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Summary

Some universal solutions are studied for a new class of elastic bodies, wherein the Hencky strain
tensor is assumed to be a function of the Kirchhoff stress tensor, considering in particular the case
of assuming the bodies to be isotropic and incompressible. It is shown that the families of universal
solutions found in the classical theory of nonlinear elasticity, are also universal solutions for this
new type of constitutive equation.

1. Introduction

New classes of constitutive equations and relations have been proposed in the recent years in order
to study the behaviour of elastic and inelastic bodies, see, for example, (1-12). Using the ideas
presented in (8, 10), Srinivasa (13) proposed a Gibbs potential that depends on the Kirchhoff stress
tensor, in order to obtain an expression for the Hencky strain tensor as a function of the derivative
of such Gibbs potential in the Kirchhoff stress.! The expression that is obtained is originally an
implicit relation (see Eq. 9 of (13)), because of the presence of the determinant of the deformation
gradient J in the definition of the Kirchhoff stress tensor. In the case that the body is incompressible,
that is, when J = 1, the Kirchhoff stress tensor becomes the Cauchy stress tensor and the above
implicit relation becomes an explicit constitutive equation, for the Hencky strain tensor in terms of
the Cauchy stress tensor.

In the present article, we use the constitutive equation described above, and we find restrictions
on the Gibbs potential for the body to be incompressible, showing that the Hencky stress tensor only
depends on the deviatoric part of the Cauchy stress tensor (see (14)). That property is used in order
to find universal solutions, in the sense that such solutions of the boundary value problems are valid
for any Gibbs potential for isotropic incompressible bodies.

This communication is divided in the following sections: in Section 2, some basic equations of the
theory of nonlinear elasticity are presented. In Section 3, the constitutive relation based on the Gibbs
potential is studied for the particular case of incompressible bodies. In Section 4, some boundary
value problems with homogeneous distributions of stresses and strains are considered. In Section
5, we study the problem of inflation and extension of a cylindrical annulus, comparing the solution

 <rogbusta@ing.uchile.cl>
I See also the recent and deeper work of Priisa et al. (14) on the use of such Gibbs free energy for the modelling of elastic
bodies.
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178 R. BUSTAMANTE

with the case of considering the classical theory of elasticity with the Green elastic body (see (15)).
In Section 6, the well-known families of universal solutions of the classical theory of nonlinear
elasticity (16, 17) are analysed, and it is found that they are indeed also solutions for this new class
of elastic body. Some final comments are given in Section 7.

2. Basic equations

For a body # the reference and current configurations are denoted k(%) and k(%), respectively.
The positions of a point X € £ in the reference and current configurations are denoted X and x,
respectively, and it is assumed that there exists a one-to-one function x such that x = x (X, ¢), where
t is time. The deformation gradient, the left stretch tensor and the left Cauchy-Green tensor are
0
F = a_;(( =VR, where RRT=RTR=1, B=FF'=V? (1)

respectively, where J = detF > 0, and the body it is said to be incompressible if / = 1 for any
deformation.

The Cauchy stress tensor is denoted T and for the remaining of this article we assume quasi-static
deformations without body forces, therefore, the stress T must satisfy the equation of equilibrium

divT = 0. (@)

In Sections 5 and 6, different boundary value problems are studied considering the use of cylindrical
and spherical coordinates, therefore, here (2) is presented in such coordinate systems. In the case of
cylindrical coordinates, we have

O, 19T,y 9Ty

or + r 060 + 9z
0T 10Tpp 0Ty, 2

- T, =0, 4

or Ty a0 o TF? @

Ty, 10Ty, 0T, 1
Z ~T,, =0, 5
or + r 00 0z + r ©®)

1
+ (T —Tpo) = 0, 3)

while in spherical coordinates (2) becomes
oT, 10T, 1 9T 3 cos
0 10000 L OMop | 3 099
ar r d¢ rsing 960 r 7 sin ¢

(Tpp — Tho) =0, (6)

0To n 1 3T go 1 0Tgp 3 n Zcosq)T _o -
ar r 0¢ rsing 06 ST sing 0 =0,

0Ty | 10T¢r 1 3Tp, cos¢ 1

ar " r ¢ rsin¢g 90 rsin¢ o+ r( rr = Top — Too) (8)

More details about the kinematics of continuum media and the equations of equilibrium can be
found, for example, in (18).

Let us end this section showing the constitutive equation for an incompressible isotropic Green
elastic body (see, for example, Section 49 of (17)):

T = —pl + y1B + 1, B, 9
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SOME UNIVERSAL SOLUTIONS FOR A CLASS OF INCOMPRESSIBLE ELASTIC BODY 179

where p is a scalar function, —pl is the part of the stress that does not do any work with any deformation
compatible with the constraint, and y, y» are scalar functions that depend on the invariants of B,
and for Green elastic bodies are given in terms of derivatives of the energy function.

3. Constitutive relations and equations

In (13), Srinivasa assumed the existence of a Gibbs potential G that depends on the Kirchhoff stress
tensor T defined as

T =JT, (10)
from where he obtained the relation
G
InV=—, (11)
ot

where InV = %lnB is the Hencky strain tensor (see, for example, (19) and references therein).
Equation (11) is an implicit relation, because from (10) we have that T depends on J that is a part of
the deformation of the body.

It is possible to show that (see, for example, (13))

In/ =trInV=tr (E) (12)
0T

In the case that G is an isotropic function, we have that G = G({1, I, I3), where the invariants /;,
i=1,2,3 are defined as

Lo 2 1 3
I =trr, L= Etr('r ), = gtr(r ), (13)
and from (11) we obtain

InV = Gi1+ Gyt + G372, (14)

where G; = g—,‘?, i=1,2,3.

If 7; and A, = 1, 2, 3 represent the principal values of T and the principal stretches, respectively,
an alternative representation for G in the case it is an isotropic function is G = G(t1, 12, 13), Where
G(t1, 1, 13) = G(12, 71, T3) = G(11, T3, T2) = G(13, T2, T1), and from (11) we have

3G
k=", i=123. (15)

T
In the case the body is incompressible J = 1, then T = T and from (12), (14) we have
trlnV=1InJ =0 = 3G, + Gai| + 2G31, (16)
which is a first-order linear partial differential equation, whose solution is (see (16)—(18) in (20))

_ _ 112 _ 2113 2111
G =G(,I;), where 11=12—€, 12=I3+7—T, (17)
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180 R. BUSTAMANTE

where in this case from (13)

g} P
n=uT. b= u), L= u) (18)
From (17) and (11), we have
L.\ aG 7o 21 3G
an:(T——II>—_+ (L2 -2 | 2 (19)
3 ol 9 3 3 ol

Similar representations can be obtained using (15) instead of (14), but in this article only the case of
(14) is studied in detail.

It is important to mention here that the structure of the partial differential equation (16) and its
solution (17), is much simpler than the case of considering the alternative constitutive equation
B= %, which was studied in detail by Bustamante et al. in (21) for incompressible bodies. In that
work, 2 = Q(T) was a scalar potential (derived from an implicit relation) used to obtain the left
Cauchy-Green tensor. We can compare, for example, (16) and (17) with (24) and (60) of (21).

Let us decompose the Cauchy stress tensor in a spherical part og and a deviatoric part Tp as

T = —osIl+ Tp, (20)
where og = —UTT, Tp=T- @I and trTp = 0. The invariants Ip, and Ip, of the deviatoric part
of the stress are defined as | {

Ip, = Etr(TzD), Ip, = §tr(TI3)), 21)

where Ip, = tr'Tp = 0. It is possible to show that (see (3)) I = Ip,, I = Ip,, as a result for
incompressible bodies we have G = G(IDz, Ip,), and from (19) we obtain

InV =oapl + a;Tp +012T2D, (22)
where we have defined (see (14))

2Ip, G 3G 3G
= T = — 2 , = T = 5 = T == . 23
oo = ao(Tp) 3 alp, a1 = a1(Tp) o, ar = a2(Tp) oo, (23)
From (1) we have InB = 21n 'V, as a result an alternative expression for (22) is
1
5 InB =aol +o1Tp + ar T3, (24)
From (22), (24) it is easy to obtain the linear universal relations
TpIn(V) =In(V)Tp < TplnB)=In(B)Tp. (25)

) N ()
It ((' are the eigenvectors of V we have the spectral representations V = Zle Aj ({' ® (\II B =

]-3:1 )\Jz ((') ® ((') and (22) becomes
: W 0
Zln,\j vV ® v=aol + | Tp + o, T3. (26)

j=1
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SOME UNIVERSAL SOLUTIONS FOR A CLASS OF INCOMPRESSIBLE ELASTIC BODY 181

In Section 4 of (22), alternative expressions for the natural logarithm of second-order tensors are
presented, which are more general than (26).

Finally, let us consider (22), imagine that we know V and that we need to find Tp solving that
equation. It is possible to show that such stress is traceless. Let us take the trace of the whole equation
(22), weobtaintr InV = 0 = 39 + o trTp + agtr(TzD), but from (21); we have that tr(TzD) =2Ip,

and considering (23); 3 we obtain 0 = %trTD, so if % # 0 then trTp = 0, which is an essential
2 2
condition to be satisfied for a deviatoric stress.

4. Problems with homogeneous distributions of stresses and strains

If T is constant in x the equation of equilibrium (2) is satisfied automatically. In this section, we
study briefly some problems where the stresses are constant.

In the problems studied in this section and in Sections 5 and 6, the semi-inverse method is used
in order to solve boundary value problems, assuming at the same time simplified expressions for the
stresses T and the deformations x. This is the simplest method, which has been developed so far, to
solve boundary value problems for these new constitutive theories, and it has been used, for example,
in (23-25) for unconstrained solids. A possible alternative approach would be to propose simplified
expressions only for the stresses, and to use the compatibility equations for the strains in order to
determine the final expression for such stresses. However, such an approach is not convenient among
other reasons due to the highly complicated structure of the compatibility equations in the case of
large deformations (see, for example, Section 34 of (18), and (2) in the case of considering small
strains).

4.1  Uniform tension/compression of a cylinder

Let us consider a cylinder defined in the reference configuration in cylindrical coordinates as
O0<R=<Ry,, 0<O©=<2n, 0<Z<L. 27)
Let us assume that the cylinder deforms due to the presence of the homogeneous stress distribution
T="Tye Qe + Tog,eo Qeg+ T, e; ey, (28)

where T, Tpg, and T, are constants.
Let us suppose that due to the application of the above load the cylinder deforms as

r=CR, 0=0, z=2Z, 29

where C and A are constants. The deformation gradientis F = Ce, @ Eg + Cey  Eg + Ae; R Ez
and if the body is incompressible this means that

1
C=—. 30
Vi .

From (28) the deviatoric stress is givenas T = Tp,, er ®er + Tp,, e @ eg + Tp_ €e; ® e;, where
Tp,,, > Tby,, and Tp_, are constants, and

Ty, = —0os+1p Top, = —0s + Inyy,» 17z, = —0s+1p_,. (3D

rro”
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182 R. BUSTAMANTE

From (26), (30) we obtain

1
-3 InA=C=oay+aTp,, + 0‘2T1%,-r , (32)

1
—mezc=ao+aﬂm%+aﬂﬁ%, (33)
=g +aTp,, +alp, . G4

From (32), (33) it is easy to see that Tp,, = Tp,, . If Tp_, is given, from (32) and (34) A and Tp,,,
can be obtained. Let us assume that there is no lateral load in the cylinder, then T};,, = 0 and from
(31); we have og = Tp,, , and from (31)3 the external load to be applied on the cylinder in the axial
directionis Tz, = Tp,,, — Tp

rro”

4.2 Biaxial load on a block

Consider the block defined in the reference configuration as

L; L; .
2 <Xi<2, i=1,23. (35)
2 2

It is assumed that this block deforms due to the application of the stress
T=T,e1®e +Txne e, (36)
and the current configuration for deformed slab is supposed to be
x;j = AiXj, (thereisnosumini,andi=1,2,3), 37

where A; > 0,i = 1, 2, 3 are constants. The deformation gradient is F = 21‘3:1 rie; ® E;, and since
the body is incompressible

A= —0. 38
3= a (38)
From (36), the deviatoric stress is of the form
3
Tp =) Tp,e @ e, (39)
i=1
where TDHU, i =1, 2,3 are constants, where
Ty, = —o0s+1Tp,,, T»n,=-0s+Tpy,,, 0=—o0s+Tpy,, (40)

from where o5 = Tpy;, .
Using the above expressions in (26), (38) we obtain

In 24 =Ol()+O{1TD”U —i—O{QT]%HO, 41
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SOME UNIVERSAL SOLUTIONS FOR A CLASS OF INCOMPRESSIBLE ELASTIC BODY 183

In2g = &g+ @1 Tp,,, + @275, (42)

—InA; —Iniy =Ilni3 = + a1Tpy;, + OQTI%33 . 43)

From (41)-(43) if Tp,,, and Tp,,, are given, we can obtain A1, A2 and Tpg; . Since o5 = Tpg;, , then
from (40)1 > the loads to be applied in the directions 1 and 2 are

Tl 1, — TD]]O - TD3305 T220 = TD220 - TD330' (44)

4.3 Uniform shear of a block

Consider the same block defined in (35), but where we apply the stress
T =T ®er+e ey, (45)
where T, is constant. Let us assume that the block deforms as
x1 = AaX1 +yaXa, x2=2iXo+yBXi, x3=AcX3, (46)

where Aa, AB, AC, YA and yp are constants. The deformation gradient and the left Cauchy-Green
tensors are

F=2ae; ®E| + yae; ® E; + ypes QE| + Apex ® Ez + Aces ® Es, (47)
B =03 +yhe ®e +(ays +ipya)er @ e+ e, ®e)) + (W + rd)er ® e
+22e; ® e3. (48)
The slab is incompressible, as a result

1

= 49)
(AAAB — YAYB)

AC

The principal stretches are

Ao — A A A
MZ\/aTb, kzz\/%, A3 = Ac, (50

ha = A3+ A5+ 2+ (51)

where

3o = A = 28)% + (a + 1B)21[(ha + A8 + (va — 78)°], (52)
and the principal directions are

1 M (1) 2 @ 2) (3)
vV=vie+ voe, V=vie+ vye, V=e3, (53)
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184 R. BUSTAMANTE

where

: ! : !
W= ¢ = i=1,2. (54)

G223 -y ’ 1 + Garstipya)’ ’
VT Tarstimmr R
From (45), it is possible to see that og = 0 and that Tp = T, then using (50), (53) and (45) in (26)
we have

@ \?2 @ \? P
InAi(Vvi) +Ini| V] =ap+ OQTIZU, (55)
M \? @ \? )
InAi | vy) +Inkp| Vo) = +asTiy, (56)
—In(AaAB — yaYB) = Ini3 = ap, (57)
1 2) (2
In Ay (v)l(v)z +1InAiy (v)l(v)z =a1T1y,. (58)

From (55) and (56), we obtain

2 2 2 2
1 2 1 2
In 24 <(V)1) +1Iniy <(V)]) =1In)\ ((V)2> +1In Ay <(V)2) . 59)

Let us assume that 715, is given, then from (55) and (57)—(59) we can obtain A5, AB, YA and yB.
In the next section, we study a problem with non-homogeneous distributions for the stresses and

in particular for the strains, studying in detail how incompressibility can be used to simplify the

boundary value problem within the context of this new constitutive theory (22), (24), (26).

5. The problem of the inflation and extension of a circular annulus

As in (15), in this section we study the problem of the inflation and axial extension of a circular
annulus, and we compare that with the case of studying that boundary value problem within the
context of the classical theory of nonlinear elasticity using (9). The problem studied here is a special
case of the one studied in Section 6.3.

5.1 The case of considering the classical theory of nonlinear elasticity

In the reference configuration in cylindrical coordinates, the annulus is defined as
Ri<R<R,, 0<O<2m, 0<Z<L. (60)

Following Rivlin (see Chapter A of Volume I in (26) and also Section 57 of (17)), the deformation
X is assumed to be of the form

r=fQR), 0=0, z=2aZ, (61)

where A is a constant. From (61) we obtain

/ )
F=/f(Rer @ Eg +—~¢) @ Eo + re: ® E7, (62)
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SOME UNIVERSAL SOLUTIONS FOR A CLASS OF INCOMPRESSIBLE ELASTIC BODY 185

and as a result

o2 f@R)? >
B=f({R er®er+?e9®e9+k e, ®e;. (63)

For an incompressible body we need J = 1, which implies that f’ (R)j%)» = 1, whose solution is

R2-R}
r=fR) = —- +r2, (64)

where r{ = f(R;) is the inner radius in the current configuration. Let us introduce the notation
T= 1B+ ysz, then from (63) and (64) we have that y; and y» only depends on the radial position,
while from (9) the Cauchy stress has only normal components. Using such stress in (3)—(9), we can
show that p = p(r), and from (3), (9) we obtain

dTy dp 1 . -
— — + =Ty — Typ) =0, (65)
dr dr r

which can be solved easily for p(r). If on the inner surface of the annulus we have a normal load P,
and on the outer surface of the annulus we assume there is no external traction, we have

o1 . -
[ 170~ T @1 (66)

where 7, =4/ R‘2’+R12 + riz. The above equation can be used to obtain 7; for a given P.

The above solution (61) is universal because is valid for any expression for the functions y; and y»
in (9). It is an explicit solution for the deformation x (in this case in particular for the function f (R))
up to a constant rj, which should be found, in general numerically, by solving (66). Replacing (63)
in (9), we also obtain explicit expressions for the components of T. Finally, the above solution was
obtained using the semi-inverse method assuming only a simplified expression for the deformation
field.

5.2 The case of considering the new constitutive equation

In this section, we study the same annulus described in (60), but the first difference with the classical
approach presented in the previous section, is that we use the semi-inverse method assuming some
simplified expressions for the stresses and the deformation field. Then, let us assume that such an
annulus (60) deforms due to the presence of the stress

T =Ty(e Qe + Tog(r)eg @ eg + T;(r)e; @ e;. (67)

This stress is supposed to deform the body as (61), which produces the deformation gradient (62).
For later use f/(R) is presented here as

f'(R) = 5, where R = /A(r2 — r?) + R2. (68)
rA 1 1

From (67) the deviatoric stress is assumed to be of the form

T = Tp,, (e, ® e, + Tp,,(r)es @ eg + Tp_ (r)e; @ e;. (69)
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186 R. BUSTAMANTE

The deviatoric stress tensor is diagonal. Let us consider the decomposition (20) for this case

Ty (r) = —os(r) + Ip,,(r),  Tog(r) = —0s(r) + Ty, (r), Tz (r) = —os(r) + Ip, (r). (70)

Considering (69) from (3)—(5) and (70), we obtain

dT, 1 dT, 1
"+ (T —Tee) =0 & ——=+ —(Tp, — Tp,,) =0, (71)
dr r dr r
from where we have (see (15))
"1
Ty(r) = | —[Tpy (&) — Tp,, (§)1dE + Ty (1), (72)

ri

where T,(r;) is the radial component of the stress evaluated at r = r;.

Let us assume that on the inner surface of the annulus there is an external radial load P, whereas on
the outer surface of the annulus there is no external traction (as in the case of the problem presented
in Section 5.1), therefore

Ty(r)) = =P, Ty(ro) =0, (73)

as a result from (70)1, (72) and (73); we obtain
1
os(r) =Tp, (r)+ P+ f E[TD,,(-‘E) — T, (6)1d§. (74)

From (26) considering (63), (69) the constitutive equations become (compare with the results
presented in (15))

Inlf'(R)] = ato(Tp) + e (Tp)Tp,, (1) + e2(Tp)Tp,, ()°, (75)
R

In []%] = a0(Tp) + o1 (Tp) Ty, (r) + 2(Tp) Ty, ()7 (76)

In & = ag(Tp) + o1 (Tp)Tp,, () + a2(Tp) T, ()7, (77)

where from (64) and (68) we see that on the left side we have functions that depend on the radial

r— ki o and @ = r

osition in the current configuration, since f/(R) = _—t
P £ ! r JM2 =) +R?
From (72) and (73),, we have

To q
P= [ 1o, ~ T, @1, (78)

R2—R?
where ro = L + riz.

Let us study and compare the above solution with the case presented in Section 5.1. From (64),
we have the same explicit solution for the deformation field x (in particular the function f(R)) up
to a constant rj. Unlike the classical solution studied in Section 5.1, here we do not have explicit
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SOME UNIVERSAL SOLUTIONS FOR A CLASS OF INCOMPRESSIBLE ELASTIC BODY 187

expressions for the components of the stress. From (75)—(77), we have expressions from where we
can find the components of the deviatoric stress Tp,, (r), Tp,, () and Tp,, (r) implicitly, that is, we
have implicit solutions for Tp, and as a result from (70) and (74) we have implicit solutions for
Tyr(r), Tog(r) and T, (r). From (75)—(77), (64) and (68) these implicit solutions for Tp,, (r), Tp,, (1)
and Tp,, (r) depend on rj, and that constant can be found from (78). In general not only 7; should be
found numerically, but the same happens with the components of the deviatoric stress tensor Tp,, (7),
Tp,,(r) and Tp_ (r) from (75)—(77). These solutions (64) and (75)—(77) are valid for any function G,
therefore, they are universal solutions.

Finally, (75)—(77) are in general nonlinear, and there exists the possibility that more than one set of
solutions can be found for Tp,, (1), Tp,, (r) and Tp,, (). Such possible non-uniqueness is not studied
in this article.

6. Other universal solutions

In this section, we study briefly the different universal solutions that are well known from the
literature in nonlinear elasticity (see, (16, 26) and Section 57 of (17)), which have been obtained for
the classical constitutive equation (9), showing that they are also solutions for the case of considering
the new type of constitutive equation (26).

6.1 Bending, stretching and shearing of a rectangular block

Let us consider the block defined in the reference configuration (Cartesian coordinates) as
X1 =X<Xy, —Yo=<Y<Y,, —Zy=<ZZ=<Z,. (79)

Let us assume that the above block deforms due to the application of the stress field (in cylindrical
coordinates)

T =Ty(re Qe + Tog(r)eg @ eg + Tro(r)e; ® e; + Ty (r)(ey ® e; +e; ® eg), (80)

and that due to the application of the above stress the deformation is
Z
r=~2AX, 6=BY, z=-— —B(CY, (81)
AB
where A, B and C are constants and AB # 0. In such a case the deformation gradient is

A 1
F="e ®Eg+Bey ® Eo — BCe: ®Eo + e ® Fz, (82)

and the left Cauchy-Green tensor is
A? 2p2 2 1
B = —Zer®er+r B eg ®eg —rB°Cleg Qe; +e;,Qey) + ——e; Qe;. (83)
r A2B2

The principal stretches are

M=é )Q:M )L3=—V)‘a+)”b (84)
r V2AB V2AB
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where we have defined

Aa=1+A’BXC? + %), = \/ 1 4+ 2A2B*(C2 — r2) + A*B3(C2 + r2)2. (85)
On the other hand, the corresponding eigenvectors of V are

@ k) (k) (9]

v=e, V=Vvoyey+ v3e, k=273, (86)
where
1,2
(k) 1 (k) ¢ rB>
Vo= y V3= . k= 2,3 (87)

1 2\’

Tp = Tp,, (e, @ e + Tpy,(r)eg @ eg + Tp, (r)e; @ €; + Ty (r)(eg @ €; + e; @ eg). (88)

1 2\’

From (80), the deviatoric stress is given as

Considering (84), (86) and (88) from (26), we obtain

A
In <7) = ao(Tp) + a1(Tp)Tp,, (r)

+aa2(Tp)Tp,, (r)?, (89)
Ve — 2] (@ )2 e O
In _\/_TBb_ ("2) +In _\/_TBb_ (Vz) = ao(Tp) + a1(Tp)Tp,, (r)
+a2(Tp)[ Ty, (1) + Tz (1?1, (90)
(Ve =261 (@ \° . [vVAa+ip] <<3> )2
Inf—F——— In|——— = ao(T Tp)T;
n_ J2AB | <V3) + n_ J3AB | V3 ao(Tp) + a1 (Tp)Tp_.(r)

+aa(Tp)[Toz(r)? + Tp_. (1)1, 1)

Va — Ab] @ @ [«/Aa F /\b} 3) 3
In | Y2220 PN i | YA NN = 4 (Tp)To(r)
[ V2AB 3 V2AB 3 ¢

+a2(Tp)To: (N[ Ty, (r) + Tp_ (].  (92)

The solution (81) is explicit up to the constants A, B and C. From (89)—(92), we can find implicitly
Tp,,(r), Tpy, (1), Tp,, (r) and Ty, (r) in terms of (81) and the constants A, B and C.

If (80) is replaced in (3)—(5), we obtain the same expression for 7,-(r) as in (72). We can consider
the surfaces X = X1 and X = X, free of external traction, therefore, from (72) taking into account
that r; = /2AX; and r, = +/2AX>, we obtain

/\/ml

—[Tpy,(§) — Tp,, ()1dE =0, (93)
V2ax, §
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which is an equation that could be used to find, for example, the constant A, recalling that from
(77)—(87), (89), (92) the components of the deviatoric stress depend on the constants A, B and C. In
this case from (3), (20) the expression for the spherical component of the stress is

r

1
os(r)=TIp,nN+ | E[TD,,(S) — Ty, (8)]14dE. (94)

Let us study briefly the boundary conditions for the other surfaces of the body. For the surfaces
Y = £Y,, we have that the normal unit vector to those surfaces is n = ey, and from (80) we obtain
t="Tn= Tooep + Ty e;. From the two components of this stress vector, we can calculate the
external total bending moment M and total shear force S, which are necessary to deform the block
as M = 2BCY, frf ° rTyo(r)dr and S = 2BCY, frf ° Ty, (r)dr, respectively.

In the case ofAthe surfaces Z = +Z,, the normal unit vectorisn = W(—Ceg + re;), and from
(80), weobtaint = Tn = ﬁ [(—CToo(r)+rTy,(r))eg + (—CTy(r) + rT,;(r))e,], therefore, the
normal component oy of that stress vector (to that surface) is oN = t - n, while the shear component

Tisgivenby 7 =,/ 112 — 01%. These two components can be used to determine the total stretching
force and shear force (in those planes) to deform the body.

6.2 Straightening, stretching and shearing of a sector of a hollow cylinder

Consider the sector of a hollow cylinder defined in the reference configuration as
Ri<R=Ry, —0o=0=0, —Z =Z=L. 95)
It is supposed that this sector deforms and becomes a block due to the presence of the stress

3
T=) Ti()e ® e+ Tax)(e; ®e3 +e3 @ ey), (96)

i=1
where the deformation is assumed to be

L 5.5 C] Z CO
X=zAB°R°, y=—, z=-

=24+, 7
2 AB B 4B ©7)

where A, B and C are constants and AB # 0. In this case from (97) we have

1 1 C
F = AB’R Ep + — Eo + — E; + — Eo, 98
e ® R+ABR62® O+Be3® z+ABRe3® ) (98)
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and

2
B =A2B*R%*, ®e; + ! — e Qe+ C—+L e3®e
- 1O T g T\ aprp T g2 | 8PS

+—=—5E@Qe3+e3®e).

A2B2R2

From (99), the principal stretches are

Y 1 [+ A
A =AB?R, = [Fa =t L [ratAy
ABR ~ABR\ 2

where we have defined

Aa=1+C>+A’R?, = \/(1 + C2)2 +242(C2 — 1)R2 + A*R*.

The above principal stretches can be expressed in terms of x from (97); using
1 /2x
R=—,—.
BV A

1 K (k k
(V)= el (V)=(V)2 e+ (V)3 e3, k=273,

The principal directions of V are

where

(k) 1 (k) 1
Vo= :
C2
——— +1
\/ (2A2B2R2—1)” *

Regarding the deviatoric part of the stress from (96), we have

J1+ & (02428282 — 1)

3
Tp = Z T, (x)e; ® €; + Tr3(x)(e2 @ €3 + €3 @ ).
i=1

Using (100) and (103) (considering (105)) from (26), we obtain

In (AB2R) = ao(Tp) + o1 (Tp)T, () + &2(Tp) T, ()7,

1 [ha—2 | (@ 1 a2 | (@)
— | = ao(T
f |:ABR 2 } <V2) +in |:ABR 2 v2) =)

+a1(Tp)Tp,, (X) + a2(Tp) [Ty, ()% + T23(x)?],

99)

(100)

(101)

(102)

(103)

(104)

(105)

(106)

(107)
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1 [ra—op | (@2 U ot | ()
In [ﬁ T:|<V3> +1In |:m T V3 —(XO(TD)

+a1(Tp)Tpy; (x) + @2 (Tp)[T3(x)* + T33(x)%], (108)
1 =2l @ 1 [d+r |3 @
In [m Tb:| Vvovi+in [,ﬁ Tb] Vo vi= a1 (Tp)Trs(x)
+a2(Tp)T23(x)[TD,, (x) + T33(x)]. (109)

The above four equations can be used to obtain (implicitly) the four independent components of the
deviatoric part of the stress (105), in terms of x (see (100)—(102)) and the constants A, B and C.
Regarding the spherical part of the stress, from (96), (105) and (20) in the equilibrium equation

we obtain
dT -0 dos dTp,,

<:> —
dx dx dx
which leads to 711 (x) = C, and os(x) = Tp,, (x) + C‘o, where C, and C’o are constants. Let us define
x| = %ABZR%, Xy = %ABzRg, then if the surfaces x = x1 and x = xp (that are equivalent to the

=0, (110)

surfaces R = R; and R = R») are free of traction, then 71 = 0, as a result C, = 0 and C‘U =0and
os(x) = Tp,, (x). (111)

Let us study briefly the other surfaces for the deformed body. Let us use the notation y, = %
for the surface ® = ©,. For such surfaces the vector £ = Tn is equal to t= Txer + Tr3e3, and

the total bending moment and shear forces are M = % ;1 2 xTr(x)dx and S = % f ;1 2 Tr3(x) dx,

respectively.

Regarding the slanted faces (see pp. 189 in (17)) z — Cy = constant, the normal vector is n =
1 =1L _ —
m( Ce; +e3), and as a result t m[(ng CT>y)e; + (T33 — CTa3)es], from where a
normal oy and a shear components 7 (to the slanted faces) can be obtained in the same manner as
in the previous example (see end of Section 6.1).

6.3 Inflation, bending, torsion, extension and shearing of an annular wedge

Consider the annular wedge defined in the reference configuration as
Ri=R<Ry, 0=0=<0, 0=<Z<L. (112)

Let us assume the above wedge deforms due to the application of a stress tensor of the form (80) as
(see Section 57 of (17))

r=+vAR?+B, 6=CO+DZ, 7=E®+FZ, (113)

where A, B, C, D, E and F are constants, where A(CF — DE) = 1. The case studied in Section 5 is
recovered when C = 1, D = 0 and E = 0. The deformation gradient is given by

AR rC E
F= Ter®ER+ Feg ® Eg + rDeg ®E2+E6Z®E@+FGZ®E2, (114)
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as a results the left Cauchy-Green tensor is

A2R? o C? CE
B:—zer®er+r D + 5 )eo®e +r DF + — | (eg @e; + e, Qep)
r R R2

2 E
+|F +R2 e; ®e;, (115)

from where the principal stretches can be calculated as
AR I [Ag— X 1 [da+ X
AM=—, A=-— a—b, A3 =— M, (116)
r R 2 R 2

Aa = E2 + C?r2 + R2(F* + D*/?), (117)

where

Ap = \/ [E2 4+ C2¢2 + (F2 + D?2r2)R?]? — 4(DE — CF)2r2R2. (118)

The principal directions are given in the same manner as in (86), where in this case

k) 1 (k) 1
Vo= , V3= s k=2,3. (119)
1 [)L,E_FZ(DZ_FCQ/RZ)]Z 1+ rz(DF-i-CE/RZ)2
+ —roricERYy [A2—r2(D2+C2/R2))2

In this problem, the deviatoric stress has the same form as in (88). Using that and (116), (119),
(86) in (26), we obtain

AR
In <7> = ao(Tp) + 1 (Tp)Tp,, (1)

+a2(Tp)Tp,, (r)?, (120)

ra—n] (@ \? TR NCORe
2] (0 e ZEE (2 -t

+a2(Tp)[Tp,, (r)? + Tz (1?1, (121)

— 2 2
[ L] ()« [Z5) () = st
+a2(Tp)[Tpz(r)? + Tp_.(1)*], (122)
In [—V )ji_ze/\b] (5)2(3)3 +1In [—V A\;;;’\b} (3)2(3)3 — &1 (Tp)Tp.(r)
+@2(Tp) Ty (N[ Ty, (r) + Tp_.(r)]. (123)

The above four equations (120)—(123) can be used to find the components Tp, (1), Tp,, (1), Tp (1)
and Tp_, (r) of the deviatoric stress. Regarding os and T}, they are given by (70)1, (72).
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Let us study briefly the boundary conditions for this problem. From (113), we can observe that the
constants A and B are related with the inflation/deflation and evertion of the wedge, while the constant
C is connected with the angular opening or closure of the wedge, depending if C > 1 or0 < C < 1,
respectively. The constant D is related with torsion, the constant £ would produce a sort of azimuthal
shear (see Section 57 of (17)), and F is connected with an axial uniform extension/compression for

the wedge.
The surfaces R = constant have normal vectors n = e, therefore, Tn = T}.e,.. If A > 0 the wedge
is inflated, let us assume the boundary conditions 7;.-(r;) = —P and T.(r,) = 0, that is, there is a

radial traction applied on the inner surface of the wedge r = r; (R = R;), and on the outer surface
r = ro (R = Rp) there is no external traction, where r; = ,/ARiz + B and ry, = /AR% + B > .

From the above boundary conditions, we obtain the same expression for P given in (78). In the
case there is no external traction on the inner surface 7,-(r;) = 0 and on the outer surface T,(rp) =

—P, we obtain —P = frf" %[TD% (&) — Tp,,(§)]1 d&. In the above calculations from r; = , /ARi2 +B

we obtain B = riz - ARiz, as a result r = ,/A(R? — Riz) + riz, and ro = , /A(R% - Riz) + riz. If the

wedge is everted then A < 0, therefore, r, = /A(R% — Riz) + ri2 < ri. Let us assume that in this
situation there is no traction on the outer and inner surfaces r = rj, r = r, of the wedge, we obtain

Ji® #[Tp,, (§) — Tp,, ()1 d€ = 0.

The surfaces ® = constant have normal unit vectors n =

Tn = —21 [(
R
the normal and shear components (to the above surfaces) on = t-nandt = +/ 1t12 — O’I%I, respectively,

from where we can determine the total normal load and total shear force as N’ = FL f rf" on(r)dr
and S = FL fr:" 7(r) dr, respectively.

1
[F2 2
r2 +D

éng(r) + DT@Z(r)> ey + (éTQZ(}’) + DTZZ(V)> ez], from where we can calculate

(geg + Dez>, as aresult £ =

Finally, for the surfaces Z = constant, the normal unit vectorisn = \/%2 (—%eg +C ez>, from
E+c
where £ = Tn = —— [(_érgg(r) n CTgZ(r)) e + (-%Tez(r) n CTZZ(r)) ez] is obtained,

Vo +C?
and if oy =t-nand 7 = +/ 112 — 01% and the total normal load and twisting moment can be
calculated.

6.4 Inflation or eversion of a sector of a spherical shell
Consider the sector of a spherical shell defined as
Ri<R<R,, 0<0<2r, 0<P<P,<m, (124)
which we assume deforms due to the presence of the stress field
T = Trr(r)er ® e + Too(r)eg ® €9 + Tpg(rey ® eg. (125)
The deformation of the body is supposed be (see (17))

r=vVALR}, 0=+0, ¢=0, (126)
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where A is a constant. The inflation is related with the (+) sign and the eversion with the (—) sign in
the above expressions.
Considering (125) the deviatoric stress tensor is

Tp(r) = Tp,, (re, ® e, + Tpy,(reg @ eg + Tp_ (r)e; @ e;. 127)

The left Cauchy-Green tensor is

R* r2
B = r—4er e + F(ee X ey + e¢ [ e¢)’ (128)
and from (26) we obtain

R? ,
In =)= ao(Tp) + a1 (Tp)Tp,, (1) + a2 (Tp)Tp,, (1), (129)

4 2
In (13) = ao(Tp) + a1(Tp) Ty, () + a2 (Tp) Ty, ()7, (130)

r

In <1_?) = ao(Tp) + &1 (Tp)Tp,, (r) + “Z(TD)TDW(”)Z- (131)

From (130) and (131) it is possible to see that Tp,, (r) = TDW5 (r), then (129) and (130) can be used to
obtain Tp,, (r) and Tp,, (r), which from (126) depend on A. If (125) is replaced in (6)-(8) considering
(20) and (127) we obtain T,,(r) =2 frf %[TD% (§) — Tp,,(§)]d& + C, where C is a constant. In the
case of inflation, if on the inner surface of the spherical sector we assume the application of the radial
traction P, and on the outer surface we assume there is no external traction, we obtain

o 1

P=2 [ fiTn, )~ To, ) de. (132)
i

The above equation can be used to find the constant A in (126). In the case we consider the problem

of eversion, assuming that on the inner and outer surfaces of the spherical sector there is no external

traction, instead of (132) we obtain f rri" é[TDM (§) —Tp,,(§)]d& = 0, from where A can be found as

well.

6.5 Azimuthal shear of a cuboid

The last problem to be studied corresponds to the azimuthal shear of a cuboid or annular wedge, which
was presented by Singh and Pipkin in (27, 28). The cuboid is defined in the reference configuration
as

RiSRSRo, _®0§®§®07 OSZSL- (133)

In this problem, it is assumed that the stress tensor that deforms the body is of the form (see the
decomposition (20))
T = —os(r, )1 + Tp(r), (134)

where the deviatoric part of the stress is supposed to be

Tp(r) = Tp,,. (e, ® e, + Tp,,(r)(e; @ €y + €y Q@ €,) + Tp,,(r)eg @ €9 + Tp_ (r)e; @ e;. (135)
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The cuboid (133) is assumed to deform due to the presence of the stress (134) as
r=AR, 6 =BInR+CO, z=-—5—, (136)
where A, B and C are constants. In this case the deformation gradient is

1
F = Ae, ® Ex +ABey ® Ep +ACey ® Bo + 1 —e: ® Ez. (137)

and as a result the left Cauchy-Green tensor is
2 2 2.p2 2 1
B=A% Qe +A°B(e, Q@ey+ey®e)+A (B + C7)eg ® ey —i—A4—CZeZ®eZ, (138)

from where we obtain the principal stretches
Aa — Ap Aa + Ap 1
M=A——, M =A)——, A3=——, 139
1 5 2=4y— 3= ¢ (139)

Aa=14+B>+C% = \/(1 +B2)2 +2(B2 — 1)C2 + C4. (140)

where

The principal directions of V are

@ (9 (@) G

v=vie+ Vye, g=12, vV=e,, (141)
where
1 1
- N S (142)
_1 02 _ A2y A4R2
\/1 + A4RB2 ()"q A ) 1 + —()chi_iz)z

If (134) is replaced in the equations of equilibrium (3)—(5), we obtain

dos dTp, . 1
———— 4+ — 4+ (Tp. — T =0,
or + dr + r( Dir Daa)

dTp,, 1dos 2Tp,

=0. 143
dr r 060 r (143)

The solution of (143) isos = Tp,, (r) + frt %[TD”(&) — Tpy, (§)1d& + C(0), and using this in (143);

we obtain C(0) = g%(rzTDrH () + C,, where C, is a constant, therefore, the spherical part of the
stress is

"1 6 d
os =1p, (r) + / E[TD,,(E) — Ty, (8)1dE + ;E(FZTD,Q(F)) + Co. (144)
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On the other hand, using (139)—(141) in (26) considering (135) we have

2 2
In |:A,/ %] (%) +ln |:A,/ %} (%) — ao(Tp) + a1 (Tp)Tp, (1)

+a2(Tp)(Tp,, (12 + Tp,, (r)?),  (145)

— 2 2
In |:A %} (%) ‘hn [A,/@} (%) — a(Tp) + a1 (Tp) Ty (1)

+a2(Tp)(Tp,, (1)? + Tp,y (1%, (146)
1
In (ATC> = ao(Tp) + a1 (Tp)Tp..(r)

+aa(Tp)Tp_.(r)?,  (147)

ra—p | (D | @ @
In |:A‘ / dTb] W% 41 |:A, / %] = 1 (Tp)Tp,, ()
+a2(Tp)TD,, (N(Tp,,(r) + Tp,, (r)).  (143)

These four equations can be used to find Tp,,(r), Tp,,(r), Tp,,(r) and Tp, (r). From (140), it is
possible to see that the left side of (145)—(148) do not depend on r, therefore, the above components
of the deviatoric stress are constants, as a result from (144) the spherical part of the stress is given
as

os(r) = (Tp,, — Tp,,) Inr +26Tp,, + C,, (149)

where C(, is a constant.

Let us finish this section studying briefly the boundary conditions for the different surfaces of the
cuboid. In the case of the surfaces R = constant the unit normal vector is n = e,, as a results from
(134) (considering (135), (149)) we obtaint = [(Tp,, — Tp,,) Inr —20Tp,, — Co +Tp,, le, +Tp,, €4,
from where we can calculate the total normal force N as N = jzzg fgg)jfllﬂf ;?i 1,(r;)r; d for the
inner surface of the cuboid, where r; = AR;, and N = jzzg _Cg)(f)"fll;}f R 1-(ro)ro d6, for the outer
surface of the cuboid, where r, = AR,. Taking into account that the components of the deviatoric
stress are constants we obtain N = MOA#@O[(TDW — Tpy,)Inri + Co + Tp,, — 2Tp,,BIn R;] and

Ny = 4Z°§+®°[(TDW — Tpy,) Inrg + 60 + Tp,, — 2Tp,,B1InR,]. Something similar can be done

with the component 7y of t above, from where we have the total shear forces S = —%TD,.Q OoR;
and S, = — %Tpre ®oR,, for the inner and outer surfaces, respectively.

In the case of the surfaces Z = constant we have n = ez, and from (134) taking into account (135),
(149) we obtain t = [(Tp,, — Tp,,)Inr — 201p,, — C, + Tp,, Je;, from where we can calculate

the total axial load as A/ = C@O{(TD% — Tp, )2 Inro — r2Inr — ro — 1) — 2(Tp, — Co)(ro —

AT, B[ro (1 =1 (%)) = (1 =1 (§))] -
_ . . _ 1 o
In the case of the surfaces ® = constant, the normal unit vector is n = —W( Be, + eg) from

where we obtain = ﬁ{w(as —Tp,) + Tp,, ler + [—BTp,, + Tp,, — osleg}. As in some of
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the boundary value problems studied before, normal and shear components oN, T (to the surface

with that normal n) can be calculated as on = t-nandt = \/ |f|2 — 01%, from where total external
loads can be calculated, but for brevity are not shown here.

7. Final remarks

In this work, some universal solutions have been studied for a new class of constitutive equations for
nonlinear elastic incompressible isotropic bodies described in (13). The universal solutions analysed
correspond to the classical solutions found in the nonlinear theory of elasticity (16, 17, 29), that is,
it has been shown that the same universal solutions are valid for these new constitutive theories. An
hybrid semi-inverse method was used to solve the boundary value problems, assuming simplified
expressions for the stresses and the deformation, and the solutions that were found are explicit for
the deformation field (up to some constants), and implicit for the components of the deviatoric stress.
Some of the constants associated with the deformations can be found from the boundary conditions,
which were studied in some detail in this communication.

We have not looked for all the universal solutions for (22) (see (24) and (26)). To do that we would
need to repeat an analysis similar to the work by Ericksen (16), recalling that in the classical theory
of nonlinear elasticity for isotropic incompressible elastic bodies (9), the problem of finding all the
universal solutions is not closed (30, 31). Another important issue to be considered in future works
is the possible lack of uniqueness for the components of the deviatoric stress tensor, when solving
the algebraic equations (26).

The possibility of finding universal solutions for these new classes of constitutive theories is very
important, in particular when looking for specific expressions for the constitutive equations for some
specific materials.
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