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This paper studies how agents choose to be vague in their proposals in a delegation 
environment. Two agents compete for the approval of a decision maker to implement 
a multidimensional action. Based on their knowledge of the consequences of actions, 
agents propose future actions but can be vague about any dimension. The decision 
maker, uncertain about the consequences of actions, chooses one agent to act. I show 
that vagueness on the dimension where one stands closer to the decision maker than 
his opponent preserves such an advantage, while preciseness undermines it. Vagueness 
therefore tends to occur on agents’ advantageous dimensions.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

In many situations, a decision maker (DM) needs to choose between competing agents based on information provided 
by those agents. How should an uninformed DM evaluate the statements made by the agents? From the agents’ perspective, 
when they can only propose actions and the DM is not sure what the best action is, how can they convince her that one 
proposal is better than the other? If, in addition to proposing actions, agents also have the choice to be vague in their 
proposals, will they choose to do so? How does the choice of vagueness shape such communication? I discuss how the 
answers to these questions relate to the agents’ interest alignment with the DM. As it turns out, not only can vagueness 
happen, if carefully deployed it could even help an agent achieve a better outcome.

As an example, consider two political candidates competing for the vote of a representative voter so as to influence 
policies on multiple issues. A candidate may be aligned with the voter on certain issues, but biased on others. Each player 
would like the policies to bring about her (his) ideal consequences for the issues, but there is uncertainty about what those 
policies would be. The candidates are experts who understand the consequences of policies and make proposals based on 
their expertise during the campaign. For each issue, they can choose to propose a specific policy, or to be vague and not 
propose any policy at all. The voter, who understands the candidates’ biases, then elects her most preferred candidate.

I consider a model with two informed agents and one uninformed DM. Nature determines a state of the world. Agents 
observe the state, and simultaneously make proposals to the DM. The DM, who does not observe the state, updates her belief 
about it given the proposals, and chooses one of the agents. The chosen agent implements his proposal, which determines 
the payoff of all players. More specifically, the state of the world is a pair of two numbers, the first for issue 1 and the 
second for issue 2. The DM would like the actions to match the state, while each agent would like the actions to differ from 
the state by his bias. The biases are commonly known. A proposal is a pair of messages, one for each issue. Each message 
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could either be specific, in which case the agent announces a specific action that he commits to, or vague, in which case 
the agent is free to implement any action if chosen.1

First, let us suppose that the state space is one-dimensional. Given any state θ , the DM’s ideal action is θ , Agent 1’s 
ideal action is θ − 3, and Agent 2’s ideal action is θ + 5. Each player would like to minimize the distance between the 
implemented action and their ideal action. Consider the strategy profile where at each θ , Agent 1 proposes θ − 3, while 
Agent 2 is vague. Since Agent 2 will implement his own ideal action if chosen, the DM strictly prefers Agent 1. Now suppose 
that Agent 2 deviates to a specific proposal y = θ + 2.5. Since the DM learns the true state from Agent 1’s proposal, she 
realizes that this action is better and chooses Agent 2. Therefore, by being specific, Agent 1 reveals the state and allows 
undercutting by his opponent.

Now consider the strategy profile where both agents are always vague. Therefore, if chosen, each agent will implement 
his own ideal action. Since Agent 1 has a smaller bias, the DM again chooses Agent 1. Now suppose that Agent 2 deviates to 
the same specific proposal y = θ + 2.5. Although this action is indeed better than Agent 1’s action, since Agent 1 does not 
reveal the state, the DM is free to form any belief about how good y is; in particular, she is free to believe that y is Agent 
2’s ideal action and still choose Agent 1. Therefore, vagueness allows Agent 1 to take advantage of the DM’s ignorance about 
the state, prevent credible compromises by his opponent, and preserve his advantage.

The insight above can be generalized to a two-dimensional state space where Agent i has a smaller bias on dimension i. 
That is, dimension i is Agent i’s advantageous dimension and Agent (−i)’s disadvantageous dimension. In the main result of 
the paper, I pin down where vagueness occurs depending on the advantages of the agents. Within a class of equilibria, when 
one agent’s bias on his disadvantageous dimension is sufficiently large, vagueness occurs on the advantageous dimensions 
(Proposition 1). When biases are rather comparable, with additional restrictions on the equilibria, a similar result can be 
obtained (Proposition 2). To characterize equilibria in which vagueness occurs on agents’ advantageous dimensions, I first 
show that for any bias of the agent, vagueness which occurs on both dimensions can always be sustained in equilibrium 
(Proposition 3). I then characterize a class of equilibria in which vagueness occurs on the advantageous dimensions only 
and specific actions are proposed for all states (Proposition 4). The existence of equilibria in my model is not surprising 
because in signaling games many equilibria can be supported with unreasonable beliefs. I then introduce an appropriate ex-
tension of an equilibrium refinement for signaling games and show that all equilibria identified are robust to this refinement 
(Proposition 5).

The result has implications on how informed parties communicate to uninformed decision makers. In the example of 
political competition, it shows that parties have incentives to inform voters of their policies on their opponents’ advanta-
geous issues. In 2000, the U.S. Republican presidential candidate George W. Bush focused on the education issue, which 
is traditionally perceived as an issue in which the Democratic party is more competent. On the other hand, the 1996 U.S. 
Democratic presidential candidate Bill Clinton focused on the issue of criminality, turning a Democratic weakness into a 
strength (Aragonès et al., 2015). Apart from these anecdotal evidence, Damore (2004) presents campaign advertisement 
data from major party presidential candidates between 1976 and 1996 to show that in fact, such issue trespassing is not 
uncommon. It appears that all candidates issue trespass. This ranges from a high of 34% for Walter Mondale in 1988 to a 
low of 4% by George H. W. Bush in 1988. On average, 15% of the campaign advertisements focused on issues dominated by 
opposing parties. Petrocik et al. (2003) analyze the content of presidential candidates’ acceptance speeches and television 
commercials throughout 1952-2000. They categorize issues into “Democratic,” “Republican” and “Performance” and count 
the number of times an issue belonging to each category is mentioned. Whenever an issue is mentioned during Democratic 
TV commercials, only 22% of the time does it belong to Democratic issues. 44% of the time, it belongs to a Republican issue. 
The Republicans devote roughly equal number of mentions to Democratic and Republican issues - both are around 40%.

1.1. Related literature

To my knowledge, this is the first paper to address competition in delegation in a multidimensional action space. Am-
brus et al. (2015) study competition in delegation in a one-dimensional setup. In their model, two imperfectly informed 
agents propose actions to a DM who cannot measure the difference between two actions. In my model, the DM has no 
such impairment and the agents are perfectly informed; moreover, the agents have the choice to be vague. For one-agent 
delegation, Alonso and Matouschek (2008) study the DM’s problem of how to optimally restrict the set of actions that an 
agent can take; Li and Suen (2004) discuss when a DM should delegate, and how biased the agent should be in order to be 
delegated. In contrast I focus on the agents’ communication to the DM and assume that the only choice that the DM can 
make is choosing between two agents.

The question of what drives parties’ campaign issue choices has been studied extensively. Early evidence and theory 
suggest that parties focus on issues in which they have an advantage and ignore those in which their opponents have an 
advantage (Riker, 1993; Petrocik, 1996). Historical counterexamples and more recent empirical evidence show that parties 
spend considerable effort on the opposing parties’ advantageous issues (Sigelman and Buell, 2004). Some papers seek to 

1 Here I assume that agents have commitment power to implement the specific actions they announced. The political science literature has not been 
consistent. Some papers assume campaign messages are cheap talk (for example, Alesina (1988) and Harrington (1992)), while others assume they are 
commitments (for example, Donald (1983) and Calvert (1985)).
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reconcile this conflict by focusing on how campaigns shift voters’ preferences (Amorós and Puy, 2013; Aragonès et al., 2015; 
Dragu and Fan, 2016). I take a more traditional approach by assuming that preferences are fixed. As it turns out, incomplete 
information alone can get a sharper result. Krasa and Polborn (2010) study a game in which specialized candidates choose 
future efforts on each policy area if elected. They give precise conditions on voters’ preferences that determine when parties 
should focus on the same or different issues. Again, the driving force of my results comes from information revelation 
instead of the voter’s preference.

Ash et al. (2017), Egorov (2015), and I all attribute issue choice to information asymmetry. Ash et al. (2017) study 
how an incumbent’s desire to signal his policy preference makes him pursue issues on which voters disagree. I study a 
competitive setting in which candidates simultaneously make proposals. Moreover, the uncertainty in my model is a payoff-
relevant state of the world. Lastly, I focus on how candidates’ issue advantages, rather than issue divisiveness, affect issue 
choices. Egorov (2015) studies how the desire to signal competence makes a challenger signal on the same issue following 
an incumbent’s issue choice. He assumes that voters get better information when both signal on the same issue. As a result, 
a challenger may have incentives to signal on an issue in which he is less competent. In my paper, the information revealed 
is endogenously determined through equilibrium. Therefore, the underlying intuition in my model is equilibrium reasoning 
instead of candidates’ trade-off between favorableness and informativeness of signals.

Others model the campaign issue choice problem through channels other than information asymmetry. The mechanisms 
they offer include social agreement on an issue as well as social discontent (Colomer and Llavador, 2012), non-expected 
utility (Berliant and Konishi, 2005), shifting re-election campaign issue focus (Glazer and Lohmann, 1999), etc. In my paper, 
there is only one voter so there is always social consensus. All players are expected utility maximizers. The game is one-shot 
instead of sequential. Therefore, I offer significantly different explanations.

I will mention papers supporting vagueness2 in a one-dimensional issue space briefly. To formalize the concept of vague-
ness, Meirowitz (2005) uses the same setup as mine and models vagueness as a complete lack of policy commitment. Others 
model vagueness as a commitment to a set of policies instead of a single policy (Alesina and Cukierman, 1990; Aragonès 
and Neeman, 2000; Aragonès and Postlewaite, 2002; Alesina and Holden, 2008; Callander and Wilson, 2008; Kartik et al., 
2017; Baghdasaryan and Manzoni, 2019).3 Similar to my model, both models by Kartik et al. (2017) and Baghdasaryan 
and Manzoni (2019) have an uncertain state of the world which determines players’ payoffs. The difference is that in their 
models, the state is unknown to the candidates during the campaign stage and therefore vagueness benefits the electorate 
in that it allows the winning candidate to adapt the policy to the state. In my model, the candidates observe the state 
from the outset and therefore the role of vagueness is different. There are also a few papers on the role of vagueness in 
coordination and signaling games (De Jaegher, 2003; Lipman, 2009; Serra-Garcia et al., 2011; Agranov and Schotter, 2012; 
Blume and Board, 2014). Similar to these papers, I show that vagueness can be supported in equilibrium. In addition, the 
multidimensional setup allows me to pinpoint on which dimension vagueness is likely to occur.

Broadly, this paper belongs to the literature that studies communication of private information in a competitive setting. 
Communication can take different forms. Many papers, this paper included, study communication through binding policy 
proposals (Roemer, 1994; Schultz, 1996; Martinelli, 2001; Martinelli and Matsui, 2002; Heidhues and Lagerlöf, 2003; Laslier 
and Van der Straeten, 2004; Loertscher, 2012; Morelli and Van Weelden, 2013; Jensen, 2013; Kartik et al., 2015; Ambrus 
et al., 2015). Others study communication through cheap talk (Austen-Smith, 1990; Krishna and Morgan, 2001; Battaglini, 
2002, 2004; Schnakenberg, 2016; Kartik and Van Weelden, 2014). Banks (1990) and Callander and Wilkie (2007) analyze 
models in which misrepresenting one’s policy intentions is costly. Gul and Pesendorfer (2012) and Gentzkow and Kamenica 
(2016) study information provision with competing persuaders. It is worth noting that many models show competition can 
increase the amount of information revealed (Milgrom and Roberts, 1986; Battaglini, 2002; Gentzkow and Kamenica, 2016). 
Here, when communication takes the form of proposals and uncertainty involves the state of the world as well as action 
choices, competition may lead to less certainty.

2. The model

There are three players: one DM and two agents, Agent 1 and Agent 2. Agents observe a state of the world θ = (θ1, θ2) ∈
� ≡R2, chosen by Nature according to the probability measure F with support �.4 A (pure) strategy of Agent i is si : � →
M ≡ (R ∪ {∅})2, where ∅ denotes vagueness. Given si , sk

i (θ) ∈ R ∪ {∅} denotes Agent i’s dimension-k proposal at state 
θ . Given Agent i’s proposal mi , yi = yi(mi) ∈ R2 denotes the corresponding action and xi = xi(θ, yi) = θ − yi denotes the 
corresponding outcome. Throughout the paper, I focus on equilibria in which agents play pure strategies. Given a proposal 
profile (m1, m2) ∈ M × M , the DM updates her belief about the state μ(· | m1, m2) ∈ �(�) and chooses the probability that 
Agent 1 implements his proposal β(m1, m2) ∈ [0, 1].

2 Vagueness in political science literature is usually labeled as ambiguity. To avoid confusion with ambiguity in the decision theory literature, I use the 
term vagueness.

3 My main result trivially extends to the setup treating vagueness as commitment to a set of policies: an equilibrium in which at each state, each agent 
is precise about his advantageous dimension and committing to a subset containing his ideal action on his disadvantageous dimension does not exist.

4 I discuss the implications of a restricted state space in Appendix E.
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Players’ payoffs are determined by the state and the chosen agent’s proposal. In particular, the agents do not receive 
additional payoffs from being chosen. For j = 0, 1, 2, b j = (b1

j , b
2
j ) ∈ R2 denotes the ideal points of the DM, Agent 1, and 

Agent 2, respectively. Player j’s payoff function is denoted by u j(θ, m1, m2, β):

u j(θ,m1,m2, β) = β(m1,m2)v j(θ,1,m1) + (1 − β(m1,m2))v j(θ,2,m2),

where

v j(θ, i,mi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−‖(θ − mi) − b j‖2 if mi ∈R2,

−‖(θ1 − m1
i ,b2

i ) − b j‖2 if mi ∈R× {∅},
−‖(b1

i , θ
2 − m2

i ) − b j‖2 if mi ∈ {∅} ×R,

−‖bi − b j‖2 if mi = (∅,∅).

Whenever an agent is vague on a dimension, he implements his own ideal action for that dimension; otherwise he commits 
to the specific action proposed. I normalize b0 ≡ (0, 0) and assume that |b1

1| < |b1
2| and |b2

2| < |b2
1| throughout the paper. 

Moreover, without loss of generality I assume that ‖b1‖ ≤ ‖b2‖. Dimension 1 is called Agent 1’s advantageous dimension 
and Agent 2’s disadvantageous dimension. The opposite is true for dimension 2. The state distribution, rules of the game, 
and each player’s payoff function are common knowledge.

One of the challenges in characterizing the equilibrium choices of vagueness is that the set of possible equilibrium 
strategies is large. Each agent at each state could choose to be vague on 0, 1 or 2 dimensions. If he chooses to be specific 
on a dimension, he is free to choose any number on the real line. Moreover, in order to rule out a certain proposal profile, 
sufficient knowledge about the entire equilibrium is necessary, the DM’s belief function μ(· | m1, m2) in particular. To focus 
on the choice of vagueness without the knowledge of the entire set of equilibria, I introduce two properties, symmetry
and efficiency. Symmetry ensures that an undercutting deviation makes the DM realize that a deviation has occurred. It 
is however still possible that the DM identifies the wrong agent as the deviator. Efficiency ensures that any undercutting 
deviation is still preferred by the DM even in this case. Both of them place restrictions on the agents’ equilibrium strategies 
only and are silent about what kind of deviations are allowed.

Definition 1 (Symmetry). A weak PBE (s1, s2, β, μ) is symmetric if for each θ ∈ �,

(1) s1(θ) = (∅, ∅) iff s2(θ) = (∅, ∅);
(2) s1(θ) ∈ {∅} ×R iff s2(θ) ∈R × {∅};
(3) s1(θ) ∈R × {∅} iff s2(θ) ∈ {∅} ×R.

At any given state, if Agent i is vague about his disadvantageous (or advantageous) dimension, then Agent (−i) is also 
vague about his disadvantageous (or advantageous) dimension. Therefore, the two agents’ choices of vagueness depend 
on their advantages in the same way at any given state. Symmetry dramatically simplifies the procedure of characterizing 
putative equilibrium strategies. Moreover, whenever a deviation leads to an asymmetric proposal profile, the DM is sure to 
realize that a deviation has occurred (see also the discussion of Definition 3).

In order to focus on the equilibrium choice of vagueness, I further restrict the specific proposals that the agents make 
in equilibrium. In particular, a specific policy proposal on dimension k must lie between the proposer’s ideal action on 
dimension k and the DM’s ideal action on dimension k. In other words, the agents’ strategic choices are, for each dimension, 
(1) whether to be specific or vague and (2) how much to compromise if they choose to be specific. By eliminating “bad” 
equilibrium policy proposals, efficiency ensures that for any undercutting deviation that could be profitable, if the DM fail to 
identify correctly the deviator, she still prefers the deviator.

Definition 2 (Efficiency). A weak PBE (s1, s2, β, μ) is efficient if for each θ ∈ �, i ∈ {1, 2} and k ∈ {1, 2},

(1) sk
i (θ) ∈ [θk − bk

i , θ
k] ∪ {∅} whenever bk

i > 0,
(2) sk

i (θ) ∈ [θk, θk − bk
i ] ∪ {∅} whenever bk

i ≤ 0.

I now introduce a new consistency notion called single-deviation consistency. This notion limits how the DM updates her 
belief about agents’ strategies when she is surprised. After observing a surprising move by the agents, she updates her belief 
under the assumption that agents make strategic choices independently. As a result, knowing that one agent has deviated 
does not impact her belief about the other agent’s strategy.

Given a weak PBE (s1, s2, β, μ), Agent i’s proposal mi is consistent with equilibrium if s−1
i (mi) is non-empty and inconsis-

tent with equilibrium if otherwise. A proposal profile (m1, m2) is on-path if s−1
1 (m1) ∩ s−1

2 (m2) is non-empty and off-path if 
otherwise.

Definition 3 (Single-deviation consistency). Let (s1, s2, β, μ) be a weak PBE. The DM’s belief μ satisfies single-deviation consis-
tency if, for each (m1, m2) such that s−1(m1) ∩ s−1(m2) is empty:
1 2
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μ(· | m1,m2) ∈ �
(
s−1

1 (m1) ∪ s−1
2 (m2)

)
whenever s−1

1 (m1) ∪ s−1
2 (m2) is non-empty.

In other words, a DM faced with an off-path proposal profile believes that at least one of the agents has not deviated, 
whenever believing so is possible.

By definition, an off-path (m1, m2) falls into one of the following cases:

1. Neither m1 nor m2 is consistent with equilibrium;
2. Exactly one of m1 and m2 is consistent with equilibrium;
3. Both m1 and m2 are consistent with equilibrium.

According to single-deviation consistency, whenever the DM is surprised by an off-path proposal profile and some agent 
is consistent with equilibrium (i.e., Case 2 and 3), she believes that this agent is indeed playing according to equilibrium. In 
Case 3, she considers both cases. So for all states in the support of her belief, either Agent 1 or Agent 2 has deviated.

To see how Case 3 is possible, consider a putative equilibrium in which both agents always propose the action equal 
to the state, i.e., s1(θ) = s2(θ) = θ for all θ . Now suppose that at some state θ , Agent 1 deviates to the proposal y ∈ R2

such that y 	= θ . The DM then observes an off-path proposal profile (y, θ). Although each agent’s proposal is consistent with 
equilibrium on its own, the proposal profile is off-path. Note that in this case, single-deviation consistency does not specify 
which agent the DM believes; all that is required is that she believes that exactly one of the agents has deviated.

Notice that symmetry ensures that any asymmetrical proposal profile is off-path. Combined with single-deviation consis-
tency, after one agent’s deviation which leads to an asymmetrical proposal profile and is inconsistent with equilibrium, the 
DM is able to believe that the other agent has not deviated and therefore updates her belief accordingly.

The intuition behind single-deviation consistency is the independence of agents’ strategic choices. When agents act inde-
pendently, their proposals contain only information about their own strategic choices and not their opponents’. Therefore, 
Agent 1’s deviation should not be an excuse for the DM to change her beliefs about Agent 2. When the DM cannot tell who 
the deviator(s) are, she applies minimal departure from rationality and believes only one agent has deviated.

The notion that strategic choices are independent is not new. Battigalli (1996) defines the independence property for con-
ditional belief systems over strategy profiles. An implication of the independence property is that the marginal conditional 
probabilities about player i’s strategies are independent of information which exclusively concerns player j’s strategies. It is 
shown that the independence property of conditional belief systems is necessary for an equivalent assessment to satisfy the 
consistency notion á la Kreps and Wilson (1982).5

Watson (2015) first formally defines perfect Bayesian equilibrium for infinite games without Nature moves. The defi-
nition retains sequential rationality and puts forward a new notion for consistency called “plain consistency.” One of the 
implications of plain consistency is that when surprised, players only alter their beliefs about the strategies of those players 
who appear to have deviated. Vida and Honryo (2015) focus on equilibria in multi-sender signaling games and support 
rationalizing deviations with the smallest number of deviators possible as a sensible refinement.

Now I am ready to state the equilibrium concept used throughout the paper, which I call the SES-equilibrium.

Definition 4. A tuple (s1, s2, β, μ) is called an SES-equilibrium if it is a weak PBE satisfying symmetry, efficiency and single-
deviation consistency.

3. Main results

What should agents be vague about? Conventional wisdom suggests that they should focus on their advantageous di-
mension and ignore the other dimension. Here, the model suggests otherwise. On one hand, if Agent 1 has an advantage 
on dimension 1, then vagueness on dimension 1 does no harm since the DM already trusts him. More importantly, for any 
action proposed by Agent 2 that results in an off-path proposal profile, the DM is free to believe that it is his most preferred 
action. On the other hand, if Agent 1 is specific about dimension 1 and reveals θ1 to the DM, Agent 2 can then anchor on his 
revelation and deviate by offering a compromise. If the DM believes that only Agent 2 has deviated and continues to trust 
the information about θ1 revealed by Agent 1, Agent 2 is able to credibly compromise on his disadvantageous dimension.

Proposition 1 and 2 demonstrate how this intuition helps predict how agents choose to be vague. I first characterize a 
putative equilibrium proposal profile where agents are vague about their disadvantageous dimensions and specific about 
their advantageous dimensions. Then I rule out this profile by showing that one agent can profitably undercut the other. 
In order to characterize such putative equilibria, I need to introduce a useful lemma: whenever both agents are simultane-
ously specific about their advantageous dimensions and vague about their disadvantageous dimensions, no agent wins with 
probability 1.

5 Note that although the strategic independence idea in single-deviation consistency is inherited from Kreps and Wilson (1982), single-deviation consistency
is not implied by their consistency notion. Although players’ strategies are independent, proposals are correlated because they are functions of the same 
state variable. An example is provided in Appendix D.
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Lemma 1. Suppose that the equilibrium proposal profile at θ = θ takes the following form:

m = ((w,∅), (∅, z))

where w, z ∈R. Then β(m) ∈ (0, 1). Consequently, the DM is indifferent.

Proof. Suppose that β(m) = 0. Then Agent 1 has a profitable deviation mdev
1 = (∅, z). To see this, first note that Agent 1’s 

equilibrium payoff at θ is

u1(θ,m, β(m)) = v1(θ,2, (∅, z)) = −‖(b1
2, θ

2 − z) − b1‖2.

Now let Agent 1 deviate to (∅, z). Since |b1
1| < |b1

2|, given mdev = ((∅, z), (∅, z)) and any μ ∈ �(�), Agent 1 is strictly 
preferred to Agent 2. Therefore β(mdev) = 1 and Agent 1’s deviation payoff is

u1(θ,mdev , β(mdev)) =v1(θ,1, (∅, z))

= − ‖(b1
1, θ

2 − z) − b1‖2

> − ‖(b1
2, θ

2 − z) − b1‖2

=u1(θ,m, β(m)).

Similarly, if β(m) = 1, then Agent 2 has a profitable deviation mdev
2 = (w, ∅). Therefore, we have β(m) ∈ (0, 1). �

If an agent is vague about his disadvantageous dimension, his opponent can easily defeat him on that dimension by being 
vague about it also. Consequently, if Agent 1 proposes (w, ∅) at some θ and wins with probability 1, Agent 2 can mimic 
his proposal and win with probability 1. This deviation is profitable for Agent 2 since on dimension 2 he gets his own ideal 
action instead of Agent 1’s ideal action, and on dimension 1 he gets the same action as in equilibrium. A similar argument 
applies if Agent 2 proposes (∅, z) at some θ and wins with probability 1. This in turn implies that whenever agents are only 
vague about their disadvantageous dimensions, the DM must be indifferent between the agents. In Proposition 1, I further 
characterize such equilibria under the condition that one agent’s bias on his disadvantageous dimension is sufficiently large 
and then rule them out.

When Agent 2’s bias on his disadvantageous dimension |b1
2| is relatively large, as long as equilibrium proposals satisfy 

the efficiency condition, Agent 2’s equilibrium proposal (∅, z) would be worse than Agent 1’s equilibrium proposal (w, ∅)

for the DM. Therefore, indifference cannot be maintained in equilibrium. When the biases are such that indifference can be 
maintained (i.e. when |b1

2| = ‖b1‖ or |b2
1| = ‖b2‖), agents must be revealing the state, and we can apply the undercutting 

intuition.

Proposition 1. Suppose that |b1
2| ≥ ‖b1‖ or |b2

1| = ‖b2‖. In all SES-equilibria in which vagueness occurs at some state, it occurs on 
agents’ advantageous dimensions.

The proof is relegated to Appendix A and here is a sketch. By definition, I only need to rule out equilibria in which 
vagueness only occurs on agents’ disadvantageous dimensions at some state; that is, equilibria with a proposal profile 
(w, ∅), (∅, z) at some state θ . By Lemma 1, given this proposal profile, the DM is indifferent between the two agents. By 
efficiency, for any given belief of the DM, Agent 1’s proposal is at least as good as the outcome b1 and Agent 2’s proposal is 
at most as good as the outcome (b1

2, 0). Therefore, if |b1
2| > ‖b1‖, the DM could not be indifferent (Fig. 1).

Therefore, indifference can only happen if |b1
2| = ‖b1‖ (or symmetrically, |b2

1| = ‖b2‖), Agent 1 proposes the outcome b1, 
and Agent 2 proposes the outcome (b1

2, 0) (or symmetrically, Agent 1 proposes the outcome (0, b2
1) and Agent 2 proposes 

the outcome b2). The DM then learns θ i
from Agent i and chooses β ∈ (0, 1). Now I show that there is a profitable deviation 

(∅, z′) for Agent 1 at θ .
To see this, first notice that since Agent 1 proposes b1 in equilibrium, for any β ∈ (0, 1) one can find z′ such that (∅, z′)

is potentially profitable. That is, if Agent 1 wins with probability 1 after the deviation, then (∅, z′) is profitable. Second, 
let θ̃ be in the support of the DM’s belief after such a deviation. By single-deviation consistency, either θ̃ ∈ s−1

2 (∅, z), or 
θ̃ ∈ s−1

1 (∅, z′). If θ̃ ∈ s−1
2 (∅, z), then the DM learns the true θ2

from Agent 2 after the deviation and realizes Agent 1 is 
making a compromise, so she chooses β ′ = 1 (Fig. 2). If θ̃ ∈ s−1

1 (∅, z′) and, by way of contradiction, β ′ < 1, this implies the 
DM believes that Agent 2 is the deviator and weakly prefers him. Now, given the proposal profile ((∅, z′), (∅, z)), since on 
dimension 1 Agent 1’s proposal is strictly preferred to Agent 2’s, for the DM to weakly prefer Agent 2 given the state θ̃ , it 
has to be that z is much closer to θ̃2 than z′ is. This means that at θ̃ , Agent 1’s equilibrium proposal (∅, z′) is such that z′
is sufficiently far from θ̃2, which violates efficiency. Efficiency therefore ensures that after an undercutting deviation by Agent 
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Fig. 1. m1 = (w, ∅), m2 = (∅, z) at θ cannot be sustained when |b1
2| > ‖b1‖ since DM cannot be indifferent. Here I depict the outcome 

space, where the origin represents the DM’s ideal consequence and the quadrant represents an indifference curve of the DM. The disks 
represent the agents’ ideal consequences: b1 = (3, 4), b2 = (6, 1). The curly brackets show the possible outcomes from the agents’ equi-
librium proposals x1 and x2. Since Agent 1’s outcome is always better than Agent 2’s, the DM cannot be indifferent.

Fig. 2. m1 = (w, ∅), m2 = (∅, z) at θ cannot be sustained when |b1
2| = ‖b1‖ since Agent 1 has a profitable deviation. Here I depict the 

outcome space, where the origin represents the DM’s ideal consequence and the quadrant represents an indifference curve of the DM. The 
disks represent the agents’ ideal consequences: b1 = (3, 4), b2 = (5, 1). The circles represent the outcomes from the agents’ equilibrium 
proposals: x1 = (3, 4), x2 = (5, 0). The DM is indifferent between x1 and x2 and chooses β ∈ (0, 1). The cross at (3, 3.5) represents Agent 
1’s deviation outcome. Indifference of the DM indicates that Agent i reveals θ i . Now, let Agent 1 deviate to (∅, θ2 − 3.5). Since the DM 
learns θ2

from Agent 2, she now prefers Agent 1. For low enough β , (∅, θ2 − 3.5) is profitable.

1, even when the DM recognizes the wrong deviator, she still prefers Agent 1.6 Under the quadratic utility assumption, any 
such potentially profitable compromise by Agent 1 results in an efficiency violation.

In the remaining cases where |b1
2| < ‖b1‖ and |b2

1| < ‖b2‖, neither agent’s bias on his disadvantageous dimension alone 
is as large as his opponent’s total bias. In this case, indifference no longer implies information revelation in equilibrium. 
However, once the agents are assumed to make constant amount of compromises across the states, we can guarantee that 
after undercutting occurs, the DM recognizes the information content in the non-deviator. The undercutting intuition can 
then be directly applied (the proof is in Appendix A).

Proposition 2. For any b1 , b2 , δ1 ∈ [0, 1] and δ2 ∈ [0, 1], s1(θ) = (θ1 − δ1b1
1, ∅), s2(θ) = (∅, θ2 − δ2b2

2), ∀θ cannot be sustained in 
an SES-equilibrium.

6 Without efficiency, if the DM wrongly believes that Agent 2 is the deviator, then depending on the equilibrium (which now for some state θ prescribes 
the proposal profile ((w, ∅), (∅, z)) while for some other state θ prescribes the proposal profile ((∅, z′), (w ′, ∅)) for some w ′ ∈ R), it is technically 
possible that she would prefer Agent 2 given the information conveyed by Agent 1’s equilibrium proposal (∅, z′).
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In this class of equilibria, agents’ equilibrium proposals could potentially be far from their own ideal actions. Depending 
on the biases and the amount of compromise they make in equilibrium, it is possible that an undercutting deviation is not 
profitable even if the deviator wins with probability 1. For this not to be the case, we need to ensure that the deviation 
proposal is preferred by the deviator to both agents’ equilibrium proposals.7 Although it is not always true that both agents 
have potentially profitable undercutting deviations, one can show that at least one of them does. By making sure that it is 
this agent who undercuts, we can bypass this problem.

Although agents cannot be vague only about their disadvantageous dimensions, they could be vague about their ad-
vantageous dimensions, as can be seen in Propositions 3 and 4. The proofs are in Appendix B. Proposition 3 identifies an 
equilibrium in which both agents are vague about all dimensions in all states: s1(θ) = s2(θ) = (∅, ∅), ∀θ .

Proposition 3. For any b1, b2 , an SES-equilibrium exists in which both agents are vague about both dimensions at all states.

Suppose at some θ , Agent 1 deviates to be specific about any given dimension(s). The deviation leads to an off-path 
proposal profile. The DM then maintains the belief that Agent 2 has not deviated but is free to choose any beliefs regarding 
Agent 1’s strategy. In particular, she can choose the belief that Agent 1 has deviated to his most preferred action and best 
responding by her equilibrium action. Such a deviation is therefore unprofitable.

Proposition 4 characterizes equilibria in which both agents are vague on their advantageous dimensions and specific on 
their disadvantageous dimensions at all states. To contrast with Proposition 2, I focus on the same class of equilibria; that is, 
compromises are constant across the states. As can be seen, the existence of equilibria in this class depends on the agents’ 
biases.

Proposition 4. Consider the following proposal profile:

s1(θ) = (∅, θ2 − δ1b2
1),

s2(θ) = (θ1 − δ2b1
2,∅),

where δ1 , δ2 ∈ [0, 1]. Define δ∗ :=
√

‖b1‖2 − (b2
2)

2

|b1
2|

.

(1) The following cannot be sustained in an SES-equilibrium under any preferences:

(a) δ1 = 1, δ2 ∈ [0, δ∗), or
(b) δ1 < 1.

(2) Suppose that |b1
2| > ‖b1‖ or |b1

2| = ‖b1‖ < ‖b2‖. Then any SES-equilibrium in which δ1 = 1, δ2 ∈ [δ∗, 1] can be sustained.
(3) Suppose that |b1

2| = ‖b1‖ = ‖b2‖, or symmetrically, |b2
1| = ‖b1‖ = ‖b2‖. Then the SES-equilibrium in which δ1 = 1, δ2 = δ∗ = 1

can be sustained.
(4) Suppose that |b1

2| < ‖b1‖ < ‖b2‖. The SES-equilibrium in which δ1 = 1, δ2 ∈ [δ∗, 1] can be sustained iff Agent 2 weakly prefers 

the outcome b1 to (b1
2, 

√
‖b1‖2 − |b1

2|2 · b2
2

|b2
2|

).

(5) Suppose that |b1
2| < ‖b1‖, ‖b1‖ = ‖b2‖, and |b2

1| < ‖b2‖. Then no SES-equilibrium can be sustained.

In this class of equilibria, the DM’s payoff from an agent is the same across the states. Therefore, if Agent i is strictly 
preferred at some θ , he is strictly preferred at all states; if the DM is indifferent at some θ , she is indifferent across all 
states (though she may choose different actions across the states). Moreover, when δ2 = δ∗ , the DM is exactly indifferent 
between Agent 2’s proposal and b1. Lastly, when ‖b1‖ = ‖b2‖ (which is the case for 3 and 5), δ∗ = 1.

I first discuss nonexistence (Case 1). When δ1 = 1 and, δ2 ∈ [0, δ∗), Agent 1 proposes own ideal proposal while Agent 2 
compromises such that the DM strictly prefers Agent 2 and therefore chooses β = 0 at all states. Agent 2 then has incentives 
to deviate to his own ideal proposal (θ1 − b1

2, ∅): since this leads to a on-path proposal profile, the DM continues to choose 
β = 0 and Agent 2 gets his own ideal outcome.

Now, let us consider the case in which δ1 < 1. If β(s(θ)) = 0 for all θ , then the DM must weakly prefers Agent 2. Since 
Agent 1 is compromising and ‖b1‖ ≤ ‖b2‖, Agent 2 must also be compromising in equilibrium. The same argument as the 
one in the previous paragraph then shows that Agent 2 has incentives to deviate. So let us suppose that β(s(θ)) > 0 for 
some θ . That is, Agent 1 wins with positive probability at θ with a compromise proposal. Since � =R2, one can find θ̃ such 

7 If the deviation proposal is only better than his opponent’s equilibrium proposal and the deviator’s equilibrium probability of winning is sufficiently 
high, the deviation may not be profitable. Similarly, if the deviation proposal is only better than his own equilibrium proposal and the deviator’s equilibrium 
probability of winning is sufficiently low, the deviation may not be profitable either.
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Fig. 3. s1(θ) = (∅, θ2 − b2
1), s2(θ) = (θ1 − δ∗b1

2, ∅) can be sustained in equilibrium when |b1
2| = ‖b1‖ < ‖b2‖. Agent 2 has deviated to 

(θ
1 − 3.6, ∅) at some θ . Here I depict the outcome space, where the origin represents the DM’s ideal consequence and the quadrant 

represents an indifference curve of the DM. The disks represent the agents’ ideal consequences: b1 = (3, 4), b2 = (5, 2). The circles 
represent the outcomes from the agents’ equilibrium proposals: x1 = (3, 4), x2 = (

√
21, 2). The DM is indifferent between x1 and x2 and 

chooses β = 1. The cross at (3.6, 2) represents Agent 2’s deviation outcome. Even though the deviation is in fact preferred by the DM, it 
is not profitable since the DM is free to believe that it gives Agent 2 his ideal outcome.

Fig. 4. s1(θ) = (∅, θ2 − b2
1), s2(θ) = (θ1 − δ∗b1

2, ∅) can be sustained in equilibrium when |b1
2| = ‖b1‖ < ‖b2‖. Agent 2 has deviated to 

(∅, θ2
) at some θ . Here I depict the outcome space, where the origin represents the DM’s ideal consequence and the quadrant represents 

an indifference curve of the DM. The disks represent the agents’ ideal consequences: b1 = (3, 4), b2 = (5, 2). The circles represent the 
outcomes from the agents’ equilibrium proposals: x1 = (3, 4), x2 = (

√
21, 2). The DM is indifferent between x1 and x2 and chooses β = 1. 

The cross at (5, 0) represents Agent 2’s deviation outcome. Agent 2 has deviated to the DM’s ideal policy on dimension 2, but since the 
DM is still indifferent, this is not sufficient to achieve a higher probability of winning.

that: (i) s2(θ̃) = s2(θ) and (ii) s1(θ) is Agent 1’s ideal proposal at θ̃ . In order for Agent 1 to not have incentives to deviate to 
s1(θ) at θ̃ , it must be that his probability of winning after the deviation is strictly lower. In particular, β(s(θ̃ )) = Cβ(s(θ)), 
where C > 1 depends on b1 and b2 only. Now we have that Agent 1 wins with positive probability at θ̃ with a compromise 
proposal. By iterating the same argument, one can eventually find some state θ∗ for which β(θ∗) > 1, a contradiction.

We have thus ruled out equilibria in which δ1 = 1, δ2 ∈ [0, δ∗) as well as δ1 < 1 for all b1, b2. What is left to be checked 
is the set of equilibria in which δ1 = 1, δ2 ∈ [δ∗, 1]. That is, Agent 1 does not compromise and the DM weakly prefers Agent 
1. The existence depends on the preferences of the agents, which I elaborate below.

Any such equilibria can be sustained for the preferences in 2 and 3. When |b1
2| > ‖b1‖ or |b1

2| = ‖b1‖ ≤ ‖b2‖, let β(s(θ)) =
1 for all θ . Although Agent 1 reveals θ2 which allows Agent 2 to compromise on dimension 2, |b1

2| is sufficiently large that 
no compromise is sufficient to increase Agent 2’s chance of winning. Figs. 3 and 4 illustrate two possible deviations for 
Agent 2, neither of which is profitable. When |b2| = ‖b1‖ < ‖b2‖, let β = 0 for all states and the argument is identical.
1
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Fig. 5. s1(θ) = (∅, θ2 − b2
1), s2(θ) = (θ1 − b1

2, ∅) cannot be sustained in equilibrium when |b1
2| < ‖b1‖ = ‖b2‖ > |b2

1|. Agent 2 has deviated 
to (∅, θ2 − 2) at some θ . Here I depict the outcome space, where the origin represents the DM’s ideal consequence and the quadrant 
represents an indifference curve of the DM. The disks represent the agents’ ideal consequences: b1 = (3, 4), b2 = (4, 3). The circles 
represent the outcomes from the agents’ equilibrium proposals: x1 = (3, 4), x2 = (4, 3). The DM is indifferent between x1 and x2 and 
chooses β = 1. The cross at (4, 2) represents Agent 2’s deviation outcome. Agent 2 has deviated to a better policy on dimension 2, and 
since the DM learns θ2 from Agent 1, the compromise is credible and therefore profitable.

For the preferences in 4, we first note that by previous arguments, β(s(θ)) = 1 for all θ .8 Therefore the equilibrium 
outcome is b1. Now, since in this class of preference |b1

2| is sufficiently small, undercutting on dimension 2 could lead to a 
win for Agent 2. However, depending on the distance of b1 and b2, undercutting may or may not be profitable for Agent 
2. If Agent 2 weakly prefers the equilibrium outcome b1 to his deviation outcome, then undercutting is not profitable and 

the equilibrium can be sustained. The outcome (b1
2, 

√
‖b1‖2 − |b1

2|2 · b2
2

|b2
2|

) is the deviation where the DM would be exactly 

indifferent between b1 and Agent 2’s deviation proposal. The two examples below illustrate the two cases: in Example 1
the equilibrium can be sustained and in Example 2 it cannot.

Example 1. Consider the equilibrium proposal profile given by δ1 = 1, δ2 = δ∗ when b1 = (3, 4), b2 = (3.2, 3.9). Let Agent 2 
deviate to (∅, θ2 − √

14.76) at any θ . Note that |b1
2| < ‖b1‖ < ‖b2‖. The outcomes from the agents’ equilibrium proposals 

are x1 = (3, 4), x2 = (
√

9.79, 3.9). The DM is indifferent between x1 and x2 and chooses β = 1. Agent 2’s best deviation 
outcome is (3.2, 

√
14.76). Since Agent 2 prefers the equilibrium outcome x1, this deviation is not profitable.

Example 2. Consider the equilibrium proposal profile given by δ1 = 1, δ2 = δ∗ when b1 = (3, 4), b2 = (4, 3.2). Let Agent 
2 deviate to (∅, θ2 − 3) at any θ . Note that |b1

2| < ‖b1‖ < ‖b2‖. The outcomes from the agents’ equilibrium proposals 
are x1 = (3, 4), x2 = (

√
14.76, 3.2). The DM is indifferent between x1 and x2 and chooses β = 1. Agent 2’s best deviation 

outcome is (4, 3). Since Agent 2 prefers his deviation to the equilibrium outcome x1, this deviation is profitable.

For the last class of preferences 5, first note that the DM can only be indifferent between the agents since any strictly 
preferred agent must be compromising and therefore have incentives to deviate. Moreover, since Agent i reveals θ−i , the 
agent who does not win with probability 1 at any state θ has an incentive to undercut and this deviation would be 
profitable. Fig. 5 illustrates.

4. Refinement: extended intuitive criterion

In the previous section, I showed the existence of equilibria in which agents are vague about their advantageous di-
mensions. This result should not be surprising because in signaling games, there are typically multiple equilibria, some 
of them supported by unreasonable beliefs. In this section, I develop an equilibrium refinement for two-sender signaling 
games similar to the Intuitive Criterion (Cho and Kreps, 1987) and show that the previous equilibria are robust under this 
refinement.

8 This is automatically true if the DM strictly prefers Agent 1 in equilibrium. If the DM strictly prefers Agent 2 and therefore chooses β = 0 at all states, 
given that Agent 1 makes his own ideal proposal, it must be the case that Agent 2 compromises. But then Agent 2 has incentives to deviate to his own 
ideal proposal. If the DM is indifferent (and therefore Agent 2 compromises) and chooses β < 1 at some state, then we can apply the previous iteration 
argument we used to rule out equilibria in which δ1 < 1 to rule this out.
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4.1. One sender: intuitive criterion

First, I will review the Intuitive Criterion. As a refinement for one-sender signaling games, it requires the receiver to 
believe that, after a deviation by the sender, the deviation is potentially profitable. In particular, the receiver is required 
to believe that the state of the world is such that the highest payoff that the sender can get by deviating to the observed 
message, given that the receiver does not play never-best responses, is weakly higher than the sender’s equilibrium payoff. 
The idea is that if the highest possible payoff the sender gets by deviating is lower than his equilibrium payoff, then he 
should not bother to deviate in the first place.

I will keep using the terminologies and notations from Section 2 to describe both one-sender and two-sender signaling 
games and the equilibrium refinements. In a one-sender signaling game, given the state θ ∈ �, the Agent’s proposal m ∈ M , 
and the DM’s action β ∈ B , the DM’s payoff is denoted by u0(θ, m, β), the Agent’s payoff by u1(θ, m, β), and the DM’s belief 
by μ(· | m). The set of the DM’s best responses to a proposal m against the belief μ is:

B̃R (μ,m) = arg max
β∈B

∫
�

u0(θ,m, β) dμ.

For any non-empty T ⊂ � and m ∈ M ,

BR (T ,m) =
⋃

μ:μ(T |m)=1

B̃R (μ,m)

denotes the set of the DM’s best responses according to beliefs with the support T . When T is empty, let BR (T , m) =
BR (�, m).

Given a weak PBE (s, β, μ), the Agent’s equilibrium payoff at θ is denoted by u∗
1(θ). For a proposal mdev that is inconsis-

tent with equilibrium, the set of states at which the Agent’s highest payoff from deviating to mdev given that the DM plays 
a best response is higher than the Agent’s equilibrium payoff is

�(mdev) =
{

θ | max
β∈BR (�,mdev )

u1(θ,mdev , β) ≥ u∗
1(θ)

}
.

Finally, an equilibrium (s, β, μ) fails the Intuitive Criterion if there exists θ ∈ � and mdev ∈ M inconsistent with equilibrium 
such that

u∗
1(θ) < min

β∈BR (�(mdev ),mdev )
u1(θ,mdev , β).

When the DM observes an unexpected proposal mdev , the support of her belief is restricted to states at which mdev is poten-
tially profitable. That is, the highest payoff that the Agent can get given that the DM does not play never-best responses is 
higher than his equilibrium payoff. The Agent then contemplates deviations given that the DM best responds to beliefs thus 
restricted. If for some θ and mdev , any such best response makes the Agent strictly better off compared to an equilibrium 
when the state is θ , then the equilibrium fails the Intuitive Criterion.

4.2. Two senders: extended intuitive criterion

I extend the Intuitive Criterion to the two-sender case by combining single-deviation consistency with the Intuitive 
Criterion. Single-deviation consistency identifies the deviator. The Intuitive Criterion identifies the deviations in which the 
receiver is allowed to believe.

In a two-sender signaling game, given the state θ ∈ �, agents’ proposal profile m = (m1, m2), and the DM’s action β ∈ B , 
Agent i’s payoff is denoted by ui(θ, m, β), the DM’s payoff by u0(θ, m, β), and the DM’s belief over � by μ(· | m). Given a 
weak PBE (s1, s2, β, μ), Agent i’s equilibrium payoff at θ is denoted by u∗

i (θ). Agent i’s opponent is denoted by Agent −i.

Definition 5 (The Extended Intuitive Criterion). Let (s1, s2, β, μ) be a weak PBE. For each m = (m1, m2) such that s−1
1 (m1) ∩

s−1
2 (m2) is empty and each i = 1, 2, form the set

�i(m) =
{
θ | s−i(θ) = m−i, u∗

i (θ) ≤ max
β∈BR (�,m)

ui(θ,m, β)

}
.

(s1, s2, β, μ) fails the Extended Intuitive Criterion if there exists θ ∈ �, i ∈ {1, 2}, mdev
i ∈ M such that

u∗
i (θ) < min

β∈BR (�1(mdev )∪�2(mdev ),mdev )
ui(θ,mdev , β), (1)

where mdev is the proposal profile formed by s−i(θ) and mdev
i . An equilibrium satisfying the Extended Intuitive Criterion is 

called an intuitive equilibrium.
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Following Battigalli and Siniscalchi (2002), I now informally describe the assumptions about players’ strategic reasoning 
imposed by the Extended Intuitive Criterion (EIC) (see Battigalli and Siniscalchi (2002) for more details). In the following, 
I assume that (s1, s2, β, μ) is an intuitive equilibrium and the DM observes m = (m1, m2) where m1 is inconsistent with 
equilibrium while m2 is consistent with equilibrium.

First, EIC assumes that the agents believe that the DM’s belief agrees with the equilibrium outcome after she observes 
a proposal profile. Moreover, the agents believe that the DM believes that agents act independently. Therefore, the DM 
knows that m2 is consistent with equilibrium while m1 is not, and she believes that m2 is the result of Agent 2 playing his 
equilibrium strategy. This is captured by s2(θ) = m2 in �1(m).

Second, EIC assumes that the agents believe that upon observing any proposal profile, the DM believes that (1) the 
agents are rational, (2) the agents’ initial beliefs agree with the equilibrium, (3) the agents do not expect the DM to play 
dominated actions, and (4) each agent expects the other agent to play his equilibrium strategy. This is the forward-induction 
assumption that, upon observing an off-path proposal profile, the DM’s beliefs are concentrated on states for which m1 is 
not equilibrium-dominated. This is captured by u∗

1(θ) ≤ maxβ∈BR (�,m) u1(θ, m, β). Combined with the first point, we now 
have that the DM’s belief is restricted to �1(m). Third, the agents believe that the DM is rational. Therefore, they believe 
that she plays β ∈ BR (�1(m), m) upon observing m.

I have thus described the agents’ beliefs about the DM. Since the agents are themselves rational and their beliefs agree 
with the equilibrium, they play best responses to their beliefs about the DM. Therefore, for some belief of Agent 1 about β , 
m1 must give a weakly lower payoff than Agent 1’s equilibrium payoff, which is captured by inequality (1).

4.3. Robustness of equilibria

In Section 3, I identified some equilibria in which agents are vague about their advantageous dimensions.

s1(θ) = s2(θ) = (∅,∅),∀θ

can be sustained in equilibrium for all preferences. For other various classes of preferences, the following equilibria may 
also be sustained:

s1(θ) = (∅, θ2 − b2
1), s2(θ) = (θ1 − δb1

2,∅),∀θ, δ ∈ [δ∗,1].
All these equilibria are robust to the EIC. The proof is in Appendix C.

Proposition 5. All SES-equilibria identified in Proposition 3 and 4 are intuitive.

By definition of an equilibrium, we know that for any proposal profile m, β(m) is a best response to belief μ(· | m)

and that β(·) deters any deviation. Therefore, it suffices to show that for any off-path proposal profile mdev resulting from 
a unilateral deviation, μ(· | mdev) ∈ �(�1(mdev) ∪ �2(mdev)) whenever �1(mdev) ∪ �2(mdev) is nonempty. I call a belief 
μ(· | m) satisfying this property reasonable.

For the all-vague equilibrium, notice that any unilateral deviation is believed to be the deviator’s ideal action. This belief 
is reasonable because, if the DM chooses the same action as in equilibrium (which is not dominated since it is a best 
response to this very belief), this deviation does not lead to a worse-than-equilibrium payoff for the deviator.

For the equilibria in which agents are only vague on their advantageous dimensions, let us take Agent 1 as the deviator 
(the argument for when Agent 2 deviates is completely symmetric).9 Suppose he deviates to (∅, ∅). According to the 
equilibrium specification, μ(· | mdev) is the updated belief given Agent 2’s proposal only. If the DM responds by choosing 
β = 1, the deviation leads to a payoff which is no less than Agent 1’s equilibrium payoff. Moreover, choosing β = 1 after 
the deviation is not dominated, since it is a best response if the DM believes that Agent 2’s proposal on dimension 1 is far 
from θ1.

Suppose Agent 1 deviates to (w, ∅). Given that μ(· | mdev) assigns probability 1 to the event that Agent 2 has not 
deviated, we can pin down the payoff of Agent 1 from Agent 1’s deviation proposal and Agent 2’s equilibrium proposal. 
Therefore, either μ(mdev) ∈ �(�1(mdev)), or �1(mdev) ∪ �2(mdev) is empty.

Suppose Agent 1 deviates to (q, w). μ(· | mdev) is concentrated on a single state at which Agent 2 has not deviated and 
Agent 1’s deviation on dimension 2 is to his own ideal action. Since this is the most favorable belief for Agent 1 possible that 
assigns probability 1 to the event that Agent 2 has not deviated, either μ(· | mdev) ∈ �(�1(mdev)) or �1(mdev) ∪ �2(mdev)

is empty.

5. Conclusion

This paper discusses the role of vague proposals in a setting with two competing agents. When uncertainty involves 
both the policy-relevant state and the action choice, preciseness allows the opponent to anchor on the information revealed 

9 We only need to consider deviations of the form (∅, ∅), (w, ∅), and (q, w). Any deviation of the form (∅, z) leads to an on-path proposal profile so 
EIC does not apply.
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about both aspects of uncertainty and offer a compromise action, while vagueness conceals the information about the state 
and makes compromises impossible. To demonstrate this intuition, I identify equilibria in which agents are only vague about 
their advantageous dimensions, and show such equilibria as being unique within a class.

Two interesting questions require a fuller characterization of equilibria. The first is whether vagueness should be allowed, 
especially in the political campaign context. Whether or not banning vagueness is possible, conceivably one can deal with 
this question by studying how vagueness impacts the voter’s welfare. To do this, one needs to characterize the voter’s 
equilibrium welfare when vagueness is allowed and when it is not. The former requires characterizing equilibria not just 
when vagueness occurs, but also when it does not.

To get a vague idea of how banning vagueness could negatively affect the voter’s welfare, consider the case in which 
both candidates propose a constant, precise policy for each dimension in all states. It is easy to see that this strategy profile 
can be sustained in equilibrium even though the proposal could be arbitrarily far from the true state realization. In contrast, 
consider the equilibrium in which both candidates are always vague about both dimensions, in which case the voter gets the 
less biased candidate’s ideal policies. Although this is not a fair comparison, these two equilibria have qualitative similarities: 
both involve constant proposals, do not transmit any information about the state, and survive the refinement. But under at 
least some distributions of the state, vagueness improves the voter’s welfare.

Another question is: when does competition lead to less certainty? As mentioned in a previous section, in cheap talk, 
persuasion, and disclosure models, competition can increase the amount of information revealed. In this model, where un-
certainty involves both the state and action and communication takes the form of proposals, I demonstrate that competition 
does not necessarily lead to less uncertainty. However, I have not shown if all equilibria of the game involve vagueness and 
this is left for future research.
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Appendix A. Proof for ((w, ∅), (∅, z))

For convenience, I use the following notation. For j = 0, 1, 2, I rewrite v j(θ, i, mi) as v j(θ, yi(mi)) to make Agent i’s 
action explicit. For μ ∈ �(�) and m ∈ M × M , πi(μ, m) denotes the DM’s expected payoff from choosing Agent i given her 
belief μ and agents’ proposal profile m. Given an equilibrium, u∗

i (θ) denotes Agent i’s equilibrium payoff when the state is 
θ . After some agent’s deviation, the resulting proposal profile is mdev and Agent i’s payoff given mdev is ui(θ, mdev , β(mdev)).

A.1. Proof of Proposition 1

The proof rules out an equilibrium proposal profile which takes the form

m = ((w,∅), (∅, z))

where w , z ∈R at some θ = θ .
Case 1. |b1

2| > ‖b1‖.
From Lemma 1, β(m) ∈ (0, 1). Since b1

2 	= b1
1, this implies that u∗

1(θ) 	= 0. I show that Agent 1 has a profitable deviation 
mdev

1 = (∅, ∅) at θ . To see this, let mdev = ((∅, ∅), (∅, z)) and μ ∈ �(�). Then we have

π1(μ,mdev) = −‖b1‖2,

π2(μ,mdev) =
∫
�

v0(θ, (θ1 − b1
2, z))μdθ

≤ −|b1
2|2 < −‖b1‖2.

Therefore β(mdev) = 1. Moreover, because for any θ and z,

v1(θ, y1(∅,∅)) > v1(θ, y2(∅, z)),
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we have

u1(θ,mdev , β(mdev)) = v1(θ, y1(∅,∅))

> β(m)v1(θ, y1(w,∅)) + (1 − β(m))v1(θ, y2(∅, z))

= u∗
1(θ).

(∅, ∅) is then a profitable deviation for Agent 1. Therefore m cannot be an equilibrium proposal profile at θ .
Case 2. |b1

2| = ‖b1‖.
Step 1. There exists θ̃ (θ̃ may equal θ ) s.t.

s1(θ̃ ) = (θ̃1 − b1
1,∅), s2(θ̃ ) = (∅, θ̃2).

It follows from Lemma 1 that β(m) ∈ (0, 1). Therefore the DM is indifferent. Now, given efficiency, the worst outcome the 
DM can get from Agent 1 is (b1

1, b
2
1), while the best she can get from Agent 2 is (b1

2, 0). Since the DM is exactly indifferent 
between (b1

1, b
2
1) and (b1

2, 0), she must assign probability 1 to the state (b1
1 + w, z). Since the DM’s belief must be consistent 

with agents’ strategies, there exists θ̃ such that s1(θ̃ ) = (θ̃1 − b1
1, ∅) and s2(θ̃ ) = (∅, θ̃2). If θ̃ 	= θ , then replace θ with θ̃ for 

the rest of the proof.
Step 2.

Let Agent 1 deviate to mdev
1 = (∅, θ2 − (1 − ε)b2

1) at θ , where ε ∈ (0, 1), close enough to 0 such that

v1(θ, (θ
1 − b1

1, θ
2 − (1 − ε)b2

1)) > u∗
1(θ) = β(m) × 0 + (1 − β(m)) × v1(θ, (θ

1 − b1
2, θ

2
)).

Note that since β(m) ∈ (0, 1), this can always be done.
Step 2a.
If β(mdev ) = 1, then mdev

1 is a profitable deviation for Agent 1.
Step 2b.
If β(mdev ) < 1, then there exists some θ in the support of the DM’s belief, at which Agent 1 is playing according to 

equilibrium. This is because, since m2 is consistent with equilibrium and mdev is not a symmetric proposal profile, mdev

could either be:

1. off-path with mdev
1 inconsistent with equilibrium and m2 consistent with equilibrium;

2. off-path with both mdev
1 and m2 consistent with equilibrium;

If it is the first case, then by single-deviation consistency, the DM believes that Agent 2 has not deviated and therefore the 
state is one in which the corresponding equilibrium proposal profile takes the form

(w̃,∅), (∅, z̃)

where w̃ , z̃ ∈R. Moreover, the DM learns θ2 = z and therefore strictly prefers Agent 1. This contradicts to β(mdev ) < 1. The 
same argument applies if it is the second case and the DM assigns probability 1 to Agent 2 has not deviated. Therefore, 
there must exist a state θ at which Agent 2 has deviated. Again by single-deviation consistency, this means that Agent 1 has 
not. That is, there exists θ = (θ1, x) such that

s1(θ) = mdev
1

−(b1
1)

2 − [x − θ
2 + (1 − ε)b2

1]2 ≤ −(b1
2)

2 − (x − θ
2
)2.

In other words, there must exist a state at which mdev
1 is the corresponding equilibrium proposal for Agent 1 and at this 

state, Agent 2 is weakly preferred.
Regrouping the items in the inequality above, we have that

2(x − θ
2
)(1 − ε)b2

1 ≥ (b1
2)

2 − (b1
1)

2 − (1 − ε)2(b2
1)

2.

Since the preferences of the agents satisfy

(b1
2)

2 = (b1
1)

2 + (b2
1)

2,

we can replace term (b1
2)

2 on the RHS and get

2(x − θ
2
)(1 − ε)b2

1 ≥ (2 − ε)ε(b2
1)

2.

If b2 > 0, we then have
1
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x − θ
2 ≥ (2 − ε)εb2

1

2(1 − ε)
> εb2

1.

On the other hand, efficiency requires that

x − b2
1 ≤ θ

2 − (1 − ε)b2
1 ≤ x,

which implies

x − θ
2 ≤ εb2

1,

a contradiction.
If b2

1 < 0, we then have

x − θ
2 ≤ (2 − ε)εb2

1

2(1 − ε)
< εb2

1.

Efficiency now requires that

x ≤ θ
2 − (1 − ε)b2

1 ≤ x − b2
1,

which implies

x − θ
2 ≥ εb2

1,

also a contradiction.
To summarize, β(mdev) = 1 and mdev

1 is a profitable deviation.
Case 3. |b2

1| = ‖b2‖.
Since ‖b1‖ ≤ ‖b2‖ (assumed throughout the paper), |b1

1| = 0. If b2
2 = 0, then |b1

2| = ‖b1‖, which is covered in Case 2. If 
b2

2 	= 0, this is symmetric to the case where b2
2 = 0 and |b1

2| = ‖b1‖, which is also covered in Case 2. �
A.2. Proof of Proposition 2

When |b1
2| ≥ ‖b1‖ or |b2

1| ≥ ‖b2‖, Proposition 1 applies. So here I restrict to the case where |b1
2| < ‖b1‖ and |b2

1| < ‖b2‖. 
Suppose by way of contradiction that s1(θ) = (θ1 − δ1b1

1, ∅), s2(θ) = (∅, θ2 − δ2b2
2) are the equilibrium strategies for the 

agents for some δ1 and δ2.
Case 1. |b1

1| = 0.
By efficiency, δ1 = 0. Therefore Agent 1 proposes his ideal outcome b1.

Fix θ . By Lemma 1, β = β(s1(θ), s2(θ)) ∈ (0, 1) and the DM is indifferent. Therefore δ2 =
√

‖b1‖2 − (b1
2)

2 · b2
2

|b2
2| . For any 

β ∈ (0, 1), we can find some ε > 0 such that (0, (1 − ε)b2
1) gives Agent 1 strictly higher payoff than his equilibrium payoff 

β · 0 + (1 − β) · v1(θ, y2(∅, θ2 − δ2b2
2)). Let Agent 1 deviate to (∅, θ2 − (1 − ε)b2

1), and the DM would strictly prefer Agent 
1, so it’s a profitable deviation.

Case 2. |b1
1| 	= 0.

First, we note that either |b1
1| < |b2

1|, or |b1
2| > |b2

2|. If not, then we have |b1
1| ≥ |b2

1| and |b1
2| ≤ |b2

2|. Since |b1
1| < |b1

2| and 
|b2

2| < |b2
1| (assumed throughout the paper), we then have |b1

1| < |b1
2| ≤ |b2

2| < |b2
1|, a contradiction.

If |b1
1| < |b2

1|, then by Claim 1 below, at any θ , there exists ε > 0 such that the outcome (b1
1, θ

2 − z̃(ε)) is strictly preferred 
by Agent 1 to both agents’ proposals. Let Agent 1 deviate to (∅, ̃z(ε)). Since (∅, ̃z) is inconsistent with equilibrium, the DM 
believes that Agent 2 has not deviated, learns the true θ2

from Agent 2 and prefers Agent 1’s deviation proposal.

Claim 1. If |b1
1| < |b2

1|, then at any θ , there exists ε > 0 such that (b1
1, ̃z(ε)) is preferred by Agent 1 to the outcome (δ1b1

1, b
2
1) and 

(b1
2, δ2b2

2).

Proof. For any ε > 0, let

z̃(ε) = θ
2 + b2

1

|b2
1|

(
ε −

√
(δ1b1

1)
2 + (b2

1)
2 − (b1

1)
2

)
.

I first show that for ε small enough, Agent 1 strictly prefers the outcome from a deviation proposal (∅, ̃z(ε)) to the one 
from his own equilibrium proposal (θ1 −δ1b1

1, ∅). (See Fig. 6.) I show this by first showing that O A > O B . To see this, notice 
that since O is above the 45-degree line, C E > D E . This implies sin 	 C AE > sin 	 E B D . Therefore 	 C AE > 	 E B D . Moreover, 
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Fig. 6. E denotes the outcome (0, 0). O denotes the outcome (|b1
1|, |b2

1|), which is above the 45-degree line. A denotes the outcome 
(δ1|b1

1|, |b2
1|). B denotes the outcome (|b1

1|, 
√

(δ1b1
1)

2 + (b2
1)

2 − (b1
1)

2). The arc F G is an indifference curve of the DM. O C and O D are 
parallel to the axes.

since E A = E B , 	 E AB = 	 E B A. Since 	 C AE + 	 E AB + 	 O AB = 	 E B D + 	 E B A + 	 O B A = 180◦ , we have 	 O B A > 	 O AB . 
Therefore O A > O B . That is,

‖(|b1
1|, |b2

1|) − (δ1|b1
1|, |b2

1|)‖ > ‖(|b1
1|, |b2

1|) − (|b1
1|,

√
(δ1b1

1)
2 + (b2

1)
2 − (b1

1)
2)‖,

which implies

‖(b1
1,b2

1) − (δ1b1
1,b2

1)‖ > ‖(b1
1,b2

1) − (b1
1,

b2
1

|b2
1|

√
(δ1b1

1)
2 + (b2

1)
2 − (b1

1)
2)‖.

Therefore, for ε sufficiently small,

‖(b1
1,b2

1) − (δ1b1
1,b2

1)‖ > ‖(b1
1,b2

1) − (b1
1,

b2
1

|b2
1|

(

√
(δ1b1

1)
2 + (b2

1)
2 − (b1

1)
2 − ε))‖.

That is, Agent 1 strictly prefers the outcome from (∅, ̃z(ε)) to that from (θ1 − δ1b1
1, ∅).

Now I show that for ε small enough, Agent 1 strictly prefers the outcome from a deviation proposal (∅, ̃z(ε)) to the one 
from Agent 2’s equilibrium proposal (∅, θ2 − δ2b2

2). First, note that since |b1
2| > |b1

1| (assumed throughout the paper) and 
the DM is indifferent between the agents’ equilibrium proposals, the outcome (|b1

2|, δ2|b2
2|) lies on the arc B F . Second, note 

that on dimension 1 alone, Agent 1 strictly prefers his deviation proposal. Therefore it suffices to show that this is also true 
on dimension 2 alone. It then suffices to show that

|b2
1 − b2

1

|b2
1|

√
(δ1b1

1)
2 + (b2

1)
2 − (b1

1)
2| < |b2

1 − δ2b2
2|.

Notice that LHS ≤ |b2
1|. Therefore if b2

2 · b2
1 < 0, RHS > |b2

1|. Let us then assume that b2
2 · b2

1 > 0. It then suffices to show

||b2
1| −

√
(δ1b1

1)
2 + (b2

1)
2 − (b1

1)
2| < ||b2

1| − δ2|b2
2||.

This is true since any point G on the arc B F is automatically below B . �
Since it is obvious that for ε small, the DM strictly prefers Agent 1’s deviation (∅, ̃z(ε)), we have found a profitable 

deviation.
Similarly, when |b1

2| > |b2
2|, Agent 2 has a profitable deviation (w̃(ε), ∅) where ε is sufficiently small and

w̃(ε) = θ
1 + b1

2

|b1|
(
ε −

√
(δ2b2

2)
2 + (b1

2)
2 − (b2

2)
2

)
. �
2
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Appendix B. Proof for ((∅, ·), (·, ∅))

B.1. Proof of Proposition 3

The proof shows that the following is an equilibrium proposal profile:

s1(θ) = s2(θ) = (∅,∅),∀θ.

The DM’s belief and strategy is as follows: for any m such that there is exactly one agent who is precise for any 
dimension(s), the DM believes that he is proposing his own ideal policy and chooses the agents with the same prob-
ability as in equilibrium. In other words, if m is such that mi ∈ (R × {∅}) ∪ ({∅} × R) ∪ (R2) and m−i = (∅, ∅), 
μ({θ̃ | θ̃ j = m j

i + b j
i , ∀ j s.t. m j

i ∈R} | m) = 1. Any other m is the result of bilateral deviation and μ(· | m) is not restricted by 
single-deviation consistency or consequential in sustaining the equilibrium. Therefore μ(m) ∈ �(�) and β(m) ∈ B̃R (μ, m).

To see that no agent has an incentive to deviate, suppose that at θ Agent i deviates to mdev
i . Given mdev = (mdev

i , m−i), 
note that

πi(μ(· | mdev),mdev) =
∫
�

v0(θ, θ − bi)μdθ.

Therefore deviating does not change how favorable the DM perceives the deviator’s proposal. So β(mdev ) = β(s1(θ), s2(θ))

and mdev
i is unprofitable. �

B.2. Proof of Proposition 4

First I prove the non-equilibria. There are three possible subcases:
Case 1 δ1 < 1 and ‖(b1, δ1b2

1)‖ = ‖(δ2b1
2, b

2
2)‖.

In this case, the DM is indifferent in equilibrium. Therefore β ∈ [0, 1]. Now, if β(s(θ)) = 0 ∀θ , then Agent 2 wins with 
probability 1 at any state. Note that δ1 < 1, so Agent 1 is compromising. Since ‖b2‖ ≥ ‖b1‖, for the DM to be indifferent, 
Agent 2 must be compromising as well. Therefore δ2 < 1. Now we can see that Agent 2 has incentive to deviate to (θ1 −
b1

2, ∅) at any θ and get his own ideal proposal with probability 1, since the deviation is undetectable by the DM.
Therefore β(s(θ)) = β > 0 for some θ . Also notice that for some other θ , we have

θ
2 − b2

1 = θ2 − δ1b2
1, θ

1 = θ1

That is, Agent 1’s ideal proposal at θ is his equilibrium proposal at θ . His equilibrium payoff at θ is

u∗
1(θ) = β[−(1 − δ1)

2 · (b2
1)

2] + (1 − β)k,

where β = β(s(θ)) and k < 0 is Agent 1’s payoff from Agent 2’s equilibrium proposal. Note that k does not depend on the 
state.

Now suppose that at θ Agent 1 deviates to his ideal proposal; that is, mdev
1 = (∅, θ2 −b2

1) = s1(θ). Note that this deviation 
leads to the equilibrium proposal profile s(θ) and the deviation payoff is as follows:

β · 0 + (1 − β) · k.

For Agent 1 to have no incentive to deviate at θ to s1(θ), we need

−β(1 − δ1)
2(b2

1)
2 + (1 − β)k ≥ (1 − β)k

which means

[−k − (1 − δ1)
2(b2

1)
2]β ≥ −kβ.

1. If −k − (1 − δ1)
2(b2

1)
2 > 0, we then have

β ≥ −k

−k − (1 − δ1)2(b2
1)

2
· β,

where 
−k

−k − (1 − δ1)2(b2
1)

2
> 1. Therefore, eventually we would have that for some θ̃ , β(s(θ̃)) > 1, a contradiction.

2. If −k − (1 − δ1)
2(b2

1)
2 = 0, we then have that Agent 1 gets same payoff from his and Agent 2’s equilibrium proposal. Then 

his equilibrium payoff at θ equals k regardless of the value of β , whereas his deviation payoff equals β · 0 + (1 − β) · k =
(1 − β) · k. Since β > 0, this is strictly greater than k. Therefore deviation must be profitable.



324 Q. Zhang / Games and Economic Behavior 121 (2020) 307–328
3. If −k − (1 − δ1)
2(b2

1)
2 < 0, we then have that

β ≤ −k

−k − (1 − δ1)2(b2
1)

2
· β < 0,

also a contradiction.

Case 2 δ1 < 1 and ‖(b1, δ1b2
1)‖ < ‖(δ2b1

2, b
2
2)‖.

In this case, Agent 1 wins with probability 1. For the same reason as that stated in the first paragraph in Case 1, Agent 
1 could deviate to his own ideal proposal and still wins with probability 1.

Case 3 δ1 ≤ 1 and ‖(b1, δ1b2
1)‖ > ‖(δ2b1

2, b
2
2)‖.

In this case, Agent 2 wins with probability 1. Since δ1 ≤ 1, we must have that δ2 < 1 also. Therefore for the same reason 
as in Case 2, Agent 2 could deviate to his own ideal proposal and still wins with probability 1.

Now I prove the existence of equilibria when δ1 = 1 and ‖(b1, δ1b2
1)‖ ≤ ‖(δ2b1

2, b
2
2)‖.

Case 4 δ1 = 1 and ‖(b1, δ1b2
1)‖ < ‖(δ2b1

2, b
2
2)‖.

This equilibrium can be sustained when

a. |b1
2| > ‖b1‖, or

b. |b1
2| = ‖b1‖ < ‖b2‖, or

c. |b1
2| < ‖b1‖ < ‖b2‖ and Agent 2 weakly prefers b1 to (b1

2, 
√

‖b1‖2 − |b1
2|2 · b2

2
|b2

2| ),

but not when

d. |b1
2| < ‖b1‖ < ‖b2‖ and Agent 2 strictly prefers (b1

2, 
√

‖b1‖2 − |b1
2|2 · b2

2
|b2

2| ) to b1.

The DM’s belief and strategy are as follows:

1. For any m = ((∅, w), (z, ∅)) where w , z ∈R, μ({(z + δb1
2, w + b2

1)} | m) = 1, β(m) = 1.
2. For any m = ((∅, ∅), (z, ∅)) where z ∈R, μ(· | m) = F (· | {θ̃ | θ̃1 = z + δb1

2}) and β(m) = 1.
3. For any m = ((w, ∅), (z, ∅)) where w , z ∈R, μ(· | m) = F (· | {θ̃ | θ̃1 = z + δb1

2}).

β(m) =

⎧⎪⎨⎪⎩
1
2 if ‖(z + δb1

2 − w,b2
1)‖ = ‖(δb1

2,b2
2)‖,

0 if ‖(z + δb1
2 − w,b2

1)‖ > ‖(δb1
2,b2

2)‖,
1 if ‖(z + δb1

2 − w,b2
1)‖ < ‖(δb1

2,b2
2)‖.

4. For any m = ((w, q), (z, ∅)) where q, w , z ∈R, μ(· | m) = F (· | {θ̃ | θ̃1 = z + δb1
2, θ̃

2 = q + b2
1}).

β(m) =

⎧⎪⎨⎪⎩
1
2 if ‖(z + δb1

2 − w,b2
1)‖ = ‖(δb1

2,b2
2)‖,

0 if ‖(z + δb1
2 − w,b2

1)‖ > ‖(δb1
2,b2

2)‖,
1 if ‖(z + δb1

2 − w,b2
1)‖ < ‖(δb1

2,b2
2)‖.

5. For any m = ((∅, w), (∅, ∅)) where w ∈R, μ(· | m) = F (· | {θ̃ | θ̃2 = w + b2
1}) and β(m) = 1.

6. For any m = ((∅, w), (∅, z)) where w , z ∈R, μ(· | m) = F (· | {θ̃ | θ̃2 = w + b2
1}).

β(m) =
{

0 if ‖b1‖ > ‖(b1
2, w + b2

1 − z)‖,
1 if ‖b1‖ ≤ ‖(b1

2, w + b2
1 − z)‖.

7. For any m = ((∅, w), (q, z)) where w , q, z ∈R, μ({(q + b1
2, w + b2

1)} | m) = 1.

β(m) =
{

0 if ‖b1‖ > ‖(b1
2, w + b2

1 − z)‖,
1 if ‖b1‖ ≤ ‖(b1

2, w + b2
1 − z)‖.

8. For any other m, μ ∈ �(�) and β(m) ∈ B̃R (μ, m).

μ(· | m) satisfies single-deviation consistency for all m. To see this, first notice that any off-path proposal profile which is 
the result of a unilateral deviation must contain a proposal mdev

i which is inconsistent with equilibrium. Second, whenever 
Agent i deviates to mdev

i which is inconsistent with equilibrium, the DM believes that Agent −i has not deviated.
Now I show that no agent has an incentive to deviate. For any m on-path, β(m) = 1. Since Agent 1 is proposing his own 

ideal action, he has no incentive to deviate. To see that Agent 2 has no incentive to deviate either:
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(a) any deviation of the form (z, ∅) where z ∈ R is undetectable by the DM and therefore does not increase Agent 2’s 
probability of winning from 0;

(b) any deviation (∅, ∅) leads the DM to believe that Agent 1 is playing equilibrium. Since ‖b1‖ < ‖b2‖ Agent 2 continues 
to lose;

(c) any deviation of the form (z, w) where z, w ∈R leads the DM to continue believing that Agent 1 is playing equilibrium 
and Agent 2 is proposing his own ideal policy on dimension 1. Whenever |b1

2| > ‖b1‖ or |b1
2| = ‖b1‖ < ‖b2‖, for any 

w ∈R, the DM still weakly prefers Agent 1 and chooses β = 1. When |b1
2| < ‖b1‖ < ‖b2‖ and Agent 2 weakly prefers b1

to (b1
2, 

√
‖b1‖2 − |b1

2|2 · b2
2

|b2
2| ), Agent wins by deviating to (θ1 − b1

2, θ
2 −

√
‖b1‖2 − |b1

2|2 · b2
2

|b2
2| ) at some θ . However, since 

this deviation is less preferred to the equilibrium outcome b1, the deviation is not profitable.
(d) Same argument as (c).

When |b1
2| < ‖b1‖ < ‖b2‖ and Agent 2 strictly prefers (b1

2, 
√

‖b1‖2 − |b1
2|2 · b2

2
|b2

2| ) to b1, however, at any θ Agent 2 has an 

incentive to deviate to (θ1 − b1
2, θ

2 −
√

‖b1‖2 − |b1
2|2 · b2

2
|b2

2| ).

Case 5 δ1 = 1 and ‖(b1, δ1b2
1)‖ = ‖(δ2b1

2, b
2
2)‖.

This can be sustained when

a. |b1
2| > ‖b1‖, or

b. |b1
2| = ‖b1‖ < ‖b2‖, or

c. |b1
2| = ‖b1‖ = ‖b2‖, or

d. |b2
1| = ‖b1‖ = ‖b2‖, or

e. |b1
2| < ‖b1‖ < ‖b2‖ and Agent 2 weakly prefers b1 to (b1

2, 
√

‖b1‖2 − |b1
2|2 · b2

2
|b2

2| )

but not when

f. |b1
2| < ‖b1‖ < ‖b2‖ and Agent 2 strictly prefers (b1

2, 
√

‖b1‖2 − |b1
2|2 · b2

2
|b2

2| ) to b1, or

g. |b1
2| < ‖b1‖ = ‖b2‖ and |b2

1| < ‖b2‖.

The DM’s belief and strategy that sustain the equilibrium under preferences a.-e. are same as in Case 4. Under f., the 
same reason in Case 4 implies that Agent 2 has a profitable deviation. Under g., at any θ for which Agent 1 is not winning 
with probability 1, he has an incentive to deviate to (θ1 − (1 − ε)b1

1, ∅) for some ε. Similarly, at any θ for which Agent 2 is 
not winning with probability 1, he has an incentive to deviate to (∅, θ2 − (1 − ε)b2

2) for some ε. �
Appendix C. Proof of Proposition 5

I first show that the equilibrium in Proposition 3 in which

s1(θ) = s2(θ) = (∅,∅),∀θ

satisfies the Extended Intuitive Criterion. For any mdev 	= ((∅, ∅), (∅, ∅)) that results from a unilateral deviation, μ(· | mdev)

is as follows: if mdev
−i = (∅, ∅) and mdev

i ∈ (R × {∅}) ∪ ({∅} ×R) ∪ (R2), then

μ({θ̃ | θ̃ j = mdev, j
i + b j

i ,∀ j ∈ {1,2} s.t. mdev, j
i ∈R} | mdev) = 1

and β(mdev ) = β((∅, ∅), (∅, ∅)). Note that β(mdev ) = β((∅, ∅), (∅, ∅)) is a best response to μ(· | mdev). Moreover, for any 
θ̃ in the support of μ(· | mdev), ui(θ̃ , mdev , β(mdev )) = u∗

i (θ̃), so obviously u∗
i (θ̃ ) ≤ maxβ∈BR (�,mdev ) ui(θ̃ , mdev , β). Therefore

s1(θ) = s2(θ) = (∅,∅),∀θ

can be sustained in an intuitive equilibrium.
Now I show that the equilibria in Proposition 4 are intuitive by showing that all μ(· | mdev) are supported in �i(mdev)

for some i, whenever �1(mdev) ∪ �2(mdev) is nonempty.
First, consider mdev = ((∅, ∅), (z, ∅)). The equilibrium states that μ(· | mdev) is updated such that the DM believes that 

Agent 2 has not deviated. To see it is reasonable, first note that �2(mdev) is empty because mdev
1 is inconsistent with 

equilibrium. To characterize �1(mdev), first notice that Agent 1’s highest deviation payoff is u1(b1), since the DM is free 
to believe that the actual θ1 is arbitrarily far from z and choose β = 1 (remember that ‖b1‖ ≤ ‖b2‖). Since b1 is Agent 1’s 
most preferred outcome, (∅, ∅) must be potentially profitable. That is, the inequality
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u∗
1(θ) ≤ max

β∈BR (�,mdev )
u1(θ,mdev , β)

is satisfied by any θ . Therefore,

�1(m
dev) = {θ | s2(θ) = mdev

2 }.
Therefore μ(· | mdev) is reasonable.

Second, consider mdev = ((w, ∅), (z, ∅)). The equilibrium states that μ(· | mdev) is updated such that the DM believes 
that Agent 2 has not deviated. Again, �2(mdev) is empty because mdev

1 is inconsistent with equilibrium. To characterize 
�1(mdev), notice that the condition s2(θ) = mdev

2 pins down Agent 1’s payoff from mdev
2 as well as his payoff from mdev

1 , 
which means

max
β∈BR (�,mdev )

u1(θ,mdev , β)

is also pinned down. Therefore, either �1(mdev) is empty, or

�1(m
dev) = {θ | s2(θ) = mdev

2 }.
In either case, μ(· | mdev) is reasonable.

Lastly, consider mdev = ((q, w), (z, ∅)). The equilibrium states that μ(· | mdev) is updated such that the DM believes that 
Agent 2 has not deviated (that is, θ1 = z + δb1

2 or θ1 = z + b1
2, depending on the equilibrium) and θ2 = q + b2

1. Again, 
�2(mdev) is empty. I show that if the state θ in the support of μ does not belong to �1(mdev), then �1(mdev) is empty as 
well.

First note that given any q, w, z, 0 ∈ BR (�, mdev) since the DM is free to believe that w is arbitrarily far from θ2. 
1 ∈ BR (�, mdev) since the DM is free to believe that θ = (q, w). Given the hypothesis that θ /∈ �1(mdev), we have

max
β∈BR (�,mdev )

βv1(θ, (q, w)) + (1 − β)v1(θ, (z, w + b2
1 − b2

2)) < u∗
1(θ),

then

v1(θ, (q, w)) < u∗
1(θ)

v1(θ, (z, w + b2
1 − b2

2)) < u∗
1(θ).

Now, suppose θ̃ ∈ �1(mdev) and θ̃ 	= θ . Then we must have θ̃1 = θ
1

and θ̃2 	= θ
2

. That is, at state θ̃ , Agent 1’s deviation 
(q, w) must be such that

v1(θ̃ , (q, w)) < v1(θ, (q, w)) < u∗
1(θ) = u∗

1(θ̃ )

and

v1(θ̃ , (z, w + b2
1 − b1

2)) < u∗
1(θ) = u∗

1(θ̃).

Therefore, θ̃ /∈ �1(mdev).
Although we have only considered mdev in which Agent 1 is the sole deviator, the same argument applies to any mdev

in which Agent 2 is the sole deviator. �
Appendix D. A counterexample

Let � = {θ, θ̂} with Pr(θ = θ) = α = 1 − Pr(θ = θ̂ ), where α ∈ (0, 1). Agent i’s set of proposals is {mi, m̂i}. Agent 1’s 
strategy is s1(m̂1 | θ) = 1, ∀θ . Agent 2’s strategy is s2(m2 | θ) = 1 = s2(m̂2 | θ̂ ). One can then construct sn

1 such that sn
1(m̂1 |

θ) = 1 − 1
n = 1 − sn

1(m1 | θ), sn
1(m̂1 | θ̂ ) = 1 − 1

n2 = 1 − sn
1(m1 | θ̂ ) and sn

2 such that sn
2(m2 | θ) = 1 − 1

n = 1 − sn
2(m2 | θ) and 

sn
2(m̂2 | θ̂ ) = 1 − 1

n = 1 − sn
2(m2 | θ). One can easily check that sn

1 → s1 and sn
2 → s2.

Suppose now the DM observes the following proposal profile (m1, m̂2). By Bayes’s rule, the DM’s belief μn derived 
through (sn

1, s
n
2) satisfies

μn(θ̂ | m1,m̂2) = Pr(θ̂ ) · Pr(m1,m̂2 | θ̂ )

Pr(θ̂ ) · Pr(m1,m̂2 | θ̂ ) + Pr(θ) · Pr(m1,m̂2 | θ)

= (1 − α) 1
n2 (1 − 1

n )

(1 − α) 1
n2 (1 − 1

n ) + α 1
n

1
n

→ 1 − α.
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Therefore, (s1, s2, μ) where μ(θ̂ | m1, m̂2) = 1 − α is part of a consistent assessment according to Kreps and Wilson 
(1982).

However, since Agent 1’s proposal is inconsistent with equilibrium while Agent 2’s proposal is consistent with equilib-
rium, single-deviation consistency states that the DM should believe that Agent 2 has not deviated, and therefore θ = θ̂ with 
probability 1.

Appendix E. Restricted state space

The reason why the equilibrium in which s1(θ) = (∅, θ2 − b2
1), s2(θ) = (θ1 − b1

2, ∅) identified in Proposition 4 can be 
sustained has to do with the assumption that � = R2. Indeed, when � is a proper subset of R2, it is possible that a 
deviation (∅, θ2 − (1 − ε)b2

1) by Agent 1 leads to an off-path proposal profile. If the DM correctly identifies the deviator 
and the state space is such that the information from the non-deviator is sufficient for her to evaluate the proposal of the 
deviator, the deviation may be profitable. The example below illustrates such a situation.

Example 3. Let � := {(a, b) ∈R2 : a = b}, b1 = (0, 1), and b2 = (1, 0) and consider the putative equilibrium in which

s1(θ) = (∅, θ2 − 1),∀θ,

s2(θ) = (θ1 − 1,∅),∀θ.

Suppose that β < 1 (if β = 1, then the same argument can be applied to Agent 2). Let Agent 1 deviate to (∅, θ2 − 1 + ε)

at θ = θ , where ε is sufficiently small that if Agent 1 wins with probability 1, then the deviation is profitable. Note that if 
� =R2, then this proposal will not lead to an off-path proposal profile. Here, however, since both proposals are consistent 
with equilibrium but the resulting proposal profile is off-path, the DM believes that exactly one agent has deviated. If she 
believes that Agent 1 is the deviator, then she learns θ2 = θ

2
, realizes that Agent 1 has deviated to a compromise, and 

therefore strictly prefers Agent 1. If she believes Agent 2 is the deviator, then she wrongly learns that θ = (θ
2 + ε, θ2 + ε), 

but still strictly prefers Agent 1. Consequently, for any belief concentrating on the event that only one agent has deviated, 
she prefers Agent 1. Therefore, (∅, θ2 − 1 + ε) is a profitable deviation for Agent 1.

In the example above, the two dimensions are perfectly correlated. If the DM correctly identify the deviator, she obtains 
the correct information about the state from the non-deviator and prefers the compromise by the deviator. If the DM does 
not correctly identify the deviator, the relative direction of the two agents’ biases implies that she still prefers the deviator.
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