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Because of its capacity to increase a physiologic inflammatory response, to stimulate

phagocytosis, to promote cell lysis and to enhance pathogen immunogenicity, the

complement system is a crucial component of both the innate and adaptive immune

responses. However, many infectious agents resist the activation of this system by

expressing or secreting proteins with a role as complement regulatory, mainly inhibitory,

proteins. Trypanosoma cruzi, the causal agent of Chagas disease, a reemergingmicrobial

ailment, possesses several virulence factors with capacity to inhibit complement

at different stages of activation. T. cruzi calreticulin (TcCalr) is a highly-conserved,

endoplasmic reticulum-resident chaperone that the parasite translocates to the

extracellular environment, where it exerts a variety of functions. Among these functions,

TcCalr binds C1, MBL and ficolins, thus inhibiting the classical and lectin pathways of

complement at their earliest stages of activation. Moreover, the TcCalr/C1 interaction

also mediates infectivity by mimicking a strategy used by apoptotic cells for their removal.

More recently, it has been determined that these Calr strategies are also used by a variety

of other parasites. In addition, as reviewed elsewhere, TcCalr inhibits angiogenesis,

promotes wound healing and reduces tumor growth. Complement C1 is also involved

in some of these properties. Knowledge on the role of virulence factors, such as TcCalr,

and their interactions with complement components in host–parasite interactions, may

lead toward the description of new anti-parasite therapies and prophylaxis.
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INTRODUCTION

The complement system (C), essential in both the innate and adaptive immune responses, increases
physiologic inflammation, stimulates microbial phagocytosis and their lysis, and promotes the
elimination of a large variety of aggressive microorganisms by enhancing their immunogenicity.
Some activated C components and derived molecules, opsonize a variety of microorganisms
and apoptotic cells promoting their phagocytosis and destruction inside the phagocyte (1).
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However, pathogens such as viruses, bacteria, fungi and parasites,
utilize some surface proteins and receptors to evade C during its
activation (1).

Trypanosoma cruzi calreticulin (TcCalr), similar to
calreticulin from other species, including human (HuCALR), is a
multifunctional endoplasmic reticulum-resident chaperone, that
the parasite translocates to the extracellular environment, where
TcCalr participates in C evasion and infection, with important
consequences in virulence. Thus, TcCalr is a bona fide virulence
factor. Calr from other important parasite species shares several
of these properties with TcCalr. These issues are reviewed herein.
TcCalr also participates in the control of angiogenesis and tumor
growth, as reviewed elsewhere (2).

COMPLEMENT ACTIVATION AND
REGULATION: A BRIEF OVERVIEW

C consists of soluble and membrane-bound molecules that are
activated through a stringently regulated proteolytic cascade (3).
Activation may occur through the classical (CP), alternative
(AP), and lectin (LP) pathways. The CP is initiated by the
recognition, by C1, of antibodies aggregated on foreign antigens,
or by acute phase proteins identifying danger signals on a
microbial aggressor. The LP is activated by mannose-binding
lectin (MBL) or by ficolins recognizing a variety of bacterial
motifs. Conversely, spontaneous hydrolysis of C3, near cell
surfaces, produces a constitutive AP activation, which is tightly
controlled by C regulatory proteins present on host cells (Factor
I, C4-binding protein, decay-accelerating factor, membrane co-
factor protein, C receptor 1) or in plasma (Factor H, C1-inhibitor,
S-protein, clusterin, CD59). These proteins limit amplification of
the downstream cascade (3, 4).

C activation generates split products with opsonizing, pro-
inflammatory and immune-stimulating properties (3). The three
activation pathways converge in the generation of C3 convertases
that continuously cleave C3 into C3a and C3b, as well as C5
convertases that produce the split products C5a and C5b. C5b,
in conjunction with C6–C9, form the membrane attack complex
(MAC) and lyse the pathogen (3).

C1 AND CALRETICULIN INTERACTION
PROMOTES PHAGOCYTOSIS

In mammals, C1 is a highly complex protein, composed by
eighteen polypeptide chains, grouped in six heterotrimeric units,
each carrying the products of 3 genes, A, B, C. Each trimer has
several functional sites located on both a collagen-like (cC1q)
and a globular head (gC1q) regions (5). Each globular head (ghA,
ghB, and ghC) has special affinity for the CH2 and CH3 domains
of IgG and IgM molecules, respectively, or for other unrelated
molecules (5).

Beyond its role as a pattern recognition receptor (PRR),
C1 binds to a wide variety of phagocytic cells, resulting in
the induction of cell-specific responses such as phagocytosis,
cellular activation, release of biological mediators and expression
of adhesion molecules, promoting inflammation (6). At least

four C1q binding cell surface receptors have been identified:
CR1 (CD35), receptor for C3b; C1q-Rp (CD93), a 120 kDa O-
sialoglycoprotein; gC1q-R/p33, a 33kDa homotrimeric protein,
and cC1q-R/CR, a 60 kDa protein (5, 6). The 33 kDamolecule has
high affinity for the globular heads while the 60 kDa molecule,
also known as collectin receptor, binds to the collagenous tails
and its N-terminal sequence is 100% identical with Calr (5).

Calr is a 46 kDa multifunctional protein, mainly located in
the endoplasmic reticulum (ER) and highly conserved in all
species, including plants and microorganisms (2, 7, 8). Calr is
involved in Ca2+ homeostasis and in other important functions
inside and outside the cell, including: cardiogenesis, adipocyte
differentiation, cellular stress responses, wound healing and
immunity (9). Its structure comprises three main domains: N-
terminal globular, flexible proline-rich P intermediate arm-like
and C-carboxyl terminal (7, 9).

Both, C1q and MBL bind to apoptotic cells and stimulate
phagocytosis by ligation of Calr on the phagocyte surface, which
binds to the endocytic receptor protein CD91 (10). Phagocytic
cells, monocyte-derived macrophages and dendritic cells express
and secrete Calr as a C1q receptor. On the cell, Calr bridges
the phagocytic cell and the target (apoptotic cell or an immune
complex), promoting removal (6). Activatedmacrophages secrete
Calr, which binds to the surface of viable target cells and
marks them for removal by programmed cell phagocytosis (11).
Additionally, Calr is found on the surface of apoptotic cells acting
as a damage-associated molecular pattern (DAMP), responsible
for the immunogenicity of apoptotic cancerous cells (12–14).
Binding of C1q to cell-bound Calr results in opsonization (15).
Most important, the pro-phagocytic Calr/C1q/C1qR interaction
is used by different parasites to promote infectivity.

TRYPANOSOMA CRUZI EVADES THE
COMPLEMENT SYSTEM: THE ROLE OF
CALRETICULIN

Chagas disease, is a zoonotic and chronic parasitic illness
affecting 7–8million people worldwide, that may be symptomatic
in about 30% of those infected, leading to incapacitating
situations in some of them. The disease is currently endemic in
21 Latin-American countries and, due tomigration of chronically
infected individuals, is now a global concern (16). Its causal agent,
the flagellated protozoan T. cruzi, is an obligatory intracellular
infectious agent transmitted by triatomine vectors, but also
by congenital route, blood transfusions, organ transplantation
or by ingesting contaminated food and beverages (17). In all
these routes of infection, once trypomastigotes (infective form
in mammalian host) reach the bloodstream, the parasite, using
different proteins and mechanisms, bypasses C-mediated lysis
(18), and disseminates to many tissues during the acute phase
(19). There are a variety of molecules involved in C immune
evasion in T. cruzi. Among them, TcCalr plays an important role.

Bloodstream trypomastigotes, amastigotes (intracellular
replicative stage in host cells) and metacyclic trypomastigotes
(infective forms present in vector dejections) are resistant to the
C-mediated lysis (20). Instead, epimastigotes, the replicative and
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non-infective form of the parasite, are highly susceptible (21–23).
The ability to resist C differs among the parasite developmental
stage (24) and strains (21).

Several molecules present on the parasite have been identified
as resistance mediators, at different levels of the C cascade.
Moreover, trypomastigotes capture inhibitory host components,
which are used to inhibit the C activation on the parasite surface,
such as: plasma-membrane derived-vesicles (PMV) (25, 26), T.
cruzi trypomastigotes-decay accelerating factor (T-DAF) (27, 28),
T. cruzi C regulatory protein (CRP) (29–32); Factor H (FH)
(33), gp58/68 (34), and C2 receptor inhibitor trispanning (CRIT)
(21, 35) (Table 1). The molecular inhibitory mechanisms of these
proteins are only partially known. Some of these molecules play
a central role in the inhibition of C3 and/or C5 convertases. The
inhibition of these key enzymes may have important biological
consequences, such as: (i) inhibition of C-mediated lysis, (ii) a
decrease in the C3a and C5a (anaphylotoxins) generation (these
small C fragments are essential in the recruitment of blood cells
to the infection site), and (iii) a decreased opsonization, which
mediates phagocytosis of pathogens during infection (25).

TcCalr, similar to its human counterpart, resides in the
ER, where it modulates Ca2+ homeostasis and participates as
a chaperone protein (39). However, TcCalr is also located in
the Golgi, reservosomes, flagellar pocket, cell surface, cytosol,
nucleus and kinetoplast. Large quantities of TcCalr accumulate in
the kinetoplast, apparently as a previous step to its translocation
to the parasite exterior (36, 39, 40). This parasitic protein shares

50% of homology with HuCALR (41) and with its three domains
(42): N, P, and C. Within the N and P domains, TcCalr has an S-
domain (aa 159–281) that specifically interacts with C1 (43, 44)
(Figure 1).

The TcCalr/C1 interaction promotes important functions in
the host-parasite interplay. TcCalr competes with the (C1r-C1s)2
tetrameric complex for binding to the collagenous tails of C1q,
interfering with the C1s-mediated cleavage of C4 and C2 and
thus CP activation (36). TcCalr binds both serine-proteases, C1r
and C1s, but only TcCalr-C1r binding inhibits the C4-activating
function (37). Additionally, TcCalr competes with the serine
proteases, but does not displace them from preformed C1 (37).
This fact may be explained by the strong interaction between the
enzymatic tetramer (C1r2, C1s2) and C1q (45). TcCalr inhibits C
more efficiently than HuCALR and these functional differences
may be explained, at least in part, by comparative crystallographic
studies that have identified conformational rearrangements in
TcCalr and HuCALR (46) and some aminoacidic substitutions
that confer differences in polarity and spatial stability (47).
TcCalr not only inhibits the CP; it also binds MBL and
Ficolins, inhibiting the LP (38). L-, but not H-Ficolin binds to
TcCalr, but this binding does not interfere with lipoteichoic acid
binding to L-Ficolin and its activation. Moreover, L-Ficolin binds
preferentially to trypomastigotes, rather than to epimastigotes,
which translocate significantly lower amounts of TcCalr to their
surfaces (38). All these facts have been corroborated in vivo
by using genetically modified parasites carrying a monoallelic

TABLE 1 | Regulatory proteins playing a role in Trypanosoma cruzi complement system immune evasion.

Complement regulatory protein Specific functions Complement pathway affected References

COMPLEMENT REGULATORY PROTEINS PRESENT ON THE T. CRUZI SURFACE

Trypanosoma cruzi calreticulin

(TcCalr)

TcCalr is a 45 kDa protein that binds to

C1 (C1q, C1r, and C1s), and also binds

to MBL and ficolins (L-Ficolin).

CP and AP (36–38)

Trypomastigote Decay-Accelerating

Factor (T-DAF)

T-DAF is a 87–93 kDa glycoprotein that

interferes with assembly of the C3 and

C5 convertase of both CP and AP.

CP, LP (probably) and AP (27, 28)

Trypanosoma cruzi Complement C2

Receptor Inhibitor Trispanning

Protein (CRIT)

CRIT is a 32 kDa protein that inhibits

the C2 cleavage by C1s and MASP2

and impairs C3 convertase formation.

CP and LP (21, 35)

Trypanosoma cruzi Complement

Regulatory Protein (TcCRP)

TcCRP is a surface-anchored

glycoprotein also named gp160 that

binds C3b and C4b, inhibiting the CP

and AP C3 convertase.

CP, LP (probably) and AP (29–32)

Glycoprotein 58/68 (Gp58/68) GP58/68 is a 58-68 kDa protein that

inhibits the C3 convertase formation by

binding factor B.

AP (34)

COMPLEMENT REGULATORY PROTEIN FROM THE HOST USED BY T. CRUZI

Factor H (FH) FH binds to trypomastigotes covered

by sialic acid probably accelerating the

decay of C3 convertase.

AP (33)

OTHER PROTEINS WITH COMPLEMENT REGULATORY FUNCTIONS IN T. CRUZI

T. cruzi induced membrane-derived

vesicles from host cells or

microvesicles (MV)

MVs from different types of cells

interact with C3 convertase

CP and LP (25, 26)

CP, Classical pathway; LP, Lectin pathway; AP, Alternative pathway; C, Complement system.
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FIGURE 1 | Parasite Calreticulin participates in complement (C) evasion and in infectivity. Calreticulin (Calr), highly conserved and pleiotropic, is mainly found in the

endoplasmic reticulum (ER), but also in the extracellular environment. (A) In the ER, Calr is a chaperone and Ca2+ binding protein. These properties are also described

for Calrs from other parasites, such as: L. donovani (LdCalr), B. malayi (BmCalr), H. contortus (HcCalr), D. immitis (DiCalr), S. mansoni (SmCalr) and O. viverrini

(OvCalr). (B) Extracellularly, the Calr S-domain (a fragment located between N and P domains) interacts with C system molecules such as (C) C1q, C1 complex and

MBL, inhibiting C activation. This property has been described for human Calr (HuCALR) and parasitic Calrs such as T. cruzi calreticulin (TcCalr), T. carassii (TcaCalr),

N. americanum (NaCalr), BmCalr, T. spiralis (TsCalr), OvCalr, and T. infestans (TiCalr). Additionally, the C1/Calr interaction on the parasite is used by T. cruzi and E.

histolytica to promote infectivity. (D) TcCalr and E. histolytica Calr (EhCalr) on the parasite surface bind C1q. This interaction is recognized by HuCALR present on

phagocytes as an “eat me” signal. This Calr/C1q/HuCALR interaction, that promotes phagocytosis, was previously described as a mechanism to promote the

clearance of apoptotic cells, which overexpress Calr as a damage-associated molecular pattern (DAMP) on their surface. This Calr on apoptotic cells is recognized by

the pattern-recognition receptor (PRR) C1q, which is recognized by a C1q receptor on the phagocytic cells, identified as HuCALR. Calr, which does not have a

transmembrane tail, binds to CD91 on the phagocyte.

deletion of the TcCRT gene or a transgenic version, expressing
an extra copy of the gene. The parasites expressing less TcCalr
are significantly more susceptible to C-mediated lysis and those
overexpressing TcCRT are significantly more resistant to both CP
and LP-mediated lysis (48, 49).

TcCALR/C1 INTERACTION: ROLE IN
PROMOTING INFECTIVITY

Another important role of the TcCalr/C1 interaction is
to promote infectivity. TcCalr is expressed mainly on the
trypomastigote flagellum emergence area, where it recruits

C1q/C1 (36). This interaction correlates with a TcCalr mRNA
level increase in the early infection steps (50). This is
corroborated since anti-TcCalr F(ab’)2 antibody fragments
(unable to bind C1 because they lack their Fc domains) inhibit
the TcCalr/C1 interaction, thus decreasing infectivity in vitro
and in vivo (50). Non-infective epimastigotes express less TcCalr
on their surface (36, 51), which may contribute to their high
sensitivity to C and lack of infectivity. In agreement with this
notion, when exogenous TcCalr is added, epimastigotes are
internalized by fibroblasts, in a C1q-dependent manner (52).

As mentioned, the capacity of the TcCalr/C1q interaction
to mediate phagocytosis was originally described for apoptotic
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cells. C1q and MBL bind to these cells, exposing HuCALR,
and stimulating their ingestion by ligation on the phagocyte
surface in a HuCALR/C1q-mediated manner (10). We have
proposed that the TcCalr/C1q complex is recognized as an
“eat me” signal on the parasite by host Calr on phagocytes
and other cellular types, thus promoting infectivity (Figure 1).
In agreement with these findings, Calr-deficient fibroblasts are
unable to internalize these parasites (52). Moreover, in mice
inoculated with trypomastigotes, carrying a monoallelic TcCalr
deletion, no parasitemia, nor anti-T. cruzi IgG levels are detected,
demonstrating that these mutants have a potent restriction
in their capacity to infect host cells, due to insufficient Calr
expression and consequent reduced resistance to C (49).

Calr is also important in infectivity, as determined in
an ex vivo model using human placenta explants, which
express high HuCALR levels (53–55). In these explants, the
TcCalr/C1q/HuCALR synapsis mediates the first stages of T.
cruzi infection (56). This fact is particularly relevant due to the
current high impact of congenital Chagas disease transmission.

TcCalr also binds MBL and Ficolins (36, 37), but the
role of TcCalr/MBL or TcCalr/Ficolins interactions in T. cruzi
infectivity processes has not yet been demonstrated. However,
in C-resistant T. cruzi strains, MBL seems to participate in
the infectivity process while the parasite deactivates the LP
(57). However, the ligand for MBL on the parasite surface
remains unknown.

CALRETICULIN IN OTHER PARASITIC
INFECTIONS

Several functions are shared and conserved, to differing extents,
by Calr from different species (41, 58). Calr, is a surprisingly
pleiotropic protein, present in all nucleated cells in different
organisms including parasites, where it was first described
in Schistosoma mansoni (59, 60), Dirofilaria immitis (61)
and Necator americanus (62). More recently, Calr has been
characterized in Entamoeba histolytica (63, 64), Leishmania
donovani (65), Trypanosoma carassii (66), and in the helminths
Brugia malayi (67), Haemonchus contortus (68), Opisthorchis
viverrini (69, 70), and Trichinella spiralis (71).

Structurally, Calr from different species possesses a broad
spectrum of sequence conservations and differences (46). L.
donovani Calr (LdCalr) binds Ca2+and RNA sequences (65) and
its P-domain is implicated in ER chaperone functions, since a
modulation of its expression affects the targeting of proteins
associated with virulence, during their trafficking through
the parasite secretory pathway (72). Additionally, proteomic
approaches indicate LdCalr is an immunostimulatory protein
(73, 74). However, its specific role in host-parasite interactions
is still unknown.

In E. histolytica, a protozoan parasite that causes amebiasis,
Calr (EhCalr) participates in several roles related to the host-
immune modulation. Quantitative proteomic analysis and an ex
vivo modeling indicates that EhCalr is an abundant membrane
protein expressed in virulent variants (75, 76). EhCalr, from
pathogenic and non-pathogenic species, binds C1 and inhibits

the CP activation (63). Additionally, EhCalr is exported from
the ER to the phagolysosome, where it favors phagocytosis in a
C1q-dependent manner (64, 77). EhCalr also interferes in the
pathogenesis and host immune response modulation. Thus, in
vitro, EhCalr acts as an immunogen for the specific activation
of peripheral blood mononuclear cells, inducing a Th2 cytokine
profile, during the acute phase, and a Th1 profile in the resolution
phase (78).

T. carassii, a flagellated bloodstream parasite of cyprinid
fish, produces anemia during peak parasitemias and it is highly
resistant to C-mediated lysis (79, 80). Its Calr (TcaCalr) is a
surface protein that binds C1 and inhibits the CP activation
(66), but its role in infectivity has not yet been elucidated.
Trypanosoma congolense Calr (TcoCalr) is an immunogen in
mice, delaying parasitemia and increasing survival in challenged
animals (81).

In nematodes Calr is also important in immune evasion
(2). Necator americanus Calr (NaCalr) was first described as a
hookworm allergen in infected patients (62). NaCalr does not
bind Ca2+, but interacts with C1 and inhibits the CP (82). Calr
from B. malayi (BmCalr), a parasite causing lymphatic filariasis,
binds Ca2+ and Zinc (67) and interacts with host C1, inhibiting
the CP (83). Haemonchus contortus is a gastrointestinal parasite
of small ruminants that feeds on blood. The N-domain of HcCalr
mediates Ca2+ binding and blood clotting inhibition. It also
binds C1 (68) and C-reactive protein (84), thus inhibiting the
CP. The C1 binding sites reside in two sequences present in
its N-domain (85). Trichinella spiralis activates C in infective
larvae, adults and newborn larvae. However, C is primarily
activated by the AP (86) and none of these stages bind C1
(87). T. spiralis expresses two proteins that bind C1 and inhibit
the CP: paramyosin (88) and Calr (TsCalr) (71). Additionally,
TsCalr/C1q binding inhibits the C1-induced non-C activation of
macrophages (71). In the nematode Dirofilaria immitis, a Ca2+

binding protein, similar to Calr, was isolated and shown to be
immunogenic in chronically-infected microfilaremic dogs (61).

Calrs from the trematodes Schistosoma mansoni (SmCalr)
and Schistosoma japonicum (SjCalr) have been characterized
(59, 60, 89, 90). SmCalr is a Ca2+ binding protein, mainly
present in miracidia and genital organs (59), that participates
as T and B cell antigen (60). Both C1 (91) and MBL
(92) bind to S. mansoni, but the role of SmCalr in this
binding or C evasion is unknown. SjCalr participates as
an immunomodulatory protein, activating dendritic cells and
inducing a Th1 immune response (89). Calr from Opisthorchis
viverrini (OvCalr), a trematode parasite affecting humans, with
carcinogenic effects, is mainly expressed in the reproductive
system and its C-domain binds Ca2+ (70). OvCalr also
binds C1 and inhibits the CP and, additionally, OvCalr is
released from the parasite, interfering with cell proliferation,
cell migration and sprouting, and stimulates specific antibody
production (69).

Hematophagous arthropods also use these Calr-mediated
mechanisms to evade C. Thus, Calr from Triatoma infestans
(TiCalr), the principal vector of Chagas disease (93), also binds
C1 and inhibits the CP. Most likely TiCalr in saliva helps to
control the activation of host C, present in the blood meal
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and consequent digestive tract tissue damage (93). Another
example is the tick Amblyomma americanum, which secretes
Calr (AaCalr) while feeding (94). AaCalr also binds C1, but
this interaction does not inhibit C activation (94). In ticks,
such as Boophilus micropus, Calr (BmCalr) is present in saliva,
is immunogenic in tick-infested bovines (95) and, similar
to Haemaphysalis qinghaiensis Calr (HqCalr), it is secreted
in their host during blood sucking, promoting a humoral
response (96).

OTHER TcCALR FUNCTIONS IN THE
HOST-PARASITE INTERPLAY

As reviewed elsewhere (2), in addition to their roles in C evasion
and infectivity, TcCalr and its N-terminal domain are anti-
angiogenic in several experimental set ups (97–99). The anti-
tumor effect of T. cruzi infection has been fully reproduced
by exogenously administrated rTcCalr (97) and reverted
by polyclonal anti-rTcCalr F(ab’)2 antibodies (51). Native
endogenous TcCalr, in the context of the parasite, also has an
anti-tumor effect on T. cruzi infection, sincemice inoculated with
TA3-MTXR tumor cells, infected with T. cruzi trypomastigotes
and treated with anti-TcCalr antibodies neutralize the anti-tumor
effect of the infection (51). Most recently, we have proposed that
TcCalr binds to canine transmissible venereal tumor (CTVT)
cells and to a canine mammary carcinoma cell line, improving
the immunogenicity of both tumors. These cells can be engulfed
by macrophages and dendritic cells co-cultured with rTcCalr,
accelerating its maturation and activating T cells (100). Similar
to its human counterpart, TcCalr promotes wound healing in
rats (101); however, whether this property correlates with the
known anti-complement capacity of the parasite chaperone,
is unknown.

SUMMARY

Calr is a multifunctional chaperone, resident in the ER, where
it controls Ca+2 homeostasis. However, Calr has important
roles outside the cells, because it is also secreted (58). Calr is
highly conserved among plants and mammals and some of its
functions are significant in host-pathogen interactions (2). Thus,
an important function of Calr in microorganisms is its capacity
to bind C1, with consequent inhibition of the CP of C (4)
and promotion of infectivity (1, 4). More recently, these two
important effects have also been described for Calr from a variety
of protozoan and metazoan parasites (2). C1 binding allows the
parasite to evade the C system and to promote engulfment of
the parasite by mimicking a strategy used by apoptotic cells (12).
TcCalr also has important functions related with the inhibition
of angiogenesis and tumor growth, as revised elsewhere (51, 97,
98). Progress in the knowledge of Calr functions in different
parasitic infections may be useful in the design of new therapies
and/or vaccines.
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