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Abstract. We study properties of truncations in the dual and intertwining
process in the monotone case. The main properties are stated for the time-
reversed process and the time of absorption of the truncated intertwining pro-
cess.
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1. Introduction

In this work we study truncation of stochastic kernels and their relation to duality
and intertwining.

In next section we recall these concepts, a main one being that when one starts
from an stochastic and positive recurrent matrix and one construct a dual, then
the associated intertwining matrix is associated to the time-reversed matrix of the
original one.

Thus, many of the concepts that are proven for the original matrices need to be
shown for the time-reversed matrix. This gives rise to a problem when dealing
with monotonicity because it is not necessarily invariant by time-reversing. On the
other hand monotonicity property plays a central role in duality and intertwining
because a nonnegative dual kernel exists for the Siegmund dual function, and in
this case several properties can be stated between the original kernel and the dual
and intertwining associated kernels.

In this framework our first result is to extend the Pollak-Siegmund relation stated
for the monotone process to their time-reversed process. In terms of truncation
this result asserts that whatever is the truncation, when the level increases, the
quasi-stationary distribution converges to the stationary distribution. This is done
in Proposition 6 in Section 5.1.

In Section 5.2 we introduce the truncation given by the mean expected value, which
satisfies that the truncation up to N preserves the stationary distribution up to
N−1. In Proposition 8 it is shown that it has a nonnegative dual, and in Proposition
9 it is proven that the time of attaining the absorbing state is increasing with
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the level, either for the dual and the intertwining matrices. For the Diaconis-
Fill coupling this means that the time for attaining the stationary distribution is
stochastically increasing with the truncation of the reversed process.

In Proposition 13 we compare the quasi-stationary behavior for the Diaconis-Fill
coupling with respect to the intertwining kernel, when in both processes one avoids
the absorbing state.

We recall some of the main general results in duality and intertwining in Section 3
and for the monotone case and the Siegmund kernel this is done in Section 4. The
strong stationary times and some of its properties are given in Section 6, and the
Diaconis-Fill coupling is given in Section 7.

2. Duality and Intertwining

2.1. Notation. Let I be a countable set and 1 be the unit function defined on I. A
nonnegative matrix P = (P (x, y) : x, y ∈ I) is called a kernel on I. A substochastic
kernel is such that P1 ≤ 1, it is stochastic when P1 = 1, and strictly substochastic
if it is substochastic and there exists some x ∈ I such that P1(x) < 1.

A kernel P is irreducible if for any pair x, y ∈ I there exists n > 0 such that
Pn(x, y) > 0. A point x0 ∈ I is absorbing for P when P (x0, y) = δy,x0 for y ∈ I
(δx0,x0 = 1 and δy,x0 = 0 otherwise).

Let P be substochastic. Then, there exists a Markov chain X = (Xn : n < T X)
uniquely defined in distribution, taking values in I, with lifetime T X and with
transition kernel P . Take ∂ 6 ∈I and define Xn = ∂ for all n ≥ T X . P acts on the
set of bounded or nonnegative real functions by Pf(x) = E(f(X1)1(T

X > 1)) and
Pnf(x) = E(f(Xn)1(T

X > n)) for n ≥ 1, x ∈ I.

In the sequel, we introduce three kernels, P , P̂ , P̃ ; defined respectively on the

countable sets I, Î, Ĩ. When they are substochastic the associated Markov chains

are respectively denoted by X X̂, X̃ with lifetimes T , T̂ , T̃ . For the chain X we
note by τK = inf{n ≥ 0 : Xn ∈ K} the hitting time of K ⊆ I and put τa = τ{a}

for a ∈ I. Analogously, we define for X̂ (respectively for X̃) the hitting times τ̂
K̂

and τ̂ â (respectively τ̃
K̃

and τ̃ ã).

2.2. Definitions. We recall the duality and the intertwining relations. As usual
M ′ denotes the transpose of the matrix M , so M ′(x, y) = M(y, x) for x, y ∈ I.

Definition 1. Let P and P̂ be two kernels defined on the countable sets I and Î,

and let H = (H(x, y) : x ∈ I, y ∈ Î) be a matrix. Then P̂ is said to be a H−dual

of P , and H is called a duality function between (P, P̂ ), if it is satisfied

(1) HP̂ ′ = PH.

�

Duality is symmetric because if P̂ is a H−dual of P , then P is a H ′−dual of P̂ .
We only consider nonnegative duality functions H . Note that if H is a duality

function between (P, P̂ ), then cH also is for all c > 0. We assume that no row and
no column of H vanishes completely.
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If P̂ is a H−dual of P , then X̂ is a H−dual of X , in the following sense

∀x ∈ I, y ∈ Î , ∀n ≥ 0 : Ex(H(Xn, y)) = Ey(H(x, X̂n)),

where H is extended to (I ∪ {∂}) × (Î ∪ {∂}) by putting H(x, ∂) = H(∂, y) =

H(∂, ∂) = 0 for all x ∈ I, y ∈ Î.

This notion of duality (1) coincides with the one between Markov processes found
in references [13], [14] and [5], among others. Let us now introduce intertwining as
in [4].

Definition 2. Let P and P̃ be two kernels defined on the countable sets I and Ĩ

and let Λ = (Λ(y, x) : y ∈ Ĩ , x ∈ I) be a stochastic matrix. We say that P̃ is a

Λ−intertwining of P , and Λ is called a link between (P, P̃ ), if it is satisfied

P̃Λ = ΛP.

�

Intertwining is not necessarily symmetric because Λ′ is not necessarily stochastic. If

Λ is doubly stochastic then P̃ a Λ− intertwining of P implies P is a Λ′−intertwining

of P̃ . If P̃ is a Λ−intertwining of P , then X̃ is said to be a Λ−intertwining of X .

Throughout this paper we consider I = N = {1, 2, ...}, the set of nonnegative
integers in the infinite case or I = IN = {1, · · · , N} with N ≥ 2 in the finite case.

We note by ea a column vector with 0 entries except for its a−th entry which is 1.

For a vector ρ ∈ RI we denote by Dρ the diagonal matrix with diagonal entries
(Dρ)(x, x) = ρ(x), x ∈ I.

Assumption. From now on, P = (P (x, y) : x, y ∈ I) is assumed to be an irre-
ducible positive recurrent stochastic kernel and its stationary distribution is noted
by π = (π(i) : i ∈ I) > 0.

Let
←−
P be the time-reversed transition kernel of P , so

←−
P ′ = DπPD−1

π Since
←−
P is

also irreducible positive recurrent with stationary distribution π′, we can exchange

the roles of P and
←−
P .

Remark 1. Let P̃ be a Λ−intertwining of P . Since Λ is stochastic, when β̃
′
is a

stationary probability measure of P̃ then β̃
′
Λ is a stationary probability measure of

P . Therefore, if ã is an absorbing state for P̃ , then we necessarily have,

(2) π′ = e′ãΛ.

�

3. Relations

Below we supply Theorem 1 shown in [10] which summarizes several relations on
duality and intertwining.

Theorem 1. Let P be an irreducible positive recurrent stochastic kernel with sta-

tionary distribution π′. Assume P̂ is a kernel which is H−dual of P , HP̂ ′ = PH.
Then:

(i) P̂H ′Dπ = H ′Dπ

←−
P ;
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(ii) ϕ := H ′π is strictly positive and satisfies P̂ϕ = ϕ;

When P̂ is stochastic and irreducible then ϕ = c1 for some c > 0 and P̃ = P̂ .

(iii) P̃ = D−1
ϕ P̂Dϕ is a stochastic kernel (defined on Ĩ = Î) and the matrix Λ :=

D−1
ϕ H ′Dπ is stochastic. Moreover P̃ is a Λ−intertwining of

←−
P . Hence, it holds

P̃Λ = Λ
←−
P satisfying P̃1 = 1 = Λ1.

Now assume I and Î are finite sets.

(iv) If P̂ is strictly substochastic then it is not irreducible.

(v) If P̂ is strictly substochastic and has a unique stochastic class Îℓ, then

ϕ(x)

ϕ(y)
= Px(τ̂ Îℓ < T̂ ) for any y ∈ Îℓ,

and the intertwined Markov chain X̃ is given by the Doob transform

(3) Px(X̃1 = y1, · · · , X̃k = yk) = Px(X̂1 = y1, · · · , X̂k = yk | τ̂ Îℓ < T̂ ).

(vi) If â is an absorbing state for P̂ then â is an absorbing state for P̃ and the
relation (2) π′ = e′âΛ, is satisfied.

�

One has
Λ(x, y) = ϕ(x)−1H(y, x)π(y),

in particular Λ(x, y) = 0 if and only if H(y, x) = 0.

Notice that when ϕ > 0, the equality P̃ = D−1
ϕ P̂Dϕ implies that the sets of

absorbing points for P̂ and P̃ coincide.

Remark 2. When the starting equality between stochastic kernels is the inter-

twining relation P̃Λ = Λ
←−
P , then we have the duality relation HP̂ ′ = PH with

H = D−1
π Λ′ and P̂ = P̃ . In this case ϕ = 1. �

The next result of having a constant column appears as a condition in the study of
sharp duals, see Remark 6 in Section 6.

Proposition 2. Assume H is nonsingular and has a strictly positive constant
column, that is

∃â ∈ Î : Heâ = c1 for some c > 0.

Then:

(i) â is an absorbing state for P̂ (so {â} is a stochastic class).

(ii) Under the hypotheses of Theorem 1, π′ = e′âΛ holds and if P̂ is strictly sub-

stochastic and {â} is the unique stochastic class then Py(τ̂ â < T̂ ) = ϕ(y)/ϕ(â) and
the relation (3) is satisfied. �

Remark 3. Duality functions with constant columns appear in the following situa-

tions. If x0 ∈ I is an absorbing point of the kernel P and P̂ is a substochastic kernel

that is a H−dual of P , then h(y) := H(x0, y), y ∈ Î, is a nonnegative P̂−harmonic

function. So, when H is bounded and P̂ is a stochastic recurrent kernel, the x0−row
H(x0, ·) is constant. �
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Remark 4. The time-reversed transition kernel
←−
P can always be put as a Doob

transform
←−
P = DϕP

′D−1
ϕ with ϕ(x) = Px(τ > 1) for some stopping time τ . In

this case ϕ = π so we must only define τ . For the Markov chain X = (Xn)
with transition matrix P it exists a set of random function (Un,x : n ≥ 1, i ∈ I)
taking values in I and independent for different n, such that Xn+1 = Un+1,Xn

for all
n ≥ 0. Now take a collection of independent identically distributed random variables
(Jn : n ≥ 1) distributed as π, and define the Markov chain Y = (Yn : n ≥ 0) by

Yn+1 = Jn+1 · 1(Un+1,Jn+1 = Yn) + ∂ · 1(Un+1,Jn+1 6= Yn), n ≥ 0,

where ∂ 6∈ I is an absorbing state for Y . For x, y ∈ I we have P(Yn+1 = y, Yn =
x) = π(y)P(Un+1,y = x) = π(y)P (y, x). Let τ = inf(n ≥ 1 : Yn = ∂), then we
have Px(τ > 1) = π(x) and so Px(Y1 = y | τ > 1) = π(y)P (y, x)π(x)−1. Then
(Yn : n ≥ 0) is a Markov chain such that for all n ≥ 1 one has Px(Yn = y | τ >

n) =
←−
P (n)(x, y).

4. Monotonicity and the Siegmund kernel

The Siegmund kernel, see [16], is defined by

HS(x, y) = 1(x ≤ y), x, y ∈ I.

This kernel is nonsingular and (HS)−1 = Id−R with R(x, y) = 1(x+1 = y) (which
is a strictly substochastic kernel because theN−th row vanishes), so (HS)−1(x, y) =
1(x = y) − 1(x + 1 = y) and HS = (Id − R)−1 is the potential matrix associated
to R. In [16] the Siegmund duality was used to show the equivalence between
absorbing and reflecting barrier problems for stochastically monotone chains.

Let P̂ be a substochastic kernels such that HSP̂ ′ = PHS. Since (HSP̂ ′)(x, y) =∑
z≥x P̂ (y, z) and (PHS)(x, y) =

∑
z≤y P (x, z), they must satisfy

(4) P̂ (y, x) =
∑

z≥x

P̂ (y, z)−
∑

z>x

P̂ (y, z) =
∑

z≤y

(P (x, z)− P (x+ 1, z)), x, y ∈ I.

In particular, the condition P̂ ≥ 0 requires the monotonicity of P ,

∀y ∈ I :
∑

z≤y

P (x, z) decreases in x ∈ I.

From P (1, 1) < 1 one gets that P̂ loses mass through 1. Moreover, if r is the

smallest integer such that
∑

z≤r P (1, z) = 1, then P̂ loses mass through {x < r}

and it does not lose mass through {r, · · · , N}. By applying Theorem 1 one gets

ϕ(x) = (HS)′π(x) =
∑

y∈I

1(y ≤ x)π(y) =
∑

y≤x

π(y) =: πc(x),

the cumulative distribution of π, which is not constant because π > 0.

Consider the finite case with I = Î = Ĩ = IN , N ≥ 2. If P is substochastic then

the equality P̂ (N, x) =
∑
z≤N

(P (x, z)− P (x+ 1, z)) implies P̂ (N, x) = δx,N , so N is

an absorbing state for P̂ . It can be checked that N is the unique absorbing state

for P̂ . We can summarize the above analysis by the following result.
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Corollary 3. Let HS be the Siegmund kernel, P be a monotone irreducible positive

recurrent stochastic kernel with stationary distribution π′. Let HSP̂ ′ = PHS with

P̂ ≥ 0. Then:

(i) ϕ = πc and the stochastic intertwining kernel Λ satisfies

(5) Λ(x, y) = 1(x ≥ y)
π(y)

πc(x)
.

The intertwining matrix P̃ of
←−
P , that verifies P̃Λ = Λ

←−
P , is given by

(6) P̃ (x, y) = P̂ (x, y)
πc(y)

πc(x)
, x, y ∈ I.

Now assume I = IN , then,

(ii) P̂ is strictly substochastic and loses mass through 1, and parts (iv), (v) and
(vi) of Theorem 1 hold.

(iii) N is the unique absorbing state for P̂ (and for P̃ ), Theorem 1 parts (v) and

(vi) are fulfilled with Îℓ = {N} and â = N . In particular π′ = e′NΛ holds.

(iv) The following relation is satisfied

(7) ΛeN = π(N)eN .

�

5. Truncation for Monotone kernels

The purpose of this section is to see how the truncations behaves with the duality
relation.

5.1. The Pollak-Siegmund limit for the reversed chain. Since P has sta-
tionary distribution π′ it holds lim

n→∞
Px(Xn = y) = π(y) for y ∈ N. Pollak and

Siegmund proved in [15] that if P is also monotone then,

(8) ∀x, y ∈ N : lim
n,N→∞

Px(Xn = y | τ (N) > n) = π(y),

where τ (N) is the hitting times of the domain RN = {z ≥ N} by the chain X . So,
a truncation at a sufficiently high level, will have a stationary distribution close to
the one of the original process.

Now, in the framework of Theorem 1 the intertwining relation P̃Λ = Λ
←−
P is con-

structed from a duality relation, and so
←−
P plays the role of P . This leads us to show

the Pollak-Siegmund relation for the reversed kernel
←−
P (x, y) = π(x)−1P (y, x)π(y).

First note that for any path x0, ..., xn it holds

(9)

n−1∏

k=0

←−
P n(xk, xk+1) = π(x0)

−1

(
n−1∏

k=0

Pn(xk+1, xk)

)
π(xn).
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Let ←−τ (N) be the hitting times of RN = {z ≥ N} by the chain
←−
X . From (9) one

gets

Px(
←−
Xn = z,←−τ (N) > n) = π(x)−1π(z)Pz(τ (N) > n,Xn = x) and

Px(
←−τ (N) > n) = π(x)−1

∑

z∈N

π(z)Pz(τ (N) > n,Xn = x).

Then,

Px(
←−
Xn = y |←−τ (N) > n) =

π(y)Py(τ (N) > n,Xn = x)∑
z∈N

π(z)Pz(τ (N) > n,Xn = x)
(10)

=
π(y)Py(Xn = x | τ (N) > n)

∑
z∈N

π(z)Pz(Xn = x | τ (N) > n)
Pz(τ (N)>n)

Py(τ (N)>n)

.

We recall P monotone means that for z ≥ y all N ≥ 1 it is satisfied Py(X1 < N) ≥
Pz(X1 < N) for all N ≥ 1. This implies for all r ≥ 1 we have Py(Xr < N) ≥
Pz(Xr < N) when y ≤ z. Monotonicity is also equivalent to the fact that for all
decreasing bounded function h : N → R one has Ey(h(X1)) ≥ Ez(h(X1)) when
y ≤ z.

Lemma 4. Assume P is monotone. Then, for all N ≥ 1 one has

(11) ∀y ≤ z ≤ N, ∀n ≥ 1 : Py(τ (N) > n) ≥ Pz(τ (N) > n).

Proof. Let N be fixed. We will show by recurrence on k ≥ 0 that for all n > k one
has

(12) Py(Xn−k < N, ..,Xn < N) ≥ Pz(Xn−k < N, ..,Xn < N).

The inequality for k = 0, Py(Xn < N) ≥ Pz(Xn < k) holds for all n > 0 because P
is monotone and y ≤ z. Let us show it for k ≥ 1 and all n > k. So, we may assume
we have shown it up to k− 1 and all n > k− 1. From the Markov property we have

Px(Xn−k < N, ..,Xn < N) =
∑

u<N

Pu(X1 < N, ..Xk < N)Px(Xn−k = u).

We claim that the function h defined by h(u) = Pu(X1 < N, ..,Xk < N) for u < N
and h(u) = 0 for u ≥ N , is decreasing in u. In fact this is exactly the induction
hypothesis for k−1 when one takes n = k in (12). Then Ey(h(Xn−1) ≥ Ez(h(Xn−1),
which is the inequality we want to prove:

∑
u<N Pu(X1 < N)Py(Xn−1 = u) ≥∑

u<N Pu(X1 < N)Pz(Xn−1 = u).

Then, relation (11) is shown because (12) for k = n− 1 is equivalent to

Py(τ (N)>n)=Py(Xn−k<N, ..,Xn<N) ≥ Pz(Xn−k<N, ..,Xn<N)=Pz(τ (N)>n).

�

Let us now show a ratio limit result.

Lemma 5. Let P be a monotone irreducible positive recurrent stochastic kernel
with stationary distribution π′. We have

(13) ∀y, z ∈ N : lim
n,N→∞

Py(τ (N) > n)

Pz(τ (N) > n)
= 1.
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Proof. We will use a recurrence on n ∈ N. We will also use the following remark
that follows from Lemma 4: if lim

n,N→∞
Py(τ (N) > n)/Pz(τ (N) > n) = 1 for y < z,

then

(14) ∀ y < x < z : lim
n,N→∞

Px(τ (N) > n)

Py(τ (N) > n)
= lim

n,N→∞

Px(τ (N) > n)

Pz(τ (N) > n)
= 1

We claim that

(15) ∀x ∈ N :
∑

z≤x

P (x, z) < 1.

In fact, if
∑

z≤x P (x, z) = 1 holds for some x, then the monotone property implies∑
z≤x P (y, z) = 1 for all y ≤ x and so the set of points {1, .., x} is a closed set of P

contradicting the irreducibility property. Then, the claim holds and for all x ∈ N

there exists some z > x such that P (x, z) > 0.

Let x ∈ N. For ǫ > 0 there exists a bounded L = L(ǫ) such that
∑

z∈L πz >
1 − (ǫ/2). From (8) we get that there exists n0, N0 such that for n ≥ n0, N ≥ N0

one has

lim
n,N→∞

Px(Xn ≤ L | τ (N) > n) > 1− ǫ.

Then,

(16) ∀x ∈ N : lim
n,N→∞

Px(τ (N) > n | τ (N) > n− 1) = 1.

For the induction we use the equality

Px(τ (N) > n) =
∑

z∈N

P (x, z)Pz(τ (N) > n− 1),

so

(17) 1 =
∑

z∈N

P (x, z)
Pz(τ (N) > n− 1)

Px(τ (N) > n− 1)

1

Px(τ (N) > n |τ (N) > n− 1)
.

We define:

Property Prop(x) at x is :(18)

∀y ≤ x : lim
n,N→∞

Px(τ (N) > n)/Py(τ (N) > n) = 1 and

∃ z > x such that lim
n,N→∞

Px(τ (N) > n)/Pz(τ (N) > n) = 1.

Note that (14) implies that if Prop(x) holds then we can always assume z = x+ 1
in (18) and so that

∀ y ≤ x : lim
n,N→∞

Px(τ (N) > n)/Px+1(τ (N) > n) = 1.

Let us prove that Prop(1) holds. We need only to show that for some z > x one
has lim

n,N→∞
P1(τ (N) > n)/Pz(τ (N) > n) = 1. From (17) we have

1 =
P (1, 1)

P1(τ (N)>n |τ (N)>n−1)
+
∑

z>1

P (1, z)
Pz(τ (N)>n−1)

P1(τ (N)>n−1)

1

P1(τ (N)>n |τ (N) > n−1)
.

From (16), (11) we deduce that lim
n,N→∞

Pz(τ (N) > n− 1)/P1(τ (N) > n− 1) = 1 for

all z > 1 such that P (1, z) > 0. From (15) we get Prop(1).
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Let x > 1. We assume Prop(y) holds up to y = x − 1 and let us show Prop(x) is
satisfied. We have

(19) 1 =
∑

z∈N

P (x, z)
Pz(τ (N) > n− 1)

Px(τ (N) > n− 1)

1

Px(τ (N) > n |τ (N) > n− 1)
.

From (19), (16), (11) we get that lim
n,N→∞

Pz(τ (N) > n − 1)/P1(τ (N) > n − 1) = 1

for all z > 1 such that P (x, z) > 0. From (15) we get Prop(x). Then, the result is
shown. �

Let us state the Pollak-Siegmund limit relation (8) for the reversed chain.

Proposition 6. We have

∀x, y ∈ N : lim
n,N→∞

Px(
←−
Xn = y |←−τ (N) > n) = π(y).

Proof. From condition (11) and (8), (13), we can use the dominated convergence
theorem in (10) to get

lim
n,N→∞

Px(
←−
Xn = y |←−τ (N) > n) =

π(y)π(x)∑
z∈N

π(z)π(x)
= π(y).

�

5.2. The truncation of the mean expected value have nonnegative dual.

We assume P is monotone on N. Then, we can consider that a truncation of P at
level N is a kernel PN taking values in IN that satisfies

(20) for x < N : PN (x, y) = P (x, y) if y < N and PN (x,N) =
∑

z≥N

P (x, z).

The unique degree of freedom is to define the redistribution of mass at N . In the
truncation PN we will define, we do it in such a way that the stationary distribution
is preserved in a very specific way. Let π be the tail of π, π(x) =

∑
z≥x π(z), in

particular π(N) =
∑

z≥N π(z). We define PN by (20) and such that

PN (N, y) =
1

π(N)

∑

z≥N

π(z)P (z, y), PN (N,N) =
1

π(N)

∑

z≥N

π(z)(
∑

u≥N

P (z, u)).

Let πN be given by πN (x) = π(x) for x < N and πN (N) = π(N). Let us check
that πN is the stationary distribution of PN . For y < N one has

N∑

x=1

πN (x)PN (x, y) =
∑

x<N

π(x)PN (x, y) + (
∑

z≥N

π(z)P (z, y)) = π(y) = πN (y),

and for y = N ,

N∑

x=1

πN (x)PN (x,N) =
∑

x<N

π(x)(
∑

u≥N

P (x, u)) +
∑

z≥N

π(z)(
∑

u≥N

P (z, u))

=
∑

x∈N

π(x)
∑

u≥N

P (x, u) = π(N) = πN (N).
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This truncation can be written as the action of a mean expected operator. Let EN

be the mean expected operator on L1(N, π) with respect to the σ−field induced by
the partition αN = {{x} : x < N} ∪ {x ≥ N}. So,

ENf(x) = f(x) if x < N and ENf(x) =
1

π(N)

∑

y≥N

π(y)f(y) if x ≥ N.

Since ENf(x) is constant for x > N we can identify αN with IN , the atom {x} is
identified with x when x < N and the atom {x ≥ N} is identified with N .

Proposition 7. The truncation PN satisfies

(21) PN = ENP,

where EN is the mean expected operator defined as above.

Proof. Let P be a stochastic kernel. Since EN is stochastic then ENP is also
stochastic. It satisfies

ENPf(x) = Pf(x) if x < N and

ENPf(x) =
1

π(N)

∑

z≥N

π(z)(Pf)(z) =
1

π(N)

∑

z≥N

π(z)
∑

y∈N

P (z, y)f(y) if x ≥ N.

For y < N one has

EN (P1{y})(x) = P1{y}(x) = P (x, y) if x < N and

EN (P1{y})(x) =
1

π(N)

∑

z≥N

π(y)P1{y}(z) =
1

π(N)

∑

z≥N

π(y)P (z, y) if x ≥ N.

Since P1{y}(x) = P (x, y) we have proven

(22) PN (x, y) = ENP (x, y) for y < N, x ∈ N.

Since ENP1 = 1 =
∑N

y=1 1{y}, and since PN and ENP are stochastic operators,

from (22) we conclude PN (x,N) = (ENP )(x,N). Hence, (21) follows. �

Let us now prove that these truncations have a nonnegative dual.

Proposition 8. let P be a monotone kernel on N. Then, PN is a monotone kernel

having a nonnegative Siegmund dual P̂N with values in IN and such that N is an
absorbing state.

Proof. We claim that the monotone property on P implies the monotonicity of PN .
Firstly, for all v, w ∈ IN we have

∑
z≤N

PN (v, z) = 1 =
∑
z≤N

PN (w, z). Now, let

x < N . For v ≤ w < N one has
∑

z≤x

PN (v, z) =
∑

z≤x

P (v, z) ≤
∑

z≤x

P (w, z) =
∑

z≤x

PN (w, z),

and for v < N it holds
∑

z≤x

PN (N, z) =
1

π(N)
(
∑

z≤x

∑

u≥N

π(u)P (u, z)) =
1

π(N)
(
∑

u≥N

π(u)
∑

z≤x

P (u, z))

≤
1

π(N)
(
∑

u≥N

π(u)
∑

z≤x

P (v, z)) =
∑

z≤x

P (v, z),
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where the monotonicity of P was used to state the last ≤ relation. Then the claim
holds, that is PN is monotone.

Hence PN has a nonnegative Siegmund dual P̂N with values in IN and that following

(4) it satisfies, P̂N (x, y) =
∑
z≤x

(PN (y, z)− PN (y + 1, z)) for x, y ∈ IN . This gives:

(23) P̂N (x, y) =
∑

z≤x

(P (y, z)− P (y + 1, z)) = P̂ (x, y) for x < N, y < N − 1,

and for x = N we get

P̂N (N, y) = 0 for y ≤ N − 1.

Note that,

(24) P̂N (x,N − 1) =
∑

z≤x

P (N − 1, z)−
∑

z≤x

PN (N, z) ≥ 0 for x < N.

Finally

(25) P̂N (x,N) =
∑

z≤x

PN (N, z) =
1

π(N)

∑

z≤x

(
∑

u≥N

π(u)P (u, z)) for x < N ;

and

P̂N (N,N) =
∑

z≤N

PN (N, z) = 1.

Hence, P̂N is a Siegmund dual of PN with values in IN and N is an absorbing state

for P̂N . �

Notice that for x < N one has that the difference between the kernels P̂N (x, y) and

P̂ (x, y) only happens at y = N − 1 and y = N . We have

P̂N (x,N − 1) + P̂N (x,N) =
∑

z≤x

P (N − 1, z) and

P̂ (x,N − 1) + P̂ (x,N) =
∑

z≤x

P (N − 1, z) +
∑

z≤x

P (N + 1, z),

and so

(P̂ (x,N − 1) + P̂ (x,N)) − (P̂N (x,N − 1) + P̂N (x,N)) =
∑

z≤x

P (N + 1, z) ≥ 0.

Therefore, if P̂ loses mass through x < N then P̂N also does.

On the other hand it is straightforward to check that the truncation of the reversed

kernel
←−
P N is the reversed of PN with respect to πN , that is it satisfies

←−
P N(x, y) = πN (x)−1PN (y, x)πN (y), x, y ≤ N.

From (5) we can define the intertwining matrix Λ(x, y) = 1(x ≥ y)(πN (y)/πc
N (x))

for x, y ∈ IN where πN (y) = π(y) for y < N and πN (N) = π(N). The intertwined

matrix P̃N of
←−
P N which satisfies P̃NΛN = ΛN

←−
P N , is given by (6). It is P̃N (x, y) =

P̂N (x, y)(πc
N (y)/πc

N (x)) for x, y ∈ IN . Note that πc
N (y) = πc(y) for y < N and

πc
N (N) = 1.
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Proposition 9. Let us consider two truncations as above, PN and PN+1 at levels

N and N + 1, respectively. Then, the time τ̃NN of hitting N by P̃N is stochastically

smaller than the time τ̃N+1
N+1 of hitting N + 1 by P̃N+1.

Proof. We will note by X̂N = (X̂N
n ) and X̂N+1 = (X̂N+1

n ) the Markov chains

associated to kernels P̂N and P̂N+1, respectively.

From (24), for every x < N − 1 one has

P̂N (x,N − 1)− P̂N+1(x,N − 1) =
∑

z≤x

P (N, z)−
1

π(N)
(
∑

u≥N

π(u)
∑

z≤x

P (u, z)).

Similarly,

P̂N+1(x,N) =
∑

z≤x

P (N, z)−
1

π(N + 1)
(
∑

u≥N+1

π(u)
∑

z≤x

P (u, z)).

Then, by monotonicity

P̂N (x,N − 1)− P̂N+1(x,N − 1) ≤ P̂N+1(x,N).

So,

(P̂N+1(x,N − 1) + P̂N+1(x,N − 1))− P̂N (x,N)

=
1

π(N)
(
∑

u≥N

π(u)
∑

z≤x

P (u, z))−
1

π(N + 1)
(
∑

u≥N+1

π(u)
∑

z≤x

P (u, z)).

from (25) we also have

0 ≤ P̂N (x,N)− P̂N+1(x,N + 1)

=
1

π(N)
(
∑

u≥N

π(u)
∑

z≤x

P (u, z))−
1

π(N + 1)
(
∑

u≥N+1

π(u)
∑

z≤x

P (u, z)),

where the nonnegativity follows from monotonicity of P . Then,

P̂N+1(x,N − 1) + P̂N+1(x,N) + P̂N+1(x,N + 1) = P̂N (x,N − 1) + P̂N (x,N).

From the above equalities and inequalities and by using (23) at every step when

we are in some state y < N − 1, we can make a coupling between both chains X̂N

and X̂N+1 such that when both chains start from x < N − 1 we have

X̂N+1 ∈ {N,N + 1} ⇔ X̂N = N and

∀y ≤ N − 1, X̂N+1 = y ⇔ X̂N = y.

On the other hand from (23) we get

P̂N (N − 1, y) =
∑

z≤x

(P (y, z)− P (y + 1, z)) = P̂ (x, y) = P̂N+1(N − 1, y),

so the distribution to y ≤ N − 1 is the same for the two kernels. Moreover

P̂N (N − 1, N) =
∑

z≤N−1

P (N, z),
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and

P̂N+1(N − 1, N) + P̂N+1(N − 1, N + 1)

=
∑

z≤N−1

P (N, z)−
∑

z≤N−1

PN+1(N + 1, z) +
∑

z≤N−1

PN+1(N + 1, z).

Therefore

P̂N (N − 1, N) = P̂N+1(N − 1, N) + P̂N+1(N − 1, N + 1).

Hence, once both chains start from N − 1, they can be coupled to return to some

state y ≤ N−1, or, if not, the rest of the mass of kernel P̂N moves to the absorbing

state N , and for P̂N+1 part of this mass moves to the absorbing state N + 1 while
the rest goes to N .

We have shown that the absorption time τ̂NN of P̂N at level N , is smaller than the

absorption time τ̂N+1
N+1 of P̂N+1 at level N + 1, that is

∀x ≤ N − 1, k > 0 : Px(τ̂
N
N ≤ k) ≥ Px(τ̂

N+1
N+1 ≤ k).

Now for x ≤ N − 1 one has, πc
N (x) = πc(x) = πc

N+1(x) and πc
N (N) = 1 =

πc
N+1(N + 1), so

Px(X̃
N
1 = x1, .., X̃

N
k = N) =

1

πc(x)
Px(X̂

N
1 = x1, .., X̂

N
k = N),

Px(X̃
N+1
1 = x1, .., X̃

N+1
k = N) =

1

πc(x)
Px(X̂

N+1
1 = x1, ..., X̂

N+1
k = N).

Then,

Px(τ̃
N
N = j) =

1

πc(x)
Px(τ̂

N
N = j) and Px(τ̃

N+1
N+1 = j) =

1

πc(x)
Px(τ̂

N+1
N+1 = j).

Hence, we conclude

∀x ≤ N − 1, k > 0 : Px(τ̃
N
N ≤ k) ≥ Px(τ̃

N+1
N+1 ≤ k),

and so τ̃NN is stochastically smaller than τ̃N+1
N+1. �

6. Strong Stationary Times

Let π′
0 be the initial distribution of X0, so π′

n = π′
0P

n is the distribution of Xn. A
stopping time is noted Tρ when XTρ

∼ ρ. We recall τa = inf{n ≥ 0 : Xn = a} for
a ∈ I. When one wants to emphasize the initial distribution π′

0 of X0, these times
are written by T π0

ρ and τπ0
a , respectively.

A stopping time T is called a strong stationary time ifXT ∼ π′ and it is independent
of T , see [1]. The separation discrepancy is defined by

sep (πn, π) := sup
y∈I

[
1−

πn(y)

π(y)

]
.

In Proposition 2.10 in [1] it was proven that every strong stationary time T satisfies

(26) ∀n ≥ 0 : sep (πn, π) ≤ Pπ0
(T > n) .

In Proposition 3.2 in [1] it was shown that there exists a strong stationary time T ,
called sharp, that satisfies equality in (26),

∀n ≥ 0 : sep (πn, π) = Pπ0 (T > n) .
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Assume we are in the framework of Theorem 1, so P̃Λ = Λ
←−
P . A random time for

X̃ is noted by T̃ and we use similar notations as those introduced for random times

T for X . The initial distributions of
←−
X 0 and X̃0 are respectively noted by ←−π ′

0 and
π̃′
0. We assume they are linked, this means:

(27) ←−π ′
0 = π̃′

0Λ.

In this case the intertwining relation P̃nΛ = Λ
←−
P

n
implies ←−π ′

n = π̃′
nΛ for n ≥ 0,

where ←−π n and π̃n are the distributions of
←−
Xn and X̃n respectively.

Since Λ is stochastic it has a left probability eigenvector π′
Λ, so π′

Λ = π′
ΛΛ and πΛ

is linked with itself. If Λ is non irreducible then πΛ could fail to be strictly positive,
which is the case for the Siegmund kernel where Λ is given by (5) and one can check
that e1 is the unique left eigenvector satisfying e′1 = e′1Λ. So, the initial conditions

X̃1 ∼ δ1 and
←−
X 0 ∼ δ1 are linked. Assume P is monotone. From relation (5) one

gets that (27) is equivalent to ←−π 0(x)/π(x) =
∑

y≥x π̃(y)/π
c(y) for all x ∈ I. (See

relation (4.7) and (4.10) in [5]). In the finite case I = IN , Corollary 3 (iii) states

that if P is monotone then ∂̃ = N is the unique absorbing state for X̃. Let us now
introduce the sharp dual.

Definition 3. The process X̃ is a sharp dual to
←−
X if it has an absorbing state ∂̃,

and when
←−
X and X̃ start from linked initial conditions X̃0 ∼ π̃0,

←−
X 0 ∼

←−π 0 with
←−π ′

0 = π̃′
0Λ, then it holds

sep(←−π n, π) = Pπ̃0
(τ̃

∂̃
> n), ∀n ≥ 0.

�

We recall that if ∂̃ is an absorbing state for P̃ , then π′ = e′
∂̃
Λ (this is (2)).

We now state the sharpness result alluded to in Remark 2.39 of [5] and in Theorem
2.1 in [7]. The hypotheses stated in Remark 2.39 are understood as the condition
(28) below. The results of this section were proven in [10].

We recall the definition made in Section 4 in [2]: A state d ∈ I is called separable
for X when

sep(πn, π) = 1−
πn(d)

π(d)
, n ≥ 1.

On the other hand, d ∈ I was called a witness state if it satisfies

(28) Λed = π(d)e
∂̃
.

We note that in the monotone finite case in IN , the state d = N is a witness state,
this is exactly (7) in Corollary 3.

Proposition 10. Let X be an irreducible positive recurrent Markov chain, X̃ be

a Λ−intertwining of
←−
X having ∂̃ as an absorbing state. If d ∈ I is a witness state

then d is a separable state, X̃ is a sharp dual to
←−
X and it is satisfied,

sep(←−π n, π) = 1−
←−π n(d)

π(d)
= Pπ̃0

(τ̃
∂̃
> n), n ≥ 1.

�
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Remark 5. Since we have shown that being witness implies being separable, Corol-
lary 4.1 of [2] stated for separable states applies for a witness state, this is ←−τ

π0

d =
←−
T

π0

π + Z is an independent sum and Z ∼ ←−τ
π
d . �

Remark 6. The condition of being witness can be stated in terms of the dual

function H. In fact, in [11] it was shown that if there exists â ∈ Î and d ∈ I such
that for some constants c1 > 0, c > 0 one has

Heâ = c11 and e′dH = ce′â.

Then d is a witness state and X̃ is a sharp dual to
←−
X . �

Corollary 11. For a monotone irreducible stochastic kernel P , the Λ−intertwining

Markov chain X̃ has N as an absorbing state and it is a sharp dual of
←−
X . Also, N

is a separable state and the initial conditions
←−
X 0 = δ1 and X̃ = δ1 are linked. �

7. The Diaconis-Fill Coupling

Let P̃ be a Λ−intertwining of P . Consider the following stochastic kernel P defined

on I × Ĩ, which was introduced in [5],

(29) P ((x, x̃), (y, ỹ)) =
P (x, y) P̃ (x̃, ỹ) Λ(ỹ, y)

(ΛP )(x̃, y)
1 ((ΛP )(x̃, y) > 0) .

Let X = (Xn : n ≥ 0) be the chain taking values in I × Ĩ, evolving with the kernel
P and with initial distribution

P

(
X0 = x0, X̃0 = x̃0

)
= π0(x0, x̃0) = π′

0(x̃0)Λ(x̃0, x0), x0 ∈ I, x̃0 ∈ Ĩ ,

where π̃′
0 is an initial distribution of X̃ . In [5] it was proven that X starting from

π′
0 is a coupling of the chains X and X̃ starting from π′

0 = π̃′
0Λ and π̃′

0, respectively.

Since X and X̃ are the components of X one puts Xn = (Xn, X̃n).

Let P be the probability measure on (I × Ĩ)N induced by the coupling transition
kernel P and assume X starts from linked initial conditions. In [5] (also [4]) it was
shown,
(30)

∀n ≥ 0 : Λ(x̃n, xn) = P

(
Xn = xn | X̃n = x̃n

)
= P

(
Xn = xn | X̃0 = x̃0 · · · X̃n = x̃n

)
.

Hence, the equality π′ = e′
∂̃
Λ in (2) together with relation (30) give

π(x) = Λ(∂̃, x) = P(Xn = x | X̃0 = x̃0 · · · X̃n = ∂̃).

Then, the following result shown in [5] holds.

Theorem 12. Let X be an irreducible positive recurrent Markov chain with sta-

tionary distribution π′ and let X̃ be a Λ−intertwining of X. Assume the initial

conditions are linked, meaning π′
0 = π̃′

0Λ. Then, X̃ is called a strong stationary
dual of X, which means that the following equality is satisfied,

π(x) = P

(
Xn = x | X̃0 = x̃0 · · · X̃n−1 = x̃n−1, X̃n = ∂̃

)
, ∀x ∈ I, n ≥ 0,

where x̃0 · · · x̃n−1 ∈ Ĩ satisfy P

(
X̃0 = x̃0 · · · X̃n−1 = x̃n−1, X̃n = ∂̃

)
> 0. �
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7.1. Quasi-stationarity and coupling. Below we state a property on quasi-
stationarity of the coupling. Let us recall some elements on quasi-stationarity
(see for instance [3]). Let Y = (Yn : n ≥ 0) be a Markov chain with values on a
countable set J and transition stochastic kernel Q. Let K be a nonempty strictly
subset of J and let τK be the hitting time of K. A probability measure µ on J \K
is a quasi-stationary distribution (q.s.d.) for Y and the forbidden set K if

(31) Pµ(Yn = j | τK > n) = µ(j), j ∈ J \K.

Note that the q.s.d. does not depend on the behavior of the chain Y on K, so we
assume Y is absorbed at K. In order that µ is a q.s.d. it suffices to satisfy (31) for
n = 1, which is equivalent for µ being a left eigenvector of Q, so

µ′Q = γµ′.

In the finite case, µ is the normalized left Perron-Frobenius eigenvector with Perron-
Frobenius eigenvalue γ. It is easily checked that

γ = Pµ(τK > 1) =
∑

j∈J\K

µj

∑

j′∈J\K

P (j, j′).

The hitting time τK starting from µ is geometrically distributed: Pµ(τK > n) = γn,
this is why γ is called the survival decay rate. If the chain is irreducible in J \K,
then every q.s.d. is strictly positive and for all j ∈ J\K one has Pj(τK > n) ≤ Cjγ

n

with Cj = µ−1
j .

In the next result we put in relation the q.s.d. of the process X̃ with forbidden state

∂̃ and the q.s.d. of the process (X, X̃) with forbidden set ∂ = I×{∂̃}. Since X̃ = ∂̃

is equivalent to (X, X̃) ∈ ∂, then it is straightforward that the survival decay rates

for X̃ and (X, X̃) with respect to ∂̃ and ∂ respectively, are the same (that is the
Perron-Frobenius eigenvalue is common for both processes).

Proposition 13. Assume µ̃′ is a q.s.d. for the process X̃ with the forbidden state

∂̃. Then, the probability measure

µ(x0, x̃0) = µ̃(x̃0)Λ(x̃0, x0), (x0, x̃0) ∈ I × (Ĩ \ {∂̃}),

is a q.s.d. for (X, X̃) with forbidden set ∂ = I × {∂̃}.

Proof. From the hypothesis we have
∑

x̃∈Ĩ,x̃ 6=∂̃

µ̃(x̃)P̃ (x̃, ỹ) = γµ̃(ỹ), ỹ ∈ Ĩ \ {∂̃}, with γ = 1−
∑

x̃∈Ĩ,x̃ 6=∂̃

µ(x̃)P̃ (x̃, ∂̃).

Now∑

x∈I

∑

x̃∈Ĩ\{∂̃}

µ̃(x̃)Λ(x̃, x)P ((x, x̃), (y, ỹ))

=
∑

x∈I

∑

x̃∈Ĩ\{∂̃}

µ̃(x̃)Λ(x̃, x)P (x, y)P̃ (x̃, ỹ)Λ(ỹ, y)1((ΛP )(x̃, y) > 0)Λ(x̃, y)−1

=
∑

x̃∈Ĩ\{∂̃}

µ̃(x̃)P̃ (x̃, ỹ)Λ(ỹ, y)1((ΛP )(x̃, y) > 0)(ΛP )(x̃, y)−1(
∑

x∈I

Λ(x̃, x)P (x, y))

=
∑

x̃∈Ĩ\{∂̃}

µ̃(x̃)P̃ (x̃, ỹ)Λ(ỹ, y)1((ΛP )(x̃, y) > 0).
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Now, if P (x̃, ỹ) > 0 and Λ(ỹ, y) > 0, then we have (ΛP )(x̃, y) = (P̃Λ)(x̃, y) > 0
and so we get

∑

x∈I

∑

x̃∈Ĩ\{∂̃}

µ̃′(x̃)P ((x, x̃), (y, ỹ)) =
∑

x̃∈Ĩ\{∂̃}

µ̃(x̃)P̃ (x̃, ỹ)Λ(ỹ, y)

= γµ̃(ỹ)Λ(ỹ, y) = γµ(y, ỹ).

Hence, µ is a q.s.d. for X with forbidden set ∂. �

Remark 7. Based upon basic relations on quasi-stationarity (see Theorem 2.6 in
[3]), it can be shown that starting from µ the random variables Xτ∂

= (Xτ∂
, ∂)

and τ∂ are independent, so Xτ∂
and τ∂ are independent. But in the setting of the

Diaconis-Fill coupling this property is contained in Theorem 12. In fact, the latter
result ensures a much stronger result which is that starting from any linked initial
condition π0 one has that Xτ∂

and τ∂ are independent and Xτ∂
∼ π′. �

Let P be monotone on IN . From Corollary 3 (i), Λ(x̃, y) = 1(x̃ ≥ y)π(y)/πc(x̃)

and P̃ (x̃, ỹ) = P̂ (x̃, ỹ)πc(ỹ)/πc(x̃). The coupling (29) for
←−
P satisfies,

Λ
←−
P (x̃, y) =

∑

z≤x̃

π(z)

πc(x̃)
P (y, z)

π(y)

π(z)
=

π(y)

πc(x̃)
(
∑

z≤x̃

P (y, z)).

Then, Λ
←−
P (x̃, y) > 0 is equivalent to

∑
z≤x̃ P (y, z) > 0, for x̃, y ∈ I, so

←−
P ((x, x̃), (y, ỹ)) =

←−
P (x, y) P̃ (x̃, ỹ) Λ(ỹ, y)

(Λ
←−
P )(x̃, y)

1 ((ΛP )(x̃, y) > 0)

=
π(y)

π(x)
1(ỹ ≥ y)P (y, x)P̂ (x̃, ỹ)1(

∑

z≤x̃

P (y, z) > 0)(
∑

z≤x̃

P (y, z))−1.

Now, in this coupling we can set the truncations kernel PN of the mean expected

value, whose reversed time kernel satisfies
←−
P N (x, y) = πN (x)−1PN (y, x)πN (y).

From Proposition 9 one gets that the time for P̃N to attain the absorbing state N

is stochastically smaller that the time for P̃N+1 to attain N + 1. Then, the time

for
←−
P N to attain the stationary distribution πN is stochastically smaller than the

time for
←−
P N+1 to attain πN+1.
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[16] D. Siegmund. The equivalence of absorbing and reflecting barrier problems for stochastically

monotone Markov processes. Ann. Probability 4, No. 6, 914–924 (1976).
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