for knapsack. In: Proceedings of the 15th International Conference on Integer Programming and
Combinatoral Optimization (IPCO), pp. 301–314. (2011)

25. Kothari, P., O’Donnell, R., Schramm, T.: SOS lower bounds with hard constraints: think global, act
local. arXiv:1809.01207 (2018)

26. Kothari, P.K., Mori, R., O’Donnell, R., Witmer, D.: Sum of squares lower bounds for refuting any CSP.
In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pp.
132–145 (2017)

27. Kothari, P.K., Steinhardt, J., Steurer, D.: Robust moment estimation and improved clustering via sum
of squares. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
pp. 1035–1046 (2018)

28. Kurpisz, A., Leppänen, S., Mastrolilli, M.: On the hardest problem formulations for the 0/1 lasserre
hierarchy. Math. Oper. Res. 42(1), 135–143 (2016)

29. Kurpisz, A., Leppänen, S., Mastrolilli, M.: Sum of squares hierarchy lower bounds for symmetric
formulations. In: Proceedings of the 18th International Conference on Integer Programming and Com-
binatorial Optimization (IPCO), pp. 362–374 (2016)

30. Kurpisz, A., Leppänen, S., Mastrolilli, M.: An unbounded sum-of-squares hierarchy integrality gap
for a polynomially solvable problem. Math. Program. 166(1–2), 1–17 (2017)

31. Kurpisz, A., Mastrolilli, M., Mathieu, C., Mömke, T., Verdugo, V., Wiese, A.: Semidefinite and linear
programming integrality gaps for scheduling identical machines. Math. Program. 172(1–2), 231–248
(2018)

32. Lasserre, J.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11,
796–817 (2001)

33. Laurent, M.: A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relaxations for 0–1
programming. Math. Oper. Res. 28, 470–496 (2003)

34. Laurent, M.: Lower bound for the number of iterations in semidefinite hierarchies for the cut polytope.
Math. Oper. Res. 28(4), 871–883 (2003)

35. Laurent, M.: Semidefinite representations for finite varieties. Math. Program. 109(1), 1–26 (2007)
36. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Emerging

Applications of Algebraic Geometry, pp. 157–270. Springer, New York (2009)
37. Levey, E., Rothvoss, T.: A (1+epsilon)-approximation for makespan scheduling with precedence con-

straints using LP hierarchies. In: Proceedings of the 48thAnnualACMSIGACTSymposiumonTheory
of Computing (STOC), pp. 168–177 (2016)

38. Ma, T., Shi, J., Steurer, D.: Polynomial-time tensor decompositions with sum-of-squares. In: Founda-
tions of Computer Science (FOCS), pp. 438–446 (2016)

39. Margot, F.: Symmetry in integer linear programming. In: 50Years of Integer Programming 1958–2008.
Springer, Berlin (2010)

40. Mastrolilli, M.: High degree sum of squares proofs, Bienstock–Zuckerberg hierarchy and cg cuts.
In: International Conference on Integer Programming and Combinatorial Optimization, pp. 405–416.
Springer, New York (2017)

41. Parrilo, P.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96(2),
293–320 (2003)

42. Potechin, A.: Sum of squares lower bounds from symmetry and a good story. arXiv:1711.11469 (2017)
43. Potechin, A., Steurer, D.: Exact tensor completion with sum-of-squares. arXiv:1702.06237 (2017)
44. Raghavendra, P., Schramm, T., Steurer, D.: High-dimensional estimation via sum-of-squares proofs.

arXiv:1807.11419 (2018)
45. Raymond, A., Saunderson, J., Singh, M., Thomas, R.R.: Symmetric sums of squares over k-subset

hypercubes. Math. Program. 167(2), 315–354 (2018)
46. Razborov, A.A.: Flag algebras. J. Symb. Log. 72(4), 1239–1282 (2007)
47. Razborov, A.A.: On 3-hypergraphs with forbidden 4-vertex configurations. SIAM J. Discrete Math.

24(3), 946–963 (2010)
48. Rothvoß, T.: The Lasserre hierarchy in approximation algorithms. Lecture notes for MAPSP (2013)

123

http://arxiv.org/abs/1809.01207
http://arxiv.org/abs/1711.11469
http://arxiv.org/abs/1702.06237
http://arxiv.org/abs/1807.11419

V. Verdugo et al.

49. Sagan, B.: The Symmetric Group. Graduate Texts in Mathematics. Springer, New York (2001)
50. Schoenebeck, G.: Linear level Lasserre lower bounds for certain k-CSPS. In: Proceedings of the 49th

Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 593–602 (2008)
51. Sherali, H., Adams, W.: A hierarchy of relaxations between the continuous and convex hull represen-

tations for zero-one programming problems. SIAM J. Discrete Math. 3(3), 411–430 (1990)
52. Svensson, O.: Santa claus schedules jobs on unrelated machines. SIAM J. Comput. 41(5), 1318–1341

(2012)
53. Verdugo,V.,Verschae, J.: Breaking symmetries to rescue sumof squares: the case ofmakespan schedul-

ing. In: 20th International Conference on Integer Programming andCombinatorial Optimization (IPCO
2019), pp. 427–441 (2019)

54. Williamson, D., Shmoys, D.: The Design of Approximation Algorithms. Cambridge University Press,
Cambridge (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Victor Verdugo1,2 · José Verschae4 · Andreas Wiese3

B Victor Verdugo
v.verdugo@lse.ac.uk; victor.verdugo@uoh.cl

José Verschae
jose.verschae@uoh.cl

Andreas Wiese
awiese@dii.uchile.cl

1 Department of Mathematics, London School of Economics and Political Science, London, UK

2 Institute of Engineering Sciences, Universidad de O’Higgins, Rancagua, Chile

3 Department of Industrial Engineering, Universidad de Chile, Santiago, Chile

4 Institute for Mathematical and Computational Engineering, Faculty of Mathematics and School
of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile

123

http://orcid.org/0000-0001-6353-3128

	Breaking symmetries to rescue sum of squares in the case of makespan scheduling
	Abstract
	1 Introduction
	1.1 Related work

	2 Preliminaries: sum of squares (SoS) and Pseudoexpectations
	3 Lower bound: symmetries are hard for SoS
	3.1 A symmetry-reduced decomposition of the scheduling ideal
	3.2 Construction of the spanning sets
	3.3 High-degree SoS pseudoexpectation: Proof of Theorem 1

	4 Upper bound: breaking symmetries to approximate the makespan
	4.1 Symmetry breaking inequalities
	4.2 LP based approximation scheme
	4.2.1 Stable conditionings: Proof of Lemma 12

	4.3 A faster LP based approximation scheme

	Appendix A: Proof of Theorem 4
	Appendix B: SoS Lower Bound for the Assignment Linear Program
	References

