DOI: 10.1111/jdv.16058

Systematized naevoid hypertrichosis may herald Happle–Tinschert syndrome

Dear Editor,

Happle–Tinschert syndrome (HTS) is characterized by segmentally arranged basaloïd follicular hamartomas (BFHs) associated with osseous, dental and cerebral abnormalities.1 To date, fifteen additional cases have been described under this designation.2–5 The disorder is caused by a postzygotic mutation in the gene smoothened (SMO).5,6 In several reports, patches of hypertrichosis have been documented.1,5 The purpose of this article is to emphasize that such naevoid hypertrichosis may sometimes be a diagnostic marker of HTS.

A 6-month-old girl who was born from healthy, non-consanguineous parents presented multiple patches of pronounced congenital naevoid hypertrichosis involving mainly the left side of her body including the cheek, nasolabial area, upper and lower eyelids, and groin (Fig. 1a–c). On her left leg, the increased hairiness showed a segmental, almost linear arrangement. In addition, she had rudimentary postaxial and preaxial polydactyly on the ipsilateral hand and foot. (Fig. 1d). On the

The drug can spare a significant number of stem cells is foreseeable.

Finally, literature’s data on the efficacy and long-term follow-up of the IM gel treatment show that it does not always produce total clearance (only in 34.1–42.2% of patients)8 or a clearance sustained over time (only 44.0–46.1% of patients)9 of AKs. In addition, clinical cases of rapid progression of AK to invasive SCC after treatment with IM have been reported.10 These data are in line, although indirectly, with results of our study and allow us to hypothesize that the IM gel does not act on AK-MSCs that may be the real responsible of the onset and development of the lesions. Future therapeutic strategies could be directed to the eradication of MSCs of AKs, considering their peculiar cytokinetic and relationship with the tissue niche. New drugs should selectively affect the AK-MSCs immunobiology, becoming able to offer greater potential for treatment with reduced local and systemic toxicity.

A. Campanati,1 I. Bobyr,1 G. Sorgentoni,2 F. Diotallevi,1 M. Caffarini,2 P. Pellegrino,2 R. Di Primio,2 A. Offidani,1, 1Department of Clinical and Molecular Sciences - Dermatological Clinic, Università Politecnica delle Marche, Ancona, Italy. 2Department of Molecular and Clinical Sciences - Histology, Università Politecnica delle Marche, Ancona, Italy.

*Correspondence: A. Offidani. E-mail: a.offidani@ospedalirenuni.marche.it

References

1. Zhang W, Remenyik E, Zelterman D, Brash DE, Wilkonkal NM. Escaping the stem cell compartment: sustained UVB exposure allows p53-mutant keratinocytes to colonize adjacent epidermal proliferating units without

![Image](https://via.placeholder.com/150)
helix, some scattered hyperpigmented papules, in part with a central comedo-like plug, were arranged in a linear distribution (Fig. 1e). On the right side, small patches of hypertrichosis involved the upper eyelid and the tip of her nose, whereas a Blaschko-linear hypopigmentation with partial hypertrichosis was noted on her abdomen. Histopathological examination of biopsies obtained from the papules involving her left helix revealed strands of basaloid cells that proliferated downwards from the follicular infundibulum, forming horn cysts and numerous anastomoses with a lattice-like pattern compatible with BFHs (Fig. 2). Magnetic resonance imaging of the brain showed bifrontal cortical alterations and agenesis of the corpus callosum. A clinical diagnosis of HTS was made, and molecular analysis of SMO performed in a biopsy sample of BFH revealed the presence of the recurrent mutation c.1234C>T (mosaic), chr7 (GRCh37/hg19):128846398 C>T p. (Leu412Phe) in an estimated proportion of 44% of tissue cells. The mutation was found to be absent in the blood. (A previous molecular analysis had excluded a mutation in PTCH.)

In 2016, Happle and Tinschert suggested that HTS was a particular 'dermatological' variant of Curry–Jones syndrome.3,7 Recent research supports the notion that these are different syndromes caused by the same gene defect.5 In this context, it may be mentioned that Robert Gorlin himself has discriminated between 'Curry–Jones syndrome' and 'unilateral or even quadrant involvement with basal cell carcinomas' that 'likely represent postzygotic somatic mutation', under which designation he categorized, what is today called HTS, as a mosaic manifestation of Gorlin syndrome.8

So far, small patches of congenital hypertrichosis were taken as a minor feature of HTS.1,2 However, a pronounced systematized involvement as noted in the present case can be a significant marker of this syndrome. Such areas of increased hairiness may be important for differential diagnosis, or exclusion, of other syndromic forms of naevoid hypertrichosis as published in the past.9,10

The mutation found in the present case of systematized naevoid hypertrichosis predicts a missense change in the SMO protein and is known as recurrent SMO mutation that has also been described in Curry–Jones syndrome3 and represents the most common SMO variant observed as a somatic mutation in tumours.5

To the best of our knowledge, this is the first child with Latin American indigenous background reported with this syndrome,
emphasizing the occurrence of the same postzygotic SMO mutation in different populations.

T. Hasbún,1,2 F. Reculé,1,4 R. Happle,3 M. Zenker,4 D. Schanze,4 A. Castro5

1Department of Surgery, Dermatology Service, Universidad del Desarrollo - Clínica Alemana, Santiago, Chile, 2Dermatology Service, Hospital Exequiel González Cortés, Santiago, Chile, 3Department of Dermatology, Medical Center – University of Freiburg, Freiburg, Germany, 4Institute for Human Genetics, University Hospital Magdeburg, Magdeburg, Germany, 5Department of Pathology, Universidad del Desarrollo - Clínica Alemana, Santiago, Chile

*Correspondence: F. Reculé. E-mail: f.recule.g@gmail.com

References

3 Happle R, Tinschert S. Happle-Tinschert syndrome can be caused by a mosaic SMO mutation and is suggested to be a variant of Curry-Jones syndrome. Br J Dermatol 2016; 175: 1108.
4 Khamaysi Z, Sprecher E, Bergman R. Happle-Tinschert syndrome can be caused by a mosaic SMO mutation and is suggested to be a variant of Curry-Jones syndrome: reply from the authors. Br J Dermatol 2016; 175: 1109.

DOI: 10.1111/jdv.16059

Figure 2 Strands of basaloid cells that proliferated downwards from the follicular infundibulum, forming horn cysts and numerous anastomoses with a lattice-like pattern (Inset).