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Within the field of prognosis and health management, one of the areas that have grown the
most in recent years is the research and application of AI techniques and deep learning models
to prongosis and diagnosis tasks. There are many possible reasons for this, but maybe the
most important one is that together with the capability of building more complex machines
and systems, the amount of operation data being generated has increased exponentially.
Nevertheless, while larges quantities of data are being generated now than ever, the cost of
labeling that data has not changed. In that regard, it becomes very necessary to focus the
research efforts towards models and approaches that can learn to predict and detect failures
from lower amounts of labeled information, possibly extracting it from the unlabeled portion
as well.

In this regard, the principal motivation for this thesis is the need for reliable models for
diagnosis and prognosis tasks that can learn in a semi-supervised fashion, taking advantage
of both labeled and unlabeled information.

The main objective of this thesis is to assess the improvements achieved in both prognosis
and diagnosis tasks with the proposed model that uses a coupled training strategy to opti-
mize simultaneously a temporal VAE (an unsupervised model) and a normal neural network
predictor (a fully supervised model) for situations where the amount of labeled information
is scarce.

The methodology used in this work consists mainly of four steps. First, a literature
review of recent literature regarding semi-supervised approaches and deep generative models
is done. Second, a modified version of Variational Auto-Encoder that uses normalizing flows
and allows the processing and generation of sequential input and latent variables is proposed
and explain. Third, the coupled training process is developed. Finally, the proposed model
with the new training strategy is apply on two case studies to obtain results and discussed
its advantages and disadvantages with respect to traditional approaches.

The main conclusions extracted from the results of the two case studies presented is
that while an improvement of the proposed model is observed with respect to a decoupled
training strategy, further experiments demonstrate that it only produces similar prediction
performances when compared against a traditional recurrent neural network trained with only
labeled data. Future research could focus on trying more advanced Deep Generative Models
with the same training approach or testing more complex datasets where generalization is
harder than the ones presented in this thesis.
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Dentro del manejo de activos físicos, una de las áreas que más ha crecido en los últimos años
es la investigación y aplicación de técnicas de relacionadas a la inteligencia artificial y modelos
de aprendizaje profundo para las tareas de diagnóstico y pronóstico en maquinaria y sistemas.
Existen muchas razones posibles para esto, pero quizás la más importante es que, junto con la
capacidad de diseñar máquinas y sistemas más complejos, la cantidad de datos relacionados
a la operación y mantenimiento que se genera actualmente ha aumentado exponencialmente.
Sin embargo, aunque ahora se están generando más datos que que nunca, el costo de etiquetar
esos datos no ha cambiado. En ese sentido, se hace muy necesario enfocar los esfuerzos de
investigación hacia modelos y técnicas que puedan aprender a predecir y detectar fallas
usando poca información etiquetada, suplementandola de la parte no etiquetada.

En este sentido, la principal motivación para esta tesis es la necesidad de modelos confiables
para las tareas de diagnóstico y pronóstico que puedan aprender de forma semi-supervisada,
aprovechando tanto la información etiquetada como la no etiquetada.

El objetivo principal de esta tesis es evaluar las mejoras logradas en las tareas de pronóstico
y diagnóstico con el modelo propuesto que utiliza una estrategia de entrenamiento acoplada
para optimizar simultáneamente un VAE temporal (un modelo no supervisado) y un predictor
de red neuronal normal (un modelo totalmente supervisado ) para situaciones en las que la
cantidad de información etiquetada es escasa.

La metodología utilizada en este trabajo consta principalmente de cuatro pasos. Primero,
se realiza una revisión de literatura sobre enfoques semi-supervisados y modelos generativos
profundos. En segundo lugar, se propone y explica una versión modificada del Auto-Encoder
Variacional que utiliza flujos de normalización y permite el procesamiento y la generación de
datos secuenciales. Tercero, se desarrolla el proceso de entrenamiento acoplado. Finalmente,
el modelo propuesto con la nueva estrategia de entrenamiento se aplica en dos estudios de
caso para obtener resultados y se discuten sus ventajas y desventajas con respecto a los
enfoques tradicionales.

Las principales conclusiones extraídas desde los resultados expuestos es que, si bien se
observa una mejora del modelo propuesto con respecto a una estrategia de entrenamiento
desacoplada, otros experimentos demuestran que solo produce predicciones similares en com-
paración con una red neuronal recurrente tradicional entrenada con solo datos etiquetados.
La investigación futura podría centrarse en probar modelos generativos profundos más avan-
zados con el mismo enfoque de entrenamiento o probar conjuntos de datos más complejos
donde la generalización sea más difícil que los presentadas en esta tesis.
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I want to turn the whole thing upside down
I’ll find the things they say just can’t be found

I’ll share this love I find with everyone
We’ll sing and dance to Mother Nature’s songs

I don’t want this feeling to go away.
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Chapter 1

Introduction

Data, in one way or another, has always been used in the prognostics and health management
(PHM) field to assess the operation and maintainability of physical assets. Between the
end of the 1990s and beginning of the 2000s, advanced statistical methods and machine
learning algorithms started to be used for this extent due to their properties to automatically
extracted important features from operational records. Tools such as support vector machines
(SVM) [3], decision trees [4] and particle filters [5] are still used today with many success
cases in the PHM research community and industry. Nevertheless, due to the increasing
availability of sensing technology in mainstream industry, one of the main challenges that
reliability engineers face nowadays is how to use the immense amounts of highly dimensional
data that is being generated every day from machinery and systems. Traditional machine
learning methods such as the described above fell short to produce acceptable results when
the input data has a high dimensionality representation, phenomenon that is also known
as the curse of dimensionality [6]. One possible approach to tackle this problem is the use
of deep learning models, which have resurfaced in popularity during the last decade mostly
due to the decrease in price of computational hardware that allows for parallel computing
(such as GPUs and TPUs). In fact, many recent successful examples of the application of
deep learning techniques to the PHM field exists in the literature, such as recurrent neural
networks for predicting the remaining useful life of lithium-ion batteries [7] or convolutional
neural networks for fault diagnosis in a wind turbine gearbox [8], to name a few.

Nevertheless, the use of traditional deep learning techniques (such as the ones mentioned
above) requires higher quantities of labeled data to train the immense number of independent
parameters that those model contains. In addition to that, companies and industries are
very skeptical to share their data, fearing the reveal of secrets or giving an advantage to the
competence. Therefore, nowadays in the PHM field novel algorithms have to be validated
using mostly datasets that are released to the public by universities or conferences. This is
the case of the CMAPSS TurboFan dataset for remaining useful life prognostics [9], the Case
Western Reserve ball bearing dataset for failure diagnostics [10] or the Bearing vibration
data collected under time-varying rotational speed conditions dataset from the University
of Ottawa [11], to name a few. One of the main problems with these datasets is that they
are produced in a controlled environment or are directly produced by running computational
simulations. This generate datasets with an abnormal and unrealistic number of labels, which

1



do not reflect the reality of industry at all. In industry labels are very hard and expensive
to produce, and thus real world datasets contain low levels of them. Because of this, this
work put an emphasis in researching models that can learn effectively in situations where
the amount of labeled data is low, but there is an abundance of unlabeled data. Learning
models under these conditions is also known as Semi-Supervised learning.

One possible approach to Semi-Supervised learning is to first transform the input data
into an alternative or latent representation in which the most relevant features are identified
and enhanced to allow the models to learn from fewer, but better, examples. These alterna-
tive representations can be generated using many techniques, but in recent research, Deep
Generative models (DGM) have arisen in popularity for this extend due to them being a
combination between traditional deep learning models and probabilistic modeling, juxtapo-
sition that gives DGMs flexibility and a probabilistic interpretation of the results. Within
deep generative models, Variational Auto-Encoders (VAEs) [12] are probably the most no-
torious and popular one. Variational Auto-Encoders combine variational inference with the
use of neural networks as functions approximators to approximate the posterior probability
distribution of the latent representation, effectively transforming the data into a space that
can benefit the training of other models.

The traditional approach for semi-supervised learning with VAEs consist on mainly three
steps. Firstly, the VAE is trained in an unsupervised manner using the entire dataset until a
termination condition (such as the convergence of the cost function) is reached. Then, once
the VAE is trained, it is used as an unsupervised feature extractor to transform the labeled
portion of the dataset to the latent representation. Finally, this latent representation is used
in conjunction with the labels as a new dataset to train a second model, which is often called
the predictor, to solve a classification or regression problem, for example. This approach have
already been used within the PHM research community to perform a variety of tasks. For
example, San Martín et. al. uses vanilla VAEs and artificial neural networks to perform the
diagnosis of health states in ball bearings [13]. Another example is given by Yoon et. al., who
uses a modified VAE with recurrent neural networks to perform the prognosis of remaining
useful life for turbofans [14].

Nevertheless, the aforementioned applications present three main shortcomings. First, al-
though multiple modified versions of the vanilla VAE model has been proposed to deal with
input data in the form of time-series for general contexts [15, 16, 17], very little attention
has been given to those approaches within the PHM research community, where the tempo-
rality has been either ignored, oversimplified or eliminated from the analysis using strategies
to convert sequential data to non-sequential data (such as extracting temporal features) to
use traditional VAE models. A second shortcoming is that although a wide variety of im-
provements has been made to the VAE model since it was first proposed in 2013, the PHM
community keeps using what is almost a vanilla VAE model, without experimenting with any
of the variations to see the effects that they could have on the diagnosis and prognosis results.
Finally, and most importantly, the traditional approach of using VAEs for semi-supervised
learning tasks rely on a decoupled training strategy, where, as explained before, the VAE
model is trained separately from the predictor model. This produces a series of disadvan-
tages, but maybe the most critical one is that the information contained in the few available
labels never reach the VAE model. This represent a serious waste of possible improvement
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opportunities for the traditional approach, since it is the VAE who generate the transformed
dataset that the predictor model uses as input, and therefore it could benefit greatly from
guiding the optimization with more assertive information.

To tackle the three aforementioned shortcomings, this thesis proposes a model that trains
the VAE and the predictor model in a coupled manner, fusing them together into what is a
mixed model with two different objective functions. In this manner, the labeled information,
contained in the gradients of the predictor’s loss function is back-propagated to the VAE
model. Also, the VAE itself is subject of two modifications in the proposed model. First,
its latent representation is enhanced using a technique known as normalizing flows [18, 19],
which has reported severe improvements in VAEs when they are use for other purposes.
Secondly, the VAE model is redesign to allow the direct use of sequential data as its input,
generating what will be called during this thesis as a temporal Variational Auto-Encoder.

The proposed model is studied under two different datasets. One is the CMAPSS dataset
[9], a prognosis example in which the objective is to predict the remaining useful life of
simulated turbofans. The second is a diagnosis example in which the objective is to classify
the health states of a real pumping system used in a offshore oil extraction platform. To
assess the advantages and disadvantages of the proposed model, it is compared against two
baselines designed to test particular aspects of the proposed approach.

In the following, the motivation, general objective and specific objectives of the thesis are
declared, as well as the resources used for this work.

1.1 Motivation

The motivation for this thesis can be divided in two aspects. First, because the labeling data
process is very expensive for most PHM applications, real world datasets often contain a
severe under-representation of labeled exampled. For this reason, it is necessary to focus the
research efforts towards the development of models and algorithms that can learn meaningful
features and characteristics of the data in an unsupervised manner as well as from those few
labeled examples that can be afforded. Secondly, since most of the operational data generated
in nowadays industries contain some degree of temporality within it, the models developed to
handle PHM data should have a mathematical explanation of the assumptions that are being
made when the engineer chooses different kind of sequential models. This thesis proposed a
model that attempts to contribute towards these two problematics.

1.2 General Objective

Propose and assess a semi-supervised learning approach based on the use of temporal Vari-
ational Auto-Encoders trained in conjunction with a neural network predictor to perform
tasks such as the diagnosis of failure severities and the prognosis of remaining useful life in
cases where the amount of labels is very scarce.
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1.3 Specific Objectives
1. Propose a modification for the traditional Variational Auto-Encoder (VAE) models that

can process sequential input data and generate a sequential latent space.
2. Propose a framework to incorporate non-sequential normalizing flows in sequential la-

tent spaces.
3. Propose a coupled training procedure to, at the same time, train the modified VAE

model and the neural network predictor in a way that labeled information can be used
to optimize the encoder’s network.

4. Design and execute experiments on the proposed model and suitable baselines in order
to assess the advantages and disadvantages of the proposed approach to semi-supervised
learning.

1.4 Resources Available for this Thesis
To run the proposed experiments in this thesis, the following hardware resources were kindly
facilitated by the SRMI Lab of the University of Chile.

• Desktop computer with Ubuntu 16.04, i7-7700k processor, 32 GB of DDR4 RAM and
a GPU NVIDIA Titan X.

As of software resources, everything was developed in open software libraries, which in-
clude:

• Python 3.6 programming language.
• TensorFlow 2.0.0 [20] as the primary Deep Learning library.
• Numpy [21], SkLearn[21], Matplotlib [22], Pandas [23] libraries were used for cleaning,

visualizing and managing the data.

In addition, financial support during the full duration of this thesis was kindly provided
by CONICYT 1 though a scholarship.

1Comisión Nacional de Investigación Científica y Tecnológica de Chile
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Chapter 2

Methodology

In order to successfully explore and test the capabilities of the tVAEs in a semi-supervised
scenario for PHM data, and therefore fulfill the objectives of this thesis, the following method-
ological steps were developed.

1. Data Acquisition: The models that will be designed and developed in this work are
trained using automatic differentiation, also known as back-propagation [24], learning
the neural networks parameters from data that represent some phenomenon of interest.
In this case, this phenomenon is the degradation of an asset or system that causes
failures in it’s operation. Therefore, the first step in this thesis is the acquisition
of operational datasets of mechanical element or systems, to train and validate the
proposed models. The acquired datasets are briefly described below:
• FD004 Turbofan Dataset: The objective of this dataset is to perform prognostic of

remaining useful life of turbofans using operational data generated by a simulation
algorithm. This dataset is part of the CMAPSS dataset [9]. In particular, the
data correspondent to the FD004 subset has the peculiarity of containing the
higher number of failure modes and operational conditions of all the subsets, thus
resulting in a much more difficult prognostic problem.
• Oil Pumps: This dataset was kindly provided by a South-American oil company

and contain data regarding the health states of pumps used in the offshore extrac-
tion of oil. This dataset was chosen because it is a real world dataset, meaning
that it was not produced in a laboratory but in a real industrial environment.

2. Literature Review: This step includes reading the state of the art literature available
at the moment of developing this thesis as well as reading any relevant previous work
that relates directly or indirectly to the research. In the following list there is a summary
of such topics.
• The use of Variational Auto-Encoders in cases where the input data and the latent

space has a sequential structure.
• Deep generative models, specially VAEs, used in semi-supervised learning of data.
• Normalizing flows and it’s application to deep generative models such as VAEs.

3. Development of the temporal VAEs (tVAEs): This step consist in both the
theoretical adaptation of the VAE model to work with sequential data, which in the
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PHM context are time series, and the development of such adaptation in code.
4. Development of the semi-supervised learning framework: This step includes

the development of the proposed training process that uses tVAEs in conjunction with
traditional neural network predictors to do semi-supervised learning.

5. Integration of normalizing flows to the tVAEs models: Since in current liter-
ature normalizing flows are proposed as a possible improvement of traditional VAEs,
this thesis proposes a very simple framework that enables the integration of normalizing
flows to VAEs working with sequential data, i.e. tVAEs. This include the integration
from a model point of view (where should the normalizing flows be included) as well
from a mathematical point of view (how does the loss function of the model changes
when normalizing flows are included).

6. Design and execution of the experiments: To fulfill the objectives of this thesis
and extract conclusions, carefully designed experiments are needed. This step include
the definition of the parameters that will be varied across experiments and the models
that will be tested.

7. Analysis of the results and concluding remarks: Once the experiments are ex-
ecuted, results will be extracted to reach conclusions about the advantages, disad-
vantages and usefulness of the proposed approach. Also, is possible that interesting
conclusions will be drawn from the results that in the beginning of this thesis were not
contemplated. Such conclusions will also be analyzed in this step.
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Chapter 3

Theoretical Background

The following chapter details the necessary background needed to understand and achieve
the objectives of this work. First, a quick review on Machine Learning is given. After that,
Deep Learning and the principal neural networks architecture are explained, along with the
loss functions used in this thesis to optimize the algorithms. Then, variational inference and
variational auto-encoders are presented in the non-temporal and temporal setting. Lastly,
a technique called normalizing flows commonly used to improve variational auto-encoders
latent space is introduced to the reader.

3.1 Machine Learning

Machine Learning can be defined as a set of methods that can automatically detect patterns
and structures within data, and then use those learned characteristics to perform predic-
tions or decision making tasks [1]. In general, machine learning is a subset of the artificial
intelligence (AI) field, that draw heavily from probability theory, statistics techniques and
computer sciences to build general models that can be trained with data, so that explicit
programing is not needed for solving complex problems. The types of problems that can
be solved with machine learning can be divided in, roughly, four categories: classification,
regression, clustering and anomaly detection [25]. In what follows, a brief review of the two
types of problems used in this thesis, classification and regression, is presented.

3.1.1 Classification and Regression Problems

In classification problems, the objective is to train a model to map input data x into one
or more classes or categories yCc=1 where c ∈ {1, 2, ..., C} and C is the number of available
classes. This thesis focuses on solving problems in which each data point x belongs to just one
class of three or more possible classes. This type of problems are often known as multi-class
classification.

On the other hand, in regression problems, the objective is to train a model to map input
data x into one or more continuous values y. In other words, the trained model is a function
f capable of doing the transformation y = f(x). Since the prediction space containing y
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is not constrain to a list of integer values in regression problems, these tend to be much
more complex and hard to solve than classification problems. This thesis focuses on solving
problems in which the prediction y only consist on one continuous value.

In the PHM context, classification problems are presented naturally when engineers are
diagnosing the health state of a machine or trying to identify the location of a fault, for exam-
ple. Regression problems also present themselves in PHM, more frequently in the prediction
of the RUL, or remaining useful life of a certain machine or system.

Machine Learning problems can also be divided based on the availability of data in two
distinct categories: supervised learning and unsupervised learning [1]. These two classes of
machine learning problems are presented below.

3.1.2 Supervised and Unsupervised Learning

In supervised learning, input data x as well as labels y are widely available for the training
process. This means that the supervised model is designed to focus on the mapping between
x and y, focusing in identifying the characteristics present in x that can relate that particular
example with the corresponding label y. Typically, regression and classification problems are
also supervised problems.

Unsupervised learning problems, on the other hand, are characterized by situations in
which only data x is available, but labels y are not. Therefore, unsupervised algorithms
focus on finding relationships within the input data, to identify structures of similarity or
to transform the data into a better space. Clustering algorithms, such as K-Means [26] or
DBScan [27], are examples of unsupervised models in which the objective is to separate the
dataset into disjunct classes based on a particular similarity metric. Another example are
dimensionality reduction algorithms, such as PCA [1], where the objective is to transform
the data x into a better, more concise representation z.

Below, a third category that represent a middle ground between supervised and unsuper-
vised problems is presented.

3.1.3 Semi-Supervised Learning

While fully supervised learning problems deals with data that is completely labeled and un-
supervised learning deals with the exact opposite problem, semi-supervised learning present
when labels are available, but scarcely. This means that the input data x can be divided
into a labeled portion (xi, yi)

L
i=1 and an unlabeled portion (xi)

U
i=1, where U and L represent

the number of unlabeled and labeled data points, respectivaly. Generally, U is considerably
greater than L. In the PHM context, this type of problems have special importance due
to the higher costs associated with labeled data and the lower amount of information that
unsupervised algorithms contribute. Therefore, an ideal situation is to have a good perform-
ing algorithm that can learn to make diagnosis and prognosis using a very small portion
of labeled examples. This thesis focuses on developing models that can solve this type of
problems, using a combination of supervised and unsupervised techniques.

In what follows, deep learning is presented as a sub-field of machine learning that deals with
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high-dimensional data to build very efficient function approximation models called neural
networks.

3.2 Deep Learning

Deep learning is a subfield of machine learning that focus on the use of automatic differentia-
tion to train structures named neural networks. Neural networks are function approximation
models used to map a certain input with a desired output. These types of models are com-
posed by layers or cleverly ordered parameters trained using a technique based on gradient
descent called automatic differentiation [24]. Neural networks can be used directly as function
approximators to perform simpler tasks such as classification and regression, or be included
as modules in more complex models to accomplished a wide variety of tasks, such as data
reconstruction, speech generation or sentiment analysis.

This section review two types of neural network architecture that are used in this thesis:
traditional neural networks and recurrent neural networks.

3.2.1 Traditional Neural Networks

Traditional neural networks (NNs) [28] are designed to map a vector of input data, ~x to a
vector of predicted values ~y. To accomplish this, NNs apply a linear operation followed by a
nonlinear function h(·), presented in equation 3.1.

~y = h(W~x+~b) (3.1)

Where matrixW and vector~b are parameters known as the weights and biases respectively,
and are learned from the data. Traditional neural networks can be constructed using a deep
architecture, in which equation 3.1 is applied two times or more, where each application has
its own weights and biases and is commonly known as layer. For illustration purposes, in
equation 3.2 a three layers NN is presented.

~y = h3(W3(h2(W2h1(W1~x+~b2) +~b2) +~b2)) (3.2)

3.2.2 Recurrent Neural Networks

One disadvantage of traditional neural networks is their inability to process sequential data
of the form x = ~x1, ..., ~xT . This type of setting surfaces often when modelling problems in
which main phenomenon depends on time, such as a degradation process or the evolution
of some operational magnitude. Recurrent neural networks (RNNs) [1] were developed as
a model capable of dealing with this type of input data. In RNNs, the input sequence is
unfolded and each resulting vector x~xt is processed applying the following equation:

~yt = h(Wx~xt +Wy~yt−1 +~b) (3.3)
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Where now the recurrent layer has two weight matrices, Wx and Wy, one for the the input
vector of that time ~xt and another for the output of the previous time, ~yt. For the first time
step, only the operations related to the input ~x0 are applied.

As it can be seen from equation 3.3, RNNs uses the immediate past output of the sequence
to compute the future outcome. Because of this, they are capable of finding patterns not
only within the features of x, but across the time dimension as well. A diagram of a RNN is
presented in figure 3.1. The sequence of outputs vectors ~y1:T is also known as the states of
the RNNs. Nevertheless, in most cases only the last state, ~yT , is used as the output of the
RNN.

Figure 3.1: Diagram of an RNN applied to sequential input data x with T = 3. Note how for the
first time step, only ~x1 is used since ~y0 is not defined yet.

Nevertheless, one drawback of RNNs is that they only have one step backward memory.
This can be seen from equation 3.3, where for the computation of ~yt, only ~yt−1 is directly used.
This result in a neural network model that has a very short memory and therefore can only
detects patterns across time of limited duration. To overcome this difficulty, a modification
of recurrent neural networks called Long Short Term Memory Networks (LSTM) [29] were
proposed. In LSTMs, the block of computation for each time step is much more complex,
consisting in two computational flows, one for long term memory and another for short term
memory, denoted as the cell and state respectively. In this nomenclature, they are represented
by the variables ~c1:T and ~h1:T .

As it can be seen in figure 3.2, LSTMs typically consist of three gates: forget, input and
output gates. Each gate is responsible for allowing or prohibiting the flow of information,
resulting in a neural network that can effectively learn to remember. The forget gate (~ft)
controls which parts of the long term state (~ct) should be erased. The input gate (~it) controls
which parts of the input data ~xt and the previous hidden state ht should be added to the
long term state. Finally, the output gate (~ot) controls which parts of the long term state
should be read and output at this time step, both to the next hidden state ~ht and to ~yt. The
specific operations that these gates apply are presented in equation 3.4.
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~it = σ(Wx,i~xt +Wh,i
~ht−1 +~bi)

~ft = σ(Wx,f~xt +Wh,f
~ht−1 +~bf )

~ot = σ(Wx,o~xt +Wh,o
~ht−1 +~bo)

~gt = tanh(Wx,g~xt +Wh,g
~ht−1 +~bg)

~ct = ~ft ⊗ ~ct−1 +~it ⊗ ~gt
~yt = ~ht = ~ot ⊗ tanh(~ct)

(3.4)

The computational block of the LSTM is presented in figure 3.2.

Figure 3.2: Diagram of an LSTM computation block. In this context, c and h represent the long
term and short term memory flows respectively. The acronym FC refers fully connected, which is
another name for traditional neural networks. For further information regarding the computation
block, the interested reader can review [1]. Source: Aurelien Geron, Hands on Machine Learning,
2019 [1].

LSTMs and RNNs are designed to detects patterns in a temporally forward manner. This
means that information is analyzed following the natural flow of time within the sequence
(from past to future). Nevertheless, there are some cases in which one may desire to search
patterns in both directions (past to future and also future to past). For this, a modification
of the LSTM called Bidirectional LSTM (BiLSTM) was proposed. BiLSTMs consist on
two normal LSTM applied each in one direction. The outputs ~yt for each time step are
concatenated to form the combined output. Figure 3.3 show a general diagram of two LSTM
being applied over the same sequence to form a BiLSTM.

In the next section, a brief review on the training procedure of neural networks is presented.

3.2.3 Training of Neural Networks

As it can be seen from the previous sections, each type of neural network can be reduced to
a function f with parameters θ (in which all the weights and biases of the varying structures
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Figure 3.3: Diagram of a BiLSTM applied over sequential data. Note how each LSTM have a
different computation direction. Source: Aurelien Geron, Hands on Machine Learning, 2019 [1].

are contained) that do the following mapping ŷ = f(x), where x is a vector or a sequence of
vectors depending on the type of neural network and ŷ are the predicted values. Since neural
networks are a data driven type of algorithm, its parameters are learned using a training
dataset. This dataset typically consist on pairs of data points x and labels y. The parameters
θ are optimized minimizing a loss function which commonly compares the predictions of the
neural net, ŷ, with the true values, or labels y, for each data point.

This minimization process is done first computing the gradients of each parameter con-
tained in θ with respect to the loss function L, dL

dθi
with back propagation and then using

gradient descent to update each weight θi. This process can be done one example at the
time, but convergence is faster and more stable if the gradients for each data point within an
aleatorily sampled subset of the dataset (xi, yi)

N
i=1 are averaged, and then applied the corre-

sponding gradient descent to the weights and biases of the neural network. The number of
examples within that aleatorily sampled subset is commonly known as the batch size. When
every pair of the original dataset has been used to compute gradients at least once, it is said
that one epoch of training has passed. The full training procedure usually last for a number
of epochs that ranged between 10 and 10000.

For classification problems, the final layer of the neural network is structured to output
a vector ~̂y of C components, where C is the number of possible classes. The final activation
function in this case is the softmax function, presented in equation 3.5. This function applied
to the last layer generate an output vector in which the components sum to i. Because of
this, each component of ~̂y can be interpret as the probability that the data point belongs to
the corresponding class.

σ(~̂y)j =
eŷj∑C
c=1 eŷc

, for j = 1, ..., C (3.5)
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Usually, cross-entropy is used as the loss function for classification problems. This loss
function compare ~̂y and ~y, which is the true class formatted as a one hot-encode vector,
maximizing the probabilities of the correct classes. Cross-entropy is show in equation 3.6
applied to a particular example. The total loss over N examples is just the average of the
particular losses.

CE = −
C∑
c=1

yc log(σ(ŷc)) (3.6)

Where σ is the previously defined softmax function.

For regression problems with just one value to be predicted, such as the ones presented
in this thesis, the output of the last layer of the neural network is a vector of only one
component, ŷ. Frequently, the activation function of the last layer is the identity function.
The loss function used in this case is some metric of error between real valued vectors, such
as the mean squared error. The form of the mean squared error loss function is presented in
equation 3.7 applied to a dataset with N examples.

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (3.7)

The following section explains a technique for approximating probability distributions
called variational inference, uses as the theoretical basis for the main model of this thesis:
the Variational Auto-Encoder.

3.3 Variational Inference

One of the main challenges in probabilistic inference in general is the approximation of
difficult to compute probabilities densities.In Bayesian statistics, this problem arises as a
fundamental one, since the posterior plays an important role in the inference of the quantities
of interest. Currently, a powerful and flexible approach to approximate these probabilities
densities is variational inference (VI) [30].

Variational inference treats the problem of finding an approximate distribution as an
optimization problem. To see this in a clearer way, it is necessary to first set the problem
that variational inference try to solve. Let’s consider a set of observations, x = {x1, . . . , xN},
which specific form (whether they are vectors or matrices) is not important at this point. This
set of observations is assumed to be controlled by a set of latent variables z = {z1, . . . , zN}.
The joint distribution that make explicit the relationship between x and z is shown in equation
3.8.

p(x, z) = p(z)p(x|z) (3.8)
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In a Bayesian framework, latent variables are sampled from a prior distribution p(z),
which is common to be defined as a known probability distribution, and then related to the
observations through the likelihood p(x|z), which is the model that is assumed to explain
the data. The main objective is to make inference over the posterior distribution p(z|x).
This serves two main purposes. Firstly, latent variables inferred from x can be used as a
reinterpretation of the original dataset for downstream tasks. Secondly, knowledge of the
posterior distribution is imperative for generative models where the main objective is to
generate new, unseen data that is alike to the existing data.

For complex models, computing p(z|x) can be very difficult, in some cases even impos-
sible. In situations like these, one possibility is to approximate the posterior p(z|x) by
some distribution qφ(z|x) that belongs to a family Q of probability distributions that can be
parametrized by some set of parameters φ. If Q is a complex enough family that can contain
a good approximation to the posterior, but not so complex that the search for qphi(z|x) in
that family is infeasible, then variational inference may solve the problem of finding a good
approximation for the posterior. Based on this approach, the objective is to solve the opti-
mization problem of finding the closest approximate distribution qφ(z|x) to the true posterior
p(z|x) when qφ(z|x) is restricted to belong to Q. The objective function for this optimization
is a notion of distance between probability distributions called Kullback-Leibler divergence,
presented in equation 3.9.

KL(qφ(z|x)||p(z|x)) =

∫
Ωz

qφ(z|x) log
qφ(z|x)

p(z|x)
dx (3.9)

If this definition is expanded using the definition for the expectation and the properties
of the natural logarithm, the following expression is obtain:

KL(qφ(z|x)||p(z|x)) = Eqφ(z|x)∼Q[log qφ(z|x)− log p(z|x)] (3.10)

The best qφ(z|x) within Q is found minimizing this notion of distance, i.e., minimizing
the Kullback-Leibler divergence presented in equation 3.10. Nevertheless, the main problem
that variational inference faces is that the objective function described in equation 3.10 is
not estimable because it needs the computation of the logarithm of p(z|x) which in turn is
the function to be approximated, generating a circular problem. To find a computable form
for the Kullback-Leibler divergence in order to solve the minimization problem, the Bayes
theorem for p(z|x) is used on equation 3.10 to obtain:

KL(qφ(z|x)||p(z|x)) = Eqφ(z|x)∼Q[log qφ(z|x)− log
p(x|z)p(z)

p(x)
] (3.11)

Now, using the logarithm property, equation 3.11 can be rewritten as:

KL(qφ(z|x)||p(z|x)) = Eqφ(z|x)∼Q[log qφ(z|x)− log p(x|z)− log p(z) + log p(x)] (3.12)
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The last term on the right hand side can be extracted from the expectation, since it does
not depend in the latent variable z, resulting in:

KL(qφ(z|x)||p(z|x)) = Eqφ(z|x)∼Q[log qφ(z|x)− log p(x|z)− log p(z)] + log p(x) (3.13)

Rearranging terms, the following is obtained:

log p(x)−KL(qφ(z|x)||p(z|x)) = Eqφ(z|x)∼Q[log p(x|z)− log qφ(z|x) + log p(z)] (3.14)

And using again the linearity of the expectation, the right hand side of equation 3.14 can
be separated to obtain:

log p(x)−KL(qφ(z|x)||p(z|x)) = Eqφ(z|x)∼Q[log p(x|z)]− Eqφ(z|x)∼Q[log qφ(z|x)− log p(z)]
(3.15)

Finally, from equation 3.10 a new Kullback-Leibler divergence is recognized between the
approximate posterior distribution qφ(z|x) and the prior distribution p(z), to obtain:

log p(x)−KL(qφ(z|x)||p(z|x)) = Eqφ(z|x)∼Q[log p(x|z)]−KL(qφ(z|x)||p(z)) (3.16)

Now, our main objective was to minimize the distance between the approximate poste-
rior qφ(z|x) and the real posterior p(z|x), represented by the Kullback-Leibler divergence
KL(qφ(z|x)||p(z|x)). That expression is contained in the left hand side of equation 3.16. In
order to minimize the Kullback-Leibler divergence, only the approximate posterior qφ(z|x)
can vary, which will not affect the log-probability of the model, log p(x). Therefore, if the
right hand side of equation 3.16 is maximized over qφ(z|x), that inevitable will result in min-
imization of KL(q(z|x)||p(z|x)) since log p(x) will not change. Because of the importance of
the right hand side, in the variational inference field it is often given a special name: the Ev-
idence Lower Bound, ELBO for short. The name derives from it being always a lower bound
for log p(x) (the evidence) since the Kullback-Leibler divergence is always a non-negative
quantity [30]. The form for the ELBO is presented in equation 3.17 for formality:

ELBO = Eqφ(z|x)∼Q[log p(x|z)]−KL(qφ(z|x)||p(z)) (3.17)

In summary, maximizing the ELBO expression over qφ(z|x) is equivalent to minimizing
KL(qφ(z|x)||p(z|x)), thus converting the original variational inference problem, which was
intractable, into a feasible one [30].
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Therefore, the final optimization problem to find the optimum posterior approximation
qφ(z|x) is presented in equation 3.18.

q∗φ(z|x) = arg max
qφ(z|x)∼Q

Eqφ(z|x)∼Q[log p(x|z)]−KL(qφ(z|x)||p(z)) (3.18)

In what follows, it will be shown how VI can be applied to a machine learning model
called Variational Auto-Encoder in order to either generate new data or generate a latent
space representation of a certain database.

3.4 Variational Auto-Encoders
Variational Auto-Encoders (VAEs), originally proposed by [12] are generative models that
combine neural networks, variational inference and unsupervised learning to address the
problem of finding an approximation to a posterior probability distribution p(z|x). They
are called “auto-encoders” because they are composed of two main structures: the first one
encodes the input data into a stochastic latent representation, whereas the second one decodes
this latent representation onto an approximation or reconstruction of the original data. Thus,
both parts are called encoder and decoder, respectively, and they resemble the structure of
the traditional auto-encoder model [1].

The main differences between VAEs and any other model that uses variational inference
can be roughly summarize into two. Firstly, VAEs assumes that p(z) and p(x|z) also belong
to a known family of parametric distributions, controlled by a set of parameters denoted by θ,
therefore represented by pθ(z) and pθ(x|z). As shown in the previous section, this is also the
case for the posterior approximation qφ(z|x), controlled by its own set of parameters denoted
by φ. Secondly, the set of parameters {θ, φ} are treated as outputs of neural networks within
the model. These two features, i.e., the assumption of known forms for the distributions
of the model and the use of neural network to compute the parameters that controls such
distributions, represent one of the main advantages of VAEs in comparison to other variational
inference based approaches due to the added simplicity that parametric distributions give and
the flexibility that neural networks contribute.

Next, a discussion about the parametric distributions forms for pθ(z), qφ(z|x) and pθ(x|z)
in the context of VAEs is presented. It will be assumed from here onwards that both x and
z are vectors of features, i.e., ~x ∈ RD and ~z ∈ RK . Therefore, this section presents the
traditional VAE, which is not designed to process sequential input data. In the following
sections and chapters a VAE model adapted to process such data will be presented as the
temporal VAE (tVAE).

3.4.1 Prior over the latent variables p(~z)

One of the main challenges in Bayesian models is defining the latent variables. Questions
like the nature of the latent variables (should them be positive numbers, integer numbers) or
the relationship between them are difficult to answer. VAEs take a simple approach to this
problem assuming and incorporating this lack of knowledge in the form of a very basic and
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uninformative choice for the prior distribution of the latent variables. An extremely common
choice is to use an isotropic normal distribution for p(~z), dropping the dependence on θ. This
election is presented in equation 3.19

p(~z) ∼ N(~z|~0, I) (3.19)

This effectively assumes no prior knowledge over the relationship between the variables
nor the sign of them. The only apparent restriction is that they need to be real numbers
centered around 0.

3.4.2 The decoder distribution pθ(~x|~z)

The distribution pθ(~x|~z) represent the probability that certain data point ~x will be generated
under the latent variable ~z. The family of this distribution should be decided by the nature
of the data itself. As shown in [12], if the original data is restricted to the interval [0, 1],
a good choice for pθ(~x|~z) is to use a Bernoulli distribution and consider the vector ~ρ that
controls that distribution as the direct reconstruction of the original data. This choice of
distribution is presented in equation 3.20.

pθ(~x|~z) ∼ Be(~x|fθ(~z)) (3.20)

Where f is a traditional neural network (see section 3.2.1) with weights and biases denoted
by θ that takes as input a vector of latent features ~z and then return as output ~ρ. For this
thesis, a Bernoulli distribution is used to represent p(~x|~z) since after preprocessing the input
data lie within the interval [0, 1].

This probability distribution, p(~x|~z), and the traditional neural network that outputs its
parameters are called the decoder of the VAE since they take the latent representation ~z and
outputs a reconstruction, ~ρ, of the original data ~x. Thus, “reconstructing” or “decoding” the
data from its latent representation.

3.4.3 The encoder distribution qφ(~z|~x)

The main objective of a VAE is to find a good approximation for the true posterior. The
most common decision regarding the family Q (from where the approximate distribution is
search) corresponds to the family of diagonal normal distributions. This serves a double
purpose. First, the election of this family allows each latent variable to have its own mean
and variance, producing a relatively flexible model. Second, a diagonal normal distribution,
in conjunction with the selection of the prior for p(~z), makes the Kullback-Leibler divergence
in the objective function of equation 3.18 to have a close and easy to compute form [31].
Thus, the following is true for the VAE model:

qφ(~z|~x) ∼ N(~z|µφ(~x), σφ(~x)I) (3.21)
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Here, µφ and sigmaφ are traditional neural networks that take as input the original data ~x
as well as weights and biases denoted by φ and then outputs a vector of means and variances
for the latent variables. Since the distribution qφ(~z|~x) is forced to be diagonal, that vector of
variances is multiplied by the identity matrix to form the covariance matrix. The distribution
qφ(~z|~x) and the neural networks that parametrize it are called the encoder of the VAE since
its task is to make a codification of the original data into a latent representation ~z.

Next, it is discussed how this model is optimized to solve equation 3.18 and find a good
approximation to the true posterior. Since VAEs use the variational inference approach, the
function ELBO can be used as the objective function (See equation 3.17). Nevertheless, it is
needed to be more precise about the explicit form that the ELBO function takes given the
decisions made about the distributions p(~z), qφ(~z|~x) and pθ(~x|~z).

3.4.4 Forward pass of the VAE model

The previous sections present the different elements of the VAE. This section describe how
they are used to compute the forward pass of the model. This operation flow can be enu-
merated in the following steps, starting with a particular element of the data set ~xi:

1. Using ~xi as input for the encoder neural network, compute the mean (~µi) and standard
deviation (~σi) of the posterior distribution for that point.

2. Sample ~zi from the decoder distribution using the parameters ~µi and ~σi.
3. Using ~zi as input for the decoder neural network, compute the parameter vector ~ρi

for the Bernoulli distribution of the decoder. In this thesis, as mentioned before, this
vector will be directly used as a reconstruction of ~xi without further sampling.

The forward pass compute all the required variables for the computation of the ELBO
function of the VAE, as show in the following section.

3.4.5 ELBO function for the VAE model

The ELBO function is made of two parts: the KL divergence between the approximate
posterior qφ(~z|~x) and the prior p(~z); and the expectancy over the logarithm of pθ(~x|~z). In
what follows, these two parts are tackled separately to show how they are computed based
on a single data point ~xi and the variables resulting for the forward pass.

Kullback-Leibler Divergence KL(q(~zi|~xi)||p(~zi))

Normally, the Kullback-Leibler divergence is estimated using Monte Carlo integration. Nev-
ertheless, since qφ(~zi|~xi) and p(~z) are chosen to be normal distributions, the Kullback-Leibler
divergence between them has closed form. As shown in [31], the exact close form between a
diagonal normal and an isotropic normal distribution is:

KL(N(~µi, ~σiI)||N(~0, I)) =
1

2
(tr(~σiI) + ~µTi ~µi −K − log det(~σiI)) (3.22)

Where K is the dimensionality of the diagonal distribution. Since in the VAE model
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both distributions outputs vectors or parameters related to the latent variables, K is the
dimensionality of the latent variables, i.e., the number of latent variables that controls the
model under study.

Expectancy over the logarithm of pθ(~xi|~zi)

As stated in [12], this expectancy can be computed with Monte-Carlo integration using the
following formulae:

Eqφ(~z|~xi)∼Q[log pθ(~xi|~z)] ≈
L∑
l=1

[log pθ(~xi|~zi,l)] (3.23)

Where ~zi,l represent the sample l from the distribution given by the parameters computed
using ~xi. The equation 3.23 requires sampling L times the latent variables to obtain the
approximate cost of one data point. In this thesis L is set to 10 samples, which represent a
fine equilibrium between a light model and good approximates.

The exact form of log pθ(~xi|~zi,l) will depend upon the choice of distribution for the decoder.
For the specific case of Bernoulli distributions, used in this thesis, log pθ(~xi|~zi,l) will take the
following form:

log pθ(~xi|~zi,l) = ~xi log ~ρi + (1− ~xi) log(1− ~ρi) (3.24)

Where ~ρi is the reconstruction obtained from the encoder, and therefore, a direct function
of ~zi.

3.4.6 Putting the pieces together

Figure 3.4a show the VAE model comprised of the various elements discussed in the previous
sections for the case when the nature of the data requires that the probability distribution of
the decoder, p(~x|~z), belongs to the Bernoulli family. Note how the encoder and the decoder
work together to first transform the original data into a stochastic latent representation and
then to decode that latent representation into a reconstruction of the original data.

However, there is still one problem with this model. Since it uses neural networks to
estimate the parameters of the distributions in the VAE model, the ideal situation would
be to use back-propagation to optimize this model along with SGD. But back-propagation
cannot work with stochastic units inside the neural network, since they are non-continuous
operations and, therefore, the gradient is not defined at these points. Nevertheless, what
back-propagation can do is handle stochastic inputs to the network, if they are sampled
outside of it and, for the neural network, they work as any other deterministic input. To
solve this problem, one can refer to a trick called “the reparameterization trick” as proposed
by [12], which works using the following property:

N(~µ,Σ) = ~µ+ Σ · ~ε (3.25)
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Which states that a normal distribution with mean ~µ and covariance matrix Σ is equivalent
(i.e., has the same distribution) as ~µ+ Σ ·~ε when ~ε is a random variable following a standard
normal distribution. Since in this VAE model qφ(~z|~x) is parametrized by an diagonal normal
distribution, the matrix of covariances can be fully represented by its diagonal vector, in
this case, ~σ. Based on equation 3.25, the model can be optimized with back-propagation as
illustrated in Figure 3.4b.

(a) Without reparameterization trick. (b) With reparameterization trick.

Figure 3.4: VAE model with a decoder containing a Bernoulli probability distribution, suited for
binary data or real valued data restrain to the [0, 1] interval.

Thus, once the Variational Auto-Encoder model has been trained and optimized, it can
be used to generate new data by feeding values of ~z sampled from the prior distribution
p(~z) ∼ N(~0, I) into the decoder, obtain the vector of parameters that controls pθ(~x|~z) and
posteriorly, sample from it to obtain a synthetic, newly generated data point. More important
in the context of using the VAE in downstream tasks, one can interpret and make use of the
obtained latent space from this trained VAE model (the output of its encoder) as a set of
features, i.e., a feature map, providing a high-level representation (abstraction) of the input
data. Note also that is the user who defines the dimension of such latent space, thus being
able to specify the desired level of compression or dimensionality reduction, if required.

Up until this point, only VAEs that use non-sequential input data in the form of vectors
of features have been considerer. Because of this, the internal structure of the VAE uses tra-
ditional neural networks to approximate the controlling parameters for both the encoder and
decoder distributions, as shown in figure 3.4. As discussed in the introduction, PHM data is
often sequential, with a strong time-dependent behavior. In the following section is presented
a brief overview of variational auto-encoders models adapted to work with sequential input
data within general and PHM literature. The specific derivation of the models used in this
thesis are presented in section 4.
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3.4.7 Sequential Variational Auto-Encoders in Literature

In general deep learning literature, variational auto encoders modified to add compatibility
with sequential input data have been developed mostly for generative purposes using non
structured data such as videos or to forecast time-series. For example, Bayer and Osendorfer
in 2014 [32] proposed a model called STORN (Stochastic Recurrent Networks), which is a
combination of traditional RNNs and Variational Inference used for music generation and
forecasting of motion walking data in humans. Chung et al. in 2015 [17] proposed a stack
of T variational auto-encoders (one for each time-step) in which they share information
via conditioning the latent variables for each t on past observations and latent variables to
generate speech and handwriting sentences. Krishnan et al. in 2017 [15] proposed a mixture
between Kalman filter and variational methods to include control capability to the VAE
model in the form of an input vector ~u to forecast the reaction of patients to certain drugs
considering their medical history. More recently, Lim et al. in 2019 proposed a more complex
approach to variational modelling of time series with their Recurrent Neural Filters which
for each time step construct a LSTM-like cell of computation that can accept input dynamics
and error correction features in order to forecast household electric power consumption and
market-share time-series. The proposed model in this thesis is heavily inspired by all these
models.

Within the PHM context, VAEs have been adapted to time-series using more simpler
techniques. A common approach is to eliminate the temporal dependency from the input
data, in the preprocessing stage.This can be done by extracting general features from the
time-series such as the RMS, peak to peak, crest factor, among others. San Martín et al. [13]
applied this approach to process ball-bearing time series using traditional variational auto-
encoders. Yoon et al. [14] use a different methodology in which VAEs encoders are adapted
with RNNs in order to process input time-series, but keeping a non-sequential structure
for the latent space. This results in a model that encodes the whole input sequence into
a single vector of latent features, allowing for a normal ELBO to be used, but losing any
posterior temporal information in the process. According to the revision of the State of the
art, more complex approaches within PHM context does not exists to the best of the author’s
knowledge.

Therefore, a main contribution with this thesis is to present a concise and detailed ex-
planation of the general framework used to adapt a traditional VAE to a temporal setting,
taking into consideration the necessary ELBO modifications to allow for a temporal latent
space to be generated. This is presented in section 4.

3.5 Normalizing Flows

This section presents a technique used to add flexibility to probability distributions called
normalizing flows [33] and how it can be implemented using neural networks, in order to
seemingly incorporated it to a VAE model. The final implementation of normalizing flows
to tVAEs will be presented in section 4.4.

In variational inference, the choice of the approximate posterior is a core problem. Most
applications choose to employ simple families for qφ(~z|~x) (such as a diagonal normal distri-
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bution) in order to allow for efficient inference and analytics forms for the Kullback-Leibler
divergence. This is exactly the case for VAEs, as show in section 3.4. This constraint over
the approximate posterior compromise the quality of the final solution for the variational
problem and is particularly severe in cases where the encoding produced by qphi(~z|~x) is used
for downstream tasks.

One possible solution is to add flexibility to the approximate posterior using normalizing
flows, which are a sequence of invertible transformations applied in such a way that the final
outcome is also a valid probability distribution. Before explaining normalizing flows, it is
required to describe the rule of change of variables in probabilities [18]. Let ~z0 ∈ Rd be a
random variable produced by q0(~z0) and f : Rd → Rd be an invertible function. The rule of
change of variables state that ~z1 = f(~z0) have the following probability distribution:

q1(~z1) = q0(~z0)

∣∣∣∣ det
∂f

∂~z0

∣∣∣∣−1

(3.26)

If a series of these invertible mappings fk, k ∈ 1, ..., K is applied, it results in a normalizing
flow that take as input the initial distribution q0(~z0) and outputs the transformed distribution
qK(~zK), presented in equations 3.27 and 3.28.

~zK = fK ◦ fk−1 ◦ ...f1(~z0), ~z0 ∼ q0(~z0) (3.27)

~zK ∼ qK(~zK) = q0(~z0)
K∏
k=1

∣∣∣∣ det
∂fk
∂~zk−1

∣∣∣∣−1

(3.28)

Equation 3.28 describe how the initial probability distribution is transformed by the nor-
malizing flow. Since in each step the rule of change of variables was used, the final distribution
is valid, and hence can be used as the new approximate posterior. This allow for building
very flexible and arbitrarily complex posterior approximations, depending on the election of
the functions fk.

Therefore, the problem reside in finding functions fk that fulfill two important conditions.
Firstly, they need to be very flexible in terms of learning possible outcomes. Because of
this, an ideal candidate would be some type of neural network. Secondly, fk needs to be
easily invertible, since in each forward and backward pass of the normalizing flow, the entire
sequence needs to be inverted in order to compute the final distribution. Current research
is centered around finding alternatives for these functions. This thesis uses Inverse Auto-
Regressive Flows (IAFs) [19] , which constitute a very modern approach to normalizing flows
that uses a type of neural networks called Masked Auto-Encoders for Density Estimation
or MADEs [2]. In the following, first a review on MADEs is presented and then IAFs are
explained, to finish the chapter showing how IAFs can be applied to traditional VAEs. An
approach to implement IAFs to sequential VAEs will be presented in section 4.4.
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3.5.1 Masked Auto-Encoders for Density Estimation (MADEs)

MADEs [2] are auto-encoders that satisfy the auto-regressive property. The auto-regressive
property state that in a sequence ~x ∈ RD with a certain ordering [x1, x2, ..., xD], the value xi

is only computed using the past or previous values within the sequence. This property can
be applied to auto-encoders[1], considering that the output x̂i (which in an auto-encoder is
the reconstruction of the input xi) should only be computed using x<i. This property can
be obtained shutting down any computational path between x̂i and inputs x≥i, which are
supposed to be ignored. In practice, between inputs [xi, xi+1, xi+2, ..., xD] and output x̂i, at
least one connection has to be zero to nullify the entire flow.

The easiest way of zeroing connections in a neural network is to apply, in an element-
wise manner, a binary matrix with zeros corresponding to the connections that should be
eliminated. MADEs are the result of applying this matrices to a traditional Auto-Encoder,
creating a new model that enforces the auto-regressive property. In figure 3.5 a MADE
structure is presented. Note how in the arbitrarily assigned order, the reconstruction of
input number 3 (x1) is only computed using inputs number 1 (x2) and 2 (x3).

Figure 3.5: Traditional auto-encoder is in the left. Binary masks for each layers are in the center.
The final model, MADE, is in the right. Note how connections are turned off by the masks, denoted
in a softer gray. This enforces the auto-regressive property in the auto-encoder, producing an output
in which each part of the reconstructed sequence in computed using previous inputs. The details of
how to compute such binary masks are explained in [2]. Source: MADE: Masked Autoencoder for
Distribution Estimation [2].
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3.5.2 Inverse Auto-Regressive Flows (IAFs)

Inverse Auto-Regressive flows, as any other normalizing flow, consist on the application of an
invertible function f : Rd → Rd using the rule of change of variables. For IAFs, the function
f that transform ~zk−1 into ~zk is presented in equation 3.29:

~zk = f(~zk−1) = ~µk + ~σk � ~zk−1 (3.29)

Where � represent the element-wise multiplication. Both ~µk and ~σk are the outputs of
a MADE network, which is structured to be auto-regressive with respect to the input ~zk−1.
To show that f is a useful transformation in the context of normalizing flows, the inverse of
the determinant of the Jacobian of f is required as equation 3.26 states. In this case, that
expression is:

∣∣∣∣ det
d~zk

d~zk−1

∣∣∣∣−1

=

∣∣∣∣ det(
d~µk

d~zk−1

+
d~σk

d~zk−1

· ~zk−1 + ~σk · I)

∣∣∣∣−1

(3.30)

Using the fact that both ~µk and ~σk have an auto-regressive structure, it can be prove
that their Jacobians, d~µk

d~zk−1
and d~σk

d~zk−1
, are lower-triangular matrices with zeros in the diagonal

[19]. To see this, first notice that due to the auto-regressive property which state that since
µk,i only depends on the 1 : i − 1 components of d~zk−1,

∂µk,i
∂zk−1,j

= 0 for j ≥ i. The exact
same procedure can be applied to ~σk. Therefore, from equation 3.30 it can be seen that

d~µk
d~zk−1

+ d~σk
d~zk−1

· ~zk−1 + ~σk · I will have a lower-triangular structure in which the diagonal is
equal to ~σk. Hence, since the determinant of a triangular matrix is the multiplication of the
diagonal elements, the following is true:

∣∣∣∣ det
d~zk

d~zk−1

∣∣∣∣−1

=
d∏

i=1

σk,i
−1 (3.31)

With this result, the application of an IAF of K steps to probability distribution q0(~z0)
results in the following distribution:

~zK ∼ qK(~zK) = q0(~z0)
K∏
k=1

d∏
i=1

σk,i
−1 (3.32)

And therefore, the log-probability of the posterior approximation is:

log qK(~zK) = log q0(~z0) + log
K∏
k=1

d∏
i=1

σk,i
−1 (3.33)
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log qK(~zK) = log q0(~z0)−
K∑
k=1

d∑
i=1

log σk,i (3.34)

Since both ~µk and ~σk are the outputs of a MADE, which is a neural network of an arbitrar-
ily number of hidden layers and neuron within those layers, in theory an IAF should be able
(with proper training and sufficient amounts of data) to transform the original probability
distribution without limits in term of complexity or representation.

3.5.3 IAFs in Traditional Variational Auto-Encoders

In this section, it will be explain how an inverse auto-regressive flow can be used within a
traditional variational auto-encoder to add flexibility to the approximate posterior.

In the traditional VAE model, the approximate posterior is defined as a diagonal normal
distribution, using the outputs of the encoder network as parameters. As state in [19], the
IAF block should take this distribution as the start of the flow, i.e, q0(~z0|~x) = q(~z|~x) if the
nomenclature of normalizing flows is used. This allow us to obtain, after K steps of the IAF,
a final distribution qK(~zK |~x) which in theory should be more flexible in its representation of
the latent space. The modified VAE model and the IAF block is presented in the form of a
diagram in figure 3.6.

The modifications made by the IAF to the VAE model also affects the ELBO function.
Because of this, the ELBO function needs to be derived again using qK(~z|~x) as the new
approximation of the true posterior p(~z|~x). As in section 3.3, the process starts with the
Kullback-Leibler divergence between these distributions, where the dependency of q and p
on the parameters φ and θ have been made implicit for readability purposes:

KL(qK(~z|~x)||p(~z|~x)) = E~z∼qK(~z|~x)[log qK(~z|~x)− log p(~z|~x)] (3.35)

The Law of the Unconscious Statistician (LOTUS) [18] state that any expectation E~z∼qK [h(~z)]
can be written as an expectation under q0 as:

E~z∼qK [h(~z)] = E~z∼q0 [h(~zk)] = E~z∼q0 [h(fk ◦ fk−1 ◦ ... ◦ f1(~z0))] (3.36)

In this case, function h(~z) is recognized as log qK(~z|~x)− log p(~z|~x) and therefore equation
3.37 can be rewritten as:

KL(qK(~z|~x)||p(~z|~x)) = E~z∼q0(~z|~x)[log qK(~zK |~x)− log p(~x|~zK)− log p(~zK)] + log p(x) (3.37)

Where the Bayes theorem and the logarithm properties have been used to transform
p(~zK |~x) and p(x) has been removed from the expectation since it does not depend on the
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Figure 3.6: Variational Auto-Encoder diagram with the insertion of a IAF computation block of
T steps.

latent variables. The new ELBO can be formed in the right hand side rearranging the terms
and using the linearity of the expectation:

log p(x)−KL(qK(~z|~x)||p(~z|~x)) = E~z∼q0(~z|~x)[log p(~x|~zK)]−E~z∼q0(~z|~x)[log qK(~zK |~x)− log p(~zK)]
(3.38)

Without normalizing flows, the second term of the right hand side resulted in the Kullback-
Leibler divergence between the approximate posterior and the prior distribution. When using
normalizing flows, specifically inverse auto-regressive flows, this term results in:

E~z∼q0(~z|~x)[log qK(~zK |~x)− log p(~zK)] = E~z∼q0(~z|~x)[log q0(~z0)−
K∑
k=1

d∑
i=1

log σk,i− log p(~zK)] (3.39)

Where equation 3.34 has been used to replace the term log qK(~zK |~x). As it can be seen,
this term does not result in the Kullback-Leibler divergence previously obtained due to the
prior distribution, which now has as an argument the transformed latent variable ~zK .
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Finally, the ELBO function for the case where IAF are used to add flexibility to the VAE
is presented in equation 3.40.

ELBOIAF = E~z∼q0(~z|~x)[log p(~x|~zK)]−E~z∼q0(~z|~x)[log q0(~z0)−
K∑
k=1

d∑
i=1

log σk,i− log p(~zK)] (3.40)

Regrettably, this new form for the ELBO function loss the analytic computation of the
Kullback-Leibler divergence. Instead, the second term in the right hand side is computed
using Monte Carlo approximation taking samples of ~z0 ∼ q0.
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Chapter 4

Proposed Temporal Variational
Auto-Encoders

This chapter1 described the proposed modifications to the traditional Variational Auto-
Encoder model in order to make it possible to process temporal data and also generate
a sequential latent space. For this, three inner structures for the encoder and decoder of
the VAE are proposed, each with a different level of complexity and temporal awareness.
The modifications that such variants impose over the ELBO function are also studied and
a modified objective function is finally derived. The chapter ends with an explanation of
the proposed approach to incorporate non-sequential normalizing flows to sequential latent
spaces.

In temporal Variational Auto-Encoders (tVAEs), the input data is configured as x =
{~x1, ..., ~xT} where T is the number of time-steps of the sequence and ~xt is a snapshot of
operational variables sampled at regular intervals that describe a certain process. The latent
variables are also configured in a sequential manner (z = {~z1, ..., ~zT}) to allow the latent
space to encode temporal information.

This arrangement of the observable and latent features imposes the following modifications
to the traditional VAE model:

• The encoder’s neural network of the tVAE should be able to admit time series data
as the input. It also needs to return sequences for the variational parameters µ and
σ in order to generate a sequential latent space. Therefore, the traditional neural
network used in the vanilla VAE model is replaced by some other architecture capable
of processing sequences, such as a time-distributed neural network or a recurrent neural
network.
• The same is also true for the decoder’s neural network of the tVAE, since it needs to

process the sequential latent space and output a reconstruction of the input time series.

Different architectures for the encoder and decoder will produce variants of the original

1From here onwards, this thesis will use bold variables to indicate sequences of vectors, in the format
a = ~a1, ...,~aT .
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ELBO function. To see this, lets note first that the derivation of the original ELBO is still
valid whether the input data and latent space is sequential or non-sequential. Therefore,
equation 4.1 presents the same ELBO function as the one presented in section 3.3, where x
and z has been changed for x and z to explicitly denote the temporality dependence in both
the input data and latent space.

ELBO = Eqφ(z|x)∼Q[log pθ(x|z)]−KL(qφ(z|x)||p(z)) (4.1)

The definition of the Kullback-Leibler divergence is used to expand the previous expression
and obtain:

ELBO = Eqφ(z|x)∼Q[log pθ(x|z)− log qφ(z|x) + log p(z)] (4.2)

At this point, two strong assumptions regarding the independence between time-steps
within x and z are needed to reach a computable form. Those assumptions are listed bellow:

1. It is assumed that ~xt for t = {1, 2, ..., T} are conditionally independent between them
given the full sequence of latent variables z. This supposition is formally presented in
equation 4.3.

~xt ⊥ ~x¬t | z (4.3)

By only allowing ~xt to depend on the latent variables, the model is forced to encode all
the necessary information for reconstruction into z, thus generating a very rich alter-
native representation of the observable variables that can be used later for downstream
tasks. Therefore, the decoder distribution of the VAE can rewritten in a temporal or
sequential setting as:

pθ(x|z) =
T∏
t=1

pθ(~xt|z) (4.4)

2. It is also assumed that ~zt for t = {1, 2, ..., T} are independent between them. Although
this is not a necessary supposition for the development of the ELBO function in the
temporal setting, and approaches the VAEs without this assumption do exists (for
example, [15]), models with dependence between latent variables are outside of the
scope of this thesis. With this supposition, the encoder distribution of the VAE can be
rewritten as:

qφ(z|x) =
T∏
t=1

qφ(~zt|x) (4.5)

The prior distribution is also separable due to the independence between the latent
variables, as show in the following equation:

p(z) =
T∏
t=1

p(~zt) (4.6)
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The modified ELBO function that incorpore these two suppositions is presented in equa-
tion 4.7.

ELBO = Eqφ(z|x)∼Q[log
T∏
t=1

pθ(~xt|z)− log
T∏
t=1

qφ(~zt|x) + log
T∏
t=1

p(~zt)] (4.7)

Using the properties of the logarithm, the product operations can be transformed into
sums:

ELBO = Eqφ(z|x)∼Q[
T∑
t=1

log pθ(~xt|z)−
T∑
t=1

log qφ(~zt|x) +
T∑
t=1

log p(~zt)] (4.8)

Since the expectation is a linear operation, the order of the sum and the expectation can
be interchanged to obtain:

ELBO =
T∑
t=1

Eqφ(z|x)∼Q[log pθ(~xt|z)− log qφ(~zt|x) + log p(~zt)] (4.9)

The final step is to use the definition of the expectation since it is easier to further manipule
the expression using integrals.

ELBO =
T∑
t=1

∫
Ωz

qφ(~z1|x)qφ(~z2|x)...qφ(~zT |x)(log pθ(~xt|z)− log qφ(~zt|x) + log p(~zt))dz (4.10)

Where the independence of latent variables from equation 4.5 has been used.

From here, the specific form for the encoder and decoder neural networks of the tVAE
are needed to generate additional suppositions regarding the relationship between ~zt and
~xt in order to keep developing equation 4.10, since those architectures will impose different
temporal dependencies between x and mz. For this thesis, three architectures with different
degrees of complexity in terms of temporal information flux between observable and latent
variables are proposed. In what follows, these three alternatives are presented in conjunction
with the final ELBO form that they produce taking as a start point equation 4.10.

4.1 Temporal independent tVAE (tVAE1)
The temporal independent tVAE, denoted as tVAE1, supposes that cross-time dependencies
between x and z are not significant nor needed to generate the latent space or to reconstruct
the input data. In other words, for the encoder, the latent vector ~zt will only depend on
the input data for that time-step, ~xt. The same concept is true for the decoder: the recon-
struction for time-step t will only depend on the latent space for that time-step, ~zt. These
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conditional suppositions for the encoder and decoder are presented in equations 4.11 and
4.12, respectively.

~zt ∼ qφ(~zt|~xt) (4.11)

~xt ∼ pθ(~xt|~zt) (4.12)

The application of an encoder and decoder with these conditional forms results in an
operation that is equivalent to apply a traditional VAE in a time-distributed manner, i.e.,
applying the same traditional VAE for each time step of the input sequence, in a forward
manner from t = 1 to t = T . This model could be beneficial for those cases where the input
data does not present a relevant temporal behavior, for example, in operational data that has
an interval between measures considerably longer that the natural scale of the phenomena
that is being captured. An important feature of this configuration is that it assumes that the
encoder model (equation 4.11) will be capable of compressing all the necessary information
to reconstruct ~xt into just one time-step of the latent variables, ~zt. This is of course a very
strong assumption, which will probably not be fulfilled due to the natural limitations in
approximation power of the deep learning models that are used to implement this model.

To correctly derive the ELBO function considering the assumptions made for this type of
model, the previously mentioned assumptions are integrated into equation 4.13 to yield:

ELBO =
T∑
t=1

∫
Ωz

qφ(~z1|~x1)qφ(~z2|~x2)...qφ(~zT |~xT )(log pθ(~xt|~zt)− log qφ(~zt|~xt) + log p(~zt))dz

(4.13)

The previous equation can be expanded to obtain:

ELBO =∫
~zT

...

∫
~z2

∫
~z1

qφ(~z1|~x1)qφ(~z2|~x2)...qφ(~zT |~xT )(log pθ(~x1|~z1)− log qφ(~z1|~x1) + log p(~z1))d~z1d~z2...d~zT

+

∫
~zT

...

∫
~z2

∫
~z1

qφ(~z1|~x1)qφ(~z2|~x2)...qφ(~zT |~xT )(log pθ(~x2|~z2)− log qφ(~z2|~x2) + log p(~z2))d~z1d~z2...d~zT

+ ...

+

∫
~zT

...

∫
~z2

∫
~z1

qφ(~z1|~x1)qφ(~z2|~x2)...qφ(~zT |~xT )(log pθ(~xT |~zT )− log qφ(~zT |~xT ) + log p(~zT ))d~z1d~z2...d~zT

(4.14)

It is easy to see that for the t̃ term, the only integral that contributes to the final ELBO
is the one over the latent variable ~zt̃, since the rest of them integrate only over a probability
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distribution, resulting in 1. With this in consideration, equation 4.14 can be reduced to:

ELBO =

∫
~z1

qφ(~z1|~x1)(log pθ(~x1|~z1)− log qφ(~z1|~x1) + log p(~z1))d~z1

+

∫
~z2

qφ(~z2|~x2)(log pθ(~x2|~z2)− log qφ(~z2|~x2) + log p(~z2))d~z2

+ ...

+

∫
~zT

qφ(~zT |~xT )(log pθ(~xT |~zT )− log qφ(~zT |~xT ) + log p(~zT ))d~zT

(4.15)

Recognizing a simpler summation of expectations, The final form of the ELBO for the
temporal-independent tVAE is reach:

ELBO =
T∑
t=1

Eqφ(~zt|~xt)∼Q[log pθ(~xt|~zt)− log qφ(~zt|~xt) + log p(~zt)] (4.16)

Equation 4.16 reveals that in this case, the total ELBO is just the sum of the traditional
ELBO for each time step of the sequence, in which the Kullback-Liebler divergence can be
formed to reach:

ELBO =
T∑
t=1

Eqφ(~zt|~xt)∼Q[log pθ(~xt|~zt)−KL(qφ(~zt|~xt)||p(~zt))] (4.17)

In what follows, the implementation of the encoder and decoder neural network of tVAE1
is presented.

4.1.1 Implementation details for the tVAE1 model

From an implementation point of view, the types of conditional relationships that are pre-
sented in equation 4.17 between observable and latent variables can be modeled using tradi-
tional neural networks (see section 3.2.1) in both the encoder and decoder networks, applied
in a time-distributed manner. That is, the same neural networks is applied to each time-step
consecutively. The application of any neural network with a more complex architecture, such
as a recurrent neural network would cause the violation of the suppositions established in
equations 4.11 and 4.12, as it will be shown in the following sections. This is equivalent to
apply a traditional VAE model to every vector of the sequence independently.

In terms of parametric distributions, this model uses the same families as those chosen
for the traditional VAE model (see section 3.4). That is, the prior p(~zt) will be an isotropic
normal distribution for each t, the decoder pθ(~xt|~zt) will be a Bernoulli distribution and
finally, the decoder qφ(~zt|~xt) will continue to be a diagonal normal distribution. Figure 4.1
presents a diagram of this model, in which the time distributed application of the traditional
neural networks is explicitly shown.
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Figure 4.1: Block’s diagram corresponding to the time-independent tVAE model. Note how in this
model, the same traditional neural network (light blue block) is applied to each vector of the input
sequence to obtain the posterior parameters. Then, the latent space is sampled from the posterior
distribution using the corresponding set of parameters and the reparameterization trick (omitted
here for visualization purposes). Finally, each vector within the generated latent space sequence is
fed to the decoder neural network (light green block), which is repeatedly applied for each time step
to produce the reconstruction of the input data.

4.1.2 Forward pass for the tVAE1

The forward pass of this model, taking as input the sequence x = {~x1, ..., ~xT}, consist on the
following steps:

1. Using ~x1 as input, apply the traditional neural network of the encoder to compute the
variational parameters ~µ1 and ~σ1.

2. Using the reparameterization trick and the variational parameters from the previous
step, sample the latent vector ~z1.

3. Using ~z1 as input, apply the traditional neural network of the decoder to compute the
reconstruction vector ~ρ1.

4. Repeat the steps 1-3 for t = 2, ...T

Once the forward pass is completed for a particular data point xi, the ELBO function for
the tVAE1 model presented in equation 4.17 can be computed with the same considerations
as the original ELBO (see section 3.4.5).

4.2 Past and present dependent tVAE (tVAE2)

The past and present dependent tVAE, denoted as tVAE2, supposes for the encoder distri-
bution that the latent variables for time t, ~zt, can only depend on past and present input
data, ~x1:t. A similar supposition is made for the decoder, in which the reconstruction of the
observable vector ~xt can only depend upon the past and present latent variable ~z1t . There-
fore, the latent variables act as a summary of past information that contains all the necessary
information to reconstruct the present observable state. This conditional suppositions are
presented in equations 4.18 and 4.19.

~zt ∼ qφ(~zt|~x1:t) (4.18)
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~xt ∼ pθ(~xt|~z1:t) (4.19)

For cases where the sequence input data show an important temporal behavior, a tVAE
with these suppositions should be able to generate a better latent space than those generated
by the tVAE1 model presented in section 4.1 due to the utilization of past information to
generate the present state. In addition, because the encoder no longer have to compress
all the necessary information to reconstruct ~xt into ~zt, this configuration lessen the pressure
upon that network, possibly allowing for more meaningful representations to be generated.

To correctly derive the ELBO function for this tVAE model considering the assumptions
made in equations 4.18 and 4.19, the derivation presented in section 4.1 can be modified from
equation 4.13 onward, adding past information to the encoder and decoder distribution. In
that case, the following is obtained:

ELBO =
T∑
t=1

∫
Ωz

qφ(~z1|~x1)qφ(~z2|~x1:2)...qφ(~zT |~x1:T )(log pθ(~xt|~z1:t)− log qφ(~zt|~x1:t)+log p(~zt))dz

(4.20)

In a derivation procedure similar to the one explained in the previous section, this expres-
sion can be expanded to obtain:

ELBO =∫
~zT

...

∫
~z2

∫
~z1

qφ(~z1|~x1)qφ(~z2|~x1:2)...qφ(~zT |~x1:T )(log pθ(~x1|~z1)− log qφ(~z1|~x1) + log p(~z1))d~z1d~z2...d~zT

+

∫
~zT

...

∫
~z2

∫
~z1

qφ(~z1|~x1)qφ(~z2|~x1:2)...qφ(~zT |~x1:T )(log pθ(~x2|~z1:2)− log qφ(~z2|~x1:2) + log p(~z2))d~z1d~z2...d~zT

+ ...

+

∫
~zT

...

∫
~z2

∫
~z1

qφ(~z1|~x1)qφ(~z2|~x1:2)...qφ(~zT |~x1:T )(log pθ(~xT |~z1:T )− log qφ(~zT |~x1:T ) + log p(~zT ))d~z1d~z2...d~zT

(4.21)

Note in the previous equation how the dependencies have changed to include past infor-
mation as well. Now, for the t̃ term, the only integrals that contribute to the final ELBO is
the one over the latent variables ~z≤t̃, since the rest of them integrate only over a probability
distribution, resulting in the unity. With this in consideration, equation 4.21 can be reduced
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to:

ELBO =∫
~z1

qφ(~z1|~x1)(log pθ(~x1|~z1)− log qφ(~z1|~x1) + log p(~z1))d~z1

+

∫
~z2

∫
~z1

qφ(~z1|~x1)qφ(~z2|~x1:2)(log pθ(~x2|~z1:2)− log qφ(~z2|~x1:2) + log p(~z2))d~z1d~z2

+ ...

+

∫
~zT

...

∫
~z2

∫
~z1

qφ(~z1|~x1)qφ(~z2|~x1:2)...qφ(~zT |~x1:T )(log pθ(~xT |~z1:T )− log qφ(~zT |~x1:T ) + log p(~zT ))d~z1d~z2...d~zT

(4.22)

Using the definition of the expectation and reorganizing the terms with a summation the
final form of the ELBO for the past and present dependent tVAE is obtained:

ELBO =
T∑
t=1

Eqφ(~z1|~x1)...qφ(~zt|~x1:t)[log pθ(~xt|~z1:t)− log qφ(~zt|~x1:t) + log p(~zt)] (4.23)

In this case, equation 4.23 shows that the final ELBO is just the sum of the ELBO function
for each time step conditioning the observable and latent variables on past and present latent
and observable variables, respectively. Nevertheless, the distributions are still defined over
single vectors for each time step. Only the conditionals are partial sequences of vectors. This
allows the recognition of the Kullback-Leibler divergence term in equation 4.23, to obtain:

ELBO =
T∑
t=1

Eqφ(~z1|~x1)...qφ(~zt|~x1:t)[log pθ(~xt|~z1:t)−KL(qφ(~zt|~x1:t)||p(~zt))] (4.24)

It is important to notice that this Kullback-Leibler divergence will still have an analytic
form since the posterior and prior distributions are still a diagonal Gaussian and an isotropic
normal distribution respectively. In what follows, the implementation of the encoder and
decoder neural network of the tVAE2 model is presented.

4.2.1 Implementation details for tVAE2 model

From an implementation point of view, equation 4.24 indicate that both the encoder and
decoder neural networks need to take information in a sequential manner, considering the
past as well as the present. This type of behavior is typical of long-term memory neural
networks, such as LSTMs (see section 3.2.2). A traditional recurrent neural networks would
not qualify since it can only represent conditional structures conditioning on one time-step
in the past (i.e. ~zt ∼ qφ(~zt|~xt−1,t)) due to its short memory span. In terms of parametric
distributions for the prior, decoder and encoder, the same families as those chosen for the
tVAE1 model are used. In figure 4.2 a diagram of this model is presented.
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Figure 4.2: Block’s diagram corresponding to the Past and Present dependent tVAE model. In this
model, a LSTM neural network is applied to the input sequence, generating the desired temporal
dependence in the posterior parameters, which is indicated as arguments for ~µt and ~σt. Using this
parameters, each vector of the latent space is sampled from the posterior distribution. A second
LSTM neural network uses this sequential latent space as input to generate the reconstruction of the
input data, also respecting the desired conditional dependence of this model. In both the encoder
and decoder’s LSTM networks, the direction of the arrow indicate the direction in which information
flows through time. For this model, information flows from past to present.

4.2.2 Forward pass for the tVAE2

The forward pass of this model, taking as input the sequence x = {~x1, ..., ~xT}, consist on the
following steps:

1. Using the encoder’s LSTM neural network and the full sequence x as input, interpret
the full sequence of output states as the variational parameters µ and σ. The LSTM
inner structure will allow to respect the temporal dependency of this model, obtaining
~µt and ~σt only as a function of ~x≤t

2. Using the reparameterization trick, sample the latent vector ~zt using only the variational
parameters that correspond with that time step, ~µt and ~σt. This is done for t = 1, ...T .

3. Using the decoder’s LSTM neural network with the full sequence z as input, obtain the
reconstruction sequence ρ as the full sequence of output states. Again, the LSTM inner
structure will allow to respect the temporal dependency of the tVAE2 model, obtaining
~ρt only as a function of ~z≤t.

Once the forward pass is completed for a particular data point xi, the ELBO function for
the tVAE2 model presented in equation 4.24 can be computed with the same considerations
as the original ELBO (see section 3.4.5).

4.3 Full temporal dependent tVAE (tVAE3)

For the full temporal dependent tVAE, denoted as tVAE3, the encoder and decoder distri-
butions can condition on the entire sequences, allowing both ~xt and ~zt to depend on the
full range of the latent or observable variables, respectively. This conditional suppositions is
presented in equations 4.25 and 4.26.

~zt ∼ qφ(~zt|~x1:T ) (4.25)
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~xt ∼ pθ(~zt|~x1:T ) (4.26)

Here, the use of future information to compute past values of the observable and latent
features does not constitute an invalid model given one condition, which is that the tVAE
model cannot be used for online learning. This is because in online learning, the whole
window of T time-steps should be available for the backwards use of temporal information.
If this condition is not violated, there is nothing inheritable wrong to use all the available
information to either encode the input data with the encoder (equation 4.25) or to reconstruct
the information with the decoder (equation 4.26). The application of this configuration can
also be interpreted as using future information to fine tune the current latent or reconstructed
observable variables in order to smooth the change between time-steps.

The derivation of the ELBO function for this case follows a very similar derivation as the
previous tVAE models. Starting from equation 4.20, the suppositions made in equations 4.18
and 4.19 can be incorporated to obtain:

ELBO =
T∑
t=1

∫
Ωz

qφ(~z1|~x1:T )qφ(~z2|~x1:T )...qφ(~zT |~x1:T )(log pθ(~xt|~z1:T )−log qφ(~zt|~x1:T )+log p(~zt))dz

(4.27)
In a derivation procedure similar to the one explained in the previous section, the summation
and the integrals can be expanded to obtain:

ELBO =∫
~zT

∫
~z2

∫
~z1

qφ(~z1|~x1:T )qφ(~z2|~x1:T )...qφ(~zT |~x1:T )(log pθ(~x1|~z1:T )− log qφ(~z1|~x1:T ) + log p(~z1))d~z1d~z2...d~zT

+

∫
~zT

∫
~z2

∫
~z1

qφ(~z1|~x1:T )qφ(~z2|~x1:T )...qφ(~zT |~x1:T )(log pθ(~x2|~z1:T )− log qφ(~z2|~x1:T ) + log p(~z2))d~z1d~z2...d~zT

+ ...

+

∫
~zT

∫
~z2

∫
~z1

qφ(~z1|~x1:T )qφ(~z2|~x1:T )...qφ(~zT |~x1:T )(log pθ(~xT |~z1:T )− log qφ(~zT |~x1:T ) + log p(~zT ))d~z1d~z2...d~zT

(4.28)
Note that in the previous equation the dependencies have changed to include the full range of
temporal information. Now, for the t̃ term, every integral contributes to the final ELBO since
in there is full temporal dependence over the latent variables. with this consideration in mind
plus using the definition of the expectation and reorganizing the terms with a summation
the final form of the ELBO for the full temporal dependent tVAE is obtained:

ELBO =
T∑
t=1

Eqφ(~z1|~x1:T )...qφ(~zT |~x1:T )[log pθ(~xt|~z1:T )− log qφ(~zt|~x1:T ) + log p(~zt)] (4.29)

Equation 4.29 reveals that in this case, the total ELBO is just the sum of the traditional
ELBO for each time step of the sequence with the observable and latent variables conditioned
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on the full sequence of latent and observable variables, respectively. Nevertheless, the distri-
butions are still defined over single vectors (only the conditionals are defined as sequences),
therefore the Kullback-Liebler divergence can be reformed to reach:

ELBO =
T∑
t=1

Eqφ(~z1|~x1:T )...qφ(~zT |~x1:T )[log pθ(~xt|~z1:T )−KL(qφ(~zt|~x1:T )|| log p(~zt))] (4.30)

The Kullback-Leibler divergence of equation 4.30 will still have an analytic form since
the posterior and prior distributions are still a diagonal Gaussian and an isotropic normal
distribution respectively. In what follows, the implementation of the encoder and decoder
neural network of the tVAE3 model is presented.

4.3.1 Implementation details for the full temporal dependent tVAE

In terms of implementation, the type of behavior in which each output state depends on
the full input sequence can be obtained with the use of bi-directional long-term recurrent
neural networks such as Bi-LSTMs (section 3.2.2), which are known to traverse the temporal
sequence by a forward network and a backward network, effectively using all available infor-
mation to generate the output. These types of networks are used in both the encoder and
decoder networks. In terms of parametric distributions for the prior, decoder and encoder,
the same families as those chosen for the tVAE1 and tVAE2 models are used. In figure 4.3
a diagram of this model is presented.

Figure 4.3: Block’s diagram corresponding to the full temporal dependent tVAE model. In this
model, a Bi-LSTM neural network is applied to the input sequence, giving the posterior parameters
for each time-step full awareness of past, present and future states. As always, the latent space is
sampled from the variational distribution using this parameters and the reparameterization trick. In
the decoder, a second Bi-LSTM neural network uses the sequential latent space as input to generate
the reconstruction of the input data, in which for this model each reconstructed vector ~xt is fully
aware of past, present and future latent variables.

4.3.2 Forward pass for the tVAE3

The forward pass of this model, taking as input the sequence x = {~x1, ..., ~xT}, consist on the
following steps:
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1. Using the encoder’s Bi-LSTM neural network and the full sequence x as input, interpret
the full sequence of output states as the variational parameters µ and σ. The Bi-LSTM
inner structure will allow to respect the temporal dependency of this model, obtaining
~µt and ~σt as a function of the full sequence ~x1:T

2. Using the reparameterization trick, sample the latent vector ~zt using only the variational
parameters that correspond with that time step, ~µt and ~σt. This is done for t = 1, ...T .

3. Using the decoder’s Bi-LSTM neural network with the full sequence z as input, obtain
the reconstruction sequence ρ as the full sequence of output states. Again, the Bi-
LSTM inner structure will allow to respect the temporal dependency of the tVAE2
model, obtaining ~ρt as a function of the full sequence ~z1:T .

Once the forward pass is completed for a particular data point xi, the ELBO function for
the tVAE3 model presented in equation 4.30 can be computed with the same considerations
as the original ELBO (see section 3.4.5).

In the following section the proposed approach to use inverse auto-regressive flows in
tVAEs is presented.

4.4 Normalizing Flows in tVAEs
Normalizing flows, as explained in section 3.5, are designed to be applied on non-sequential
latent spaces. Since for this thesis the proposed models generate a sequential latent space,
normalizing flows need to be adapted for that case. This section presents a very simple way
of applying non-sequential normalizing flows to the tVAEs models presented in section 4.

For the three tVAEs models proposed, it was assumed that the latent variables were in-
dependent across time-steps (see equation 4.5). This assumption should be respected when
applying normalizing flows to the approximate posterior distribution. Otherwise, the deriva-
tion of the ELBO function derived in section 4 would not be valid. If an inverse auto-regressive
flow is directly applied to the sequential latent space, the neural networks within the IAF
would mix the vectors ~z1:T , making dependencies across time-steps, violating the aforemen-
tioned assumption. Therefore, this thesis proposed the use of inverse auto-regressive flows
in a time-distributed manner, applying a non-sequential IAF computation block to each se-
quence within the latent space, one step at a time. This configuration can be seen in figure
4.4.

Using this approach, since the ELBO function of the three tVAE models was the result of
the sum of independent traditional ELBO functions with only changes in the conditionals of
the distributions, the modifications imposed by the use of inverse auto-regressive flows seen
in section 3.5 can be applied separatedly for each time step.

In what follows, the proposed model for semi-supervised learning using tVAEs is presented.
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Figure 4.4: An inverse autoregressive flow of two steps (K = 2) applied to the sequential latent
space of a tVAE. Note how for each step of the flow (denoted by k), the same block. with the same
parameters, is applied in each time-step (denoted by t). This notion is reinforced by the use of two
distinct colors to indicate two different IAF layers that belongs to the same flow.
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Chapter 5

Proposed Approach for Semi-Supervised
Learning with tVAEs

In this chapter, the proposed approach that uses tVAEs to perform semi-supervised training
is presented. The process starts with a collection of N operational data-points D = {xi}Ni=1,
each with dimension RT×D. A percentage p of the dataset D correspond to labeled data,
denoted as DL = {x∗i , yi}NLi=1, where NL = p ·N and the superscript x∗ indicate that the data
point is labeled. The proposed approach can be summarized on the following steps:

1. Acquire the collection of data-points and identified the data-points that have labels.
2. Choose a tVAE model from the three different variants presented in chapter 4.
3. Construct a recurrent neural network predictor to perform classification or regression,

depending on the problem to solve.. From here onwards this recurrent neural network
will be refer as the predictor.

4. Build a combined model using the tVAE and the predictor following figure 5.1. Note
that the predictor take as inputs the location parameter µ of the latent variables as
input instead of the observable data x.

5. Train the combined model. For this:
(a) Sample a batch of b elements from D. This batch also have a labeled subset with

an expected value of p · b labeled examples.
(b) Compute the cost function of the tVAE, denoted as ELBO(x), using all the data-

points of the batch.
(c) Compute the cost function of the predictor, denoted as L(x∗, y), using only the

labeled portion of the batch.
(d) Obtain the total cost of the model as C(x,x∗, y) = αELBO(x) + L(x∗, y), where

α is an hyperparameter to control the weight of the ELBO function in the total
cost.

(e) Compute the gradients of the batch with respect to each model parameters.
(f) Apply the gradients performing stochastic gradient descent to minimize the com-

bined cost of the model C.
(g) Repeat the training process sampling different batches of D until convergence.
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6. Once the combined model is trained, the sub-model produce by the concatenation of the
encoder of the tVAE and the predictor can be used for the supervised tasks (regression
or classification)

Figure 5.1: The proposed tVAE-SSL model. Note how the gradients of the predictor’s loss function,
∇L, also affects the encoder of the VAE.

The justification for a conjunct training between the tVAE and the predictor is explain
now. Traditionally, VAEs are used for semi-supervised learning using a decoupled training
scheme, as in [14] and [13], where the optimization of the full model is divided in two steps:
first, the VAE is trained using all the data in an unsupervised manner to then do a separate
supervised training cycle for the predictor neural network in which only the transformed
data that originally had labels is used. Nevertheless, this decoupled strategy have two main
disadvantages. The first one is that the models need to be tuned separately, which is usually
slower than tuning just one model. The second disadvantage is that the most important
source of information for the downstream task (the labels) is not being used to train the
encoder of the VAE, which is the part of the model that generate the latent space. This is
clearly a waste of information that can be corrected with the proposed approach. Using a
coupled training process, the VAE as well as the predictor can be tuned in just one training
cycle, and as it show in figure 5.1, the gradients of L with respect to the parameters of the
encoder will not be zero since the prediction ŷ is a direct function of them, therefore using
labeled information to tune the encoder.

One of the objectives of this thesis is to verify if this training procedure would improve
results in semi-supervised learning tasks due to the latent space being formed by two sources
of information. In one hand, the unsupervised learned characteristics from the unlabeled
data, and in the other hand, the information coming from the labels. This would would
guide the transformation x→ z, produced by the encoder, towards better predictions for the
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downstream tasks.

From here onwards, this proposed model will be refer as the tVAE-SSL model. Addi-
tionally, using the notation presented in section 4, the tVAE-SSL model have three variants
depending on the temporal structures within the encoder and decoder of the tVAE: tVAE1-
SSL, tVAE2-SSL, tVAE3-SSL, for the temporal independent dependence, past and present
dependence and full temporal range dependence respectively. The predictor neural network,
however, remains the same for these three variants for simplicity.

To research the benefit of using inverse normalizing flows to improve the latent space, a
modification of the proposed approach with inverse-auto-regressive flows in the tVAE model
is designed. As shown in figure 5.2, this modification only changes the inner functioning
of the forward pass of the tVAE, not affecting the aforementioned steps of the proposed
approach. This modified model will be denoted from here onwards as the IAFtVAE-SSL
model. Following the same explanation as for the tVAE-SSL model, three variants are possible
depending on the temporal structure of the encoder and decoder, denoted as IAFtVAE1-SSL,
IAFtVAE2-SSL and IAFtVAE3-SSL.

Figure 5.2: The modified IAFtVAE-SSL model.
The coupled training strategy presented in this chapter is inspired in the work of Socher et

al. [34], who uses a similar approach for traditional Auto-Encoders in the context of predicting
sentiment attributes in text. This thesis uses a similar concept, but applied to temporal
Variational Auto-Encoders (tVAEs) in the context of PHM for diagnosis and prognosis.

Next chapter defines the experiments performed fulfill the objectives of this thesis.
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Chapter 6

Experimental Setting

This chapter describe the general experimental setting used to fulfill the objectives of this
thesis. First, with the purpose of comparing the proposed model with current techniques
for semi-supervised learning, two baseline models are presented. Then, this chapter focuses
on describing the experiment that will be executed for each proposed and baseline model in
order to draw comparisons. Finally, the specific architectures for all the models are specified,
along with the parameters used for the training of the models.

6.1 Baseline Models

In this section two baseline models are presented. In order to assure a fair comparison in which
the novel aspects of the proposed model are evaluated, the baseline models will maintain
the exact same architectures and inner structures for the encoder, decoder and predictor,
changing other characteristics such as the total loss function or the training strategy. The
baseline models are described below.

6.1.1 Baseline 1: Ablation Model

This model represent an ablation study of the proposed model in which the ELBO is removed
from the total cost function to verify if learning a latent space using an approximate posterior
report any benefits over using a simpler optimization. The elimination of the ELBO function
is done setting the hyperparameter α, described in section 5, to zero. This transform the
total cost function of the proposed model to:

C(x,x∗, y) = 0 · ELBO(x) + L(x∗, y)→ C(x∗, y) = L(x∗, y) (6.1)

This baseline model has the following characteristics:

• The latent space and decoder are not used, since the gradients of L with respecto to
them is zero.
• The encoder’s parameters are only trained based on the gradients of L.
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• Since the decoder is inactive, the model is not able to learn in an unsupervised manner.
This can be seen in equation 6.1, where the dependency of C has been updated to show
that only labeled data is used to compute the total cost of the model.

As mentioned before, the objective of this baseline model is to verify if learning the latent
space as the product of the approximate posterior distribution reports any benefit versus a
much more simpler training process. In fact, as it can be seen from figure 6.1 (which shows
only the active parts of the original proposal), this ablation study is for all practical purposes,
a simple recurrent neural network where the encoder and the predictor are separate blocks
of neural networks working in series.

Figure 6.1: Ablation model’s diagram. Grey blocks indicate the inactive parts of the original
model due to the elimination of the ELBO function from the total loss function C.

From here onwards, this model will be refer to with the identification tag "Ablation".

6.1.2 Baseline 2: Decoupled Model

In this baseline model, the tVAE is used only as an unsupervised feature extractor, capable of
processing and transforming the input data without labels. To train this model, a decoupled
learning procedure is used, summarized in the following steps:

1. The tVAE is trained first using the full dataset x, without labels, in an unsupervised
manner.
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2. Once the VAE is trained, its encoder is used to transform the labeled data to the latent
space: x∗ → z∗.

3. Finally, this labeled portion of the original data, z∗ is used as input for a predictor
recurrent neural network.

Figure 6.2 shows a diagram of this baseline model. Note how the two parts of the proposed
approach, the tVAE and the predictor, are now trained separately based only on their own
loss functions.

Figure 6.2: Decoupled model’s diagram. The tVAE and predictor structures are now trained in a
decoupled manner.

The objective of this baseline model is to check if the conjunction training, i.e., the mixed
flow of gradients in the encoder, is effectively helping to make a better latent space for
downstream purposes.

From here onwards, this model will be refer to with the identification tag "Decoupled"

Temporal dependencies of the Baseline Models

This section presented two baseline alternatives that modified the proposed approach in either
their training procedure or cost function. Nevertheless, the predictor, encoder and decoder
neural networks were kept the same. Therefore, the three temporal structures presented in
section 4 for the encoder and decoder of the tVAE can also be used in all three baselines.
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This is done to assure a comparison as fair as possible between the proposed approach and
the baseline models.

Table 6.1 summarize all the models used in this thesis. Remember that the following codes
are used to identify the temporal structures:

• Variant 1: Temporal independent dependence encoder and decoder (see section 4.1)
• Variant 2: Past and present dependent encoder and decoder (see section 4.2)
• Variant 3: Full temporal dependent encoder and decoder (see section 4.3)

Table 6.1: Summary of the models (proposed and baseline) used in this thesis

Model ID Description

tVAE{1,2,3}-SSL Proposed model that uses tVAEs and a neural network predictor
trained in a conjunct manner to perform semi-supervised learning.

IAFtVAE{1,2,3}-SSL Modification of the proposed model that adds flexibility to the
latent space using inverse auto-regressive flows, prior to the use of
the latent variables for the downstream task.

Ablation{1,2,3} Ablation study of the proposed model that remove the ELBO func-
tion for the total cost of the model.

Decoupled{1,2,3} Change in the training strategy of the proposed model to use a
decoupled strategy.

6.2 Description of the Experiment
To avoid confussion, the differences between experiments, case studies and models will be
explained prior to continuing with the rest of the thesis. In this context, a model is a
particular deep learning structure that produces a classification or regression result, wheter
an experiment is the application of that structure to a specific set of parameters or conditions.
Lastly, a case study is a set of experiments grouped by the data on which they are performed.

As mentioned before, for this thesis there are five possible models (a proposed model, a
modification of such proposal and two baselines) with three temporal variants each that need
to be tested in order to draw conclusions. These models were presented in table 6.1 along
with their IDs.

This thesis will present two case studies, which are based on a dataset with an specific
objective. Each case study uses a different dataset. Regrettably, the datasets are design to
assure that every data point x have a corresponding label. To simulate the semi-supervised
scenario, only a percentage of the labels will be considered in the experiments. The portion
of labels considerer will be selected at random and controlled by a parameter p that can take
one of the following values: [1%, 2%, 5%, 10%, 20%, 35%, 50%, 75%, 100%]. The situation
where p = 100% represent a fully supervised training case, where all the available data points
x have labels.

The experiment starts with one of these datasets, which are already preprocessed and
divided into a training set and testing set, and ready to be used. The preprocessing procedure
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for each case study will be explained in the corresponding chapter. The following steps
describe an experiment run for this thesis.

1. Divide the training set into a training and validation subsets in a 80%− 20% ratio.
2. Only for the remaining training set, chose a percentage of survival labels lp from the

aforementioned list and randomly delete (100 − p)% of the training labels. This will
produce a subset of the training dataset that is labeled.

3. Choose a model from table 6.1 with a temporal dependency from section 4 and use
the training dataset to train the model. Every time the validation cost is improved,
the parameters of the model are saved. Once the number of epochs reach 500 or the
validation cost does not improve for 25 consecutive epochs, finish the training cycle and
restore the model that achieved the best validation cost.

4. Using the restored encoder and predictor at the end of the training cycle and the test
set, compute the required metrics of the downstream task.

For each model of table 6.1 and value p in the aforementioned list, the experiment are run
10 times to obtain the mean and standard deviation of the desired metrics.

The following section describe the architectures used for the common encoder and decoder
of the models presented in table 6.1.

6.3 Model’s Neural network Architectures

As mentioned in section 6.1, the baseline and proposed models share the same inner structures
alternatives for the encoder and decoder neural networks. Figures 6.3 and 6.4 present the
encoder and decoder architectures, respectively.

Figure 6.3: Encoder architecture for all the models except the Auto-Encoder baseline. NNi

can refer to a time distributed neural network, an LSTM neural network or a Bi-LSTM network
depending on the desired temporal structure.

Depending on the desired temporal structure of the model (see section 4), the first com-
putation block of the encoder and decoder, denoted as NNi, is replaced for an specific neural
network structure. For the temporal independent version of the models, NNi is a time dis-
tributed traditional neural network of d1 units or neurons. For the past and present dependent
version NNi is a LSTM network with d1 units that return the full sequence of outputs states
yi. Finally, for the full temporal range dependant version, NNi is a Bi-LSTM network with
d1 units that also return all the output states. The second block in the encoder and decoder
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Figure 6.4: Decoder architecture for all the models. NNi can refer to a time distributed neu-
ral network, an LSTM neural network or a Bi-LSTM network depending on the desired temporal
structure of the decoder.

models correspond to a time distributed traditional neural network and is used to add an
extra degree of flexibility to the models without changing the temporal dependence imposed
by NNi.

For all the experiments and case studies presented in this thesis, d1 is set to 32. In pre-
liminar experiments it was found that this number of units worked well for the diagnosis and
prognosis study cases while also producing a relatively light network in terms of computation
time. In the decoder model, dx represent the number of features of each vector within the
sequence input data, and therefore it changes for each case study. The dimensionality reduc-
tion of input data is given by the number of features of the latent space, dz. Various degrees
of dimensionality reduction were tested in preliminar experiments, but to avoid adding an
extra degree of freedom to the modelling it was fixed as dz = dx/2, as this value was found
to give good results while preventing the encoder to learn a simple, uninformative encoding
function (which can happen when dx is very similar to dz). The final block of the encoder
outputs 2 · dz features since the first half is interpreted as the mean of the latent variables
and the second half as the standard deviation.

Figure 6.5 present the predictor architecture, which will be the same for every model
and variant. The activation function of the last layer, fact, will depend on the particular
downstream task. For diagnosis and prognosis problems, as mentioned in section 3.2.3, the
last activation function is a softmax function and an identity function, respectively.

Figure 6.5: Predictor architecture for all models. The activation function of the last layer, fact,
depends on the downstream task.

Finally, the inverse auto-regressive flows, for those models that use it, are composed by
three independent flow blocks in which each block is composed by one MADE network of 16
neurons. This configuration was chosen based on preliminar experiments, which shown that
heavier structures resulted in models that were too slow for the purposes of this thesis.
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Chapter 7

Case Study 1: CMAPSS dataset for
Turbofan Engines Remaining Useful Life
Estimation

The first case study presented in this thesis is a prognosis example, corresponding to the
estimation of remaining useful life in turbofan engines. The data for this case study comes
from the well-known CMAPSS dataset, originated for the PHM 08’ data competition [9] and
used since then as a benchmark dataset for PHM purposes. This chapter starts with the
pre-processing procedure for this dataset.

7.1 Data Preparation

The CMAPSS dataset is composed of multivariate operational time-series obtained by simu-
lating a turbofan under various fault modes and operational conditions using the Commercial
Aero Propulsion System Simulation [9] (hence the initials CMAPSS). The dataset is orga-
nized into four categories depending on the number of fault modes and operational conditions
that are present in the corresponding simulations. Table 7.1 present the characteristics of
these categories.

As it can be seen from table 7.1, FD004 is the most complex category since it present
multiple operational conditions and multiple fault modes. In this thesis, only results regarding
this subset will be presented.

Table 7.1: CMAPSS four categories features.

Subset Operational Conditions Fault Mode

FD001 One One (HPC Degradation)
FD002 Six One (HPC Degradation)
FD003 One Two (HPC and Fan Degradation)
FD004 Six Two (HPC and Fan Degradation)
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Table 7.2: FD004 sensors. LPC: Low Pressure Compressor. HPC: High Pressure Compressor.
LPT: Low Pressure Turbine. HPT: High Pressure Turbine.

Sensor Description Unit

1 Total temperature at fan inlet ◦R
2 Total temperature at LPC outlet ◦R
3 Total temperature at HPC outlet ◦R
4 Total temperature at LPT outlet ◦R
5 Pressure at fan inlet psia
6 Total pressure in bypass-duct psia
7 Total pressure in HPC outlet psia
8 Physical fan speed rpm
9 Physical core speed rpm
10 Engine pressure ratio (P50/P2) -
11 Static pressure at HPC outlet psia
12 Ratio of fuel flow to Ps30 peps/psi
13 Corrected fan speed rpm
14 Corrected core speed rpm
15 Bypass ratio -
16 Burner fuel-air ratio -
17 Bleed Enthalpy -
18 Demanded fan speed rpm
19 Demanded corrected fan speed rpm
20 HPT coolant bleed lbm/s
21 LPT coolant bleed lbm/s

Each one of the train and test trajectories are flight simulations in the form of a table, in
which each row represents one time-step measured in cycles and each column is a different
sensor measurements. FD004 simulate the output of 21 sensors, listed in table 7.2. Both
training and testing trajectories are simulated starting from a normal operational state with
an unknown level of degradation. While the train trajectories are simulated until the engine
present one of the corresponding fault modes, the testing simulations are stopped at a random
moment before that. The objective of original competition was to train models capable of
predicting the number of cycles until failure (RUL) of these test trajectories. Nowadays the
RUL for the test examples have been made available to the public with the rest of the data.

One important aspect is that each simulated engine from the FD004 subset is considered
to come from a fleet of engines of identical characteristics. Therefore, the full dataset can be
considered as a series of run-to-failure tests executed on the same engine. This allow the use
of all the training trajectories to learn the same model.

As mentioned before, each training and testing trajectory can be defined as a two dimen-
sional tableM ∈ RL×F , where L is the length in cycles of the trajectory and F is the number
of available sensors (21 in this case). The first step towards generating the final dataset
is to verify if every sensor contain information that changes with time. For this, a visual
inspection is performed, resulting in the identification of sensors 10, 15 and 16 as static in-
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formation, eliminating them from the analysis. A second step is to normalize the data. This
normalization is done for each sensor separately, using a min-max approach, restricting each
column to the [0, 1] range as required for the tVAE models. The final step is to increase
the number of training data-points and standardize the length of them, since the proposed
approach is not design to support inputs of variable length. One common strategy for this
is to generate moving windows of length T time-steps, which slides over each trajectory with
an overlap v. In this tesis, after some preliminary experiments, the length of the time-steps
and the overlap were set to T = 19 and v = 18, respectively. For the testing set, a similar
process is done with the exception that only the last window of the incomplete series is kept.

In the FD004, only the label (RUL) of the testing trajectories is dispatched with the
dataset. For the training trajectories, the label for each resulting window is obtained as
the remaining operating cycles until the failure counting from the last time step within the
window. The sliding mechanism and the label generation process for the training trajectories
are presented in figure 7.1.

Figure 7.1: Window sliding mechanism to generate the data-points. For this toy example, the
length of the window is T = 3 and the overlap is v = 2. The RUL computation is only show for the
x3 window, which correspond to four cycles.

The resulting training and testing datasets consist on matrices xi ∈ RT×D with T = 19 and
D = 18, which are the remaining valid sensors. Each data point xi has a corresponding label
yi that represent the remaining useful life for that operational window. With this process,
the final number of training samples and testing samples is 45, 015 and 248 respectively.

Finally, an additional step is performed on the labels yi. For this thesis it will be assumed
that the degradation of a component cannot be easily detected until a certain threshold in
the remaining useful life has been reached. This threshold will be set to Rearly = 130 cycles,
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as proposed in [14]. In practice, this means that every RUL value that meet the condition
yi > Rearly will be manually changed to yi = Rearly.

The following section presents the results obtained for this case study.

7.2 Results and Discussion for the FD004 Dataset

This section review the results obtained from executing the experiments described in section
6.2 using the proposed and baseline models for the RUL prediction in the FD004 dataset. It
will be divided in sub-sections that aim to extract conclusions about particular components
of the proposed approach, by either comparing it the to baseline models or between it’s
different time variants. All the results shown in this section are obtained using the testing
dataset, unless state otherwise.

7.2.1 Assessing the different time-structures of the encoder and de-
coder

As presented in section 4, the proposed model is designed with three variants for the encoder
and decoder. They are summarized in table 7.3.

Table 7.3: Temporal variants for the proposed model. These are also presented in the baseline
models and the IAF modification.

Name TAG Encoder Decoder

Variant 1 tVAE1-SSL ~zt ∼ q(~zt|~xt) ~xt ∼ p(~xt|~zt)
Variant 2 tVAE2-SSL ~zt ∼ q(~zt|~x1:t) ~xt ∼ p(~xt|~z1:t)
Variant 3 tVAE3-SSL ~zt ∼ q(~zt|~x1:T ) ~xt ∼ p(~xt|~z1:T )

First, the evolution of the cost functions for the predictor (RMSE) and tVAE (ELBO)
during training is presented in figures 7.2. All the figures contained the evolution of the
curves for both the training and testing dataset, to check if the training process developed
some type of overfitting. While the number of epochs was higher than 100 for all the models,
the curves are only shown until that point since after that the improvements over the costs
are very minimal. Also, the curves are obtained using p = 50% to show a representative
semi-supervised case. Other cases were tested but the curves do not changed considerably in
a way that affects the analysis presented below.

As figure 7.2 shows, there is no overfitting in the training process of the proposed model
for any of the temporal variants. The RMSE cost show in all cases slightly better results for
the training curve, which is expected and normal. The ELBO (or negative ELBO, since the
optimization is perform though a minimization) cost show very similar curves for both the
training and testing dataset, which is also expected for two main reasons: first, both subsets
came from a simulated scenario, in which all the variables are controlled and therefore the
engines behaves in a very similar way, and second, the ELBO do not depend on the labels,
consequently is not affected by the lack of generalization over the predictions of the RUL.
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(c) Full temporal range dependent structure

Figure 7.2: Evolution of the RMSE and ELBO costs of the proposed model for the train and test
dataset during training.

Another interesting aspect of figure 7.2 is that for the three variants, both the ELBO and
the RMSE cost functions improve over the full training process, showing that the proposed
model is learning how to do two functions simultaneously: generate or reconstruct the input
sequences through the tVAE and predict the remaining useful life of the engines through the
predictor network. Nevertheless, both error curves (RMSE and negative ELBO) are not close
to zero, so there is still room for improvement in the prediction and reconstruction abilities
of the model.

A final commentary with respect to the training curves is that in the the beginning of the
process, the ELBO improves very rapidly, but towards the middle section of the training, its
value gets worse to allow for the improvement of the second part of the total cost function,
the RMSE, which coincidentally at the same time starts improving again. One possible
explanation for this is that, due to the coupled training process that the proposed model
uses, the latent space is being pulled towards a reconstructive objective and then towards
a predictive objective to finally settle in an equilibrium that allow the realization of both
functions.

The effect of the different temporal variants over the RMSE of the remaining useful life
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for the proposed model is presented in figure 7.3.
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Figure 7.3: RMSE score for the different temporal structures of the proposed model.

The first important result that can be extracted from figure 7.3 is that for every level
of labeled information p, better prediction scores are achieved when the encoder complexity
increases. This can be seen clearly by the better RMSE achieved by the green case versus the
blue and orange cases. The only option for this is that a better latent representation is being
generated, since the predictor network is the same for all the variants. This clearly indicates
that the dataset used in this case study contains features that are highly dependant on time,
and therefore the regression task will benefit from models capable of processing temporal
information better.

Figure 7.3 also shows that an increase in prediction performance happens for all variants
of the proposed model when the amount of labeled information is increased. This is a very
expected behavior since generalization depends in great measure on having access to a wide
variety of examples. However, an interesting aspect is that variant 3 reach an stabilization
point for the RMSE score sooner than the other variants, at around p = 0.2, in which more
labels do not contribute new information to improve the results further. The same effect,
in a lesser degree, is observed when comparing variant 2 to variant 1. This evidence that
allowing the encoder to access different time states to infer the latent sequence enables the
model to achieve better degrees of generalization using lower levels of labeled information.

Finally, table 7.4 present the overall improvement of prediction performance as the amount
of labeled information increases (p = 0.01 → 1) for the three temporal variants of the
proposed model. As it can be seen, the difference between the three variants in terms of
this overall improvements are negligible if the standard deviation of the results is considered.
Therefore, while a more complex inner structure within the tVAE effectively results in better
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RMSE scores, the rate at which models improve with more available labeled information is
very similar.

Table 7.4: Performance improvement as the amount of labeled information increases from p = 0.01
to p = 1

Temporal Variant RMSE improvement

tVAE1-SSL 6.18
tVAE2-SSL 5.73
tVAE3-SSL 6.40

From these results is clear that better downstream tasks performances in both semi-
supervised (p < 1) and fully-supervised (p = 1) tasks can be achieved using more temporally-
aware inner structures for the tVAE in the proposed model. What is yet to be discovered
is if these results can be improved further by adding flexibility to the latent space, which in
the tVAE-SSL model is parameterized by a diagonal Gaussian distribution. The following
section analize the results obtained from adding a normalize flow to the proposed model in
order to answer this question.

7.2.2 Assessing the improvements achieved by using Inverse Auto-
Regressive Flows

The following results, presented in figure 7.4, compare the proposed approach (tVAE-SSL)
with the modified model that uses an inverse auto-regressive flow to transform the sequential
latent space (IAFtVAE-SSL).

These results show that only for the temporal independent case (figure 7.4a) the RMSE
score improves with the use of inverse auto-regressive flows to transform the latent space.
For temporal dependent structures, portrayed in figures 7.4b and 7.4c, these improvements
banish, removing the utility of using normalizing flows in variants 2 and 3. One possible
explanation for this behavior is that the inverse auto-regressive flow effectively improve the
quality of the latent variables, but only to a certain extent. Therefore, this improvement is
noticeable only in simpler structures, such as variant 1, but overshadowed by more capable
encoders that can process temporal data and build a latent space using past and/or future
states, represented by variants 2 and 3. Nevertheless, note that the Y-axis does not start
in zero, so there is still room for improvement over this models in terms of their predicting
capabilities.

This hypothesis is enforced by the reconstruction metrics shown in table 7.5, where both
the log-probability and RMSE of the reconstructed input data x̂ generated by the tVAE (not
to be confused with the RMSE of the RUL) are considerably lower only for the IAFtVAE-
SSL model that uses the variant 1, which is the simpler one. In variants 2 and 3, the
metrics are lower, but by a very slight margin. This evidence that inverse auto-regressive
flows improvements are only noticeable in very simple models, where flexibility is not already
added by the existent structures.

Note that since this reconstruction measures come from the unsupervised part of the
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(c) Full temporal range dependent structure

Figure 7.4: RMSE results between the proposed model and the modification that incorporates the
inverse-auto-regressive block.

model, they are the same for each value of p, and therefore the average value is presented in
table 7.5.

Therefore, from this experiment is clear that for this case study, normalizing flows improve
the latent space only in cases where the generation is conditioned on insufficient information,
such as in variant 1. For that case, the semi-supervised learning capabilities of the proposed
model are enhanced in almost the full range of labeled information (p ∈ [0.02, 1]). For
models where the encoder and decoder are more complex, such as in variants 2 and 3, their
contributions are negligible and consequently, their use is unjustified.

Next section is targeted towards verifying if the coupled training process holds any im-
provement over the traditional approach of optimizing the tVAE and the predictor separately.

7.2.3 Assessing the improvements achieved by the coupled training
process

The following results, presented in figure 7.5, compare the proposed approach (tVAE-SSL)
with the decoupled baseline model (Decoupled-SSL) that uses a disjunct training process to
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Table 7.5: Reconstruction metrics for the tVAE model with and without a IAF block for the three
temporal variants.

tVAE-SSL IAFtVAE-SSL
log p(x) RMSE(x, x̂) log p(x) RMSE(x, x̂)

Variant 1 -0.605 0.290 -0.390 0.048
Variant 2 -0.634 0.311 -0.615 0.298
Variant 3 -0.629 0.308 -0.613 0.296

optimize the tVAE and the predictor network.

For the temporal independent variant, presented in subfigure 7.5a, the decoupled model
presents slightly better results by a margin of 1% when a high number of labels is available
(p ≥ 50). Nevertheless, these improvements are very minor and often fall within the error
region given by the standard deviations. In contrast, for the temporal variant 2, portrayed in
figure 7.5b, significant improvements in the RMSE score of the predictions are achieved when
using a coupled training strategy. The same situation repeats, with even bigger differences
in performance, for the temporal variant 3, shown in figure 7.5c. This means that the use of
labeled information to tune the encoder of the tVAE only has a noticeable effect when the
encoder itself is able to process temporal information from the input sequence.

One possible explanation for these observations, in which the coupled strategy is justified
only for tVAE models that uses a temporal-aware inner structure, is related to the nature
of the data. As mentioned in section 7.2.1, the prediction quality for this dataset is highly
dependent on the ability of the model to extract and analyze temporal data. Therefore, it is
expected that when the encoder of the tVAE is a LSTM or Bi-LSTM neural network, which
is the case for variants 2 and 3 respectively, labeled information contained in the gradients of
the predictor’s loss function will produce a bigger impact on the transformation capabilities
of the encoder.

Another important result that can be derived from this experiment is that for all the tVAE
temporal variants, only the coupled training strategy improves its results when p ranges from
0.01 to 0.1, while the decoupled strategy remains almost static. This puts evidence that the
gradient’s flow from the labels to the encoder network produces better RMSE scores when
the labels are scarce, resulting in improved semi-supervised capabilities versus a decoupled
strategy.

Finally, table 7.6 compare the decoder’s reconstruction ability of both the proposed model
and the decoupled baseline model for every temporal variant. As a reminder, variant 1
correspond to the temporal independent encoder/decoder, variant 2 correspond to the past
and present dependant encoder and decoder and finally, variant 3 correspond to the full time
range dependant encoder and decoder. These results evidence that there are not significant
differences in the reconstruction capabilities of the tVAE between a coupled and decoupled
training strategy. This is an expected behavior since the decoder network is not directly
affected by the flow of labeled information and therefore the results should be very similar.
As a secondary observation, table 7.6 indicates that the inclusion of labeled information for
generation purposes via the proposed coupled strategy do not produce any benefit over the
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Figure 7.5: RMSE results between the proposed model and decoupled baseline.

traditional approach of only using unsupervised information.

Table 7.6: Reconstruction metrics for the proposed model and the decoupled baseline.

tVAE-SSL Decoupled-SSL
log p(x) RMSE(x, x̂) log p(x) RMSE(x, x̂)

Variant 1 -0.605 0.290 -0.639 0.315
Variant 2 -0.634 0.311 -0.637 0.316
Variant 3 -0.629 0.308 -0.638 0.314

Therefore, this experiment show that the improvements obtained by switching the training
strategy from a decoupled process to a coupled one are exclusively observed in the downstream
task performance, while the generation (i.e. reconstruction) capabilities of the tVAE are
not affected. The final section of this chapter is devoted to discovering why the coupled
training purposes improves the regression results. In particular, which one of the sources of
information (unsupervised via the ELBO or supervised via the predictor’s loss) the encoder
is using the most to improve the latent space of the tVAE.
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7.2.4 Results from the Ablation Study

The final comparation for this chapter is presented in figure 7.6, where the proposed model
is contrasted against the ablation study baseline. The ablation study model, as described in
section 6.1.1, is the result of removing from the proposed model any capability of generating
the latent space using unsupervised information via the elimination of the ELBO function
from the total cost C. This transforms the proposed model into what is, for all practical
purposes, a recurrent neural network that only learn from the supervised portion of the data
using the predictor’s loss function L, ignoring the unlabeled data-points.
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Figure 7.6: RMSE results between the proposed model and Ablation study baseline.

Figure 7.6 shows that, for all levels of labeled information and the three temporal variants,
there are no statistically significant improvements by using variational inference to learn
unsupervised characteristics in the latent space. The fact that the proposed model do not
achieve better results over the ablation study for lower values of p indicates that the coupled
training strategy do not improves the regression results by capturing additional information
from the labels to the latent space, but instead that all the important information to generate
predictions is captured from this few labeled examples.

However, as discussed in section 7.2.1, the training curves for the proposed model show
evidence that the tVAE is effectively learning how to reconstruct the input sequences with
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the decoder, at the same time that learning how to encode the input data in a way that can
achieve good results in the regression tasks. This can be seen from both costs being lower
at the end of the training process with respect to the start of it. Therefore, one possible
conclusion is that while the proposed model is not able to improve upon the results obtained
by the ablation study using only labeled data, a dual function latent space is, in fact, being
generated. In one hand, this latent space is capable of producing good quality predictions
for downstream tasks such as regression, while on the other hand it could also be used for
generation purposes. These two functions are performed without any one of them totally
disrupting the other. This is in fact a very interesting side result from these experiments,
and represent a possible way in which to continuate this research.

Finally, it is important to note that since the Y-axis on the plots show in 7.6 does not start
in zero, there is still an important amount of room for improvements in terms of prediction
performance in this dataset.

A complete set of the RMSE results for all the models, temporal variants and levels of
labeled information is included in the appendix, table 10.1.

The following chapter will present the results for the second case study of this thesis,
which is a diagnosis example.
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Chapter 8

Case Study 2: Pumping system dataset
for Diagnosis of Health State

The second case study presented in this thesis is a diagnosis example, in which the objective
is to classify the level of damage present in a pumping system used for offshore oil extraction.
The dataset for this case study was kindly provided by a Latin-American oil company, who
gave permission to use the data for a variety of experiments, including this thesis, under the
condition of not disclosing its name.

This chapter starts with the pre-processing procedure for this dataset.

8.1 Data Preparation
This dataset is delivered in one large csv file, in which the rows and columns represent time-
stamps and sensors measures, respectively. The csv file capture the operation of the system
in the period comprised from January, 2010 to December, 2012.

The sensors used in the system are listed in table 8.1 with the following keys:

• VF: Vibration
• ZT: Deviation of the shaft
• IT: Electric current
• PIT: Pressure
• Ti, TT, TIT: Temperature
• PDIT: Pressure difference
• FIT: Flow rate

The location of the sensors within the system are shown in figure 8.1.

Upon a preliminar inspection of the dataset, three main difficulties are found. First,
the sampling rate of the sensors is irregular, averaging one measure every two minutes,
approximately. Secondly, for an unknown reason, the sensors are not coordinated between
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Table 8.1: Available sensors for the pump system.

# TAG Unit

1 PDIT-301D kPa
2 TI-307D ◦C
3 TI-308D ◦C
4 VT-301D µ mm
5 VT-302D µ mm
6 ZT-301D mm
7 ZT-302D mm
8 TI-309D ◦C
9 PIT-306D kPa
10 PIT-305D kPa
11 VT-303D µ mm
12 VT-304D µ mm

# TAG Unit

13 TI-310D ◦C
14 TI-306D ◦C
15 TI-305D ◦C
16 VT-321D µ mm
17 VT-322D µ mm
18 VT-323D µ mm
19 PIT-302D kPa
20 PIT-303D kPa
21 PIT-304D kPa
22 HORIMETRO h
23 FIT-323D m3/h
24 IT-514001031 A

them. This means that for a given minute, not every sensor captures a measure. Finally,
the system present a large number of failures in the data capturing mechanism. This three
difficulties result in a dataset with a large number of NaN events. Therefore, one of the first
steps of the pre-processing procedure will be the cleaning and consolidation of the data.

Starting from the csv file, the pre-processing steps are as follow:

1. Cleaning the data: The csv file is filled with "I/O Error", "I/O TimeOut", "Shut-
down" among others string messages for when the sensors were out of service or out
of synch between them. Therefore, the first step is to replace all this values with
the "NaN" (Not-a-Number) value to indicate that those sensors do not have a valid
measures for those time stamps.

2. From the prior step, the dataset is filled with "NaN" values. Therefore, the second
step is to find the minimal time interval in which all the sensors had at least one valid
measure. This time interval was found equal to one hour. Then, the measures within
each hour were averaged to find a representative value for each sensor. This process
discards the vibrations measures since their averages over such a long period of time
hold no physical meaning.

3. Once the dataset is consolidated, it is column-wise normalized using a min-max scaler
between 0 and 1.

4. To generate sequential data-points, a similar window-sliding process described in section
7.1 is applied using a window length of 24 time-steps. This produces data-points
x ∈ R24×17 that represent a 1 day period operation measured by the 17 remaining
sensors.

For the labels, every time-stamp within the original csv file was kindly labeled by the
engineers of the company, using expert knowledge and field inspections. This label consist
in the current health state of the pumping system, categorized in three possible classes:

• Normal operation, where no failure or damage is detected. This state is assigned to
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Figure 8.1: PID of the pump system, indicating the location of all the sensors listed in table 8.1.

class 0.

• Incipient damage, where a low, but increasing damage state is detected. This state is
assigned to class 1.

• Severe damage, where a high damage state that can cause the sudden stop of the
operation is detected. This state is assigned to class 2.

This dataset is heavily unbalanced, which means that the number of examples for each
class varies widely. Table 8.2 shows the number of examples per class for the entire dataset.
As it can be seen, the number of examples for the healthy dataset are larger than for the
other two classes.

Table 8.2: Number of examples per class for the pumping dataset.

Normal Operation Incipient Damage Severe Damage

10926 1644 419

Due to this imbalance, the accuracy metric for this dataset is replaced by the balanced
accuracy [35], in which data points that belong to a less frequent class have a heavier weight
in the final value of the metric, thus producing a more fair and honest way of measure the
results.

For each resulting window x, the state of the machine two hours into the future is used
as the final label. For the experiments proposed in this thesis, the pre-processes dataset is
further divided into a training and testing set in a 80%− 20% ratio.

The following section presents the results obtained for this case study.
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8.2 Results and Discussion for the Pumping System Dataset
This section review the results obtained from executing the experiments described in section
6.2 using the proposed and baseline models for the pumping system dataset. The structure
will be very similar to the one used in section 7.2 and while it may read repetitive, it is done
this way to assure that each case study is as self-contained as possible. Therefore, this case
study will also be divided in sub-sections that aim to extract conclusions about particular
components of the proposed approach. All the results shown in this section are obtained
using the testing dataset, unless state otherwise.

8.2.1 Assessing the different time-structures of the encoder and de-
coder

First, the evolution of the cost functions for the predictor (cross-entropy) and tVAE (ELBO)
during the training process are presented in figures 8.2. All the figures contained the evolution
of the curves for both the training and testing dataset, to check if the training process
developed some type of overfitting. These curves are obtained using p = 50% to show a
representative semi-supervised case. Other cases were tested but the curves do not changed
considerably in a way that affects the analysis presented below.

As figure 8.2 shows, there is no overfitting in the training process of the proposed model
for any of the temporal variants. Both curves show similar profiles, which indicate that the
model is able to generalize the information from the training to the testing dataset.

Another interesting aspect of figure 7.2 is that for the three variants, both the ELBO and
the cross-entropy cost functions improve over the full training process, therefore, the proposed
model is learning how to do two functions simultaneously: generate or reconstruct the input
sequences through the tVAE and diagnose the health state of the pumping system through
the predictor network. A final commentary with respect to the training curves is that while
the ELBO improves rapidly and smoothly, the cross-entropy loss is very chaotic and takes
a large amount of epochs to reach the termination condition for the training, described in
section 6.2. A possible explanation for this is that the tVAE is optimizing first its ability
to generate the input data, and based on that latent representation, then it is adapting it
to also use it for the classification task. Nevertheless, both error curves (Cross-Entropy and
negative ELBO) are not close to zero, so there is still room for improvement in the prediction
and reconstruction abilities of the model.

The effect of the temporal variants presented in table 7.3 over the balanced accuracy
metric for the proposed model is presented in figure 8.3.

The first notable aspect of figure 8.3 is that for all temporal variants of the proposed
model, the balanced accuracy metric improves with more labeled examples. This is typical in
semi-supervised learning, where more labeled information directly benefits the generalization
ability of the model to recognize the classes in the testing set from the examples seen in the
training set.

A second aspect that can be extracted from these results is that the stabilization of
the balanced accuracy with respect to the increment of labeled information only starts to
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Figure 8.2: Evolution of the cross-entropy and ELBO costs of the proposed model for the train
and test dataset during training.

happen at a higher value of p than for the previous case study. Here, minor improvements
are still achieved when augmenting p from 75% to 100%, at least for the models that use
temporal variant 2 and 3. This puts in evidence that the generalization process for this
dataset is relatively harder than for the FD004 dataset. Finally, comparing the different
temporal variants between them, it is found that the differences in performance are much
more prominent for the cases where the amount of labeled information is scarce (p ≤ 0.2). In
fact, for those cases, variant 3 is clearly the best model in average performance. This indicate
that the dataset effectively contain temporal dependencies that are fundamental to predict
the future health states, and therefore models that can extract information from sequences
are better suited for the diagnosis tasks in this case study, especially in the semi-supervised
scenario.

Table 8.3 show the overall improvements achieved in terms of balanced accuracy with the
increase in labeled information, from p = 0.01 to p = 1. As it can be seen, for this case
study the differences between them are also negligible if the standard deviation is considered.
Therefore, while better accuracy results are achieved when using a more complex variant of
the tVAE, the rate at which these variants improve with more available labeled information
is very similar.
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Figure 8.3: Balanced accuracy score for the different temporal structures of the proposed model.

Table 8.3: Performance improvement as the amount of labeled information increases from p = 0.01
to p = 1

Temporal Variant Balanced accuracy improvement [%]

tVAE1-SSL 32.07
tVAE2-SSL 32.31
tVAE3-SSL 30.22

From these results is clear that better downstream tasks performances in cases where the
amount of labeled information is very scarce (p ≤ 0.2) can be achieved using more temporally-
aware inner structures for the tVAE in the proposed model. However, for cases where labels
are abundant, the differences between different temporal variants starts to banish and the
extra complexity and computational cost is not justifiable. What is yet to be discovered is
if these results can be improved further by adding flexibility to the latent space, which in
the tVAE-SSL model is parameterized by a diagonal normal distribution for each temporal
state. The following section analize the results obtained from adding a normalize flow to the
proposed model in order to answer this question.

8.2.2 Assessing the improvements achieved by using Inverse Auto-
Regressive Flows

The following results, presented in figure 8.4, compare the proposed approach (tVAE-SSL)
with the inverse auto-regressive flow modified model (IAFtVAE-SSL) to evaluate if the flex-
ibilization of the latent space can help to achieve better accuracy results when the amount
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of labeled information varies.
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Figure 8.4: Balanced accuracy results between the proposed model and the modification that
incorporates the inverse-auto-regressive block.

In contraposition with the results obtained for the prognosis case study (see section 7.2),
figure 8.4 shows that for all temporal variants of the tVAE and for all levels of labeled
information, it is clear that the use of inverse auto-regressive flows heavily decrease the
performance of the models. In fact, there exist cases where the model does not learn anything,
evidence by the obtained accuracy 33%, which in a classification problem of three categories
is the same as a random guess. In other cases, the dataset collapses one of the three available
clases into the other two, resulting in a 66% of accuracy.

One possible cause for the differences in performance of the IAFtVAE-SSL model in this
case study versus the prognosis case (see figure 7.4) is related to the proposed form in which
the inverse auto-regressive flow was adapted to the sequential latent space. As explained
in section 4.4, the normalizing flow is applied in a time-distributed manner, to each state t
separately. Whereas the latent states are already independent between them, this approach
further differentiate them without taking into consideration their origins, which are the ob-
servable variables. This additional transformation of the latent variables could cause the
distributions for each ~zt to take very different forms between them, to a point in which a
diagnosis task, that is based in similarities between data points of the same class, is heavily

68



affected. Regression, on the other hand, would not be affected that much by this loss of
similarity since it is not directly based on it.

Additional insights can be extracted table 8.4, where both the log-probability and RMSE
of the reconstructed input data x are shown. As it can be seen, the reconstruction measures
are very similar with or without the inclusion of an IAF block. Therefore, while the use
of normalizing flows to improve the downstream tasks are clearly worsen, the latent space
with added flexibility is still useful for generation purposes (although no improvements are
observed in this regard either). This evidence that for this case study, a simple diagonal dis-
tribution is enough to encode a latent representation that can produce the necessary features
to both generate data via the decoder and classify the health states with the predictor.

Table 8.4: Reconstruction metrics for the tVAE model with and without a IAF block for the three
temporal variants.

tVAE-SSL IAFtVAE-SSL
log p(x) RMSE(x, x̂) log p(x) RMSE(x, x̂)

Variant 1 -0.513 0.085 -0.511 0.082
Variant 2 -0.512 0.084 -0.510 0.081
Variant 3 -0.507 0.074 -0.508 0.076

The next section is targeted towards verifying if the coupled training process holds any
improvement over the traditional approach of optimizing the tVAE and the predictor sepa-
rately.

8.2.3 Assessing the improvements achieved by the coupled training
process

Figure 8.5 presents the comparison between the proposed model and the baseline that uses
a decoupled training strategy. The objective of this experiment is to evaluate the value in
performing a coupled training process for a diagnosis case.

As it can be seen from this experiment, improvements in the classification results are
obtained by using a coupled training process versus a traditional decoupled approach. This
improvements are found consistently in every temporal variant and for every level of labeled
information, with some very slight variations. In variations 1 and 2 it is also found that
for p values under 0.05, i.e., very low levels of labels, the proposed approach obtain more
stable results, evident in its lower standard deviations. For variant 3 the deviations from the
average accuracy are similar for both models, probably due to the increase in the encoder
inner computation power. These results show that, for this case study, using the gradients
from the predictor’s loss function to tune the encoder’s parameters propitiate the generation
of better latent variables for downstream tasks purposes. In this regard, the same effect is
observed in the previous prognosis case study.

From table 8.5, which shows the reconstruction errors of the tVAE for the proposed model
and the decoupled baseline, it can be observed that the direct use of labeled information for
the generation of the latent space produces no noticeable effect on the generation capabilities
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Figure 8.5: Balanced accuracy results between the proposed model and decoupled baseline.

of the tVAE, except for the third temporal variant, where the proposed model improves
its metrics by a very slight margin while the decoupled model does not. This show that
the gradient information that comes from the predictor’s end only helps significantly for
downstream tasks and do not transfer to the generation abilities of the model. In simpler
words, for a particular data-point xi, the information contained in the correspondent label
is not being used by the decoder to generate the reconstruction x̂i, and therefore a coupled
strategy with the main objective of training a generative model is not justifiable for this case
study.

Table 8.5: Reconstruction metrics for the proposed model and the decoupled baseline.

tVAE-SSL Decoupled-SSL
log p(x) RMSE(x, x̂) log p(x) RMSE(x, x̂)

Variant 1 -0.513 0.085 -0.512 0.084
Variant 2 -0.512 0.084 -0.511 0.085
Variant 3 -0.507 0.074 -0.513 0.084

As a summary, this experiment show that the improvements obtained by switching the
training strategy from a decoupled process to a coupled one are only observed in the down-
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stream task performance in a consistent way, for every value of p and every temporal variant,
while the generation (i.e. reconstruction) capabilities of the tVAE are almost not affected.
The final section of this chapter is devoted to discovering why the coupled training purposes
improves the classification results. In particular, which one of the sources of information
(unsupervised via the ELBO or supervised via the predictor’s loss) the encoder is using the
most to improve the latent space of the tVAE.

8.2.4 Results from the Ablation Study

The final comparation for this chapter is presented in figure 8.6, where the proposed model
is contrasted against the ablation study baseline. The ablation study model, as described in
section 6.1.1, is the result of removing from the proposed model any capability of generating
the latent space using unsupervised information via the elimination of the ELBO function
from the total cost C. This transforms the proposed model into what is, for all practical
purposes, a recurrent neural network that only learn from the supervised portion of the data
using the predictor’s loss function L, ignoring the unlabeled data-points.
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Figure 8.6: Balanced accuracy results between the proposed model and Ablation study baseline.

Figure 8.6 shows that, for all levels of labeled information and the three temporal variants,
there are no statistically significant improvements in the balanced accuracy results by using
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variational inference to learn unsupervised characteristics in the latent space. The fact that
the proposed model do not achieve better results over the ablation study for lower values of
p indicates that the coupled training strategy do not improves the semi-supervised regression
results by capturing additional information from the labels to the latent space, but instead
that all the important information to generate predictions is captured from this few labeled
examples. This effectively means that the tVAE model is not able to capture useful features
for the classification task from the unsupervised portion of the data, or at least is not able to
capture features that could generate an improvement over those captured from the supervised
portion of the data by the predictor’s network. This result is very similar to that obtained
in the prognosis case study.

However, as discussed in section 8.2.1, the training curves for the proposed model show
evidence that the tVAE is effectively learning two functions at the same time: how to generate
and reconstruct the input sequences in the outputs and how to encode the input data in a
way that can achieve good results in the classification tasks. This can be seen from the fact
that both costs are lower at the end of the training process with respect to the start of it.
Therefore, one possible conclusion is that while the proposed model is not able to use the
tVAE to extract unsupervised information for the classification task, it is able to generate a
dual function latent space which is trained to perform two different tasks at the same time.

In a similar fashion to what happens in the prognosis case study, it results very interesting
to note that while the semi-supervised learning results are not improved by the proposed
model, as the ablation study shows, the coupled training strategy can produce a single latent
representation capable of both functions performing two different functions at the same time,
without any of them being totally disrupted by the other. This represent an unexpected result
from this experimentation and could be used as a start point for future research work.

A complete set of the accuracy results for all the models, temporal variants and levels of
labeled information is included in the appendix, table 10.2.
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Chapter 9

Concluding Remarks

Prognosis and diagnosis tasks have become an essential part of system health and operation
management, allowing engineers and other personnel to anticipate risk situations, reducing
operational costs, maintaining higher levels of productivity and guarding the safety of its
workers. During recent years, the PHM field have starting to use deep learning techniques
for these purposes, with great success in a variety of research examples. Nevertheless, one
problem that keep all these model from being directly applicable to real world situations
is the lack of labeled data, from which deep learning models traditionally learn its patter
recognition abilities. For this purpose, this thesis proposes the research of a semi-supervised
learning approach that combine deep learning techniques with deep generative models to
learn from both labeled and unlabeled information.

In particular, this thesis proposes a model that trains a temporal VAE and a predictor
neural network in a coupled manner, fusing them together into what is a mixed model with
two different objective functions to perform prognosis and diagnosis tasks using operational
time-series as input data. This coupled training procedure allows for the flow of informa-
tion originally contained in the labels to the encoder of the tVAE, possibly improving the
approximation of the posterior distribution q(z|x) and therefore resulting in better results
for downstream tasks. The proposed model takes advantage of the unsupervised nature of
the tVAE and the fully supervised nature of the predictor to fully utilize the information,
whether it is labeled or not. Also, normalizing flows are tested to assess their ability to further
improve the latent space of the proposed model by transforming the encoder’s distribution
to arbitrarily complex distributions.

A complete set of experiments are performed over the proposed model, where the inner
structure of the tVAE as well as the level of labeled information used is varied. In particular,
three different temporal variants for the encoder and decoder of the tVAE are proposed,
each one representing a different level of complexity. These experiments are executed over
two case studies. The first one is a prognosis example that uses the well known benchmark
dataset FD004 for the prediction of RUL in turbofans. The second example of application
is a diagnosis example that uses data from a pumping system for offshore oil extraction.
Additionally, two baseline models are designed and tested to validate the advantages of using
the proposed approach over more simple methodologies. The first baseline model uses the
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same architecture as the proposed model but is trained in a decoupled manner, following the
traditional approach of using VAEs to perform semi-supervised learning. The second baseline
model is the result of an ablation study in which the VAE loss function is removed from the
proposed model, effectively transforming it into a fully supervised recurrent neural network.

The performed experiments show that for the proposed model, general improvements can
be achieved by using more temporally-aware inner structures in both the encoder and decoder
of the tVAE. This was an expected result due to the temporal nature of the operational data
from both case studies, which explain why better semi-supervised results are obtained with
the use of neural networks designed to process time-series.

With respect to the use of normalizing flows, specifically Inverse Auto-Regressive Flows
(IAF), to increase the flexibility of the latent variables, different results are found for each
case study. Whereas in the prognosis example IAF produced very slight improvements, for
the diagnosis example they totally disrupted the results, making their use not recommended.
It is discussed that one possible explanation for this has relation with the added flexibility
that IAF induced in the latent variables, which could possible also tend to differentiate
them. This loss of similarity would generate a loss of performance for classification tasks,
where similarity between examples is important, but leave regression problems more or less
untouched where the optimization is based on other aspects.

From the comparison of the proposed approach with the first baseline model, that uses a
decoupled training strategy, it can be concluded that the proposed conjunct training generate
better results for both the prognosis and diagnosis example in almost all levels of labeled
information and all temporal variants. Therefore, it is true that the use of labeled information
to tune the encoder of the VAE effectively is a better training strategy than the traditional
approach, where the VAE and the predictor are trained separately.

However, the comparison with the second baseline, which is the ablation study, show
that these improvements come exclusively from a more powerful supervised neural network,
product of the concatenation of the encoder and the predictor neural network, instead of the
unsupervised features extracted by the tVAE. In this regard, the use of a mixed model is
unjustified for both case studies, since comparable results can be obtained from using a deeper
neural network with only the labeled portion of the data, for all levels of labeled information.
This might be explained, in part, by the relatively easiness of the problems explored in this
work or the inability of the VAE model to extract useful unsupervised features. Therefore,
future research could focus on trying more advanced Deep Generative Models with the same
training approach or testing more complex datasets where generalization is harder than the
ones presented in this thesis.

Nevertheless, as the training curves for the proposed model show, in both case studies
the prediction cost and tVAE cost decrease as the training process is executed. This exhibit
that the proposed model is learning how to both reconstruct the input data with the tVAE
and generate predictions with the predictor neural network using the same latent space as a
starting point. While the use of the proposed model is not justified if the only objective is
to perform semi-supervised learning towards obtaining better predictions, this dual function
latent space could result in an interesting model for tasks in which the generation of new
data and the assessment of the health state of the system is required at the same time. Since
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the objectives of this thesis were focused on the predictive abilities of the proposed model,
this new aspect is also left as a possible direction for future research works.
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Chapter 10

Appendix
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Table 10.1: Complete RMSE results for all models in the FD004 dataset.

p/Model tVAE-SSL IAFtVAE-SSL Decoupled Ablation

Temporal Variant 1

0.01 31.42 ± 1.46 31.69 ± 4.95 29.11 ± 1.38 31.85 ± 1.52
0.02 28.86 ± 0.93 27.36 ± 1.45 28.58 ± 1.25 29.10 ± 1.22
0.05 27.51 ± 0.47 26.42 ± 1.04 28.38 ± 1.41 27.59 ± 0.61
0.1 26.80 ± 0.53 25.21 ± 0.90 28.53 ± 1.22 27.05 ± 0.91
0.2 25.90 ± 0.91 25.34 ± 1.80 25.39 ± 0.96 26.31 ± 0.76
0.35 25.80 ± 1.15 23.59 ± 1.33 24.78 ± 0.84 25.73 ± 1.51
0.5 25.98 ± 0.95 23.53 ± 1.12 24.16 ± 1.05 25.26 ± 1.40
0.75 24.79 ± 1.55 23.96 ± 1.11 24.03 ± 1.46 25.07 ± 1.74
1.0 25.23 ± 1.25 23.66 ± 1.41 23.89 ± 1.19 25.27 ± 1.72

Temporal Variant 2

0.01 30.22 ± 1.16 30.53 ± 1.33 32.71 ± 1.28 30.85 ± 1.39
0.02 28.39 ± 0.63 28.58 ± 1.78 32.07 ± 1.56 28.54 ± 1.19
0.05 27.00 ± 0.91 26.92 ± 0.72 32.09 ± 1.72 27.12 ± 0.64
0.1 26.17 ± 0.87 25.82 ± 0.55 34.10 ± 1.48 26.06 ± 0.88
0.2 25.39 ± 1.34 25.71 ± 0.84 28.53 ± 1.62 25.07 ± 0.76
0.35 25.11 ± 0.96 25.01 ± 1.18 27.13 ± 1.33 24.61 ± 0.90
0.5 24.22 ± 0.86 24.71 ± 1.22 27.37 ± 1.46 24.76 ± 1.19
0.75 24.29 ± 1.01 24.67 ± 0.91 27.00 ± 1.69 24.22 ± 1.09
1.0 24.48 ± 1.05 24.68 ± 0.99 26.53 ± 1.59 24.56 ± 1.18

Temporal Variant 2

0.01 29.69 ± 1.16 30.10 ± 1.05 33.56 ± 2.03 30.27 ± 1.58
0.02 28.12 ± 0.84 28.98 ± 1.75 32.25 ± 1.05 28.46 ± 1.49
0.05 26.68 ± 1.55 25.89 ± 1.49 32.85 ± 2.02 26.72 ± 1.70
0.1 24.96 ± 1.78 24.07 ± 1.27 33.47 ± 2.34 25.41 ± 1.59
0.2 23.51 ± 0.76 24.07 ± 1.11 28.26 ± 1.31 24.25 ± 1.60
0.35 23.75 ± 1.14 23.15 ± 0.91 27.45 ± 1.47 23.27 ± 0.79
0.5 23.02 ± 0.59 23.40 ± 0.46 27.74 ± 1.76 23.81 ± 1.70
0.75 23.26 ± 0.67 23.06 ± 0.93 27.08 ± 1.67 22.93 ± 1.17
1.0 23.28 ± 1.22 23.18 ± 0.90 27.08 ± 1.54 22.68 ± 0.69
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Table 10.2: Complete balanced accuracy (in percentage) results for all models in the pumping
system dataset.

p/Model tVAE-SSL IAFtVAE-SSL Decoupled Ablation

Temporal Variant 1

0.01 59.48 ± 4.13 33.54 ± 0.27 49.06 ± 11.8 58.37 ± 10.2
0.02 65.28 ± 3.13 41.01 ± 11.6 54.83 ± 10.0 62.66 ± 7.78
0.05 69.40 ± 5.13 44.68 ± 13.8 61.76 ± 3.86 70.97 ± 5.90
0.1 73.70 ± 8.62 54.52 ± 13.5 68.72 ± 5.63 75.09 ± 6.37
0.2 83.11 ± 6.69 64.72 ± 2.57 72.68 ± 3.66 83.97 ± 5.17
0.35 87.21 ± 5.09 66.26 ± 0.96 74.88 ± 8.74 87.68 ± 3.40
0.5 90.57 ± 2.29 66.41 ± 1.16 80.06 ± 3.86 87.31 ± 5.00
0.75 91.70 ± 2.26 66.30 ± 1.22 80.66 ± 6.13 88.21 ± 4.98
1.0 91.55 ± 4.21 66.24 ± 1.42 84.35 ± 6.06 89.92 ± 3.57

Temporal Variant 2

0.01 60.58 ± 8.22 33.44 ± 0.33 43.75 ± 14.4 55.43 ± 11.7
0.02 65.23 ± 3.90 33.14 ± 0.29 53.33 ± 11.4 66.95 ± 8.57
0.05 71.08 ± 5.24 33.29 ± 0.38 60.54 ± 12.8 71.43 ± 5.82
0.1 78.63 ± 3.47 33.23 ± 0.30 68.83 ± 4.77 81.52 ± 5.24
0.2 83.34 ± 6.13 36.27 ± 9.24 73.29 ± 4.94 83.82 ± 4.12
0.35 87.47 ± 2.89 36.33 ± 9.54 78.49 ± 2.54 89.95 ± 2.60
0.5 89.58 ± 3.17 36.58 ± 9.76 76.90 ± 6.93 89.89 ± 4.08
0.75 91.97 ± 2.42 39.72 ± 12.8 84.26 ± 5.61 92.03 ± 3.21
1.0 92.89 ± 1.65 40.01 ± 13.1 84.94 ± 3.37 92.64 ± 2.71

Temporal Variant 2

0.01 64.98 ± 2.94 39.80 ± 12.0 62.63 ± 4.22 61.06 ± 5.29
0.02 70.88 ± 2.72 42.03 ± 13.3 67.94 ± 4.24 70.23 ± 3.94
0.05 74.31 ± 5.94 49.06 ± 15.1 68.32 ± 4.45 75.48 ± 5.84
0.1 81.04 ± 6.15 56.73 ± 14.1 70.24 ± 4.93 82.95 ± 2.19
0.2 86.87 ± 1.54 60.48 ± 13.9 79.52 ± 4.85 88.30 ± 2.19
0.35 88.85 ± 3.52 67.58 ± 0.58 81.85 ± 5.93 90.09 ± 2.05
0.5 90.25 ± 2.87 69.53 ± 4.78 86.30 ± 2.61 91.56 ± 1.74
0.75 92.19 ± 3.01 74.92 ± 8.56 88.25 ± 1.53 92.53 ± 1.24
1.0 95.21 ± 1.50 76.81 ± 7.97 89.47 ± 2.49 94.55 ± 1.70
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