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Abstract Aweighted compressed sensing (WCS) algorithm is proposed for the prob-
lemof channelized facies reconstruction frompixel-basedmeasurements. This strategy
integrates information from: (i) image structure in a transform domain (the discrete
cosine transform); and (ii) a statistical model obtained from the use of multiple-
point simulations (MPS) and a training image. A method is developed to integrate
multiple-point statistics within the context of WCS, using for that a collection of
weight definitions. In the experimental validation, excellent results are reported show-
ing that the WCS provides good reconstruction for geological facies models even in
the range of [0.3–1%] pixel-basedmeasurements. Experiments show that the proposed
solution outperforms methods based on pure CS and MPS, when the performance is
measured in terms of signal-to-noise ratio, and similarity perceptual indicators.
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1 Introduction

The problem of geological facies recovery from pixel-based measurements is a
challenging topic in Geosciences. Direct measurements (hard-data or pixel basedmea-
surements) are expensive, and consequently, the inverse problem needs to be addressed
in an extremeunder-sampling regime (Mariethoz andCaers 2015). Typically, a realistic
scenario considers less than 3% of direct measurements. To deal with this challenging
under-sampling regime, the use of non-parametric models for statistical simulation is
a well-established approach (Ortiz and Deutsch 2004).

In particular, multiple-point simulations (MPS) have been adopted as a standard
method in geostatistics (Guardiano and Srivastava 1993; Strebelle 2002; Ortiz and
Deutsch 2004; Arpat and Caers 2007; Wu et al. 2008; Mariethoz and Caers 2015;
Minniakhmetov et al. 2018). Conditioned to the direct measurements, this approach
simulates the variables in un-sampled locations by reproducing higher order patterns
(multiple-point statistics) of a prior model obtained from a training image (Mariethoz
and Caers 2015). An expert can then translate the prior knowledge in the selection
of an appropriate training image from which reference spatial patterns are drawn
and imposed during the reconstruction. This is a stochastic approach in which the
variability in the results is intrinsic, in the sense that it does not lead to a single repro-
duction of the distribution of facies. More recently other models have been proposed
for image reconstruction, including Markov-process based (Tahmasebi et al. 2017)
and Deep Learning methods based on Convolutional Neural Networks (Wang et al.
2018). Finally, the problem of image recovery has also been addressed as a sampling
problem (Jafarpour et al. 2009; Calderon et al. 2015) by adopting some new results
from the theory of compressed sensing (CS) (Candès and Tao 2005, 2006; Candès
et al. 2006a, b; Donoho 2006). These approaches depart from the classical strategy of
image recovery based on simulations (Ortiz and Deutsch 2004; Tahmasebi et al. 2014;
Mariethoz and Renard 2010; Mariethoz and Lefebvre 2014), and treat image recovery
as an interpolation problem (Vetterli and Kovacevic 1995; Donoho et al. 1998; Mallat
2009).

The basic idea of the CS framework is to optimize signal recovery by taking advan-
tage of the fact that subsurfaces facies images have a redundant representation in a
transform domain, that is they have less effective degrees of freedom than the dimen-
sionality of the image (the concept of sparsity). Sparseness or compressibility is the
ability of an image to be perfectly or well approximated by a small fraction of trans-
form coefficients. CS exploits (Candès et al. 2006a; Donoho 2006) sparsity to recover
the image with the minimum number of non-zero coefficients for a given transform
domain. In this sampling context, performance is measured by a comparison between
the true image and that of the recovered image (Donoho et al. 1998; Vetterli and
Kovacevic 1995; Elad 2010) using distortion measures such as the signal to noise
ratio (SNR) or visual perceptual indicators (Zhou et al. 2004), widely adopted by the
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community of image compression. In contrast, the conventional way of evaluating
the quality of geostatistical simulations has been based on assessing the reproduc-
tion of univariate, bivariate and multiple-point statistics of an image model (Ortiz and
Deutsch 2004; Mariethoz and Renard 2010; Tan et al. 2014; Peredo and Ortiz 2011;
Leuangthong et al. 2004).

The application of CS to inverse problems in Geosciences is an active area of
research. In particular, there are several contributions to the problem of subsurface
flow model calibration based on non-linear flow measurements (Jafarpour et al. 2010;
Jafarpour 2011; Khaninezhad et al. 2012; Elsheikh et al. 2013; Khaninezhad and Jafar-
pour 2014, 2017; Lee and Kitanidis 2013). These contributions have been made in
the context of History Matching (Jung et al. 2018, 2017; Khaninezhad and Jafarpour
2017; Lee et al. 2017, 2016; Sana et al. 2015; Jafarpour 2011). History Matching is an
inference task that incorporates production information and the use of flow-dynamic
models that take into account physical parameters of the problem (static parameters,
permeability and porosity, and dynamic variables, pressure and saturation, and so on)
to recover a subsurface image (Sana et al. 2015, 2016; Li and Jafarpour 2009; Kha-
ninezhad et al. 2012). These works support the idea that sparsity-promoting solutions
improve connectivity in the reconstructionof channelized structures and, consequently,
improve performance. In the context of geological facies recovery without the use of
secondary models or historical data, pixel-based measurements have been used to
explore the role of CS for the channelized facies recovery (Jafarpour et al. 2009). This
approach focused on the analysis of a single-channel structure and a specific data-
rate regime, showing promising results. Calderon et al. (2015) extended this direction
addressing the formal connections with the RIPless theory of CS (Candès and Plan
2011), formulating the problem of basis selection and proposing a new inter-block
average approach for processing arbitrary large images. They performed a system-
atic experimental analysis in the range of [1–10%] of direct data, showing that CS is
an interesting alternative for facies reconstruction when more than 3% of the data is
available.

In many realistic situations less than 1% of pixel-based measurements are avail-
able. In this severe under-sampling regime, the aforementioned method (Jafarpour
and McLaughlin 2009) and the average inter-block CS approach (Calderon et al.
2015) are limited. To address the problem of facies reconstruction with such limita-
tions, a new framework is proposed in this work by integrating knowledge of the
structure of the facies image in a transform domain (the Discrete Cosine Trans-
form) with the statistical information obtained from the multiple-point statistics
of a training image. The main conjecture is that these two sources of subsurface
image information are complementary and, consequently, their integration can pro-
vide a significant improvement in the reconstruction results. In order to validate this
hypothesis, the use of weighted CS (WCS) is explored as a concrete alternative to
integrate information from a statistical model of the image (or image model) within
the umbrella of sparsity promoting solutions in a transform domain (Figueiredo and
Nowak 2014; Bogdan et al. 2013; Zeng and Figueiredo 2014; Khajehnejad et al.
2011).

WCS is an active area of research in signal processing where the objective is to
incorporate prior statistical information of the signal for better recovery (Figueiredo
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and Nowak 2014; Bogdan et al. 2013). Empirical results have shown outstanding
performance in the recovery of sparse signals, significantly outperforming the clas-
sical CS framework (Khajehnejad et al. 2011; Zeng and Figueiredo 2014). On the
theoretical side, there have been some concrete contributions (Figueiredo and Nowak
2014; Khajehnejad et al. 2011). For instances, the use of WCS for sparse estimation
of correlated variables has been studied (Figueiredo and Nowak 2014), establishing
theoretical upper-bounds for estimation error. With these upper-bounds, the use of
prior statistical information from theory and practice can offer an important gain in
image reconstruction.

Motivated by these results on signal processing, a new inter-block average recon-
struction approach is presented based on WCS that integrates signal structure and
statistical knowledge from a training image. To this end, a formalization to inte-
grate information of a training image in a weighted structure within the context of
WCS is provided. In terms of performance, the proposed approach provides impor-
tant improvements when compared with the pure CS-based solution (Calderon et al.
2015). This gain is clear in the critical regime [0.1–0.8%] of pixel-based measure-
ments considering three different image models (single-channel, multi-channel 1 and
multi-channel 2). Furthermore, a comparison of the proposed schemes with MPS is
performed verifying that from the point of view of recovering the actual image (using
SNR and perceptual indicators) WCS performs better in the range [0.1–2%] of pixel-
based measurements.

In the areas of computer vision and image processing, similar recovery problems
have been addressed. Here, the setting resembles an ill-posed problem known as image
inpainting where the objective is to recover images with contaminated or lost pixels
(Ji et al. 2017; Xu and Yin 2016; Huang et al. 2008; Srinivas et al. 2015). More
generally, a classic problem of image deconvolution (called blind deconvolution) is
to restore a blurred or distorted image assuming that samples come from the convo-
lution of a real latent source with an unknown blurring kernel (Perrone and Favaro
2016). In this context, Bayesian models have become a natural alternative as prior
information is included in the framework. Classical Bayesian works include modeling
priors with a variety of tools. These include modeling with conditional autoregres-
sion (CAR) or simultaneous autoregression (SAR) using a Dirichlet prior to model
the blur kernel (Molina et al. 1997), and with the mixture of Laplacians (Miskin and
MacKay 2001) or Gaussians priors (Likas and Galatsanos 2004) to impose smooth-
ness on the image. In addition, blur kernels and total variation have been used to
impose piecewise-smoothness (Perrone and Favaro 2014, 2016; Rudin et al. 1992;
Likas and Galatsanos 2004; Chen et al. 2014; Babacan et al. 2009). Since the work
of Fergus et al. (2006), sparse prior modeling on the blurring kernel have become the
state-of-the-art (Amizic et al. 2010; Babacan et al. 2009; Vega et al. 2014). On the
non-Bayesian side, fast �p-regularization schemes for sparse deconvolution have been
proposed (Zhou et al. 2014). However, Choudhary and Mitra (2014) showed that on
a single channel scenario, the assumption of sparsity in the canonical basis is not suf-
ficient to ensure identifiability. On the other hand, although using a highly structured
regularization setting, the number of samples needed for a good deconvolution, even
for small images, can be impractical (Zhang et al. 2018).
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Fig. 1 a A multichannel facies
image. b Unstructured
pixel-based measurements (1%
taken at random positions).
White pixels indicate the
absence of measurements

The rest of the paper is organized as follows. Section 2 presents the formulation
of the facies recovery problem in the context of CS and discusses about some design
considerations. Section 3 presents the weighted CS framework used to integrate the
two sources of prior information available for the geological facies. Finally, Sect. 4
analyzes the persistent structure of facies images in the DCT transform domain, and
Sect. 5 presents reconstruction results and comparison with other methods.

2 Facies Recovery Using Compressed Sensing

The main problem of this work is the recovery of a geological structure acquired
from wells considering the distributions of two-dimensional facies over a deposit or
reservoir illustrated in Fig. 1a. This problem is modeled as the recovery of an image (a
collectionof pixels (xi, j ) ∈ R

{1,...,N }×{1,...,N } indexedby thepair (i, j) ∈ {1, . . . , N }×
{1, . . . , N }), where thewells correspond to unstructured pixelmeasurements of a small
proportion of the image size in the range [0.1–2%], see Fig. 1b for an illustration.

2.1 Compressed Sensing: A Transform-Based Sparsity Promoting Solution

In this work, the focus is on the sampling regime of [0.1–2%] to perform image
reconstruction. In this extreme under-sampling regime, any classical interpolation or
sampling algorithm perform poorly. Therefore, the use of concrete models for the
structure of the image is essential to achieve a reasonable recovery from the observa-
tions.

Without loss of generality, an image is represented by a finite vector x inRn , where
the pixel-based measurements are represented as a linear operator, that is,

ȳ = Ax̄ ∈ R
m . (1)

In the Eq. (1), the m by n matrix, A, models the sensing process where m represents
the number of samples and n the dimension of the image. The observation vector
is denoted by ȳ. Here, the measurements (the rows of A) are taken at random pixel
locations to model the sensing strategy. In particular, the rows of A are produced as
independent and identically distributed (i.i.d.) realizations of a random vector ā(w) in
R
n , which independently takes (without repetitions)m -columns of the identity matrix
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I with uniform probability to form the m-rows of A in (1). To illustrate the process,
an example of the induced structure of A is presented in Fig. 1b.

For the under sampling regime (i.e., m � n), the recovery of x̄ from ȳ is an ill-
posed problem. However under some specific structural assumptions on x̄ , the CS
theory suggests it is feasible to obtain perfect or near-optimal reconstruction (Candès
and Tao 2005; Candès et al. 2006b; Donoho 2006; Cohen et al. 2009). Formally, letU
be an unitary matrix (i.e. the columns of U define an orthonormal basis for Rn), then
the signal x̄ ∈ R

n can be expressed by

x̄ = Uz̄, (2)

where z̄ ≡ U † x̄ denotes the transform representation of x̄ with respect to U . Hence,
(1) can be expressed as

ȳ = AU · z̄ ∈ R
m, (3)

relating the pixel-based measurements ȳ ∈ R
m with the transform coefficients z̄ ∈ R

n

(with respect to U ). It can be shown (more details in Calderon et al. 2015, Sects. 2
and 3 and “Appendix A”) that if the transform vector z̄ is k-sparse, meaning that the
vector z̄ has at most k non-zero coefficients and k � n, perfect reconstruction of x̄ can
be obtained from ȳ with the following transform-based sparsity promoting solution
(Candès et al. 2006b; Donoho 2006; Candès and Plan 2011)

ẑ = arg min
z̃∈Rn

||z̃||�1 , subject to ȳ = AU z̃. (4)

Finally, from ẑ, the reconstruction obtained in the pixel (or image) domain is given by
the synthesis equation x̂ = Uẑ.

In a nutshell, the underling idea on using the algorithm in (3) to recover the image is
that minimizing the �1-norm in the transform domain [subject to the linear constraint
in (4)] promotes a solution that is both sparse (in the transform domain given byU ) and
consistent with the measurements. Figure 2b illustrates the principle of the recovery
algorithm. Remarkably, the solution x̂ is equal to x̄ when z̄ (i.e., the image in the

(a) (b) (c)

Fig. 2 Graphical illustration of different solutions (the dot) that can be obtained from a set of linear
constraints. a Minimizing the �2-norm. b Minimizing the �1-norm. c Minimizing the weighted �1-norm in
Eq. (5), promoting axis z2
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transform domain) is sparse, meaning that the number of non-zero coefficients in z̄ is
significantly smaller than the ambient dimension n. For completeness, the CS result
that is applicable in the proposed setting is presented in “Appendix A”.

2.2 Basis Selection for Eq. (4)

In the expression in Eq. (4), the basis U (that models the domain where the image is
sparse or nearly sparse) is a design object that needs to be selected with the objective of
maximizing the information from ȳ that can be used to recover x̄ , in the linear setting
from Eq. (1) and with the algorithm presented in Eq. (4). This poses the problem of
finding an optimal basisU over a collection of possibilities (the dictionary). Following
the formalization for this selection task presented in Calderon et al. (2015), the optimal
basisU∗ over a rich collection (DCT, Fourier,Wavelets, etc.) turns out to be the discrete
cosine transform (DCT). Some of the technical details of this basis selection problem
are presented in “Appendix B”.

3 Sparse Regularization with Prior Knowledge Support: Weighted CS

The main objective of this work is to propose a strategy to integrate structure in the
form of sparsity patterns (on z̄ = U † x̄) and the statistical information of a channelized
facies model. Channelized facies fields present specific spatial features that translate
in properties on their spatial correlations, connectivity, orientation, continuity and
compressibility patterns, among others. Different realizations of the field are expected
to yield a persistent structure in the DCT domain in its transform-based representation.
This persistent pattern in the transform domain is a knowledge that can be included
in the inverse process in Eq. (4), by favoring solutions that are consistent with an
expected geological structure represented in a transform domain.

Within the context of �1-regularized solutions, an attractive alternative to integrate
prior information is to penalize components in the transform domain that are not
consistent with a prior statistical model. This penalization can be modeled through a
set ofweights {wi }ni=1 in the regularization term (Figueiredo andNowak 2014; Bogdan
et al. 2013). More precisely, the weighted CS synthesis solution is given by

ẑ = arg min
z̃∈Rn

n∑

i=1

wi |z̃i | = arg min
z̃∈Rn

||W z̃||1 s.t. ȳ = Az̃, (5)

where W = diag(w1, w2, . . . , wn). Then, the recovered image is computed by x̂ =
Uẑ. The criterion for the weights is that wi should be inversely proportional to the
expected magnitude of zi (Candès et al. 2008). Thus, components with small expected
values (irrelevant coefficients in average) will present a high penalization term in
Eq. (5), and consequently, the solution of the Eq. (5) will shrink these values to
zero. Geometrically, this approach deforms the standard �1-ball favoring some sparse
orientation patterns as illustrated in Fig. 2c. In summary, the penalization matrix W
induces an extra restriction on the space of admissible solutions, penalizing sparse
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solutions that fitting the measurements do not honor the prior model imposed by the
weights in W .

3.1 Reducing the Weighted CS to a Standard �1-Regularization

The algorithms available to solve the standard sparse regularization inverse problems
do not incorporate the weighting matrix W (Elad 2010). This is not an issue since the
weighted CS problem reduces to the standard CS algorithm by incorporating W as a
modification of the sensing matrix A. Specifically, considering a weighted transform
domain given by the mapping α = WU † x̄ , then the problem described in (5) is
equivalent to solving

α̂ = arg min
α̃∈Rn

||α̃||1 s.t. ȳ = AW−1α̃, (6)

where the recovered image is computed by x̂ = UW−1α̂ (Candès et al. 2008). There
are well-documented algorithms available to solve (6) based on linear programming
(basis pursuit) (Elad 2010) as well as greedy iterative solutions with performance
guaranteed (orthogonal matching pursuit, iterative-hard thresholding, among others)
(Mallat and Zhang 1993; Tropp and Gilbert 2007; Blumensath and Davies 2009; Elad
2010).

3.2 Weight Definitions

In this section, a statistical model of a channelized facies field (i.e., the image
model) is included within the context of the weighted CS in (5). More formally,
the image is modeled as a random vector X with values in R

n following a distri-
bution γ . Given the transform-based random vector Z = U †X , the computation of
the average magnitude of the i coefficient in the transform domain can be obtained
by

ξi = E(|Zi |) = EX∼γ

(∣∣∣U †
·i X

∣∣∣
)

, (7)

for all i ∈ {1, . . . , n}. Considering some recently proposed weighted and re-
weighted sparse promoting algorithms (Bondell and Reich 2008; Zeng and Figueiredo
2014; Bogdan et al. 2013; Figueiredo and Nowak 2014), a basic design prin-
ciple is to select wi = g(ξi ), where g : R→R is a non-increasing function.
In Particular, some definitions from (Zhao and Li 2012) are adopted while oth-
ers are extended from those. The complete list explored in this work is pre-
sented in Table 1. For the case of Definitions 6 and 7, �p ⊂ {1, . . . , n}
denotes the set of indices in the transform domain that contain the p-most sig-
nificant coefficients of the average transform representation {ξi : i = 1, . . . , n} in
Eq. (7).

In practice, there is no access to the probability model γ . Instead, a train-
ing image is used as the model that in the context of the MPS technique offers
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Table 1 List of weighting
matrix definitions considered for
the solutions of the weighted
compressed sensing problem in
Eq. (6)

Name Definition

Definition 1
1

ξ
1−p
i

, 0 < p < 1

Definition 2
p + ξ

1−p
i

ξ
1−p
i (ξi + ξ

p
i )

, 0 < p < 1

Definition 3
p + ξ

1−p
i

ξ
1−p
i (ξi + ξ

p
i )1−p

, 0 < p < 1

Definition 4
(1 + 2ξi )

(ξi + ξ2i )1−p
, 0 < p < 1

Definition 5
1 + ξ

p
i

ξ
1+p
i

, 0 < p < 1

Definition 6
1 if i ∈ �p
0.001 otherwise

, 1 ≤ p ≤ n

Definition 7
1

P(Zi ∈ �p)
, 1 ≤ p ≤ n

an empirical characterization of γ . More precisely, given a training image, inde-
pendent realizations of X (denoted by x̄ (1), . . . , x̄ (L)) can be created from the
computation (frequency counts) of higher order pattern statistics from the train-
ing image. Consequently, it can be assumed that these simulations follow an
underlying distribution γ that can be used to estimate ξi by its empirical ver-
sion

ξ̂i = 1

L

L∑

l=1

|z(l)i |, ∀i ∈ {1, . . . , n} , (8)

where z̄(l) = (z(l)i )i=1,...,n denotes the transform coefficients of x̄ (l).

4 Analysis of the Distribution of DCT Coefficients

Some evidence of the existence of persistent patterns in the transform domain (DCT)
of the channelized fields is presented in this section. The multiple point simulation
(MPS) algorithm snesim (Strebelle 2002) is adopted to simulate data from different
image models. In principle, all simulated images conditioned on measurements honor
the prior model. This implies that multiple-point patterns presented in the training
image are reproduced on the simulations, and consequently, they present a common
spatial structure in terms of orientation and complexity. The hypothesis is that this
common structure in the spatial domain can be reflected in a persistent representation
in the DCT transform domain across the simulations. Thus, the statistical information
of the training image can be transformed into signal information by analyzing the
trend of the transform coefficients on average.
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Fig. 3 Average magnitude distribution of DCT transform coefficients from 1000 images. Models:
monochannel (a), two horizontal multichannels (b, c), vertical and diagonal multichannels (d, e). Top:
example from the database. Bottom: Average transform coefficients

For this analysis, three channelized models are considered (illustrated in the first
row of Fig. 3) from a monochannel structure to a complex multichannel structure.
To guarantee good statistical analysis, 1000 realizations were used for each model.
Transform representations are computed from the data and for each model the average
magnitude of transform coefficients is estimated as indicated in Eq. (8). The second
row of Fig. 3 shows the average magnitude of the DCT representation for each model.
Overall, it is clear that most of the energy is concentrated at low frequencies (upper left
corner of the DCT image). While high frequencies describe facies transitions, most
of the channel structure is captured by low frequencies information in a persistent
location. In general, the probability of having a non-zero transform coefficient in a
given low frequencies range is high, while outside this region the probability of having
a significant (non-zero) coefficient decreases rapidly to zero.

In addition, the spatial distribution of average transform coefficients in Fig. 3 sheds
some lights on the orientation and complexity of the field. If the channel structure
presents a horizontal orientation, facies transitions occur in vertical direction, and,
consequently, vertical frequencies appear as relevant elements of the average DCT
representation (Fig. 3a–c). Analogously, the behavior of vertical structures is shown
in Fig. 3d. In the case of fields that have diagonal orientations, the average DCT
representation has no preferential directions and tends to be symmetric (Fig. 3e).

Finally, the channel complexity can be considered proportional to the number of
facies transitions in a given orientation. The higher the facies transition rate, the larger
the magnitude of the high frequency components in that orientation. Thus, more com-
plex structures, in terms of geological features, present a larger number of significant
coefficients in the DCT domain (in average). This explains why the average DCT
signature illustrated in Fig. 3c contains more high frequency components than the
average distribution presented in Fig. 3a–b.

Thenext section is devoted to evaluating the performance of theweightedCS (WCS)
framework in (5) adopting the different options of weights presented in Sect. 3.2.
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5 Reconstruction Results

This section is devoted to evaluating the facies reconstruction performance of the
WCS method elaborated in Sect. 3 and comparing it with techniques that are based
on pure CS algorithms, multiple-point simulations (MPS) and indicator kriging (IK).
The main objective is to validate if the combined use of signal and statistical infor-
mation (training image) can improve upon the use of each information source in
isolation when the objective is image recovery. For this analysis, the same three
facies models (from a simple monochannel structure to a rich multichannel struc-
ture) are considered to explore the performance of WCS in different complexity
regimes.

Snesim (Strebelle 2002) data and pixel-domain information are combined for the
WCS method. Snesim data are used to create a collection of channelized two-facies
images. In particular, 1000 images of 200×200 pixels (pp) are created for each of the
three models presented in the first row of Fig. 3a–c). With these data, the weights in
Eq. (5) are estimated using the information of the average magnitude of the transform
coefficients, as explained in Sects. 3.2 and 4. As seen in Fig. 1b, in the pixel-domain,
samples are taken randomly with a uniform distribution, and the analysis is focused
on the very low under-sampling range [0.1–2%] of measurements. The DCT basis is
used to provide sparse representations as explained in Sect. 2.1.

In this work the ability of the methods to recover the original image is evaluated.
Themetrics adopted to recover the original image correspond to the standard signal-to-
noise ratio (SNR) and the similarity structural index (SSIM) (Zhou et al. 2004). Finally,
the obtained results are orientation invariant; hence, for the purposes of brevity only
the analysis for the reconstruction of images with left-to-right channel orientation is
presented.

5.1 Analysis of the Weights

Toevaluate the performance of theWCS for the differentweight definitions inSect. 3.2,
the reconstruction algorithm in Eq. (5) is applied, adopting the definitions presented
in Table 1. Performances are evaluated in average with respect to realizations of the
sensing modality for different data-rate regimes. For all definitions, only the results
for the choice of p that provide the best performance are presented.

Figure 4 illustrates these results for the three image models studied in this work.
Overall, there is no particular definition for matrix W that performs better than the
others, and they all provide similar performance trends. This can be explained as the
weights definitions present similar monotonic structures. An interesting observation is
that the performance trend of the different weighting definitions are persistent across
the models such that the definitions that have better performance are the same for the
three facies structures. Finally, definition 1 with p = 0 provides the best results and
is the one used for the rest of the experiments.
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(b)

(a)

(c)

Fig. 4 SSIM index performance for different weighting matrix W , performed from 25 realizations of
the sensing matrix A. a Monochannel, b Multichannel 1 and c Multichannel 2. Each curve represents a
particular definition in Table 1 using the best parameter p
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5.2 Average Inter-block Reconstruction

In this section the evaluation of the average inter-block CS (AICS) approach (Calderon
et al. 2015) is performed in the context of weighted CS. The basic idea of AICS is to
decompose the image in non-overlapping square blocks and then apply the recovery
algorithm, in this case the WCS, individually in each block. This block-by-block
approach is performed sequentially for different block sizes (from 40×40 to 200×200
pp) creating a collection of reconstructions (Fig. 5). The next step is to compute the
average image (pixel-by-pixel) across the solutions obtained for the different block
sizes. Finally, a two-level hard thresholding is applied in the resulting image to obtain
a binary result. This last step is conducted to match the categorical nature of the facies.
The threshold is selected and applied at each pixel with the objective of preserving
the proportion of high and low values observed on the measurements. Figure 5 shows
examples of the intermediate block-by-block reconstructions for block-sizes 40 × 40
and 100 × 100, as well as the average inter-block reconstruction with and without
the hard-thresholding. Here, the reconstructions for the monochannel model were
recovered with 0.4% of measurements, the reconstructions of the multichannel 1 with
0.7% of measurements and the reconstructions of the multichannel 2, with 1%.

Figure 6 shows the performance of the block-by-blockWCS approach for different
block sizes, as well as the average inter-block WCS reconstruction with and without
the final hard-thresholding step. For the three models, in the process of increasing
the size of the block, the performance improves. This is justified since in the process
of increasing the block, the channelized images become more compressible in the
DCT domain (Calderon et al. 2015). In terms of the average reconstruction, this image

Fig. 5 Illustration of recoveries from the WCS method as a function of block-size. From left to right:
40 × 40, 100 × 100 pp, full image, average image and average after thresholding. From top to bottom:
monochannel, multichannel 1 and multichannel 2
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(b)

(a)

(c)

Fig. 6 Performance of WCS as a function of the block-size in terms of SSIM index. Performance for:
a monochannel, b multichannel 1 and c multichannel 2 model. Recovery images are performed from 25
realizations of the sensing matrix A
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integrates information at different scales (block sizes), and it provides a performance
gain with respect to the WCS method acting on the full image. This gain can be
attributed to the fact that persistent features across different scales prevail, including
orientation, complexity and dominant channel structures. As a consequence, these
common features are accentuated while the artifacts of the particular recovered fields
are mitigated.

In the final hard-thresholding stage, however, it is not possible to provide a
unified conclusion for the three models. A separated analysis is needed for the
monochannel and multichannel case. The hard-thresholding honors the proportion
of low and high values in the samples and does not impose any channel features, such
as connectivity, orientation and complexity. Therefore, in the multichannel case, the
continuous and interconnected structure is not preserved after the hard-thresholding
process, and consequently, the quality of the image is deteriorated. In fact, the SSIM
index compares three quality features in the images: luminosity, contrast and struc-
tures (Zhou and Sun 1999). While the luminosity presents an enhancement after the
hard-thresholding, the factors associated to contrast as well as structure are deteri-
orated. As a result, the perceptual quality in terms of the SSIM index deteriorates
as a whole. This can be observed in the last two rows of Fig. 5. Many authors have
dealt with this problem suggesting different approaches to correct these discontinuities
(Strebelle and Remy 2004; Suzuki and Strebelle 2007; Shahraeeni 2019). Although
some of these solutions are not directly applicable in this context, as the proposed
approach does not perform simulation in a sequential manner, further research is
needed to impose connectivity during the reconstruction. Post-processing the final
reconstruction (Strebelle and Remy 2004) is one approach that may impose the
expected connectivity.

In contrast, for the case of monochannel structures, the hard-thresholding process
leads to an increase in the quality of the recovered images. Monochannel structures
are simpler in terms of facies transitions and details. Then, with limited data the
weighted CS solution is able to correctly estimate the dominant channel structure and
low frequency information due to the persistent information of the energy distribution
presented in the weightingmatrixW (Fig. 3). This knowledge constitutes an important
fraction of the recovered field in the case of monochannel structures, which is not
the case for multichannel models. Therefore, by applying the hard-thresholding, the
large-scale interconnected structure obtained by the algorithm is preserved and, as
a result, the quality of the recovered image increases due to the binary nature of the
monochannelmodel. Thefirst rowofFig. 5 illustrates this observationwhen recovering
a monochannel facies (see the last two images at the right).

In summary, the average inter-block reconstruction provides an important improve-
ment in the performance of the WCS approach, though the final hard-thresholding
offers a marginal gain only for the case of monochannel model. In the next
section, the best obtained inter-block WCS solutions for each channel model will
be considered.
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5.3 Evaluating the Sensing Variability and Comparison with Other Methods

This final section is devoted to evaluating the variability in the reconstruction of
the optimized WCS approach obtained for each channel model (monochannel and
multichannels). This variability occurs because the sensing matrix A in Eq. (5) is a
random object and, consequently, it is important to evaluate how robust the average
inter-block WCS reconstruction is with respect to variations in the sensing modality
(attributed to the selection of random pixels). This analysis is done as a function of
the data rate regime. For that, the challenging under-sampling range from 0.1 to 2%
of pixel-based data is explored, considering 25 realizations of the random matrix A to
compute average performances and standard deviations.

In this context, the performance of the proposed average inter-blockWCS (AIWCS)
is compared with the classical CS algorithm based on �1-minimization (Candès et al.
2006a, b; Donoho 2006), the average inter-block CS approach (Calderon et al. 2015),
the indicator kriging techniques (Deutsch and Journel 1998) and the multipoint algo-
rithm snesim (Strebelle 2002). Although MPS is a method designed for simulation,
it has been incorporated in this comparative analysis to illustrate that MPS can be a
competitive alternative when the objective is the true image recovery.

Many observations can be made from Figs. 7 and 8, which show the trend of the
average performance and standard deviation for all the evaluatedmethods as a function
of the fraction of pixel-based measurement taken for reconstruction, using SSIM and
SNR, respectively.Most importantly, for the three cases the proposedAIWCSshows an
important improvement with respect to the average inter-block CSmethod, which does
not take into account the statistical information from a training image or image model.
For the monochannel case, the gain in performance is important in the sampling range
from 0.2 to 0.8% for the SSIM index, while the gain is significant in all the sampling
range for the SNR metric (Fig. 8).

Figure 9 presents some examples where the gains in recovery (with respect to the
CS approach) can be clearly observed. For the case of multichannel facies models,
the improvement is systematic and significant in the whole range explored and for the
two fidelity indicators. Figures 10 and 11 show examples of recoveries for the case
of multichannel models contrasting the proposed method with the average inter-block
CS.

Another observation obtained from comparing these results is that, in terms of
SSIM, MPS performs better than the pure CS-based solutions and the average inter-
block CS strategy, methods that do not take into account the information of a training
image. For the case of SNR indicator, MPS performs better than pure CS-based solu-
tions for the monochannel case, while for the multichannel 1 and multichannel 2
scenarios,MPS shows better results than pureCS-based solutions in the regime beyond
0.5% and 0.9% samples, respectively.

When compared with indicator kriging (IK), which uses the same training model,
MPS offers substantially better results (in SSIM and SNR) in all scenarios (channels)
and sampling regimes. The only exception is for the scenario of monochannel in the
(very small) regime of 0.1% and 0.2% samples, where IK shows better performances
attributed to the simplicity of themonochannel model. This remarkable result provides
a justification on the use of multiple point simulations from the perspective of image
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Fig. 7 Average performance in terms of SSIM of the proposed WCS method, the inter-block CS method,
the standard �1-regularization, indicator kriging and multiple-points simulation. a Monochannel, b Multi-
channel 1 and c Multichannel 2 model
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Fig. 8 These are the same set of results presented in Fig. 7 but adopting the average SNR indicator as a
fidelity measure to evaluate the quality of image recovery
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Fig. 9 Graphic comparison between inter-block CS and weighted multi-scale CS, both with hard-
thresholding post-processing. From left to right: Reconstruction from 0.1%, 0.2%, 0.5%, 0.7% and 1%
of measurements. Top: Inter-block CS solver, Bottom: Weighted CS method

reconstruction as a very competitive alternative when compared with our proposed
AIWCS method.

Finally, it is interesting to note that the proposed AIWCS outperforms MPS and
IK in all the explored sampling range and for the three facies models. Again, for the
case of monochannel model, the difference in performance is significant in the range
[0.3–0.8%] and for the multichannel models the improvements are consistent through-
out the sampling range explored. Therefore, it is possible to conclude that imposing
structure on the image would seem to be responsible for the improved performance
obtained using the proposed method in comparison with the MPS and IK approaches.
This weighted CS solution for Eq. (6), which combines a sparse image assumption in
the DCT domain and the statistical model in the pixel domain, are apparently com-
plementary and relevant to improve reconstruction performances for facies images.

6 Conclusions

In this work a new scheme for geological facies reconstruction based on weighted
compressed sensing (WCS) is presented and evaluated. Experimental results (recon-
struction for three type of facies models with different pattern complexities) show
that the proposed WCS approach offers better recovery than methods reported in the
literature based on pure CS.

These results support our initial hypothesis that prior knowledge from a training
image can significantly improve the reconstruction of �1-promoting solutions when
less than 1% of direct data is available. In this under-sampling regime, the information
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Fig. 10 Same caption as Fig. 9 but analyzing the multichannel 1 model. In this case, the weighted CS
method does not use a final hard-thresholding stage

Fig. 11 Same caption as Fig. 9 but analyzing the multichannel 2 model. In this case, the weighted CS
method does not use a final hard-thresholding stage

from the data is so limited that prior knowledge plays a major role in improving the
quality of the recovery as shown in Sect. 5.3. A practical consequence is that the
proposed inter-blockWCSmethod offers reasonable reconstruction in the range [0.2–
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0.6%] of measurements, something that the original unweighted CS method was not
able to achieve. From the authors perspective, these results show that �1-promoting
solutions that integrate both signal structure and statistical information (from a training
image) can be a competitive alternative to MPS when the objective is true image
recovery. Overall, the objective of image recovery with very limited data (less than
1% of the size of the image) is feasible for this type of channelized facies structures.
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Appendix A: The CS Recovery Theorem

For the problem presented in Sect. 2.1, the following result can be adopted to obtain
performance guarantees for the recovery of x̄ from ȳ using sparsity as an assumption
on x̄ .

Theorem 1 (Candès and Plan 2011, Theorem 1.2) For any k < n and β > 0, with
probability 1 − 6/n − 6e−β , the solution to Eq. (4) satisfies that

∣∣∣∣x̂ − x̄
∣∣∣∣

�2
≤ C(1 + α)√

k
· ||z̄ − z̃k ||�1 , (9)

provided that m ≥ Cβ · μ(U )k log n, where

μ(U ) = n · max
i, j∈{1,...,n}

∣∣Ui, j
∣∣2 , (10)

z̃k ∈ R
n is the best k-term approximation of z̄, α =

√
(1+β)kμ log n logm log2 k

m , Cβ =
(1 + β)C0, and C and C0 numerical constants.

Thus, if the signal is k-sparse in the transform domain U , that is, ||z̄ − z̃k ||�1 = 0,
and the number of measurements satisfies that m ≥ Cβ · μ(U )k log n, then x̂ = x̄
from (9). Therefore, the sparsity assumption on z̄ and the use of a critical number
of measurements (that scales like O(k log n)) guarantees perfect recovery for the �1-
minimizer scheme in (4).
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Appendix: Basis Selection

FromTheorem1, there are two elements to consider to address the problemof selecting
U optimally for the recovery of x̄ from ȳ. On the one hand, U should offer a good
sparse representation of the facies images, in the sense that the approximation error
||z̄ − z̃k ||�1 ≈ 0 for a small fraction of transform coefficients, that is for k << n.
On the other hand, the number of required measurements in (10) is proportional to
μ(U ), which is an indicator of how coherent (or orthogonal) is U with respect to the
canonical (pixel-based) basis. Only looking at this second criterion, to minimize the
number of measurements it is required a value of μ(U ) close to 1, which is known to
be the minimum value (coherent) that can be obtained for any pair of bases A and U .
Integrating the two criteria, there is a tradeoff between the compressibility quality ofU ,
which is the ability ofU to represent z̄ ≡ U † x̄ with a small proportion of coefficients,
and how incoherent isU with respect to the pixel-based domain. More precisely using
the result in Theorem 1, for a basis U , a signal x̄ and a target reconstruction error
ε > 0, the following object can be defined (Calderon et al. 2015)

k(x̄,U, ε) ≡ min

{
1 ≤ k ≤ n : such that

C(1 + α)√
k

· σk(U
† x̄)�1 ≤ ε

}
, (11)

where σk(z̄)�1 = ||z̄ − z̃k ||�1 is the approximation error introduced in (9). From Theo-
rem 1, k(x̄,U, ε) represents the critical number of significant (transform) coefficients
(with respect to U ) needed to have a reconstruction error smaller than ε [Eq. (9)].

Then, considering a collection of orthonormal bases
{
Uj , j ∈ J

}
, the optimal one

from Theorem 1 is the one that requires the minimum number of measurements to
achieve an error ε, that is, the solution of

U∗(ε, x̄) = arg min
Uj , j∈J

k(x̄,Uj , ε) · μ(Uj ). (12)

It is shown in (Calderon et al. 2015, Sect. 5) that over a rich collection ofWavelet bases,
the discrete cosine transform (DCT) by far offers the best tradeoff between compress-
ibility and incoherence to recover channelized facies from pixel-based measurements
for the classical CS algorithm in (4). This was shown for different channelized facies
models and reconstruction errors. Therefore, the DCT was the basis adopted in this
work.
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