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SPECTRAL THEORY IN A TWISTED GROUPOID SETTING: SPECTRAL

DECOMPOSITIONS, LOCALIZATION AND FREDHOLMNESS

MARIUS MĂNTOIU AND VICTOR NISTOR

ABSTRACT. We study bounded operators defined in terms of the regular representations of the C∗-algebra

of an amenable, Hausdorff, second countable locally compact groupoid endowed with a continuous 2-

cocycle. We concentrate on spectral quantities associated to natural quotients of this twisted algebra, such as

the essential spectrum, the essential numerical range, and Fredholm properties. We obtain decompositions

for the regular representations associated to units of the groupoid belonging to a free locally closed orbit, in

terms of spectral quantities attached to points (or orbits) in the boundary of this main orbit. As examples,

we discuss various classes of magnetic pseudo-differential operators on nilpotent groups. We also prove

localization and non-propagation properties associated to suitable parts of the essential spectrum. These

are applied to twisted groupoids having a totally intransitive groupoid restriction at the boundary.
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1. INTRODUCTION

We are setting in this paper some of the foundations of the study of magnetic Hamiltonians on non-

flat spaces and their generalizations. The structure of these Hamiltonians is rather complicated and their

study thus requires a more sophisticated machinery, in particular, it requires a non-trivial use of operator

algebras. Our approach is to model these magnetic Hamiltonians (and others) using twisted groupoids.

On a technical level, this leads us to relate spectral properties of operators canonically associated to a

groupoid Ξ with units X and endowed with a 2-cocycle ω to the structure of the groupoid and of the

2-cocycle. This is technically difficult and innovative, but important in applications. The pair (Ξ, ω)
will be called a twisted groupoid, for short.

With a few exceptions, including [7, 57, 59], twisted groupoids have not yet been used before in

spectral theory. On the other hand, regular (untwisted) groupoids have recently been used in relation to

spectral theory (mainly in connection with Fredholm and index properties) by Androulidakis and Skan-

dalis [5], Debord and Skandalis [23, 24, 25], Debord, Lescure, and Rochon [22], Monthubert [63, 64],

van Erp and Yuncken [79, 78], the second named author (with collaborators) [18, 47, 70, 71], and

by others. The groupoids arising from crossed product C∗-algebras have been used even for a longer

time. Probably the first one to notice the relevance of crossed-product C∗-algebras in spectral theory is

Georgescu [21] in relation to the N -body problem. He has then developped a comprehensive approach

to spectral theory using crossed-product C∗-algebras, see, for instance, [30, 31, 29] and the references

therein. A comprehensive related work (mostly in the framework of magnetic pseudodifferential opera-

tors) is due to the first named author and collaborators, see [48, 55, 56] and the references therein. Many

other researchers have worked on similar problems, and it is a daunting task to provide a comprehensive

overview of the literature on the subject, so we content ourselves here to mention just a few of the most

relevant references [8, 17, 37, 43, 44, 46, 49, 50, 73, 74]. We apologize for the many missing references.

To the best of our knowledge, our results are new in the stated generality; in particular, they are not

contained in [57]. Some of them are new even in the untwisted case.

As we have mentioned above, our main potential applications are to Hamiltonians on non-flat spaces.

Non-flat spaces are becoming more and more important in view of their role in Quantum Field theory

on curved space-times [6, 32, 40]. To deal with the complications that arise on non-flat space-times, we

appeal to the approaches in [18, 19, 56].

Let us now describe the structure of the article. We decided to give here in the introduction a leisurely

account of the contents of the paper, while keeping the technical terms and formulae to a minimum. The

reader could return to this presentation as needed.

Section 2 is dedicated to reviewing some basic constructions, starting with that of a locally compact

groupoid endowed with a continuos 2-cocycle. We also prove some technical results that will be useful

subsequently. We first introduce the class of tractable groupoids; they are defined as amenable, Haus-

dorff, second countable, locally compact groupoids with a fixed Haar system. For simplicity, we will

keep these assumptions throughout the paper, even though they are not always needed. Some basic con-

structions [75] are then briefly recalled, including that of the twisted groupoid C∗-algebra, the regular

representations and the important vector representation, available as soon as the tractable groupoid is

standard, i.e. it has an open dense orbit with trivial isotropy.

In the second subsection we recall the construction of the groupoid extension and summarize some

results of Brown and an Huef [13] that will be essential in the sequel. They show that twisted groupoid

C∗-algebras may be seen as (closed, two-sided, self-adjoint) ideals and direct summands in the C∗-

algebras of the corresponding extensions [13]. This allows us to reduce some issues concerning twisted

groupoidC∗-algebras to the untwisted case.

Many of our spectral results will rely on intermediate results on regular representations of twisted

groupoidC∗-algebras. In Subsection 2.3, we deduce these intermediate results from the untwisted case,

using the Brown-an Huef connection of the previous subsection and the commutativity of the diagram
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(2.11). In particular, in the case of a standard groupoid (see above Definition 2.8 for the definition of

standard groupoids) we check that the vector representation is faithful. An important role is played by

Exel’s property [18] (see also [26, 76]), asking the reduced C∗-norm of an element to be attained for

some regular representation. In Corollary 2.19, we show that Exel’s property is fulfilled for tractable

twisted groupoids.

In Subsection 2.4, we deal with the problem of exactness of the short sequence attached to the choice

of a closed invariant set of units, a topic very well understood in the untwisted case. Such a result

including 2-cocycles appeared recently in [7], but in a form that is not general enough for our purposes.

So we indicate a proof fit to our setting, based of the precise connection [13] between twisted groupoid

algebras and the algebras of the groupoid extension.

Section 3 contains the abstract forms of our spectral results. The main novelty of these results stems

from the twisted groupoid setting, but, in certain cases, the result seems to be new even for trivial

cocycles–at least in the stated generality.

The results of Subsection 3.1 explain how to use the units of a groupoid and the associated regular

representations to study the spectra of elements in the twisted groupoid algebra. An important role here

is played by quasi-orbits, which are defined as closures of orbits of the groupoid Ξ acting on its units

X . In fact, instead of considering all the units of the groupoid, one could just use a covering of the

set of units by quasi-orbits and the regular representations associated to one generic unit in each of the

chosen quasi-orbits. The proof relies on showing that our groupoid satisfies the Exel property, a fact

proved in Subsection 2.3. This property was introduced formally in [18], but it had been implicitely used

before in spectral theory in references such as [26, 70, 76], via the notion of strictly norming family of

representations.

The next subsection contains decompositions of the spectra and (via Atkinson’s Theorem) applica-

tions to Fredholm conditions. They are obtained by considering the operators Hz := Πz(F ) obtained

from an element F of the twisted groupoid algebraC∗(Ξ, ω) by applying to it the regular representation

Πz , where z ∈ X . It is assumed that z is a regular unit, meaning that its isotropy group is trivial and its

orbit is locally closed. The reduction to the quasi-orbit Qx generated by x is then a standard groupoid.

The closure of such an orbit contains additional units x, called “marginal,” each contributing a term

sp(Hx) to the decomposition of the essential spectrum of Hz . There could be one more contribution

coming from the addition of the unit in the non-unital case. In fact, it is enough to include a subfamily

of marginal points if they generate a collection of quasi-orbits covering the boundary of the closure. We

obtain that the unions appearing in the decompositions of the essential spectrum are already closed and

the invertibility conditions that characterize Fredholmness are automatically uniform. See [51, 70] for

similar ideas and results.

In Subsection 3.3, we obtain results similar to those of the previous two subsections, but replacing

“spectrum” with “numerical range” and “essential spectrum” with “essential numerical range.” This

last notion is a numerical range computed in a quotient by the ideal of compact operators. It turns out

that the resulting decomposition of the numerical range no longer consists of merely a union, but rather

of the convex hull of the union. To the best of our knowledge, such results have not yet been considered

in the literature, not even for simpler (in particular, untwisted) cases. Once again, it is enough to use

coverings by quasi-orbits of the marginal (i.e. non-generic) part of a big quasi-orbit generated by a

regular point.

In Subsection 3.4, in the étale case, one shows the absence of the discrete spectrum (and the equality

between the numerical range and the essential numerical range) for the operator Hx attached to an

unit x generating a minimal quasi-orbit and satisfying an extra condition. This topic deserves extra

investigation.

Section 4 contains some examples that have as common feature the appearence of a variable mag-

netic field on a connected, simply connected nilpotent Lie group. On a such a group G, there is a
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pseudo-differential formalism [34, 33, 54, 53, 60, 62] in terms of scalar symbols defined on G × g♯,

where g is the Lie algebra of G and g♯ is its dual. In addition, there are explicit classes of 2-cocycles

attached to magnetic fields (smooth closed 2-forms on G) . Note that in [57, Sect. 5], another type of

twisted pdeudo-differential calculus has been treated. It works for rather general classes of groups but,

instead of the dual of the Lie algebra, one uses the irreducible representation theory of the group. We

refer to [60, 61] for connections between the two calculi.

In Subsection 4.1 we are briefly recalling the method from [16] to construct a twisted pseudo-

differential theory; it can be seen as a quantization of the cotangent bundle T ∗G . Then we provide

an interpretation of this calculus in a groupoid setting that allows us to apply spectral results from the

previous section. The relevant groupoid is a transformation groupoid twisted by a magnetic 2-cocycle,

which essentially recovers the twisted crossed productC∗-algebras used in [72]. The images of elements

through regular groupoid representations become magnetic pseudo-differential operators after a com-

position with a partial Fourier transform and a unitary equivalence involving gauge covariant choices of

vector potentials.

In Subsections 4.2 and 4.3, we are studying a related situation in which, instead of the entire nilpotent

group, one considers suitable subsets. In both cases one gets compressions of operators corresponding

to the entire group, which in principle makes the spectral analysis harder. The setup is that of systems

with partial (but not global) symmetry.

In Subsection 4.2, the magnetic pseudo-differential operators of 4.1 are compressed to complements

of relatively compact sets of the group. It is shown that the essential spectral data (essential spectra,

essential numerical ranges, and Fredholmness) are the same for the compressed and the initial opera-

tors, although they act in different Hilbert spaces and there seems to be no simple relative compactness

argument to be used. Consequently, in the compressed case, we again obtain decomposition formulae

for the essential spectrum. For the proof one uses magnetically twisted versions of groupoids corre-

sponding to a partial action [1, 28, 27]; they can also be seen as non-invariant reductions of the twisted

transformation groupoid of the previous subsection. The results seem to be interesting even for null

magnetic field, which corresponds to the Abelian group G = Rn (without any cocycle).

In Subsection 4.3, we use the positive semigroup H of the three-dimensional Heisenberg group G to

define the compression. If no cocycle is used (i.e. ω = 1), one gets the Wiener-Hopf-type operators

and C∗-algebras studied by A. Nica in [69]; see also [65, 68] for a wider context. We add a 2-cocycle,

defined by a variable magnetic field. To reduce the spectral analysis of the resulting magnetic Wiener-

Hopf operators to a direct applications of the results in Section 3, we borrow from [69] the groupoid

model of the Wiener-Hopf C∗-algebras; implementing the magnetic 2-cocycle is a simple matter. New

features are now present. First, in 4.1 and 4.2, the unit space was at our disposal; it modeled the

behavior at infinity of the magnetic field and of the “coefficients” of the pseudo-differential symbols

we decided to study. Since now neither H nor G\H are compact, the unit space will be a well-chosen

compactificationX of H , the geometry of the subset H imposing rigid requirements on this choice; then

the magnetic field has to adapt itself to X . As a consequence, the quasi-orbit structure of the unit space

is now explicit: there are six quasi-orbits, disposed in layers, but just two of them are enough to cover

the boundaryX\H . Thus, besides decomposition formulae using the (adapted) regular representations

of all the points of this boundary, one also has simpler decompositions in terms of two units, generating

the two quasi-orbits. A certain higher-dimensional Heisenberg group is also computable from this point

of view [69, Sect. 5]. The quasi-orbit structure being quite complicated, we decided not to include it in

this paper.

Section 5 is dedicated to localization and non-propagation properties. Let H be a bounded normal

operator in H := L2(M ;µ) . For any continuous real function κwe denote by κ(H) the normal operator

in H constructed via the functional calculus. If Ψ : M → R is a bounded measurable function, we use
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the same symbol for the operator of multiplication by Ψ in H . There is a single obvious inequality

(1.1) ‖Ψκ(H)‖B(H) ≤ sup
x∈M

|Ψ(x)| sup
λ∈sp(H)

|κ(λ)|

that holds without extra assumptions. We treat situations in which the left hand side is small

(1.2) ‖Ψκ(H)‖B(H) ≤ ǫ

for some ǫ > 0 given in advance, although in the right hand side of (1.1) the two factors are (say)

equal to 1 . Such results have been obtained in [20] (a very particular case) and in [3, 59], for operators

H deduced from a dynamical system defined by the action of an Abelian locally compact group G on

compactifications of G . Here we investigate the problem in the framework of the much more general

twisted groupoid C∗-algebras.

The main abstract result is proven in subsection 5.1. The objects of our investigation are normal

elements (or multipliers) F of the standard twisted groupoid algebra and operatorsH0 := Π0(F ) acting

in L2(M ;µ) via the vector representation. An important role is played by ”the region at infinity”

X∞ := X \M . As in previous sections, to every quasi-orbit Q contained in X∞ one associates an

element FQ in the twisted C∗-algebra of the reduced groupoid ΞQ , with spectrum contained in the

essential spectrum of the operator H0 . The function κ in (1.2) has to be supported away from sp(FQ) .

Then the traces on M of small neighborhoods W of Q in the unit space X define the functions Ψ
admitted in (1.2). In terms of the evolution group attached to H0 , informally, one may say that ”at

energies not belonging to the spectrum of the asymptotic observableFQ , propagation towards the quasi-

orbit Q is very improbable”.

In the final subsection we outline a class of examples, not deriving from group actions, leading

finally to a situation in which both the nature and spectrum of the asymptotic observable FQ and the

neighborhood of the corresponding quasi-orbit are transparent enough. The unit space X is built as a

compactification of an a priori given M , defined by a continuous surjection from the complement of a

compact subset of M to a compact space X∞ . It is also assumed that the restriction of the groupoid

to X∞ is a totally intransitive groupoid. Then the observable corresponding to the orbits Q ⊂ X∞ are

group convolution operators, converted by a Fourier transform in multiplication operators in the Abelian

case.

We intend to continue this investigation in a future publication. Besides aiming at other types of

spectral properties, one would like to include unbounded operators and new classes of examples. To

have interesting examples in unbounded cases, one essentially has to show that the resolvent family

of a an interesting operator belongs to some twisted groupoid C∗-algebra. Besides some particular

situations, this is a difficult problem. The great achievement would be the inclusion of twisted pseudo-

differential operators on Lie groupoids; we refer to [2, 20, 71, 45] and references therein for the case

ω = 1 . The twisted case will need further theoretical investigation. We also intend to study some

discrete systems leading to étale groupoids endowed with cocycles.

Acknowledgements: This work initiated during a pleasant and fruitful visit of M. M. to Université

de Lorraine in Metz.

2. TWISTED GROUPOID C∗-ALGEBRAS

2.1. Groupoids endowed with cocycles and their C∗-algebras. See [18, 75, 57] for background and

basic definitions concerning groupoids. In particular, we shall write Ξ ⇒ X for a groupoid Ξ with units

X . Recall from [57] that an admissible groupoid is a Hausdorff, locally compact groupoid Ξ with unit

space Ξ(0) ≡ X , with family Ξ(2) ⊂ Ξ × Ξ of composable pairs, and with a fixed right Haar system

λ := {λx | x ∈ X}. The associated left Haar system {λx | x ∈ X} is the one obtained from λ by

composing with the inversion ξ → ι(ξ) ≡ ξ−1 . We will use this notation throughout the paper. We are

also going to assume usually that Ξ is second countable and amenable. For general concepts pertaining
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to groupoids, in particular, for groupoid amenability, we refer to [4, 75]. We agree to identify the units

X to the correspoinding subset of Ξ: that is, X ⊂ Ξ.

We shall write x ≈ y if x = r(ξ) and y = d(ξ) for some ξ ∈ Ξ . Then ≈ is an equivalence relation

on X . The equivalence classes of this relation are called orbits (of Ξ on X), and a subset which is a

union of orbits is called Ξ-invariant or saturated.

Definition 2.1. Let (Ξ, λ, ω) be a locally compact twisted groupoid with Haar system λ.

(i) The groupoid Ξ is called transitive if its unit space X has only one orbit, i.e. x ≈ y for any

x, y ∈ X .

(ii) The groupoid Ξ is called topologically transitive if X has a dense open orbit M .

It is easy to see that if Ξ ⇒ X is a topologically transitive groupoid, then it has a unique dense orbit,

called the main orbit. Moreover, the main orbit is the unique open Ξ-invariant subset of X .

It will be convenient to use the following concept.

Definition 2.2. A tractable groupoid is an amenable, second countable, Hausdorff, locally compact

groupoid Ξ with a fixed right Haar system λ = {λx |x ∈ X} .

Denoting by d, r : Ξ → Ξ(0) the source and range maps, one defines the r-fibre Ξx, the d-fibre Ξx,

and the isotropy group Ξx
x := Ξx ∩ Ξx of a unit x ∈ X . More generally, for A,B ⊂ X one sets

ΞA := d−1(A) , ΞB := r−1(B) , ΞB
A := ΞA ∩ ΞB.

Definition 2.3. A 2-cocycle [75] is a continuous function ω : Ξ(2) → T := {z ∈ C | |z| = 1}
satisfying

(2.1) ω(ξ, η)ω(ξη, ζ) = ω(η, ζ)ω(ξ, ηζ) , ∀ (ξ, η) ∈ Ξ(2), (η, ζ) ∈ Ξ(2),

(2.2) ω(x, η) = 1 = ω(ξ, x) , ∀ ξ, η ∈ Ξ , x ∈ X, r(η) = x = d(ξ) .

Following [75], if (Ξ, λ, ω) is given, a ∗-algebra structure is defined on the vector space Cc(Ξ) of all

continuous, compactly supported functions f : Ξ → C with product

(f ⋆ωg)(ξ) :=

∫

Ξ

f(η)g(η−1ξ)ω(η, η−1ξ) dλr(ξ)(η)(2.3)

=

∫

Ξ

f(ξη)g(η−1)ω(ξη, η−1) dλd(ξ)(η)(2.4)

and the involution

f⋆ω(ξ) := ω(ξ, ξ−1) f(ξ−1) .

Then, by the usual completion procedure based on all bounded ∗-representations of Ξ [75], one gets the

(full) twisted groupoid C∗-algebra C∗(Ξ, ω) .

Given a measure ν on X , one defines the measure Λν :=
∫
Xλxdν(x) on Ξ by

∫

Ξ

f(ξ)dΛν(ξ) :=

∫

X

[ ∫

Ξx

f(ξ)dλx(ξ)
]
dν(x) , ∀ f ∈ Cc(Ξ) .

We say that the measure ν onX is quasi-invariant if the measures Λν and Λ−1
ν := Λν ◦ ι are equivalent.

Given a quasi-invariant measure ν on X , we associate to it the induced representation

Indν : C∗(Ξ, ω) → B
[
L2(Ξ; Λν)

]
, Indν(f)u := f ⋆ωu .

Let x ∈ X be a unit and ν = δx the Dirac measure concentrated at x. Then, the associated induced

representation is the regular representation Πx := Indδx : C∗(Ξ, ω) → B
[
L2(Ξx;λx)

]
. It is thus

defined by

Πx(f)u := f ∗ωu , ∀ f ∈ Cc(Ξ) , u ∈ L2(Ξx;λx) =: Hx .
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The regular representations serve to define the reduced norm

(2.5) ‖ · ‖r : Cc(Ξ) → R+ , ‖f‖r := sup
x∈X

‖Πx(f)‖B(Hx) .

Remark 2.4. Recall that we assume our groupoids to be amenable. It is then known [13, Sect. 4] that

the canonical surjection C∗(Ξ, ω) → C∗
r (Ξ, ω) from the full C∗-algebra to the reduced C∗-algebra

associated to (Ξ, λ, ω) is injective, and hence an isomorphism. We shall thus identify the two algebras

in what follows and use only the notation C∗(Ξ, ω) . The reduced norm, which thus coincides the full

one, will be denoted by ‖ · ‖C∗(Ξ,ω) or simply by ‖ · ‖ .

Definition 2.5. We shall say that a 2-cocycle ω is a coboundary, if it is of the form

(2.6) ω(ξ, η) = [δ1(σ)](ξ, η) := σ(ξ)σ(η)σ(ξη)−1

for some continuous map σ : Ξ → T . Two 2-cocycles ω1 and ω2 are called cohomologous if ω2 =
δ1(σ)ω1.

Remark 2.6. It is easy to see (and well-known) that to cohomologous 2-cocycles ω1 and ω2, ω2 =
δ1(σ)ω1, there correspond isomorphic C∗-algebras C∗(Ξ, ω2) ∼= C∗(Ξ, ω1) . If ω(ξ, η) = 1 for any

ξ, η ∈ Ξ , we shall simply write C∗(Ξ) := C∗(Ξ,1) .

Remark 2.7. It follows easily that, for every ξ ∈ Ξ, one has the unitary equivalence Πr(ξ) ≈ Πd(ξ) , so

the regular representations along an orbit are all unitarily equivalent:

x ≈ y ⇒ Πx ≈ Πy .

We shall need the following classes of groupoids. Recall that all our groupoids are assumed to be

tractable, see Definition 2.2.

Definition 2.8. Let (Ξ, λ, ω) be a tractable twisted groupoid. If Ξ is topologically transitive and the

isotropy of the main orbit is trivial (i.e. Ξz
z = {z} for one, equivalently for all z in the main orbit M ) ,

we shall say that Ξ is standard.

Example 2.9. The standard transitive groupoids Ξ ⇒ X are precisely the pair groupoids Ξ = X ×X .

By [13, Remark 2.2], on such groupoids all 2-cocycles are trivial (coboundaries). The (twisted) groupoid

algebra of a pair groupoid is elementary, i.e. isomorphic to the C∗-algebra of all the compact operators

on a Hilbert space.

If A is invariant, ΞA
A = ΞA = ΞA is a subgroupoid, called the restriction of Ξ to A . If A is also

locally closed (the intersection between an open and a closed set), thenA is locally compact and ΞA will

also be a tractable groupoid, on which one automatically considers the restriction of the Haar system.

Remark 2.10. Assume that the groupoid Ξ is standard with main orbit M . By Example 2.9, the re-

striction ωM := ω|M of a 2-cocycle ω on Ξ to M must be a coboundary. In particular C∗
r (ΞM , ωM ) =

C∗(ΞM , ωM ) ∼= C∗(M ×M) is an elementary C∗-algebra. In addition, for each z ∈M , the restriction

rz := r|Ξz
: Ξz = Ξ(X)z →M

is surjective (since M is an orbit) and injective (since the isotropy is trivial). Thus one transports the

measure λz to a (full Radon) measure µ on M (independent of z , by the invariance of the Haar system)

and gets a representation Π0 : C∗(Ξ, ω) → B
[
L2(M,µ)

]
, called the vector representation [47]. Let

Rz : L2(M ;µ) → L2
(
Ξz;λz

)
, Rz(v) := v ◦ rz .

Then Π0 turns out to be unitarily equivalent to Πz:

(2.7) Π0(f) = R−1
z Πz(f)Rz , Π0(f)v =

[
f ⋆ω (v ◦ rz)

]
◦ r−1

z .
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2.2. Groupoid extensions. We shall now proceed to related twisted groupoids and theirC∗-algebras to

untwisted groupoids, following a well-known reduction idea, see [13, 66, 75] and the references therein.

Definition 2.11. Let ω be a 2-cocycle on the groupoid Ξ . The ω-extension of Ξ by T will be denoted

by Ξω or by T×ω Ξ . As a topological space it is T×Ξ with the product topology. The structural maps

are

(2.8) rω(s, ξ) := (1, r(ξ)) , dω(s, ξ) := (1, d(ξ)) ,

(s, ξ)(t, η) := (st ω(ξ, η), ξη) , (s, ξ)−1 :=
(
s−1ω(ξ, ξ−1)−1, ξ−1

)
.

We refer to [66] for connections with the general groupoid extension theory.

Remark 2.12. For {1} ×B ≡ B ⊂ X = Ξ(0) ≡
(
Ξω

)(0)
one has

(2.9) (Ξω)B = T× ΞB , (Ξω)B = T× ΞB, (Ξω)BB = T× ΞB
B .

Lemma 2.13. Let (Ξ, ω) be a tractable groupoid endowed with a continuous 2-cocycle.

(i) The extension Ξω is also tractable.

(ii) If Ξ is topologically transitive, then Ξω is also topologically transitive.

(iii) If Ξ is standard, then Ξω is topologically transitive and the isotropy groups of any point of the

main orbit may be identified with the torus T .

Proof. (i) Clearly Ξω is also locally compact, Hausdorff and second countable. On Ξω we can consider

the right Haar system {λωx := dt×λx | x ∈ X} , where dt is the normalized Haar measure on the torus.

By [4, Prop. 5.1.2], if Ξ is amenable the extension Ξω will also be amenable.

(ii) The map x 7→ (1, x) identifies X with the unit space of the ω-extension. By (2.8), the orbits are

the same as before, i.e. x
Ξ
≈ y if and only if x

Ξω

≈ y . In particular, the main orbits are the same.

(iii) From (2.8) or (2.9) it follows that the isotropy groups of the extension have all the form T× Ξx
x

for some x ∈ X . So, if Ξ is standard and z ∈M , then (Ξω)zz = T× {z} . �

Let us recall here the constructions of Brown and an Huef [13], which is a main technical tool in

what follows. For every n ∈ Z, let us define the nth homogeneous component

Cc(Ξ
ω |n) :=

{
Φ ∈ Cc(Ξ

ω) | Φ(ts, ξ) = t−nΦ(s, ξ) , ∀ s, t ∈ T , ξ ∈ Ξ
}
,

which is a ∗-subalgebra of Cc(Ξ
ω) with the convolution product. The usual C∗-completion leads by

definition to C∗(Ξω |n) . The map

κn : Cc(Ξ
ω |n) → Cc(Ξ, ω

n) ,
[
κn(Φ)

]
(ξ) := Φ(1, ξ)

with inverse

(2.10) (κn)−1 : Cc(Ξ, ω
n) → Cc(Ξ

ω|n) ,
[
(κn)−1(f)

]
(t, ξ) := t−nf(ξ)

is a ∗-algebra isomorphism that extends to the associated C∗-algebras C∗(Ξω |n) ∼= C∗(Ξ, ωn) .

In [13] it is also proved that the map

χn : Cc(Ξ
ω) → Cc(Ξ

ω |n) , [χn(Φ)](s, ξ) :=

∫

T

Φ(ts, ξ)tndt

extends to an epimorphism χn : C∗(Ξω) → C∗(Ξω |n) that is the identity on Cc(Ξ
ω |n) . Composing

the isomorphism κ1 to the left with the epimorphism χ1, one already sees that C∗(Ξ, ω) is a quotient of

C∗
(
Ξω

)
.

Although the two C∗-norms in the next equation are computed via different sets of representations,

the result of [13][Lemma 3.3] gives that

‖Φ‖C∗(Ξω|n) = ‖Φ‖C∗(Ξω) , ∀Φ ∈ Cc(Ξ
ω|n) .
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The closure Jn of Cc(Ξ
ω|n) in C∗(Ξω) is a (closed bi-sided self-adjoint) ideal in C∗(Ξω) and χn can be

seen as an isomorphism between Jn and C∗(Ξω|n) . It is also shown that these ideals provide a direct

sum decomposition

C∗(Ξω) =
⊕

n∈Z

Jn ∼=
⊕

n∈Z

C∗(Ξω |n) ∼=
⊕

n∈Z

C∗(Ξ, ωn) .

One of the conclusions is that the twisted groupoid C∗-algebra embeds as a direct summand in the

C∗-algebra of the extended groupoid: C∗(Ξ;ω) →֒ C∗(Ξω) (as the homogeneous component of order

1).

Remark 2.14. Assume that Ξ ⇒ X is a Lie groupoid [52] or, more generally, a longitudinally

smooth groupoid [45]. Then Ξω is also a Lie groupoid (respectively, a longitudinally smooth groupoid).

This allows us to consider the pseudo-differential calculus (algebra) Ψ∞(Ξω) [63, 64, 71, 45]. Using

the formalism above, one should be able to introduce and study a twisted pseudo-differential algebra

Ψ∞(Ξ;ω) , such that Ψ0(Ξ;ω) ⊂ C∗(Ξ, ω) . The action of T extends to an action on Ψ∞(Ξω) and we

define Ψ∞(Ξ;ω) ≃ p1Ψ
∞(Ξω) = Ψ∞(Ξω)p1.

2.3. Properties of representations. We have to deal with non-unital algebras. If C is a C∗-algebra,

generic unitizations of C are denoted by CU; they are unital C∗algebras containing C as an essential

ideal. Any non-degenerate representation Π : C → B(H) extends uniquely to a representation ΠU :
CU → B(H) ; if Π is injective, ΠU is also injective. In the non-unital case there is a smallest minimal

unitization C m ≡ C ⊕ C (so the quotient Cm/C has dimension one), and a largest one, namely the

multiplier algebra CM. If C is unital, one has C = Cm = C M.

Let us fix some x ∈ X , the set of units of Ξ, and consider the following diagram of C∗-morphisms

(2.11)

C∗(Ξ, ω) C∗(Ξω)

B
[
L2(Ξx;λx)

]
B
[
L2(Ξω

x ;λ
ω
x )
]❄

Πx

✲
δ

❄

Πω
x

✲
∆

that we now describe. The regular representation Πx has been introduced in subsection 2.1. Since

x ∈ X ≡ (Ξω)(0), there is also the regular representation Πω
x of the (non-twisted) groupoid C∗-algebra

C∗(Ξω) . The morphism δ is given by the Brown-an Huef theory, as explained above: on Cc(Ξ, ω) it is

defined as the composition of (κ1)−1, cf. (2.10), with the canonical injection Cc(Ξ
ω |1) →֒ Cc(Ξ, ω) .

This means

[δ(f)](t, ξ) = t−1f(ξ) , ∀ (t, ξ) ∈ T× Ξ , f ∈ Cc(Ξ, ω) .

Finally note that, by Remark 2.12,

L2
(
Ξω
x ;λ

ω
x

)
= L2

(
T× Ξx; dt× λx

)
∼= L2(T; dt)⊗ L2(Ξx;λx) .

Let us set

S : L2(T; dt) → L2(T; dt) , [S(φ)](t) :=

∫

T

rφ(r)dr t−1.

Clearly S is the orthogonal projection on Cψ−1 , where ψ−1(t) := t−1 has norm one. Then we define

the C∗-algebraic morphism ∆ by

∆(T ) := S ⊗ T, ∀T ∈ B
[
L2(Ξx;λx)

]
.

Proposition 2.15. The diagram (2.11) commutes.
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Proof. To check the commutativity of the diagram, it is enough to compute for f ∈ Cc(Ξ, ω) , φ ∈
L2(T; dt) , u ∈ L2(Ξx;λx) and (t, ξ) ∈ T× Ξ (by ∗ we denote the groupoid convolution associated to

Ξω) :
[(
(Πω

x ◦ δ)f
)
(φ⊗ u)

]
(t, ξ) =

[
δ(f) ∗ (φ⊗ u)

]
(t, ξ)

=

∫

T

∫

Ξ

[δ(f)](s, η)(φ ⊗ u)
(
(s−1ω(η, η−1)−1, η−1)(t, ξ)

)
dsdλx(η)

=

∫

T

∫

Ξ

s−1f(η)φ
(
s−1t ω(η, η−1)−1ω(η−1, ξ)

)
u
(
η−1ξ

)
dsdλx(η)

=

∫

T

∫

Ξ

s−1f(η)φ
(
s−1t ω(η, η−1ξ)−1

)
u(η−1ξ)dsdλx(η)

= t−1

∫

T

rφ(r)dr

∫

Ξ

f(η)u(η−1ξ)ω(η, η−1ξ)dλx(η)

= [S(φ)](t)(f ⋆ωu)(ξ)

=
[(
S ⊗Πx(f)

)
(φ⊗ u)

]
(t, ξ)

=
[(
(∆ ◦Πx)f

)
(φ ⊗ u)

]
(t, ξ) .

The forth equality relies on the 2-cocycle identity (2.1) and the normalization (2.2), in which the unit is

our ηη−1. The fifth equality is obtained by a change of variable. �

The next result is a well-known result of Koshkam and Skandalis [41, Cor. 2.4] the usual (untwisted)

groupoid C∗-algebras (see also [10, Prop. 2.7]). The point (i), for the twisted case, has been shown in

[57, Prop.2.5] even without the second countability assumption. We include it here since the method of

proof might be interesting.

Corollary 2.16. Let ω be a continuous 2-cocycle on the standard groupoid Ξ ⇒ X with main orbit M .

(i) For every x ∈M the representation Πx is faithful. If C∗(Ξ, ω) is not unital, for any unitization,

the extension ΠU
x : C∗(Ξ, ω)U → B

[
L2(Ξx;λx)

]
is also faithful.

(ii) The vector representation Π0 and its unitizations are faithful.

Proof. (i) From Proposition 2.15, one has Πω
x ◦ δ = ∆ ◦ Πx . The morphism δ is injective since Ξω

is Hausdorff [41, Cor. 2.4]. See also [10, Prop. 2.7]. It follows then that Πx is also injective. In the

non-unital case, faithfulness is preserved for the the extension, since C∗(Ξ, ω) is an essential ideal of

C∗(Ξ, ω)U.

(ii) is a consequence of the unitary equivalence described in Remark 2.10 and of the part (i). �

The next notion [26, 76] will play an important role later.

Definition 2.17. We say that the twisted groupoid (Ξ, ω) has Exel’s property if for every f ∈ C∗(Ξ, ω),
there exists x ∈ X (depending on f ) such that ‖f‖ = ‖Πx(f)‖B[L2(Ξx;λx)] .

This means that in (2.5) the supremum of the function X ∋ x → ‖Πx(f)‖B[L2(Ξx;λx)] is attained

for each element f ∈ C∗(Ξ, ω). If there is no cocycle, we speak simply of groupoids having Exel’s

property; in particular, this can be applied to Ξω.

Corollary 2.18. If the groupoid extension Ξω has Exel’s property, then the twisted groupoid (Ξ, ω) has

Exel’s property.

Proof. We are going to use once again the commutative diagram (2.11). Let f ∈ C∗(Ξ, ω) and assume

that the point for which the norm of Φ := δ(f) ∈ C∗(Ξω) is attained is x ; set Hx := L2(Ξx;λx) .
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Then, since δ is injective and ‖S‖B[L2(T)] = 1

‖f‖C∗(Ξ,ω) = ‖δ(f)‖C∗(Ξω)

= ‖Πω
x [δ(f)]‖B[L2(T)⊗Hx]

= ‖∆[Πx(f)]‖B[L2(T)⊗Hx]

= ‖S ⊗Πx(f)‖B[L2(T)⊗Hx]

= ‖Πx(f)‖B(Hx) ,

showing that the norm of f is also attained in x . �

Corollary 2.19. Let Ξ be a tractable groupoid and ω a 2-cocycle. Then the twisted groupoid (Ξ, ω) has

Exel’s property.

Proof. The starting point is the fact that a tractable groupoid has Exel’s property. This is Theorem 3.18

from [70], extending a result of Exel [26] from the étale case and relying on a deep result of Ionescu

and Williams [39]. See also [18]. By Lemma 2.13, the extension Ξω is also tractable. Thus Ξω has

Exel’s property. Finally, Corollary 2.18 shows that Exel’s property is inherited from the extension by

the twisted groupoid (Ξ, ω) . �

2.4. Restrictions. LetM be an open Ξ-invariant subset ofX . ThenA :=M c is closed and Ξ-invariant,

which yields the restrictions ΞM
M = ΞM = ΞM and ΞA

A = ΞA= ΞA and [67, Lemma 2.10] a short exact

sequence of groupoidC∗-algebras

(2.12) 0 −→ C∗(ΞM ) −→ C∗(Ξ)
ρA
−→ C∗(ΞA) −→ 0 .

On continuous compactly supported functions the monomorphism consists of extending by the value 0
and the epimorphism ρA acts as a restriction. We recall that one works on ΞM and ΞA, respectively,

with the corresponding restrictions of the fixed Haar system λ .

Proposition 2.20. Let ω be a 2-cocycle on the tractable groupoid Ξ and let Ξ(0) =:X = M ⊔ A for

some open invariant subset of units M . Using restricted 2-cocycles ωB : (ΞB)
(2) → T , one has the

short exact sequence

(2.13) 0 −→ C∗(ΞM , ωM ) −→ C∗(Ξ, ω)
ρA
−→ C∗(ΞA, ωA) −→ 0 .

Proof. Recall the groupoid extension Ξω and the identifications (1, x) ≡ x and {1} × B ≡ B for any

B ⊂ X . First note that ifB is locally closed and Ξ-invariant and ωB is the restriction of ω to (ΞB)
(2) =

(ΞB ×ΞB)∩Ξ(2), then the extension ΞωB

B and the C∗-algebras C∗(ΞB, ωB) and C∗
(
ΞωB

B

)
make sense.

We recall that the C∗-norms involve in each case all the ∗-representations that are continuous with

respect to the inductive limit topology on Cc-functions and the weak topology on operators.

If M ⊂ X is open and Ξ-invariant, then {1} ×M ≡M is open and Ξω-invariant. Thus we have for

free the short exact sequence

(2.14) 0 −→ C∗(Ξω
M ) −→ C∗(Ξω)

ρω
A−→ C∗(Ξω

A) −→ 0 ,

where on Cc(Ξ
ω) the restriction morphism ρωA only acts at the level of the second variable.

On the other hand, as explained above, twisted groupoid C∗-algebras may be seen as (closed two-

sided self-adjoint)ideals and direct summands in the C∗-algebras of the corresponding extensions. The

rough idea of the proof is that we could write the sequence of C∗-algebra isomorphisms:

C∗(ΞA, ωA) ∼= C∗
(
ΞωA

A |1
)
∼= C∗(Ξω |1)/C∗

(
ΞωM

M |1
)
∼= C∗(Ξ, ω)/C∗(ΞM , ωM )

if one would justify the middle isomorphism (that still involves C∗-algebras that do not have the form

C∗(H) for some groupoid H) .

We now fix n = 1 and note that the results of [13] hold for all the pairs (Ξ, ω) , (ΞM , ωM ) and

(ΞA, ωA) . For the relevant subsets B = A,M , use notations as κ1B , χ
1
B, J

1
B . Both the operations
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of extending by the value 0 in the Ξ-variable and restricting in the Ξ-variable preserve homogeous

components and commute (when suitably defined) with the ∗-morphisms χ1
B and κ1B . It is enough to

check this at the level of continuous compactly supported functions, which is trivial. Thus from (2.14)

we deduce the short exact sequence

0 −→ J1M −→ J1 −→ J1A −→ 0 ,

where the two non-trivial arrows are restrictions to homogeneous components of the corresponding

non-trivial arrows from (2.14). This one is isomorphic to the short sequence

0 −→ C∗(ΞM , ωM ) −→ C∗(Ξ, ω)
ρA
−→ C∗(ΞA, ωA) −→ 0 .

by using the vertical arrows κ1B , and then to (2.13), by composing with vertical arrows χ1
B . As we

said, commutativity of the square diagrams are checked easily on continuously compactly supported

functions by using explicit formulas for χ1
B and κ1B (they ”commute with restrictions or 0-extensions in

the variable ξ ”) , which is enough. Exactness of (2.13) now follows and the proof is finished. �

Let us denote by inv(X) the family of all closed, Ξ-invariant subsets of X . For A,B ∈ inv(X)
with B ⊃ A, one has the canonical inclusion iBA : ΞA → ΞB and the restriction morphism

ρBA : Cc(ΞB) → Cc(ΞA) , ρBA(f) := f |ΞA
= f ◦ iBA ,

which extends to an epimorphism ρBA : C∗(ΞB, ωB) → C∗(ΞA, ωA) . Clearly ρA = ρXA . One gets

in this way an inductive system
{
C∗(ΞA, ωA), ρBA

}
inv(Ξ)

of C∗-algebras.

Corollary 2.21. In the setting above, if B ⊃ A there is a short exact sequence

0 −→ C∗(ΞB\A, ωB\A) −→ C∗(ΞB , ωB)
ρBA
−→ C∗(ΞA, ωA) −→ 0 ,

allowing the identification

(2.15) C∗
(
ΞA, ωA

)
∼= C∗

(
ΞB , ωB

)
/C∗

(
ΞB\A, ωB\A

)
.

Proof. The statement follows from our Proposition 2.20, since ΞB is also tractable. �

Remark 2.22. Assume that the C∗-algebras C and D are not unital and denote by Cm and Dm,

respectively, their minimal unitizations. If ρ : C → D is a ∗-epimorphism, then

ρm : C
m → D

m, ρm(c+ λ1) := ρ(c) + λ1

is a unital ∗-epimorphism and ker(ρm) = ker(ρ) . Applying this to the situation in the Corollary, besides

(2.15) one gets

C∗(ΞA, ωA) ∼= C∗(ΞB , ωB)
m/C∗(ΞB\A, ωB\A)

m .

Remark 2.23. Let x ∈ A ∈ inv(X) ; one has the regular representationsΠx : C
∗(Ξ, ω) → B

[
L2(Ξx;λx)

]

and ΠA,x : C
∗
(
ΞA, ωA

)
→ B

[
L2(Ξx;λx)

]
(the fibers Ξx and ΞA,x are seen to coincide). It is easy to

check, and will be used below, that Πx = ΠA,x ◦ ρA .

We close this section with one more remark about restrictions. In some situations, Cc(Ξ) is too small

to contain all the elements of interest. On the other hand, the nature of the elements of the completion

C∗(Ξ, ω) is not easy to grasp; for instance it is not clear the concrete meaning of a restriction applied to

them. In search of a good compromise, we recall [75, pag. 50] the embeddings

Cc(Ξ) ⊂ L∞,1(Ξ) ⊂ C∗(Ξ, ω) ,

where L∞,1(Ξ) is a Banach ∗-algebra, the completion of Cc(Ξ) in the Hahn norm

‖f‖∞,1
Ξ := max

{
sup
x∈X

∫

Ξx

|f(ξ)|dλx(ξ) , sup
x∈X

∫

Ξx

|f
(
ξ−1

)
|dλx(ξ)

}
.

Actually, C∗(Ξ, ω) is the envelopingC∗-algebra of L∞,1(Ξ) . The following result is obvious:
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Lemma 2.24. If A ⊂ X is closed and invariant, the restriction map ρA extends to a ∗-morphism

ρA : L∞,1(Ξ) → L∞,1
(
ΞA

)
that is contractive with respect to the Hahn norms.

Remark 2.25. It is still unclear how this restrictions act on a general element f ∈ L∞,1(Ξ) . However,

if f is a continuous function on Ξ with finite Hahn norm (write f ∈ L∞,1
cont(Ξ)) , the restriction acts in

the usual way and one gets an element ρA(f) of L∞,1
cont(ΞA) .

3. SPECTRAL RESULTS

3.1. Quasi-orbit decomposition of spectra. In this subsection we continue to assume that the groupoid

Ξ , with unit space X , is tractable and that ω is a (continuous) 2-cocycle on Ξ . We are going to need

some terminology.

• A quasi-orbit is the closure of an orbit and qo(X) ⊂ inv(X) denotes the family of all quasi-

orbits. The orbit of a point x will be denoted by Ox . Of course, Ox = r(Ξx) . Let us set

Qx := Ox for the quasi-orbit generated by x .

• More generally, if Y ∈ inv(X), the families qo(Y ) ⊂ inv(Y ) are defined similarly, in terms

of the restriction groupoidΞY ; clearly qo(Y ) can be seen as the family of all the Ξ-quasi-orbits

that are contained in Y .

• Let x ∈ Q ∈ qo(X) . We say that x is generic (with respect to Q) and write x ∈ Qg if x
generates Q , i.e. Qx = Q. Then the subset Qg is invariant and dense in Q. Otherwise, that is,

if x ∈ Q , but Qx 6= Q , we say that x is non-generic in Q and write x ∈ Qn; this means that

Qx $ Q .

Recall that a surjective ∗-morphism Φ : C → D extends uniquely to a ∗-morphism ΦM : CM →
DM between the multiplier algebras; if C and D are σ-unital (separable, in particular), then ΦM is

also surjective. For each locally closed invariant subset Y of X one sets CY := C∗(ΞY , ωY ) and

CU

Y := C∗(ΞY , ωY )
U for U ∈ {m,M}; the index Y = X will be omitted. It is also convenient to

abbreviate Hy := L2(Ξy;λy) for every y ∈ X .

For an element F belonging to CU, for every Y ∈ inv(X) and for every x ∈ X , one sets

(3.1) FY := ρUY (F ) ∈ C
U

Y and Hx := ΠU

x (F ) ∈ B(Hx) .

Below, the letter U indicates one of the unitizations m or M ; Remark 3.2 refers to these choices. The

next result is interesting in itself and complements some of the results from [57, Sect.3]. It will have

a counterpart in terms of the essential spectrum; see Theorem 3.6. Occasionally, although this is not

really necessary, we will indicate the unital C∗-algebra in which the spectrum is computed.

Theorem 3.1. Let Ξ ⇒ X be an tractable groupoid endowed with a 2-cocycle ω and let Y ⊂ X a

closed invariant set of units. Consider an element F ∈ CU := C∗(Ξ, ω)U . One denotes by SY (F )
the spectrum of the image βY (FY ) of FY ∈ CU

Y in the quotient CU

Y /CY . Let {Qi}i∈I be a family of

quasi-orbits such that Y =
⋃

i∈I Qi , and for each i ∈ I let xi ∈ Qg
i (i.e. xi generates the quasi-orbit

Qi) . Then

(3.2) sp(FY ) = SY (F ) ∪
⋃

x∈Y

sp
(
Hx

)
= SY (F ) ∪

⋃

i∈I

sp
(
Hxi

)
= SY (F ) ∪

⋃

i∈I

sp
(
FQi

|C U

Qi

)
.

Proof. The equation (3.2) will be abbreviated to sp(FY ) = Σ1 = Σ2 = Σ3 . Let us prove first that

sp(FY ) = Σ1 . Using notations as in Remark 2.23, let us consider the family of ∗-morphisms

F :=
{
βY : C

U

Y → C
U

Y /CY

}
∪
{
ΠU

Y,x : C
U

Y → B(Hx)
∣∣ x ∈ Y

}
.

Note that, in connection with the explicit form of F and of Σ1 , we have that

SY (F ) = sp
[
βY (FY )

]
and Hx = ΠU

x (F ) = ΠU

Y,x(FY ) .

By [70, Th. 3.6 ,Th. 3.4] , to show that sp(FY ) coincides with the union Σ1 of spectra, it is enough to

prove that the family F is strictly norming, meaning that for every GY ∈ CU

Y there is an element π
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of the family such that ‖GY ‖CU

Y
= ‖π(GY )‖ . In Corollary 2.19 it is already proven that the twisted

groupoid algebra CY := C∗(ΞY , ωY ) has Exel’s property; in other words, by Definition 2.17, the family

F0 :=
{
ΠY,x : CY → B(Hx)

∣∣ x ∈ Y
}

is strictly norming for the ideal CY . Then F will be strictly norming for C U

Y , by [70, Prop. 3.15]. For

the reader’s convenience, we indicate the remaining argument using our notation.

So let GY ∈ C U

Y ; by replacing it with G⋆ω

Y ⋆ω GY , one can assume it is positive. If ‖GY ‖CU

Y
=

‖βY (GY )‖CU

Y
/CY

, we are done. Otherwise, let ϕ be a continuous function on sp(FY ) that is zero on

sp
[
βY (FY )

]
, satisfying

ϕ
(
‖GY ‖CU

Y

)
= ‖GY ‖CU

Y
and ϕ(t) ≤ t if t ≥ 0 .

Then ϕ(GY ) ∈ CY and ‖ϕ(GY )‖CU

Y
= ‖GY ‖CU

Y
. Since the family F0 is strictly norming, there exists

x ∈ Y such that

‖GY ‖CU

Y
= ‖ϕ(GY )‖CU

Y
= ‖ΠY,x

[
ϕ(GY )

]
‖B(Hx) = ‖ϕ

[
ΠY,x(GY )

]
‖B(Hx) ≤ ‖ΠY,x(GY )‖B(Hx).

This shows that the family F is strictly norming and the proof of sp(FY ) = Σ1 is completed.

The equalities of the various Σs follows from some general C∗-arguments. Indeed, recall that, by

Remark 2.23, one can write

Hxi
= ΠU

xi
(F ) = ΠU

Qi,xi

[
ρUQi

(F )
]
= ΠU

Qi,xi

(
FQi

)
.

The regular representation ΠU

Qi,xi
: CU

Qi
→ B(Hxi

) is faithful, by Corollary 2.16, the orbit of xi being

dense in Qi . Thus it preserves the spectrum and one gets Σ1 = Σ2 . Then, clearly Σ2 ⊂ Σ1 . Since the

family {Qi}i∈I covers Y , for each x ∈ Y there is some i ∈ I such that x ∈ Qi . Then Qx ⊂ Qi and

thus sp
(
Hx

)
⊂ sp

(
Hxi

)
, by Theorem 3.3 in [57]. This shows that Σ2 = Σ3 as well. This completes

the proof. �

Remark 3.2. By choosing a large unitizations U, we obtain a larger class of elements to which the

results apply, but understanding the set SY (F ) becomes more difficult.

(a) Let us assume that C is not unital and take U = m (if F permits it). Then Cm ∋ F = G+ s1
for some unique G ∈ C and s ∈ C . In this case sp(FY ) = {s} for every Y . Clearly s = 0 if

and only if F ∈ C .

(b) On the other hand, if one takes U = M , allowing much larger classes of elements F , in

most situations the component SY (F ) (a spectrum in a corona algebra) is difficult to compute

explicitly.

(b) Actually, one can also work with arbitrary unital algebras (or “unitizations”) C∗(Ξ, ω)U con-

taining C∗(Ξ, ω) as an essential ideal. We expect that the choice C∗(Ξ, ω)U = the completion

of Ψ0(Ξ;ω) of Remark 2.14 will be useful in applications. This is the case if ω = 1 and Y = X
(see [18] and the references therein); the presence of a principal symbol map leads to a commu-

tative C∗-algebra Ψ0(Ξ)/C∗(Ξ) and now the set SX(F ) is given simply by the values of this

principal symbol; see [18, Corollary 4.16]. In the presence of a cocycle, these properties remain

to be checked.

3.2. Essential spectra and the Fredholm property. In this subsection we are mainly interested in

the essential spectra of the operators arising from regular representations of the twisted groupoid C∗-

algebra.

Definition 3.3. The discrete spectrum spdis(H) of a bounded operator H in a Hilbert space H is the

set of all its isolated eigenvalues of finite multiplicity. The complement of the discrete spectrum of H is

called the the essential spectrum of H and it is denoted by spess(H) := spdis(H)c = sp(H)\spdis(H) .
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We also have that spess(H) = {λ ∈ C
∣∣H − λ is not Fredholm}.

In the following, the framework and the notation are the same as in the previous subsection. We

decided to restrict our discussion to that of the minimal unitization U = m , mainly in order to make

the results more concrete (cf. Remark 3.2).

The next lemma describes the generic part Qg of a Ξ-quasi-orbit Q in certain cases.

Lemma 3.4. Suppose that O is a locally closed orbit and set Q := O ∈ qo(X) . Then O is open in Q ,

one has O = Qg and no other orbit contained in Q is dense in Q . If, in addition, the orbit O is free

(i.e. its isotropy is trivial), then the reduced groupoid ΞQ is standard, O being the main orbit.

Proof. It is well-known that the subset O is locally closed if, and only if, it is open in its closure Q .

All the points of O are generic for Q , by construction. If O′ ⊂ Q is another orbit, then O′ ∩ O = ∅
(the closures of O′ in Q and in X are the same) and thus O′ cannot be dense in Q . So, if x /∈ O , then

Qx := Ox is strictly contained in Q and thus x is not generic. The last assertion of the lemma follows

from the definition of a standard groupoid. �

Definition 3.5. A point z ∈ X := Ξ(0) is called regular if its orbit Oz is locally closed and free.

The next Theorem provides Fredholmness criteria and information about the essential spectrum of

Hz := Πm
z (F ) , for such a regular unit z ∈ X , in terms of the invertibility and of the usual spectra of

various other elements or operators.

Theorem 3.6. Let Ξ ⇒ X be a tractable groupoid endowed with a continuous 2-cocycleω and consider

an element F = G+ s1 ∈ Cm := C∗(Ξ, ω)m , with G ∈ C := C∗(Ξ, ω) and s ∈ C . Let z be a regular

element of the unit space X = Ξ(0).

(i) One has

(3.3) spess(Hz) = sp
(
FQn

z

∣∣Cm

Qn
z

)
.

(ii) Let {Qj}j∈J ⊂ qo
(
Qz

)
be a set of quasi-orbits such that Qn

z =
⋃

j∈J Qj (i.e. it is a covering

of Qn
z = Qz \Oz with quasi-orbits), and for each j ∈ J let xj ∈ Qg

j (i.e. xj generates the

quasi-orbit Qj) . Then

(3.4) spess(Hz) = {s} ∪
⋃

j∈J

sp
(
FQj

|Cm

Qj

)
= {s} ∪

⋃

j∈J

sp
(
Hxj

)
= {s} ∪

⋃

x∈Qn
z

sp
(
Hx

)
.

(iii) Keeping all the previous assumptions and notations, the following assertions are equivalent:

• the operator Hz is Fredholm,

• FQn
z

is invertible in Cm

Qn
z

,

• FQz
/∈ CQz

and FQj
is invertible in Cm

Qj
for every j ∈ J ,

• FQz
/∈ CQz

and each Hxj
is invertible,

• FQz
/∈ CQz

and Hx is invertible for each x ∈ Qn
z .

Proof. The idea of the proof is as follows. Proving (3.3) relies on the fact that the essential spectrum of

Hz = Πm

z (F ) = Πm

Qz ,z

[
ρmQz

(F )
]
= Πm

Qz ,z(FQz
) ∈ B(Hz)

coincides with the spectrum of its image in the Calkin algebra B(Hz)/K(Hz) and on writing

(3.5) C
m

Qn
z

∼= C
m

Qz
/COz

→֒ B(Hz)/K(Hz) .

The isomorphism in (3.5) follows from Corollary 2.21 and Remark 2.22 with A := Qn
z ⊂ Qz =: B

and B\A = Oz . The C∗-algebraic embeding →֒ reflects the fact that the (unitization of the) regular

representation Πm

Qz ,z
sends injectively Cm

Qz
into B(Hz) , while its restriction sends isomorphically COz

onto K(Hz) because z is regular.
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Let us give now more details. Denoting by γz : Cm

Qz
→ Cm

Qz
/COz

andΓz : B(Hz) → B(Hz)/K(Hz)
the canonical quotient maps, we have the diagram of ∗-morphisms:

(3.6)

C
m C

m

Qz
B(Hz)

C
m

Qn
z

C
m

Qz
/COz B(Hz)/K(Hz)

✲
ρm

Qz

❄

γz

✲
Πm

Qz,z

❄

Γz

✲
∼=

✲
Π̃m

Qz,z

Then one writes

spess(Hz) = sp
[
Γz(Hz)

]
= sp

[
Γz

(
Πm

z (F )
)]

= sp
[
Γz

(
Πm

Qz ,z[ρ
m

Qz
(F )]

)]

= sp
[
Π̃m

Qz ,z

(
γz[ρ

m

Qz
(F )]

)]

= sp
[
γz(FQz

)
]
.

For the last equality, recall that Π̃Qz ,z is injective.

Finally sp
(
γz(FQz

) | C m

Qz
/COz

)
= sp

(
FQn

z

∣∣C m

Qn
z

)
follows from the isomorphism C m

Qz
/COz

∼=

Cm

Qn
z

, under which γz(FQz
) corresponds to FQn

z
; this finishes the proof of (i).

The point (ii) follows from (i) and from Theorem 3.1 applied to the close invariant set Y := Qn
z =

Qz\Oz ⊂ Qz ; see also Remark 3.2.

Atkinson’s Theorem states that an operator H is Fredholm if and only if it is invertible modulo the

compact operators, i.e. if and only if 0 does not belong to its essential spectrum. In (3.4), s 6= 0 means

precisely that FQz
∈ Cm

Qz
\CQz

. Then (iii) follows from (ii) by taking into account the following general

simple observation: Let {Dk}k∈K be a family of C∗-algebras and ak ∈ Dk for every k ∈ K; then one

has 0 /∈
⋃

k∈K sp
(
ak

)
if and only if each ak is invertible. �

Example 3.7. Let z ∈ X be such that its Ξ-orbit Oz is closed and free. Then all the points of the orbit

Oz are generic, and thus the unions in (3.4) are all void. In this case, we simply get spess(Hz) = {s} ,

which also follows directly from Qz = Oz . If F ∈ C , then spess(Hz) = {0} . This corresponds to the

fact that, in this case, the operatorHz is compact; see Example 2.9.

In particular, we are interested in standard twisted groupoids (Ξ, ω) (cf. Definition 2.8) and, for an

element F = G + s1 ∈ C∗(Ξ, ω)m ≡ Cm, in its image through the vector representation, cf. Remark

2.10. So H0 := Πm
0 (F ) is a bounded operator in H0 := L2(M,µ) ; hereM is the main orbit (open and

dense). We state a consequence of Theorem 3.6 on the essential spectrum; the corresponding Fredholm

criteria can be easily formulated by the reader.

Corollary 3.8. Suppose that, in addition to being tractable, the twisted groupoid Ξ ⇒ X is standard

(see Definition 2.8), withX =M ⊔X∞ , where M = Xg is the main orbit. Let {Qj}j∈J be a covering

of X∞ with quasi-orbits , and for each j ∈ J let xj be a generic element of Qj . Then

(3.7)

spess(H0) = sp
(
FX∞ |C m

X∞

)
= {s}∪

⋃

j∈J

sp
(
FQj

|CQj

)
= {s}∪

⋃

j∈J

sp
(
Hxj

)
= {s}∪

⋃

x∈X∞

sp(Hx) .

Proof. This basically follows from Theorem 3.6, since for standard groupoids, by definition, the entire

unit space X is a quasi-orbit and the points z belonging to the main orbit M are regular. One must

also replace Hz := Πm
z (F ) of Theorem 3.6 by the unitarily equivalent vector represented version

H0 := Πm
0 (F ) , as explained in Remark 2.10. �
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3.3. Essential numerical ranges. We treat now various types of numerical ranges, in a version adapted

to operator algebras [11, 12, 36, 77]. If D is a unital C∗-algebra , then S(D) denotes its state space,

that is, the set of positive linear forms φ : D → C such that φ(1D) = 1.

Definition 3.9. Let D be a unital C∗-algebra. The (algebraic) numerical range of F ∈ D is

nr(F ) := {φ(F ) | φ ∈ S(D)} .

The numerical range set nr(F ) of F ∈ D is a compact, convex subset of C containing the convex

hull of the spectrum:

co[sp(F )] ⊂ nr(F ) ⊂
{
λ ∈ C | |λ| ≤ ‖F‖D

}
.

For normal elements F ∈ D these are equalities, but in general the inclusions are strict. If H ∈ D =
B(H) for some Hilbert space H , then nr(H) is the closure of the operator (spatial) numerical range

[35]

nr0(H) :=
{
〈Hu, u〉H

∣∣ u ∈ H , ‖u‖H =1
}
.

For any subset A of C, we denote by co(A) the smallest closed, convex set containing A .

Theorem 3.10. Let Ξ be a tractable groupoid endowed with a continuous 2-cocycle ω and let Y ⊂ X
a closed invariant set of units. Consider an element F = s + G ∈ C∗(Ξ, ω)m, with s ∈ C and

G ∈ C∗(Ξ, ω) , and set Hx := Πm
x (F ) = s+Πx(G) for every unit x . Then

(3.8) nr(FY ) = co
[
{s} ∪

⋃

x∈Y

nr
(
Hx

)]
.

Proof. It is convenient to use the abbreviations CY := C∗
(
ΞY , ωY

)
and Bx := B(Hx) . To unify

notations, let us set F∞ := s and Y m := Y ⊔ {∞} . The main equation, Equation (3.8) may hence be

written as nr(FY ) = co
[⋃

x∈Y mnr
(
Hx

)]
. Let us also set B∞ := C, and

Πm

∞ : C
m

Y → C
m

Y /CY
∼= C , Πm

Y,∞

(
t+G0

)
:= t .

Note that nr
[
Πm

∞(FY )
]
= {s} , so (3.8) may be rewritten nr(FY ) = co

[⋃
x∈Y mnr

(
Hx

)]
.

The inclusion nr(FY ) ⊃ co
[⋃

x∈Y mnr
(
Hx

)]
follows from the fact that the algebraical numerical

range shrinks under C∗-morphisms, as shown in the proof of Theorem 4.4 of [57]. For a given x ∈ Y m

this should be applied to Hx = Πm

Y,x(FY ) . Then we use the fact that nr(FY ) is known to be compact

and convex.

For the opposite inclusion, we use the following criterion [77, Th.2], valid for any element G of a

unital C∗-algebra C : Let K ⊂ C be closed and convex; then nr(G) ⊂ K if and only if

∥∥(G− λ)−1
∥∥

C
≤ dist(λ,K)−1, ∀λ /∈ K.

We recall from the proof of Theorem 3.1 that the family of morphisms

{
Πm

Y,x : C
m

Y → Bx |x ∈ Y m
}

is strictly norming (this is a consequence of Corollary 2.19). Thus, for any λ ∈ C there exists y(λ) ∈
Ym such that

(3.9)
∥∥(FY − λ)−1

∥∥
Cm

Y

=
∥∥(Hy(λ) − λ

)−1∥∥
By(λ)

.
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Then, for an arbitrary convex compact set K , using (3.9) and the criterion:

co
[ ⋃

x∈Y m

nr(Hx)
]
⊂ K ⇐⇒

⋃

x∈Y m

nr(Hx) ⊂ K

⇐⇒
∥∥(Hx − λ)−1

∥∥
Bx

≤ dist(λ,K)−1, ∀λ /∈ K ,x ∈ Y m

=⇒
∥∥(Hy(λ) − λ)−1

∥∥
By(λ)

≤ dist(λ,K)−1, ∀λ /∈ K

⇐⇒
∥∥(FY − λ)−1

∥∥
Cm

Y

≤ dist(λ,K)−1, ∀λ /∈ K

⇐⇒ nr(FY ) ⊂ K.

It follows that nr(FY ) ⊂ co
[⋃

x∈Y mnr
(
Hx

)]
. �

Remark 3.11. Simple examples show that the union in the right hand side of (3.8) is not convex in

general. Take for instance X = Y = {e1, e2} and Ξ1 = T = Ξ2 , leading to a very simple minded

group bundle. Then

C∗(Ξ) ∼= C∗(Z)⊕ C∗(Z) ∼= C(T) ⊕ C(T) ,

and it is already unital. If g ∈ C(T) is a real function, it is a self-adjoint element and its numerical range

is a real segment I = g(T) . Then consider the element F := (g, ig) .

Definition 3.12. Let H be an element of a unitalC∗-subalgebra D of B(H) for some Hilbert space H .

Its (algebraical) essential numerical range nress(H) is the (algebraic) numerical range of the canonical

image of H in the quotient D/D ∩K(H) .

The essential numerical range contains the essential spectrum (often strictly). We refer to [12] for

more information on this topic.

Theorem 3.13. Let Ξ be a tractable groupoid endowed with a continuous 2-cocycle ω and consider an

element F = s+G∈ C∗(Ξ, ω)m , with G ∈ C := C∗(Ξ, ω) and s ∈ C . Let z be a regular element of

the unit space X = Ξ(0). One has

(3.10) nress(Hz) = nr
(
FQn

z

∣∣Cm

Qn
z

)
= co

[
{s} ∪

⋃

x∈Qn
z

nr
(
Hx

)]
.

Proof. As in the proof of Theorem 3.6, the first equality in (3.10) follows from the way the essential

numerical range has been defined and from the inclusion

(3.11) C
m

Qn
z

∼= C
m

Qz
/COz

→֒ B(Hz)/K(Hz) .

The second equality in (3.10) follows from Theorem 3.10 applied to the close invariant set Y :=
Qn

z = Qz\Oz ⊂ Qz . �

Remark 3.14. For simplicity, we skipped assertions involving restrictions to quasi-orbits and operators

associated to selections of generic points of these quasi-orbits, as in Theorems 3.1 and 3.6; they may be

easily provided by the reader.

3.4. Absence of the discrete spectrum. We start from the following simple result:

Lemma 3.15. Let D be a unital C∗-algebra of linear bounded operators in the Hilbert space H . The

following assertions are equivalent:

(a) One has D ∩K(H) = {0} .

(b) All the elements of D have void discrete spectrum, i.e. spess(H) = sp(H) , for every H ∈ D .

(c) The operator H ∈ D is Fredholm if and only if it is invertible.

(d) One has nress(H) = nr(H) for every H ∈ D .
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Proof. (b)⇒ (a). Suppose that D contains a non-zero compact operator H . This operator surely has

some discrete spectrum, contradicting the hypothesis.

(a)⇒(b). The essential spectrum ofH ∈ D coincides with the usual spectrum of its canonical image

in D/D ∩K(H) , which now is just D . Therefore sp(H) = spess(H) .

(b) ⇔ (c). This follows from the fact that λ /∈ spess(L) if and only of L − λ is Fredholm and

λ /∈ sp(L) if and only if L− λ is invertible.

(a)⇔ (d). This is similar to (a)⇔ (b); one has to use the definition of the essential numerical range

and the known fact that if nress(H) = {0} if and only if H is compact [12]. �

A representation of a C∗-algebra Π : C → B(H) is called essential [15, Page 19] if one has Π(C )∩
K(H) = {0} .

We continue to assume that ω is a 2-cocycle on a tractable groupoid Ξ and we use all the previous

notations. Recalling that Πx = ΠQx,x ◦ ρQx
, one can state an obvious consequence of Lemma 3.15.

Corollary 3.16. For x ∈ X the following assertions are equivalent:

(a1) The representation Πx : C∗(Ξ, ω) → B(Hx) is essential.

(a2) The faithful representation ΠQx,x : C∗
(
ΞQx

, ωQx

)
→ B(Hx) is essential.

(b) The discrete spectrum of Πx(F ) is void for every F ∈ C∗(Ξ, ω) .

(c) For each F ∈ C∗(Ξ, ω) the operator Πx(F ) is Fredholm if and only if it is invertible.

(d) One has nress
[
Πx(F )

]
= nr

[
Πx(F )

]
for every F ∈ C∗(Ξ, ω) .

Remark 3.17. For any H ∈ B(H) it is known that nress(H)=
⋂

K∈K(H) nr(H +K) . Hence the point

(d) of the Corollary can be rewritten as

nr
[
Πx(F ) +K

]
⊃ nr

[
Πx(F )

]
, ∀F ∈ C∗(Ξ, ω) , K ∈ K(Hx) .

A given C∗-algebra might only have essential faithful representations, and this can be applied to

ΠQx,x , which is faithful. To arrive at such a situation, some more terminology is needed.

It will be convenient to assume that X = Ξ(0) is compact. We say that the (closed) invariant subset

A of X is minimal if all the orbits contained in A are dense. Equivalently: A and ∅ are the only closed

invariant subsets of A . The point x ∈ X is said to be almost periodic if Vx,U := {ξ ∈ Ξx |ξxξ−1∈ U}
is syndetic for every neighborhood U of x in X , i.e. KVx,U = Ξx for some compact subset K of Ξ . In

[57, Appendix], assuming thatX is compact, it is shown that the unit x is an almost periodic point if and

only if its quasi-orbit Qx is minimal. A groupoid is called topologically principal if the units with trivial

isotropy form a dense subspace of the unit space. It is étale if d : Ξ → X is a local homeomorphism

(the same will hold for r : Ξ → X , of course).

Proposition 3.18. Assume that x is almost periodic, ΞQx
is étale and topologically principal and the

fiber Ξx is infinite. Then the representation Πx is essential and for every F ∈ C∗(Ξ, ω) the operator

Πx(F ) has purely essential spectrum and its essential numerical range coincides with the usual one.

Proof. By Corollary 3.16, it is enough to show that ΠQx,x is essential.

But all the unital infinite-dimensional representations π : C → B(Hπ) of a simple unitalC∗-algebra

are (faithful and) essential. To check this, suppose that π(C ) ∩ K(Hπ) 6= {0} . It is an ideal of π(C ) ,

thus π−1
[
π(C )∩K(Hπ)

]
6= {0} is an ideal of C . Since C is simple, one has π−1

[
π(C )∩K(Hπ)

]
= C ,

implying that π(C )∩K(Hπ) = π(C ) , i.e. π(C ) ⊂ K(Hπ) . Then π(1C ) = idHπ
is a compact operator,

which is impossible since Hπ in infinitely dimensional.

So we have to prove all these properties for ΠQx,x : C∗
(
ΞQx

, ωQx

)
→ B(Hx) .

Since Qx is compact and ΞQx
is étale, C∗

(
ΞQx

, ωQx

)
is unital. Actually in this case Qx is an open

compact subset of ΞQx
, one has C(Qx) →֒ C0(ΞQx

) ⊂ C∗
(
ΞQx

, ωQx

)
and the constant function

1 : Qx → C (reinterpreted as the characteristic function of Qx defined on ΞQx
) becomes the unit of the
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twisted groupoid algebra. It is sent by ΠQx,x into idHx
. The fibre Ξx is discrete and infinite, hence the

space Hx = ℓ2(Ξx) is infinite dimensional.

As said above, x being almost periodic, the quasi-orbit Qx is minimal. Also using the fact that ΞQx

is étale and topologically transitive, by [75, pag103], the twisted C∗-algebra of the reduced groupoid

ΞQx
is simple. The proof is finished. �

Remark 3.19. In [14] it is proven that, for untwisted étale groupoids, the simplicity of the groupoid

algebra implies that the groupoid is minimal and topologically principal.

Some results in [8, 9] (see also references therein) treat the absence of the discrete spectrum in a

setup presenting some similarities with ours. Using the theory of limit operators, they also treat the

Banach space case, which is inaccessible to us. Restricted to the Hilbert space setting, they basically

work with minimal actions θ of discrete countable groups G on compact Hausdorff spaces X . This

would correspond to the étale transformation groupoid Ξ := X⋊θ G , on which there is no 2-cocycle.

But no condition as topological principalness is in used. So there are some improvements but also some

drawbacks in our Proposition 3.18.

In [42] a precise criterion of simplicity is given for twisted C∗-algebras of row-finite k-graphs with

no sources. Via our Proposition 3.18, this would lead to the absence of the discrete spectrum for op-

erators obtained from twisted Cuntz-Krieger families. The constructions of [42] are too involved to be

reproduced here.

4. EXAMPLES: MAGNETIC OPERATORS ON NILPOTENT LIE GROUPS

4.1. Magnetic pseudo-differential operators. Let us fix a connected, simply connected nilpotent Lie

group G with unit e . If Y ∈ g and X ∈ g♯ (the dual of the Lie algebra g) , we set 〈Y |X 〉 := X (Y ) . The

exponential map exp : g → G is a diffeomorphism, with inverse log : G → g , sending Haar measures

dY on g to a Haar measures da on G . We proceed to construct magnetic pseudo-differential operators

in this context.

Let B be a magnetic field, i.e. a closed 2-form on G , seen as a smooth map associating to any a ∈ G

the skew-symmetric bilinear form B(a) : g× g → R . One more ingredient is available, making use of

the de Rham cohomology. A 1-form A on G , also called vector potential, will be seen as a (smooth)

map A : G → g♯ and it gives rise to a 1-form A ◦ exp : g → g♯. Being a closed 2-form, the magnetic

field can be written as B = dA for some 1-formA . Any other vector potential Ã satisfying B = dÃ is

related to the first by Ã = A+ dψ , where ψ is a smooth function on G ; in physics this is called gauge

covariance.

For a, b ∈ G, one sets [a, b] : R → G by

[a, b]s := exp[(1− s) log a+ s log b] = exp[log a+ s(log b− log a)] .

The function [a, b] is smooth and satisfies [b, a]s = [a, b]1−s , [a, b](0) = a, and [a, b](1) = b . In

addition, [e, y] is the 1-parameter subgroup passing through y . The segment in G connecting a to b is

[[a, b]] :=
{
[a, b]s | s ∈ [0, 1]

}
. The circulation of the vector potential A through the segment [[a, b]]

is the real number

ΓA[[a, b]] ≡

∫

[[a,b]]

A :=

∫ 1

0

〈
log b− log a

∣∣A
(
[a, b]s

)〉
ds .

To conclude the construction, for every vector potential A with B = dA , the outcome is a pseudo-

differential correspondence [16, Sect.4], assigning to suitable symbols σ : G × g♯ → C magnetic

pseudo-differential operators

(4.1)
[
OpA(σ)v

]
(a) :=

∫

G

∫

g♯

ei〈log(ab
−1)|X 〉ei

∫
[[b,a]]

A σ
(
b,X

)
v(b) db dX ,
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acting in S(G) (see below) or in L2(G) . Gauge covariance extends to these operators: if two vector

potentials A,A′ define the same magnetic field, then OpA(σ) and OpA′(σ) are unitarily equivalent.

Remark 4.1. If G = Rn, the dual group can be identified with the vector space dual Rn. It is also true

that Rn is identified with its Lie algebra and (then) with its dual, so in this case the maps exp and log
simply disappear from the formulas. The resulting expression

[
OpA(σ)v

]
(a) =

∫

Rn

∫

Rn

ei〈a−b|X 〉ei
∫
[[b,a]]

A σ
(
b,X

)
v(b) db dX ,

a magnetic modification of the right quantization, is the starting point of a pseudo-differential theory

studied in depth in [38, 58, 59] and other articles (τ -quantizations can also be accomodated, including

the Kohn-Nirenberg and the Weyl forms).

To model the behavior of B at infinity, and to be more explicit on the class of symbols σ, let us

consider a G-equivariant compactification X = G ⊔ X∞ of G . More precisely, we assume that G is a

dense, open subset of the second countable, Hausdorff, compact space X . Thus the action of G on itself

by left translations extends to a continuous action θ of G on X . It is useful to regard X as the Gelfand

spectrum of the Abelian C∗-algebra C(X) . This one is isomorphic to the C∗-algebra A formed by

the restrictions of all the elements of C(X) to G . Clearly, A is a C∗-algebra composed of bounded

and uniformly continuous complex functions defined on G , invariant under left translations and and

containingC0(G) . The condition on B is simply that it extends continuously to X or, equivalently, that

its components in a base are elements of A . Note that such an assumption is not imposed on vector

potentials A generating the given magnetic field. Actually this would be impossible in most situations.

Very often there is not even a bounded vector potential with B = dA ; think of constant or periodic

magnetic fields, for instance.

We denote by S(g♯) the Schwartz space on the vector space g♯ and by A ⊗π S(g♯) the projective

tensor product. A function σ ∈ A ⊗π S(g♯) , a priori defined on G × g♯, has a unique continuous

extension to X × g♯ that we shall use without any further comment, as in (4.2) below. We then have

the following theorem that describes the essential spectrum of ”order −∞ magnetic pseudodifferential

operators”.

Theorem 4.2. Let σ ∈ C(X)⊗π S(g♯) . For each x ∈ X∞ we set

σx : G× g♯ → C , σx(a,X ) := σ
(
θa(x),X

)
,

as well as Bx(a) := B
[
θa(x)

]
, and choose a vector potential Ax such that Bx = dAx . One has

(4.2) spess
[
OpA(σ)

]
=

⋃

x∈X

sp
[
OpAx

(σx)
]

and

(4.3) nress
[
OpA(σ)

]
= co

( ⋃

x∈X

nr
[
OpAx

(σx)
])
.

The remaining part of this subsection is basically dedicated to proving Theorem 4.2. To do this,

we will reformulate the magnetic pseudo-differential operators (4.1) in order to fit a twisted groupoid

framework and next we will apply the general spectral results obtained in the previous section.

The groupoid will be the transformation groupoid Ξ := X⋊θ G . It coincides with X×G as a

topological space, and the algebraic structure is defined through

d(x, a) := x , r(x, a) := θa(x) , (x, a)−1 :=
(
θa(x), a

−1
)
,

(
θa(x), b

)
(x, a) := (x, ba) .

It is easy to see that it is tractable; for amenability use [75, Ch.II, Prop.3.9] and the amenability of G . It

is even a standard groupoid, with main orbitM = G . If m is a Haar measure on G (nilpotent groups are

unimodular), then {δx ⊗m | x ∈ X} is a Haar system on X⋊θG .
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We convert now the magnetic field into a groupoid cocycle. Let us set

∆ :=
{
(t, s) ∈ [0, 1]2

∣∣ s ≤ t
}
.

For a, b, c ∈ G one defines the function 〈a, b, c〉 : R2 → G

〈a, b, c〉t,s := exp
[
log a+ t(log b− log a) + s(log c− log b)

]

and the set 〈〈a, b, c〉〉 := 〈a, b, c〉∆ ⊂ G . Note that

〈a, b, c〉0,0 = a , 〈a, b, c〉1,0 = b , 〈a, b, c〉1,1 = c ,

(4.4) 〈a, b, c〉t,0 = [a, b]t , 〈a, b, c〉1,s = [b, c]s , 〈a, b, c〉t,t = [a, c]t ,

so the boundary of 〈〈a, b, c〉〉 is composed of the three segments [[a, b]] , [[b, c]] and [[c, a]] . One defines

the flux of B through 〈〈a, b, c〉〉 by

ΓB〈〈a, b, c〉〉 ≡

∫

〈〈a,b,c〉〉

B :=

∫ 1

0

∫ t

0

B
(
〈a, b, c〉t,s

)(
log a− log b, log a− log c

)
dsdt .

If now B = dA for some 1-formA , Stokes’ Theorem and (4.4) shows that for q, a, b ∈ G we have

(4.5) ΓB〈〈a, b, c〉〉 = ΓA[[a, b]] + ΓA[[b, c]] + ΓA[[c, a]] .

It also follows from Stokes’ Theorem and the closedness of B that the formula

(4.6) ωB

(
(θa(x), b), (x, a)

)
:= eiΓBx〈〈e,a,ba〉〉

defines a 2-cocycle of the transformation groupoid. In (4.6) we used the extension of B to X and the

expressionBx introduced in the statement of the Theorem.

As an output, one gets the ”magnetic” groupoid C∗-algebra C∗
(
X⋊θ G, ωB

)
constructed out of

the connected simply connected nilpotent group G , a compactification X and the magnetic field B on

G compatible with the compactification. A Schwartz space on G is available; just push forward S(g)
through the exponential map, together with its Fréchet space structure. One can show the next chain of

continuous dense inclusions:

Cc(X×G) ⊂ C(X)⊗π S(G) ⊂ C(X)⊗π L
1(G) ⊂ C∗

(
X⋊θG, ωB

)

involving projective tensor products. Recall the identification C(X) ∼= A .

For further use, we write down the product in this case:

(
f ⋆ωB

g
)
(x, a) =

∫

G

f
(
θb(x), ab

−1
)
g(x, b)ωB

(
(θb(x), ab

−1), (x, b)
)
db

=

∫

G

f
(
θb(x), ab

−1
)
g(x, b) eiΓBx〈〈e,b,a〉〉db .

To make our way towards pseudo-differential operators with scalar-valued symbols, one takes ad-

vantage of the fact that G and g are diffeomorphic through the exponential map; this allows defining a

Fourier transform by

(Fu)(X ) :=

∫

g

e−i〈X|X 〉u(expX) dX =

∫

G

e−i〈log a|X 〉u(a)da .

Then F can be seen as a contraction F : L1(G) → L∞(g♯) , as a unitary map F : L2(G) → L2(g♯) (for a

convenient normalizations of the measures), or as a linear topological isomorphism F : S(G) → S(g♯)
with inverse (F−1u)(a) :=

∫
g♯e

i〈log a|X 〉u(X ) dX . Then one uses the isomorphism

F := id⊗π F : C(X)⊗π S(G) → C(X)⊗ S(g♯)
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to transport the twisted groupoid algebra structure and then to generate twisted pseudo-differential op-

erators. By extension, this may be raised to a C∗-isomorphism

C∗
(
X⋊θG, ωB

)
∼= C∗(G, X, θ, B) ⊃ C(X)⊗ S(g♯) .

Elements of C(X) ⊗ S(g♯) will be identified to functions σ : G × g♯ → C , to become symbols of the

pseudo-differential operators (4.1).

We are not going to present details about the symbol C∗-algebra C∗(G, X, θ, B) (basically an image

via a partial Fourier transform of the twisted groupoid algebra). It will be enough to identify the regular

representations, composed with this partial Fourier transform.

We proceed now to the proof of Theorem 4.2.

Proof. The d-fiber through the unit x is Ξx = {x} × G . So

ιx : Hx = L2({x}×G; δx⊗m) → L2(G;m) ,
[
ιx(u)

]
(a) := u(x, a)

is a Hilbert space isomorphism with inverse acting as
[
ι−1
x (v)

]
(x, a) := v(a) . We denote by

Ix : B(Hx) → B
[
L2(G;m)

]
, Ix(T ) := ιxT ι

−1
x

the C∗-algebraic isomorphism induced by ιx .

The following diagram defines the mapping Opx in terms of the groupoid regular representation :

(4.7)

C∗
(
X⋊θG, ωB

)
⊃ C(X)⊗ S(G) B(Hx)

C∗(G, X, θ, B) ⊃ C(X)⊗ S(g♯) B[L2(G;m)]

❄

F

✲
Πx

❄

Ix

✲
Opx

We compute for σ ∈ C(X)⊗ S(g♯) , v ∈ L2(G;m) and a ∈ G :

[
Opx(σ)v

]
(a) =

(
Πx

[
(id⊗ F−1)σ

](
ι−1
x v

))
(x, a)

=
([

(id⊗ F−1)σ
]
⋆ωB

(
ι−1
x v

))
(x, a)

=

∫

G

[
(id⊗ F−1)σ

](
θb(x), ab

−1
)(
ι−1
x v

)
(x, b) eiΓBx〈〈e,b,a〉〉db

=

∫

G

∫

g♯

ei〈log(ab
−1)|X 〉 eiΓBx〈〈e,b,a〉〉σ

(
θb(x),X

)
v(b)db

=

∫

G

∫

g♯

ei〈log(ab
−1)|X 〉 eiΓBx〈〈e,b,a〉〉σ

(
θb(x),X

)
v(b)db .

Using (4.5) , this may be written

(4.8) eiΓAx [[e,a]]
[
Opx(σ)v

]
(a) =

∫

G

∫

g♯

ei〈log(ab
−1)|X 〉 eiΓAx [[b,a]]σ

(
θb(x),X

)
eiΓAx [[e,b]]v(b)db .

For any x ∈ X , the multiplication operator

UAx
: L2(G) → L2(G) ,

(
UAx

w
)
(c) := eiΓAx [[e,c]]w(c)

is unitary and (4.8) can be rewritten in the form Ux Opx(σ) = OpAx
(σx)Ux. Recalling diagram (4.7),

one finally has

OpAx
(σx) = UAx

Opx(σ)U
−1
Ax

=
(
UAx

ιx
)
Πx

[
F−1(σ)

](
UAx

ιx
)−1
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The conclusion is that our magnetic pseudo-differential operator OpAx
(σx) is unitarily equivalent to

Hx := Πx(f) , f := F−1(σ) ∈ C(X)⊗ S(g) ⊂ C∗
(
X⋊θG, ωB

)
.

In particular, setting x := e ∈ G , we see that OpA(σ) is unitarily equivalent to He := Πe(f) , for the

same f . In its turn, Πe(f) is unitarily equivalent to H0 := Π0(f) , by Remark 2.10 , since G ≡M is the

main orbit of our groupoid.

Thus, the general spectral results from subsections 3.2 and 3.3 imply our Theorem 4.2. The point

s = 0 need not be included explicitly in (4.9) and (4.3), since it automatically belongs to the right

hand sides. For simplicity, our elements were chosen in the twisted groupoid algebras, and not in the

unitalizations.

�

4.2. Partial actions by restrictions and their twisted groupoid algebras. We keep the setting and the

notations of the preceding subsection. In particular, we are given a continuous action θ extending the

left translations of the connected simply connected nilpotent group G to an equivariant compactification

X := G ⊔ X∞ of G , as well as a magnetic field B on G such that its components belong to the C∗-

algebra A , i.e. they extend continuously to X . Vector potentials A such that B = dA will also be

used.

Assumption 4.3. We are going to fix a compact subset K ⊂ G and denote by L the closure in G of the

open set G\K . Then L := L ⊔ X∞ is a compact subset of X . We shall typically denote elements of

L ⊂ G ⊂ X by the symbols x, y, z ∈ X , a, b, c ∈ G and p, q, r ∈ L.

Besides (4.1), we also consider compressed magnetic pseudo-differential operators acting in L2(L).
They are defined by the formula:

[
OpLA(σ)w

]
(p) :=

∫

L

∫

g♯

ei〈log(pq
−1)|X 〉ei

∫
[[q,p]]

A σ
(
s,X

)
w(q) dq dX , p ∈ L .

The only difference between this formula and Equation (4.1) is that now we restrict p and q to the

non-invariant subset L .

Remark 4.4. One identifies L2(L) ≡ L2
(
L;m|L

)
with a closed subspace of the Hilbert space L2(G) .

Setting JL : L2(L) → L2(G) for the canonical injection, the adjoint J∗
L : L2(G) → L2(L) is then the

restriction. It follows then directly from definitions that OpLA(σ) = J∗
L OpA(σ)JL , hence OpLA(σ) is

indeed the compression of the pseudo-differential operator OpA(σ) to L2(L) .

Theorem 4.5. The operators OpLA(σ) and OpA(σ) have the same essential spectra and the same es-

sential numerical range. More explicitly, one has

(4.9) spess
[
OpLA(σ)

]
= spess

[
OpA(σ)

]
=

⋃

x∈X

sp
[
OpAx

(σx)
]
,

(4.10) nress
[
OpLA(σ)

]
= nress

[
OpA(σ)

]
= co

( ⋃

x∈X

nr
[
OpAx

(σx)
])
,

where σx and Bx = dAx have the same meaning as in Theorem 4.2. In addition, OpLA(σ) + s1 and

OpA(σ) + s1 are simultaneously Fredholm.

Remark 4.6. Note that the two operators OpLA(σ) and OpA(σ) act in two different Hilbert spaces. It is

not immediately clear how to prove the first equalities in (4.9) and (4.10) by some relative compactness

criterion. Our proof will be to relate the operatorsOpLA(σ) to a groupoid that is a non-invariant reduction

of the transformation groupoid of the preceding subsection, a result that could be useful elsewhere.
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The starting observation is that θ restricts to a partial action θL of G on L = L ⊔X∞ [28, 27]. The

abstract definition, using the present notations, is that for each a ∈ G one has a homeomorphism

θLa : La−1 → La

between two open subsets of L such that θLe = idL and such that θLa◦θ
L
b , defined on the maximal domain

(θLb )
−1

(
Lb ∩ La−1

)
=

{
z ∈ Lb−1

∣∣∣ θLb (z) ∈ La−1

}
,

is a restriction of θLab . It is easy to check that θLa−1 =
(
θLa

)−1
, where β−1 : V → U denotes here the

inverse of the partial homeomorphism β : U → V .

Specifically, in our case, one sets θLa to be the restriction of θa to

La−1 := L ∩ θ−1
a (L) =

{
z ∈ L

∣∣ θa(z) ∈ L
}
=

(
L ∩ a−1L

)
⊔X∞ ,

and the axioms are easy to check. Unless L = G , the subset L is not θ-invariant, so θL will not be a

global group action.

In [1], to any continuous partial action corresponds a locally compact groupoid. We describe the

construction for our concrete partial action θL, making certain notational simplifications permitted by

the context. One sets

(4.11) Ξ(L) ≡ L×(θ)G :=
{
(z, a)

∣∣ a ∈ G , z ∈ L , θa(z) ∈ L
}

(it can also be seen as the disjoint union over a ∈ G of the domainsLa−1). The topology is the restriction

of the product topology of L× G . The inversion is defined by

(z, a)−1 :=
(
θa(z), a

−1
)

and the multiplication (only) by (
θa(z), b

)(
z, a

)
:=

(
z, ba

)
.

Then the source and the range map are given by

dL(z, a) = (z, e) ≡ z , rL(z, a) =
(
θa(z), e

)
≡ θa(z) ,

so we identify the unit space of the groupoid with L . To L = G corresponds Ξ ≡ Ξ(X) = X⋊θG , the

transformation groupoid defined by the initial global action θ .

Proposition 4.7. Let (X, θ,G) be a dynamical system, where X = G ⊔ X∞ is a Hausdorff second-

countable compactification of the connected simply connected nilpotent group G and the restriction of

the action θ of G on itself consists of left translations. Let L ⊂ G be a subset satisfying Assumption 4.3

and L := L ⊔X∞ . The partial transformation groupoid Ξ(L) is a standard groupoid with unit space

L and main orbit L . It is the (non-invariant) reduction of the transformation groupoid Ξ ≡ Ξ(X) to L .

Proof. Clearly the space Ξ(L) is locally compact, Hausdorff and second countable.

From (4.11) and the form of the maps d, r : Ξ → X it follows that

Ξ(L) =
{
ξ ∈ Ξ

∣∣ d(ξ) , r(ξ) ∈ L
}
= d−1

(
L
)
∩ r−1

(
L
)
,

so Ξ(L) is the reduction of Ξ ≡ Ξ(X) to the closed (non-invariant) subsetL . It is an closed subgroupoid

of Ξ , thus a locally compact groupoid in itself. Its amenability follows from [75, Ch.II, Prop.3.7, 3.9].

The problem of (fibrewise) restricting Haar systems to non-invariant closed subsets is not trivial. In

[69, Sect.1] it has been solved for the case of transformation groupoids. We write down the output using

the present notations.

For any z ∈ L , denote by λz the restriction to Ξ(L) of the product δz⊗m , as well as the set of

L-admissible translations

GL(z) :=
{
a ∈ G

∣∣ θa(z) ∈ L
}
.

A necessary and sufficient condition for {λz |z ∈ L} to be a Haar system for the restricted groupoid is

precisely the pair of conditions:
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(α) the restriction of the Haar(=Lebesgue) m to any subset GL(z) has full support,

(β) the mapping L ∋ z →
∫
GL(z) ψ(a)dm(a) ∈ C is continuous for each ψ ∈ Cc(G) .

But in our case one has

(4.12) GL(z) = G if z ∈ X∞ and GL(b) = Lb−1 if z = b ∈ L .

Condition (α) surely holds for z ∈ X∞ , and it also holds for z = b ∈ L , since m is invariant under

(right) translations and L was defined to be the closure of the open set G\K (the Haar measure of

any non-void open set is strictly positive). Condition (β) amounts to show for every ψ ∈ Cc(G) the

continuity of the function

Ψ : L→ C , Ψ(z) :=

∫

G

ψ(a)da if z ∈ X∞ , Ψ(b) :=

∫

Lb−1

ψ(a)da if z = b ∈ L .

The continuity at points belonging to L is standard and easy (translations are continuous in L1(G)) . Let

us set D := supp(ψ) ; it is a compact subset of G . To show continuity at a point z∞ ∈ X∞ , it is enough

to find, for each ǫ > 0 , a neighborhood Vǫ of z∞ such that

(4.13) |Ψ(b)−Ψ(z∞)| =
∣∣∣
∫

Lb−1∩D

ψ(a)da−

∫

D

ψ(a)da
∣∣∣ ≤ ǫ , ∀ b ∈ Vǫ ∩ G .

Assume that b−1 does not belong to the compact subset K−1D ; then D ∩ Kb−1 = ∅ . It follows that

D ⊂
(
Kb−1

)c
= Kcb−1 ⊂ Kcb−1 = Lb−1,

so Lb−1∩D = D and the difference of integrals in (4.13) is in fact zero. But it is clear that, given such a

compact set K−1D , there is a neighborhoodVǫ of z∞ that does not meet it. Thus the restriction problem

is solved.

We deal now with the remaining issues. The dL-fiber of z ∈ L is

[Ξ(L)]z =
{
(z, a)

∣∣ θa(z) ∈ L
}
= {z} × GL(z) .

The isotropy group is

[Ξ(L)](z) =
{
(z, a)

∣∣ θa(z) = z
}

and can be identified with the isotropy group of z with respect to the initial global action. In particular,

if z ≡ p ∈ L , it is trivial. Two points z1 and z2 are orbit-equivalent if, and only if, both being elements

of L , are on the same θ-orbit. In particular L is itself an (open and dense) orbit under the action of

the groupoid. The other equivalence classes are the orbits contained in X∞ . The groupoid Ξ(L) is

standard. �

Proof of Theorem 4.5. The proof is based on Proposition 4.7. Note the decompositions

(4.14) Ξ(L) = Ξ(L) ⊔ Ξ(X∞) , Ξ(X) = Ξ(G) ⊔ Ξ(X∞) .

The second one has been used in the previous subsection to prove Theorem 4.2, in conjunction with the

2-cocycle (4.6). The first one and the restricted 2-cocycle

ωL
B

(
(θLq (x), p), (x, q)

)
:= eiΓBx〈〈e,q,pq〉〉, q, p ∈ L , x ∈ X∞

could be used similarly to prove the first terms in (4.9) and (4.10) are equal to the last ones, respectively.

The partial Fourier transform serves in the same way to relate the regular representations of the twisted

groupoid C∗-algebra associated to
(
Ξ(L), ωL

B

)
to the compressed magnetic pseudo-differential opera-

tors. Recall that the dL-fibers [Ξ(L)]z = {z}×GL(z) of Ξ(L) are now of two distinct types, according

to (4.12). This explains why, while the operator OpLA(σ) acts in L2(L) , ”the asymptotic operators”

OpAx
(σx) act in L2(G) .

A more direct proof is to note that the invariant restrictions to X∞ of the two groupoids in (4.14)

coincide, as well as the two cocycles. Then the first equalities in (4.9) and (4.10) follow, respectively,
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from the first equalities of (3.7) and (3.10) ; both involve restrictions of the symbols to the common part

Ξ(X∞) , and these restrictions are the same.

For the Fredholm properties one uses Atkinson’s Theorem.

4.3. Twisted Wiener-Hopf operators on the Heisenberg group. In this subsection G will be the 3-

dimensional Heisenberg group; it is a connected simply connected 2-step nilpotent group. As a set

G := R3, the multiplication being

(a1, a2, a3)(b1, b2, b3) := (a1 + b1, a2 + b2, a3 + b3 + a1b2)

and the inversion (a1, a2, a3)
−1 := (−a1,−a2,−a3 + a1a2) . The Lebesgue measure dm(a) ≡ da is a

Haar measure . Its reduction to the closed submonoid

H := R3
+ = {h = (h1, h2, h3) ∈ G |h1, h2, h3 ≥ 0}

has full support; L2(H) will be identified to a closed subspace of the Hilbert space L2(G) . The adjoint

J∗
H of the canonical inclusion JH : L2(H) → L2(G) is the restriction map from L2(G) to L2(H) . Here

and below we use the fact that H is solid, i.e. it coincides with the closure of its interior.

As in the preceding subsection, we fix a magnetic field B and a corresponding vector potential A
with B = dA . For every ϕ ∈ L1(G) one has the twisted (magnetic) convolution operator in L2(G)
given by

[
CA(ϕ)u

]
(a) :=

∫

G

ei
∫
[[b,a]]

Aϕ(ab−1)u(b)db .

Definition 4.8. The compression WA(ϕ) := J∗
H CA(ϕ)JH to L2(H) of CA(ϕ) is called the magnetic

Wiener-Hopf operator of symbol ϕ ∈ L1(G) and it has the explicit form

[
WA(ϕ)w

]
(h) :=

∫

H

ei
∫
[[k,h]]

Aϕ(hk−1)w(k)dk , ∀w ∈ L2(H) , h ∈ H .

The C∗-subalgebra of B
[
L2(H)

]
generated by all these operators is the magnetic Wiener-Hopf C∗-

algebra, denoted by WA(G,H) .

Remark 4.9. If B = dA = dA′ is given by two vector potentials, the connection is A′ = A + dν ,

where ν is a smooth real function on G . It follows immediately that WA′(ϕ) = e−iν(·)WA(ϕ)e
iν(·).

The two Wiener-Hopf operators associated to the same symbol but to two equivalent vector potentials

are unitarily equivalent (this is the gauge covariance in this setting). So their spectral properties only

depend on the magnetic field. It also follows that the two C∗-algebras WA(G,H) and WA′(G,H) are

isomorphic, the isomorphism being unitarily implemented.

Following [69], we indicate a compactification of H suited to study these Wiener-Hopf operators.

One starts with

X := {ρ ∈ L∞(G) | ‖ρ‖∞ ≤ 1} .

By the Alaoglu theorem, it is a compact space with respect of the w∗-topology (L∞(G) is the dual of

the Banach space L1(G)) . In terms of characteristic functions, one introduces the map

χ : H → X, χ(h) := χhH−1 .

It is injective, since H is solid. The closure of its range X := χ(H) ⊂ X will be the unit space of a

future groupoid. It is shown in [69, Prop. 2.1] that all the elements of X are characteristic functions

χE , where E belongs to some family X of solid subsets of G . Through the bijection X ∋ E →
χE ∈ X one transfers to X the w∗-topology. The (homeomorphic) spaces X and X may be seen as

compactifications of H . Actually, cf. [69, Sect. 3], the compactification is regular, meaning that χ(H) is

open in its closure X . It is also true that, if a ∈ G and E ∈ X , one has aE ∈ X if and only if a ∈ E−1.
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Remark 4.10. Let us assume that the restriction of the magnetic field B to H admits a continuous

extension B̃ to the compactification X . Thus B̃(hH−1) = B(h) if h ∈ H . For any E ∈ X we set

BE : E−1 → ∧2(G) , BE(a) := B̃(aE) , ∀ a ∈ E−1.

In particular, if h ∈ H and a ∈ (hH−1)−1 = Hh−1 (meaning that ah ∈ H) , then

BhH−1(a) = B̃(ahH−1) = B(ah) .

So, for every h ∈ H , BhH−1 is the restriction to Hh−1⊂ G of a right translation of B . Taking h = e we

see that BH−1 is the restriction to H of the magnetic field B .

We are going to need two particular subsets of G ≡ R3 :

(4.15) U = R−× R−× R and V = {b ∈ R3 | b2 ≤ 0, b3 − b1b2 ≤ 0} ,

with group inverses

U−1 = R+× R+× R and V−1 = R× R+× R+ .

One also define the operators in L2(U) and L2(V) , respectively, by

(4.16)
[
πU(ϕ)w

]
(a) :=

∫

U−1

eiΓBU
〈〈e,b,a〉〉ϕ(ab−1)w(b)db ,

(4.17)
[
πV(ϕ)w

]
(a) :=

∫

V−1

eiΓBV
〈〈e,b,a〉〉ϕ(ab−1)w(b)db .

Theorem 4.11. Given ϕ ∈ Cc(G) and B = dA a magnetic field on G whose restriction to H can be

extended continuously to X , one has

spess
[
WA(ϕ)

]
= sp

[
πU(ϕ)

]
∪ sp

[
πV(ϕ)

]

and

nress
[
WA(ϕ)

]
= co

(
nr
[
πU(ϕ)

]
∪ nr

[
πV(ϕ)

])
.

The magnetic Wiener-Hopf operatorWA(ϕ) is Fredholm if and only if πU(ϕ) and πV(ϕ) are invertible.

To prove this result, we use the groupoid

Ξ :=
{
(E, a) ∈ X ×G |a ∈ E−1

}

with the restriction of the product topology and the structure maps

(aE, b)(E, a) := (E, ba) , (E, a)−1 :=
(
aE, a−1

)
,

d(E, a) := E , r(E, a) := aE .

Note that

(4.18) ΞE := d−1({E}) =
{
(E, a) |a ∈ E−1

}
∼= E−1.

The properties of this groupoid have been investigated in [69] (see also [65, 68]). Restricting the Haar

measure m to the solid subset E−1 ⊂ G and then transferring it to the fiber ΞE , one gets a right Haar

system. In our terminology, the groupoid Ξ is standard, with unit space X ∼= X and main orbit

H ≡ χ(H) =
{
χhH−1 | h ∈ H

}
. Actually, the map H × H ∋ (h, k) →

(
kH−1, hk−1

)
∈ Ξ|H is an

isomorphism between the pair groupoid and the (invariant) restriction of Ξ to its main orbit.

The construction of the groupoid is quite general. Following [69, Sect.4], we indicate now the unit

space and its quasi-orbit structure for the case of the 3-dimensional Heisenberg group. First of all, if

h := (h1, h2, h3) ∈ R3 ≡ G , then

hH−1 =
{
a = (a1, a2, a3)

∣∣ a1 ≤ h1, a2 ≤ h2, a3 + (h2 − a2)a1 ≤ h3
}
.
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We recall that {hH−1 | h ∈ H ≡ R3
+} has been identified to H . To describe the other sets E ∈ X that

are units of the groupoid, for any h = (h1, h2, h3) ∈ R3
+ we use the following notations:

Sh1,h2,· := {a ∈ R3 | a1 ≤ h1, a2 ≤ h2} ,

S·,h2,h3 := {a ∈ R3 | a2 ≤ h2, a3 + (h2 − a2)a1 ≤ h3} ,

Sh1,·,· := {a ∈ R3 | a1 ≤ h1} , S·,h2,· := {a ∈ R3 | a2 ≤ h2} .

Then

X = X1,2,3 ⊔ X1,2 ⊔ X2,3 ⊔ X1 ⊔ X2 ⊔ X0

is the disjoint union of six orbits, given explicitly by

X1,2,3 := {hH−1 | h ∈ R3
+} , X0 := {R3} ,

X1,2 := {Sh1,h2,· | h1 ≥ 0, h2 ≥ 0} , X2,3 := {S·,h2,h3 | h2 ≥ 0, h3 ≥ 0} ,

X1 := {Sh1,·,· | h1 ≥ 0} , X2 := {S·,h2,· | h2 ≥ 0} .

The quasi-orbits are given by closures in the weak∗-topology (transported from X ⊂ L∞(G) to X ) :

X1,2,3 = X , X0 = X0 ,

X1,2 = X1,2 ⊔ X1 ⊔ X2 ⊔ X0 , X2,3 = X2,3 ⊔ X1 ⊔ X2 ⊔ X0 ,

X1 = X1 ⊔ X0 , X2 = X2 ⊔ X0 .

Note that

(4.19) X \H = X1,2 ∪ X2,3 .

Lemma 4.12. The formula

ωH
B

(
(aE, b), (E, a)

)
:= eiΓBE

〈〈e,a,ba〉〉, E ∈ X , a, ba ∈ E−1

defines a 2-cocycle of the groupoid Ξ .

Proof. To check the 2-cocycle identity, one considers three elements of the groupoid

ξ := (baE, c) , η := (aE, b) , ζ := (E, a) , with a, ba, cba ∈ E−1.

Then

ωH
B(ξ, η

)
ωH
B(ξη, ζ) = ωH

B

(
(baE, c), (aE, b)

)
ωH
B

(
(aE, cb), (E, a)

)

= eiΓBaE
〈〈e,b,cb〉〉eiΓBE

〈〈e,a,cba〉〉,

while

ωH
B(ξ, ηζ)ω

H
B(η, ζ

)
= ωH

B

(
(baE, c), (E, ba)

)
ωH
B

(
(aE, b), (E, a)

)

= eiΓBE
〈〈e,ba,cba〉〉eiΓBE

〈〈e,a,ba〉〉.

The relation

eiΓBaE
〈〈e,b,cb〉〉 = eiΓBE

〈〈a,ba,cba〉〉

and Stokes Theorem for the closed 2-formBE show that the two expressions are equal.

Normalization is easy: the units of the groupoid are of the form E ∈ X , χE ∈ X or (E, e) ∈ Ξ(0),

depending on the interpretation. One has

ωH
B

(
(E, b), (E, e)

)
= eiΓBE

〈〈e,e,b〉〉 = 1 , if b ∈ E−1,

ωH
B

(
(aE, e), (E, a)

)
= eiΓBE

〈〈e,a,a〉〉 = 1 , if a ∈ E−1.

The continuity of the 2-cocycle follows straightforwardly from the continuity of B̃ on X . �
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Now we compute an adapted version of the regular representations. Let E ∈ X . By (4.18) one has

the unitary map

ιE : HE := L2(ΞE) → L2(E−1) ,
[
ιE(v)

]
(a) := v(E, a) , ∀ a ∈ E−1,

inducing a unitary equivalence

IE : B(HE) → B
[
L2(E−1)

]
, IE(S) := ιESι

−1
E .

Denoting by ΠE the regular representation attached to the unit E , we are interested in

Π̃E := IE ◦ΠE : C∗
(
Ξ, ωH

B

)
→ B

[
L2(E−1)

]
.

One computes for f ∈ Cc(Ξ) , w ∈ L2(E−1) and a ∈ E−1

[
Π̃E(f)w

]
(a) =

[
ιEΠE(f)ι

−1
E w

]
(a) =

[
ΠE(f)ι

−1
E w

]
(E, a)

=
[
f ⋆ωH

B
(ι−1

E w)
]
(E, a)

=

∫

ΞE

f(bE, ab−1) (ι−1
E w)(E, b)ωH

B

(
(bE, ab−1), (E, b)

)
dλΞE

(E, b)

=

∫

E−1

eiΓBE
〈〈e,b,a〉〉f(bE, ab−1)w(b)db .

It is possible, but not necessary, to write all these operators in terms of vector potentials, up to unitary

equivalence.

Remark 4.13. There is an obvious injection

Cc(G) ∋ ϕ→ fϕ ∈ Cc(Ξ) , fϕ(E, a) := ϕ(a) .

We are only going to consider the operators acting in L2(E−1) and given by

(4.20)
[
πE(ϕ)w

]
(a) :=

[
Π̃E(fϕ)w

]
(a) =

∫

E−1

eiΓBE
〈〈e,b,a〉〉ϕ(ab−1)w(b)db .

We are mainly interested in three particular cases. First of all, notice that the subsets introduced in

(4.15) may be identified as U = S0,0,· and V = S·,0,0 . For these two cases, the operators πE(ϕ) are

precisely those given in (4.16) and (4.17). Let us also set E := H−1 in (4.20). By Remark 4.10, for

ϕ ∈ Cc(G) , w ∈ L2(H) and h ∈ H we have

(4.21)
[
πH−1(ϕ)w

]
(h) =

∫

H

eiΓB〈〈e,k,h〉〉ϕ(hk−1)w(k)dk .

Since B = dA one has, by Stokes’ Theorem,

ΓB〈〈e, k, h〉〉 = ΓA[[e, k]] + ΓA[[k, h]] + ΓA[[h, e]]

and (4.21) becomes

eiΓA[[e,h]]
[
πH−1(ϕ)w

]
(h) =

∫

H

eiΓA[[k,h]]ϕ(hk−1) eiΓA[[e,k]]w(k)dk .

Recalling the definition 4.8 of the Wiener-Hopf operators and since the operator w → eiΓA[[e,·]]w is

unitary in L2(H) , we get the unitary equivalence of the operators πH−1(ϕ) and WA(ϕ) .

By all these preparations, by the covering (4.19) of the boundary of the compactification by two

quasi-orbits and the fact that U ∈ X1,2 ⊂ X1,2 and V ∈ X2,3 ⊂ X2,3 , our Theorem 4.11 follows from

the results of subsections 3.2 and 3.3.

The fact that the quasi-orbit structure of the unit space of the groupoid is known and simple, allowed

us to write the results in terms just of a pair of ”asymptotic operators”, instead of using the entire family

{πE(ϕ) | E ∈ X \H} .
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5. LOCALIZATION AND NON-PROPAGATION PROPERTIES

5.1. The abstract result. Assuming that Ξ is a standard groupoid with main orbitM and 2-cocycle ω ,

we pick a normal element F ∈ C∗(Ξ, ω)M. Its image H0 := ΠM
0 (F ) in the vector representation is an

operator in H0 := L2(M,µ) . By 1V we denote the charcteristic function of the set V ⊂ M , as well as

the corresponding multiplication operator in H0 .

Theorem 5.1. Let F ∈ C∗(Ξ, ω)M be normal and Q ⊂ X∞ := X\M a quasi-orbit. Let κ ∈ C0(R)
be a real function with support disjoint from the spectrum of the restriction FQ ∈ C∗(ΞQ, ωQ)

M .

(i) For every ǫ > 0 there is a neighborhood W of Q in X such that, setting W0 := W ∩M , one

has

‖1W0κ(H0)‖B(H0) ≤ ǫ .

(ii) Suppose that F is self-adjoint. Then for all t ∈ R and u ∈ H0, one also has

(5.1) ‖1W0e
itH0κ(H0)u‖H0 ≤ ǫ‖u‖H0.

Remark 5.2. To see the generic usefulness of (5.1), suppose that one is interested in the unitary group{
eitH0 | t ∈ R

}
, perhaps describing the evolution of a quantum system. The estimate holds for every

”time” t ∈ R and any ”state” u ∈ H0 . We used terminology from Quantum Mechanics, having in

mind the quantum interpretation of quantities as ‖1W0vt‖
2
H0

(a localization probability). If H0 is the

Hamiltonian of a quantum system, a condition of the form κ(H0)u = u means roughly that the vector

(quantum state) u have energies belonging to the support of the function κ , interpreted as a ”localization

in energy”. In a typical case, κ could be a good approximation of the characteristic function of a real

interval I . So, finally, we expect (5.1) to hold because of some correlation between the energy interval

I and the region W0 ⊂ M in which ”propagation is improbable for time-dependent states ut = eitH0u
with u having energies only belonging to I”.

Of course (ii) follows from (i), because eitH0 is a unitary operator and it commutes with κ(H0) . We

put (5.1) into evidence because of its dynamical interpretation. So we need to show (i).

We start with three preliminary results; by combining them, Theorem 5.1 will follow easily. The first

one is abstract, it deals with elements belonging to a C∗-algebra endowed with a distinguished ideal,

and it reproduces [3, Lemma 1].

Lemma 5.3. Let G be a normal element of a unital C∗-algebra A and let K be a closed self-adjoint

two-sided ideal of A . Denote by spK (G) the spectrum of the canonical image of G in the quotient

A /K . If κ ∈ C0(R)R and supp(κ) ∩ spK (G) = ∅ , then κ(G) ∈ K .

The second preliminary result concerns a relationship between multiplication operators and elements

of the twisted groupoidC∗-algebra.

Lemma 5.4. (i) The (Abelian) C∗-algebra C(X) of complex continuous functions on X acts by

double centralizers

C(X)× Cc(Ξ) ∋ (ψ, f) → ψ · f := (ψ ◦ r) f ∈ Cc(Ξ) ,

Cc(Ξ)× C(X) ∋ (f, ψ) → f · ψ := (ψ ◦ d) f ∈ Cc(Ξ) .

This action extends to the twisted groupoid C∗-algebra and leads to an embedding in the mul-

tiplier C∗-algebra: C(X) →֒ C∗(Ξ, ω)M .

(ii) The canonical extension ΠM
0 of the vector representation to the multiplier algebra C∗(Ξ, ω)M

acts on C(X) by multiplication operators:

(5.2) ΠM

0 (ψ)u = ψ|M u , ∀ψ ∈ C(X) , u ∈ L2(M) .
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Proof. The point (i) is straightforward; actually it is a particular case of [75][II,Prop. 2.4(ii)] (take there

H := X to be the closed subgroupoid of G = Ξ) .

The point (ii) is also straightforward. One has to check, for instance, the following identity in

B
[
L2(M)

]
:

(5.3) Π0(ψ · f) = ψ|M Π0(f) , ∀ψ ∈ C(X) , f ∈ Cc(Ξ) .

Recall that rz is the restriction of range map r to the d-fiber Ξz , and it is a bijection Ξz →M if z ∈M .

We can write for any z ∈M , ξ ∈ Ξz and u ∈ L2(M,µ) ≡ L2(M, rz(λz))

[
(ψ · f) ⋆ω (u ◦ rz)

]
(ξ) =

∫

Ξ

ψ[r(η)]f(η)u[r(η−1ξ)]ω
(
η, η−1ξ

)
dλr(ξ)(η)

= ψ[r(ξ)]

∫

Ξ

f(η)u[r(η−1ξ)]ω
(
η, η−1ξ

)
dλr(ξ)(η)

=
[
(ψ ◦ rz)

(
f ⋆ω (u ◦ rz)

)]
(ξ) ,

which is (5.3) in desguise, by (2.7). We leave the remaining details to the reader. �

The third result essentially speaks of a bounded approximate unit.

Lemma 5.5. Let A ⊂ X be a closed invariant subset and f ∈ C∗
(
ΞX\A, ωX\A

)
⊂ C∗(Ξ, ω) . For

every ǫ > 0 there exists ψ ∈ C(X) with ψ(X) = [0, 2] , ψ|A = 2 and

(5.4) ‖ψ · f‖C∗(Ξ,ω) + ‖f · ψ‖C∗(Ξ,ω) ≤ ǫ .

Proof. Let us set B := X\A . By density, there exists f0 ∈ Cc

(
ΞB

)
such that ‖f − f0‖C∗(Ξ,ω) ≤ ǫ/4 .

Set

S0 := d[supp(f0)] ∪ r[supp(f0)] ;

since ΞB = ΞB= ΞB
B , the subset S0 is compact and disjoint fromA . So there is a continuous function

ψ : X → [0, 2] with ψ|A = 2 and ψ|S0 = 0 . In particular, ψ · f0 and f0 · ψ both vanish. Then

‖ψ · f‖C∗(Ξ,ω)+ ‖f · ψ‖C∗(Ξ) = ‖ψ · (f − f0)‖C∗(Ξ,ω)+ ‖(f − f0) · ψ‖C∗(Ξ,ω)

≤ 2‖ψ‖∞‖f − f0‖C∗(Ξ,ω) ≤ ǫ ,

since C(X) has been embedded isometrically in the multiplier algebra of C∗(Ξ, ω) , by Lemma 5.4. �

We can prove now Theorem 5.1, (i) .

Proof. We use the identification

C∗
(
ΞQ, ωQ

)M ∼= C∗(Ξ, ω)M/C∗
(
ΞX\Q, ωX\Q

)
,

implying the fact that the spectrum spC∗(ΞX\Q)(F ) of the image of F in the quotient C∗-algebra

coincides with sp
(
FQ | C∗(ΞQ, ωQ)

M
)

. Then, since we assumed that supp(κ) ∩ sp
(
FQ

)
= ∅ ,

one has κ(F ) ∈ C∗
(
ΞX\Q, ωX\Q

)
; this follows from Lemma 5.3, with A := C∗(Ξ, ω)M, K :=

C∗
(
ΞX\Q, ωX\Q

)
.

Using Lemma 5.4, the fact that morphisms commute with the functional calculus and the injectivity

of ΠM
0 , for any ψ ∈ C(X) one has

‖ψ|M κ(H0)‖B(H0) = ‖ΠM

0 (ψ)κ
[
ΠM

0 (F )
]
‖B(H0)

= ‖ΠM

0

[
ψ · κ(F )

]
‖B(H0)

= ‖ψ · κ(F )‖C∗(Ξ,ω).

Let us fix ǫ > 0 . By Lemma 5.5 with A = Q and f = κ(F ) , there is a continuous function

ψ : X → [0, 2] with ψ|Q = 2 and

‖ψ|M κ(H0)‖B(H0) = ‖ψ · κ(F )‖C∗(Ξ,ω) ≤ ǫ .
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Let us set W := ψ−1(1,∞) ; it is an open neighborhood of Q on which 1W ≤ ψ . In particular,

1W0 = 1W |M ≤ ψ|M . Then

‖1W0 κ(H0)‖B(H0) = ‖κ(H0)1W0κ(H0)‖
1/2
B(H0)

≤ ‖κ(H0)(ψ|M )2κ(H0)‖
1/2
B(H0)

= ‖ψ|M κ(H0)‖B(H0) ≤ ǫ

and the proof is over. �

Remark 5.6. When applying Theorem 5.1 one might want to take Remark 2.25 into consideration, in

order to have a rather large class of elements to which the result applies and the restriction operation

is explicit. On the other hand, to F ∈ C∗(Ξ)M one can add a ”potential” V ∈ C(X) ⊂ C∗(Ξ)M, for

which ρMQ (V ) = V |Q .

Remark 5.7. We already know from Corollary 3.8 that sp
(
FQ

)
is included (very often strictly) in the

essential spectrum of the operatorH0 . Thus, in Theorem 5.1, the interesting case is

supp(κ) ⊂ spess(H0)\sp
(
FQ

)
⊂ sp(H0)\sp

(
FQ

)
.

5.2. Standard groupoids with totally intransitive groupoids at the boundary. We recall that a to-

tally intransitive groupoid is a groupoid Ξ ⇒ X for which the source and the range maps coincide [52,

Definition 1.5.9]. Then the groupoid can be written as the disjoint union of its isotropy groups.

Assume again that Ξ is a standard groupoid over the unit spaceX =M ⊔X∞, with open dense orbit

M having trivial isotropy. Also assume that ”the restriction at infinity”

ΞX∞ =: Σ =
⊔

n∈X∞

Σn

is a totally transitive groupoid, where Σn := Ξn
n is the isotropy group of n ∈ X∞ . We set

q:= d∞ = r∞ : Σ → X∞

for the bundle map. Since Ξ is standard, each Σn is an amenable, second countable, Hausdorrff locally

compact group. Since, by assumption, Ξ has a (chosen) right Haar measure, this is also true for the

closed restriction Σ ; for every n ∈ X∞ the fiber measure λn is a right Haar measure on Σn .

The orbit structure is very simple: There is the main (open, dense) orbit M , and then all the points

n ∈ X∞ form singleton orbits by themselves: On = Qn = {n} . The Hilbert space Hn is the L2-space

of the group Σn with respect to the Haar measure λn . We also take into consideration a 2-cocycle ω on

Ξ . Its restriction to ΞM is a 2-coboundary, by Remark 2.10. The restrictions ωn : Σ
(2)
n ≡ Σ2 → T are

usual group 2-cocycles, for all n ∈ X∞ . The twisted groupoid C∗-algebra C∗
(
Σn, ωn

)
corresponding

to the quasi-orbit {n} coincides now with the twisted group C∗-algebra of Σn .

Let uf fix a function F belonging to L∞,1
cont(Ξ) ⊂ C∗(Ξ, ω) , cf. Remark 2.25. One gets restrictions

F∞ := ρX∞(F ) = F |Σ ∈ L∞,1
cont(Σ) ,

F{n} := ρn(F ) = F |Σn
∈ L∞,1

cont(Σn) = L1(Σn) ∩ C(Σn) .

It is easy to see that the operators Hn := Πn(F ) given by regular representations are just twisted

convolution operators:

(5.5) [Hn(u)](a) =

∫

Σn

ωn(ab
−1, b)Fn

(
ab−1

)
u(b)dλn(b) , u ∈ L2(Σn;λn) , a ∈ Σn .

Then one can easily write down formulae for the essential spectrum and the essential numerical

range of the operator H0 = Π0(F ) ∈ B
[
L2(M)

]
in the vector representation, using the results from

subsections 3.2 and 3.3. In addition, H0 is Fredholm if and only if all the operators Hn are invertible.
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We only include here only a particular case, in which more can be said about each individualHn . This

is based on the following remark.

Remark 5.8. Assume that ωn is trivial and the isotropy group Σn is Abelian, with Pontryagin dual

group Σ̂n . The Fourier transform implements an isomorphism between the (Abelian) groupC∗-algebra

C∗(Σn) and the function algebra C0

(
Σ̂n

)
of all complex continuous functions on Σ̂n decaying at infin-

ity. The operatorHn of convolution by F |Σn
is unitarily equivalent to the operator of multiplication by

the Fourier transform F̂ |Σn
acting in L2

(
Σ̂n; λ̂n

)
, where λ̂n is a Haar measure on the dual group, con-

veniently normalized. The spectrum of this operator is simply the closure of the range of this function

Rn := F̂ |Σn

(
Σ̂n

)
.

Corollary 5.9. Suppose that the groupoid Ξ is standard, with main orbit M and with abelian totally

intransitive groupoid at infinity. Then, using the notations above, one has

(5.6) spess(H0) =
⋃

n∈X∞

Rn ,

(5.7) nress(H0) = co
( ⋃

n∈X∞

Rn

)
.

Proof. One has to apply Corollary 3.8, Theorem 3.13 (with obvious adaptations) and Remark 5.8. The

number s is zero in this situation, and it is already contained in the right hand sides. Since C∗(Σn) ∼=
C0

(
Σ̂n

)
is Abelian, the operators Hn are normal, so nr(Hn) = co[sp(Hn)] = co(Rn) , leading to

(5.8) nress(H0) = co
( ⋃

n∈X∞

co
(
Rn

))
.

Then it is easy to see that the right hand side of (5.7) and (5.8) coincide.

Actually, there is a direct way to deduce (5.7) from (5.6). The quotient of Π0

[
C∗(Ξ)

]
through the

ideal of compact operators is Abelian, isomorphic to C∗
(
ΞX∞

)
, so H0 is essentially normal and its

essential numerical range is then the convex hull of its essential spectrum. �

One may write down the localization result of Section 5 for standard twisted groupoids with totally

intransitive groupoids at the boundary, but without further assumptions it is impossible to make explicit

the neighborhoodsW of the singleton quasi-orbits {n} . To get a transparent, still general situation, we

are going to construct X as a compactification of M under the following

Hypothesis 5.10. Let M = M in ⊔Mout be a second countable Hausdorff locally compact space with

topology T (M) , decomposed as the disjoint union between a compact component M in and a non-

compact one Mout. Let p : Mout → X∞ be a continuous surjection to a second countable Hausdorff

compact space X∞ , with topology T (X∞) . We are also going to suppose that no fibre Mout
n :=

p−1({n}) is compact.

Let us also denote by K(M) the family of all the compact subsets ofM . We need a convention about

complements: if S ⊂Mout, we are going to write

S̃ :=Mout\S , Sc :=M \S =M in ⊔ S̃ .

For E ∈ T (X∞) and K ∈ K(M) one sets

AM
E,K := p−1(E) ∩Kc ⊂Mout ⊂M,

AE,K := AM
E,K ⊔E ⊂ X :=M ⊔X∞ .

One has

AM
E,K = AE,K ∩M, E = AE,K ∩X∞ ,
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as well as

AE1,K1 ∩ AE2,K2 = AE1∩E2,K1∪K2 .

Let us set

A(X) :=
{
AE,K

∣∣E ∈ T (X∞) , K ∈ K(M)
}
,

B(X) := T (M) ∪ A(X) .

It is easy to check that B(X) is the base of a topology on X (different from the disjoint union topology

on M ⊔X∞) , that we denote by T (X) . It also follows easily that M embeds homeomorphically as an

open subset of X and the topology T (X) , restricted to X∞ , coincides with T (X∞) .

Lemma 5.11. The topological space (X, T (X)) is a compactification of (M, T (M)) .

Proof. To show that X is compact, it is enough to extract a finite subcover from any of its open cover

of the form {
Oγ | γ ∈ Γ

}
∪
{
AEδ,Kδ

| δ ∈ ∆
}
,

whereOγ ∈ T (M) , Eδ ∈ T (X∞) andKδ ∈ K(M) . SinceX∞ is compact, one hasX∞ =
⋃

δ∈∆0
Eδ

for some finite subset ∆0 of ∆ . We show now that the complement of the (open) set
⋃

δ∈∆0
AM

Eδ,Kδ
in

M is compact. One has
[ ⋃

δ∈∆0

AM
Eδ,Kδ

]c
=

⋂

δ∈∆0

[
p−1(Eδ) ∩K

c
δ

]c
=

⋂

δ∈∆0

[
p−1(Eδ)

c ∪Kδ

]
.

A set of the form
⋂m

j=1(Rj ∪ Sj) can be written as
⋃(

T1 ∩ T2 ∩ · · · ∩ Tm
)

, over all possible Tk ∈

{Rk, Sk} , ∀ k = 1, . . . ,m . In our case, each time at least one of the sets in an intersection is someKδ ,

the intersection is already compact. There is also a contribution containing no set Kδ :

⋂

δ∈∆0

p−1(Eδ)
c =

[ ⋃

δ∈∆0

p−1(Eδ)
]c

=
[
p−1

( ⋃

δ∈∆0

Eδ

)]c

=
[
p−1(X∞)

]c
= (Mout)c =M in.

So the complement of
⋃

δ∈∆0
AM

Eδ,Kδ
in M can be covered by a finite number of sets Oγ and we are

done.

The fact that M is dense in X is obvious, since any neighborhood of a point belonging to X∞

contains a set AE,K , with E 6= ∅ , that meets M , because our fibers Mout
n are not compact. �

We could call (X, T (X)) the p-compactification of (M, T (M)) . It is meant to generalize the radial

compactification of a vector space M , for which M int = {0} and X∞ is a sphere.

Remark 5.12. A function φ : X → C is continuous with respect to the topology T (X) if and only if

• the restrictions φ|M and φ|X∞ are continuous,

• for every n ∈ X∞ and for every ǫ > 0 , there exists E ∈ T (X∞) with n ∈ E and K ∈ K(M)
such that |φ(m)− φ(n)| ≤ ǫ if p(m) ∈ E and m /∈ K .

Let us set

Cp(M) :=
{
ϕ ∈ C(M)

∣∣ ∃M in ⊂ K ∈ K(M) s. t. ϕ(m) = ϕ(m′) if m,m′ /∈ K, p(m) = p(m′)
}
.

It is a unital ∗-algebra consisting of bounded continuous functions that are asymptotically constant along

all the fibers Mout
n . It is not closed. Denoting by CT (X)(M) the C∗-algebra formed of restrictions to

the dense subset M of all the elements of C(X) , one has

C(X) ∼= CT (X)(M) ⊃ C0(M) + Cp(M) .
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Assume now, in the same context, that Ξ is a standard groupoid over

X =M ⊔X∞ =M in ⊔Mout ⊔X∞

such that the restriction ΞX∞ =: Σ =
⊔

n∈X∞
Σn is a totally intransitive groupoid, as above. Now the

setting is rich enough to allow a transparent form of Theorem 5.1.

Proposition 5.13. Let F ∈ L∞,1
cont(Ξ) ⊂ C∗(Ξ, ω) be a normal element and n ∈ X∞ . Let κ ∈ C0(R)

be a real function with support that does not intersect the spectrum of the twisted convolution operator

Hn given in (5.5).

(i) For every ǫ > 0 there is a neighborhoodE of n in X∞ and a compact subset K of M such that
∥∥1{m/∈K|p(m)∈E} κ(H0)

∥∥
B(H0)

≤ ǫ .

(ii) Suppose that F is self-adjoint. One also has
∥∥1{m/∈K|p(m)∈E} e

itH0κ(H0)u
∥∥
H0

≤ ǫ‖u‖H0

uniformly in t ∈ R and u ∈ H0 .

For the given point n , if Remark 5.8 applies, the condition on κ reads suppκ ∩ Rn = ∅ .
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