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FECHA: 2020
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SUBSHIFTS EN LOS GRUPOS DE BAUMSLAG-SOLITAR SOLUBLES
NO-ABELIANOS

En este trabajo es de interés el estudio de la dinámica simbólica sobre los grupos de Baumslag-
Solitar solubles no-abelianos BS(1, N), N ≥ 2, a través de la comprensión de cómo la estruc-
tura de dichos grupos fuerza comportamientos sobre las configuraciones del BS(1, N)-full-
shift, y el aprovechamiento de construcciones utilizando la geometŕıa del grupo. Se definen
sustituciones sobre los grupos de Baumslag-Solitar, logrando dar para una subclase de sub-
shifts sustitutivos una versión del teorema de Mozes [17], que establece condiciones suficientes
bajo las cuales éstos son sóficos. Luego se estudia el caso de una familia de subshifts en partic-
ular: los llamados “Graph-coloring subshifts”, cuyo origen proviene del concepto de coloreos
propios en teoŕıa de grafos. Para esta familia se estudia su no-vacuidad, extensibilidad de
patrones, cotas sobre su entroṕıa y tipos de mezcla. Posteriormente se estudia una clase de
BS(1, N)-subshifts definidos a partir de Z-subshifts, obteniendo resultados sobre la relación
entre las entroṕıas de ambos sistemas, y aproximabilidad de la entroṕıa del BS(1, N)-subshift
a través de las entroṕıas de Z-subshifts. Finalmente se estudia la subdinámica proyectiva
de BS(1, N)-SFTs, basándose en el trabajo de R. Pavlov y M. Schraudner [18], y dando
condiciones para la realización de Z-subshifts sóficos como subdinámica proyectiva de un
BS(1, N)-SFT.

SUBSHIFTS ON SOLVABLE NON-ABELIAN BAUMSLAG-SOLITAR GROUPS

The objective of this work is to study symbolic dynamics on the solvable non-abelian Baumslag-
Solitar groups BS(1, N), N ≥ 2, through the comprehension of how the structure of said
groups forces some particular behavior of configuration of the BS(1, N)-full-shift, as well
as how to take advantage of the geometric structure of the groups in order to make con-
structions. We define substitutions on Baumslag-Solitar groups, and give a version of Mozes
theorem [17], stating sufficient conditions under which a certain subclass of substitutive sub-
shifts are sofic. Then, we study a particular family of subshifts, called the “Graph-coloring
subshifts” which are motivated by the concept of a proper coloring in graph theory. For this
family we study non-emptiness, extensibility of patterns, bounds on their entropy and mixing
properties. Next we study a class of BS(1, N)-subshifts obtained from Z-subshifts, obtaining
results relating the entropies of both systems, and the approximability of the BS(1, N)-
subshift’s entropy through the entropies of a corresponding family of Z-subshifts, called the
m-strip subshifts. Finally, we study the projective subdynamics of BS(1, N)-SFTs, based on
the work of R. Pavlov and M. Schraudner [18], and giving conditions for the realization of
sofic Z-subshifts as projective subdynamics of a BS(1, N)-SFT.
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“As long as there are slaughter houses there will always be battlefields”
- Leo Tolstoy
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tenido la mejor disposición del mundo para ayudar, y que gracias a ellos el departamento es
lo que es.

v



vi



Contents

Introduction 1

1 Preliminaries 5
1.1 Presentations of groups and amenability . . . . . . . . . . . . . . . . . . . . 6
1.2 The Cayley graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 The Baumslag-Solitar groups . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Symbolic dynamics on groups . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5 Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 The structure of periodic configurations 31
2.1 Weak periodicity in the a-direction . . . . . . . . . . . . . . . . . . . . . . . 32

3 Substitutions on Baumslag-Solitar groups 39
3.1 Rectangles on Baumslag-Solitar groups . . . . . . . . . . . . . . . . . . . . . 39
3.2 Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Mozes theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 An alternative way to iterate substitutions . . . . . . . . . . . . . . . . . . . 55

4 Graph-coloring subshifts 59
4.1 Non-emptiness of the GCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Extension of patterns and topological entropy . . . . . . . . . . . . . . . . . 61
4.3 Mixing properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Relationship between 1-dimensional and Baumslag-Solitar subshifts 73
5.1 Baumslag-Solitar subshifts arising from 1-dimensional subshifts . . . . . . . . 73
5.2 Non-emptiness of Baumslag-Solitar subshifts arising from vertex-shifts . . . . 75
5.3 The Fibonacci subshift and subshifts with mixing symbols . . . . . . . . . . 77
5.4 Topological entropy and the m-strip subshift . . . . . . . . . . . . . . . . . . 85

6 Projective subdynamics 91
6.1 Definition and first consequences . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Realization of positive entropy sofic subshifts . . . . . . . . . . . . . . . . . . 96
6.3 Restrictions of the zero entropy case . . . . . . . . . . . . . . . . . . . . . . 98

Conclusion 105

Bibliography 109

vii



viii



Introduction

Symbolic dynamics over finitely generated groups is a particular topic within the field of
dynamical systems. The main object studied in this discipline are G-subshifts (or just
subshifts if there is no risk of confusion with the group G), that is, closed subsets of the
product space AG, for A a finite discrete alphabet and G a finitely generated group, which
are invariant under the action of the shift:

σ : G→ Homeo(AG,AG)

g 7→ σg,

where Homeo(AG,AG) are the homeomorphisms from AG to itself, and for every x ∈
AG, g, h ∈ G we have

σg(x)h = xg−1h.

An important family of subshifts are subshifts of finite type (SFT), which are the ones
that can be described completely by a finite set of forbidden patterns. The class of SFTs
is interesting since sometimes restricting the attention to it can make it possible to answer
a question which in the general case of subshifts is more difficult, or in contrast, a question
which is trivial formulated for subshifts becomes complicated when restricting it to SFTs.
An example of the latter is the question of whether there exist non-empty strongly aperiodic
subshifts (resp. SFTs) on a two symbol alphabet, that is, a subshift (resp. SFT) in which
no configuration exhibits a periodic behavior. For general subshifts this question has an
affirmative answer, meanwhile restricting the attention to SFTs is more complicated and the
answer depends on the group G considered.

The classic theory of symbolic dynamics is the case where G = Z, and it stands out for the
large amount of results one can obtain in this context (see [11] and [5]). A remarkable result
about Z-SFTs says that all of these systems are conjugated to, and then can be understood
through, their presentation as edge-shifts, which are a special case of Z-SFTs described
completely by a (finite) directed graph. As a graph is characterized by its adjacency matrix,
this implies that we can use the powerful tools of linear algebra in order to understand SFTs
over Z.

Throughout the last decades there has been interest in the case G = Zd, d ≥ 2, where a
more complex structure arises in comparison with the one-dimensional case: questions which
have been long answered in the case d = 1 become significantly more difficult for d ≥ 2,
sometimes changing its veracity, or remaining as open problems to this day. An example
of this contrast is the so called Domino problem, which asks whether, given a finite set
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of forbidden patterns, the corresponding SFT is empty or not. For d = 1 this problem is
decidable, meanwhile for d ≥ 2 it is undecidable.

In recent years interest has grown in studying symbolic dynamics on other finitely gener-
ated groups, obtaining results in a general context (e.g. in [3]) as well as in more particular
settings, such as free groups or Baumslag-Solitar groups. The latter of these two is precisely
the family of groups with which we work in this thesis, and is described below.

Given m,n ∈ Z\{0}, we define the corresponding Baumslag-Solitar group as given by
its standard presentation

BS(m,n) := 〈a, b | bamb−1 = an〉.

These groups arise naturally as HNN-extensions of Z, and were first introduced in [4] by G.
Baumslag and D. Solitar, to provide an example of a finitely presented non-Hopfian group,
namely, one which is isomorphic to one of its (proper) quotient groups. Since then they have
served as useful examples and counterexamples for a wide variety of properties, both in the
context of group theory as well as in the context of symbolic dynamics. An example of the
latter can be found in [2], where a weakly aperiodic BS(m,n)-subshift is constructed and
using this example it is shown that the Domino problem is in fact undecidable in Baumslag-
Solitar groups, that is, there does not exist an algorithm which receives as input a finite set of

forbidden patterns F ⊆
⋃

F⊆BS(m,n)
F finite

AF and determines whether the corresponding BS(m,n)-

SFT XF is non-empty.

The subfamily of Baumslag-Solitar groups BS(1, N), N ≥ 2, is of particular interest, since
it exhibits nice properties. This subfamily actually comprises all the cases for which the
Baumslag-Solitar group is solvable, and hence amenable, while still being non-abelian ( the
case N = 1 gives BS(1, 1) ∼= Z2). In particular, this allows us to find a Følner sequence which
permits us to define a notion of topological entropy for BS(1, N)-subshifts. Furthermore, the
Følner rectangles cam be used to defined substitutions and carry out various constructions
in the group. For this reason throughout the rest of this work whenever we talk about
Baumslag-Solitar groups we will be referring to the specific case of BS(1, N), N ≥ 2.

The thesis is structured in the following way:

� In the first chapter we give the basic notions and definitions necessary for understanding
this thesis. We start with the basic facts about presentations of groups and the Cayley
graph, to then introduce Baumslag-Solitar groups and prove some useful results about
them. We finish the chapter with an introduction to symbolic dynamics on finitely
generated groups and a brief introduction to substitutions in Z and Zd, d ≥ 2.

� The second chapter is centered on introducing how the geometry of Baumslag-Solitar
groups can force certain rigidity over configurations of the BS(1, N)-full-shift. In partic-
ular, we prove that configurations with certain periods in the direction of the generator
a must satisfy that any sufficiently high row must be monochromatic.

� The third chapter introduces the concept of rectangles in Baumslag-Solitar groups,
which serve as a Følner sequence over which topological entropy can be defined and
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which at the same time serve as “building blocks” in order to make constructions in
the group. In this chapter we define substitutions on Baumslag-Solitar groups, prove
generalizations of some classic results about them and obtain a partial version of Mozes
theorem, stating conditions under which a certain subclass of substitutive BS(1, N)-
subshift is sofic.

� The fourth chapter concerns the family of so-called Graph-Coloring subshifts (GCS),
which are defined by local rules such that valid configurations in the subshift give
proper colorings of the Cayley graph of BS(1, N). We study non-emptiness of the GCS
depending on the number of colors (symbols) of the alphabet, as well as on the parity
of N , and extensibility of locally admissible patterns. We obtain estimates of the GCS’
topological entropy and study mixing conditions occurring in these subshifts in terms
of the number of colors considered. The chapter finishes showing the (non) existence of
frozen colorings in the GCS according to the number of colors considered, using similar
methods to the ones in [1].

� In the fifth chapter we define a natural way of extending a Z-subshift to a BS(1, N)-
subshift, by considering the family of forbidden patterns defining the former as being
forbidden in the direction of both generators a and b in the latter. We focus mainly
on the case when the Z-subshift has a mixing symbol, in order to guarantee that the
corresponding BS(1, N)-subshift is non-empty and allow us to exploit constructions of
configurations using independent copies of small rectangles inside big ones, and find
relations between the entropies of both subshifts. Then we define the m-strip subshifts
X/Rm associated to a BS(1, N)-subshift X, which allows us to approximate up to
any precision the topological entropy of X in terms of the topological entropy of the
Z-subshifts X/Rm.

� Finally in the sixth chapter we introduce the concept of the 〈a〉-projective subdynam-
ics P〈a〉(X) of a BS(1, N)-subshift X, which intuitively consists in the Z-subshift we
see in the a-rows of X. Motivated by the work done in [18], we prove conditions for
the realization of sofic Z-subshifts to be realized as 〈a〉-projective subdynamics of a
BS(1, N)-SFT, distinguishing cases according to the positivity of the topological en-
tropy of the former.
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Chapter 1

Preliminaries

The purpose of this chapter is to introduce the concepts, constructions and theorems related
to the work done in this thesis, as well as to summarize the known results that inspired it. On
what follows we assume that the reader has basic knowledge on group theory and topology,
particularly that of compact metric spaces.

In the first section we start by defining the concepts of free groups and presentations of
groups, which allow us to understand a group in terms of a set of generators and a set of
relations that hold on it. We then define normal forms, which allow us to express elements
of a group in a prescribed way and with it have a standard way to refer to them. Afterwards
we recall the HNN-extension, which is a way of extending a group to a bigger one in which
two isomorphic subgroups are conjugate. Finally we introduce the concept of amenability
on (countable) groups by using Følner sequences and invariant means, along with their basic
properties.

In the second section we introduce Cayley graphs, which are geometric objects associated
to a given finitely generated group using a specific set of generators that allow us to interpret
the group as the group of symmetries of its Cayley graph.

The third section is devoted to the Baumslag-Solitar groups, which are the most relevant
groups in this thesis. We gather some properties of these finitely presented groups, interpret
them as HNN-extensions of Z, and explain a normal form as well as the geometry of their
Cayley graph.

In the fourth section we state the basic definitions of symbolic dynamics on Z and more
generally on a finitely generated group G, recalling the basic theorems and constructions
associated with symbolic dynamics which motivate as well as serve as tools for the work done
in this thesis.

Finally in the fifth section we present the concept of substitutions on Z and on Zd, with
d ≥ 2. We look at the connection between substitutions and symbolic dynamics given by the
shift spaces they generate, and recall the most important theorems from this area.
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1.1 Presentations of groups and amenability

The idea behind free groups is to form a group generated by a set that has as few relations
between their elements as possible, namely only trivial relations that must hold in any group.
With this we are able to obtain any group starting from a free group and forcing some
additional set of non trivial relations between its elements. For a more detailed introduction
on this topic and for proofs of the mentioned results throughout this section see [12] or [13].

Throughout this chapter we will use the following notation: given a set S we define a new
set S−1 := {s−1 | s ∈ S} in bijection with S but disjoint from it, where the exponent “−1” is
purely notational. We write S± := S ∪ S−1.

We start by recalling the notion of a generating set for a group.

Definition 1.1 Let G be a group and S ⊆ G a subset. We say that G is generated by S,
denoted as G = 〈S〉, if for every g ∈ G there exist a finite number of elements s1, . . . , sn ∈ S±
such that g = s1 · · · sn, where we interpret the elements of S−1 as the inverses of the elements
of S. If there exists a finite subset S ⊆ G such that G = 〈S〉 we say that G is finitely
generated.

A word w = s1 . . . , sn in S± is a finite sequence of symbols of S± where we allow the
empty word with n = 0, which we will denote by ε. For a word w, we say that n is the
length of w and use the notation |w| := n. We denote by (S±)n the set of words of length n
in S± and by (S±)∗ :=

⋃
n≥0(S±)n the set of all words on S±. For words w1, w2 ∈ (S±)∗ we

define their concatenation w1w2 ∈ (S±)∗ as the sequence of symbols of S± formed by those
of w1 followed by those of w2.

We say that two words w1, w2 are related by ∼, symbolized by w1 ∼ w2, if w1 can be
obtained from w2 by adding or deleting from it adjacent pairs of symbols of the form ss−1 or
s−1s, for s ∈ S. One can check that ∼ defines an equivalence relation on (S±)∗ and that the
quotient set (S±)∗/ ∼ has a group structure under the concatenation operation. A word of
minimal length within its equivalence class is called a reduced word.

Definition 1.2 Given a set S we define the free group generated by S as the quotient space
F (S) := (S±)∗/ ∼. We also use the notation F (S) = 〈S |〉 to refer to the free group generated
by S for reasons that will become clear later. We call |S| the rank of the free group F (S) and
if |S| = n for some n ≥ 1 we use the notation Fn and call this class of groups the finitely
generated free groups.

Free groups are characterized by the following universal property, stating that a group
homomorphism from a free group to any other group is completely determined by its values on
the elements of the generating set S, and conversely any assignment of values to the generating
set extends to a homomorphism defined on the free group F (S). This last statement is of
course not true for every group: consider the group Z2 with generating set S = {(0, 1), (1, 0)},
and the map ϕ : S → D8 from S into the group of symmetries of the regular 4-gon, defined
by ϕ((0, 1)) = r and ϕ((1, 0)) = s, where r is a rotation and s a reflection. This map does
not extend to a group homomorphism, since a reflection and a rotation do not commute,
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while the generators of Z2 do. We conclude that Z2 is not a free group.

Proposition 1.3 Let F (S) be the free group generated by S and G any group. Then for
every map ϕ : S → G there exists a unique group homomorphism ϕ̃ : F (S) → G such that
ϕ(s) = ϕ̃(ι(s)), where ι : S → F (S) is the embedding of S in F (S). Moreover, if G is a group
generated by a set S which satisfies the above property, then G ∼= F (S) and we say that G is
freely generated by S.

Example 1.4 1. The free group of rank 1 is F1 = 〈a |〉, which consists of all elements
of the form an, for n ∈ Z. In fact, F1

∼= Z: this can be seen by defining the map
ϕ : {a} → Z given by ϕ(a) = 1 and using the universal property to extend it to a
homomorphism ϕ̃ : F1 → Z, which is in fact an isomorphism.

2. The free group of rank 2 is F2 = 〈a, b |〉. The words w1 = ababba and w2 = ababaa−1bb−1ba
on ({a, b}±)∗ represent the same element of F2 since w1 can be obtained from w2 by
reduction, i.e. by deleting the adjacent pairs aa−1 and b−1b.

Using the universal property from Proposition 1.3 one can prove that for two sets S1, S2

their generated free groups F (S1) and F (S2) are isomorphic as groups if and only if |S1| = |S2|.
Another property (which we will prove due to its importance in what follows) is that any
group can be expressed as a quotient of a free group. Moreover, if the group is finitely
generated then it is a quotient of a finitely generated free group.

Proposition 1.5 Let G = 〈S〉 be a group generated by S ⊆ G. Then there exists a normal
subgroup N of F (S) such that G ∼= F (S)/N .

Proof. Define the map ϕ : S → G to be the inclusion of S into G. Then by the univer-
sal property ϕ extends to a unique homomorphism ϕ̃ : F (S) → G. Finally by the first
isomorphism theorem we get G ∼= F (S)/Ker(ϕ̃) and we may set N := Ker(ϕ̃).

From the previous proof we see that the elements of G may be interpreted as reduced
words on F (S) where two words are considered equal if they differ by words of Ker(ϕ̃). For
this reason we will call words in Ker(ϕ̃) relators of G. To make more precise this idea let
us make the following definition.

Definition 1.6 Given a group G, a set S and a subset R ⊆ F (S) we will say that 〈S | R〉 is
a presentation of G and write G = 〈S | R〉 if

G ∼= F (S)/〈〈R〉〉,

where 〈〈R〉〉 :=
⋂

R⊆HEF (S)

H is the normal closure of R in F (S).

If there exist finite sets S and R such that G = 〈S | R〉 we say that G is finitely presented
and that 〈S | R〉 is a finite presentation for G. Note that finitely generated (and hence
finitely presented) groups have cardinality at most countable.
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Sometimes instead of the relators of R we are going to write r = eG for r ∈ R, or r1 = r2

for r1r
−1
2 ∈ R, to emphasize the meaning of the relation inside the group.

Example 1.7 1. For any set S the group 〈S | ∅〉 is isomorphic to the free group of rank
|S|, which justifies our notation F (S) = 〈S |〉.

2. The group 〈a, b | aba−1b−1〉(= 〈a, b | ab = ba〉) is isomorphic to Z×Z, the direct product
of Z with itself. Note that in general an element of this group will have many different
expressions using reduced words in {a, b}±. For example the words a2b2, abab, baba and
b2a2 all evaluate to the same group element.

3. For n ≥ 3 the dihedral group D2n of symmetries of the regular n-gon has the presentation
〈s, r | s2, rn, srsr〉. Again note that an element of this group may have different forms
of writing it as a reduced word in terms of its generators. As an example we see that
the words rn−1 and srs represent the same group element in D2n.

Group presentations are also characterized by a universal property, which basically tells
us that a presentation of a group is characterized by extending mappings defined on the
generating set to homomorphisms on the whole group, demanding that the relators of the
presentation map to the trivial element.

Proposition 1.8 ([12, Chapter 2]) Let S be a set and R ⊆ (S±)∗. The group 〈S | R〉 together
with the canonical map π : S → 〈S | R〉 has the property that for every group G and for every
map ϕ : S → G such that - denoting by ϕ∗ the extension of ϕ to the set of words (S±)∗ by
concatenation - we have ϕ∗(r) = eG for every r ∈ R, there is a unique group homomorphism
ϕ̃ : (S±)∗ → G such that ϕ̃◦π = ϕ. Moreover, 〈S | R〉 together with π are uniquely determined
up to isomorphism by this property.

As we saw in the above examples it is common that for a presentation of a group its
elements have different expressions as reduced words on the generators. This complicates the
process of understanding the relation between different elements of the group in terms of the
generating set. A way of avoiding this confusion is by prescribing a method to express each
group element as a unique reduced word in terms of the generators of the group. This leads
us to the idea of normal forms.

Definition 1.9 Let G = 〈S | R〉 be a group, and denote by π : (S±)∗ → G the mapping that
evaluates words in (S±)∗ to elements of G (which is certainly surjective since S generates
G). A normal form for G is a function η : G → (S±)∗ such that for each g ∈ G we have
π(η(g)) = g.

We call both the map η as well as its image η(G) indistinctly the normal form of G.

Example 1.10 1. The group F2 = 〈a, b |〉 has a normal form given by the set of all
reduced words.

2. The group Z× Z = 〈a, b | aba−1b−1〉 has a normal form given by {aibj | i, j ∈ Z}. Note
that we could also define another normal form {biaj | i, j ∈ Z}, so we see that in general
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there is not a unique way of defining a normal form.

Now we turn our attention on the construction of a new group from an old one in such
a way that it has an additional property: given a group G and two isomorphic subgroups
H,K ≤ G, it may be useful to have a bigger group that contains G but in which H and
K are conjugate subgroups. The following construction does precisely this and is called the
HNN-extension1.

Definition 1.11 Consider a group G with a presentation 〈S | R〉 and two isomorphic sub-
groups H,K ≤ G, with α : H → K an isomorphism. We define the HNN-extension of G
with respect to α by

G∗α := 〈S ∪ {t} | R ∪ {tα(h)t−1 = h : h ∈ H}〉.

Example 1.12 Consider the group G = Z = 〈a |〉, and for n,m ∈ Z\{0} the isomorphism α :
〈an〉 → 〈am〉, which maps ank to amk for k ∈ Z. Then the HNN-extension G∗α is isomorphic
to 〈a, t | tamt−1 = an〉. This group is called the Baumslag-Solitar group BS(m,n) and it
will be studied in more detail later due to its relevance for the work done in this thesis.

Note that thanks to the relations added in the construction of G∗α, for every h ∈ H and
k ∈ K we have that ht = tα(h) and tk = α−1(k)t, which allows us to choose in which order
the elements of G appear with respect to t or t−1. This property allows us to construct a
rather simple normal form for the HNN-extension G∗α, as the next proposition shows.

Proposition 1.13 ([13, Chapter 1]) Let G be a group, H,K ≤ G and α : H → K an
isomorphism. Choose classes of representatives TH and TK of the right cosets for H and K
in G, respectively, such that TH and TK contain the identity element eG. Then the HNN-
extension G∗α has a normal form given by the set of words of the form g0t

ε1g1t
ε2 . . . tεngn for

n ≥ 0, g0 ∈ G and for i = 1, . . . , n: εi ∈ {+1,−1} such that

� εi = 1 implies gi ∈ TK,

� εi = −1 implies gi ∈ TH and

� there is no subword of the form tεeGt
−ε, for ε ∈ {+1,−1}.

The uniqueness of this normal form for each group element in the HNN-extension gives us
the following useful proposition, which immediately proves that the canonical homomorphism
G→ G∗α is injective and hence the HNN-extension G∗α has a copy of G as a subgroup.

Proposition 1.14 (Britton’s lemma) Consider any group G = 〈S | R〉, an HNN-extension
G∗α as above and denote by π : ((S ∪ {t})±)∗ → G the evaluation of words in ((S ∪ {t})±)∗

to the group elements. Consider a word w of the form w = g0t
ε1g1t

ε2 . . . tεngn with gi ∈ G
for i = 0, . . . , n and εi ∈ {+1,−1} for i = 1, . . . , n, such that w has no subwords of the form
t−1git for gi ∈ H, or tgit

−1 for gi ∈ K. Then π(w) 6= eG.

1The letters “HNN” stands for Higman, Neumann and Neumann, who introduced this kind of extension
in [9].
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The final concept that we introduce in this section is that of amenability. An amenable
group G is one that allows a way to average bounded functions defined on G such that this
average remains invariant under translations by elements of G. Equivalently, a group G is
amenable if it contains a family of finite sets that are almost-invariant by translations of G,
in a way that we make precise below. We give the definition only for countable groups since
it is the case of interest for this thesis, although it can be extended to arbitrary groups.

Definition 1.15 A countable group G is said to be amenable if it satisfies one of the
following equivalent conditions:

1. There exists a sequence of finite subsets of G such that for every g ∈ G:

lim
n→∞

|Fng4Fn|
|Fn|

= 0.

A sequence {Fn}n∈N with this property is called a (right) Følner sequence.

2. There exists a G-invariant mean on `∞(G,R), i.e. an R-linear map m : `∞(G,R)→ R
such that m(1G) = 1, m(f) ≥ 0 for every f ∈ `∞(G,R) such that f ≥ 0 pointwise, and
m(g · f) = m(f) for every f ∈ `∞(G,R), where g · f(t) := f(g−1t) is the left action of
G on `∞(G,R).

The next proposition lists the basic properties of amenable groups.

Proposition 1.16 ([5]) The following properties hold.

1. Every finite group is amenable.

2. Every abelian group is amenable.

3. Every solvable2 group is amenable.

4. The free group F2 is not amenable.

5. If G is amenable, then every subgroup of G and every quotient of G is amenable.

6. For a directed family {Gi}i∈I of amenable groups their direct union G :=
⋃
i∈I

Gi is

amenable.

Proof. We will only prove 1. and 4. Refer to [5, Chapter 4] or [12, Chapter 9] for the proofs
of the remaining items.

1. It is straightforward to check that the function m : `∞(G,R)→ R defined by

m(f) :=
1

|G|
∑
g∈G

f(g)

2A group G is solvable if there are subgroups {eG} = G0 ≤ G1 ≤ · · · ≤ Gk = G such that Gj−1 E Gj

and Gj/Gj−1 is an abelian group, for every j = 1, . . . , k.
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is a G-invariant mean on `∞(G,R).

4. For G = F2 = 〈a, b |〉 suppose we have a G-invariant mean defined on `∞(G,R). Let
us consider the set A ⊆ F2 of reduced words that start with a (non-zero) power of a.
Then we can write F2 = A ∪ a−1 · A, where a−1 · A := {a−1x : x ∈ A}. Denoting by
1A ∈ `∞(G,R) the characteristic function of A, i.e. the function that gives 1 on all the
elements of A and 0 on the rest, we have that

1F2 ≤ 1A + 1a−1·A,

from where

1 = m(1F2) ≤ m(1A + 1a−1·A) = m(1A) +m(1a−1·A) = 2m(1A),

and hence m(1A) ≥ 1
2
.

Now consider the sets A, b · A and b2 · A. These sets are pairwise disjoint and hence

1A∪b·A∪b2·A = 1A + 1b·A + 1b2·A.

With this:

1 = m(1F2) ≥ m(1A∪b·A∪b2·A) = m(1A) +m(1b·A) +m(1b2·A) = 3m(1A) ≥ 3

2
,

which is a contradiction.

Finally, the following lemma tells us that to prove that a sequence is Følner on a finitely
generated group it is sufficient to check its almost-invariance with respect to the elements of
the generating set.

Lemma 1.17 Let G be a group generated by a finite set S ⊆ G and let {Fn}n∈N be a sequence
of finite subsets of G. Then {Fn}n∈N is Følner if and only if for every s ∈ S ∪ S−1 we have

lim
n→∞

|Fns\Fn|
|Fn|

= 0.

Proof. The “if” direction follows immediately from the definition of a Følner sequence, so
let us see the “only if” direction.

First note that for every s ∈ S ∪ S−1 we have

|Fns4Fn| = |Fns\Fn|+ |Fn\Fns| = |Fns\Fn|+ |Fns−1\Fn|,

from where

lim
n→∞

|Fns4Fn|
|Fn|

= lim
n→∞

|Fns\Fn|
|Fn|

+ lim
n→∞

|Fns−1\Fn|
|Fn|

= 0 + 0 = 0,

and so limn→∞
|Fns4Fn|
|Fn| = 0.
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Now if g ∈ G, as S is a generating set we can write g = s1 . . . sm for some s1, . . . , sm ∈ S±.
Let us prove by induction on m that limn→∞

|Fns1...sm4Fn|
|Fn| = 0. The base case m = 1 was

done already above, so assume now that the statement holds for m − 1 and let us prove it
for m, m ≥ 2. Note that

|Fng4Fn| = |Fns1 . . . sm4Fn|
≤ |Fns1 . . . sm4Fns2 . . . sm|+ |Fns2 . . . sm4Fn|
= |Fns14Fn|+ |Fns2 . . . sm4Fn|,

then use the base case and the induction hypothesis to see that

lim
n→∞

|Fng4Fn|
|Fn|

≤ lim
n→∞

|Fns14Fn|
|Fn|

+ lim
n→∞

|Fns2 . . . sm4Fn|
|Fn|

= 0 + 0 = 0,

and the proof is finished.

1.2 The Cayley graph

We wish to interpret a group as more than a purely algebraic object by viewing it as the
group of symmetries of a particular geometric structure. A first result related to this idea is
the well known Cayley theorem, which states that every group may be faithfully represented
as a subgroup of the symmetric group of some set. By defining Cayley graphs we will be
able to see that a finitely generated group can be represented as the symmetry group of its
associated Cayley graph, and in that way give a more geometric version of Cayley’s theorem.
To obtain a more detailed explanation of the concepts and theorems we mention here, we
refer to [12] and [14], as this section is partially based on both references.

To be able to talk about Cayley graphs we assume basic knowledge on graph theory, but
to clarify the notation used throughout this section we recall the following definition of a
directed graph, along with that of a labeled graph.

Definition 1.18 A directed graph is a 4-tuple (V,E, i, f) where V is called the set of
vertices, E ⊆ V × V is called the set of edges, and the functions i : E → V , f : E → V
associate to each edge its “initial” and “terminal” vertices, respectively.

Given an alphabet A, a labeled (directed) graph is a 5-tuple (V,E, i, f, λ), where (V,E, i, f)
is a directed graph and λ : E → A is a function which “labels” the edges of the graph.

Now we are able to define the Cayley graph associated to a group given a generating
set. The vertices of the graph are precisely the group elements and the existence of an edge
between two vertices represents that viewing them as words over the generating set these
elements differ from each other by a single generator.

Definition 1.19 Let G be a group generated by a finite set S ⊆ G. We define the (right)
Cayley graph as the labeled graph Γ(G,S) = (V,E, i, f, λ), where V = G, E = {(g, gs) ∈
V × V | g ∈ G, s ∈ S}, i((g, gs)) = g, f((g, gs)) = gs and λ((g, gs)) = s.
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Note that the definition of the Cayley graph depends on the chosen generating set S,
although for any finitely generated group most of the geometric properties encoded in the
graph remain invariant under changes in the generating set (see [12]). In the following
examples we show the Cayley graph of some classic groups.

Example 1.20

1. The free group of rank 1 F1
∼= Z with generating set S = {1} has as its Cayley graph a

“discrete line”:

. . . . . .-3 -2 -1 0 1 2 3
1 1 1 1 1 1 1 1

We could also have considered a different generating set like S = {2, 3}. In that case
the Cayley graph would still be “line-like”:

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3

. . . . . .

2. Consider the symmetric group S3 := {π : {1, 2, 3} → {1, 2, 3} | π is a bijection}, with
its generating set S = {(123), (12)}. The corresponding Cayley graph Γ(S3, S) is drawn
below:

id

(123) (132)

(123)
(123)

(123)

(12)

(13) (23)

(123)

(123)

(123)

(12) (12)

(12)

(12) (12)

(12)

3. The group Z2 with generating set S = {(1, 0), (0, 1)} has as its Cayley graph the 2-
dimensional lattice:
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(0, 0)

(0, 1)

(0, 2)

(0, 3)

(1, 0)

(1, 1)

(1, 2)

(1, 3)

(2, 0)

(2, 1)

(2, 2)

(2, 3)

(3, 0)

(3, 1)

(3, 2)

(3, 3)

. . . . . .

. . . . . .

. . . . . .

. . . . . .

(1, 0) (1, 0)

(1, 0) (1, 0)

(1, 0) (1, 0)

(1, 0) (1, 0)

...

...

...

...

...

...

...

...

(0, 1)

(0, 1)

(0, 1)

(0, 1)

(0, 1)

(0, 1)

(0, 1)

(0, 1)

(0, 1)

(0, 1)

(0, 1)

(0, 1)

(0, 1)

(0, 1)

(0, 1)

(0, 1)

(0, 1)

(0, 1)

(0, 1)

(0, 1)

(1, 0)

(1, 0)

(1, 0)

(1, 0)

(1, 0)

(1, 0)

(1, 0)

(1, 0)

(1, 0)

(1, 0)

(1, 0)

(1, 0)

4. As a final example, we show (a part of) the Cayley graph of the rank-2 free group
F2 = 〈a, b |〉 with generating set S = {a, b}, which is an infinite 4-regular tree. In this
representation of the Cayley graph the names of the vertices are omitted in order to
obtain a clearer drawing. They can be recovered by reading off the edge labels following
the unique path from the identity (the central vertex) to any other vertex.

a a a

b

b

b

b

a a

b

b aa

b

b

b

a a

aa b

b

a a

b

b

b

b

b aa

a a

b

baa b

b

aaa b

b

b

b aa

b

b

a a
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The next theorem states precisely what we said at the beginning about interpreting the
group G as the group of symmetries of its associated Cayley graph Γ(G,S), and is referred to
as “Cayley’s better theorem” in [14], in comparision to Cayley’s theorem which states that
every group is isomorphic to a subgroup of a symmetric group.

Theorem 1.21 ([14, Chapter 1]) Let G be a group generated by a finite set S ⊆ G. Then
the Cayley graph Γ(G,S) is a connected and locally finite3 labeled graph, on which G acts by
bijections that preserve edges along with their orientation and label.

Now that we have found a way to associate a graph to a given group, we can endow
the graph with a metric space structure by standard methods and with it obtain a metric
structure on the group G.

Definition 1.22 Given a group G generated by a finite subset S ⊆ G, we define the word
metric dS : G × G → R as dS(g, h) := inf{|w| | w ∈ (S±)∗, π(w) = g−1h}, where π :
(S±)∗ → G is the canonical map which evaluates the word w ∈ (S±)∗ as an element of the
group G, and |w| denotes the length of the word w. It is common to denote |g|S := dS(g, eG),
for g ∈ G.

In the context of Cayley graphs the above definition may be interpreted as taking as a
generating set S± and constructing Γ(G,S±), in which the existence of every directed edge
implies the presence of its oppositely oriented counterpart, resulting in a strongly connected
(symmetric) Cayley graph. With this the definition of the word metric dS(g, h) is equivalent
to taking the minimal edge-distance between the vertices g and h on the graph Γ(G,S±).

1.3 The Baumslag-Solitar groups

Now we turn our attention to the Baumslag-Solitar groups, which were briefly defined in
Example 1.12. For any m,n ∈ Z\{0} the group BS(m,n) = 〈a, b | bamb−1 = an〉 arose as an
HNN-extension of Z via the isomorphism α : 〈am〉 → 〈an〉 which mapped α(am) = an.

This family of groups was first introduced (though their origin might be older) by G.
Baumslag and D. Solitar in [4], where they used them to provide an example of a group with
two generators and one relator which is non Hopfian. Since then these groups have gained
attention in the fields of combinatorial group theory and geometric group theory as examples
and counterexamples of different properties (see [7] and [15]).

Some basic properties of these groups are listed in the following proposition, showing when
two Baumslag-Solitar groups are isomorphic, highlighting some basic cases, characterizing
for which values of m and n those Baumslag-Solitar groups are residually finite, solvable
and amenable, and finally indicating a non-Hopfian member, which was one of the original
motivations for defining these groups as was just said.

3 A directed graph (V,E) is said to be strongly connected if there exists a directed path between any
two vertices, and connected if there exists an un-directed path between any two vertices. It is said to be
locally finite if the in-degree and the out-degree at every vertex is finite.
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Proposition 1.23 Baumslag-Solitar groups have the following properties.

1. For m,n ∈ Z\{0} we have BS(m,n) ∼= BS(−m,−n) ∼= BS(n,m).

2. BS(1, 1) ∼= Z2 is the fundamental group of the torus, and BS(1,−1) is the fundamental
group of the Klein-bottle.

3. BS(m,n) is residually finite4 if and only if |m| = |n| or |n| = 1 or |m| = 1.

4. BS(m,n) is solvable if |m| = 1 or |n| = 1, and contains a subgroup isomorphic to the
free group of rank 2 otherwise.

5. BS(m,n) is amenable if and only if |m| = 1 or |n| = 1.

6. BS(2, 3) is not Hopfian, that is, there exists an epimorphism γ : BS(2, 3) → BS(2, 3)
which is not injective.

Proof. 1. Simply observe that the function ϕ1 : BS(m,n) → BS(−m,−n) defined by
ϕ1(a) = a−1, ϕ1(b) = b as well as the function ϕ2 : BS(m,n) → BS(n,m) defined
by ϕ2(a) = a, ϕ2(b) = b−1 (and extended properly to the rest of the group using
Proposition 1.8) are isomorphisms.

2. We have that BS(1, 1) = 〈a, b | bab−1 = a〉 = 〈a, b | ba = ab〉, which is a presentation for
Z2, and this is the fundamental group of the torus. Similarly, BS(1,−1) = 〈a, b | bab−1 =
a−1〉 = 〈a, b | ba = a−1b〉, and this is a presentation for the fundamental group of the
Klein-bottle.

3. See Theorem 1. of [16].

4. Using 1., the case |m| = 1 or |n| = 1 is equivalent to working with BS(1, n). Consider
the subgroups of BS(1, n) :

K := 〈b〉,

and
H := 〈

{
b−jakbj | j, k ∈ Z

}
〉.

We note that:

� HK = G, since b ∈ K ⊆ HK and a = b−0ab0 ∈ H ⊆ HK.

� H is a normal subgroup. In effect, note that for j, k ∈ Z we have

bb−jakbjb−1 = b−(j−1)akbj−1 ∈ H,

b−1b−jakbjb=b−(j+1)akbj+1 ∈ H,

and that ab−jakbja−1 ∈ H and a−1b−jakbja ∈ H, since a ∈ H and H is a subgroup.

4A group G is said to be residually finite if for every g ∈ G\{eG} there exists a finite group F and a
group morphism ϕ : G→ F such that ϕ(g) 6= eF .
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� H is abelian. Given j1, j2, k1, k2 ∈ Z:

b−j1ak1bj1b−j2ak2bj2b−j1a−k1bj1b−j2a−k2bj2 = b−j1ak1bj1−j2ak2bj2−j1a−k1bj1−j2a−k2bj2

= eBS(1,n).

Hence we see that BS(1, n) = H oK, and being a semidirect product of two abelian
groups we conclude that BS(1, n) is solvable.

Now if |m| 6= 1 and |n| 6= 1, we interpret BS(m,n) as the HNN-extension of Z via the
isomorphism α : 〈am〉 → 〈an〉 which maps α(am) = an. As |n| 6= 1 and |m| 6= 1 the
element a is neither in the domain nor image of α, and hence by Britton’s lemma 1.14
we have that any word on the alphabet {b, aba−1} (and its inverses) maps to a non
trivial element of the group. From there we see that F2

∼= 〈b, aba−1〉 is a subgroup of
BS(m,n), and as F2 is not solvable we conclude BS(m,n) cannot be either.

5. The “if” direction follows directly by using that solvable groups are amenable, mean-
while the “only if” part follows from the fact that subgroups of amenable groups are
amenable, whereas the free group F2 is not amenable.

6. Define a group morphism γ : BS(2, 3) → BS(2, 3) by γ(a) = a2 and γ(b) = b, ex-
tending it to the rest of the group using Proposition 1.8. This can be done since
γ∗(ba2b−1a−3) = ba4b−1a−6 = ba2b−1ba2b−1a−6 = a3a3a−6 = eBS(2,3), i.e. γ respects
the only non-trivial relation of BS(2, 3). Moreover γ is surjective since γ(b) = b and
γ(bab−1a−1) = ba2b−1a−2 = a3a−2 = a, but is not injective as

γ((a−1bab−1)2a−1) = (a−2ba2b−1)2a−2

= (a−2a3)2a−2 = eBS(2,3),

meanwhile (a−1bab−1)2a−1 6= eBS(2,3) using Britton’s lemma as in the proof of item 4.

Throughout the rest of this thesis we will focus our attention on the Baumslag-Solitar
groups BS(1, N) for N ≥ 2, which cover precisely all the cases for which - thanks to the
previous proposition - the group is solvable (and amenable) but not abelian. From now on
whenever we talk about “Baumslag-Solitar groups” we will be referring only to
the non-abelian solvable case BS(1,N), unless stated otherwise.

Before proceeding let us take a look at the Cayley graph of BS(1, N) with generating set
S = {a, b}. A section of this graph is shown in Figure 1.1, where we see that its structure
is that of rows (along the edges labeled by the a-generator) being arranged (in a sideways
view) as an N-ary tree. Seen from the front, each row has below it (i.e. in the b−1-direction)
a unique a-row, and above it (i.e. in the b-direction) N new a-rows. More formally, defining
A := {ak | k ∈ Z}, a set of the form gA for g ∈ BS(1, N) will be called an a-row of the

Cayley graph of BS(1, N), meanwhile a set of the form
∞⋃
n=1

gb−nA ∪
∞⋃
n=0

(
g

n∏
s=1

(aisb)A

)
for

g ∈ BS(1, N) and a sequence {is}∞s=1 ∈ {0, . . . , N − 1}N will be called a sheet of the Cayley
graph of BS(1, N). An example of the latter is illustrated in Figure 1.2.
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a

b

b

a

b
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b

a
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a

b

b

a

b

a

b

a

b

a

b

b

a

b

a

b

a

b

a

Figure 1.1: Part of the Cayley graph of BS(1, 2). Blue arrows represent the a- generator
while red arrows represent the b-generator. Here we see that each a-row has a unique a-row
below it and N = 2 a-rows above it.
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...
...

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

...
...

...

a a a a a a a a a a a a a a a a a

b b b b bb b b b
a a a a a a a a

b b b b b
a a a a

b b b
a a

b b
a

Figure 1.2: Example of (part of) a sheet on the Cayley graph of BS(1, 2).

The next lemma summarizes some of the consequences induced by the defining relation
used in the standard presentation of BS(1, N). Its elementary proof is by induction and
is omitted. These additional relations will prove useful in establishing a normal form for
BS(1, N) below.

Lemma 1.24 The unique relation bab−1 = aN used to define BS(1, N) forces further identi-
fications: for every j ≥ 0 and k ∈ Z we have bjak = akN

j
bj.

Proposition 1.25 (Normal form) Every g ∈ BS(1, N) can be decomposed into a normal
form g = b−jakbi where i, j ≥ 0 and k ∈ Z, and k may be divisible by N only if ij = 0. This
decomposition is unique.

Proof. Using that BS(1, N) is an HNN-extension of Z we can express any element of this
group in the normal form for HNN-extensions from Proposition 1.13. In the notation of this
proposition we use H = 〈aN〉 and K = 〈a〉 = Z. The chosen sets of representatives of the
right cosets are TH = {eG, . . . , aN−1} and TK = {eG}. Hence the normal form is the set of
words of the form

akbε1ai1bε2ai2 . . . bεnain ,

for k ∈ Z, i1, . . . , in ∈ {0, . . . , N−1}, such that εj = 1 implies ij = 0 and there is no subword
of the form bεeBS(1,N)b

−ε for any ε ∈ {+1,−1}. In particular these conditions force that if
for some j∗ : εj∗ = 1, then for every j ≥ j∗ we must have ij = 0 and εj = 1. Using this fact
we distinguish three different types of words:

The first type are words of the form akbj for k ∈ Z and j ≥ 0. These words are already
in the form described in the proposition so we are done in this case.

The second type are words of the form akb−1ai1 . . . b−1ain for k ∈ Z, n ≥ 1 and i1, . . . , in ∈
{0, . . . , N − 1}. Using the previous lemma we can easily deduce that for every k′ ∈ Z :
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ak
′
b−1 = b−1aNk

′
. By repeatedly applying the last equality on the word we get:

akb−1ai1 . . . b−1ain = b−1aNk+i1b−1ai2 . . . b−1ain

= b−2aN
2k+Ni1+i2b−1ai3 . . . b−1ain

...

= b−naN
nk+

∑n
j=1N

n−jij ,

which also has the form described in the proposition.

Finally the third type are words of the form akb−1ai1 . . . b−1ainbj for k ∈ Z, n, j ≥ 1,
i1, . . . , in ∈ {0, . . . , N − 1}, and in 6= 0 (since otherwise a subword of the form b−1eGb would
appear, which is forbidden). Using the same reasoning as in the previous case we obtain

akb−1ai1 . . . b−1ainbj = b−naN
nk+

∑n−1
s=1 N

n−sis+inbj,

which again is of the form described in the proposition except for the condition between the
values of the powers of both b’s and a. Note that as n ≥ 1 and in ∈ {1, . . . , N − 1}, the
exponent of the a generator is not a multiple of N , so this is only possible if at least one of
the powers of the b’s is zero, in which case we are in one of the previous two cases.

The uniqueness of this normal form follows immediately from the uniqueness of the normal
form for HNN-extensions, and so we finish this proof.

The normal form for BS(1, N) described in the previous proposition may be interpreted
as following a path in the Cayley graph of BS(1, N) from the identity eBS(1,N) to the element
g = b−jakbi, by first going down (in the direction of b−1) in order to have a common base row
with the element g, to then move along the a axis to find the correct sheet, and to finally go
upwards (in the direction of b) to arrive at the element g.

To finish this section we prove a lemma in which we give an expression for the normal
form of powers of elements of BS(1, N), also expressed in normal form.

Proposition 1.26 Let g = b−jakbi ∈ BS(1, N) be an element decomposed into its normal
form. Then for every n ≥ 1 the normal form of gn is given by

gn =


b−ja

kNn(i−j)−1

N(i−j)−1 bni−(n−1)j, if i > j,

b−jankbi, if i = j,

b−nj+(n−1)ia
kNn(j−i)−1

N(j−i)−1 bi, if i < j.

Similarly, the normal form for g−n for n ≥ 1 is given by

g−n =


b−ni+(n−1)ja

−kNn(i−j)−1

N(i−j)−1 bj, if i > j,

b−ia−nkbj, if i = j,

b−ia
−kNn(j−i)−1

N(j−i)−1 bnj−(n−1)i, if i < j.
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Proof. We prove the stated formulas by induction on n ≥ 1 and only for gn, since the normal
form of g−n is deduced from the former by taking inverses, or by considering the normal form
for g̃n with g̃ := g−1. The base case n = 1 is obvious, so consider the statement to be true
for n ≥ 1 and let us prove it for n+ 1. Suppose first that i > j. Then:

gn+1 = b−ja
kNn(i−j)−1

N(i−j)−1 bni−(n−1)jb−jakbi

= b−ja
kNn(i−j)−1

N(i−j)−1 bn(i−j)akbi

= b−ja
kNn(i−j)−1

N(i−j)−1 akN
n(i−j)

bn(i−j)bi

= b−ja
kN(n+1)(i−j)−1

N(i−j)−1 b(n+1)i−nj.

If i = j then:
gn+1 = b−jankbib−jakbi = b−ja(n+1)kbi.

Finally if i < j :

gn+1 = b−nj+(n−1)ia
kNn(j−i)−1

N(j−i)−1 bib−jakbi

= b−nj+(n−1)ia
kNn(j−i)−1

N(j−i)−1 bi−jakbi

= b−nj+(n−1)ibi−ja
kNn(j−i)−1

N(j−i)−1
N(j−i)+k

bi

= b−(n+1)j+nia
kN(n+1)(j−i)−1

N(j−i)−1 bi,

finishing the proof.

1.4 Symbolic dynamics on groups

This section covers the basic definitions and some useful theorems of symbolic dynamics on
a finitely generated group G. We define the full G-shift and G-subshifts, morphisms between
these spaces, some periodicity conditions, and finally introduce the notion of entropy of a
G-subshift in the case where the group G is amenable. A more comprehensive guide on these
topics can be found in [11] for the case G = Z, and in [3] and [5] for the more general case
where G is a finitely generated group.

Let G be a finitely generated group and A a finite set, which we call the alphabet and
refer to its elements as the symbols.

Definition 1.27 Consider the product space AG. A point x ∈ AG is called a configuration
or a coloring, and we use the notation xg := x(g) for g ∈ G.

Considering the discrete topology in A, the space AG is endowed with the product topol-
ogy. To be able to describe this topology in more depth we make the following definition.

Definition 1.28 For a finite subset F ⊆ G, an element p ∈ AF is called a pattern and the
set F is called its support. We use the notation supp(p) = F .
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We say that a pattern p is a subpattern of a pattern q, denoted p v q, if there exists
g ∈ G such that g · supp(p) ⊆ supp(q) and p = q|g·supp(p). We also say that the pattern p is
a subpattern of a configuration x ∈ AG or that p appears in x, denoted p v x, if there exists
g ∈ G such that x|g·supp(p) = p.

In the particular case G = Z, patterns are commonly restricted to have a support of the
form {0, . . . , n−1} for n ≥ 1 instead of any finite set as we defined above for a general group.

The topology of AG has a base of clopen sets given by the cylinders of the form

[p]g := {x ∈ AG | x|gF = p}

for some finite subset F ⊆ G, p ∈ AF and g ∈ G. We also introduce the notation [p] := [p]eG .
Note that as we assume that G is finitely generated, this base is countable and hence the
product topology is metrizable. A possible metric is given by

d(x, y) := 2− inf{|g| : g∈G and xg 6=yg}, x, y ∈ AG.

In particular, we conclude that AG has the structure of a compact metric space.

Definition 1.29 The group G induces a left action by homeomorphisms 5 on AG, called the
shift, given by

σ : G→ Homeo(AG,AG)

g 7→ σg

where Homeo(AG,AG) are the homeomorphisms from AG to itself, and for each x ∈ AG, g, h ∈
G we have

σg(x)h = xg−1h.

The topological dynamical system (AG, σ) is called the full G-shift.

Now that we have defined the full G-shift we would like to talk about dynamical subsys-
tems of it, which from a topological point of view come to be compact subspaces that are
preserved by the action of G. Dynamical subsystems of the full G-shift are called G-subshifts,
and are defined below by two equivalent descriptions: the first one arising from the notion
of a subsystem of a topological dynamical system and the second one being a combinato-
rial definition, which is possible thanks to the distinctive combinatorial nature of symbolic
dynamics.

Definition 1.30 A subset X ⊆ AG is called a G-subshift if it satisfies one of the following
equivalent conditions.

1. X is closed and G-invariant, that is, for every g ∈ G : σg(X) ⊆ X.

5The fact that for every g ∈ G the map σg is a homeomorphism follows from noticing that for every pattern
p ∈ AF , F ⊆ G finite, we have σg([p]g−1) = [p], and that σg is bijective. Then thanks to the compactness of
AG, σg must be a homeomorphism.
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2. There exists a family of (forbidden) patterns F such that

X = XF ,

where XF :=
{
x ∈ AG | for every p ∈ F : p 6v x

}
.

Proof (That these two conditions are indeed equivalent). Note that the condition of being
a subpattern of a configuration x is invariant under the action σ, and so the set XF is
G-invariant. It is also easy to see that XF is closed by writing

XF =
⋂
p∈F

⋂
g∈G

X\[p]g,

with which we have proved 2.⇒ 1.

Now let us prove 1.⇒ 2. Using that Xc is open and that the cylinders form a base of the
topology we can write

Xc =
⋃
p∈F

[p]

for some family of patterns F ⊆
⋃
F⊆G
F finite

AF . Moreover, using that X is G-invariant we have

Xc =
⋃
p∈F

⋃
g∈G

[p]g,

so for this family F : X = XF and we have finished the proof.

Now we proceed to define mappings between subshifts, which respect the dynamical struc-
ture of the subshifts together with the shift action of the group G.

Definition 1.31 Let A, B be finite sets, and X ⊆ AG, Y ⊆ BG be G-subshifts. A continuous
function ϕ : X → Y that is equivariant, that is, for every g ∈ G : ϕ ◦ σg = σg ◦ ϕ is called a
morphism between X and Y .

An injective morphism is called an embedding of X in Y , meanwhile a surjective mor-
phism is called a factor map between X and Y , and we say that X is an extension of Y and
Y is a factor of X. Finally, a bijective morphism is called a conjugacy between X and Y
and we say that X and Y are conjugate, denoted by X ∼= Y . If two G-subshifts are conjugate
it means that dynamically they have the same structure.

Like G-subshifts, morphisms also have a combinatorial definition equivalent to the topo-
logical one we have just given, which characterizes a morphism as a map whose values are
pointwise determined by looking at a finite set around the coordinate of interest. This char-
acterization was first proven in the case G = Z by Curtis, Lyndon and Hedlund in [8], but
the proof easily generalizes to the case of a finitely generated group G (see [5, Chapter 1]).
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Theorem 1.32 (Curtis-Lyndon-Hedlund) Let X ⊆ AG, Y ⊆ BG be subshifts and ϕ : X → Y
a map. Then ϕ is a morphism if and only if there exists a finite set F ⊆ G and a map
Φ : AF → B such that for every g ∈ G : ϕ(x)g = Φ(x|gF ). In that case ϕ is called a sliding
block code and Φ is called its local map.

Having characterized subshifts in a combinatorial way in terms of a family of forbidden
patterns, it is interesting to study which patterns indeed appear in its configurations, which
motivates the following definition.

Definition 1.33 Let X ⊆ AG be a subshift. For every finite subset F ⊆ G we define the
set of patterns with support F appearing in X by LF (X) := {x|F | x ∈ X}. We define the
language of X to be the set of patterns appearing in X, that is,

L(X) :=
⋃
F⊆G

F finite.

LF (X).

In the case G = Z we use the notation Ln(X) := L{0,...,n−1}(X) and L(X) :=
⋃
n≥0 Ln(X).

The family of forbidden patterns F defining the subshift may be necessarily infinite, as we
will see below in the example of the even shift Seven. Therefore the particular case for which
it is possible to choose a finite family of forbidden patterns to describe a subshift gives rise
to an important class of subshifts. A subshift X in this class allows to verify whether a given
configuration belongs to X by checking locally (i.e. on finite subsets of G) if all appearing
patterns are allowed.

Definition 1.34 A G-subshift X ⊆ AG is said to be a G-subshift of finite type (SFT)
if there exists a finite family of patterns F such that X = XF .

Examples 1.35 1. On G = Z and A = {0, 1}, the set XF defined by the forbidden set
F = {11} containing a single word (pattern) is a Z-SFT, called the golden mean shift.

2. Again with G = Z and A = {0, 1}, the set Seven ⊆ {0, 1}Z defined by the forbidden
set of words F = {10n1 | n is odd} is a Z-subshift, called the even shift. This subshift
is not an SFT since it is impossible to verify whether an arbitrarily long word of the
form 10n1 appears in a configuration looking only at subwords of a uniformly bounded
support.

A special family of SFTs are nearest-neighbors SFTs (denoted NNSFTs): for G a group
generated by the finite set S ⊆ G, a subshift X ⊆ AG is said to be a NNSFT if there exists
a (finite) family of patterns F such that X = XF and the support of each pattern p ∈ F is
of the form {eG, s} for some s ∈ S. Hence NNSFTs is the subclass of SFTs which can be
described using a family of forbidden patterns which have the simplest possible shape.

Proposition 1.36 Every SFT is conjugate to a NNSFT.

The proof of this fact consists in considering a new alphabet given by the patterns on
a sufficiently large (finite) support ocurring on X, and respecting a modified version of the
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forbidden patterns of X. A complete proof of this fact can be found in [3].

Being an SFT is a property that is invariant under conjugation, in the sense that if two
subshifts are conjugate and one of them is an SFT, then the other one must also be an SFT.
The same, however, is not true if one only has a factor map instead of a conjugacy, which
motivates us to define the smallest class of G-subshifts that is closed by factor maps, and
which contains SFTs.

Definition 1.37 A G-subshift Y is said to be sofic if there exists a G-SFT X and a factor
map ϕ : X → Y .

Example 1.38 Recall the even shift Seven defined in Example 1.35, where we argued that it
was not an SFT. Nonetheless, Seven is a sofic shift: define a new alphabet B := {01, 02, 1},
the SFT XF defined by the finite set of forbidden words

F := {0101, 0202, 011, 102} ,

and the sliding block code ϕ : XF → Seven given by the local map Φ : B → {0, 1} defined
by Φ(01) = Φ(02) = 0 and Φ(1) = 1. It is easy to see that ϕ(XF) ⊆ Seven since the set
of forbidden patterns F forces words in XF with 1’s on its both ends to be of the form
101020102 . . . 01021, hence having an even number of 0’s between both 1’s. Similarly we see
that actually ϕ(XF) = Seven. Every sequence s ∈ Seven has a preimage through ϕ in XF
constructed by replacing occurrences of 0’s in s by alternating 01’s and 02’s, which can be
done in such a way that no forbidden patterns are produced, since between two 1’s in s there
is an even number of 0’s.

In the case G = Z sofic subshifts can be understood by studying a particular kind of
presentation: let Γ = (V,E, i, f, λ) be a labeled graph. We say that ξ = {en}n∈Z ∈ EZ

is a biinfinite path in Γ if for every n ∈ Z we have f(en) = i(en+1), and we denote by
λ∞(ξ) := {λ(en)}n∈Z ∈ AZ the label of the biinfinite path. With this we can define the
Z-subshift

SΓ :=
{
s ∈ AZ | s = λ∞(ξ), for some biinfinite path ξ ∈ EZ} ,

which turns out to be a sofic subshift, as it can be seen as a factor of the Z-NNSFT

XΓ :=
{
ξ ∈ EZ | ξ is a biinfinite path in Γ

}
.

The fact that all sofic Z-subshifts may be understood through this particular presentation is
portrayed in the following proposition.

Proposition 1.39 ([11, Chapter 3]) Let S be a sofic Z-subshift. Then there exists a right-
resolving6 labeled graph Γ = (V,E, i, f, λ) such that S ∼= SΓ.

On what follows next we describe a useful construction of the labeled graph Γ from the
previous proposition.

6A labeled graph Γ = (V,E, i, f, λ) is called right-resolving if for each vertex v ∈ V all the edges e ∈ E
with i(e) = v carry different labels through the labeling function λ.
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Definition 1.40 Let X be a Z-subshift and consider a word w ∈ L(X). We define the
follower set Fw(X) of w in X as the set of words that can follow w in X. That is:

Fw(X) := {v ∈ L(X) | wv ∈ L(X)}.

Definition 1.41 Suppose X is a Z-subshift with a finite number of distinct follower sets.
We define the follower set graph of X as the labeled graph (V,E, i, f, λ) whose vertices V =
{Fw(X)}w∈L(X) are the (finite) distinct follower sets, and two vertices Fw(X), Fw′(X) ∈ V are
connected by an edge if there exists a ∈ A such that Fw′(X) = Fwa(X). In this case we have
i((Fw(X), Fw′(X))) = Fw(X), f((Fw(X), Fw′(X))) = Fw′(X) and λ((Fw(X), Fw′(X))) = a.

The following theorem characterizes sofic Z-subshifts as those with a finite number of
follower sets, providing also a labeled graph-representation of the subshift in terms of these
sets. For more details and the proof of this proposition see .

Theorem 1.42 ([11, Chapter 3]) If S is a sofic Z-subshift then S has a finite number of
follower sets. Moreover, the follower set graph Γ of S is right-resolving and we have S ∼= SΓ.

It is important to notice that saying “a pattern appears in X” is in general not equivalent
to saying “a pattern respects the forbidden family F”, as it is possible that the latter cannot
be extended consistently (i.e. respecting the forbidden patterns) to the rest of the group to
obtain a configuration in X. In the particular case of Z-SFTs both notions are equivalent,
but if one changes the group the equivalence is no longer true, as for example with SFTs
defined on G = Z2.

Definition 1.43 Given a G-subshift X defined by a family of forbidden patterns F , a pattern
p is said to be:

� locally admissible if p does not contain an element of F as a subpattern.

� globally admissible if there exists x ∈ X such that x|F = p, where F is the support
of p.

Now we proceed to state notions of periodicity, i.e. properties of configurations having
patterns repeated in some sense throughout the group, and of mixing, i.e. concepts of how two
globally admissible patterns of a subshift may appear simultaneously inside a configuration
of this space.

Definition 1.44 For a configuration x ∈ AG we define its orbit OrbG(x) := {σg(x) | g ∈ G}
and its stabilizer StabG(x) := {g ∈ G | σg(x) = x}, which is a subgroup of G. A known
result on group actions relates both sets by the formula |Orbg(x)| = |G : StabG(x)| for every
x ∈ AG.

Definition 1.45 A configuration x ∈ AG is said to be:

� weakly periodic if StabG(x) contains an infinite cyclic group.

� strongly periodic if StabG(x) is of finite index inside G. By what was said earlier
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this is equivalent to |OrbG(x)| <∞.

Definition 1.46 A G-subshift X ⊆ AG is said to be:

� topologically transitive if for every pair of globally admissible patterns p, q ⊆ L(X)
there exists g ∈ G such that [p]g∩ [q] 6= ∅. This is equivalent to the fact that there exists

x ∈ X such that OrbG(x) = X.

� topologically mixing if for every pair of globally admissible patterns p, q ⊆ L(X)
there exists a finite set F ⊆ G (depending on p and q) such that for every g ∈ G\F :
[p]g ∩ [q] 6= ∅.

� strongly irreducible if there exists a (non-empty) finite set F ⊆ G such that for every
pair of globally admissible patterns p, q ∈ L(X) such that supp(p) ∩ supp(q) · F = ∅ :
[p] ∩ [q] 6= ∅.

� minimal if for every x ∈ X : OrbG(x) = X. This is equivalent to the property that
X has no proper non empty closed invariant subset.

We finish this section by defining the topological entropy of a subshift, which measures
the exponential rate at which the cardinality of globally admissible patterns grows in the
language of a subshift. To do this in Z is easy as one can look at the rate of growth of words
of length n as n grows, whereas in a general group there is no standard way to do this and
it is possible that this notion does not even have sense. For this reason we restrict ourselves
to the case of amenable groups where we have a sequence of finite sets, namely a Følner
sequence, that allows us to sample throughout the group to look at how patterns grow.

Definition 1.47 Suppose that the group G is amenable and let {Fn}n∈N be a (right) Følner
sequence on it. We define the topological entropy of the G-subshift X as

htop(X) := lim
n→∞

log |LFn(X)|
|Fn|

.

In the case G = Z using the Følner sequence Fn := {0, . . . , n− 1}, we get

htop(X) = lim
n→∞

1

n
log |Ln(X)|.

The proof of the existence of this limit for the case G = Z can be found in [11]. For the
general case of G being an amenable group we refer to [10], where it is also shown that the
value of htop(X) does not depend on which Følner sequence one chooses.

1.5 Substitutions

In this section we present the basic notions and properties of substitutions on Z and Zd
for d ≥ 2, starting from the combinatorial definition of substitutions to then explore the
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dynamical properties of the subshifts they generate. Most of this section is based on [20], [3]
and [6], where a more detailed introduction to substitutions can be found.

Let A be a finite alphabet. Recall that in the previous section we defined for a Z-subshift
Ln(X) to be the set of all words of length n that occurred in X and L(X) the set of all words
occurring in X. In what follows we use the notations An := Ln(AZ) and A+ :=

⋂
n≥1An.

Definition 1.48 A substitution on Z is a map τ : A → A+, that is, a function that
assigns to each letter a of the alphabet a (non-empty) word τ(a). This function can be
extended to every word on A+ by concatenation: for a word w = a1 . . . an ∈ A+ we define
τ(w) = τ(a1) . . . τ(an).

With the above it makes sense to talk about τ ` for any ` ≥ 1.

Examples 1.49 1. The Fibonacci substitution is defined as τFib : {0, 1} → {0, 1}+ where
τFib(0) = 01 and τFib(1) = 0. We see that τnFib(0) converges to the infinite word
τ∞Fib(0) := 0100101001001 . . . . Note that the lengths of the words τnFib(0) for n ≥ 1
satisfy the Fibonacci recurrence relation, whence the name of the substitution.

2. The Thue-Morse substitution is defined as τTM : {0, 1} → {0, 1}+ where τTM(0) = 01
and τTM(1) = 10. τnTM(0) converges to the infinite word τ∞TM(0) := 0110100110010110 . . . ,
called the Thue-Morse sequence. Similarly, τ∞TM(1) is the (infinite) word obtained by
exchanging all 0’s by 1’s and vice versa in τ∞TM(0).

The first difference one notices between Z and Zd for d ≥ 2 when trying to define substitu-
tions in the latter, is that the geometric shape of the patterns of a substitution matter, as they
need to be glued together in a consistent way in order to be able to iterate the substitution.
In this introduction we avoid this trouble by limiting ourselves to substitutions in Zd which
have as image patterns with support on the same rectangle [~1, ~n] := [1, n1] × · · · × [1, nd],
for ~n = (n1, . . . , nd) ∈ Nd such that ni ≥ 2 for each i = 1, . . . , d. Nonetheless, it is possible
to define substitutions with patterns over rectangles of different size, or even more creative
shapes as the “chair substitution”. See [21, Chapter 1] for an introduction to substitutions
and tilings with more general shapes.

Definition 1.50 A substitution on Zd is defined as a map τ : A → A[~1,~n], which maps
each letter of the alphabet to a pattern on the rectangle [~1, ~n].

Example 1.51 One can easily generalize the Thue-Morse substitution to Z2 defining τTM :
{0, 1} → {0, 1}[~1,~2]2 by

τTM(0) =
1 0
0 1 , τTM(1) =

0 1
1 0 .

Figure 1.3 shows a plot of a few iterates of the Thue-Morse substitution on Z2. The symbol
0 is represented as a white square and the symbol 1 as a black square.

Now we turn our attention to the relation between substitutions and dynamical systems,
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and their associated properties.

Definition 1.52 Given a substitution τ : A → A[~1,~n] on Zd with d ≥ 1, we define the subshift
associated to τ as

Xτ :=
{
x ∈ AZd | for every pattern p : if p v x then p v τ `(a) for some a ∈ A, ` ≥ 0

}
.

It is straightforward to check that this set is indeed a Zd-subshift.

The first result we will mention about these subshifts is a relation between a combinatorial
property of the substitution and the dynamical minimality of its associated subshift. We omit
the proof of this fact as we will prove it later in the thesis, in the context of the Baumslag-
Solitar group BS(1, N). The proof is adapted immediately for the cases mentioned here.

Definition 1.53 A substitution τ is said to be primitive if there exists ` ≥ 1 such that for
every a, b ∈ A, the symbol b appears in τm(a).

Theorem 1.54 If τ is a primitive substitution on Zd, then its associated Zd-subshift Xτ is
minimal.

To finish this section we state Mozes Theorem, originally proven in [17], which provides
conditions under which the subshift originating from a Z2 substitution is image of a Z2-SFT,
that is, is a sofic subshift. Moreover, these techniques generalize to Zd for d ≥ 2 in order to
prove the corresponding result on higher dimensions. Under the notion of substitution under
which we have worked so far the theorem is stated as follows, though the original statement
is more general.

Theorem 1.55 (Mozes) Let τ be a substitution on Zd for d ≥ 2. Then its associated subshift
Xτ is a sofic Zd-subshift.
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Figure 1.3: Some iterations of the Thue-Morse substitution τTM on Z2.
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Chapter 2

The structure of periodic
configurations

This chapter is focused on studying how periodic configurations on ABS(1,N) exhibit a sort of
rigidity when their stabilizer and the structure of the Cayley graph of the group synchronize
in some sense. In particular, we will study weak periodicity in the a-direction and obtain
results regarding the structure of a-rows of configurations with this periodicity.

We start by giving the following definition fo the a-rows of BS(1, N), which are the subsets
that look like a copy of Z in the direction of the generator a of the Cayley graph.

Definition 2.1 For g ∈ BS(1, N) we define the a-row containing g as

Γg := {gam | m ∈ Z}.

Using the normal form to write g = b−jakbi, for i, j ≥ 0 and k ∈ Z such that k ∈ NZ is only
possible if ij = 0, we say that Γg is an a-row at level i − j. Note that since the normal
form of an element is unique, the level of the corresponding a-row Γg is well defined.

Remark 2.2 Given an element g = b−jakbi ∈ BS(1, N) written in its normal form, we have
that for any m ∈ Z:

gam = b−jakbiam = b−jak+mN i

bi.

Then the a-row Γg has an alternative description given by

Γg =
{
b−jak+mN i

bi | m ∈ Z
}
,

which has the advantage of showing in a clearer way which elements (written in their nor-
mal form) are adjacent to each other in the Cayley graph through an edge labeled by the
a-generator.
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2.1 Weak periodicity in the a-direction

Suppose we have a configuration x ∈ ABS(1,N) such that aN ∈ Stab(x). This periodicity
translates to the fact that the configuration stays the same by translating the Cayley graph
of BS(1, N) N steps in the a-direction. Interpreting x|ΓeBS(1,N)

as a biinfinite sequence in AZ

we have that N ∈ Stab(x|ΓeBS(1,N)
), and moreover we must have that eBS(1,N) ∈ Stab(x|Γb

) and

eBS(1,N) ∈ Stab(x|Γab
), from which we see that x can only have one symbol of the alphabet

on each of the a-rows Γb and Γab. Figure 2.1 illustrates this with N = 2, where we see that
the first a-row exhibits period 2 on its symbols, and with it the next a-rows in the sheets
originating from this base are forced to have period 1.

α1 α1 α1 α1 α1α2 α2 α2 α2 α2

α3 α3 α3 α3 α3

α4 α4 α4 α4 α4

Figure 2.1: Example of a configuration x with aN ∈ Stab(x).

Now suppose instead we have a point x ∈ ABS(1,N) such that aN
2 ∈ Stab(x). Simi-

larly to the above case, using the relation of the group BS(1, N) we see that the sequences
x|ΓeBS(1,N)

, x|Γb
and x|Γb2

must have periods N2, N and 1, respectively. This is illustrated in

Figure 2.2 showing part of a sheet of the Cayley graph of BS(1, 2), where the base a-row has
period 4 = 22, the one above it has period 2 = 21 and the next one period 1 = 20.

α1 α1 α1 α1α2 α2 α2α3 α3 α3α4 α4 α4

α5 α5 α5 α5α6 α6 α6

α7 α7 α7 α7

Figure 2.2: Example of a configuration x with aN
2 ∈ Stab(x).

The behaviour found in the previous examples may be stated as the fact that a configu-
ration having an N -th power of a in its stabilizer is forced to have a-rows sufficiently high
in the b-direction which are all monochromatic, in the sense that they have the same symbol
repeated over and over again.

Proposition 2.3 Let x ∈ ABS(1,N) and ` ≥ 0 be such that σ
aN` (x) = x. Then every a-row at

a level greater or equal than ` in x is monochromatically colored. That is, for every i, j ≥ 0
and m, k ∈ Z:

xb−jakbj+i+` = xb−jakbj+i+`am .
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Moreover, for every i ≥ ` and h ≥ 1 all the a-rows at level i+h sharing a common base of level
i in x are equal. Formally this means that for every j ≥ 0, k ∈ Z and q ∈ {0, . . . , Nh − 1}:

xb−jakbj+i+h = xb−jakbj+iaqbh

Proof. For the first part it suffices to prove the equality for m = 1, that is, that for every
i, j ≥ 0 and k ∈ Z we have

xb−jakbj+i+` = xb−jakbj+i+`a.

The general case follows directly from the above by induction.

Starting from the group element appearing in right-hand side, we have that

b−jakbj+i+`a = b−jak+Nj+i+`

bj+i+`

= b−jaN
i+`Nj

akbj+i+`

= aN
iN`

b−jakbj+i+`.

Now as σ
aN` (x) = x we also have that σ

aNi+` (x) = x, and so

x
aNiN`b−jakbj+i+` = xb−jakbj+i+` ,

from which we achieve the claimed equality.

The above proves that each a-row at level greater or equal than ` is monochromatically
colored by x since such a-rows are precisely Γg for g = b−jakbi+j+l for arbitrary i, j ≥ 0 and
k ∈ Z respecting the conditions of the normal form.

Now let us prove the second statement. Consider i ≥ `, h ≥ 1, j ≥ 0, k ∈ Z and
q ∈ {0, . . . , Nh − 1}, and note that

b−jakbj+iaqbh = b−jakbj+iaqbh

= b−jakaqN
j+i

bj+i+h

= b−jaqN
j+i

akbj+i+h

= b−jaqN
iNj

akbj+i+h

= aqN
i

b−jakbj+i+h

= aqN
i−`N`

b−jakbj+i+h.

Then as σ
aN` (x) = x and i ≥ `, we also have that σ

aqNi−`N` (x) = x and hence

xb−jakbj+iaqbh = x
aqNi−`N`b−jakbj+i+h = xb−jakbj+i+h .

An arbitrary base at level i is represented by the a-row Γb−jakbj+i where i, j, k are as above,
and the a-rows at level i + h arising from it are precisely the Nh a-rows Γb−jakbj+iaqbh where
q ∈ {0, . . . , Nh− 1}. The above together with the fact that each a-row is monochromatically
colored by x shows that we have proven the second part of the statement, namely, that all
a-rows at level i+ h sharing a common base a-row at level i in x are equal.
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Under the further assumption that x is a strongly periodic point we see that the behaviour
seen in the previous proposition is extended to the entire group, allowing each a-row to only
have one symbol on it.

Corollary 2.4 Let x ∈ ABS(1,N) be a strongly periodic configuration such that ∃` ≥ 0 :
σ
aN` (x) = x. Then for every g ∈ BS(1, N) the a-row Γg is monochromatically colored by x.

That is, for every m1,m2 ∈ Z:
xgam1 = xgam2 .

Proof. To prove the result it suffices to show that for every g ∈ BS(1, N) and any m ∈ Z:

xgam = xgam−1 .

Since x is strongly periodic its orbit under the action of BS(1, N) is finite, and in particular
the set {σb−q(x) : q ≥ 1} must also be. Hence there exists an increasing sequence of positive
integers {qn}n≥1 such that for every n ≥ 1

σb−q1 (x) = σb−qn (x),

or equivalently
σbq1−qn (x) = x.

By taking n sufficiently large, one can find k ≥ ` and j ∈ {0, . . . , N − 1}k such that bqn−q1g ∈
Γ

(j)
k and using Proposition 2.3 we see that for m ≥ 1 :

xgam = (σbq1−qn (x))gam

= xbqn−q1gam

= xbqn−q1gam−1

= (σbq1−qn (x))gam−1

= xgam−1 .

Hence every a-row Γg in x has the same symbol throughout it.

Corollary 2.5 Let X ⊆ ABS(1,N) be a BS(1, N)-subshift and x ∈ X such that there exists
` ≥ 0 such that σ

aN` (x) = x. Then there exists a configuration y ∈ X such that each of its
a-rows is monochromatic, and all a-rows of the same level in y are equal. Moreover, if X is
an SFT then y can be chosen to be strongly periodic.

Proof. Thanks to Proposition 2.3 we have that all a-rows at a level greater or equal than ` in
x are monochromatic. Then we can define for each n ≥ 1 the configuration xn := σb−n(x) ∈ X
and define y ∈ X to be a limit point of the sequence {xn}n∈N, which exists by compactness
of X.

As each a-row at a sufficiently high level of x is monochromatic and a-rows of the same
level sharing a common base of a sufficiently high level in x are equal, the construction of
the sequence {xn}n∈N immediately shows that y satisfies the required properties.

Now suppose that X is an SFT. As periodicity is preserved through a conjugacy map, we
may suppose without loss of generality that X is a NNSFT. Considering the configuration
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y ∈ X from above, we see that by the pigeonhole principle there must exist an a-row Γg,
g ∈ BS(1, N), and h ≥ 1 such that itself together with all of the Nh a-rows Γgaqbh , for
q ∈ {0, . . . , Nh − 1}, are equal. Without loss of generality we can assume that

y|〈a〉 = y|〈a〉bm .

Define a configuration z ∈ ABS(1,N) by

zb−jakbi := ybi−j (mod h) , i, j ≥ 0, k ∈ Z.

Then z respects the forbidden patterns of X, and hence z ∈ X. It is also clear that σa(z) = z,
since

za−1b−jakbi = zb−jak−Nj
bi = ybi−j (mod h) = zb−jakbi .

We also see that for every i′, j′, i, j ≥ 0, k′, k ∈ Z:

σb−j′ak′bi′ (z)b−jakbi = zb−i′a−k′bj′b−jakbi

= zb−i′a−k′bj′−jakbi

= ybj′−j+i−i′ (mod h)

= ybj′−j+i−i′ (mod h)

= ybi−j−w (mod h) where w = j′ − i′ (mod h)

= zb−wb−jakbi

= σw(z)b−jakbi .

Hence we conclude that Orb(x) = {σbw(z)}h−1
w=0, and with it z is a strongly periodic configu-

ration.

Remark 2.6 Having all a-rows monochromatic is not a sufficient condition for a configura-
tion x ∈ ABS(1,N) to be strongly periodic. One can construct an example of such a configura-
tion by considering a non-periodic sequence z ∈ AZ and define x ∈ x ∈ ABS(1,N) to consist
of monochromatic a-rows whose symbols are defined according to the sequence z. Figure 2.3
shows a sideways view of the Cayley graph of BS(1, N), where each symbol in this figure
represents the symbol of the entire a-row at that level in x.

z−2

z−1

z0

z1

z2

...

z2

...

z1

z2

...

z2

...

z0

z1

z2

...

z2

...

z1

z2

...

z2

...

...

Figure 2.3: Illustration of a configuration in a sideways view of the Cayley graph of BS(1, N),
having all a-rows monochromatic but not being strongly periodic.
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Similar results to the ones proved above can be obtained if one considers the broader class
of weakly periodic configurations x ∈ ABS(1,N) such that σ

apN` (x) = x, for ` ≥ 0 and p /∈ NZ.
In the remainder of this section we make this generalization, using the same ideas found in
the proofs above.

Proposition 2.7 Let x ∈ ABS(1,N), ` ≥ 0 and p /∈ NZ be such that σ
apN` (x) = x. Then

every a-row of level greater or equal than ` is p-periodic, that is, for every i, j ≥ 0, k,m ∈ Z:

xb−jakbj+i+`am+p = xb−jakbj+i+`am .

Moreover, if we further assume that gcd(p,N) = 1, then for every i ≥ ` and h ≥ 0 all the
a-rows of level i + h sharing a common base a-row of level i are equal, up to a translation.
More precisely, for every h ≥ 0 there exists r ∈ Z such that for every j ≥ 0, i ≥ `, k,m ∈ Z
and q ∈ {0, . . . , Nh − 1}:

xb−jakbj+i+ham = xb−jakbj+iaqbham−qr .

Proof. Note that for i, j ≥ 0 and k,m ∈ Z we have that

b−jakbj+i+`am+p = b−jakapN
j+i+`

bj+i+`am

= b−japN
i+`Nj

akbj+i+`am

= apN
i+`

b−jakbj+i+`am

= aN
ipN`

b−jakbj+i+`am.

As σ
apN` (x) = x we also have that σ

aNipN` (x) = x and with it

xb−jakbj+i+`am+p = x
aNipN`b−jakbj+i+`am

= xb−jakbj+i+`am .

This proves that every a-row of level greater or equal than ` is p-periodic, seen as a bi-infinite
sequence.

For the second part of the proposition, note that as we assume that gcd(p,N) = 1 then for
every h ≥ 1 we have gcd(p,Nh) = 1 and hence by Bézout’s identity there exist r, s ∈ Z such
that 1 = sp+ rNh. With this we get that for j ≥ 0, i ≥ `, k,m ∈ Z and q ∈ {0, . . . , Nh− 1}:

b−jakbj+iaqbham−qr = b−jakbj+iaqa−qrN
h

bham

= b−jakbj+iaq−qrN
h

bham

= b−jakaq(1−rN
h)N i+j

bj+ibham

= b−jaq(1−rN
h)N iNj

akbj+ibham

= aq(1−rN
h)N i

b−jakbj+ibham

= aqspN
i−`N`

b−jakbj+ibham

= aqsN
i−`pN`

b−jakbj+ibham.

Then as σ
apN` (x) = x we also have that σ

aqsNi−`pN` (x) = x and hence

xb−jakbj+iaqbham−qr = x
aqsNi−`pN`b−jakbj+ibham
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= xb−jakbj+ibham .

The above proves that all a-rows Γb−jakbj+iaqbh (for q ∈ {0, . . . , Nh − 1}) at level i + h,
originating from the a-row Γb−jakbj+i have the same sequence in x, namely {xb−jakbj+ibham}m∈Z,
up to a translation of qr.

Remark 2.8 The second part of the previous propositon still holds if one does not assume
that gcd(p,N) = 1, with the slight alteration of requiring i ≥ ` + 1 instead of i ≥ `. To
prove this it is sufficient to note that σ

apN` (x) = x and d := gcd(p,N), then we also have
σ
a
N
d

pN` (x) = x and hence

σ
a
p
d
N`+1 (x) = x,

from which we can apply Proposition 2.7.

Corollary 2.9 Let x ∈ ABS(1,N) be a strongly periodic configuration such that there exists
` ≥ 0 such that σ

aN` (x) = x. Then for every g ∈ BS(1, N) the a-row Γg in x has period p.
That is, for every m ∈ Z:

xgam = xgam+p .

Proof. Since x is strongly periodic, it has a finite orbit under the action of BS(1, N), so in
particular the set {σb−q(x) : q ≥ 1} is finite. Hence there exists a sequence of increasing
positive integers {qn}n≥1 such that for every n ≥ 1

σb−q1 (x) = σb−qn (x),

or equivalently
σbq1−qn (x) = x.

By taking n sufficiently large, one can find k ≥ ` and j ∈ {0, . . . , N − 1}k such that bqn−q1g ∈
Γ

(j)
k and using Proposition 2.3 we see that for m ≥ 1 :

xgam = (σbq1−qn (x))gam

= xbqn−q1gam

= xbqn−q1gam+p

= (σbq1−qn (x))gam+p

= xgam+p .

Hence every a-row Γg in x is a sequence of period p.

Corollary 2.10 Let X ⊆ ABS(1,N) be a BS(1, N)-subshift and x ∈ X such that there exist
` ≥ 0 and p /∈ NZ such that σ

apN` (x) = x. Then there exists a configuration y ∈ X such
that each of its a-rows is p-periodic, and all a-rows of the same level in y are equal (up to
translation).

Proof. Thanks to Proposition 2.7 we have that all a-rows at a level greater or equal than `
in x are p-periodic. We define for each n ≥ 1 the configuration xn := σb−n(x) ∈ X and define
y ∈ X to be a limit point of the sequence {xn}n∈N, which exists by compactness of X.
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As each a-row at a sufficiently high level of x is p-periodic and a-rows of the same level
sharing a common base of a sufficiently high level in x are equal, the construction of the
sequence {xn}n∈N immediately shows that y satisfies the required properties.
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Chapter 3

Substitutions on Baumslag-Solitar
groups

As we said in Chapter 1 when we talked about Zd substitutions, the main problem that
arises when trying to extend the notion of a Z substitution to higher dimension or to other
groups is being able to glue together patterns arising from different letters of the alphabet
in a consistent way, allowing us to iterate the substitution indefinitely.

In this chapter we show that it is possible to define substitutions on the groups BS(1, N)
by making use of the structure of rectangles (defined below) and a property of self-similarity
of these sets. With this we are able to define a BS(1, N)-subshift associated to a substitution
and study its dynamical properties as it has been done in the case of Z and Zd for d ≥ 2.
We finish the chapter proving a version of Mozes theorem for substitutions on BS(1, N).

3.1 Rectangles on Baumslag-Solitar groups

Inspired by the sets [1, . . . , n]d we used in Zd to define substitutions, we would like to find a
similar structure in BS(1, N) = 〈a, b | bab−1 = aN〉 that allows us to decompose a bigger rect-
angle into smaller ones, and consider these sets as the support of the images of a substitution.
With this in mind we make the following definition.

Definition 3.1 For m ≥ 1 we define the rectangle of height m of BS(1, N) as

Rm :=
{
ajbk | 0 ≤ j < Nm, 0 ≤ k < m

}
.

That is, the rectangle of height m is formed by considering a base of Nm elements in the
a-direction, together with the elements of all the half-sheets that share that common base
row up to height m (in the b-direction).

Example 3.2 The first four rectangles of the group BS(1, 2) are pictured below in Figure
3.1.
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R1 R2 R3

R4

Figure 3.1: The first four rectangles Rm, for N=2.

A nice property of this definition is that thanks to the width of each rectangle in the
a-direction in comparision with the height of it in the b-direction, the sequence of rectangles
forms a Følner sequence in the group, which gives us a preferred sequence to utilize in
constructions, in proofs that require gluing together patterns in order to define configurations
in the whole group, and over which to define topological entropy.

Proposition 3.3 The sequence {Rm}m≥1 is a (right) Følner sequence for BS(1, N).

Proof. Thanks to Lemma 1.17 it suffices to prove that

lim
m→∞

|Rma\Rm|
|Rm|

= lim
m→∞

|Rmb\Rm|
|Rm|

= lim
m→∞

|Rma
−1\Rm|
|Rm|

= lim
m→∞

|Rmb
−1\Rm|
|Rm|

= 0.

First note that for m ≥ 1: |Rm| = mNm. With this

|Rma\Rm| =
∣∣{ajbka|0 ≤ j < Nm, 0 ≤ k < m

}
\Rm

∣∣
=
∣∣∣{aNk+jbk

∣∣∣0 ≤ j < Nm, 0 ≤ k < m
}
\Rm

∣∣∣ by using Lemma 1.24

=
∣∣∣{aNk+jbk

∣∣∣Nm −Nk ≤ j < Nm, 0 ≤ k < m
}∣∣∣

=
m−1∑
k=0

Nk =
Nm − 1

N − 1
.
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and so lim
m→∞

|Rma\Rm|
|Rm|

= lim
m→∞

Nm−1
N−1

mNm
= 0. Similarly

|Rma
−1\Rm| =

∣∣{ajbka−1|0 ≤ j < Nm, 0 ≤ k < m
}
\Rm

∣∣
=
∣∣∣{a−Nk+jbk

∣∣∣0 ≤ j < Nm, 0 ≤ k < m
}
\Rm

∣∣∣ by using Lemma 1.24

=
∣∣∣{a−Nk+jbk

∣∣∣0 ≤ j < Nk, 0 ≤ k < m
}∣∣∣

=
m−1∑
k=0

Nk =
Nm − 1

N − 1
.

With the above we have that lim
m→∞

|Rma\Rm|
|Rm|

= lim
m→∞

|Rma
−1\Rm|
|Rm|

= lim
m→∞

Nm−1
N−1

mNm
= 0, and

so we have established th first and the third limits.

On the other hand,

|Rmb\Rm| =
∣∣{ajbk|0 ≤ j < Nm, 1 ≤ k < m+ 1

}
\Rm

∣∣
=
∣∣{ajbm|0 ≤ j < Nm

}∣∣
= Nm,

and

|Rmb
−1\Rm| =

∣∣{ajbk|0 ≤ j < Nm, −1 ≤ k < m− 1
}
\Rm

∣∣
=
∣∣{ajb−1|0 ≤ j < Nm

}∣∣
= Nm.

With this lim
m→∞

|Rmb\Rm|
|Rm|

= lim
m→∞

|Rmb
−1\Rm|
|Rm|

= lim
m→∞

Nm

mNm
= 0, and so we also have the

second and fourth limits we needed.

Remark 3.4 From now on whenever we talk about topological entropy on for Baumslag-
Solitar groups BS(1, N) we will be considering Definition 1.47 with the Følner sequence
{Rm}m≥1, that is for any subshift X ⊆ ABS(1,N):

htop(X) := lim
m→∞

1

|Rm|
log |LRm(X)|.

Now we proceed to prove the fundamental property about how rectangles of a particular
height can be arranged to form a bigger rectangle, exhibiting a sense of self similarity between
them, which will be key to define substitutions on this group. The decomposition shown in
the following proposition says that the rectangle R2m decomposes into 2Nm copies of the
rectangle Rm, Nm of which form the “base” of the rectangle and cover the first m heights in
the b-direction, meanwhile the remaining Nm copies distribute along the sheets starting on
level m covering the remaining m heights.
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Proposition 3.5 For every m ≥ 1 the rectangle R2m is a disjoint union of 2Nm copies of
the rectangle Rm. Moreover, the following decomposition holds:

R2m =
Nm−1⋃
·
i=0

aiN
m

Rm ∪·
⋃
·

(i1,...,im)∈{0,...,N−1}m

(
m∏
s=1

aisb

)
Rm (3.1)

Proof. For m ≥ 1, consider the decomposition of the rectangle R2m according to heights less
than m, and greater than or equal to m:

R2m =
{
ajbk : 0 ≤ j < N2m, 0 ≤ k < 2m

}
=
{
ajbk|0 ≤ j < N2m, 0 ≤ k < m

}
∪·

∪·
{
ajbk | 0 ≤ j < N2m, m ≤ k < 2m

}
.

(3.2)

The first term of this decomposition gives us

{
ajbk | 0 ≤ j < N2m, 0 ≤ k < m

}
=

Nm−1⋃
·
i=0

{
ajbk | iNm ≤ j < (i+ 1)Nm, 0 ≤ k < m

}
=

Nm−1⋃
·
i=0

{
aj+iN

m

bk | 0 ≤ j < Nm, 0 ≤ k < m
}

=
Nm−1⋃
·
i=0

aiN
m {

ajbk | 0 ≤ j < Nm, 0 ≤ k < m
}

=
Nm−1⋃
·
i=0

aiN
m

Rm,

from where we identify the first term of the union in Equation (3.1). Regarding the second
term of the equation, we will prove that

{
ajbk | 0 ≤ j < N2m, m ≤ k < 2m

}
=

⋃
·

(i1,...,im)∈{0,...,N−1}m

(
m∏
s=1

aisb

)
Rm.

With this the statement of the proposition follows, since we will have identified the second
term of Equation (3.2) with the second union of Equation (3.1).

Let us see first the case m = 1. we see that

{ajbk | 0 ≤ j < N2, 1 ≤ k < 2} = {ajb | 0 ≤ j < N2}

=
N−1⋃
i=0

{ai+Njb | 0 ≤ j < N}

=
N−1⋃
i=0

ai{aNjb | 0 ≤ j < N}

=
N−1⋃
i=0

ai{baj | 0 ≤ j < N}
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=
N−1⋃
i=0

aibR1,

and so it follows. Here we saw that to get the result we had to partition the set {0, . . . , N2−1}
in N sets of the form {i, i+N, . . . , i+ (N − 1)N}, for i = 0, . . . , N − 1. The same reasoning
allows us to prove this claim for m ≥ 2: first we make the decomposition

{
ajbk | 0 ≤ j < N2m, m ≤ k < 2m

}
=

N−1⋃
·
i=0

{
ajbk | j ∈

{
i, i+N, . . . , i+

⌊
N2m − i− 1

N

⌋
N

}
,

m ≤ k < 2m

}
=

N−1⋃
·
i=0

{
ajbk | j ∈

{
i, i+N, . . . , i+N(N2m−1 − 1)

}
,

m ≤ k < 2m

}
=

N−1⋃
·
i=0

{
ai+Njbk+m | 0 ≤ j < N2m−1, 0 ≤ k < m

}
.

Then we get

{
ajbk | 0 ≤ j < N2m, m ≤ k < 2m

}
=

N−1⋃
·
i=0

{
ai+Njbk+m | 0 ≤ j < N2m−1, 0 ≤ k < m

}
=

N−1⋃
·
i=0

{
aiaNjbmbk | 0 ≤ j < N2m−1, 0 ≤ k < m

}
=

N−1⋃
·
i=0

{
aibajbm−1bk | 0 ≤ j < N2m−1, 0 ≤ k < m

}
=

N−1⋃
·
i=0

aib
{
ajbm−1bk | 0 ≤ j < N2m−1, 0 ≤ k < m

}
=

N−1⋃
·
i=0

aib
{
ajbk | 0 ≤ j < N2m−1, m− 1 ≤ k < 2m− 1

}
.

By repeating the above argument m− 1 more times, we arrive at the claimed equality.

Example 3.6 In the group BS(1, 2) with m = 2 the rectangle R2m = R4 is formed by
2Nm = 8 copies of the rectangle R2, as seen in Figure 3.2.
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Figure 3.2: In BS(1, 2) the rectangle R4 is formed by 8 copies of R2, each copy displayed
with a different color.

3.2 Substitutions

Now that we have understood the hierarchical structure of rectangles given by Proposition
3.5 we are almost ready to give a notion of substitutions on BS(1, N). Substitutions will map
symbols to patterns on rectangles, and the iteration process will consist in replacing symbols
from those rectangular patterns by their image through the substitution thus forming a
pattern on a bigger rectangle.

Before making the precise definition we need the following simple lemma for it to make
sense.

Lemma 3.7 For any m ≥ 1 and i1, . . . , im ∈ {0, . . . , N − 1} we have that(
m∏
s=1

aisb

)
b−1 ∈ Rm.

Proof. We will prove this by induction on m. If m = 1, then

(
1∏
s=1

aisb

)
b−1 = ai1 ∈ R1

because i1 ∈ {0, . . . , N − 1}.

Now assume the lemma is true for m, m ≥ 1, and let us prove it for m+ 1. We have(
m+1∏
s=1

aisb

)
b−1 =

(
m∏
s=1

aisb

)
aim+1 =

(
m∏
s=1

aisb

)
b−1baim+1 (3.3)
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and by the induction hypothesis

(
m∏
s=1

aisb

)
b−1 ∈ Rm, and so for some 0 ≤ j < Nm and

0 ≤ k < m the following equality holds:(
m∏
s=1

aisb

)
b−1 = ajbk.

Replacing the above in Equation (3.3):(
m+1∏
s=1

aisb

)
b−1 = ajbkbaim+1 = ajbk+1aim+1 = aj+im+1Nk+1

bk+1 using the fact that ba = aNb.

Noticing that 0 ≤ k + 1 < m + 1 and that 0 ≤ j + im+1N
k+1 < Nm + (N − 1)Nm = Nm+1

we conclude that (
m+1∏
s=1

aisb

)
b−1 = aj+im+1Nk+1

bk+1 ∈ Rm+1,

finishing the proof.

Definition 3.8 Given a (non empty) finite alphabet A, a substitution on BS(1, N) is a
map τ : A → ARm, for some fixed m ≥ 1.

A substitution τ : A → ARm can be extended recursively to τ ` : A → AR2`−1m for ` ≥ 1 by
τ 1 = τ and ` ≥ 1, by setting

τ `+1(α)
aiN2`−1mr

= τ `
(
τ `(α)ai

)
r
, for α ∈ A, i ∈

{
0, . . . , N2`−1m − 1

}
and r ∈ R2`−1m.

τ `+1(α)(∏2`−1m
s=1 aisb

)
r

= τ `
(
τ `(α)(∏2`−1m

s=1 aisb
)
b−1

)
r

, for α ∈ A, i1, . . . , i2`−1m ∈ {0, . . . , N − 1}

and r ∈ R2`−1m.

Note that this definition makes sense thanks to Proposition 3.5 and Lemma 3.7. Intuitively
the symbols along the base row of the rectangle R2`−1m blow up to generate the lower part
(the first 2`−1m heights) of the rectangle R2`m meanwhile the rest of this rectangle (i.e. the
remaining 2`−1m heights) is filled with images of the symbols from the uppermost row on
every sheet.

Example 3.9 Inspired by the Thue-Morse substitutions defined for Z and Zd we define the
BS(1, 2)-Thue-Morse substitution to be the one with alphabet A := {0, 1} and substitution
map τ : A → AR2 given by

τ(0) =

0 1 1 0

1

0

0

1

, τ(1) =

1 0 0 1

0

1

1

0

.
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Its second iteration τ 2(0) is supported on the rectangle R4 and shown in Figure 3.3. Note
that thanks to how we defined this substitution every word seen on supports of the form
{g, ga, . . . , gan} or {g, gb, . . . , gbn}, for g ∈ G and n ≥ 0 is a subword of the Thue-Morse
sequence.

Now that we have defined substitutions on BS(1, N), we can proceed to study the dynam-
ical properties that arise from them.

Definition 3.10 Given a substitution τ on BS(1, N), the BS(1,N)-subshift induced by
τ is defined as

Xτ :=
{
x ∈ ABS(1,N) | for every pattern p : p v x =⇒ ∃` ≥ 0 and α ∈ A such that p v τ `(α)

}
.

Proposition 3.11 For every substitution τ its associated subshift Xτ is not empty.

Proof. Consider a substitution τ : A → ARm and fix α ∈ A. For each n ≥ 1 define a point
xn ∈ ABS(1,N) such that x|R2nm

= τn(α) and such that on the rest of the elements of the
group we have xg = α. Then by compactness of ABS(1,N) the sequence {xn}n∈N subconverges
to a point x ∈ ABS(1,N).

Now define another sequence {yn}n∈N such that yn = σa−nb−n(x) and again by compactness
this sequence subconverges to a point y ∈ ABS(1,N). We claim that this point satisfies y ∈ Xτ ,
since if we look at any pattern p we can find n sufficiently large such that p v yn and the
normal form of all elements of p is of the form b−jakbi with 0 ≤ j ≤ n − 1, so p is really a
subpattern of the portion of a point xn

′
on the part of the group that was determined by the

substitution, from which we conclude.

Example 3.12 The subshift associated with the Thue-Morse substitution of Example 3.9
consists of the closure of the orbit of the limit point constructed in the proof of the previous
proposition. In effect, consider x ∈ Xτ . Then for every pattern p v x there exists ` ≥ 0
and α ∈ {0, 1} such that p v τ `(α). Using the fact that 0 v τ(1) and 1 v τ(0) we see that
p v τ `+1(1−α). Since the pattern p was arbitrary, we have proven that x can be approximated
by patterns occurring in the configuration constructed in Proposition 3.11.

This behaviour does not always happen: if one considers the substitution given by

τ(0) =

1 1 1 1

1

1

1

1

, τ(1) =

0 0 0 0

0

0

0

0

.

we see that the subshift associated to it has two points: one where each group element sees
the symbol 0 and another one where each element sees the symbol 1.

The main dynamical difference we see between both subshifts from the previous example
is that in the first one the orbit of any configuration is dense while in the second one we have
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Figure 3.3: The configuration τ 2(0) for the Thue-Morse substitution defined in Example 3.9.
Rectangles R2 in grey are those arising from τ(0), meanwhile those in white are arising from
τ(1).
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two disjoint subsystems. Hence the first system is minimal whereas the second one is not.
Just like in the case of Zd subshifts this behaviour is due to a combinatorial property of the
substitution, namely, the property of being primitive.

Definition 3.13 A substitution τ is said to be primitive if there exists M ≥ 1 such that
for every α, β ∈ A : β < τM(α). That is, there exists an iteration of the substitution such
that every symbol of the alphabet appears in the image of every symbol.

Proposition 3.14 For every primitive substitution τ : A → ARm its associated subshift Xτ

is minimal.

Proof. We will prove that for x ∈ Xτ (arbitrary) we have Xτ = Orbσ(x). Moreover, by
the definition of Xτ , to prove this it is sufficient to show that for every ` ≥ 1 and for every
α ∈ A : τ `(α) v x.

Let M ≥ 1 be as in the definition of τ being primitive. Then for all α, β ∈ A we
have α < τM(β) and further, thanks to the definition of the iterates of τ , that for every
` ≥ 1 : τ `(α) < τM+`(β). Take ` ≥ 1 and α ∈ A. Then as x|R

2(`+M+1)−1m
v x, by the

definition of Xτ there must exist i ≥ 1 and γ ∈ A such that x|R
2(`+M+1)−1m

v τ i(γ) and of
course with i ≥ ` + M + 1 for this to make sense. With this there must exist a β ∈ A such
that τ `+M(β) v x|R

2(`+M+1)−1m
and by what was said earlier this implies τ `(α) v x, which

concludes the proof.

Example 3.15 As was shown in Example 3.12, the Thue-Morse substitution is primitive
and hence its associated subshift Xτ is minimal.

Corollary 3.16 Let Xτ be the shift associated with a primitive substitution τ . Then either
Xτ is finite or Xτ contains no (strongly) periodic points.

Proof. Let us suppose that τ is a primitive substitution and that Xτ has a strongly periodic
point x. By the previous proposition Xτ is minimal and so we have we have

|Xτ | = |Orbσ(x)| = |Orbσ(x)| <∞,

as x was periodic and hence its orbit is finite.

A last property of substitutions we mention in this section is that under the hypothesis of
primitivity, the subshift associated to the substitution remains unchanged if one originally
considers an iterate of it.

Proposition 3.17 Let τ : A → ARm be a primitive substitution. Then for every j ≥ 1 :
Xτ = Xτ j .

Proof. Consider a configuration x ∈ Xτ j . Then for every pattern p v x there must exists
α ∈ A and ` ≥ 1 such that p v (τ j)`(α). Then p v τ j`(α) and hence we conclude that
x ∈ Xτ .
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Now suppose we have x ∈ Xτ and any pattern p v x. By the definition of Xτ there
exists α ∈ A and ` ≥ 1 such that p v τ `(α). As τ is primitive, for every sufficiently large
k, τ `(α) v τ k(α), and in particular for k ∈ jN. With this p v τ rj(α) = (τ j)r(α) for r ≥ 1
sufficiently large, and as p was arbitrary we have proven that x ∈ Xτ j .

3.3 Mozes theorem

In this section we prove a version of Mozes theorem for substitutions of Baumslag-Solitar
groups, which roughly states that under appropiate hypothesis the subshift defined by a
substitution is sofic. As we said in the first Chapter, the classic version of this theorem refers
to substitutions on Z2 and the ideas quickly generalize to Zd for d ≥ 2. It was originally
published in [17] and to be able to prove it in our context we will need analogue results and
ideas to the ones found in this paper.

The next theorem asserts that for every configuration x ∈ Xτ we can divide the Cayley
graph of BS(1, N) into disjoint copies of Rm, such that in each one of these copies x sees the
image of a symbol through τ . This theorem will be essential to prove the surjectivity of the
factor map which we will construct later when proving Mozes theorem.

Theorem 3.18 Let τ : A → ARm be a BS(1, N)-substitution and x ∈ Xτ a point in its
associated BS(1, N)-subshift Xτ . Then there exists a partition of BS(1, N) into copies of Rm

such that the pattern obtained by restricting x to each one of this copies is the pattern τ(α),
where α ∈ A is a symbol (depending on the chosen copy of Rm).

Proof. For each g ∈ BS(1, N) we will assign a letter α to g and to the rest of the elements
g′ of a rectangle Rm containing g. This will allow us to construct a point y satisfying that x
can be recovered by replacing each symbol of y by its image through τ , and finally use the
construction of this point to prove that y ∈ Xτ .

Let us consider an order of the group BS(1, N) given by {gi : i ≥ 1}, and for each M ≥ 1
define PM := x|B(eG,M), where B(eG,M) := {g ∈ BS(1, N) | |g| ≤M} and |g| is the length of
g in the word metric associated to the generating set {a, b} of BS(1, N) (see Definition 1.22).
Note that since x ∈ Xτ then for every M ≥ 1 there must exist αM ∈ A and `M ∈ N such
that PM v τ `M (αM), so we can define the set S0 := {(αM , `M) ∈ A × N | M ≥ 1}. In what
follows we inductively construct a decreasing sequence {Sk}k≥0 of subsets of S0.

Focus on xg0 : there are infinitely many M ′s such that g0 ∈ B(eG,M), and thus infinite
pairs (αM , `M) ∈ S0 such that xg0 v pM v τ `M (αM). Moreover, since the alphabet A is
finite, by the pigeonhole principle there must exist α ∈ A such that for infinitely many M
we have xg0 v τ(α) v τ `M (αM), for which xg0 appears in the same position of the rectangle
every time. Denote the set of these corresponding pairs (αM , `M) by S1 ⊆ S0, and assign the
letter α to g0 and to all the other elements appearing in the same rectangle τ(α) from which
xg0 is part of.

On the k-th step of this process consider gjk ∈ {gi : i ≥ 1} the first element (in the order
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assigned to BS(1, N) at the beginning of the proof) to which a symbol has not been assigned
yet. By definition of Sk there must be infinitely many pairs (αM , `M) ∈ Sk defining rectangles
containing as subpattern xgjk and therefore by the pigeonhole principle we can find α ∈ A for

which infinitely many (αM , `M) ∈ Sk satisfy xgjk v τ(α) v τ `M (αM), on which xgjk appears

on the same position of the rectangle τ(α). Let us define Sk+1 ⊆ Sk to be the (infinite) set of
pairs (αM , `M) that satisfy the above, and assign to gjk as well as to the rest of the elements
appearing on the rectangle τ(α) the letter α.

Doing the above step for every k ≥ 0 leads to a division of the Cayley graph of BS(1, N)
into rectangles Rm, each of which has a letter α associated to it, and the restriction of x to
this rectangle reads τ(α).

The version of Mozes Theorem we state for Baumslag-Solitar groups will be only for
substitutions that are settling, according to the next definition. These substitutions are those
for which every symbol re-appears on the identity position of the rectangle of its image. Hence
iterations of the substitution repeat the previous step around the origin of the rectangle, as
the iterations grow. This behavior is where the name “settling” comes from.

Definition 3.19 A substitution τ : A → ARm is said to be settling if for every α ∈ A we
have τ(α)eBS(1,N)

= α.

Now we proceeed to give the main construction of the extension that will factor onto the
substitutive subshift and with it prove its soficity. For simplicity we will have in mind the
case BS(1, 2) for figures and when making the construction of the extension, but the ideas
generalize to the case BS(1, N).

Consider a settling substitution τ : A → ARm together with its associated subshift Xτ .
We will construct a new alphabet “A and a BS(1, N)-SFT X̂τ ⊆ “ABS(1,N) using as symbols of
the alphabet A tiles with the shape of a cross (to emphasize the dependence on the generators
of the group) with information written on them describing the substitution and forcing local
rules to be followed as described below.

Each tile of “A will contain:

� a letter of the alphabet A appearing on the rectangle τ(α) for some α ∈ A.

� A position inside Rm, written in the normal form of BS(1, N).

For example, the information described in these first two items could be as the one seen
in Figure 3.4. meaning that this tile represents the position a0b1 of the rectangle Rm of
τ(0), which has the symbol 1 on it. We will refer to this information as the substitution
information, and commonly write it in black in drawings.

� A tile will also contain on its four edges information about the tiles that are allowed to
be surrounding it on a bigger pattern, consistent with the letter information described
above appearing on itself and on its neighbors. This information can be of two types:
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1
position (0, 1) of τ(0)

Figure 3.4: Example of the substitution information in a tile.

1. Inner Joints: They connect tiles that form part of the same rectangle that is
image of a substitution with adjacent positions, for the symbols written on them.
This information has the structure

“connect position ”

(i, j) of τ(α)

with position

(k, l) of τ(α)

where α ∈ A, k ∈ {i + 1, i − 1} and l = j, or k = i and l ∈ {j − 1, j + 1},
i, k ∈ {0, . . . ,m− 1} and j, l ∈ {0, . . . , Nm − 1}. We will write the inner joints in
purple in drawings.

The local rules we impose for the SFT X̂τ force that the inner joints information
must be consistent with the substitution information written in each tile. Below
in Figure 3.5 we see how two tiles with inner joint information can connect validly.

β
position (i, j) of τ(α)

γ
position (i+ 1, j) of τ(α)

connect position
(i, j) of τ(α)
with position
(i+ 1, j) of τ(α)

connect position
(i+ 1, j) of τ(α)
with position
(i, j) of τ(α)

Figure 3.5: Example of the inner joint information in two adjacent tiles.
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2. Outer Joints: They are similar to inner joints, with the difference that they
connect tiles that form part of different rectangles arising from substitutions. We
will write the outer joints in red in drawings. The local rules we impose in X̂τ force
that the outer joint information from two adjacent tiles must be consistent with
the substitution information in them. Tiles which have outer joints information
are precisely those whose position is in the boundary of rectangle Rm. In Figure
3.6 we show an example of the outer joints information of two adjacent tiles.

γ
position (m− 1, 0) of τ(α)

δ
position (0, 0) of τ(β)

connect position
(m− 1, 0) of τ(α)
with position
(0, 0) of τ(β)

connect position
(0, 0) of τ(β)
with position
(m− 1, 0) of τ(α)

Figure 3.6: Example of the outer joints information in two adjacent tiles.

With this we can refer to a set of tiles forming a copy of Rm as “originating” from the
substitution written on it.

� Each tile has an extra information on it called the Blow up number (BUN), which
is a number in Z/NmZ. This information must be the same on the tiles of a rectangle
originating from the same substitution. If the BUN on a rectangle is i then the BUN
on the rectangle at its right is i + 1 (mod Nm), and if a rectangle has BUN= 0 then
the rectangle below it appearing under the (0, 0) tile must also have BUN= 0. This
number is used to mark the rectangles from which a new rectangle blows up: rectangles
that have BUN=0 must have above them a rectangle originating from the tiles from its
upper edge, according to the definition of the iteration of a substitution.

Figure 3.7 shows an example of a tile with all the information described above, and in Figure
3.8 we see a rectangle arranged to form the first iteration of a substitution.

With this, we see that the BS(1, N)-subshift X̂τ whose patterns respect the rules described
above is a BS(1, N)-SFT, since it can be described with forbidden patterns with a support
in R2m, checking locally that neighboring tiles respect the joints information, and that the
BUN is consistent with adjacent copies of Rm.
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Figure 3.7: Example of a tile for the subshift X̂τ . The substitution information is written in
black, the inner joints information is in purple and the outer joints information in red.

Now we are ready to state and prove the version of Mozes Theorem for settling substitu-
tions of BS(1, N), which is the main result of this chapter.

Theorem 3.20 (Mozes) Let τ : A → ARm be a settling substitution on BS(1, N). Then its
associated subshift Xτ is sofic.

Proof. Consider X̂τ the BS(1, N)-SFT constructed above. Denote by ϕ : X̂τ → ABS(1,N) the
map that sends a point x̂ ∈ X̂τ to the point x formed by keeping only the letter information of
each tile, that is, forgetting the position written on the tile as well as the junction information
and the BUN. In what follows we will prove that ϕ is a factor map from X̂τ onto Xτ , hence
proving that Xτ is sofic.

It is rapidly seen that ϕ is equivariant, since a shift on the starting point x̂ will lead to
a shift of the letters to be kept on the image by ϕ, and hence a shift from the image point
x. We also see that ϕ is continuous by noting that two points close to each other must be
equal in some finite subset of BS(1, N) around the origin and hence have the same local
information written on their tiles, in particular the letters that appear on the image point
through ϕ. With this we already have that ϕ is a sliding block code and to finish the proof
all that is left to see is that ϕ(X̂τ ) = Xτ .

Let us show first that Xτ ⊆ ϕ(X̂τ ). Given a point x ∈ Xτ we can use Theorem 3.18 to
find partition of BS(1, N) into copies of Rm, each one being the support of a pattern showing
the image of a symbol through τ . Using this we can construct a valid point ŷ ∈ X̂τ by
filling the tiles with the information of the substitution of each copy of Rm, together with the
information of neighboring copies. This new point will satisfy x = ϕ(ŷ) ∈ ϕ(X̂τ ) and with it
we finish this inclusion.

Now let us see that ϕ(X̂τ ) ⊆ Xτ . For x̂ ∈ X̂τ and y = ϕ(x̂), consider any finite pattern
appearing on y. Then we can extend the corresponding pattern in x̂ to make it connected,
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and if necessary also extend it downwards and leftwards until we reach a tile with BUN=0,
forming part (together with its neighbouring tiles) of the image of a substitution τ(α), being
α the symbol appearing in position (0, 0) of the normal form of the rectangle. Using the
hypothesis that the substitution is settling we see that the image by ϕ of the (extended)
pattern is seen on an iterate of τ(α), and so we conclude that the original subpattern of y
also appears on an iterate of the substitution, finishing the proof.

We can rapidly extend the previous theorem to a broader class of substitutions by con-
sidering a slightly weaker sense of being settling, in exchange for requiring primitivity.

Definition 3.21 We say that a substitution τ : A → ARm is eventually settling if there
exists a j ≥ 1 such that τ j is settling.

Corollary 3.22 Let τ be an eventually settling primitive substitution. Then Xτ is a sofic
subshift.

Proof. Consider j ≥ 1 such that τ j is settling. Using Theorem 3.20 we see that Xτ j is sofic,
and with Propostion 3.17 we have that Xτ = Xτ j . Hence Xτ is sofic, as was claimed.

3.4 An alternative way to iterate substitutions

In this section we provide an alternative definition for the iteration of substitutions on
BS(1, N), in contrast to the one given in Definition 3.8. This second definition is moti-
vated by the idea of blowing up each symbol of the substitution in each iteration, and gluing
the resulting patterns together in order to form a bigger shape. To state the definition, we
first need to generalize Proposition 3.5 to be able to decompose the rectangle R`m, for ` ≥ 2,
into copies of Rm glued together.

Proposition 3.23 For m ≥ 1 and ` ≥ 2, the rectangle R`m is a disjoint union of `Nm(`−1)

copies of Rm. Moreover, we have the decomposition:

R`m =
N(`−1)m−1⋃

i=0

aiN
m

Rm ∪
`−1⋃
k=1

Nm−1⋃
q1,...,qk=0

N(`−1−k)m−1⋃
i=0

(
k∏
s=1

aqsbm

)
aiN

m

Rm.

Proof. We have that

R`m =
{
ajbk | 0 ≤ j < N `m, 0 ≤ k < `m

}
=
{
ajbk | 0 ≤ j < N `m, 0 ≤ k < m

}
∪
{
ajbk | 0 ≤ j < N `m,m ≤ k < `m

}
.

For the first set on the right-hand side,

{
ajbk | 0 ≤ j < N `m, 0 ≤ k < m

}
=

N(`−1)m−1⋃
i=0

{
ajbk | iNm ≤ j < (i+ 1)Nm, 0 ≤ k < m

}
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=
N(`−1)m−1⋃

i=0

aiN
m

Rm.

Now for the second set,{
ajbk | 0 ≤ j < N `m,m ≤ k < `m

}
=
{
ajbk+m | 0 ≤ j < N `m, 0 ≤ k < (`− 1)m

}
=

Nm−1⋃
q=0

{
ajbmbk | j ∈

{
q, q +Nm, . . . , q +

⌊
N `m − q + 1

Nm

⌋
Nm

}
,

0 ≤ k < (`− 1)m

}
=

Nm−1⋃
q=0

{
ajbmbk | j ∈

{
q, q +Nm, . . . , q + (N (`−1)m − 1)Nm

}
,

0 ≤ k < (`− 1)m

}
=

Nm−1⋃
q=0

{
aq+jN

m

bmbk | 0 ≤ j < N (`−1)m, 0 ≤ k < (`− 1)m
}

=
Nm−1⋃
q=0

aqbm
{
ajbk | 0 ≤ j < N (`−1)m, 0 ≤ k < (`− 1)m

}
=

Nm−1⋃
q=0

aqbmR(`−1)m.

With this we conclude that

R`m =
N(`−1)m−1⋃

i=0

aiN
m

Rm ∪
Nm−1⋃
q=0

aqbmR(`−1)m. (3.4)

We prove the proposition by induction. If ` = 2, then Equation (3.4) is precisely what we
wanted. Now if ` > 2, using Equation (3.4) and the induction hypothesis:

R`m =
N(`−1)m−1⋃

i=0

aiN
m

Rm ∪
Nm−1⋃
q=0

aqbmR(`−1)m

=
N(`−1)m−1⋃

i=0

aiN
m

Rm ∪
Nm−1⋃
q=0

aqbm

N(`−2)m−1⋃
p=0

apN
m

Rm∪

∪
`−2⋃
k=1

Nm−1⋃
q1,...,qk=0

N(`−2−k)m−1⋃
i=0

(
k∏
s=1

aqsbm

)
aiN

m

Rm


=

N(`−1)m−1⋃
i=0

aiN
m

Rm ∪
Nm−1⋃
q=0

N(`−2)m−1⋃
p=0

aqbmapN
m

Rm∪

∪
`−2⋃
k=1

Nm−1⋃
q1,...,qk+1=0

N(`−2−k)m−1⋃
i=0

(
k+1∏
s=1

aqsbm

)
aiN

m

Rm
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=
N(`−1)m−1⋃

i=0

aiN
m

Rm ∪
Nm−1⋃
q=0

N(`−2)m−1⋃
p=0

aqbmapN
m

Rm∪

∪
`−1⋃
k=2

Nm−1⋃
q1,...,qk=0

N(`−1−k)m−1⋃
i=0

(
k∏
s=1

aqsbm

)
aiN

m

Rm

=
N(`−1)m−1⋃

i=0

aiN
m

Rm ∪
`−1⋃
k=1

Nm−1⋃
q1,...,qk=0

N(`−1−k)m−1⋃
i=0

(
k∏
s=1

aqsbm

)
aiN

m

Rm,

finishing the proof.

The new definition for the iterates of a substitution should satisfy that for every ` ≥ 1
and α ∈ A, each element of τ `(α) at level j, 0 ≤ j < m`, blows up into a rectangle covering
levels jm up until (j + 1)m− 1, in some sheet of Rm`+1 . This process should also guarantee
that all of the sheets are covered in this process. These conditions translate in an important
difference between the iteration of substitutions defined in Definition 3.8 and the definition
we will give later: in the latter the support of the patterns seen as the images of the iterations
will not be entire rectangles, but rather a subset of them. Below we define S(m, `) ⊆ Rm` ,
which will be the support of the `-th iteration of a substitution τ : A → ARm .

Definition 3.24 Let m ≥ 2. For any ` ≥ 1 define the set

S(m, `) := Rm` ∪
m`−1−1⋃
k=`

{
aibj | 0 ≤ i < N (k+1)m, km ≤ j < (k + 1)m

}
⊆ Rm` .

Now we are ready to give the alternative definition of the iterates of a substitution. This
definition is given recursively, separated in four cases according to the proportion between
elements to be blown up in S(m, `), and the amount of sheets occurring at a particular height
in S(m, `+ 1). We first give an intuitive description in each chase, and then state the formal
definition below.

� The first case is for elements of height 0. In this case there are more elements to be
blown up than sheets at this height (there is only one sheet at height 0), so the elements
blow up into rectangles glued together sideways in the base of S(m, `+ 1).

� The second case is for elements of level j ∈ {1, . . . , ` − 1}: in this case there are still
more elements to blow up than sheets at each height, so we use the first j coefficients
of the power of a of the element in base Nm to choose a sheet at height jm, and the
remaining elements blow up in copies of Rm glued sideways to the copies described
before.

� The third and fourth case are elements of S(m, `) for which at each height j ∈
{`, . . . ,m` − 1} there are less elements to be blown up than sheets to be covered,
so it becomes necessary to repeat the blowing up of some elements throughout some
sheets in order to cover all of them.

57



Definition 3.25 Given a (finite) alphabet A and some fixed m ≥ 2, consider a substitution
τ : A → ARm. Given ` ≥ 1, we define (recursively) the (` + 1)-iterate of the substitution
τ `+1 : A → AS(m,`+1). For each α ∈ A:

� For i ∈ {0, . . . , N `m − 1},

τ `+1(α)|aiNmRm
= τ(τ `(α)ai).

� For d0, . . . , d`−1 ∈ {0, . . . , Nm − 1} and j ∈ {1, . . . , `− 1},

τ `+1(α)|
(
∏j−1

s=0 a
dsbm)adjN

jm+···+d`−1N
(`−1)m

Rm
= τ

(
τ `(α)

ad0+d1N
m+···+d`−1N

(`−1)m
bj

)
.

� For d0, . . . , d`−1 ∈ {0, . . . , Nm − 1} and j ∈ {`, . . . ,m`− 1},

τ `+1(α)|(∏j−`
s=1 a

qsbm)(
∏`−1

s=0 a
dsbm)Rm

= τ
(
τ `(α)

ad0+d1N
m+···+d`−1N

(`−1)m
bj

)
,

for every q1, . . . qj−` ∈ {0, . . . , Nm − 1}.

� For k ∈ {`, . . . ,m`−1−1}, j ∈ {km, . . . , (k+1)m−1} and d0, . . . , dk ∈ {0, . . . , Nm−1},

τ `+1(α)|(∏j−k−1
s=1 aqsbm)(

∏k
s=0 a

dsbm)Rm
= τ

(
τ `(α)

ad0+d1N
m+···+dkNkm

bj

)
,

for every q1, . . . qj−k−1 ∈ {0, . . . , Nm − 1}.
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Chapter 4

Graph-coloring subshifts

Given a group G generated by a finite subset S ⊆ G it is interesting to study the properties
of proper colorings (in the sense used commonly in graph theory) of its Cayley graph. In this
spirit we define for n ≥ 2 the graph-coloring subshift (GCS)

Cn :=
{
x ∈ {0, . . . , n− 1}G | (∀g ∈ G)(∀s ∈ S) xg 6= xgs

}
,

that is, for each configuration x ∈ Cn we have that x describes a proper coloring of the Cayley
graph Γ(G,S) of G with respect to the generator S. The subshift Cn is always an SFT, since
it can be described by the finite set of forbidden patterns

F := {{xeG = i, xs = i} | i ∈ {0, . . . , n− 1}, s ∈ S} .

The easiest case to study is G = Z: since the Cayley graph of Z with respect to the generator
S = {1} is bipartite (see Example 1.20), then Cn 6= ∅ for every n ≥ 2 and the number of
words of length m of Cn is |Lm(Cn)| = n(n− 1)m−1. From this last equality we see that the
topological entropy of Cn is

htop(Cn) = lim
m→∞

1

m
log(n(n− 1)m−1) = log(n− 1).

Note that in the case n = 2 the subshift C2 only has two configurations. Nonetheless, starting
from 3 colors the dynamics of this subshift becomes more interesting: for n ≥ 3 the subshift
Cn is topologically mixing. In fact, we can prove that given any two words w1, w2 ∈ L(Cn)
and M ≥ 1, we can find a pattern u ∈ L(Cn) with |u| = M + |w1| + |w2|, u|[1,|w1|] = w1

and u|[M+|w1|+1,M+|w1|+|w2|] = w2: let i and j be the last symbols appearing in w1 and w2,

respectively. If i = j, choose k, l ∈ {0, . . . , n − 1}\{i}, k 6= l, and define u := w1(kl)
M
2 w2 if

M is even, and u := w1(kl)b
M
2 ckw2 if M is odd. In the other case, that is if i 6= j, choose

k ∈ {, . . . , n − 1}\{i, j} and define u := w1(ki)
M
2 w2 if M is even and u := w1(ki)b

M
2 ckw2 if

M is odd. It is straightforward to check that said u satisfies the claimed property in each
case.

Another case of interest is G = Z2, or more generally G = Zd for d ≥ 2. Proper colorings
of these groups have been studied recently, for example in [1] and [19]. The latter of these two

59



papers concerns mixing properties for colorings of Zd, where the authors define the notion of
a frozen q-coloring of Zd as a coloring with q colors such that it cannot be modified on any
finite subset to create a different coloring, and prove that Zd admits frozen q-colorings if and
only if 2 ≤ q ≤ d + 1. They also prove that for q ≥ d + 2 any q-coloring of the boundary of
the rectangle {1, . . . , n}d for n ≥ d+ 2 can be extended to a q-coloring of the entire box, and
that if q ≥ 2d+ 1 this can be done for every n ≥ 1, therefore classifying all q-colorings of Zd
in terms of the properties with respect to the extensibility of patterns they exhibit.

The purpose of this chapter is to study the case G = BS(1, N). We start by addressing
the (non-)emptiness of the GCS Cn depending on the values of N and n. Then we study the
extensibility of locally admissible patterns, and later use it to give bounds for the topological
entropy of Cn. Finally we ask and answer partially the question of which mixing properties
these BS(1, N)-subshifts possess.

4.1 Non-emptiness of the GCS

The first question one should ask after making the definition of a GCS is whether this
subshift is empty or not, that is, for which n ≥ 2 the Cayley graph of BS(1, N) admits a
proper n-coloring. As we see in the next proposition, the answer to this question in the case
of two colors depends on the parity of N , meanwhile for a number of colors n ≥ 3 we have
non-emptiness for every N ≥ 2.

Proposition 4.1 If N is odd C2 6= ∅, and if N is even then C2 = ∅ meanwhile C3 6= ∅. With
this for every N ≥ 2 and n ≥ 3 we have Cn 6= ∅.

Proof. Let us see first that if N is even then C2 = ∅. To see this suppose we have x ∈ C2 and
without loss of generality let us suppose that xeG = 0. Then by the coloring rules we must
have xaN = 0, and xb = xaN b = 1, but this cannot be since xaN b = xba, so the neighboring
vertices b and ba have the same color and this contradicts the GCS’s definition.

Now let us show that if N is odd then C2 6= ∅. Moreover, we will show that in fact |C2| = 2.
To create a point x ∈ C2 let us impose that xeBS(1,N)

= 0, and define for every g ∈ BS(1, N)

expressed in its normal form g = b−jakbi with i, j ≥ 0 and k ∈ Z: xg = i + j + k mod 2.
We check that this provides a consistent coloring of the Cayley graph: for g as above and a
generator s ∈ {a, b}, the normal form of gs is given by

ga = b−jak+N i

bi,

if s = a and
gb = b−jakbi+1,

if s = b. Then xga = i + j + k + N i mod 2 and xgb = i + 1 + j + k mod 2, and as N is
odd we see that xga 6= xg and xgb 6= xg. With this, neighboring elements in the graph have
different colors and hence x forms a valid configuration in C2. Also note that this point is
completely determined by our choice of xeBS(1,N)

= 0. If we had chosen instead xeBS(1,N)
= 1,
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we would have obtained the same configuration as above, but with 0’s and 1’s interchanged,
thus we conclude that |C2| = 2.

Let us see now that for N even we have C3 6= ∅. For this notice first that if we have an
a-row Γg := {gak : k ∈ Z}, g ∈ G colored consistently with the coloring rules using two colors,
i.e. the two colors strictly alternate along Γg, then we can color any row directly above it
respecting the coloring rules: as Γg is colored with two colors and N is even, then any row
directly above it only sees one color through its edges connecting it to Γg, so if we choose
the two remaining colors we can color this new row consistently. On the other hand note
that if Γg is colored consistently, we can also color the row exactly below it: as Γg is colored
with two colors we can color the vertices below it with the remaining color in {0, 1, 2}, and
as N is even we can choose any other color and fill the gaps consistently between the already
colored vertices on this new row, alternating those two colors. With the two previous facts
it is easy to see that one can construct inductively a point in C3. Hence C3 6= ∅. The final
statement of the proposition follows from the fact that if n > 3, then Cn contains a copy of
Cn−1 by simply considering colorings with a smaller palette of colors.

Remark 4.2 Thanks to the previous proposition we see that the interesting cases of GCS’s
start at n = 3, since |C2| ∈ {0, 2}.

4.2 Extension of patterns and topological entropy

As the last remark says, in the case of 2-colorings of BS(1, N) the subshift C2 is finite so
the configurations appearing in it are somewhat rigid and admit very few different ways of
coloring the Cayley graph. This leads us to ask how many ways to color are there in the case
of n ≥ 3, and with it be able to estimate the degree of disorder that can be present in Cn. A
way of doing this is estimating the topological entropy htop(Cn), which as we commented in
the first chapter measures the rate at which patterns in the language of the subshift grow as
the support of the patterns becomes bigger.

To be able to give estimates of the topological entropy we will encounter the challenge of
extending colorings of a finite subset of the Cayley graph to bigger patterns containing it. In
the language of symbolic dynamics this question is the same as asking if locally admissible
patterns are globally admissible, or under which extra conditions a locally admissible pattern
is globally admissible. A first result in this direction answers the question affirmatively,
subject to having a minimum of available colors.

Proposition 4.3 For n ≥ 5, every locally admissible pattern p of Cn is globally admissible.

Proof. This follows from the fact that for a finite graph, its chromatic number is less than its
maximum degree. Since every finite subgraph of the Cayley graph of BS(1, N) has maximum
degree at most 4, then the considered pattern can be extended to any finite graph containing
it by choosing for each vertex a color that none of its neighbors has, and thus preserving the
coloring rules. This process can then be iterated indefinitely to finally obtain a configuration
x ∈ Cn such that x|supp(p) = p.
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More formally, given a locally admissible pattern p with support S we define a point
x0 ∈ {0, . . . , n− 1}BS(1,N) such that x0|S = p. We define S1 to be S together with all vertices
that are adjacent to it, and define x1 ∈ {0, . . . , n − 1}BS(1,N) such that x1|S = x0|S and the
rest of the vertices of S1 are colored respecting the coloring rules as said above, that is, using
the fact that each vertex S1\S has at most 4 neighbors already colored, so there is always
an available color. Inductively, for j ≥ 1, to define xj+1 we define Sj+1 to be Sj together
with all vertices that are adjacent to it, and define xj+1 ∈ {0, . . . , n − 1}BS(1,N) such that
xj+1|Sj

= xj|Sj
and the rest of the vertices of Sj+1 are colored as said above. By compactness

we find a limit point x of {xj}j≥0, and by how we constructed this sequence we see that each
vertex is properly colored and so x ∈ Cn.

Remark 4.4 The previous proposition does not hold for n ∈ {3, 4}. For example the locally
admissible pattern p : {a−1, a, b−1, b} → {0, 1, 2, 3} given by pa−1 = 0, pa = 1, pb−1 = 2, pb = 3
cannot be realized within a point x ∈ C4 since no color can be assigned to xeG respecting the
coloring rules.

2

?

3

0 1

Moreover, one can consider a connected (as subgraph of the Cayley graph) pattern that
has the same behaviour:

?

3

01

2

1

03

2

3 01320

The previous example showed a locally admissible pattern that could not be extended
to form a valid configuration of the group, and the main property of this example is that
although the support of the chosen pattern can be taken to be a connected subgraph of the
Cayley graph, it has a “gap” which allows us to surround a position in such a way that the
pattern could not be extended. A way of avoiding this type of pathological patterns is to
require the supports of the patterns to only be rectangles, and in this case we see that the
coloring can indeed be extended as the following lemma and proposition show.

Lemma 4.5 For every n ≥ 3 any n-coloring of the rectangle Rm can be extended to a proper
n-coloring of the rectangle Rm+1.
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Proof. For every k ∈ {0, . . . ,m} we define

Hk := (Rm+1\Rm) ∩ {aibk | i ≥ 0},

which represents the elements of Rm+1 of height k, outside of the rectangle Rm. Note that
by definition we have

Rm+1 = Rm ∪
m⋃
k=0

Hk.

Then we can extend the pattern p on Rm by successive colorings (respecting the condition
of being a proper coloring) coloring first H0, then H1, and so until we color Hm. In each
step of this process each vertex has at most 2 neighbors already colored, so having at least 3
available colors is enough for this process to be carried out.

By using the same ideas present in the proof of the previous lemma we get the following
proposition. Indeed, one can inductively color the rows of the Cayley graph one by one, so
that each vertex has at most two colored neighbors at the moment it must choose its color.

Proposition 4.6 For n ≥ 3 every locally admissible pattern for Cn with support a rectangle
is globally admissible.

Now we can proceed to give estimates for the entropy of the GCS.

Proposition 4.7 For n ≥ 3 we have the following estimate for the topological entropy of the
GCS Cn:

log(n− 2) ≤ htop(Cn) ≤ log(n− 1).

Proof. Let us see that htop(Cn) ≤ log(n−1): a coloring of the rectangle Rm may be extended
to a coloring of the rectangle Rm+1 by coloring the remaining vertices having on each one at
most n− 1 options. With this

|LRm+1(Cn)| ≤ |LRm(Cn)|(n− 1)|Rm+1\Rm|.

A simple calculation shows that |Rm+1\Rm| = Nm(mN + N − m). In effect, it suffices to
notice that

Rm+1\Rm =
{
aibj | 0 ≤ i < Nm+1, 0 ≤ k < m+ 1

}
\
{
aibj | 0 ≤ i < Nm, 0 ≤ k < m

}
=
{
aibj | Nm ≤ i < Nm+1, 0 ≤ k < m

}
∪
{
aibm | 0 ≤ i < Nm+1

}
,

and that this union is disjoint. With this:

1

|Rm+1|
log |LRm+1(Cn)| = 1

(m+ 1)Nm+1
log |LRm+1(Cn)|

≤ 1

(m+ 1)Nm+1
log |LRm(Cn)|+ Nm(mN +N −m)

(m+ 1)Nm+1
log(n− 1)

=
1

N

m

m+ 1

1

mNm
log |LRm(Cn)|+ mN +N −m

m+ 1

1

N
log(n− 1)
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=
1

N

m

m+ 1

1

|Rm|
log |LRm(Cn)|+ m(N − 1) +N

m+ 1

1

N
log(n− 1).

Taking the limit m→∞ we get

htop(Cn) = lim
m→∞

1

|Rm+1|
log |LRm+1(Cn)|

≤ lim
m→∞

1

N

m

m+ 1

1

|Rm|
log |LRm(Cn)|+ lim

m→∞

m(N − 1) +N

m+ 1

1

N
log(n− 1)

=
1

N
htop(Cn) +

N − 1

N
log(n− 1),

from where
N − 1

N
htop(Cn) ≤ N − 1

N
log(n− 1),

and one arrives at htop(Cn) ≤ log(n− 1).

Now let us see that htop(Cn) ≥ log(n− 2): the rectangle Rm can be colored starting from
the upper levels to the lower levels, ensuring at least n − 2 color options at each element,
since in this way each vertex of the Cayley graph has at most two neighbors already colored.
Then this coloring can be extended to the whole graph by using Proposition 4.6 and hence
forming a globally admissible configuration for Cn. From this we get that

|LRm(Cn)| ≥ (n− 2)|Rm|,

and so htop(Cn) ≥ log(n− 2).

In particular, the lower bound from the previous proposition shows us that htop(Cn) > 0
for every n ≥ 4, but gives us no new information for the case of three colors C3, since by
definition htop(C3) ≥ 0. In the case of odd N we can exploit the fact that the Cayley graph
of BS(1, N) is bipartite (we know this since we have already constructed a 2-coloring of it
in Proposition 4.1, or equivalently observing that it has no odd cycles) to prove that the
topological entropy of C3 is positive.

Proposition 4.8 If N is odd, then the GCS C3 ⊆ {0, 1, 2}BS(1,N) has positive topological
entropy. Moreover,

htop(C3) ≥ 1

2
log(2).

Proof. As N is odd, the Cayley graph of BS(1, N) is bipartite and hence so is every rectangle
Rm, for m ≥ 1. Consider a partition of Rm into two sets A and B, meaning that all edges of
the graph are composed of a vertex in A and a vertex in B. Then one of them, which we take
to be A without loss of generality, must have cardinality at least 1

2
|Rm|. Then we can create

proper colorings of Rm by coloring the vertices of B with one color and have the freedom to
choose between two colors for every vertex of A, and then extend this pattern on Rm to the
rest of the group as was said earlier.

With the above we can estimate a lower bound for the number of proper colorings of Rm:

|LRm(C3)| ≥ 2|A| ≥ 2
1
2
|Rm|.
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Then taking logarithm and dividing by |Rm| we get

1

|Rm|
log |LRm(C3)| ≥ 1

2
log(2),

to finally take limit as m→∞ and obtain

htop(C3) ≥ 1

2
log(2) > 0,

which is what we wanted.

Remark 4.9 The question of whether htop(C3) is positive remains open when N is even,
since in this case the Cayley graph of BS(1, N) is not bipartite and hence the method used
above to color sets of vertices independently cannot be applied.

4.3 Mixing properties

Thanks to Proposition 4.3 we know that for n ≥ 5 we can extend any admissible pattern to a
proper coloring of the Cayley graph of BS(1, N), from which we obtain the following mixing
property for Cn.

Theorem 4.10 Let n ≥ 5. Then for every finite subsets F1, F2 ⊆ BS(1, N) such that
2 ≤ d(F1, F2) := inf

f1∈F1,f2∈F2

|f1f
−1
2 | (where | · | denotes the word metric described in Definition

1.22) and for every choice of (locally) admissible patterns pi ∈ {0, . . . , n−1}Fi , i = 1, 2, there
exists x ∈ Cn such that x|F1 = p1 and x|F2 = p2. With this we have that for n ≥ 5 the GCS
Cn is strongly irreducible.

Proof. Let F1, F2 ⊆ BS(1, N) be finite subsets with d(F1, F2) ≥ 2 and consider two locally
admissible patterns pi ∈ {0, . . . , n − 1}Fi , i = 1, 2. Then we can define a new pattern p ∈
{0, . . . , n− 1}F1∪F2 such that p(f) = pi(f) for f ∈ Fi, i = 1, 2 consistently, since F1 ∩F2 = ∅.
This pattern is also locally admissible thanks to the distance existing between F1 and F2,
as between every vertex of F1 and every vertex of F2 there is at least one uncolored vertex.
Then, according to Proposition 4.3, this pattern is globally admissible and hence there exists
x ∈ Cn such that x|F1∪F2 = p. This x satisfies x|F1 = p1 and x|F2 = p2 and so we have found
the desired point.

The previous proposition tells us that for n ≥ 5 the subshift Cn has a strong mixing
property. On the other side, we can see that C2 has no type of mixing behavior: this BS(1, N)-
subshift is either empty if N is even, or if N is odd then there is no way to assign the same
color to two elements of the group g, h ∈ BS(1, N) such that g−1h ∈ {a2m+1 | m ∈ Z}, which
forbids the gluing of patterns at arbitrarily large distances. This contrast between C2 and Cn
for n ≥ 5 raises the question of what kind of mixing behaviors does Cn have for n ∈ {3, 4}.
To study this we will use a similar approach as that of [1], by introducing the concept of a
frozen coloring.
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Definition 4.11 Let n ≥ 3. A configuration x ∈ Cn is called a frozen coloring if for every
y ∈ Cn such that there exists a non-empty finite subset F ⊆ BS(1, N) with x|F c = y|F c, then
x = y. That is, no coloring of BS(1, N) other than x can coincide with it outside of any
finite set.

Frozen colorings are configurations in which the neighboring vertices of every finite subset
of the Cayley graph determine unequivocally how this subset must be colored, in order to
obtain a proper coloring. This behavior is the reason frozen colorings are closely related to
the (lack of) mixing properties of the GCS, as the next proposition shows.

Proposition 4.12 If Cn has a frozen coloring, then it is not strongly irreducible.

Proof. Looking for a contradiction, suppose that Cn is strongly irreducible and x ∈ Cn is a
frozen coloring.

Consider any other configuration y ∈ Cn such that yeG 6= xeG . As Cn is strongly irreducible,
there exists F ⊆ G finite such that for any two patterns p, q ∈ L(Cn) with supp(p)∩ supp(q) ·
F = ∅ we have [p] ∩ [q] 6= ∅. Considering the patterns y|eG and x|∂BM

, where ∂BM := {g ∈
BS(1, N) : |g| = M}, for M sufficiently large we have ∂BM ∩ F = ∅. Then there must exist
a coloring z ∈ Cn such that zeG = yeG 6= xeG , and z|∂BM

= x|∂BM
. Moreover, we can assume

that z|Bc
M−1

= x|Bc
M−1

, where BM−1 := {g ∈ BS(1, N) : |g| ≤ M − 1}, since z and x coincide
on ∂BM and hence re-coloring z as x outside of this ball gives us a proper coloring.

With this we have found a configuration z ∈ Cn which coincides with x outside of a finite
set but is different from x inside it, so we have a contradiction with the fact that x is a frozen
coloring. Hence we conclude that any strongly irreducible subshift Cn cannot have a frozen
coloring.

We already know by Theorem 4.10 that the GCS Cn for n ≥ 5 is strongly irreducible, and
hence by the above proposition it cannot have a frozen coloring. On the other hand, as the
case n = 3 is the first non-finite subshift of the GCS’s Cn for any N ≥ 2, it is reasonable to
conjecture that its properties must still be somewhat rigid. The next proposition confirms
this by showing that C3 possesses a frozen coloring, and with it exhibits the lack of a strong
mixing behavior of the GCS with three colors.

Theorem 4.13 For every N ≥ 2 the GCS C3 ⊆ {0, 1, 2}BS(1,N) admits a frozen coloring, and
hence is not strongly irreducible.

Proof. The proof will be divided in three cases, depending on the value of N (mod 3). For
each one of these cases we will construct explicitly the claimed frozen coloring.

Let us suppose first that N = 1 (mod 3), and with it for every i ≥ 0 we have N i =
1 (mod 3). Let us define the configuration x ∈ {0, 1, 2}BS(1,N) such that for g = b−jakbi ∈
BS(1, N) written in its normal form:

xg := 2(i− j) + k (mod 3).
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...

...
...

· · · · · ·

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1

2 0 1 2 0

1 2

Note that gb = b−jakbi+1 and ga = b−jakbia = b−jak+N i
bi. With this, remembering that

N i = 1 (mod 3) we have

xgb = xg + 2 (mod 3), and

xga = xg +N i (mod 3) = xg + 1 (mod 3).

Therefore xgb 6= xg and xga 6= xg, and so x ∈ C3 defines a proper coloring. Let us see that x
defines a frozen coloring: looking for a contradiction let us suppose y ∈ C3 is such that there
exists a finite subset F ⊆ BS(1, N) with y|F c = x|F c and for every f ∈ F : xf 6= yf . By
using the fact that F is finite, and shifting both configurations if necessary, we may assume
that

F ⊆ {g ∈ BS(1, N) | g = akbi, for some k ∈ Z, i ≥ 0}.

Geometrically, this means that g is in the “upper” section of the Cayley graph of BS(1, N),
that is, in a sheet having as a base the subgroup 〈a〉. Now consider g in F which maximizes
the value of i+ k in its normal form. In other words,

g := argmax{i+ k | g = akbi ∈ F, k ∈ Z, i ≥ 0}.

Then ygb = xgb = xg + 2 (mod 3), and yga = xga = xg + 1 (mod 3), and so as y defines
a proper coloring we must have yg = xg, but this gives a contradiction since as g ∈ F we
should have yg 6= xg.

Now let us see the case N = 2 (mod 3). Note that now we have that for i ≥ 0:

N i =

{
1 (mod 3) if i is even,

2 (mod 3) if i is odd.

Define a configuration x ∈ {0, 1, 2}BS(1,N) such that for g = b−jakbi ∈ BS(1, N) written in its
normal form:

xg := i− j + k (mod 3).
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...

...
...

· · · · · ·

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1

1 0 2 1 0 2 1 0 2

2 0 1 2 0

Then as before we have

xgb = xg + 1 (mod 3), and

xga = xg +N i (mod 3),

and so xgb 6= xg and xga 6= xg (since N i can be either 1 or 2). With this we have that
x ∈ C3 defines a proper coloring, so it only remains to prove that x defines a frozen coloring.
Looking for a contradiction, suppose there exists y ∈ C3 and a finite set F ⊆ BS(1, N) such
that x|F c = y|F c and for every f ∈ F : xf 6= yf . Again, by shifting both configurations if
necessary, we may assume that F ⊆ {g ∈ BS(1, N) | g = akbi, for some k ∈ Z, i ≥ 0}. Define
imax := max{i ≥ 0 | akbi ∈ F, for some k ∈ Z} and Bmax := {g = akbi ∈ F | i = imax}.

If imax is even, let us take g = akbi ∈ Bmax which minimizes the value of k. Then as imax
is even we have N imax = 1 and with it ygb = xgb = xg + 1 (mod 3), and yga−1 = xga−1 =
xg −N imax = xg + 2 (mod 3). But then we must have yg = xg and this gives a contradiction
since g ∈ F and therefore xg 6= yg.

Now if imax is odd, let us consider the element g = akbi ∈ Bmax which maximizes the value
of k. Then as imax is odd we have N imax = 2 and with it ygb = xgb = xg + 1 (mod 3), and
yga = xga = xg + N imax = xg + 2 (mod 3). But then we must have yg = xg and this gives a
contradiction since g ∈ F and therefore xg 6= yg, proving that x defines a frozen coloring.

Finally suppose that N = 0 (mod 3). The method used on the previous two cases to
find a frozen coloring on C3 was to construct a configuration using a function f(j, k, i) of the
coefficients of the normal form of every element of the group, which mod 3 had period
3 on the variable k. This cannot be done in the case N ∈ 3Z since here the configuration
constructed would satisfy x = σa3(x) and hence x = σaN (x) (since N ∈ 3Z). But then
by Proposition 2.3 the coloring x would have to have monochromatic rows appearing on it,
which contradicts the fact that x ∈ C3 defines a proper coloring. Nonetheless, using a similar
but different kind of function we can define a configuration x ∈ {0, 1, 2}BS(1,N) such that for
g = b−jakbi ∈ BS(1, N) written in its normal form:

xg := (k (mod 2)) + 2(i− j) (mod 3).
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...
...

· · · · · ·

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

2 0 2 0 2 0 2

1 2 1

We see that since N i is odd for every i ≥ 0 we have:

xgb = xg + 2 (mod 3), and

xga = (k +N i (mod 2)) + 2(i− j) (mod 3) = xg + 1 (mod 3),

from which x ∈ C3 defines a proper coloring, and we can proceed as we did previously in
the case N i = 1 (mod 3). That is, to prove that x defines a frozen coloring we suppose
y ∈ C3 is such that there exists a finite subset F ⊆ BS(1, N) with y|F c = x|F c and for
every f ∈ F : xf 6= yf . By shifting both configurations if necessary, we may assume that
F ⊆ {g ∈ BS(1, N) | g = akbi, for some k ∈ Z, i ≥ 0}. Now let us consider g in F which
maximizes the value of i + k in its normal form. Then ygb = xgb = xg + 2 (mod 3), and
yga = xga = xg + 1 (mod 3), and so as y defines a proper coloring we must have yg = xg,
but this gives a contradiction since as g ∈ F we should have yg 6= xg. Hence we see that x a
frozen coloring.

To finish the proof we simply use the previous proposition to see that C3 cannot be strongly
irreducible, as we have constructed a frozen coloring in it.

This last theorem together with the previous comments settle the existence of frozen
colorings for n = 3 and n ≥ 5. To tackle the case of four colors, and in the process give an
alternative proof of the lack of frozen colorings for n ≥ 5, we will use a proposition from [1]
used in that paper to prove that Zd does not admit frozen q-colorings for q ≥ d + 2, whose
proof we include here for the sake of completeness.

Proposition 4.14 ([1]) For a graph Γ let us define its edge-isoperimetric constant by

ie(Γ) := inf
F⊆Γ finite

|E(F,Γ\F )|
|F |

,

where E(F,Γ\F ) are the edges of Γ connecting vertices from F to Γ\F . Denote by ∆ the
maximum degree of Γ. Then for every q > 1

2
∆+ 1

2
ie(Γ)+1 there do not exist frozen q-colorings

of Γ.

Proof. We denote Γ = (V,E), and for F ⊆ V we use the notation E(F, F ) for the edges
of E that connect vertices from F with each other, and E(F,Γ\F ) for the edges of E that
connect vertices from F with vertices from the rest of the graph.

69



Given a subset of vertices F ⊆ V we say that a q-coloring x of Γ is frozen on F if for every
subset F ′ ⊆ F and every q-coloring y of Γ such that x|F ′c = y|F ′c , then x = y. Hence x is a
frozen q-coloring if and only if x is a frozen q-coloring of F , for every finite subset F ⊆ V .

We are going to prove the following claim: for every F ⊆ V finite, if

(q − 1)|F | ≥ |E(F, F )|+ |E(F,Γ\F )|,

then no q-coloring of Γ is frozen on F . In particular, as 2|E(F, F )|+ |E(F,Γ\F )| equals the
sum of the degrees of vertices in F , we conclude that if (q − 1− ∆

2
)|F | > 1

2
|E(F,Γ\F )| then

(q − 1)|F | > ∆

2
|F |+ 1

2
|E(F,Γ\F )| ≥ |E(F, F )|+ |E(F,Γ\F )|,

and hence no q-coloring of Γ is frozen of F . With this the proposition follows immediately,
since if q > 1

2
∆ + 1

2
ie(Γ) + 1 then there must exist some finite subset F ⊆ V such that

q >
1

2
∆ +

1

2

|E(F,Γ\F )|
|F |

+ 1,

from which (q − 1− ∆
2

)|F | > 1
2
|E(F,Γ\F )| and so no q-coloring of Γ is frozen on F , and in

particular no q-coloring of Γ can be a frozen coloring.

We now proceed to prove the claim. Suppose there exists a q-coloring x which is frozen
on F . Consider the subgraph Γ′ = (F ∪ N(F ), E(F ) ∪ E(F,Γ\F )) where N(F ) is the
neighborhood of F on Γ. For distinct colors i, j denote by Γ′i,j the subgraph of Γ′ consisting
of edges between vertices which x colors with i and j, and call the connected components
of these subgraphs the bi-color components. Note that the family of bi-color components
A partition the edges of Γ′, so we have

∑
A∈A |E(A)| = |E(F )| + |E(F,Γ\F )|. Note also

that each A ∈ A must contain a vertex of N(F ) since otherwise we could interchange both
colors appearing on the vertices of A and obtain a valid coloring, contradicting the fact
that x is frozen on F . With this |A ∩ F | ≤ |E(A)|. Note also that each vertex of F has
q − 1 colors as neighbours, again since otherwise we could change the color of the vertex
to obtain a new q-coloring and contradict that x is frozen on F . With this we see that∑

A∈A |A ∩ F | = (q − 1)|F |, and so getting all this together:

(q − 1)|F | =
∑
A∈A

|A ∩ F | ≤
∑
A∈A

|E(A)| = |E(F )|+ |E(F,Γ\F )|,

which contradicts the hypothesis of the claim.

Using the above proposition we can prove that for n ≥ 4 the GCS Cn does not admit a
frozen coloring.

Theorem 4.15 For n ≥ 4 the GCS Cn does not admit a frozen coloring.

Proof. Denoting by Γ the Cayley graph of BS(1, N) its maximum degree is ∆ = 4, and if
we prove that ie(Γ) = 0 we will have that, using proposition 4.14, for q > 1

2
· 4 + 1

2
· 0 + 1 = 3

this graph does not admit frozen q-colorings, proving the statement.
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Let us see that ie(Γ) = 0. Consider for every k ≥ 1 : γk := E(Rk,Γ\Rk). We see that
γ1 = 2N + 2, and that for every k ≥ 2:

γk = Nk + 2 +N(γk−1 −Nk−1) = 2 +Nγk−1,

by using the fact that the N sheets arising from the base of the rectangle Rk are copies of
the rectangle Rk−1. With this we have that

γk+1 − γk = N(γk − γk−1), γ2 − γ1 = 2N2,

and so γk − γk−1 = 2Nk, for every k ≥ 2. Now summing this equality from k = 2 to k = m
we see that

γm − (2N + 2) = γm − γ1 =
m∑
k=2

γk − γk−1 = 2
m∑
k=2

Nk

= 2
Nm+1 −N2

N − 1
,

and hence γm = 2N
m+1−1
N−1

. From this calculation we can estimate the edge-isoperimetric
constant:

ie(Γ) ≤ lim inf
m→∞

|E(Rm,Γ\Rm|)
|Rm|

= lim inf
m→∞

γm
|Rm|

= lim inf
m→∞

2

mNm

Nm+1 − 1

N − 1
= 0,

and so ie(Γ) = 0 as we had claimed at the beginning of the proof.
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Chapter 5

Relationship between 1-dimensional
and Baumslag-Solitar subshifts

In this chapter we study how a Z-subshift can be extended into a BS(1, N)-subshift in such
a way that they share properties, or that certain behavior of one of them forces similar
behavior in the other. We start by seeing examples in which the induced BS(1, N)-subshift is
empty and find a sufficient condition which guarantees non-emptiness, for the case of vertex
Z-subshifts. We then study the Fibonacci BS(1, N)-subshift and define the notion of having
a mixing symbol, which permits us to exploit the relations between the original Z-subshift
and the induced BS(1, N)-subshift. We finish the chapter by defining the m-strip subshifts
for a BS(1, N)-subshift, which gives us a way of approximating its entropy at any degree
using the entropies of 1-dimensional subshifts.

5.1 Baumslag-Solitar subshifts arising from 1-dimensional

subshifts

We start by defining a way to extend a Z-subshift into a BS(1, N)-subshift, by considering
the forbidden patterns of the former as forbidden in the latter along both generators of the
group BS(1, N). This in particular will imply that for any configuration x in the extension
and any g ∈ BS(1, N) the restrictions x|g〈a〉 and x|g〈b〉 may be identified with a configuration
in the original Z-subshift.

Definition 5.1 For a finite alphabet A, let XF ⊆ AZ be the Z-subshift defined by a list of
forbidden patterns F ⊆ A∗. We define its corresponding BS(1, N)-subshift as the one with
forbidden patterns F along both generators a and b. More formally, the corresponding subshift
is XF̂ ⊆ ABS(1,N) defined by the forbidden patterns

F̂ := {p̂a | p ∈ F} ∪ {p̂b | p ∈ F} ,

where for s ∈ {a, b} the pattern p̂s is defined by p̂s : {st | t ∈ supp(p)} → A given by p̂st = pt
for every t ∈ supp(p).
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We say that the Z-subshift XF induces the BS(1, N)-subshift XF̂ , and that the latter arises
or originates from the former.

Remark 5.2 If one chooses two sets of forbidden patterns F1,F2 such that XF1 = XF2 then
their induced BS(1, N)-subshifts are equal, i.e. XF̂2

= XF̂1
. In particular we see that XF is

an SFT if and only if so is XF̂ .

It is important to note that it may happen that the induced BS(1, N)-subshift XF̂ is empty
even though the Z-subshift XF is not. In fact, we have already seen an example of this in
Chapter 4, when we saw that the GCS C2 is empty for even N (see Proposition 4.1). Moreover,
it is possible to construct positive entropy Z-subshifts inducing empty BS(1, N)-subshifts, as
the following example shows.

Example 5.3 Consider the Z-SFT on {0, 1, 2} defined by the list of forbidden patterns F =
{00, 11, 12, 21, 22}, which can be interpreted as the edge-shift from the graph in Figure 5.1.
The Perron eigenvalue of this graph is λP =

√
2, and so htop(XF) = 1

2
log(2) > 0. We claim

that if N is even then XF̂ = ∅.

0

1

2

Figure 5.1: Example of a graph whose associated vertex-shift has positive entropy, while it
induces an empty BS(1, N)-subshift for even N .

To see this suppose there exists x ∈ XF̂ , and without loss of generality we may assume that
xeBS(1,N)

= 0 (if not, then the forbidden patterns force that xa = 0 and we instead consider
σa−1(x)). Then, as N is even and the forbidden patterns only allow a 0 to be continued by a
1 or 2, and any of those only by a 0, we must have xaN = 0. But then, again by the forbidden
patterns, we must have xb = xeGb ∈ {1, 2} and so in order to respect the forbidden patterns
xaN b = 0. But then the word “00” appears in the direction of the b generator, which is not
allowed.

0 1 . . . 0

2 0

N

We conclude that the BS(1, N)-subshift XF̂ is empty, for even N . For odd N , similar
examples can be created.

The examples given above force emptiness of the induced BS(1, N)-subshift by considering
Z-SFTs represented by a labeled graph over which one can find cycles of lengths not found
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in the cycles of the Cayley graph of BS(1, N). With this idea in mind, in the next section we
give a sufficient condition which guarantees non-emptiness of the BS(1, N)-subshift induced
by a vertex shift.

5.2 Non-emptiness of Baumslag-Solitar subshifts aris-

ing from vertex-shifts

As we said above, we are going to restrict ourselves to 1-step subshifts of finite type on Z,
and see them as vertex-shifts defined by a matrix A with entries in {0, 1}.

In this context we have the following characterization of non-emptiness of the associated
BS(1, N)-subshift, which roughly says that this subshifts is non-empty if and only if there
exists a family of configurations in the Z-subshift whose elements can be stacked on top
of each other to cover the upper half of the Cayley graph of BS(1, N) while respecting the
forbidden patterns in the direction of the generator b.

Lemma 5.4 Let XF be a 1-step Z-SFT, whose list of forbidden patterns F consists of patterns
of length 2. Denote by XF̂ the BS(1, N)-subshift induced by XF . Then XF̂ 6= ∅ if and
only if there exists x ∈ XF such that for every n ≥ 1 and for every n-tuple (i1, . . . , in) ∈
{0, . . . , N − 1}n there exists x(i1,...,in) ∈ XF such that

1. for every i1 ∈ {0, . . . , N − 1} and for every k ∈ Z : xi1+Nkx
(i1)
k /∈ F , and

2. for every n ≥ 1, every (i1, . . . , in, in+1) ∈ {0, . . . , N − 1}n+1 and k ∈ Z :

x
(i1,...,in)
in+1+Nkx

(i1,...,in,in+1)
k /∈ F .

Proof. Suppose XF̂ 6= ∅. We are going to construct inductively the family

x ∪
⋃
n≥1

{x(i1,...,in) | (i1, . . . in) ∈ {0, . . . , N − 1}n}

that satisfies Conditions 1. and 2.

Consider an arbitrary configuration y ∈ XF̂ . Define x ∈ XF as x := y|〈a〉, and for i1 ∈
{0, . . . , N−1} define x

(i1)
k := yai1bak for k ∈ Z, that is x(i1) = σb−1a−i1 (y)|{ak:k∈Z}. By definition

of the BS(1, N)-subshift we have that x(i1) ∈ XF and Condition 1. holds.

Using the same idea as above, for n ≥ 2 and (i1, . . . , in) ∈ {0, . . . , N − 1}n we define

x
(i1,...,in)
k := y(

∏n
j=1 a

ij b)ak , that is x(i1,...,in) = σ
(
∏n

j=1 a
ij b)

−1(y)|{ak:k∈Z}. With this we have that

Condition 2. holds, since for every k ∈ Z

x
(i1,...,in)
in+1+Nkx

(i1,...,in,in+1)
k = y(

∏n
j=1 a

ij b)ain+1+Nky(
∏n+1

j=1 a
ij b)ak

75



= y(
∏n

j=1 a
ij b)ain+1aNky(

∏n
j=1 a

ij b)ain+1bak

= y(
∏n

j=1 a
ij b)ain+1bakb−1y(

∏n
j=1 a

ij b)ain+1bak ,

which is a pattern not in F by the definition of XF̂ , using that y belongs to XF̂ .

Now suppose we have the configurations x, x(i1,...,in) ∈ XF for every n ≥ 1 and (i1, . . . , in) ∈
{0, . . . , N − 1}n satisfying Conditions 1. and 2. We will construct a configuration y ∈ XF̂ .

Start by defining y0 ∈ ABS(1,N) by y0
ak

= xk for every k ∈ Z, and for n ≥ 1 and (i1, . . . , in) ∈
{0, . . . , N − 1}n by y0|(∏n

j=1 a
ij b)ak = x

(i1,...,in)
k , for k ∈ Z. With this we have defined the

configuration y0 for every g ∈ BS(1, N) whose normal form is of the type g = akbi, with
k ∈ Z and i ≥ 0. For the rest of the elements g (those whose normal form begins with a
negative power of the generator b) assign y0

g = α any letter of the alphabet A. With this we

have defined y0 ∈ ABS(1,N).

Now define the sequence yn := σbn(y0), for n ≥ 1, and consider any accumulation point z
of it (which exists by compactness of ABS(1,N)). Using the fact that XF is a 1-step Z-SFT and
the construction done above, we see that no forbidden patterns can occur in z, and hence we
have that z ∈ XF̂ .

By using the previous lemma we are able to give a sufficient condition for the matrix
that defines a vertex-shift such that the BS(1, N)-subshift it induces is not empty. This
theorem roughly says that a sufficient condition for non-emptiness is that the graph defining
the vertex-shift contains an essential subgraph on which the existence of a path of length N
between two vertices implies that they are connected by an edge.

Theorem 5.5 Let XΓ ⊆ V Z be the vertex shift associated to an essential (directed) graph
Γ = (V,E) and denote by X the BS(1, N)-SFT it induces. Suppose Γ contains an essential
subgraph Γ̃ = (‹V , ‹E) whose associated matrix ‹A satisfies:

∀i, j ∈ ‹V : ‹ANij > 0 =⇒ ‹Aij > 0.

Then X 6= ∅.

Proof. We will prove that X 6= ∅ by using Lemma 5.4.

As ‹G is essential its associated vertex-shift XG̃ is not empty and hence contains a point

x ∈ XG̃. The condition satisfied by the matrix ‹A means that if there is a path of length N

between two vertices of ‹G, then those vertices are already connected by an edge of ‹G. Let us
define the family of configurations from Lemma 5.4. First for i1 ∈ {0, . . . , N − 1} set

x
(i1)
k := xi1+Nk+1.

With this we have that
xi1+Nkx

(i1)
k = xi1+Nkxi1+Nk+1
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which is an allowed pattern, and that for every k ∈ Z we have

x
(i1)
k x

(i1)
k+1 = xi1+Nk+1xi1+N(k+1)+1 = xi1+Nk+1xi1+Nk+1+N .

Since any two symbols separated by a path of length N must be adjacent, this is also an
allowed pattern and hence x(i1). With this we have Condition 1. of the previous lemma.

Having already defined x(i1,...,in) ∈ XG̃ for every (i1, . . . , in) ∈ {0, . . . , N − 1}n, let us

consider (i1, . . . , in, in+1) ∈ {0, . . . , N − 1}n+1 and for k ∈ Z define

x
(i1,...,in,in+1)
k := x

(i1,...,in)
in+1+Nk+1.

Then by the same argument as above we have x(i1,...,in+1) ∈ XG̃ and for every k ∈ Z the
pattern

x
(i1,...,in)
in+1+Nkx

(i1,...,in,in+1)
k

is allowed.

We have thus confirmed the hypothesis for Lemma 5.4, and hence we conclude that the
BS(1, N)-subshift induced by X

G̃
is non empty.

5.3 The Fibonacci subshift and subshifts with mixing

symbols

In this section we study another way of assuring non-emptiness of the induced BS(1, N)-
subshift, by requiring a strong mixing behavior of the Z-subshift, namely having a mixing
symbol. Before making the corresponding definitions, let us study first a particular example:
the Fibonacci subshift, which generalizes the definitions made for Z and Zd (where it is
sometimes called the hard-core or hard-square subshift). In what follows we prove that this
BS(1, N)-subshift is non-empty and moreover give a construction for a non-trivial strongly
periodic point, that is, one for which its stabilizer has finite index yet it is not the whole
group.

Define the Fibonacci BS(1, N)-subshift as XFib := XF̂ ⊆ A
BS(1,N), the BS(1, N)-subshift

induced by the golden-mean Z-subshift XF ⊆ {0, 1}Z, where F = {11}. Of course this
subshift is not empty since it contains the trivially strongly periodic point (xg = 0)g∈BS(1,N) ∈
XFib. Does it contain any strongly periodic points that are more interesting than this one?
The answer to this question is affirmative and next proposition gives an explicit construction
for such a configuration.

Proposition 5.6 The Fibonacci BS(1, N)-subshift has a non-trivial strongly periodic point.

Proof. Let us define a configuration x ∈ ABS(1,N) by setting for each g = b−jakbi ∈ BS(1, N),
i, j ≥ 0, k ∈ Z written in its normal form:

xb−jakbi =

{
1, if i+ j + k ∈ (N + 1)Z,
0, otherwise.
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Note that by definition we have that if xb−jakbi = 1, then i+ j + k ∈ (N + 1)Z, and so

xb−jakbib = 0, since i+ j + k + 1 /∈ (N + 1)Z,
xb−jakbia = xb−jak+Nibi = 0, since i+ j + k +N i /∈ (N + 1)Z.

With this we have proved that in x there are no two adjacent 1’s and so x ∈ XFib.

Now let us see that x is a strongly periodic configuration. Note that for any g = b−jakbi ∈
BS(1, N) written in its normal form:

xa−(N+1)b−jakbi = x
b−jak−(N+1)Nj

bi
= xb−jakbi ,

and that
xb−(N+1)b−jakbi = xb−(N+1)−jakbi = xb−jakbi .

Hence aN+1 ∈ Stab(x) and bN+1 ∈ Stab(x), and with it H := 〈aN+1, bN + 1〉 ≤ Stab(x). It
suffices to prove that H has finite index in BS(1, N) to finish the proof.

We will prove that for each g ∈ BS(1, N), there exists r ∈ RN+2 such that gH = rH, thus
proving that [BS(1, N) : H] ≤ |RN+2| < ∞. Given any g = b−jakbi ∈ BS(1, N) written in
its normal form, consider integers i∗, w∗, j∗, k∗ ∈ (N + 1)Z (whose existence we will justify
later) such that: 

i− i∗ ≤ 0,

∃m ∈ Z : kN i∗−i + w∗ = mN j+i∗−i,

0 ≤ `∗ := j∗ − (j + i∗ − i) ≤ N, and

0 ≤ m+ k∗N `∗ < NN+2.

Then defining h = a−k
∗
b−j

∗
a−w

∗
bi
∗ ∈ H we have that

gh−1 = b−jakbi · b−i∗aw∗bj∗ak∗

= b−jakbi−i
∗ · aw∗bj∗ak∗

= b−(j+i∗−i)akN
i∗−i · aw∗bj∗ak∗

= b−(j+i∗−i)akN
i∗−i+w∗ · bj∗ak∗

= b−(j+i∗−i)amN
j+i∗−i · bj∗ak∗

= amb−(j+i∗−i) · bj∗ak∗

= ambj
∗−(j+i∗−i) · ak∗

= amb`
∗ · ak∗

= am+k∗N`∗

b`
∗ ∈ RN+2,

and so we have found r ∈ RN+2 such that gH = rH, as was claimed. Now let us prove
that we can choose such integers as above: i∗ can be any multiple of N + 1 bigger than i.
The existence of w∗ follows from the fact that N + 1 and N j are coprime. The existence
of j∗ is just noting that we want to translate j + i∗ − i into an interval of length N + 1,
and the existence of k∗ follows from this same idea but with an interval of length at most
NN+1 +NN .
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Figure 5.2: A part of the strongly periodic configuration of XFib constructed in the proof of
Proposition 5.6.

In the next section we will study this type of subshifts in a more general case. A specific
property present in the Fibonacci subshift is having a symbol in the alphabet which can
be used to surround two admissible patterns and glue them together to form a globally
admissible pattern (in the case of the Fibonacci subshift this symbol is 0). By centering our
attention into subshifts with such a particular symbol will allow us to understand more in
depth how patterns in a configuration behave and in particular we will be able to compare
the topological entropy of a Z-subshift with the one of the BS(1, N)-subshift it induces.
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Definition 5.7 A subshift X ⊆ AG is said to have a mixing symbol if there exists a symbol
in the alphabet αM ∈ A such that for any pair of globally admissible patterns p1, p2 in X such
that d(supp(p1), supp(p2)) ≥ 2, there exists x ∈ X such that x|supp(p1) = p1, x|supp(p2) = p2 and
xh = αM for every h ∈ G with d(h, supp(p1)) = 1. In the case of Z-subshifts this means that
the mixing symbol is allowed to precede or follow any symbol while respecting the forbidden
patterns describing the subshift.

Let X ⊆ ABS(1,N) be a BS(1, N)-subshift with a mixing symbol. This property allows us to
construct a pattern over a big rectangle by first defining patterns over “independent” copies
of smaller rectangles and then filling the gaps with the mixing symbol. Using constructions
of this nature we obtain the following two properties, the first of which relates the topological
entropy of the subshift X with the allowed patterns on a rectangle Rm, and the second one
showing the density of weakly periodic points of X.

Proposition 5.8 Consider a subshift X ⊆ ABS(1,N) with a mixing symbol. Then for every
m ∈ N we have

N

N + 1

m

m+ 1

1

mNm
log |LRm(X)| ≤ htop(X) ≤ 1

mNm
log |LRm(X)|.

Proof. The inequality htop(X) ≤ 1
mNm log |LRm(X)| comes from the fact that

htop(X) = inf
m≥1

1

mNm
log |LRm(X)|.

The proof of this fact follows the spirit of the subadditive lemma: define

L := inf
m≥1

1

mNm
log |LRm(X)|,

and for arbitrary ε > 0 take m ≥ 1 such that 1
mNm log |LRm(X)| ≤ L+ ε. Note that for any

k ≥ 1 we have that
|LR2k

| ≤ |LRk
|2Nk

,

as by Proposition 3.5 the rectangle R2k is composed of 2Nk disjoint copies of the rectangle
Rk. Taking logarithm we obtain

log |LR2k
| ≤ 2Nk log |LRk

|.

Now for n ≥ 1 we use the above to estimate log |LR2nm
|:

log |LR2nm
| = log |LR22n−1m

|
≤ 2N2n−1m log |LR2n−1m

|
= 2N2n−1m log |LR22n−2m

|
≤ 2N2n−1m · 2N2n−2m log |LR2n−2m

|

and iterating this process we arrive at

log |LR2nm
| ≤

n∏
i=1

(2N2n−im) log |LRm|
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= 2nNm
∑n

i=1 2n−i

log |LRm|

= 2nNm
∑n−1

i=0 2i log |LRm|
= 2nNm(2n−1) log |LRm|.

With this

L ≤ 1

2nmN2nm
log |LR2nm

| ≤ 1

2nmN2nm
2nNm(2n−1) log |LRm| =

1

mNm
log |LRm| ≤ L+ ε,

and taking n → ∞ yields L ≤ htop(X) ≤ L + ε. Finally as ε was arbitrary the claimed
equality follows.

Now we proceed to prove that

N

N + 1

m

m+ 1

1

mNm
log |LRm(X)| ≤ htop(X).

To see this, note that given fixed m ≥ 1 and some k ≥ 1, we can subdivide the rectangle Rm+k

with disjoint copies of Rm leaving some separation between them. Using the mixing symbol
αM ∈ A to fill those gaps we can globally admissible patterns of shape Rk independently,
producing a globally admissible pattern on Rm+k.

More specifically, note that two copies of Rm positioned at the same height of the rectangle
Rm+k and separated by at least Nm−1 elements can be filled by two arbitrary with the mixing
symbol αM between their bases for them to be independent. On the other hand, copies of
the rectangle Rm at different heights need to be separated by at least one row filled with the
mixing symbol αM for them to be independent. In this way we see that each copy of the
rectangle Rm uses a base of length Nm + Nm−1 and a height of m + 1. A representation of
the structure of independent copies of Rm is shown in Figure 5.3.

Now we can calculate how many independent copies of Rm fit inside Rm+k as

#{independent copies of Rm inside Rm+k} =

b k
m+1c∑
i=0

⌊
Nm+k−i(m+1)

Nm +Nm−1

⌋
N i(m+1),

where the index of this sum symbolizes the heights at which we put the copies of Rm, and
the factor N i(m+1) comes from the amount of sheets we have at that height.

To simplify calculations, we will assume k = `(m+ 1), for some ` ≥ 1. Then we obtain:

b k
m+1c∑
i=0

⌊
Nm+k−i(m+1)

Nm +Nm−1

⌋
N i(m+1) =

∑̀
i=0

⌊
Nm+(`−i)(m+1)

Nm +Nm−1

⌋
N i(m+1)

≥
∑̀
i=0

(
Nm+(`−i)(m+1)

Nm +Nm−1
− 1

)
N i(m+1)
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Figure 5.3: Copies of the rectangle Rm separated from each other using the mixing symbol
αM .

=
∑̀
i=0

(
Nm+`(m+1)

Nm +Nm−1
−N i(m+1)

)

=
∑̀
i=0

(
N `(m+1)+1

N + 1
−N i(m+1)

)
=
N `(m+1)+1

N + 1
(`+ 1)− N (m+1)(`+1) − 1

Nm+1 − 1
.

Using this to estimate the amount of patterns on the rectangle Rm+`(m+1), and along with it
give a lower bound for the entropy:

|LRm+`(m+1)
(X)| ≥ |LRm(X)|

N`(m+1)+1

N+1
(`+1)−N(m+1)(`+1)−1

Nm+1−1 ,

from where

1

|Rm+`(m+1)|
log |LRm+`(m+1)

(X)| = 1

(m+ `(m+ 1))Nm+`(m+1)
log |LRm+`(m+1)

(X)|

≥

(
N`(m+1)+1

N+1
(`+ 1)− N(m+1)(`+1)−1

Nm+1−1

)
(m+ `(m+ 1))Nm+`(m+1)

log |LRm(X)|
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=

(
N
N+1

(`+ 1)

(m+ `(m+ 1))Nm
−

N`(m+1)+m+1−1
Nm+1−1

(m+ `(m+ 1))Nm+`(m+1)

)
log |LRm(X)|.

Taking `→∞ the second term inside the parenthesis vanishes and we obtain

htop(X) ≥ N

N + 1

m

m+ 1

1

mNm
log |LRm(X)|,

as was claimed.

The property of having a mixing symbol also implies the density of the set of weakly
periodic points of the subshift. The proof consists of using the mixing symbol to glue the
same pattern to itself repeatedly in order to construct a weakly periodic point which contains
a particular pattern within it.

Proposition 5.9 Let X ⊆ ABS(1,N) be a BS(1, N)-SFT with a mixing symbol. Then the set
of weakly periodic points of X is dense in X.

Proof. We will prove that for every m ≥ 1 and for every globally admissible pattern P ∈ ARm

whose support is the rectangle Rm we can find a weakly periodic point x ∈ X such that
x|Rm = P . With this we will have proven approximate every point by a sequence of weakly
periodic points, and thus proving the density of the set of weakly periodic points of X.

First we construct a point x0 ∈ X by concatenating copies of P surrounded by the mixing
symbol along the generator a direction, and repeating this pattern through the generator
b direction. Let us denote αM ∈ A the mixing symbol and define x0

g = αM for every
g ∈ BS(1, N) whose normal form is g = b−jakbi with j ≥ 1. Thus, we are forcing this
configuration to be equal to the mixing symbol everywhere outside the “main half-sheet”
H := {akbi | k ∈ Z, i ≥ 0}.

Define x0|Rm+1 by setting x0|Rm = P and for every g ∈ Rm+1\Rm set x0
g = αM . By copying

the pattern seen on rectangle Rm+1 to the left and to the right (in the direction of the a-
generator) we define configuration x0 on the set Rm+1〈a〉. This configuration is illustrated in
Figure 5.4.

We can now copy this pattern upwards, to define the symbol x0
g for every g ∈ H, and

hence finish defining xg for every g ∈ BS(1, N). Let us do this by imposing that for every
r ≥ 1 and i ∈ {0, . . . , N r(m+1) − 1} define

x0|aibr(m+1)〈a〉 := x0|Rm+1〈a〉.

Note that by construction we have that x0 satisfies σb−r(m+1)(x0)|H = x0|H for all r ≥ 1,
where H is the “main half-sheet” described above.This construction is shown in Figure 5.5.

Finally we define for every n ≥ 1 the point xn := σb−(n(m+1))(x0) ∈ X. By the construction
made above we see that this sequence converges to a point x ∈ X which satisfies σb−(m+1)(x) =
x and that x|Rm = P , so x is a weakly periodic point (since the subgroup generated by b−(m+1)

is contained in its stabilizer) which sees the pattern P in the rectangle Rm.
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Figure 5.4: Periodic configuration on Rm+1Γa, from the proof of Proposition 5.9.
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Figure 5.5: Extending the periodic configuration upwards, from the proof of Proposition 5.9.
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5.4 Topological entropy and the m-strip subshift

The relation between the forbidden patterns of a Z-subshift and the BS(1, N)-subshift it
induces forces that looking at supports of the form {gsk : k ∈ Z}, for g ∈ BS(1, N) and
s ∈ {a, b}, for any configuration in the BS(1, N)-subshift we will see a configuration from the
Z-subshift. This relation allows us to compare the allowed patterns of both subshifts and
with them their entropies, as the next proposition shows.

Proposition 5.10 Let X̂ ⊆ ABS(1,N) be a BS(1, N)-subshift induced by a Z-subshift X ⊆ AZ

according to Definition 5.1. Then

htop(X̂) ≤ htop(X).

Proof. The amount of globally admissible patterns appearing on the rectangle Rm on X̂ are
at most the number of possible words of X appearing on the rows of the rectangle. There
is 1 row of length Nm, N rows of length Nm−1, and in general N i rows of length Nm−i for
i = 0, . . . ,m− 1. With this we have

|LRm(X)| ≤
m−1∏
i=0

|LNm−i(X)|N i

.

Taking logarithm and dividing by |Rm| = mNm we get

1

mNm
log |LRm(X)| ≤ 1

mNm

m−1∑
i=0

N i log |LNm−i(X)|

≤ 1

mNm

m∑
k=1

Nm−k log |LNk(X)|

=
1

mNm

m∑
k=1

Nm−kNk 1

Nk
log |LNk(X)|

=
1

m

m∑
k=1

1

Nk
log |LNk(X)|,

then taking m → ∞ and using the fact that if a sequence converges to a number then its
Cesàro means also converge to it, we get the desired inequality.

Nonetheless, the inequality from Proposition 5.10 may be strict. Moreover, it may be
possible that a positive entropy Z-SFT gives rise to an empty BS(1, N)-subshift, as was
shown in Example 5.3.

XF having a mixing symbol implies that the BS(1, N)-subshift it induces XF̂ also has a
mixing symbol, and this in particular allows us to prove that this subshift is not empty and
to give a lower bound on its topological entropy, by constructing patterns with independent
words from XF with a separation of mixing symbols between them. In particular, we see that
a Z-SFT of positive entropy with a mixing symbol gives rise to a BS(1, N)-SFT of positive
entropy.
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Proposition 5.11 Let X̂ ⊆ ABS(1,N) be a nearest-neighbors BS(1, N)-SFT induced by a
Z-subshift X ⊆ AZ, with a mixing symbol. Then X̂ 6= ∅ and

htop(X̂) ≥ 1

2
htop(X).

Proof. We will define patterns with support on the set R2m, which can then be extended
to the rest of the group using the mixing symbol. To give a lower bound of the amount of
patterns we can get with this support, note that we can fill the even rows of R2m using words
from L(X), while assigning to the odd rows the mixing symbol to obtain globally admissible
patterns. With this, and remembering that in R2m there are N2i rows of length N2m−2i, for
0 ≤ i ≤ m− 1, we get

|LR2m(X̂)| ≥
m−1∏
i=0

|LN2m−2i(X)|N2i

.

Taking logarithm and dividing by |R2m| = 2mN2m we obtain

1

2mN2m
log |LR2m(X̂)| ≥ 1

2mN2m

m−1∑
i=0

N2i log |LN2m−2i(X)|

=
1

2mN2m

m∑
k=1

N2(m−k)N2k 1

N2k
log |LN2k(X)|

=
1

2

1

m

m∑
k=1

1

N2k
log |LN2k(X)|.

Taking m→∞ we get

htop(X̂) = lim
m→∞

1

2mN2m
log |LR2m(X̂)| ≥ 1

2
lim
m→∞

1

m

m∑
k=1

1

N2k
log |LN2k(X)| = 1

2
htop(X),

as was claimed.

In particular, the previous proposition allows us to estimate the topological entropy of the
Fibonacci BS(1, N)-subshift, defined in the previous section.

Corollary 5.12 For the Fibonacci BS(1, N)-subshift XFib we have

1

2
log(ϕ) ≤ htop(XFib) ≤ log(ϕ),

where ϕ := 1+
√

5
2

is the golden ratio.

Inspired by the ideas of the proof of Proposition 5.11 we can find a new way to approximate
the entropy of a BS(1, N)-subshift (with a mixing symbol) using a sequence of Z-subshifts.
Intuitively the definition below consists of, for a fixed m ≥ 1, creating a Z-subshift using as
alphabet the patterns with support Rm appearing in X, and neighboring rules according to
the allowed patterns of X.
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Definition 5.13 Let X ⊆ ABS(1,N) be a subshift and m ≥ 1. We define the alphabet

Am := {x|Rm|x ∈ X} ,

and interpret a configuration y ∈ AZ
m as an infinite pattern in AR∞m , where R∞m := RmΓa

and Γa = {ak | k ∈ Z}, through the concatenation of its symbols. We define the m-strip
subshift by

X/Rm := {y ∈ AZ
m | using the above interpretation, y contains no forbidden patterns of X}.

Remark 5.14 From the definition it is immediate that if X is an SFT then so is X/Rm,
and that if X has a mixing symbol then so does X/Rm.

The relation between the allowed patterns of X and X/Rm gives us the following propo-
sition, which provides lower and upper bounds for the topological entropy of X using the
topological entropy of the m-strip subshift X/Rm.

Proposition 5.15 Let X ⊆ ABS(1,N) be a BS(1, N)-subshift with a mixing symbol, and for
m ≥ 1 consider X/Rm ⊆ AZ

m the Z-subshift defined above. Then

1

(m+ 1)Nm
htop(X/Rm) ≤ htop(X) ≤ 1

mNm
htop(X/Rm).

Proof. Let us prove first that

htop(X) ≤ 1

mNm
htop(X/Rm).

For this note that if for any n ≥ 1 we look at the rectangle Rmn and separate it in heights of
length m, in each one of these blocks we will be looking at a word of X/Rm. More specifically,
looking at height jm up to (j + 1)m− 1 we will see a total of N jm copies of words of X/Rm

of length Nnm−m−jm, for j = 0, . . . , n − 1. This allows us to give an upper bound for the
amount of different patterns appearing on Rmn:

|LRmn(X)| ≤
n−1∏
j=0

|LNm(n−1−j)(X/Rm)|Njm

.

Taking logarithm and dividing by mnNmn we get

1

mnNmn
log |LRmn(X)| ≤

n−1∑
j=0

N jm

mnNmn
log |LNm(n−1−j)(X/Rm)|

≤
n−1∑
j=0

N jmNm(n−j−1)

mnNmn

1

Nm(n−1−j) log |LNm(n−1−j)(X/Rm)|

≤
n−1∑
j=0

1

mnNm

1

Nm(n−1−j) log |LNm(n−1−j)(X/Rm)|

=
1

mNm

1

n

n−1∑
j=0

1

Nm(n−1−j) log |LNm(n−1−j)(X/Rm)|
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=
1

mNm

1

n

n−1∑
j=0

1

N jm
log |LNjm(X/Rm)|,

from where taking limit as n→∞ we obtain htop(X) ≤ 1
mNmhtop(X/Rm).

Now let us show that

htop(X) ≥ 1

(m+ 1)Nm
htop(X/Rm),

by using an argument similar to the one above. If we look at the rectangle Rn(m+1) we can
form allowed patterns by inserting words of X/Rm at heights separated by m + 1 elements,
where the extra row is filled with the mixing symbol to gain independence between different
copies of words of X/Rm. With this we have that for every n ≥ 1

|LR(m+1)n
(X)| ≥

n−1∏
j=0

|LN(m+1)n−m−j(m+1)(X/Rm)|Nj(m+1)

=
n−1∏
j=0

|LN(m+1)(n−j)−m(X/Rm)|Nj(m+1)

,

and taking logarithm and dividing both sides by (m+ 1)nN (m+1)n

1

(m+ 1)nN (m+1)n
log |LR(m+1)n

(X)| ≥
n−1∑
j=0

| N j(m+1)

(m+ 1)nN (m+1)n
log |LN(m+1)(n−j)−m(X/Rm)|

=
n−1∑
j=0

N j(m+1)N (m+1)(n−j)−m

(m+ 1)nN (m+1)n

log |LN(m+1)(n−j)−m(X/Rm)|
N (m+1)(n−j)−m

=
1

(m+ 1)Nm

1

n

n−1∑
j=0

log |LN(m+1)(n−j)−m(X/Rm)|
N (m+1)(n−j)−m

≥ 1

(m+ 1)Nm

1

n

n−1∑
j=0

htop(X/Rm)

=
1

(m+ 1)Nm
htop(X/Rm),

where we used that htop(X/Rm) = infk≥1
1
k

log |Lk(X/Rm)|. Taking limit as n→∞ yields

htop(X) ≥ 1

(m+ 1)Nm
htop(X/Rm),

which is what we wanted. Note that we also could have taken limit directly on the penultimate
inequality instead of using the lower bound given by htop(X/Rm), which would still have
converged to the final result.

Remark 5.16 In the case that X is a BS(1, N)-subshift arising from a Z-subshift Y with
a mixing symbol, the rectangle R1 is just one row of N symbols so the Z-subshift X/R1

is conjugate to the higher-power shift Y N . As we have the relation htop(Y N) = Nhtop(Y )
between the topological entropies of Y and its higher power Y N , the bounds given by the
previous proposition become

1

2
htop(Y ) =

1

(1 + 1)N
htop(X/R1) ≤ htop(X) ≤ 1

N
htop(X/R1) = htop(Y ),

which are the estimates we had deduced in Propositions 5.10 and 5.11.
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Remark 5.17 By using Proposition 5.15 we see that the sequence { 1
mNmhtop(X/Rm)}m≥1

converges to htop(X) and furthermore we can estimate the rate of convergence:∣∣∣∣htop(X)− 1

mNm
htop(X/Rm)

∣∣∣∣ ≤ 1

mNm
htop(X/Rm)− 1

(m+ 1)Nm
htop(X/Rm)

=
1

m(m+ 1)Nm
htop(X/Rm)

≤ log |A|
m+ 1

.
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Chapter 6

Projective subdynamics

This chapter is motivated by the work done in [18] with respect to projective subdynamics of
multidimensional subshifts, where the realization of Z-subshifts as projective subdynamics of
a Zd-subshift is studied. The main result of this paper characterizes under which conditions
it is possible to realize a sofic Z-subshift as the (stable or unstable) projective subdynamics
of a Zd-SFT.

In what follows we start by giving the corresponding definition of 〈a〉-projective subdy-
namics in BS(1, N) and study the dichotomy between it being stable and unstable. The
rest of the chapter focuses in studying the realization of sofic Z-subshifts as 〈a〉-projective
subdynamics of a BS(1, N)-SFT, separating the case in which the Z-subshift has positive
topological entropy from the case in which it has zero entropy.

6.1 Definition and first consequences

We start by defining the concept of projective subdynamics on BS(1, N), analogously to how
it is defined for Zd. Intuitively the 〈a〉-projective subdynamics of a BS(1, N)-subshift consists
of the Z-subshift we see appearing in the rows (along the a-direction) of the group in the
BS(1, N)-subshift considered.

Definition 6.1 Let X ⊆ ABS(1,N) be a BS(1, N)-subshift. We define its 〈a〉-projective
subdynamics as

P〈a〉(X) := {x|〈a〉 | x ∈ X}.

The fact that P〈a〉(X) can be interpreted as a Z-subshift is straightforward: for every
x ∈ P〈a〉(X) we can define a corresponding configuration x̃i := xai , for i ∈ Z. The idea
behind this definition is that the extra space of the group BS(1, N) can be used to create
restrictions about the sequences appearing on the row 〈a〉, and with it force some particular
kind of Z-subshift to occur as 〈a〉-projective subdynamics. In the next definition we divide
projective subdynamics in two types, depending on whether a finite or infinite number of
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rows are needed to obtain the 〈a〉-projective subdynamics of the BS(1, N)-subshift.

Definition 6.2 Let X = XF ⊆ ABS(1,N) be a BS(1, N)-subshift defined by a family of forbid-
den patterns F . We associate to it a decreasing sequence of Z-subshifts (X〈a〉,M)M≥0 defined
by

X〈a〉,M := {x|〈a〉 | x ∈ A〈a〉
[M ]

and for every F ⊆ 〈a〉[M ] finite: x|F /∈ F},

where 〈a〉[M ] := {b−Maibj | i ∈ Z, 0 ≤ j ≤ 2M} ⊆ BS(1, N) is an infinite strip of BS(1, N)
starting at height −M and covering every sheet originating from it up to height M . Intuitively,
the sequences from X〈a〉,M are those which can be extended to the strip 〈a〉[M ] without forcing
the appearance of a forbidden pattern of the family F .

For every M ≥ 0 we have the inclusion X〈a〉,M+1 ⊆ X〈a〉,M : any sequence defined on 〈a〉
that can be extended to the strip 〈a〉[M+1] without creating forbidden patterns can be extended
to the strip 〈a〉[M ] with the same restrictions. We also see that the 〈a〉-projective subdynamics
is precisely the decreasing intersection of these sets, that is,

P〈a〉(X) =
⋂
M≥0

X〈a〉,M .

The equality between P〈a〉(X) and the intersection from the right hand side allows us to
distinguish the case where this intersection stabilizes after a finite number of sets X〈a〉,M ,
from the case where it is really a proper infinite intersection. The 〈a〉-projective subdynamics
P〈a〉(X) is said to be stable if there exists M ′ ≥ 0 such that for every M ≥ M ′ : X〈a〉,M =
X〈a〉,M ′, that is, the intersection stabilizes at some moment. On the other hand, P〈a〉(X) is
said to be unstable if for every M ′ ≥ 0 there exists an M > M ′ such that X〈a〉,M $ X〈a〉,M ′.

In the next proposition we state some basic facts about how (un)stability of the 〈a〉-
projective subdynamics relates the properties of being an SFT and being sofic between the
subshift X and its 〈a〉-projective subdynamics P〈a〉(X).

Proposition 6.3 Let X be a BS(1, N)-subshift and P〈a〉(X) its 〈a〉-projective subdynamics.

1. If X is an SFT and the 〈a〉-projective subdynamics is stable, then P〈a〉(X) is sofic.

2. If P〈a〉(X) is an SFT then the 〈a〉-projective subdynamics is stable.

Proof. 1. Let S = P〈a〉(X) be the stable 〈a〉-projective subdynamics of the BS(1, N)-SFT
X determined by the finite set of forbidden patterns F , and choose M ≥ 1 sufficiently
large such that F ⊆ ARM−1 and S = X〈a〉,M . The idea to prove that S is sofic is to view
it as a factor of a Z-SFT defined by a construction similar to that of a higher-block
shift, on the strip 〈a〉[M ].

Note that we can view the strip 〈a〉[M ] as the union of translates of the rectangle
R := {b−Maibj | 0 ≤ i < N2M+1, 0 ≤ j ≤ 2M} of height 2M + 1, with its base in b−M .
We define a new alphabet

B := {p ∈ AR | p does not contain patterns of F},
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where the symbols are patterns on R, and we define the Z-subshift

HM := {x ∈ BZ | ∀i ∈ Z : (xi)|aR∩R = (xi+1)|R∩a−1R}.

Moreover, this subshift is a Z-SFT, since we are only requiring local rules to be satisfied:
that in each point two adjacent symbols of the alphabet, which in this case are patterns
over R, coincide restricted to a subset.

We can now define the map π : HM → S which given a point x ∈ HM , interprets it as
a configuration on the strip 〈a〉[M ] (keeping in mind the overlapping between adjacent
symbols occurring in x), and returns its restriction to 〈a〉, that is, for each i ∈ Z we
have π(x)ai = (xi)eBS(1,N)

. This map commutes with the shift since for each i ∈ Z

π(σ(x))ai = (σ(x)i)eBS(1,N)
= (xi+1)eBS(1,N)

= π(x)ai+1 = σa−1(π(x))ai ,

and it is continuous: if (xn)n∈N ⊆ HM is a sequence such that xn −−−→
n→∞

x ∈ HM , then

for every L ≥ 1 we can find n∗ sufficiently large such that for all n ≥ n∗ we have
xn|{−L,L} = x|{−L,...,L} and so π(xn)|[a−L,aL] = π(x)|[a−L,aL], and as L was arbitrary we
see that π(xn) −−−→

n→∞
π(x). With this we have proven that π is a sliding block code.

Finally we show that π is surjective. By the definition of X〈a〉,M we have that for each

s ∈ S = X〈a〉,M there exists y ∈ A〈a〉[M ]
such that y|〈a〉 = s. Then we define x ∈ HM by

setting
xi = y|aiR,

which satisfies
π(x)ai = (xi)eBS(1,N)

= yai = sai , i ∈ Z,

from where π(x) = s.

With this we have seen that π is a factor code from the SFT HM to S, and hence the
latter is a sofic 〈a〉-subshift.

2. As P〈a〉(X) is an 〈a〉-SFT we can find L ≥ 0 sufficiently large such that for every
x ∈ AZ the following property holds: if for every i ∈ Z x|[ai+1,ai+L] ∈ LL(P〈a〉(X)), then
x ∈ P〈a〉(X).

Remember that P〈a〉(X) =
⋂
M≥0X〈a〉,M and that for each M ≥ 0 we have the inclusion

X〈a〉,M+1 ⊆ X〈a〉,M , so in order to prove that the 〈a〉-projective subdynamics is stable
it is enough to see that for some M ≥ 0 X〈a〉,M ⊆ P〈a〉(X). By using that X〈a〉,M is
a subshift and what was said above it suffices to prove that for every x ∈ X〈a〉,M :
x|[a,aL] ∈ LL(P〈a〉(X)).

Looking for a contradiction let us suppose that for each M ≥ 0 there exists xM ∈ X〈a〉,M
such that x|[a,aL] /∈ L(P〈a〉(X)). By using compactness we can extract a subsequence

of the sequence {xM}M≥0, convergent to a configuration x ∈ A〈a〉 such that x|[a,aL] /∈
L(P〈a〉(X)), and hence x /∈ P〈a〉(X). However, we had that for every M ≥ M ′ ≥ 0 :
xM

′ ∈ X〈a〉,M ′ ⊆ X〈a〉,M , and by the closedness of these subshifts ∀M ≥ 0 : x ∈ X〈a〉,M .
But this means that x ∈

⋂
M≥0X〈a〉,M = P〈a〉(X), which is a contradiction as we had

already seen that x /∈ P〈a〉(X).
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If we interpret the stability (resp. unstability) of the 〈a〉-projective subdynamics as the
necessity of finite (resp. infinite) rows of extra space needed to check that the sequence
appearing in the row 〈a〉 belongs to P〈a〉(X), the previous proposition is somewhat intuitive:
the stable 〈a〉-projective subdynamics of an SFT is sofic since it suffices to use a finite number
of rows to check if a sequence belongs to P〈a〉(X). Similarly, if P〈a〉(X) is an SFT then it
means that to force a biinfinite sequence to belong to it we need to check local validity only,
and this is done using only finite rows.

In the next proposition we see a class of BS(1, N)-subshifts whose 〈a〉-projective subdy-
namics is always stable, thanks to the existence of a mixing symbol (see Definition 5.7) which
allows to extend locally admissible patterns to global configurations.

Proposition 6.4 If X is a BS(1, N)-subshift with a mixing symbol, then its 〈a〉-projective
subdynamics is stable. In particular if X is an SFT then P〈a〉(X) is sofic.

Proof. We will prove that P〈a〉(X) = X〈a〉,0. In effect, denoting by αM ∈ A the mixing
symbol, if x ∈ X〈a〉,0 we can define a point x′ ∈ ABS(1,N) by x′|〈a〉 = x and x′g = αS for all
g /∈ 〈a〉. By the definition of a mixing symbol and that x ∈ X〈a〉,0 we see that x′ contains
no forbidden patterns of the subshift X, and hence x′ ∈ X. As this configuration satisfies
x′|〈a〉 = x, we have finished the proof.

Now if X is an SFT it suffices to use the previous proposition together with what we just
proved to see that P〈a〉(X) must be sofic.

The main question we address in what follows asks which (sofic) Z-subshifts may be
realized as 〈a〉-projective subdynamics of BS(1, N)-SFTs. In particular it is immediate that
any Z-SFT can be obtained as 〈a〉-projective subdynamics of the BS(1, N)-SFT constructed
by considering the forbidden patterns of the original Z-SFT as forbidden patterns in ABS(1,N)

along the a-direction and putting no restrictions along the b-direction.

Proposition 6.5 For every Z-SFT Y there exists a BS(1, N)-SFT X such that Y = P〈a〉(X)
and the 〈a〉-projective subdynamics is stable.

A more interesting case to study is that of proper sofic Z-subshifts. In the following exam-
ple we see a non-trivial construction of a BS(1, N)-SFT whose 〈a〉-projective subdynamics is
a proper sofic Z-subshift, namely the sunny-side up shift.

Example 6.6 We will prove that the Z-subshift

S≤1 :=
{
x ∈ {0, 1}Z | |{n ∈ Z : xn = 1}| ≤ 1

}
of sequences with at most one 1 can be realized as the unstable 〈a〉-projective subdynamics of
a BS(1, N)-SFT, for any N ≥ 2.

Define a BS(1, N)-SFT XF using the forbidden patterns F := {pn}N−2
n=0 ∪ {qn}N−1

n=0 , where
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pn ∈ {0, 1}{a
i|i=0,...,n+1} is defined by

pn = 10n1,

and qn ∈ {0, 1}{a
i|i=0,...,N−1}∪{anb} is defined by

qn|{ai|i=0,...,N−1} = 0N−11

qn(anb) = 0

These forbidden patterns force that there cannot be two 1’s at distance less than N − 1 in
the direction of the generator a, and that above a pattern in the direction of the generator
a showing a word 0N−11, there must be 1’s. We will prove that these local constraints are
sufficient to guarantee that S≤1 = P〈a〉(XF).

To see that S≤1 ⊆ P〈a〉(XF), consider s ∈ S≤1. We will construct a configuration x ∈ XF
such that x|〈a〉 = s. If s = 0∞, it suffices to consider x := (xg = 0)g∈BS(1,N) ∈ XF . Now
suppose s has one 1, and without loss of generality we may assume that s1 = 1, sn = 0 for
n 6= 1. Define a configuration x ∈ {0, 1}BS(1,N) by

xg = 1, for g ∈
⋃
j≥0

{
a1−

∑j−1
r=0 εrN

r

bj | εr ∈ {0, . . . , N − 1}, for r = 0, . . . , j − 1
}
, and

xg = 0, in the rest of the group.

This definition forces the configurationx to respect the forbidden patterns in F . In effect,
there are no 1’s in the direction of generator a at a distance closer than N − 1, since if

xg = 1 then g = a1−
∑j−1

r=0 εrN
r
bj for some j ≥ 0 and εr ∈ {0, . . . , N − 1}, for r = 0, . . . , j − 1,

and so for i ∈ {−(N − 2), . . . ,−1}:

gai = a1−
∑j−1

r=0 εrN
r+iNj

bj,

whence xgai = 0. We also see that for i ∈ {−(N − 1), . . . ,−1, 0}

gaib = a1−
∑j−1

r=0 εrN
r+i·Nj

bj+1,

and so xgaib = 1. Hence x ∈ XF and x|〈a〉 = s, from which we conclude that s ∈ P〈a〉(XF).

Now let us see that P〈a〉(XF) ⊆ S≤1. We will prove by induction that for every n ≥
0 : 10n1 /∈ L(P〈a〉(XF)). The forbidden patterns pn from the family F already show this for
n ≤ N−2, so now let’s prove it for n ≥ N−1. By contradiction, suppose 10n1 ∈ L(P〈a〉(XF)),
and choose x ∈ XF such that x|{ai|i=0,...,n+1} = 10n1. Then by the induction hypothesis we see
that x|{ai|i=−(N−1),...,n+1} = 0N−110n1, and thanks to the family F we also see that xan+1b = 1,
and xan+1−kN b = 1, where k =

⌊
n+N
N

⌋
. Since an+1b and an+1−kNb = an+1ba−k are two elements

at distance k through the generator a, with k < n, this contradicts the induction hypothesis.

From the construction we also see that the 〈a〉-projective subdynamics is unstable, since
arbitrarily large heights are needed to forbid two 1’s separated by a long block of 0’s from
appearing on the row 〈a〉.
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Remark 6.7 The previous example shows a surprising property of BS(1, N) in contrast
with Z2: as shown in [18] the sofic Z-subshift S≤1 cannot be realized as the Z-projective
subdynamics of a Z2-SFT. Nonetheless, we’ve just shown that it can be realized as the unstable
〈a〉-projective subdynamics of a BS(1, N)-SFT, for every N ≥ 2. This shows a remarkable
difference between Z2 and BS(1, N) with respect to the nature of the Z-subshifts which can
arise as their projective subdynamics.

6.2 Realization of positive entropy sofic subshifts

One of the first results proven in [18] assures that any sofic Z-subshift with positive topological
entropy may be realized as 〈a〉-projective subdynamics of a Z2-SFT, and the same ideas used
in this proof can be modified to prove the corresponding result on BS(1, N). To do this we
first need to state the same lemma used to prove the result on Z2:

Lemma 6.8 ([18]) Let S be a sofic Z-subshift with positive topological entropy htop(S) > 0.
Then for any K ≥ 1 there exists an M ≥ 1 and a set of words W = {w1, . . . , wK} ⊆ LM(S)
such that if we denote by Y the subshift consisting of all biinfinite concatenations of words
from W , then Y ⊆ S, and for any word v ∈ L3M−1(Y ) there exists a unique 1 ≤ m ≤ M so
that v|[m,m+M−1], v|[m+M,m+2M−1] ∈ W . In particular, this implies that Y is a Z-SFT of step
3M − 1.

Now we are ready to state and prove the main result regarding the realization of positive
entropy sofic Z-subshifts as 〈a〉-projective subdynamics of a BS(1, N)-SFT.

Theorem 6.9 For every sofic Z-subshift of positive entropy there exists a BS(1, N)-SFT X
such that S = P〈a〉(X).

Proof. We are going to prove the result for BS(1, 2) since in this case it is simpler to define
the local rules of the SFT X. The ideas for the proof in the general case N ≥ 2 naturally
extrapolate from the case N = 2.

Let us choose a labeled graph (V,E, i, f, λ) such that S is the subshift whose points are
given as labels of biinfinite paths along the edges E, and let us assume V = {0, 1, . . . , K−1}.
Choose M ≥ 1 and pick a set of words W = {w0, . . . , w2K−1} ⊆ LM(S) satisfying the previous
lemma. Denote by Y the Z-SFT formed by biinfinite concatenations of words from W .

Define a BS(1, 2)-SFT X by the following local rules:

1. For any pattern α /∈ L(Y ) with support {eG, a, . . . a10M−1}, there exists a subpattern
α′ /∈ L(Y ) of length 8M such that the first row on both sheets immediately above it
contain the same pattern β ∈ L(Y ) (of length 4M) which is the concatenation of 4
words of W .
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α′

β

β

2. Suppose we have a pattern in X of the shape

α β γ

r1 r2 t1 t2 u1 u2

r1 r2 t1 t2 u′1 u′2

with α, β, γ of length 4M , r1, r2, t1, t2, u1, u2, u
′
1, u
′
2 of length M , and t1, t2 ∈ W . Then

we must have u1 = u′1, u2 = u′2, and r1, r2, u1, u2 ∈ W . Aditionally, as r1, t1, u1 ∈ W
we can find i, j, k ∈ {0, . . . , 2K − 1} such that r1 = wi, t1 = wj and u1 = wk. For
the pattern to be valid we require that there must be a (directed) path in G between i
(mod K) and j (mod K) with label α and a (directed) path between j (mod K) and
k (mod K) with label β.

3. Suppose we have a pattern in X of the shape

α β γ

r1 r2 t1 t2 u1 u2

r′1 r′2 t1 t2 u1 u2

with α, β, γ of length 4M , r1, r2, r
′
1, r
′
2, t1, t2, u1, u2 of length M , and t1, t2 ∈ W . Then

we must have r1 = r′1, r2 = r′2, and r1, r2, u1, u2 ∈ W . Aditionally, as r1, t1, u1 ∈ W
we can find i, j, k ∈ {0, . . . , 2K − 1} such that r1 = wi, t1 = wj and u1 = wk. For the
pattern to be valid we require that there must be a path in G between i (mod K) and
j (mod K) with label α and a path between j (mod K) and k (mod K) with label β.

Let us prove that S = P〈a〉(X):

First we will show that S ⊆ P〈a〉(X). For arbitrary s ∈ S, we can find a biinfinite sequence
of edges of G such that its label reads s, i.e. {en}n∈Z ∈ EZ such that s = {λ(en)}n∈Z. For
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every n ∈ Z let us define vn := i(en) the initial vertex of en, and define a biinfinite sequence
y by choosing for each j ∈ Z the word y[jM,jM+M−1] ∈ {wv2jM , wv2jM+K} ⊆ W , such that

y[jM,jM+M−1] 6= y[(j+1)M,(j+1)M+M−1] for every j ∈ Z. Now define x ∈ EBS(1,2) by x|〈a〉 = s,
x|b〈a〉 = y, x|ab〈a〉 = y and fill the rest of the rows of the group such that the two rows
originating from a same base are copies of y shifted by M between them (this is precisely to
force that no pattern of the shape of rules 2 and 3 may occur outside the base row 〈a〉). That
is, for every g ∈ BS(1, 2)\〈a〉 such that gb〈a〉 6= 〈a〉 and gab〈a〉 6= 〈a〉: xgb〈a〉 = y = xgab〈a〉
(equal up to a translation) and if xgbai = yk, then xgabai = yk±M . In the particular case
in which gb〈a〉 = 〈a〉 (resp. gab〈a〉 = 〈a〉) we only require that x|gab〈a〉 (resp. x|gb〈a〉) is a
translate of y, because as we said in the beginning we are forcing that x|〈a〉 = s.

The first rule of the subshift X is satisfied by x, since any pattern not in L(Y ) must have
support on 〈a〉 and we constructed both rows originating from this base to follow the first
rule, as the two rows originating from this base have the sequence y on them. We also see
that by construction a pattern of the shape as indicated in the second and third rule can
appear in x only with its base on the set 〈a〉, since on all other a-rows of the group the
pattern seen on the two rows of both sheets originating from it have a copy of y shifted by
M . Therefore for a pattern with the shape and structure of the second or third rule with a
base on the set 〈a〉 the construction of y tells us that both upper rows originating from this
base have the same patterns and the condition of paths in G is fulfilled precisely because we
chose y[jM,(j+1)M+M−1] such that if wi = y[jM,(j+1)M+M−1] ∈ W then i = v2jM (mod K). With
this we see that x satisfies the three local rules, so x ∈ X and this point satisfies x|〈a〉 = s,
from which we conclude the first inclusion.

Now we will prove that P〈a〉(X) ⊆ S. Suppose there exists x ∈ X such that x|〈a〉 /∈ S. As
Y ⊆ S this in particular implies that x|〈a〉 /∈ Y , so we can find on this sequence a pattern
of size 3M not in L(Y ). We can extend this pattern to one of length 10M by considering
x|{a−3M+1,...,a7M}, and using the first rule we can find a subpattern α′ /∈ L(Y ) such that the
rows originating from it have the same pattern β ∈ Y . Now we see that the base α′ together
with both rows β originating from it can be extended to a pattern of the shape appearing
in Rules 2 and 3. Using that x must satisfy rules 2 and 3 we can extend this pattern and
recursively apply both rules infinitely to the left and right, finding in this way a biinfinite
sequence of edges {en}n∈Z which read x|〈a〉, that is x|〈a〉 = {λ(en)}n∈Z ∈ S. But now this
contradicts the fact that this point was precisely one that satisfied that this sequence was
not in S, so we finally conclude that P〈a〉(X) ⊆ S.

6.3 Restrictions of the zero entropy case

The construction made in the proof of the previous theorem relied completely on S having
positive entropy, since it is the fundamental hypothesis for the lemma used throughout the
proof. This indicates that the zero entropy case may be more restrictive, and in what follows
we see that indeed zero entropy sofic subshifts occurring as 〈a〉-projective subdynamics of a
BS(1, N)-SFT need to satisfy a particular condition related to their periodic points.

Definition 6.10 A zero entropy sofic Z-subshift S is said to have a BS(1, N)-good set
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of periods if it admits a right-resolving presentation by a labeled graph Γ with S = SΓ, such
that for every cycle c in Γ with no proper subcycles there exists a finite set Q ⊆ Per(S) of
periodic points and non-negative integers {iq|q ∈ Q} such that the least common multiple
l.c.m.{N iq |Orb(q)| |q ∈ Q} is a multiple of |c|, the length of the cycle c.

Remark 6.11 This definition is tailor-made for zero entropy sofic subshifts, since it is pre-
cisely in this case that the required condition is not trivially fulfilled. Note that SFTs can be
represented by right-resolving labeled graphs whose label function is injective, so the cycle c
itself gives rise to a periodic point whose least period is the length of the cycle. Similarly,
consider a sofic subshift of positive entropy represented by a right-resolving labeled graph Γ.
Positive entropy implies that there must be a vertex which forms part of two distinct cycles
c1, c2 labeling two different periodic points u∞ and v∞, respectively. Then for every r ≥ 1 we
see that the periodic point (urvr)∞ has as least period a multiple of r (since in the middle of
urvr we see a uv which by how we chose u and v does not appear anywhere else in this word).
In particular, the above is satisfied for any length of a cycle c in Γ with no proper subcycles.

In the following example we see a zero entropy proper sofic subshift that does not have a
BS(1, 2)-good set of periods.

Example 6.12 The zero entropy sofic Z−subshift given by the labeled graph from Figure
6.1 does not have a BS(1, 2)-good set of periods, since its only periodic configurations are the
fixed points 0∞ and 1∞, meanwhile the cycle of length 3 in the middle must appear having
odd length in any right-resolving presentation of the subshift. This comes from the fact that
in any such presentation we must be able to find paths which read the words 10n2 for each
n ∈ 3N.

0

1
0 0

0

2

1

Figure 6.1: Example of a zero entropy sofic Z-subshift that does not have a BS(1, 2)-good
set of periods.

Moreover, this example can be generalized to provide, for each N ≥ 2, a right-resolving
labeled graph whose associated Z-sofic shift does not have a BS(1, N)-good set of periods. This
can be done by the same argument given above, considering the graph from Figure 6.1 and
changing the cycle in the middle for one with length coprime to N .

Nonetheless, note that given a right-resolving labeled graph Γ, one can always find N
sufficiently large such that SΓ has a BS(1, N)-good set of periods. In effect, it suffices to
consider N to be the product of the lengths of all cycles in Γ.

Now we prove that having a BS(1, N)-good set of periods is a necessary condition for a zero
entropy proper Z-sofic subshift to be the stable 〈a〉-projective subdynamics of a BS(1, N)-
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SFT.

Theorem 6.13 Let S be a zero entropy proper sofic Z-subshift realized as the stable 〈a〉-
projective subdynamics of a BS(1, N)-SFT. Then S has a BS(1, N)-good set of periods.

Proof. Suppose that X is a BS(1, N)-SFT defined by a (finite) family of forbidden patterns
F ⊆ ARm , for some m ≥ 1, let S be its stable 〈a〉-projective subdynamics, which we already
know forces S to be sofic, and suppose S has zero entropy. Let us prove that S must have a
BS(1, N)-good set of periods.

Since S is the stable 〈a〉-projective subdynamics, we can find M ≥ 0 such that S = X〈a〉,M ,
and furthermore we can assume M ≥ m. By using the fact that S is sofic, we introduce its
follower set presentation Γ = (V,E, i, f, λ) (defined in Proposition 1.42). Consider any cycle
with no proper subcycles c ∈ Γ, with label u := λ(c) ∈ L(S) and with length |c|. If |c| = 1,
then choosing any periodic point q ∈ Per(S) (which exists since all non-empty Z-sofic shifts
contain periodic configurations) we get that N0|Orb(q)| is a multiple of 1 = |c|. Now for the

rest of the proof let us suppose that |c| > 1, and write |c| =
∏J

j=1 p
ij
j , where J ≥ 1, pj is a

prime number and ij ≥ 1 for each j ∈ {1, . . . , J}.

We will prove that for each j ∈ {1, . . . , J} there exists a finite set of periodic points of
Qj ⊆ Per(S) and non-negative integers {lq|q ∈ Qj} such that the least common multiple

l.c.m.{N lq |Orb(q)| |q ∈ Qj} is a multiple of p
ij
j . Having done this for each j, we will have

that the finite set of periodic points Q :=
⋃J
j=1Qj ⊆ Per(S) together with the non-negative

integers
⋃J
j=1{lq|q ∈ Qj} satisfies that the least common multiple l.c.m.{N lq |Orb(q)| |q ∈ Q}

is a multiple of |c|, hence proving that S has a BS(1, N)-good set of periods.

Fix j ∈ {1, . . . , J}. Define the vertices v0, v1 . . . , v|c|−1 ∈ V to be the vertices of the cycle c,
ordered such that (vi, vi+1) ∈ E for each i ∈ {0, . . . , |c|−2}, and (v|c|−1, v0) ∈ E. In particular

we will consider the initial vertex v0 := i(c) ∈ V of the cycle c, and for `j := |c|
pj
∈ N the

vertex v`j ∈ V at distance `j of v0 through the cycle. Finally define u(`j) := u|[1,`j ] ∈ L(S).

As Γ is the follower-set presentation of S we can find a word w ∈ L(S) such that v0 = F (w),
and moreover as c is a cycle and λ(c) = u we have that v0 = F (wuk) for every k ≥ 0.
Furthermore by the definition of u(`j) we have that v`j = F (wu(`j)) and again as c is a cycle,
that v`j = F (wuku(`j)) for every k ≥ 0.

Since c is a cycle in Γ with no proper subcycles, the vertices v0 and v`j are different, and
hence F (wuk) 6= F (wuku(`j)), for all k ≥ 0. This gives rise to two cases specifying the relation
between these two follower-sets:

Case 1: There exists t ∈ L(S) such that ∀k ≥ 0 : t ∈ F (wuk) and t /∈ F (wuku(`j)).

Let us consider k > Nm
(
|A|NmN4M (4M+1) + 1

)
, and fix a locally admissible configuration

C ∈ 〈a〉[2M ] with

C|{a−|w|,...,aN2Mk|c|+|t|−1} = wuN
2Mkt,
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P

C∗ C∗

b−2M

a0

b2M

aN
mN2M |c| a2N

mN2M |c| an1 an2 aN
2Mk|c|−1

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

NmN4M

NmN2M

Nm

Figure 6.2: Schematic description of the patterns used in the proof. The red patterns are
equal, and the green pattern P covers all the first red pattern up until just before reaching
the second red pattern.

where the subword uN
2Mk occupies coordinates {a0, . . . aN

2Mk|c|−1} of the pattern. By our

choice of k we have that k|c| > Nm|c|
(
|A|NmN4M (4M+1) + 1

)
, and so by the pigeonhole

principle we can find two different coordinates n1, n2 ∈ Nm|c|N2MN0 with 0 ≤ n1 < n2 ≤
Nm|c||A|NmN4M (4M+1) such that we can extract from C two equal, non-overlapping patterns

C∗ := C|an1b−2MT = C|an2b−2MT ,

where T := {aibl | 0 ≤ i ≤ NmN4M − 1, 0 ≤ l ≤ 4M}. Finally, denote by P :=
C|an1b−2M{aibl|0≤i≤(n2−n1)N2M−1, 0≤l≤4M}. A schematic description of these patterns is shown
in Figure 6.2. Although the drawing is planar, it symbolizes every sheet originating from the
height b−2M up until the a-row at height height b2M . The red patterns are those that were
found using the pigeonhole principle, and the green pattern is P , covering the strip starting
from the first pattern and stopping just before reaching the second one.

Now we can write C as the concatenation of the pattern P together with the infinite
patterns appearing on C to the left and to the right of P , which we will denote as C =
C−PC+. Thanks to how we defined P we see that the configuration C−PmC+ is locally
admissible in 〈a〉[2M ] for each m ≥ 1, and so is the pattern P∞ formed by concatenating
copies of P infinitely to both sides. This is because the forbidden patterns of the subshift X
have support Rm and we chose n1, n2 and P in such a way that this pattern can be glued to
itself respecting these rules.

Now let us define ‹C := C|〈a〉[M ] , ‹C− := C−|〈a〉[M ] , ‹C+ := C+|〈a〉[M ] and ‹P := P |〈a〉[M ] . Note

that as above, the configurations ‹C−‹Pm‹C+ for m ≥ 1 are locally admissible on 〈a〉[M ], and
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so is ‹P∞. In particular as each row of ‹P∞ can be seen in P∞ as the central row of a strip
〈a〉[M ], we conclude that every row of the pattern ‹P∞ is in X〈a〉,M = S. These rows will form
the periodic points from the set Qj ⊆ Per(S) we talked about at the beginning of the proof.

Choose n∗ ≥ 1 minimum such that the pattern

R := ‹P |an1b−M{aibl|0≤i<NMn∗, 0≤l<2M+1}

satisfies R∞ = ‹P∞, and so for any k̃ sufficiently large the configuration ‹C−Rk̃ ‹C+ is admissible
in 〈a〉[M ]. This n∗ must then respect the periods of each of the periodic points found on the
rows of the pattern ‹P∞, taking into account that due to the geometry of the group the
periodic points from rows with positive b height see their least periods in the direction of
the generator a multiplied by N raised to the height in the direction of the b generator. In
particular as n∗ is minimal, it must be the least common multiple of these numbers, and so
we only need to prove that n∗ is a multiple of p

ij
j by the argument given at the start of the

proof.

Suppose n∗ is not a multiple of p
ij
j . Then there are infinite positive integers k̃′ such that

k̃′n∗ = |c|
pj

= `j (mod |c|), since the prime decomposition of n∗ can only contain powers

of pj with exponent less or equal to ij − 1. But then as the row ‹P∞|〈a〉 has period n∗

and is composed of concatenated copies of u thanks to the choice of P , we must have that

u = (u(`j))
pj and that for k̃′ large enough ‹C−Rk̃′ ‹C+ is a locally admissible configuration on

the strip 〈a〉[M ], which restricted to 〈a〉 has as subword wuk
∗
u(`j)t ∈ L(S) as the pattern

restricted to this row is a point from S. This implies that t ∈ F (wuk
∗
u(`j)) and contradicts

the hypothesis that began this case.

Case 2: There exists t ∈ L(S) such that ∀k ≥ 1 : t /∈ F (wuk) and t ∈ F (wuku(`j)).

This case is very similar to the previous one, so we will omit some of the details while
making the necessary adjustments for it to work.

Again let us consider any k > Nm
(
|A|NmN4M (4M+1) + 1

)
, and fix a locally admissible

configuration C ∈ 〈a〉[2M ] with

C|
{a−|w|,...,aN

2Mk|c|+`j+|t|−1}
= wuN

2Mku(`j)t,

where the subword uN
2Mk occupies coordinates {a0, . . . aN

2Mk|c|−1} of the pattern. We have

that thanks to the choice of k : k|c| > Nm|c|
(
|A|NmN4M (4M+1) + 1

)
, and so by the pigeonhole

principle we can find two different coordinates n1, n2 ∈ Nm|c|N2MN0 with 0 ≤ n1 < n2 ≤
Nm|c||A|NmN4M (4M+1) such that we can extract from C two equal, non-overlapping patterns

C|an1b−2MT = C|an2b−2MT ,

where T := {aibl | 0 ≤ i ≤ NmN4M − 1, 0 ≤ j ≤ 4M}. Following the same definitions for
P , C− and C+ as on the previous case, we again see that C−PmC+ is a locally admissible
configuration in 〈a〉[2M ] for every m ≥ 1, and that so is the configuration P∞. Now we
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define ‹C := C|〈a〉[M ] , ‹C− := C−|〈a〉[M ] , ‹C+ := C+|〈a〉[M ] and ‹P := P |〈a〉[M ] . The configurations‹C−‹Pm‹C+ for m ≥ 1 are locally admissible on 〈a〉[M ], and so is ‹P∞. In particular as each row
of ‹P∞ can be seen in P∞ as the central row of a strip 〈a〉[M ], we conclude that every row of
the pattern ‹P∞ is a periodic point from the subshift X〈a〉,M = S. In the same way as on the
previous case, these rows will form the periodic points from the set Qj ⊆ Per(S) we talked
about at the beginning of the proof.

Let us choose n∗ ≥ 1 minimum such that the pattern

R := ‹P |an1b−M{aibl|0≤i<NMn∗, 0≤l<2M+1}

satisfies R∞ = ‹P∞, and so for any k̃ sufficiently large the configuration ‹C−Rk̃ ‹C+ is admissible
in 〈a〉[M ]. By the same reason given in the previous case it suffices to show that n∗ is a multiple

of p
ij
j to finish the proof. If this were not the case, then as showed before there are infinite

positive integers k̃′ such that k̃′n∗ = |c|
pj

= `j (mod |c|). But then as the row ‹P∞|〈a〉 has period

n∗ and is composed of concatenated copies of u thanks to the choice of P , we must have that

u = (u(`j))
pj and that for k̃′ large enough ‹C−Rk̃′ ‹C+ is a locally admissible configuration on

the strip 〈a〉[M ], which restricted to 〈a〉 has as subword wuk
∗
t ∈ L(S). But this implies that

t ∈ F (wuk
∗
) and contradicts the hypothesis of this case.

Remark 6.14 With the above theorem we showed that the condition of having a BS(1, N)-
good set of periods is necessary for a Z-subshift Y to occur as the stable 〈a〉-projective sub-
dynamics of a BS(1, N)-SFT, which reproduces the analogue result for Z2 shown in [18].
However, in the context of Z2-subshifts a complete characterization is given: a Z-sofic shift
can be realized as stable Z-projective subdynamics of a Z2-SFT if and only if it has a good
set of periods and does not have a universal period, that is, there cannot exist p ∈ N
and M ≥ 1 such that for every y ∈ Y there exists a finite set of coordinates Fy ⊆ Z with
|Fy| ≤M and a point z ∈ Y periodic with period p such that y|Z\Fy = z|Z\Fy . Moreover, this
last condition also applies for unstable Z-projective subdynamics.

As we commented after Example 6.6, it is here that we see a fundamental difference be-
tween the nature of projective subdynamics of Z2 with that of BS(1, N): we showed that the
sunny-side up shift, which has a universal period, can be realized as unstable 〈a〉-projective
subdynamics of the latter, while it cannot be realized as Z-projective subdynamics of the for-
mer. This illustrates that the family of sofic Z-subshifts which can be realized as Z-projective
subdynamics of a Z2-SFT is different from those who can be realized as 〈a〉-projective subdy-
namics of a BS(1, N)-SFT. Nonetheless, we have found some similarities between both cases:
both families contain positive entropy sofic Z-subshifts, and we found an analogous of the Z2

condition of “having a good set of periods” as a sufficient condition for realizability of zero
entropy sofic Z-subshifts. However, unlike the Z2 case, we are far from giving a complete
characterization of said family yet.
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Conclusion

In this thesis we tackled the (rather general) question of how well we can understand subshifts
defined on solvable (non-abelian) Baumslag-Solitar groups, inspired by results and ideas
present in the study of Z2-subshifts. In particular, we searched for similitudes and differences
between these cases in order to understand which complications appearing are characteristic
of Baumslag-Solitar groups, and understand them through a geometric perspective by looking
at the Cayley graph of BS(1, N). We studied substitutions in BS(1, N) and proved a partial
version of Mozes theorem, investigated some basic dynamical properties of graph-coloring
subshifts, how Z-subshifts can be extended to BS(1, N)-subshifts together with properties of
these extensions, and finally studied partial results regarding realization of sofic Z-subshifts
as 〈a〉-projective subdynamics of a BS(1, N)-SFT.

This investigation had as one powerful tool the sheets structure of BS(1, N), which allowed
us to resemble the Cayley graph of the group to the lattice Z2 and adapt constructions made
in the latter in order to prove analogue results. Nonetheless, the “independence” between
sheets gained when moving in the direction of the generator b in the Cayley graph causes
completely different behavior than that of the lattice for some properties and this of course
also poses obstructions when trying to adapt techniques from Z2. Another important tool
were the rectangles of BS(1, N) (see Definition 3.1): this family of subsets arose as a natural
generalization of rectangles in Z2, forming a Følner sequence for BS(1, N) and hence giving
us a preferred family over which to compute the topological entropy of a BS(1, N)-subshift.
They were also essential when trying to extend constructions done in Z2 to BS(1, N), taking
advantage of the similitude between rectangles of both groups, and the fact that the whole
group may be decomposed as a disjoint union of translates of rectangles.

Nonetheless, the results obtained throughout this thesis leave some unanswered questions
and space for future research in this topic, which we list below separated by each chapter.

� Chapter 2: The structure of periodic configurations.
Are there any other (families of) directions of periodicity which force some kind of rigid-
ity in the structure of a periodic configuration? We studied the case of periods in the
family {apNk | k ∈ N, p 6∈ NZ}, but it remains open what can be said about periodic-
ity along the b direction. An interesting starting point may be studying configurations
which are periodic through every sheet up to some height, that is, a configuration
x ∈ ABS(1,N) with

{ajbm | 0 ≤ j < Nm} ⊆ Stab(x), for some m ≥ 1.
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� Chapter 3: Substitutions on Baumslag-Solitar groups.
The most important question arising from this chapter is whether we can find a version
of Mozes’ theorem without the hypothesis of an (eventually) settling substitution. The
intuition says that this should be the case, but when trying to prove the theorem
technical details become complex and cumbersome really quickly.

� Chapter 4: Graph-coloring subshifts.
While this was answered affirmatively for the case of odd N , it remains an open question
whether or not htop(C3) > 0 for even N . Answering it may require more delicate
understanding about how patterns can repeat with a determined frequency throughout
the Cayley graph of BS(1, N), in contrast to the rather simple proof for odd N , which
exploits the bipartitity of the graph in this case.

Another interesting topic to look into is what kind of mixing conditions we can find in
Cn for n ∈ {3, 4}. We know that C2 is finite, whereas for n ≥ 5 the subshift Cn exhibits
a really strong mixing condition, so one would hope to find an intermediate mixing
property satisfied in the two remaining cases.

� Chapter 5: Relationship between 1-dimensional and Baumslag-Solitar sub-
shifts.
One of the key results of this chapter was to show that if X̂ is a BS(1, N)-subshift
induced by a 1-step Z-SFT X having a mixing symbol, then

1

2
htop(X) ≤ htop(X̂) ≤ htop(X).

A full-shift is a trivial example of a subshift attaining the upper bound, but we did not
provide examples where this inequality is strict. Finding such examples is an interesting
task. On the contrary, one could try to improve the lower bound in order to understand
how small an entropy gap between htop(X̂) and htop(X) can be achieved. A possible
approach should take advantage of having a mixing symbol in order “not lose” too
many patterns when passing from Z to BS(1, N).

� Chapter 6: Projective subdynamics.
In the final chapter of this thesis we defined projective subdynamics for BS(1, N)-
subshifts and gave partial results of realizability of sofic Z-subshifts as 〈a〉-projective
subdynamics of a BS(1, N)-SFT. In particular for sofic Z-subshifts of zero entropy
we were only able to give a necessary condition for it to be realized in a stable way.
The complete characterization obtained for Z2 suggests that we might be able to find
similar (sufficient) conditions for the realizability of these Z-subshifts. Especially one
would hope to find an analogous property to having a universal period which limits a
Z-subshift from being realized as 〈a〉-projective subdynamics inside a BS(1, N)-SFT.

A final yet completely unexplored direction is what can be said in the case of subshifts
defined on an arbitrary Baumslag-Solitar group BS(m,n), for m,n ∈ Z\{0, 1}. Things
seem to become more complicated and considerably different: we no longer have such a
clean normal form as that of Proposition 1.25, we will have trouble finding a family of sets
similar to the rectangles over which to make constructions, and as these groups are no longer
amenable (see Proposition 1.23) the concept of ordinary topological entropy does not apply.
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Nonetheless, the work done in this thesis studying the solvable case is a first approach to the
general question and may give ideas on how to proceed.
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[12] Clara Löh. Geometric group theory: an introduction. Springer International Publishing,
2017.

[13] R. C. Lyndon and Paul E. Schupp. Combinatorial group theory. Springer, 1977.

109



[14] John Meier. Groups, Graphs and Trees an Introduction to the Geometry of Infinite
Groups. Cambridge University Press, 2008.

[15] Stephen Meskin. Nonresidually finite one-relator groups. Transactions of the American
Mathematical Society, 164:105, 1972.

[16] David Moldavanskii. On the residual properties of baumslag–solitar groups. Communi-
cations in Algebra, 46(9):3766–3778, February 2018.

[17] Shahar Mozes. Tilings, substitution systems and dynamical systems generated by them.
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