Inhibition of beta-amyloid Aggregation of Ugni molinae Extracts

By: Jara-Moreno, D (Jara-Moreno, Daniela)\(^1\), Riveros, AL (Riveros, Ana L.)\(^2\),\(^3\), Barriga, A (Barriga, Andres)\(^4\), Kogan, MJ (Kogan, Marcelo J.)\(^2\),\(^3\), Delporte, C (Delporte, Carla)\(^1\)

CURRENT PHARMACEUTICAL DESIGN

Volume: 26
Issue: 12
Pages: 1365-1376
DOI: 10.2174/1381612826666200113160840
Published: 2020
Document Type: Article

Abstract

The beta-amyloid peptide (1-42) is a molecule capable of aggregating into neurotoxic structures that have been implicated as potential etiological factors of Alzheimer's Disease. The aim of this study was to evaluate the inhibition of beta-amyloid aggregation of ethyl acetate and ethanolic extracts obtained from Ugni molinae leaves on neurotoxic actions of beta-amyloid aggregates. Chemical analyses were carried out with the extracts in order to determine their phenolic profile and its quantification. Both extracts showed a tendency to reduce neuronal deaths caused by beta-amyloid. This tendency was inversely proportional to the evaluated concentrations. Moreover, the effect of EAE and ETE on beta-amyloid aggregation was studied by fluorimetric T Thioflavin assay and transmission electronic microscopy (TEM); the extracts showed a modulation in the aggregation process. Partly, it is believed that these effects can be attributed to the polyphenolic compounds present in the extracts.

Keywords

Author Keywords: Ugni molinae; beta-amyloid aggregation; T Thioflavin; polyphenols; beta-amyloid disaggregation; fluorimetric

KeyWords Plus: NF-KAPPA-B; ALZHEIMERS-DISEASE; ANTIOXIDANT CAPACITY; PHENOLIC CONSTITUENTS; IN-VITRO; A- BETA; POLYPHENOLS; FLAVONOIDS; LEAVES; IDENTIFICATION

Author Information

Reprint Address: Delporte, C (reprint author)

Univ Chile, Lab Prod Nat, Dept Quim Farmacol & Toxicol, Fac Ciencias Quim & Farmaceut, Sergio Livingston 1007, Santiago 8380492, Chile.

Reprint Address: Kogan, MJ (reprint author)

Univ Chile, Lab Nanobiotecnol & Nanotoxicol, Dept Quim Farmacol & Toxicol, Fac Ciencias Quim & Farmaceut, Sergio Livingston 1007, Santiago 8380492, Chile.