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H I G H L I G H T S

• A multi-objective water-energy system design framework under uncertainty is presented.

• Implications of spatial topology and interdependencies in multi-sector systems are explored.

• The approach enables water-energy systems design given complex regional and sectoral trade-offs.
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A B S T R A C T

The design of water and energy systems has traditionally been done independently or considering simplified
interdependencies between the two systems. This potentially misses valuable synergies between them and does
not consider in detail the distribution of benefits between different sectors or regions. This paper presents a
framework to couple integrated water-power network simulators with multi-objective optimisation under un-
certainty to explore the implications of explicitly including spatial topology and interdependencies in the design
of multi-sector integrated systems. A synthetic case study that incorporates sectoral dependencies in resource
allocation, operation of multi-purpose reservoirs and spatially distributed infrastructure selection in both sys-
tems is used. The importance of explicitly modelling the distribution of benefits across different sectors and
regions is explored by comparing different spatially aggregated and disaggregated multi-objective optimisation
formulations. The results show the disaggregated formulation identifies a diverse set of non-dominated portfolios
that enables addressing the spatial and sectoral distribution of benefits, whilst the aggregated formulations
arbitrarily induce unintended biases. The proposed disaggregated approach allows for detailed spatial design of
interlinked water and energy systems considering their complex regional and sectoral trade-offs. The framework
is intended to assist planners in real resource systems where diverse stakeholder groups are mindful of receiving
their fair share of development benefits.

1. Introduction

Investments in large water and energy infrastructures, such as dams,

power plants, water transfers and transmission lines, are typically
planned without rigorous consideration of the synergies and trade-offs
between the two systems and by simplifying their spatial and sectoral
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interdependencies [1–6]. This is the result of different regulatory fra-
meworks, differences in spatial and temporal scales and the high
computational costs of integrated water-energy modelling. However,
the independent and spatially simplified planning of water and energy
systems may lead to inefficient resource use and arbitrarily allocation of
the benefits across the systems, which can exacerbate conflicts between
regions and/or sectors, which may be further increased by the un-
certainty associated with future energy and water demands and other
unknowns like climate change [7–12]. In this context, integrated and
multi-objective planning for expansion of spatially distributed water-
energy systems under uncertainty can assist stakeholders in under-
standing interdependencies and trade-offs between both systems,
thereby facilitating improved resource planning [11,12].

The area of water-energy infrastructure planning has motivated
substantial work over the past decade [see, e.g, 10–12]. However, due
to the complexity inherent in jointly planning water-energy systems,
different optimisation strategies have been proposed to design and
evaluate water and energy systems. For example, existing work has
been based on water- or energy-centred models with simplified spatial
and temporal representations of the integrated systems. For example,
Ackerman and Fisher [13], using a detailed energy-centred model,
evaluated how water availability for cooling impacts the planning of
conventional power plants in the long term, including water rights as
water availability constraints. Macknick and Cohen [14] used the Re-
gional Energy Deployment System model (ReEDS) to evaluate the im-
pact of high solar photovoltaic electricity penetration on the water
withdrawals in the United States. The use of water for cooling thermal
generators was used as a proxy to assess the impact on water with-
drawals, considering that high penetration of solar electricity reduces
water use because thermal generation is displaced. The authors provide
insight on the use of water at national and regional scales in the United
States. However, they used fixed water rights to represents the actual
availability of resources through the system, which assumes a static
nature of water resources. Escriva-Bou et al. [15] presented a modelling
framework to integrate water, energy and emissions of greenhouse
gases. The framework evaluates the operation of a water resources
system involving only water-related energy uses using a water-centred
model. Nevertheless, the interaction of water-related energy uses (hy-
dropower, pumped storage) with the full energy system (thermal power
plants, transmission lines) was not incorporated.

Due to simplified representations in either water- or energy-centred
models, other studies have proposed linking specialised water and en-
ergy models in an iterative fashion, thereby creating a sequential link
between models. For instance, Howells et al. [16] and Mehta and Yates
[17] propose an approach that combines the Water Evaluation and
Planning (WEAP) model [18] for water resources modelling, and the
Long-range Energy Alternatives Planning (LEAP) model [19] for energy
systems planning. These two models were used in an iterative fashion to
assess the impacts of climate change on the expansion of the integrated
water-energy systems of The Republic of Mauritius and California, USA,
respectively. Ibanez et al. [20] used iterative integration to couple
PLEXOS Simulation Software [21] and RiverWare [22]to model the
United States Western Interconnection system and ten large reservoirs
on the Columbia River, respectively. They illustrated the value of
linking water and energy models to evaluate the integration of re-
newable energy into power systems. Even though the previous studies
can model different sectors in detail and capture joint impacts, as stated
by Khan et al. [10], the convergence or optimality of the solutions
cannot be guaranteed. The reason being that iterations between models
are not necessarily closed, meaning that iteration is largely ‘one-way’
and solutions among the models do not have complete feedback.
Moreover, iterative approaches could be computationally expensive
because the models were not designed for iterative applications.

Other joint water-energy planning approaches used economic op-
timisation, thereby reconciling all goals through commensuration, ei-
ther monetisation or requiring a priori weighted preferences of the

objectives. Khan et al. [23] presented an optimisation model for in-
tegrated water-energy systems planning that considered their spatial
and temporal interdependencies and objectives related to the costs of
planning and operating the integrated system. Although the spatial and
temporal representations of both systems is an improvement, the opti-
misation did not consider the multi-criteria trade-offs between sectors
and the spatial elements beyond the economic impacts of the expansion
of infrastructure in the system. Finally, Giudici et al. [24] proposed a
dynamic multi-objective design and operation of water-energy systems
for off-grid islands, and Parkinson et al. [25] a multi-criteria framework
for planning water and energy systems at national or regional scales. In
those cases, although a multi-objective analysis to explore trade-offs
between conflicting objectives was incorporated, an analysis of the
impact of spatial interdependencies and benefits distribution amongst
the systems was not addressed. Additionally, most water-energy system
design studies do not optimise under uncertainty due to the computa-
tionally intensive nature of combined water-energy simulation.

The examples above describe different optimisation approaches and
frameworks for designing water-energy infrastructure under different
levels of system integration. To the extent of the authors’ knowledge, a
generalised multi-objective integrated framework to optimise the spa-
tial interdependencies of integrated water-energy design under un-
certainty has not yet been published. This work provides the following
contributions:

1. A framework linking a generalised integrated water-power network
simulator with multi-objective portfolio optimisation under un-
certainty.

2. A spatially aggregated optimised design formulation and a re-
gionally disaggregated one.

3. A demonstration of the benefits of explicitly including spatial in-
terdependencies in the design of multi-sector integrated systems on
a synthetic but realistic case study.

The multi-objective optimisation models use a meta-heuristic search
algorithm to identify portfolios of infrastructure and policy interven-
tions in the system, such as irrigation canals, transmission lines,
thermal and hydroelectric plants and multi-purpose reservoirs and their
operating rules. Uncertainty related to river inflows and water and
energy demands is incorporated into the multi-objective optimisation
models through a scenario ensemble, which is a combination of river
inflows and water and energy demand scenarios. Robust interventions
in the system are evaluated over the scenario ensemble and are subject
to the objectives of the optimisation process.

The paper is organised as follows: Section 2 introduces the proposed
framework and describes the generalised water-power network simu-
lation. Section 3 describes the case study and presents the multi-ob-
jective optimisation formulations used to investigate the added value of
spatial multi-sector design. Sections 4 and 5 present and discuss results
and Section 6 concludes.

2. Methods

Fig. 1, shows how the integrated water-power network simulator and
the multi-objective meta-heuristic search are combined in a 3-step frame-
work where (i) a water-power network simulation model evaluates joint
infrastructure and operating rule interventions for each scenario in an en-
semble (Ξ) of plausible futures, (ii) a meta-heuristic search algorithm de-
termines updated values of decision variables passed to the water-power
network simulation model. Steps (i) and (ii) are repeated until a stopping
criterion is met. In step (iii) a spatial and sectoral benefit distribution as-
sessment of the Pareto-optimal intervention portfolios is conducted to de-
termine whether changes to the problem formulation (its simulator, ob-
jectives, spatial-temporal aggregation of performance metrics, constraints,
uncertainty ensemble) are warranted. Further details about the different
steps are presented below.
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2.1. Multi-objective optimisation

Multi-objective search problems are those where the goal is to op-
timise k objective functions simultaneously [26]. The optimisation is
defined by the minimisation (or maximisation) of the k functions vector
as follows:

= f f f fF l
l

min ( ) { , , , , }k1 2 3
(1)

Subject to:

=c i ql( ) 0 [1, ]i (2)

c j rl( ) 0 [1, ]j (3)

where l is a vector of decision variables in the decision space , and the
k objective values are evaluated by some function, which in our fra-
mework is an external simulator. Depending on the problem there will
be q equality (Eq. (2)) and r inequality constraints (Eq. (3)) and feasible
solutions are those than meet all the imposed constraints. Finally, the
solution to a multi-objective problem in Eq. (1) is the set of non-
dominated Pareto-optimal [27] solutions [28].

In the case of water-energy resource systems, planners are typically
interested in robust designs, where system performance remains acceptable
even if future supply and/or demand are different than originally envisaged.
In this case multi-scenario optimisation is warranted, or ‘robust optimisa-
tion’, which is an extension of the optimisation problem formulated in Eqs.
(1)–(3). In this case, the robustness is calculated for the decision variable, l,
across a set of future scenarios =S s s s{ , , , }n1 2 using the performance
metric f (·).k Whereby, the robustness calculation corresponds to the eva-
luation of the performance of l over a set of different scenarios,

= l l lf f fF l S S S S( , ) { ( , ), ( , ), , ( , )}kk1 1 2 2 [29]. The way in which system
performance (the objective values) is statistically aggregated across the
different n scenarios is referred to as a robustness metric. The use of ro-
bustness metrics has been recently been reviewed in the literature [29–31].

2.2. Water-power network simulation

The generalised water-power network simulator used here is de-
scribed by Eqs. (4)–(15). The simulator performs resource allocation
throughout the integrated water-power network over a sequence of
time steps using linear programming. The objective function minimises
the combined costs per time step (t) associated with energy generation
(e.g. fuel costs) and the failure to supply water and energy demands.

= × + × + ×Z C Gen ENS defmin
Gen u

t
en g

g t en
g

en
en t en

wn
wn
i

t wn
i

, ,
, , ,

t en
g t wn t l, , ,

(4)

In Eq. (4), en and wn are the energy and water nodes in the system,
g is the set of power generators in the system, including hydropower
(hp) and thermal (th) generators; i is the set of water uses, namely ir-
rigation (ir), public water supply (pws) and hydropower (hp); Cg de-
notes operating costs; Gent en

g
, represents energy generation; ENSt en, re-

presents energy not supplied; and deft wn
i
, is the water deficit for each

consumptive water use. en and wn
i are the penalties applied for un-

supplied energy and water demands, respectively. In practice, these
penalties may not represent true financial costs, but must be de-
termined through calibration and validation of the model; in this case,
we use the same constant value for both sectors and for all the water
uses in the systems. The balance constraints in the network at each wn
and en node are given by Eqs. (5) and (6).

= + ++S S q u sp wnC ( )t wn t wn t wn t wn
i

t wn1, , ,
R

, , (5)

+ + =
= =

Gen ENS De en
g

t en
g

t en
l r l en

t l
l s l en

t l t en, ,
: ( )

,
: ( )

, ,
(6)

In the above equations, St wn, is the volume of water stored in the
multi-purpose reservoir at node wn; ut wn

i
, and spt wn, represent the water

allocation for the water uses in the system and the spill flows from
reservoirs, respectively; qt wn, is the inflow; and CR is the network con-
nectivity matrix in the system =[C 1( 1)j,k

R when the water node
wnj receives water from (to) water node wnk ]. For releases to

consumptive water uses (mainly irrigation uses), the network con-
nectivity matrix can track possible flows that return to the network as a
fraction of the release. In the power network, t l, is the electricity
transmitted through the transmission line l, which has starting, i.e. s l( ),
or ending, i.e. r l( ), nodes at node en; and Det en, is the energy demand at
en. The maximum water allocation to consumptive uses, the supply of
consumptive water demands and the conversion of the turbine flow to
energy are constrained by Eqs. (7)–(9), respectively.

=u Ca i ir pws wn0 , ,t wn
i

t wn
i

, , (7)

= =u Dw def i irr pws wn, ,t wn
i

t wn
i

t wn
i

, , , (8)

= =Gen G h u g i hp wn en, ,t wn en
g

w wn t wn en
i

, , (9)

In the above equations, wn en represents the intersection of nodes
connecting the water and the power systems, i.e. hydropower plants.
Cat wn

i
, is the canal capacity; Dwt wn

i
, is the water demand; is the turbine

efficiency; G is the gravitational acceleration; w is the water density;
and hwn is the net hydraulic head. Decision variables in the multi-ob-
jective optimisation models, target water allocation and maximum in-
frastructure capacity are linked to the water-power network simulation
model according to Eqs. (10)–(14)

u r wn i I,t wn
i

t wn
i

, , (10)

Gen P en g G0 ,t en
g

en
g

, (11)

I l L0 t l l, (12)

S S wn0 t wn wn, (13)

Fig. 1. Illustration of the proposed framework combining integrated water-
power network simulators with multi-objective optimisation under uncertainty
of spatially and sectorally disaggregated performance metrics.
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= =Ca Ca wn i ir wps, ,t wn
i

wn
i

, (14)

Note that rt wn
i
, , Pen

g , Il, Swn and Cawn
i are the decision variables in the

multi-objective optimisation models. These variables are taken as fixed
parameters by the water-power network simulation model and are
updated in each search iteration between both models.

Finally, variables from the water-power network simulation model
used to compute the objectives in the multi-objective models (Section
3.2.1) are non-negative real numbers, Eq. (15).

Gen def ENS S en wn i I g G t T{ , , , } , , , , ,t en
th

t wn
i t en t wn, , , , 0

(15)

3. Investigation

3.1. Case-study

A synthetic case study is used to demonstrate the benefits of spatial
multi-sector design (Fig. 2). In this system, water and energy inter-
dependencies related to resource allocation occur via operation of
multi-purpose reservoirs. The integrated water-energy system is re-
presented as a network and each node in the network represents a
component in the system; these components may be physical infra-
structure (such as reservoirs, substations or power plants) or features of
the resource system (such as agricultural zones, public water supply and
energy demands or catchments). The nodes in the network are linked
through canals, rivers or transmission lines.

The integrated water-energy system is divided into two regions,
northern and southern, as shown in Fig. 2. This division is used to
analyse spatial interdependencies among the different components in
the system and their regional implications. The northern region con-
tains irrigation demand 1 (Di1), public water supply-demand 1 (Dp1),
energy demand 1 (De1) and the existing and possible new infrastructure
(shown in red) used to supply these demands. The southern region
contains irrigation demand 2 (Di2), public water supply-demand 2
(Dp2), energy demand 2 (De2) and the associated existing and possible
new infrastructure.

Competition exists between the water and the power systems for
access to and utilisation of water resources within each region (water

used for irrigation is not available for hydropower generation or public
water supply and vice versa). However, all the turbine water of Hp1 is
available for any use downstream (i.e., for Dp1 and water uses in the
south). In contrast, only 15% of the water utilised in Di1 is available for
downstream water uses as irrigation return flow. There is also spatial
competition in the use of thermal resources: the energy produced by
Th1 ($43 MWh) in the northern region has lower operating costs than
that produced by Th2 ($214 MWh) in the southern region. The energy
produced by the proposed Th3 has an intermediate cost ($111 MWh)
and is located in the northern region. Therefore, although it is prefer-
able to supply energy demand using Th1 and Th3, these can only supply
De2 if the transmission line is constructed. The optimisation process
identifies promising infrastructure and policy interventions in the
system, such as irrigation canals, transmission lines, thermal and hy-
droelectric plants and multi-purpose reservoirs and their operating
rules. Where the operating rules link the intertemporal decisions asso-
ciated with the reservoir storage in the operation of the integrated
system, Table 1 shows the capacity and the annualised investment costs
for each option. Annualised investment costs as well as thermal power
plant operating costs are taken from the literature [32,33]. These values
are realistic for the technologies and infrastructure used in our syn-
thetic case.

Finally, the water-power network simulation model uses monthly
time steps (t) over a 50-year time horizon, whence the simulation model
runs from =t 1, , 600 for each scenario in the ensemble . In the
present study, 20 river inflow scenarios were considered for each water
catchment and three scenarios (low, medium and high) for each water
and energy demand. The product of all scenarios is an ensemble of 180
scenarios in total.

3.2. Problem formulation

3.2.1. Multi-objective robust optimisation model formulations
Three different formulations of the multi-objective robust optimi-

sation model are implemented (Table 2) to explore the benefits of de-
signing integrated water-energy systems considering sectoral and spa-
tial interdependencies. The robust optimisation [34] considers an
ensemble ( ) of different water and energy demands and river inflow
(supply) scenarios. The robustness of the optimised system design is
sought in the search process by considering simulated impacts over all

scenarios aggregated statistically via robustness metrics (Table 2).
The optimisation objectives are related to investment and operating
costs and to the water and the energy deficit frequencies over the en-
semble. Deficit frequencies evaluate the fraction of simulated time-steps
where the water and energy supplies are insufficient to meet demands
[35].

The above formulations are used to evaluate different representa-
tions of the aggregation of the regional water and energy deficit fre-
quency objectives. Two regionally aggregated formulations are im-
plemented using different mathematical operators for aggregation. In
the first formulation, the infrastructure and reservoir operating rules
are identified by minimising three objectives: (i) mean total system
cost; (ii) maximum aggregated water deficit frequency; and (iii) max-
imum aggregated energy deficit frequency. The second aggregated

Fig. 2. The water-energy network structure of the synthetic case study. Blue
denotes water resource system components, black energy system components,
and red shows proposed infrastructure options.

Table 1
Feasible infrastructure options.

Options Option
abbreviation

Maximum
capacity

Annualised investment
costs

Irrigation canal 1 Ca1 5 Mm day3 $269, 802 Mm day3 1

Thermal plant 3 Th3 3000 MW $130, 199 MW
Reservoir 2 S2 1500 Mm3 $9, 982 Mm3

Hydropower plant 2 Hp2 1500 MW $90, 380 MW
Transmission line I 3000 MW $5, 484 MW
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formulation minimises: (i) the mean total system cost; ii) the mean
aggregated water deficit frequency; and (iii) the mean aggregated en-
ergy deficit frequency. Both model formulations are represented by Eqs.
(16)–(18).

= + +min[Total System mean(E W Thermal )]costs capex capex costs (16)

=
=T

Wmin agg. W 1
D wn t

T

Def
, 1

freq t wn,
(17)

=
=T

Emin agg. E 1
D en t

T

Def
, 1

freq t en,
(18)

where is the maximum or the mean operator according to the model
formulation (i) regionally maximum-aggregated or (ii) regionally mean-
aggregated. Total Systemcosts is the total cost of the system; agg. WDfreq is
the aggregated water deficit frequency and agg. EDfreq is the aggregated
energy deficit frequency. The two aggregated deficit frequencies,
agg. WDfreq and agg. EDfreq, are the maximum or mean deficit occurrence
for each of the different regionally distributed water and energy uses,
respectively. Therefore, we aggregate the objectives over space for each
sector using the maximum or the mean operator according to the first or
second formulation of the aggregated model, respectively. Additionally,
Ecapex and Wcapex are the energy and water system capex, respectively;
Thermalcosts is the cost incurred by the use of thermal resources; and
WDeft wn, and EDeft en, are the deficit occurrence of water and energy per
time step and per water node or energy node in the system, respec-
tively. These last two variables take values {0, 1} that represent the
deficit occurrence, with 1 if a deficit exists in any t , or 0 otherwise.

The third model formulation is a regionally disaggregated re-
presentation of the system’s deficit frequency objectives. Here, the
water and energy deficit frequency objectives are not aggregated by
region to explore the benefits of designing integrated water-power
systems with not reduced spatial aggregation. The infrastructure and
reservoir operating rules are selected by minimising five objectives: (i)
mean total system cost; (ii) maximum water deficit frequency in the
northern region; (iii) maximum energy deficit frequency in the northern
region; (iv) maximum water deficit frequency in the southern region;
and (v) maximum energy deficit frequency in the southern region, re-
presented by Eqs. (19)–(23).

= + +min[Total System mean(E W Thermal )]costs capex capex costs (19)

=
=T

Wmin W max 1
D

wn t

T

Def
N

, 1

N
freq t wn,

(20)

=
=T

Emin E max 1
D

t

T

Def
N

1

N
freq t en,

(21)

=
=T

Wmin W max 1
D

wn t

T

Def
S

, 1

S
freq t wn,

(22)

=
=T

Emin E max 1
D

t

T

Def
S

1

S
freq t en,

(23)

WD
N

freq and ED
N

freq are the water and energy deficit frequencies in the
northern region, respectively and WD

S
freq and ED

S
freq are the water and

energy deficit frequencies in the southern region, respectively. Ad-
ditionally, WDef

N
t wn, , EDef

N
t en, , WDef

S
t wn, and EDef

S
t en, are the deficits occurrence

of water and energy per time step and per water node or energy node in
the northern and southern regions, respectively. The variables in the
objectives for the model formulations are represented by Eqs.
(24)–(28).

= × + ×aCP P aC I IEcapex
en g

g en
g

l en
l l

(24)

= × + ×aCS S aCCa CaWcapex
wn

wn wn
wn

wn wn
(25)

= ×
=

C GenThermalcosts
t

T

en th g
th t en

th

1 ( )
,

(26)

=
=

= =
W

def Dw i ir pws

def Dw i ir pws

1 if ,

0 if ,Def
i t wn

i
i t wn

i

i t wn
i

i t wn
i

, ,

, ,
t wn,

(27)

= =E
ENS De
ENS De

1 if
0 ifDef

t en t en

t en t en

, ,

, ,t en, (28)

In the above equations, aCPg, aC Il, aCSwn and aCCawn are the an-
nualised cost parameters of new infrastructure — power plants, trans-
mission lines, multi-purpose reservoirs and water-supply canals, re-
spectively; Pen

g is the new power plant capacity per power generator in
each energy node in the system network; Il is the capacity of the new
transmission line l in the system; Swn is the capacity of the new multi-
purpose reservoir per water node in the system network; Cawn is the
capacity of the new water supply canal per water node; Cth is the op-
erating cost incurred by thermal energy generation; Gent en

th
, is the

thermal energy generation in the system per t and en.
The variables of the multi-objective models are associated with the

new infrastructure options and, in the case of multi-purpose reservoirs,
their operating rules. It must be noted that these variables are passed to
the water-power network simulation model, which is executed to
evaluate the objectives. The type of decision variables is given by Eq.
(29).

P I S Ca r S en l wn i I t T{ , , , , , } , , , ,en
g

l wn wn t wn
i

wn, 0

(29)
In Eq. (29), rt wn

i
, is the target water allocation variables per water

use that depend on a storage volume Swn threshold in the reservoirs. Eq.
(30) presents the reservoir operating rule with the decision variables of
the multi-objective models; this operating rule links the intertemporal
decisions associated with the reservoir storage in the water-power
network simulation model (Section 2.2).

=r
r S S
r

wn i I t T
if
otherwise

, ,t wn
i t wn

i
t wn wn

t wn
i,
, ,

, (30)

In Eq. (30), rt wn
i
, is the target water allocation to the different water

uses, which include ir , pws and hp, and St wn, is the volume of water
stored in the multi-purpose reservoirs at node wn, which is calculated in
the water-power network simulation model (Section 2.2).

Table 2
Summary of search formulations.

Formulation Objective function Robustness metric

Formulation 1 Total system cost Minimise-Mean
Aggregated water deficit frequency Minimise-Maximum
Aggregated energy deficit frequency Minimise-Maximum

Formulation 2 Total system cost Minimise-Mean
Aggregated water deficit frequency Minimise-Mean
Aggregated energy deficit frequency Minimise-Mean

Formulation 3 Total system cost Minimise-Mean
Water deficit frequency in the northern
region

Minimise-Maximum

Water deficit frequency in the southern
region

Minimise-Maximum

Energy deficit frequency in the northern
region

Minimise-Maximum

Energy deficit frequency in the southern
region

Minimise-Maximum
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3.2.2. Numerical experiments
In this study the multi-objective evolutionary algorithms (MOEA)

was selected to conduct the optimisation of the different multi-objective
formulations implemented. MOEAs are established iterative population-
based meta-heuristic search algorithms used to identify a Pareto-ap-
proximate set of solutions, using operations that mimic natural evolu-
tionary processes to explore and exploit the search space [36–38].
These algorithms have been proven effective for planning and operating
water and energy systems independently [3,6,39–44]. Unlike tradi-
tional mathematical programming approaches, these algorithms are
flexible enough to address systems dimensionality, non-linear re-
lationships between variables, parameter uncertainty and links with
simulation models [26,36–38]. MOEAs enable water-energy systems
design given the non-linear, multi-objective and stochastic nature of
such systems.

The Non-dominated Sorted Genetic Algorithm II (NSGA-II) [45] was
used here to identify the robust Pareto front. The MOEA is configured to
run for 30,000 function evaluations for each of 30 random seeds (i.e.
900,000 simulations for the scenario ensemble ). The random seeds
mitigate randomness dependence and improve solution diversity. The
final Pareto-optimal policies are obtained as the set of non-dominated
solutions from the combined results of all optimisations [46].

4. Results

Results demonstrate the ability of the proposed framework to ex-
plore and recommend system-scale infrastructure designs considering
sectoral and spatial dependencies. In addition, results help analyse the
benefits of explicitly including spatial resources allocation inter-
dependencies in optimised water-energy system design. Fig. 3 shows
three parallel axis plots [47] comparing the regional and sectoral water
and energy deficit frequencies and total costs of the optimised system
designs for the three model formulations. Each line in Fig. 3 represents
a non-dominated (Pareto-optimal) portfolio which corresponds to a
unique set of new infrastructure and operation of multi-purpose re-
servoirs. An ideal solution would lead to a straight horizontal line that
intersects every axis at the top. Crossing lines between axes indicate
trade-offs between the metrics. The complete set of non-dominated
portfolios are represented by grey, coloured (green, red and blue) and
black lines. The coloured lines highlight portfolios which are ranked in
the top 25% for all deficit metrics for the different water and energy
users in both regions. The black lines in the 3 panels show the best
equitable portfolio, i.e., a portfolio with the minimum relative differ-
ence in the deficit frequency metrics between equivalent users amongst
the regions (e.g. difference between irrigation deficit frequency
Northern region and the Southern region).

 

Fig. 3. Parallel axis plot comparing the regional and sectoral water and energy deficit frequencies and the total costs of the system designs of the three model
formulations. Panel (a) shows the regionally aggregated model results with the maximum operator, panel (b) the regionally aggregated model results with the mean
operator and panel (c) the regionally disaggregated model results. The non-dominated portfolios are filtered to highlight (in colour) those portfolios which have
deficit frequencies of less than 25% for the six spatially disaggregated metrics. The figure shows the disaggregated model formulation results covering a larger space
of the performance metrics compared to the results of the aggregated formulations. This allows finding a diverse set of non-dominated portfolios that explores all
possible trade-offs among the regions and sectors and also finds portfolios that equitably distribute the resources (black line in panel c) without deteriorating overall
performance (black line in panel c is closer to the top than in panels a and b).
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Panels 3a and 3b show the non-dominated portfolios selected by the
maximum- and mean-aggregated model formulations, respectively. It
can be seen in these panels that the full extent of the water deficits
frequency metrics in the northern region are not explored and water
distribution is biased to the water users in this region (i.e., there are no
Pareto-optimal solutions where the northern region has low agricultural
and municipal water deliveries). Also, there is no Pareto-optimal solu-
tion that achieves better than a 13% water deficit metrics in the
southern region (see green and red lines). In contrast, solutions with 0%
water deficit frequency are available in the northern region. This re-
gional bias in the resource allocation in the aggregated formulations
occurs because the search algorithm has no incentive to explore the full
objective space and find portfolios that share resources acceptably
amongst the regions; it does not look beyond aggregated performance.
Note that a rigorous search of the objective space was conducted; we
compute the hypervolume [48] for the 30 random seeds and, in general,

for the three formulations, the hypervolume is stabilised in 20,000
function evaluations of the 30,000 evaluations used (see Appendix A).

Conversely, Panel 3c shows that the Pareto-optimal portfolios found
by the disaggregated model formulation cover a greater range of the
performance space compared to the results of the aggregated models in
Panels 3a–3b. This is true for the highlighted top 25% performers (see
the standard deviation in Table 3; the higher the standard deviation the
higher the variability of the portfolios), but also for the rest of the
Pareto space covered by the grey portfolio lines. The explicit in-
corporation of regional objectives drives the search algorithm to find
Pareto-optimal solutions that explore the full distribution of water-en-
ergy benefits for the two regions. For instance, in addition to exploring
and finding diverse portfolios, the disaggregated formulation found
portfolios that relatively equitably distribute resources amongst the
regions and the sectors in the system (e.g. black line) and do not de-
teriorate the overall deficit performance in the system beyond 25%

Table 3
Statistical summary of the results.

Metrics Maximum-aggregated Mean-aggregated Disaggregated

Max Min σ Max Min σ Max Min σ

Irrigation deficit freq. South [%] 25 8.9 3.1 25 9.5 3.6 25 0 6.4
Irrigation deficit freq. North [%] 25 0.1 6.3 24.6 0 5.7 25 0 8.3
Public water supply deficit freq. South [%] 25 4.3 3.2 25 3.9 5.2 25 0 6.3
Public water supply deficit freq. North [%] 25 0.1 6.3 24.6 0 5.7 25 0 8.3
Energy deficit freq. South [%] 25 0 7.1 24.9 0 5.7 25 0 7.5
Energy deficit freq. North [%] 25 0 7.9 25 0 7.5 25 0 7.8

Fig. 4. Spatial distribution of the optimised water-energy infrastructure portfolios and a summary table of system performance for the equitable portfolios high-
lighted with black lines in Fig. 3. Panel (a)–(c) show the equitable portfolios for the regionally maximum-aggregated, mean-aggregated and disaggregated model,
respectively. New infrastructure is red, and sizes/widths of nodes/links are proportional to the scale of the proposed new asset. Panel (d) shows a summary of the
investment and performance magnitude in each portfolio. The figure highlights how the approach allows for detailed spatial design of interlinked water and energy
systems which considers their complex regional and sectoral trade-offs.
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(coloured portfolios). The 3% of the Pareto-optimal portfolios found by
the disaggregated formulation, from the blue highlighted portfolios,
explore low water deficits in the southern region while the aggregated
formulations do not.

Fig. 4, displaying the spatial distribution of the equitable portfolios
highlighted with black lines in Fig. 3, shows how the approach allows
for detailed spatial design of multi-sector integrated systems. The
minimum difference in the evaluated metrics in each highlighted
portfolio is 4%, 8% and 4% for the maximum-aggregated, mean-ag-
gregated and disaggregated formulation, respectively. Fig. 4 shows the
disaggregated formulation finds solutions that equitably distribute re-
sources without deteriorating overall performance. Conversely, equi-
table portfolios for the aggregated formulations showed a deterioration
in the performance of the southern region, as discussed above.

Next Fig. 5 shows the distribution of a measure of regional bias
induced by the different formulations. This measure is estimated by the
distance between the equivalent deficit metrics of the users amongst the
regions (e.g. Irrigation deficit frequency Northern region vs the
Southern region) to a hypothetical equitable solution. This regional bias
calculation is described in Appendix B. The bias is calculated using the
filtered (coloured lines in Fig. 3) solutions of each model formulation.
In Fig. 5, values near zero indicate a regionally equitable distribution,
positive values indicate a bias to the water and energy users in the
northern region and negative values a southern bias. Panels 5a and 5b
show a regional bias that favours water users in the north with the
aggregated model formulations. Seventy-five per cent of the northern
region water deficit frequencies in the aggregated models are above
zero, compared with twenty-five per cent in the South.

There are pronounced differences between the results of the two
different aggregated model formulations presented in Panels 5a and 5b.
The aggregated model that uses the maximum operator finds portfolios
with less regional bias than the mean operator. This is because the
maximum operator minimises the worst water deficit frequency

between the water users in the system, which orients the search algo-
rithm to find system configurations that reduce the deficit frequency of
the Southern water users compared to the mean aggregation that takes
the average deficit frequency. In Panel 5c a similar bias in the ag-
gregated models is evident in the energy sector, however, the bias, in
this case, favours southern energy users. The bias in energy sector
benefit distribution is not as pronounced as in the water sector because
with the construction of the transmission line the electricity can flow
towards both regions which gives more flexibility to the power system
to allocate the resources amongst the regions.

5. Discussion

In this study, we use different regionally aggregated and dis-
aggregated multi-objective optimisation model formulations to explore
the benefits of explicitly including spatial interdependencies in the
design of integrated water-energy systems. Results show the dis-
aggregated formulation explores the full extent of the water and energy
frequency deficit metrics space, identifying a diverse set of non-domi-
nated portfolios that explore the trade-offs among the regions and the
sectors and also finds portfolios that equitably distribute the resources
without deteriorating the overall performance of the combined resource
system. This diverse range of solutions enables the disaggregated
system design formulation to address the distribution of the regional
and sectoral benefits explicitly, identifying portfolios that distribute
resources to different extents in each region and sector of the system.
We found aggregated design formulations showed differing levels of
arbitrary biases in the spatial distribution of benefits. We hypothesize
that an appropriately equitable set of non-dominated portfolios can
help the negotiation of integrated water-energy system designs. It may
be appropriate in some cases for one region to obtain a larger share of
benefits (e.g. because they are paying more into joint schemes, or be-
cause other non-modelled resources are being exchanged between the

Fig. 5. Regional bias among the water and energy
deficit frequencies metrics. Panel (a) show the bias
in the Irrigation deficit frequency metrics, (b) bias
in the Public water supply deficit frequency me-
trics and (c) bias in the Energy deficit frequency
metrics. Values near zero represent equitable
model solutions. Positive values (i.e., top of the
plots) indicate a bias to the water and energy users
in the northern region and negative values a bias
to those in the southern region. The figure shows
that arbitrarily unintended biases in the distribu-
tion of regional benefits can appear if the spatial
nature of the water-energy system is not explicitly
considered in the optimised design formulation.
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countries or regions), so whilst solutions which allocate more to one
region are not necessarily bad, an optimised design process should not
lead to arbitrary biases in benefit distribution.

Generally, we propose that spatially explicit multi-criteria optimised
water-energy system designs can assist planners in complex resources
systems where diverse stakeholders groups are intent on receiving a fair
share of development benefits. In addition, our results highlight the
importance of evaluating the initial conception of the planners’ problem
formulation to improve its understanding of the problem rather than
just providing a single definitive answer to an a priori formulation [49].

We use a synthetic case-study to introduce the integrated frame-
work and show the limitations of aggregating by regions and/or sectors
in the optimised design of integrated water-energy systems. In real-
world design problems involving multiple regions, sectors and objec-
tives, computational limitations of available search algorithms will
limit how many objectives can be included. These limitations relate to
the use of MOEAs in high-dimensional problems and visualising large
data sets and model implementation [50–52]. Despite advances in
modern MOEAs, theoretical conditions required for proofs of con-
vergence and solution diversity maintenance remain hard to satisfy in
high-dimensional problems [37,44]. In future work one could try re-
ducing the problem dimensionality of disaggregated objectives. Might it
be possible to have an aggregated objective that represents the mag-
nitude of an aggregated benefit over all regions and another one pre-
venting their excessively unequitable distribution between regions?
Could this help control the number of objectives? This question is left to
future work.

6. Conclusions

This paper describes a framework that explicitly considers spatial
interdependencies and the spatial distribution of benefits in the design
of multi-sector integrated regional resource systems. The proposed
framework can support water-energy system planners in multi-sector
regional infrastructure design under uncertainty. A synthetic case study
solves a proof-of-concept portfolio design problem demonstrating the
applicability of the framework. The multi-objective optimisation iden-
tifies efficient portfolios of infrastructure and policy interventions in the
combined system which includes irrigation canals, transmission lines,
thermal and hydroelectric plants, multi-purpose reservoirs and their
operating rules. Different formulations of a multi-objective optimisation
were implemented incorporating different representations of the ag-
gregation of the sectoral and regional objectives of the system. Using
different model formulations, we explored the implications of opti-
mising water-energy infrastructure portfolios based on the distributions
of their sectoral and regional benefits. The work highlights the im-
portance, previously noted by other authors cited above, of posing and
evaluating different versions of the optimisation problem formulation
to improve understanding of the problem rather than just using a single
a priori defined formulation.

Results showed that the disaggregated model formulation more
fully explored the water and energy frequency deficit metric spaces,
identifying a diverse set of possible non-dominated portfolios that seek
the most efficient trade-offs amongst the regions and the sectors. It also
finds portfolios that distribute the benefits equitably without deterior-
ating overall performance. In our test case the aggregated formulations
arbitrarily induced unintended biases in the regional distribution of
benefits; with different search objective aggregations producing dif-
fering biases.

This paper aims to demonstrate to policy-makers the importance of
spatial interdependencies when seeking regionally and sectorally
equitable water-energy system designs. The proposed spatial water-
energy design approach can assist planners of complex resource systems
where different stakeholder groups are intent on obtaining a fair share
of development benefits.

Nomenclature

Indices

T index for time, t T{1, 2, , }
hp index for hydropower plants
th index for conventional power plants
l index for new transmission lines
ir index for irrigation users
pws index for public water supply users
N index for Northern region
S index for Southern region

Sets

en set of energy nodes in the system
g set of power plants in the system
wn set of water nodes in the system
i set of water users in the system

Parameters

Det en, energy consumption in en [MWh]
Dwt wn

i
, water consumption in wn by each i [Mm day]3

turbine efficiency [%]
G gravitational acceleration [m s ]2

w water density [kg m ]3

irrigation flows return fraction

Variables

Gent en
g
, energy generation [Mwh]

ENSt en, energy not supplied [Mwh]
deft wn

i
, water deficit [Mm day3 ]

St wn, reservoir storage [Mm3]
qt wn, reservoir inflows [Mm day3 ]
Pen

g power plant maximum capacity [Mw]
ut wn

i
, reservoir releases [Mm day3 ]

spt wn, reservoir spill [Mm day3 ]
t l, energy transmitted through transmission line [Mwh]

Cat wn
i
, water canal capacity [Mm day3 ]

hwn water elevation [m]
rt wn

i
, reservoir target release [Mm day3 ]

Cawn
i water canal maximum capacity [Mm day3 ]

Il transmission line maximum capacity [Mw]
Swn reservoir maximum capacity [Mm ]3

Indicators

Ξ stream flows ensemble
Cg operating costs [$ MWh]

en unsupplied energy demand penalty [$ MWh]
wn
i unsupplied water demand penalty [$ Mm day3 1]

Total systemcosts Total system costs [$]
Ecapex capex energy system [$]
Wcapex capex water system [$]
Thermalcosts operational thermal costs [$]
agg. WDfreq water deficit frequency [%]
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agg. EDfreq energy deficit frequency [%]
aCPg annualised power plant cost [$ MW]
aC Il annualised transmission line costs [$ MW]
aCSwn annualised reservoirs costs [$ Mm3]
CCawn annualised canals costs [$ Mm day3 1]
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Appendix A. Algorithm search convergence

The algorithm search for each model formulation was configured to run for 30,000 function evaluations for each of 30 randomly generated seeds.
The use of random seeds mitigates randomness dependence and improves solution diversity. Moreover, it allows to perform a sensitivity analysis of
the optimisation process. In Figure A1, we show the evolution of hypervolume [48] for the 30 random seeds. This figure shows that, in general, for
the three formulations, the hypervolume is stabilised in ~20,000 function evaluations of the 30,000 evaluations used in each run.

Fig. A1. Hypervolume resulted from the algorithm search by each randomly generated seed. Each line represents the hypervolume attained as a function of the
number of function evaluation by each random seed.
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Appendix B. Regional bias calculation method

The regional bias is calculated by the distance between the equivalent deficit metrics of the users amongst the regions (e.g. Irrigation deficit
frequency Northern region vs the Southern region) to a hypothetical equitable solution. The bias is calculated using the coloured solutions of each
model formulation. To define the solution of equity, we plotted in a scatterplot each pair of equivalent water and energy metric (Fig. A2) and we
defined a 1:1 diagonal line to represent equitable solutions between the metrics evaluated. Next, we calculated the perpendicular distance of each
point to the equity line.

Each point in Fig. A2 represents a water or energy deficit frequency associated with a Pareto-optimal portfolio. Solutions in the upper-left have
lower deficit frequencies in the northern region, and solutions in the lower-right have lower deficit frequencies in the southern region. The distance
of each optimised non-dominated portfolio to the equity line is calculated as shown in Fig. A3.

Fig. A2. Scatterplot showing the regional benefits
distribution bias, resulting from the optimised in-
frastructure designs. Panel (a) shows the pair of
irrigation deficit frequencies metrics, panel (b) the
pair of public water supply deficit frequencies and
panel (c) the pair of energy deficit frequencies for
the southern and northern regions, respectively.
Each point in the figure represents a water or en-
ergy deficit frequency associated with a Pareto-
optimal portfolio selected by the models. The di-
agonal black line indicates equally distributed re-
gional performance.

Fig. A3. Method to calculate the perpendicular distance of each point in Fig. A2 to the equity line. This distance is used to measure bias in regional distribution of
benefits.
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Appendix C. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.apenergy.2020.114794.
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