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On the extension complexity of scheduling ∗

Hans Raj Tiwary † Victor Verdugo ‡§ Andreas Wiese ¶

Abstract

Linear programming is a powerful method in combinatorial optimization with many ap-
plications in theory and practice. For solving a linear program quickly it is desirable to have a
formulation of small size for the given problem. A useful approach for this is the construction of
an extended formulation, which is a linear program in a higher dimensional space whose projec-
tion yields the original linear program. For many problems it is known that a small extended
formulation cannot exist. However, most of these problems are either NP-hard (like TSP), or
only quite complicated polynomial time algorithms are known for them (like for the matching
problem). In this work we study the minimum makespan problem on identical machines in which
we want to assign a set of n given jobs to m machines in order to minimize the maximum load
over the machines. We prove that the canonical formulation for this problem has extension
complexity 2Ω(n/ log n), even if each job has size 1 or 2 and the optimal makespan is 2. This is
a case that a trivial greedy algorithm can solve optimally! For the more powerful configuration
integer program we even prove a lower bound of 2Ω(n). On the other hand, we show that there is
an abstraction of the configuration integer program admitting an extended formulation of size
f(opt) · poly(n,m). In addition, we give an O(log n)-approximate integral formulation of poly-
nomial size, even for arbitrary processing times and for the far more general setting of unrelated
machines.
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1 Introduction

In order to solve a linear program quickly one is interested in a formulation with as few variables
and constraints as possible. A useful technique for this are extended formulations. A polytopeQ is
said to be an extended formulation or extension of a polytope P if P is a linear projection of Q. There
are many examples of polytopes P that require many constraints to be described but that admit
extended formulations that are much smaller. For instance, the convex hull of all characteristic
vectors of spanning trees in a graph with n vertex needs 2Ω(n) inequalities to be described [4], but
it admits an extended formulation of size O(n3) [13]. The extension complexity xc(P ) of a polytope
P is the minimum number of inequalities needed to describe an extended formulation of it, see
[2, 11, 20, 21] for surveys on the topic. We study the classical scheduling problem of assigning
jobs on identical machines to minimize the makespan, also known as P ||Cmax in the scheduling
literature. We are given a set J of n jobs and a set M of m identical machines and every job j ∈ J
has a processing time pj ∈ N. The goal is to assign each job on a machine in order to minimize the
maximum load over the machines, where the load of a machine is the sum of the processing times
of the jobs assigned to it.

1.1 Our Contribution

A natural formulation for P ||Cmax, known as the assignment integer program, uses a variable xij for
each combination of a machine i and a job j, modelling whether j is assigned to i. The makespan
is then modeled by an additional variable T . Then, its linear relaxation is given by

min T (1)

s.t.
∑

i∈M

xij = 1 for all j ∈ J, (2)

∑

j∈J

xijpj ≤ T for all i ∈ M, (3)

xij ≥ 0 for all i ∈ M, for all j ∈ J. (4)

Lower bounds on the extension complexity. We prove that there are instances with O(n) jobs and
machines such that the convex hull PI of all integral solutions to the above linear program has
an extension complexity of 2Ω(n/ logn). The optimal solutions form a face of PI and our bound
also holds for this face and hence for all polytopes containing it as a face. Our instances satisfy
that pj ∈ {1, 2} for each job j ∈ J and the optimal makespan is 2. Such instances can be solved
optimally by a simple greedy algorithm in time O(n +m). Our key insight is that there are faces
of PI in which some jobs cannot be assigned to certain machines, e.g., defined via equalities of the
form xij = 0. Hence, an extended formulation of PI also yields such a formulation for the polytope
of any instance of the restricted assignment problem in which we have the same input as in P ||Cmax

and additionally for each job j there is a set of machines Mj such that j must be assigned to a
machine in Mj . Using a result in [6] we show that there are 3-Bounded-2-SAT instances such that
the polytope describing all feasible solutions for them has extension complexity 2Ω(n/ logn). This
might be of independent interest, in particular since 2-SAT can be solved easily in polynomial time.
We reduce these instances to the restricted assignment problem using a reduction from 3-Bounded-
2-SAT to the restricted assignment problem such that pj ∈ {1, 2} for each job j ∈ J and the optimal
makespan is 2 [3]. Hence, the polytope of all optimal solutions has extension complexity 2Ω(n/ logn).
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By the above this also holds for the polytope of the corresponding instance of P ||Cmax where we
ignore the sets Mj . Moreover, we show that this holds also for each subpolytope containing all
optimal solutions.

Then we consider the variation of the above formulation in which we omit the variable T and
the second constraint. The set of integral points is simply the set of all schedules and the resulting
(polynomial size) LP is integral. Note that hence in this space there exists an integral linear pro-
gram of small complexity containing all optimal schedules. However, we show that if we restrict
this polytope to the convex hull of all optimal schedules then resulting polytope again has extension
complexity 2Ω(n/ logn). We show that our bounds are almost tight by giving an extended formula-
tion of size 2O(n)m for the convex hull of all optimal solutions, also for arbitary processing times
and for the formulation in which the makespan T is a variable.

Approximate schedules: Lower bound. For P ||Cmax there is a polynomial time (1 + ǫ)-approximation
algorithm known and even an EPTAS, see e.g., [8, 9]. Therefore, one might wonder whether we
can obtain a polynomial size extended formulations that contains all optimal schedules and pos-
sibly also some α-approximate schedules, e.g., for α = 1 + ǫ. We show that this is not possible for
any α < 3

2 . Even more, if we ask for a small polytope that contains all α-approximate schedules
for some value α we show that this is does not exist for any α ≤ m1−ǫ with ǫ > 0. Moreover, this
is tight in the sense that the set of all m-approximate schedules is simply the set of all schedules
which admits the polynomial size formulation mentioned above.

Approximate schedules: Upper bound. Despite this negative result, we show that there is a polynomial
size formulation for a polytope that contains all optimal schedules and some O(log n)-approximate
schedules if the target makespan T is fixed. Our construction works for arbitrary job processing
times and even in the more complex setting of unrelated machines, i.e., R||Cmax, where for each
combination of a machine i and a job j there is a value pij ∈ N∪{∞} denoting the processing time
of j when it is assigned to machine i. Key to our extended formulation is to construct an instance
of bipartite matching in which there is a vertex for each job which can be matched to vertices repre-
senting slots on the machines. Then we prove that in the space with the makespan T as a variable
such a formulation cannot exist which yields a separation between the two spaces even though
they might appear very similar at first glance.

Configuration integer program. Finally, we study the configuration integer program which is a popular
approach in scheduling, e.g., [19, 10], with connections to bin packing, see e.g., [7, 15]. There is a
variable yiC for each combination of a machine i and a configuration C ∈ C(T ) where C(T ), con-
tains all sets of jobs whose total processing size does not exceed an upper bound T on the optimal
makespan. While for large T already the number of variables can be exponential, for constant T
this number is only polynomial and could potentially admit a small extended formulation. How-
ever, we prove that already for the case that pj = 1 for each job j and T = 2 there are instances
with O(n) jobs and machines such that this linear program has extension complexity 2Ω(n). To
show this, we establish the maybe surprising connection that there are such instances for which
the corresponding polytope is an extended formulation of the perfect matching polytope in a graph
with n vertices and the latter has extension complexity 2Ω(n) [16]. On the other hand, there is an ab-
straction of the configuration integer program which instead of assigning a configurationC ∈ C(T )
to each machine i only assigns a pattern that describes how many jobs of each size are assigned
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to i but without specifying the actual jobs. We prove that in contrast to the configuration integer
program this abstraction admits an extended formulation of size O(f(T ) · poly(n,m)) for some
function f .

1.2 Related work

Lower bounds. There are many examples known of polytopes that do not admit small extended
formulations, i.e., formulations of polynomial size. For instance, Yanakakis [22] proved that for
TSP there can be no such formulation that is symmetric, i.e., stays invariant under permutation
of cities. Recently, it became an active field of research to prove such lower bounds. For instance,
Fiorini et al. [5] extended the above result for TSP to arbitrary (possibly non-symmetric) formula-
tions and Avis et al. [1] showed that neither for 3-SAT, subset sum, 3D-matching, nor for MaxCut
for suspensions of cubic planar graphs, there can be small extended formulations. Note that all
these problems are NP-hard and hence a polynomial size extended formulation for any of them
would be very surprising.

Easy problems with large extension complexity. There are only few problems in P for which the cor-
responding polytope is known to have large extension complexity. The most famous example is
probably the perfect matching polytope for which Rothvoss showed in his celebrated result that
it has exponential extension complexity [16]. While the matching problem is in P, the polynomial
time algorithm for it is highly complicated. Also, Rothvoss showed that there exists a family of ma-
troids whose associated polytopes have exponential extension complexity [14]. This contrasts with
the fact that we can optimize over any matroid in polynomial time using the greedy algorithm [17].

2 Extension complexity: Lower bound

Suppose that we are given an instance (J,M) of P ||Cmax. We consider the linear program defined
by (1)-(4) in Section 1.1. Denote by P (J,M) the convex hull of all its integral solutions. In the
remainder of this section we prove the following theorem.

Theorem 1. For every n there exists an instance (J,M) of P |pj ∈ {1, 2}|Cmax with O(n) jobs, O(n)
machines, and opt(J,M) = 2 such that xc(P (J,M)) ≥ 2Ω(n/ logn).

Let n ∈ N. For any given SAT formula Φ with n variables we define the polytope SAT(Φ) as the
convex hull of all satisfying assignments, i.e., SAT(Φ) := conv({y ∈ {0, 1}n : Φ(y) = 1}). We use
the following theorem that follows easily from [6].

Theorem 2. For every n ∈ N there exists a 2-SAT formula Φ with O(n) variables and O(n) clauses such
that xc(SAT(Φ)) ≥ 2Ω(n/ logn). Each clause of Φ contains exactly two literals.

Proof of Theorem 2. Let n ∈ N. In [6] it is shown that there exists a graph G = (V,E) with n vertices
such that for its independent set polytope PG it holds that xc(PG) ≥ 2Ω(n/ logn), i.e., PG ⊆ [0, 1]n

is the convex hull of all incidence vectors of independent sets of G. Moreover, the degree of G is
bounded by a global constant that is independent of n. Based on G we construct a 2-SAT formula
Φ. For each node v ∈ V we introduce a variable xv, the intuition being that xv is true if v is in the
independent set. For each edge {u, v} ∈ E we introduce a clause (¬xv ∨ ¬xu), modelling that not
both u and v can be in the independent set. The number of variables is n and since G has bounded
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degree each variable appears in at most O(1) clauses. Hence, the number of clauses is also O(n).
Each satisfying assignment of Φ corresponds to an independent set of G and vice versa. Therefore,
xc(SAT(Φ)) ≥ 2Ω(n/ logn).

Let Φ denote the formula due to Theorem 2. We transform Φ into an equivalent 3-Bounded-
2-SAT formula Φ′ using a standard reduction i.e., Φ′ is a 2-SAT formula in which each variable
appears at most three times. Let xi be a variable in Φ and assume that xi occurs k times. We

introduce k new variables x
(1)
i , ..., x

(k)
i and for each ℓ ∈ [k] we replace the ℓ-th occurrence of xi

with x
(ℓ)
i . Additionally, we add the clauses

(

¬x
(ℓ)
i ∨x

(ℓ+1)
i

)

for each ℓ ∈ {1, ..., k−1} and the clause
(

¬x
(k)
i ∨x

(1)
i

)

. Hence, in any satisfying assignment of the resulting formula, either x
(ℓ)
i = 1 for each

ℓ ∈ [k] or x
(ℓ)
i = 0 for each ℓ ∈ [k]. We do this transformation with each variable in Φ. Let Φ′ denote

the resulting formula. By construction, we have that Φ′ has O(n) variables and O(n) clauses, using
that both quantities are linear in the number of literals in Φ and the latter is bounded by O(n).
By construction, each variable appears exactly three times and at most two times positively and at
most two times negatively. Also, each clause contains exactly two literals.

2.1 Reduction to the restricted assignment problem

Construction. Next, based on Φ′ we construct an instance of the restricted assignment problem. We
invoke the reduction from [3]. For each variable x in Φ′ we introduce a machine i(x), a machine
i(¬x), and a job j(x). The job j(x) has processing time pj(x) = 2 and it can be assigned only on i(x)
and i(¬x), i.e., Mj(x) = {i(x), i(¬x)}. The intuition behind is that if j(x) is scheduled on i(x) then x
is true and if j(x) is scheduled on i(¬x) then x is false. For each clause c we introduce one machine
i(c). For each variable x that occurs in c we introduce a job j(c, x) with pj(c,x) = 1. If x occurs
positively in c then we define Mj(c,x) = {i(c), i(¬x)}, otherwise we define Mj(c,x) = {i(c), i(x)}.
Finally, for each clause c we introduce a job j(c) with pj(c) = 1 and Mj(c) = {i(c)}.

Since the total number of variables and clauses is O(n), we introduced O(n) jobs and machines.
Let J ′ denote the set of jobs and let m̄ denote the number of machines defined so far. We want that
in solutions with makespan 2 each machine has a load of exactly 2. To this end, we introduce a set
D of 2m̄ −

∑

j∈J ′ pj dummy jobs of length 1 each. For each dummy job j ∈ D, it can be assigned
to any machine, i.e., Mj = M .

Correctness. For each satisfying assignment of Φ′ there is a schedule of makespan 2: If a variable
x is assigned to be x = 1 in the satisfying assignment then we schedule j(x) on machine i(x),
otherwise we schedule j(x) on machine i(¬x). Consider a clause c. There must be at least one
variable that satisfies c. For each such variable x, if x occurs positively in c then we assign j(c, x)
on i(¬x), otherwise we assign j(c, x) on i(x). For each variable y that does not satisfy c we assign
j(c, y) to i(c). Also, we assign j(c) to i(c). Using that each variable appears at most twice positively
and at most twice negatively, one can check that the resulting makespan is 2. Finally, we assign the
dummy jobs to the machines such that each machine still has a makespan of at most 2. This is the
optimal solution since the largest processing time is 2. One can also easily show that if there is a
solution of makespan 2 then there exists a satisfying assignment for Φ′, see [3] for details.

Faces of scheduling polytope. Let J and M denote the set of jobs and machines in the construc-
tion above, respectively. Also, let Mj denote the set of allowed machines for each job j ∈ J . We
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consider the polyhedron P (J,M). Note that P (J,M) ignores the sets Mj of allowed machines for
each job j. We argue that there is a face P ′(J,M) of P (J,M) such that each vertex of P ′(J,M) cor-
responds to a schedule in which each job j ∈ J is assigned on a machine in Mj and the makespan
is 2. Observe that the inequalities

∑

j∈J

∑

i∈M\Mj
xij ≥ 0 and T ≥ 2 are valid inequalities for

P (J,M). Hence, the set

P ′(J,M) = P (J,M) ∩







(x, T ) :
∑

j∈J

∑

i∈M\Mj

xij = 0 and T = 2







is a face of P (J,M). Also, xc(P ′(J,M)) ≤ xc(P (J,M)).

Proof of Theorem 1. We describe now a linear projection f : P ′(J,M) → SAT(Φ′) of P ′(J,M) to
SAT(Φ′). Given a point x ∈ P ′(J,M) we define that the component of f(x) corresponding to
the variable yℓ equals to xi(yℓ),j(yℓ). By the construction above and the proof of correctness of
the reduction, for each integral point y ∈ SAT(Φ′) there exists a feasible schedule for (J,M)
with makespan 2 in which each job j is assigned to a machine in Mj . Additionally, for each
variable y in Φ′ it holds that if y = 1 then j(y) is assigned on machine i(y) in this schedule.
Thus, there exists an integral point x ∈ P ′(J,M) such that f(x) = y. Similarly, for each inte-
gral point x ∈ P ′(J,M) we have that f(x) ∈ SAT(Φ′). Thus, f(P ′(J,M)) = SAT(Φ′) and there-
fore, xc(SAT(Φ′)) ≤ xc(P ′(J,M)). Finally we give a linear projection g : SAT(Φ′) → SAT(Φ).

Recall that for each variable xi in Φ we introduced a set of new variables x
(1)
i , ..., x

(k)
i in Φ′. By

construction, in each satisfying assignment for Φ′ all these variables x
(1)
i , ..., x

(k)
i have the same

value. Therefore, we define that the component of g(x) corresponding to xi equals x
(1)
i for each

variable xi in Φ. We obtain g(SAT(Φ′)) = SAT(Φ). Therefore, xc(SAT(Φ)) ≤ xc(SAT(Φ′)). Hence,
xc(P (J,M)) ≥ xc(P ′(J,M)) ≥ xc(SAT(Φ′)) ≥ xc(SAT(Φ)) ≥ 2Ω(n/ logn). This completes the proof
of Theorem 1.

Since already the face P ′(J,M) of P (J,M) containing the optimal solutions to (J,M) has ex-
tension complexity 2Ω(n/ logn) we obtain the following corollary.

Corollary 1. For every n there exists an instance (J,M) of P |pj ∈ {1, 2}|Cmax with O(n) jobs, O(n)
machines, and opt(J,M) = 2 such that for any integral polyhedron P̄ (J,M) ⊆ P (J,M) that contains all
optimal and possibly also some other solutions to (J,M) it holds that xc(P̄ (J,M)) ≥ 2Ω(n/ logn).

2.2 Extensions

Above we proved that P (J,M) has large extension complexity. The polyhedronP (J,M) is defined
using the variable T which represents an upper bound on the makespan of the respective solution.
This raises the question whether there exist compact extended formulations in the space defined
only via the variables x, without the variable T . Formally, we consider the polyhedron

Q(J,M) = conv

({

x ∈ {0, 1}M×J :
∑

i∈M

xij = 1 for all j ∈ J

})

describing the set of all schedules, including all optimal ones. One can easily show that its exten-
sion complexity is O(nm) by simply taking its linear relaxation. Observe that Corollary 1 rules out
such a polyhedron in the space lifted with the variable T .
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Proposition 1. The polyhedron Q(J,M) has extension complexity O(nm).

This follows by observing that the extreme points of the linear relaxation are integral. Let x be
a feasible point in the relaxation such that xij ∈ (0, 1) for some machine i ∈ M and some job j ∈ J .
Due to Equality (2) there must be another machine ℓ 6= i such that xℓj ∈ (0, 1). For sufficiently
small ǫ > 0 we define a new solution x̃ = x + ε(1ij − 1ℓj), where 1a is the canonical vector with
value 1 at entry a and zero otherwise. Similarly, we define a new solution x̂ = x+ ε(1ℓj −1ij). We
can find ε > 0 such that x̃, x̂ ≥ 0 and x = 1

2(x̃+ x̂), and hence x is not an extreme point. Therefore,
the extension complexity of Q(J,M) is O(nm).

However, when we minimize the makespan, we are interested only in the set of all integral
points in Q(J,M) that correspond to optimal solutions. Note that their convex hull corresponds
to the face of P (J,M) containing all points (x, T ) with T = opt. Due to Corollary 1 this polytope
has extension complexity 2Ω(n/ logn). We can strengthen this statement. In the instance (J,M)
constructed above the optimal makespan is 2 and any non-optimal solution has a makespan of at
least 3. Thus, all integral polytopes Q̄(J,M) ⊆ Q(J,M) that contain all optimal solutions to (J,M)
and possibly some (3/2− ǫ)-approximate solutions have large extension complexity. Note that this
contrasts the fact that P ||Cmax admits an EPTAS [9].

Corollary 2. Let ǫ > 0 with ǫ ≤ 1/2. For every n there exists an instance (J,M) of P |pj ∈ {1, 2}|Cmax

withO(n) jobs, O(n)machines, and opt(J,M) = 2 such that for any integral polytope Q̄(J,M) ⊆ Q(J,M)
whose vertices consist of all optimal solutions and possibly some (32 − ǫ)-approximate solutions to (J,M) it

holds that xc(Q̄(J,M)) ≥ 2Ω(n/ logn).

Next, we show that there cannot be an integral polytope of polynomial extension complexity
containing all α-approximate solutions of Q(J,M) for any α ≤ n1−ǫ.

Corollary 3. For every n ∈ N and every α ≥ 1 there exists an instance (J ′,M ′) of P |pj ∈ {1, 2}|Cmax with
O(αn) jobs andO(αn) machines such that for any integral polytope Q̃(J,M) ⊆ Q(J,M) whose vertices are
all α-approximate solutions to (J ′,M ′) it holds that xc(Q̃(J,M)) ≥ 2Ω(n/ logn). In particular, if α = n1/ǫ

for some ǫ > 0 then the instance has n̄ = O(n1+1/ǫ) jobs and machines and xc(Q̃(J,M)) ≥ 2n̄
Ω(ǫ)

.

Proof. Assume by contradiction that such a polytope exists and suppose that α ∈ N. Take the
instance (J,M) defined above. We add (2α− 2)|M | dummy jobs of length 1 each, denote them by
Jdum. Also, we add (α − 1)|M | dummy machines, denote them by Mdum. Note that the optimal
makespan is still 2 and thus any α-approximate solution has makespan 2α. Let (J ′,M ′) denote
the resulting instance and observe that it has O(αn) jobs and machines. We consider Q̃(J ′,M ′).
Then for each dummy machine i ∈ Mdum the inequality

∑

j∈J ′ xij ≥ 0 is a valid inequality. Also,
consider an assignment of the jobs in Jdum to the machines M ′ \ Mdum such that each machine
i ∈ M ′ \Mdum gets a load of 2α− 2 in this way. Formally, we define a map g : Jdum → M ′ \Mdum

such that |g−1(i)| = 2α − 2 for each i ∈ M ′ \ Mdum. Then for each job j ∈ Jdum the inequality
xg(j)j ≤ 1 is a valid inequality. Therefore, the set Q̃′(J ′,M ′) defined as

Q̃(J,M) ∩







x :
∑

j∈J ′

xij = 0 for all i ∈ Mdum and xg(j)j = 1 for all j ∈ Jdum







is a face of Q̃(J,M). Therefore, Q̃′(J ′,M ′) contains exactly the solutions in which the dummy jobs
are assigned as described by the map g and the non-dummy jobs J = J ′ \ Jdum are assigned such
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that they give a load of 2 on each machine. Thus, there is a linear projection of Q̃′(J ′,M ′) to the
polytope Q̄(J,M) as defined in Theorem 2. This implies that xc(Q̃(J ′,M ′)) ≥ xc(Q̃′(J ′,M ′)) ≥
xc(Q̄(J,M)) ≥ 2Ω(n/ logn).

Finally, we can show that our lower bounds from Theorem 1 and Corollary 2 are almost tight
by giving an upper bound of 2O(n)m.

Theorem 3. Let (J,M) be an instance of P ||Cmax with n jobs and m machines. Let Q̄(J,M) denote
the convex hull of the vertices corresponding to all optimal solutions to (J,M) in Q(J,M). It holds that
xc(Q̄(J,M)) ≤ 2O(n)m and xc(P (J,M)) ≤ 2O(n)m.

In the following we prove Theorem 3. Given an instance (J,M), we first describe a dynamic
program that computes a solution to (J,M) in time 2O(n)m for some given target makespan T , as-
suming that such a solution exists. Then based on it we define an extended formulation of Q̄(J,M)
of size 2O(n)m.

Dynamic program. We introduce a cell (J ′,m′, T ) for each subset J ′ ⊆ J of jobs and each inte-
ger m′ ∈ {1, . . . ,m}. In (J ′,m′, T ) we want to store a schedule for the jobs J ′ on the machines
{m′, . . . ,m} such that each machine has a makespan of at most T , assuming that such a schedule
exists. Consider the case m′ = m, that is, we look for a schedule in the single machine m. For each
set of jobs J ′ with p(J ′) ≤ T we store in the cell (J ′,m, T ) the schedule that assigns all jobs in J ′ to
machine m. For each set of jobs J ′ with p(J ′) > T we store ⊥ in the cell (J ′,m, T ), indicating that
no feasible schedule exists for (J ′,m, T ). Now suppose we are given a cell (J ′,m′, T ) with m′ < m.
If there is a subset J ′′ ⊆ J ′ with p(J ′′) ≤ T such that in the cell (J ′ \ J ′′,m′ + 1, T ) we stored a
schedule (and not ⊥) then in (J ′,m′, T ) we store the schedule that assigns J ′′ on machine m′ and
the schedule in the cell (J ′ \ J ′′,m′ +1, T ) on the machines {m′ +1, . . . ,m}. If no such set J ′′ ⊆ J ′

exists then we store ⊥ in (J ′,m′, T ). Finally, if we stored a schedule (J, 1, T ) then we output this
schedule, otherwise (J, 1, T ) contains ⊥ and we output that there is no schedule for J on m ma-
chines with makespan at most T . This dynamic program table has 2nm cells and evaluating one
cell takes 2n time, which yields a total running time of 2O(n)m.

In the transition above, for each cell (J ′,m′, T ) we took an arbitrary subset J ′′ such that p(J ′′) ≤
T and (J ′ \ J ′′,m′ + 1, T ) does not contain ⊥. In fact, we can construct any schedule of makespan
at most T in this way if for each cell (J ′,m′, T ) we choose for J ′′ the set of jobs that the respective
schedule assigns on machine m′. In the sequel, we define a graph G with 2O(n)m vertices including
two special vertices s and t such that any path from s to t corresponds to a solution that the above
dynamic program might compute for suitable choices for J ′′. Then we define a linear program
whose vertices are exactly these paths which then yield an extended formulation to Q̄(J,M) if we
choose T = opt.

Construction of the graph. Let T ≥ opt. Let VT be the set of cells (J ′,m′, T ) of the dynamic program
table such that there exists a schedule for the jobs J ′ on machines {m′, . . . ,m} of makespan at
most T . For convenience we add a dummy element (∅,m + 1, T ) to VT . Then, in our graph G
the set of vertices corresponds to VT . For each J ′, J̄ ′ ⊆ J,m′ ∈ {1, ...,m} we introduce an arc
((J ′,m′, T ), (J̄ ′,m′ + 1, T )) if and only if (J ′,m′, T ), (J̄ ′,m′ + 1, T ) ∈ VT and there is a set J ′′ ⊆ J ′

with p(J ′′) ≤ T such that J̄ ′ = J ′ \ J ′′. Let s = (J, 1, T ) be the source and t = (∅,m+ 1, T ) the sink.
We call AT the set of arcs, and then G = (VT ,AT ).
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Lemma 1. Every s-t path in the graph G corresponds to a schedule S of makespan at most T . Furthermore,
every schedule S of makespan at most T induces an s-t path in G.

Proof. Let P be an s-t path with vertices (J ′
1, 1, T ), (J

′
2, 2, T ), ..., (J

′
m ,m, T ), (J ′

m+1,m+1, T ), where
J ′
1 = J and J ′

m+1 = ∅. Then, our construction of G guarantees that p(J ′
ℓ+1 \ J ′

ℓ) ≤ T for each
ℓ ∈ {1, ...,m}. Thus, for each arc ((J ′

ℓ, ℓ, T ), (J
′
ℓ+1, ℓ + 1, T )) we assign the jobs in J ′

ℓ \ J ′
ℓ+1 to

machine ℓ which yields a schedule of makespan at most T . Conversely, consider a schedule S of
makespan at most T and for each i ∈ {1, . . . ,m} let Ji ⊆ J be the jobs that are assigned to machine
i in S. Then, there is a path that for each i ∈ {1, ...,m + 1} visiting the vertex (

⋃m
ℓ=i Jℓ, i, T ).

Observe that for each i ∈ {1, . . . ,m} we have that ((
⋃m

ℓ=i Jℓ, i, T ), (
⋃m

ℓ=i+1 Jℓ, i + 1, T )) ∈ AT since
⋃m

ℓ=i Jℓ \
⋃m

ℓ=i+1 Jℓ = Ji and p(Ji) ≤ T .

Extended formulation. We define a linear program with a variable ya for each arc a ∈ AT . We add
constraints that describe a flow in G such that we send exactly one unit of flow from s to t. In
particular, we require that one unit of flow leaves s, one unit of flow enters t, and on all other
vertices there is flow conservation. For every job j ∈ J , let J T

ij = {((J ′, i, T ), (J̄ ′, i + 1, T )) ∈ AT :

j ∈ J ′ \ J̄ ′} which are the arcs such that if one of them is contained in an s-tpath P then in the
schedule corresponding toP job j ∈ J is assigned on machine i ∈ M . Then, consider the following
linear program

∑

a∈δ+(v)

ya −
∑

a∈δ−(v)

ya =











0 for all v ∈ VT \ {s, t},

1 if v = s,

−1 if v = t.

(5)

∑

a∈J T
ij

ya = xij for all i ∈ M, for all j ∈ J, (6)

xij ≥ 0 for all i ∈ M, for all j ∈ J, (7)

ya ≥ 0 for all a ∈ AT , (8)

where for each vertex v, we have that δ+(v), δ−(v) denote the out-going and in-going edges at
v ∈ VT , respectively.

Proof of Theorem 3. For T = opt, we project the polytope of the linear program above to Q̄(J,M) by
defining xij according to (6) for each job j ∈ J and each machine i ∈ M . By Lemma 1 this yields
an extended formulation of size 2O(n)m. We describe now how to extend the above to an extended
formulation for P (J,M) of size 2O(n)m. For that, we show how to modify the dynamic program
used for constructing the extended formulation of Q̄(J,M).

Note that for the makespan of any feasible solution there are only 2n options since the makespan
equals the sum of the processing times of the jobs on some machine and there are only 2n options
for this quantity. Let T be a set containing all these options. We define a cell (J ′,m′, T ) for each
subset J ′ ⊆ J of jobs, each integerm′ withm′ ∈ {1, . . . ,m} and for each T ∈ T . For each such cell in
which the previous dynamic program above does not store⊥we define a vertex like above and also
arcs as before. Note that there are no arcs between two vertices (J ′,m′, T ), (J̄ ′, m̄′, T̄ ) with T 6= T̄ .
We define a new source vertex s′ and introduce an arc (s′, (J, 1, T )) for each T ∈ T , assuming that
the vertex (J, 1, T ) exists. Similarly, we define a new sink vertex t′ and an arc ((∅,m + 1, T ), t′)
for each T ∈ T . A path from s′ to t′ represents the choice of a makespan T ∈ T and defining a
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schedule with makespan at most T . As before, consider a linear program computing s-t paths in
this new graph, using a flow formulation and y variables as before, that is, constraints (5) and (8).
We lift this linear program by adding a variable T and introducing a new constraint

T ≥
∑

T∈T

T · y(s′,(J,1,T )). (9)

Then we project each point (y,T) in the resulting polyhedron to the point (x,T) ∈ P (J,M) by
setting xij =

∑

T∈T

∑

a∈J T
ij
ya for each i ∈ M and each j ∈ J . That concludes the proof of the

theorem.

3 Approximate polynomial size extended formulation

In the previous section we showed in Corollary 3 that there can be no polynomial size extended
formulation of Q(J,M) whose vertices are exactly all α-approximate solutions, for essentially any
α. However, in this section we show that there is a small extended formulation that contains all
optimal schedules and some approximate schedules. Our formulation works even in the more gen-
eral setting of unrelated machines, i.e., R||Cmax, where the processing time of a job j can depend
on the machine i that it is assigned to and for each such combination the input contains a value
pij ∈ N ∪ {∞}. In this setting the polytope Q(J,M) defined exactly in the same as way as before,
however, now a solution x is optimal if

∑

j∈J xijpij ≤ opt for each machine i ∈ M .

Construction of the extended formulation. In the sequel let T ≥ opt. The intuition behind our con-
struction is the following. We define a bipartite graph G in which we have one vertex vj for each
job j ∈ J and n vertices w(i,1), ..., w(i,n) for each machine i ∈ M . Each vertex w(i,ℓ) corresponds to
a slot for machine i. We search for a matching that assigns each job vertex vj to some slot vertex
w(i,ℓ) and we allow this assignment if and only if pij ≤ T/ℓ, i.e., we introduce an edge {vj , w(i,ℓ)} if
and only if pij ≤ T/ℓ. The intuition is that in opt for each machine i there can be at most one job j
assigned to i with pij ∈ (T/2, T ], at most two jobs j with pij ∈ (T/3, T ] and more general at most
ℓ jobs j with pij ∈ (T/(ℓ + 1), T ]. Hence, there is a matching in G that corresponds to opt. On the
other hand, in any matching the total processing time of the jobs on any machine i is bounded by
T+T/2+T/3+ ...+T/n = T ·Hn = O(T log(n)) which is at most opt ·O(log(n)) if T = O(opt) (e.g.,
set T = opt or set T to be the makespan found by a 2-approximation algorithm forR||Cmax [12, 18]).

We define an integral polytope that models this bipartite matching. For each (i, ℓ) let Jiℓ be the
subset of jobs j whose vertex vj has an edge incident to w(i,ℓ). For each edge {vj , w(i,ℓ)} we have a
variable yjiℓ that intuitively indicates whether job j is assigned to the slot (i, ℓ). On top of this, we
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project the resulting polytope to the space of the variables x of Q(J,M) which yields Q̄(J,M).

∑

j∈Jiℓ

yjiℓ ≤ 1 for all i ∈ M, for all ℓ ∈ {1, . . . , n}, (10)

∑

i∈M

n
∑

ℓ=1

yjiℓ = 1 for all j ∈ J, (11)

∑

ℓ:j∈Jiℓ

yjiℓ = xij for all i ∈ M, for all j ∈ J, (12)

xij ≥ 0 for all i ∈ M, for all j ∈ J, (13)

yijℓ ≥ 0 for all i ∈ M, for all j ∈ J, for all ℓ ∈ {1, . . . , n}. (14)

Theorem 4. Given an instance (J,M) of R||Cmax there exists an extended formulation of size O(n2m)
for an integral polytope Q̄(J,M) ⊆ Q(J,M) whose vertices correspond to all optimal solutions and some
O(log n)-approximate solutions to (J,M).

Proof of Theorem 4. Consider an optimal schedule and letx be its corresponding solution inQ(J,M).
For each machine i ∈ M , let Ji(x) be the subset of job vertices vj in G such that xij = 1, that is,
Ji(x) = {vj : xij = 1}, and consider Gi the bipartite subgraph of G that is induced by the vertices
Ji(x) ∪ {w(i,1), ..., w(i,n)}. We check that there exists a matching in Gi that covers Ji(x). Consider
W ⊆ Ji(x). There exists at least one job in t ∈ W with processing time at most T/|W |, other-
wise x would exceed the makespan T in machine i. Therefore, job t is connected to w(i,ℓ) for every
ℓ ≤ |W |, and its degree in Gi is at least |W |. In particular, W is connected to at least |W | slots in the
bipartite subgraph Gi. By Hall’s theorem we conclude that exists a matching in Gi covering every
job in Ji(x). For every job in Ji(x) we define yjiℓ = 1 if vj is connected to w(i,ℓ) in the matching,
and yjiℓ = 0 otherwise. By construction the solution (x, y) satisfies the constraints in the program
above.

On the other hand, consider a vertex solution (x, y). The integrality of (x, y) comes from the
fact that the linear program restricted to y variables is a bipartite matching formulation. We bound
the makespan of the schedule obtained from x. For each machine i ∈ M , we have

∑

j∈J

pijxij =
∑

j∈J

pij
∑

ℓ:j∈Jiℓ

yjiℓ =

n
∑

ℓ=1

∑

j∈Jiℓ

pijyjiℓ.

For every j ∈ Jiℓ, we have that pij ≤ T/ℓ. This, together with constraint (10) allows us to upper
bound the last summation above by

n
∑

ℓ=1

T

ℓ

∑

j∈Jiℓ

yjiℓ ≤ T

n
∑

ℓ=1

1

ℓ
= T ·Hn = O(T log n).

4 Extension complexity of configuration-LP

An alternative way to formulate P ||Cmax as an integer linear program is via a configuration integer
program. For a given target makespan T ≥ 0 we define the set of all configurations C(T ) to be all
subsets of jobs whose total processing time is at most T , i.e., C(T ) := {L ⊆ J :

∑

j∈L pj ≤ T}.
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For each machine i ∈ M and each configuration C ∈ C(T ) we introduce a variable yiC ∈ {0, 1}
that models whether machine i gets exactly the jobs in configuration C assigned to it. Denote by
Pconfig(J,M, T ) the convex hull of all solutions to the integer program below.

∑

i∈M

∑

C∈C(T ):j∈C

yiC = 1 for all j ∈ J, (15)

∑

C∈C(T )

yiC = 1 for all i ∈ M, (16)

yiC ∈ {0, 1} for all i ∈ M, for all C ∈ C(T ). (17)

For arbitrary values of T the number of variables of Pconfig(J,M, T ) can be exponential in the
input length. However, for constant T there are only a polynomial number of variables (and con-
straints) since the number of possible configurations is bounded by

(n
T

)

= nO(T ). This raises the
questions whether Pconfig(J,M, T ) admits a small extended formulation for such values of T . If
T = 2 and pj ∈ {1, 2} for each j ∈ J Theorem 1 implies a lower bound of 2Ω(n/ logn) since there is
an easy projection of the configuration-LP to P (J,M). We strengthen this to the case where pj = 1
for each j ∈ J and to a lower bound of 2Ω(n).

Theorem 5. For every n ∈ N there is an instance (J,M, T ) of P ||Cmax with n machines and O(n) jobs
such that the polytope Pconfig(J,M, T ) has an extension complexity of 2Ω(n). It holds that T = 2 and pj = 1
for each j ∈ J .

Proof of Theorem 5. For every n ∈ N we construct an instance of (J,M, T ) by T = 2, M contains n
machines, and J contains 2n jobs with pj = 1 for each j ∈ J . The set C(T ) is thus the set of all
pairs of jobs. We show that there is a linear map that projects each solution to Pconfig(J,M, T ) to a
matching in a complete graph on 2n vertices. Let G = (V,E) be the complete graph on 2n vertices,
i.e., G = K2n. Consider the perfect matching polytope of G, given by

PM(G) = conv
({

χM ∈ R
E : M ⊆ E is a perfectmatching

})

.

We define a linear map f : Pconfig(J,M, T ) → PM(G) as follows: for each edge e = {u, v} ∈ E we
define fe(y) :=

∑

i∈M yi{u,v}. For each vertex y of Pconfig(J,M, T ) it holds that f(y) ∈ PM(G) and
therefore f(Pconfig(J,M, T )) ⊆ PM(G). On the other hand, let x be a vertex of PM(G), i.e., x repre-
sents a perfect matching {{u1, v1}, {u2, v2}, ..., {un, vn}} in G. Then we can construct a vertex y of
Pconfig(J,M, T ) such that f(y) = x as follows: assume that the machines are numbered {1, ..., n}.
Then for each machine i we define yi{ui,vi} = 1 and yiC = 0 for each C ∈ C(T ) \ {{ui, vi}}. Then

f(y) = x. Rothvoss showed that the extension complexity of PM(G) is 2Ω(n) [16]. Our construc-
tion implies that Pconfig(J,M, T ) is an extended formulation for PM(G). Therefore, the extension
complexity of Pconfig(J,M, T ) is also 2Ω(n).

5 An extended formulation with small parameterized size

In this section we consider an abstraction of the configuration integer program that exhibits low
extension complexity parameterized by T . Instead of encoding configurations as subsets of jobs,
we consider how many jobs in the configuration have a certain processing time p. That is, in this
context a configuration is a multiset C of {pj : j ∈ J}, and let m(p,C) be the multiplicity of p in
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C , namely, the number of times that p appears in C . For every p ∈ {pj : j ∈ J}, let np be the
number of jobs in J with processing time equal to p. We denote by C∗(T ) the set of configurations
having total processing time at most T . The key fact about this encoding is that two or more ma-
chines can be scheduled in the same configuration and there are fewer solutions overall than for
the configuration-LP. As before, we propose a formulation where for every combination of ma-
chine i ∈ M and configuration C ∈ C∗(T ) we have variable yiC indicating whether i is scheduled
according to C . That is,

∑

C∈C∗(T )

yiC = 1 for all i ∈ M, (18)

∑

i∈M

∑

C∈C∗(T )

m(p,C)yiC = np for all p ∈ {pj : j ∈ J}, (19)

yiC ∈ {0, 1} for all i ∈ M, for all C ∈ C∗(T ). (20)

Theorem 6. The extension complexity of the integer hull for the above formulation is O(f(T ) · poly(n,m))
for some function f .

We define a program deciding for each configuration C ∈ C∗(T ) how many machines get con-
figuration C such that we have enough slots for all jobs, that is,

∑

C∈C∗(T )

zC = m, (21)

∑

C∈C∗(T )

m(p,C)zC = np for all p ∈ {pj : j ∈ J}, (22)

zC ∈ N for all C ∈ C∗(T ). (23)

We denote P∗(J,M, T ) the convex hull of the solutions to the integer program above. Since the
number of processing times ranges in [1, T ], the total number of configurations in C∗(T ) is upper
bounded by T T .

Lemma 2. There exists a function h such that the number of vertices of the polytope P∗(J,M, T ) is upper
bounded by h(T ).

Observe that the lemma above holds even when number of machines and jobs on the right
hand side of the integer program above are not necessarily bounded by a function of T , which is in
general the case. Now we can prove Theorem 6 via a Dantzig-Wolfe reformulation with a variable
for each of the h(T ) vertices of P∗(J,M, T ). Since the size of P∗(J,M, T ) is bounded by h(T ), we
have at most that many variables of this type. Then, we model the values of the variables yiC as
the solution to a suitable transshipment problem.

Proof of Lemma 2. Let w be a vertex of the polytope P∗(J,M, T ). We argue that there are at most
h(T ) possibilities for w for some suitable function h. For a value g(T ) to be defined later define a
new point w1 by setting w1

C := wC if wC ≤ g(T ) and w1
C := 0 otherwise for each configuration
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C ∈ C∗(T ). Define w2 = w − w1 ≥ 0, which is feasible for the following integer linear program

∑

C∈C∗(T )

zC = m−
∑

C∈C∗(T )

w1
C ,

∑

C∈C∗(T )

m(p,C)zC = np −m(p,C)w1
C for all p ∈ {pj : j ∈ J},

zC ∈ N for all C ∈ C∗(T ).

One can easily show that w2 is a vertex of the integer hull of the solutions to the program above,
since otherwisew is non-trivial convex combination of feasible solutions ofP∗(J,M, T ). Let C′

∗(T ) ⊆
C∗(T ) denote the configurations in the support of w2. We identify each configuration C ∈ C′

∗(T )
with a vector which is the column in the matrix of the program above corresponding to C , i.e., the
first entry of each such vector is a 1 and the other entries are given by the values m(p,C)p∈{pj :j∈J}.
If the vectors in C′

∗(T ) are linearly independent then the above IP has a unique solution. Hence,
there is at most one vertex w of P∗(J,M, T ) of the form w = w1 + ŵ where ŵ is a solution to the
above IP. In the sequel we argue that it cannot be that the vectors in C′

∗(T ) are linearly dependent
if g(T ) is sufficiently large. Then the claim of the lemma follows since the vector w1 satisfies that
w1
C ∈ {0, ..., g(T )} for each C ∈ C∗(T ) and the number of such vectors can be bounded by a value

h(T ).
If the vectors in C′

∗(T ) are not linearly independent then there exists a configuration C ∈ C′
∗(T )

and a set of linearly independent vectors C1, ..., Ck ∈ C′
∗(T ) and values λ1, ..., λk such that C =

∑k
i=1 λiCi. Let Λ denote the smallest value Λ′ ∈ N such that Λ′C =

∑k
i=1 Λ

′λiCi such that Λ′λi ∈ Z

for each i. If g(T ) ≥ Λ and g(T ) ≥ Λλi for each i then we can write w2 as the convex combination
of two integral vectors and hence w2 is not a vertex. To ensure the former we define g(T ) to be the
maximum over all values Λ and Λλi that we can obtain in this way, i.e., by selecting one C ∈ C∗(T ),

expressing it as a linear combination C =
∑k

i=1 λiCi of a set of linearly independent configurations
C1, ..., Ck ∈ C∗(T ), and finding the smallest value Λ′ ∈ N such that Λ′λi ∈ Z. Note that the number
of values Λ′ obtained in this way is finite and hence g(T ) is well-defined (and finite).

Proof of Theorem 6. Let V (J,M, T ) be the set of vertices in the polytope P∗(J,M, T ). By Lemma 2,
there exists a function h such that the size V (J,M, T ) is bounded by h(T ). Since we can restrict
the optimization problem to its set of vertices, we consider the linear program obtained by lifting
the integer program above by the Dantzig-Wolfe reformulation using the set of vertices V (J,M, T ).
For each vertex v ∈ V (J,M, T ), consider a variable λv indicating whether we pick or not the vertex
solution v. In addition, for each configuration we consider as before a variables zC indicating
how many times the configuration C is used. Finally, for each combination of machine i ∈ M
and configuration C ∈ C∗(T ) we have a variable yiC indicating whether machine i is scheduled
according to C .

The idea behind the extended formulation is to first select a vertex v ∈ V (J,M, T ) by using
the Dantzig-Wolfe reformulation in the variables (λ, z), which provides for each configuration C ∈
C∗(T ) the number of times, zC , that is used. Then we formulate a transportation problem between
machines and configurations satisfying the offer zC for each configuration.

More specifically, consider a complete bipartite graph G where we have one vertex vi for each
machine i ∈ M , and we have a vertex wC for each configuration C ∈ C∗(T ). For each vertex wC

we have an offer zC , and every vertex vi has a demand of 1. The variable yiC indicates whether
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the demand of the machine vertex vi is satisfied by the configuration vertex wC . More specifically,
consider

∑

v∈V (J,M,T )

λv = 1, (24)

∑

v∈V (J,M,T )

vλv = z, (25)

∑

C∈C∗(T )

zC = m, (26)

∑

C∈C∗(T )

m(p,C)zC = np for all p ∈ {pj : j ∈ J}, (27)

∑

i∈M

yiC = zC for all C ∈ C∗(T ), (28)

∑

C∈C∗(T )

yiC = 1 for all i ∈ M, (29)

λv ≥ 0 for all v ∈ V (J,M, T ), (30)

zC ≥ 0 for all C ∈ C∗(T ), (31)

yiC ≥ 0 for all i ∈ M, for all C ∈ C∗(T ). (32)

Observe that constraints (26) and (29) guarantees that the total demand equals the total offer in
the transportation problem over G. It holds that a vertex (λ, z, y) of the linear program above is
integral. If not, suppose that λ is fractional, otherwise the integrality of λ implies the integrality
of z and in turns the integrality of y since the transportation program in the graph G given by
constraints (28)-(29) is integral. Ifλ is fractional, z is a non-trivial convex combination of the vertices
{v ∈ V (J,M, T ) : λv > 0}, and each of these vertices is feasible for the constraints (26)-(27),
which implies that (λ, z) is a convex combination of the vectors {(ev , v) : λv > 0}, where ev ∈
{0, 1}V (J,M,T ) is the canonical vector that is 1 for entry v and zero otherwise. For each v such
that λv > 0, the constraints (28)-(29) solve a transportation problem between the machine vertices
{vi : i ∈ M} and the configurations vertices {wC : C ∈ C∗(T )}, where the offer for wC is equal to
zC . The vertices with positive offer are given by Cv = {wC : vC > 0}, and then any solution to this
problem is a convex combination of the integral solutions to the transportation problem over G.
Since every solution is supported over M ×Cv, and therefore we contradicted the fact that (λ, z, y)
is a vertex of the polytope.
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