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Abstract A constitutive equation is provided for nonlinear transversely isotropic elastic solids, wherein the
linearized strain tensor is assumed to be a function of the Cauchy stress tensor; this elastic constitutive equation
belongs to a subclass of a more general set of implicit constitutive relations proposed in the recent years. The
proposed constitutive equation is valid for both compressible and incompressible bodies and can be simply
modified, to exclude the mechanical influence of compressed fibres and to model inextensible fibres. A crude
specific constitutive model is proposed to compare with a uniaxial experimental data onMarcellus shale. Some
simple boundary value problems are analyzed.

1 Introduction

In recent years, some new constitutive equations and relations have been proposed for elastic [1–5] and inelastic
bodies [6,7],where in general it is not assumed that the stresses are functions of the strains.Oneof such relatively
new types of constitutive equation corresponds to the class wherein we have that the linearized strain tensor ε
(infinitesimal strain tensor) is given as a function of the Cauchy stress tensor T , i.e. ε = h(T ) (see, for example,
[8–12]). A subclass of the above equation is when we assume that there exists a scalar potential � = �(T )

such that (see [10]) h = ∂�
∂T . The above constitutive equation ε = ∂�

∂T has many potential applications, where
we can observe a nonlinear behaviour for a solid when the strains and rotations are very small. Applications
can be found, for example, in the mathematical modelling of the mechanical behaviour of concrete [13], some
metal alloys [14,15], rock [16], fracture mechanics [17,18], and in the study of fibre-reinforced bodies [19].

With the exception of [19], in most of the works published on this type of constitutive equation so far,
only isotropic bodies have been studied (see, for example, [20]). But there are many potential applications for
ε = ∂�

∂T , where � is a potential function for a transversely isotropic solid. For example, in [19] a model of
inextensible bodies in a preferred direction was studied, for a matrix filled with a family of fibres, where it was
very easy to model inextensibility in the direction of the fibres. In the case of the modelling of the mechanical
behaviour of rocks, from the different literature available (see the short review at the beginning of Sect. 5), it
is well known that many types of rocks are anisotropic, such as some metamorphic rocks like shale, schist,
slates and gneiss, and sedimentary rocks such as sandstone and shales. Anisotropy of rocks can also appear as
a product of the presence of micro-cracks, cracks, joints, bedding, and stratification1.

1 See, for example, [21–26], Table 1 of [27], [28–36], Figures 2-8, 4-10, 4-13 and 4-14 of [37], and [38,39].
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In this paper, we present a constitutive equation based on ε = ∂�
∂T , where � depends on T and a ⊗ a, and

where a is a unit vector in the preferred direction.We use spectral invariants, similar to that developed by Shariff
[40], for the arguments of the function �. Each spectral invariant has a clear interpretation, and invariants that
have a clear meaningful physical interpretation are useful in assisting the construction of an experiment to seek
a specific form of the potential function �. We present a general model (that can be particularly useful for
rocks) that contains single-variable functions which are easier to analyse than multivariable functions, and it
can be easily amended (as shown later in this paper) to fully exclude the mechanical influence of compressed
fibres and to model inextensible fibres. Our nonlinear expression for � is constructed using the well-known �
expression for transversely isotropic linearized elastic bodies; in view of this, the proposed nonlinear model is
consistent with the linear model, an important property that should be satisfied by a proper nonlinear model.
We apply the above model to study the mechanical behaviour of a class of transversely isotropic rocks.

Considering the objectives of this paper discussed previously, this work is divided into the following
Sections: In Sect. 2, some basic equations pertaining to the theory of elasticity are presented. In Sect. 3,
general expressions for � are developed using spectral invariants. In Sect. 4, some boundary value problems
are studied for cylinders and a slab considering homogeneous distributions of stresses and strains. In Sect. 5,
particular expressions are given for the constitutive equations in the case ofmodelling themechanical behaviour
of Marcellus shale. In Sect. 6, some final remarks are given.

2 Kinematics and equation of motion

In this paper, summation convention is not used, and all subscripts i, j and k take the values 1, 2, 3, unless
stated otherwise.

A particle in a bodyB is denoted by X , and in the reference configuration κ R(B), the particle X occupies
the position X = κ R(X). In the current configuration κ t (B), the position of a point X is denoted by x, and
it is assumed that there exists a one-to-one mapping χ such that x = χ(X, t). The deformation gradient, the
left Cauchy–Green tensor, and the displacement vector are defined as

F = ∂χ

∂X
, B = FFT = V 2, u = x − X, (1)

where V is the left stretch tensor. In infinitesimal strain deformation, the current and reference configurations
are indistinguishable, and we have

B − I ≈ 2ε , (2)

where I is the identity tensor, ε is the infinitesimal strain tensor defined as

ε = 1

2
[gradu + (gradu)T] , (3)

and grad is the gradient operator with respect to x.
We denote the Cauchy stress by T , and the equation of motion takes the form

ρ ẍ = divT + ρb , (4)

where div is the divergence of a tensor with respect to x, ρ is the density of the body, and b represents the
specific body forces. We use the notation ˙( ) for the time derivative. More details concerning the kinematics
of deformable bodies and the balance equations can be found in [41].

3 Constitutive relations and equations

The constitutive equation to be used in this work has been presented in [8–10] and is a subclass of the implicit
relation G(T , B) = 0, which was proposed by Rajagopal [2] for elastic bodies (see also [42]). Two special
subclasses of the above implicit relation are the classical Cauchy model, wherein the stress is assumed to be
a function of the strains (see [43]) T = F(B), and the new class B = H(T ). There is another class of model
that is similar to B = H(T ), which is based on the use of the Hencky’s logarithmic strain 1

2 ln B as a function
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of the Kirchhoff stress τ = JT , i.e. 12 ln B = g(τ ). That model has been studied, for example, in [44–47] (see
also the early work by Blume [48] on such inverted stress–strain constitutive equations).

In this case, we assume that the gradient of the displacement field is very small |gradu| ∼ O(δ), δ � 1,
from G(T , B) = 0 or the subclasses of constitutive equations B = H(T ), 1

2 ln B = g(τ ); in view of (2), it
is possible to obtain ε = h(T ), where we observe that the linearized strain is a function of the stresses. Such
constitutive equation, for example, has been used to study problems in rock and concrete [13,16]. In this paper,
we consider rock as elastic and assume the existence of a scalar function (see [10])

� = �(T ) = �(e)(T , a ⊗ a) = �(e)

(
QT QT , Qa ⊗ aQT

)
(5)

such that

ε = ∂�(T )

∂T
. (6)

The potential �(T ) can be identified as the Gibbs potential in the case the gradient of the displacement field is
very small (see, for example, [46,47]).

In somematerials, there is some experimental evidence (see, for example, the work of Jin et al. [49]), which
indicates that the values of the ground-state constants in hydrostatic compression are different from those in
hydrostatic tension2. In view of this, we assume that the ground-state constants depend on the spherical stress

h̄ = 1

3
trT . (7)

Hence, we suppose the values of the five independent ground-state constants for the linearized elastic model
νa , νp, Ep, Ea , and μa when h̄ < 0 are generally different from those when h̄ ≥ 0 (see ‘Appendix A’).
Here, νp is Poisson’s ratio in a particular direction on the plane of symmetry, when the material is extended
in a direction on the plane of symmetry perpendicular to the particular direction, νa is Poisson’s ratio in the
preferred direction when the material is extended in the plane of symmetry, Ep is Young’s Modulus in the
plane of symmetry normal to the preferred direction a, μa is the shear modulus in the preferred direction, and
Ea is Young’s modulus in the preferred direction. Take note that we also have the relation

νa

Ep
= νzp

Ea
, (8)

where νzp is Poisson’s ratio in any direction on the plane of symmetry, when the material is extended in the
preferred direction.

Following the work of Shariff [50], we can express �(T ) in terms of the spectral invariants

σi (T ) = σi (QT QT ) = vi · (Tvi ) , ζi = (vi · a)2 = [(Qvi ) · (Qa)]2 , (9)

where σi and vi are the principal stresses and principal directions of T ,

T =
3∑

i=1

σivi ⊗ vi , trT =
3∑

i=1

σi . (10)

Only five of the six spectral invariants in (9) are independent since we have the constraint

ζ1 + ζ2 + ζ3 = 1 . (11)

In Sect. 3.1, we review briefly the expression for �(T ) that is used in the linearized theory of elasticity, and
the structure of that function is used, in Sect. 3.2, as starting point for the development of a nonlinear model
for �(T ).

2 By the ground-state constants, we mean the material constants used for the linearized elastic models.
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3.1 Linearized strain–stress constitutive equation

Let us define the scale stress T̂ = 1

Ep
T ; hence, for |σ̂i | =

∣∣∣∣
σi

E p

∣∣∣∣ << 1, the most general quadratic form,

satisfying �(T ) = 0 and
∂�(T )

∂T
= 0 at T = 0, is:

�(T ) = c1E
2
p

⎡
⎣

3∑
i=1

σ̂i
2 + c2

(
3∑

i=1

σ̂i

)2

+ c3

3∑
i=1

ζi σ̂i
2 + c4

(
3∑

i=1

ζi σ̂i

)2

+ c5

(
3∑

i=1

ζi σ̂i

) (
3∑

i=1

σ̂i

)]
, (12)

= c1

3∑
i=1

σ 2
i + c2

(
3∑

i=1

σi

)2

+ c3

3∑
i=1

ζiσ
2
i + c4

(
3∑

i=1

ζiσi

)2

+ c5

(
3∑

i=1

ζiσi

)(
3∑

i=1

σi

)
, (13)

where the constants ck , k = 1, 2, 3, 4, 5 are defined as

c1 = 1 + νp

2Ep
, c2 = − νp

2Ep
, c3 = 1

4μa
− 1 + νp

2Ep
, c4 = 1

2Ea
+ 2νa − νp

2Ep
− 1

4μa
, c5 = νp − νa

Ep
.

(14)

Let us express the above scalar function in the form

�(T )

E2
p

=
⎡
⎣b1

3∑
i=1

σ̄ ∗2
i + b2h

2 + b3

3∑
i=1

ζi σ̄
∗2
i + b4

(
3∑

i=1

ζi σ̄
∗
i

)2

+ b5h
3∑

i=1

ζi σ̄
∗
i

⎤
⎦ , (15)

where

h = 1

Ep
trT , σ̄ ∗

i = σ̂i − h

3
(16)

and

b1 = c1 , b2 = c1
3

+ c2 + c3
9

+ c4
9

+ c5
3

, b3 = c3 , b4 = c4 , b5 = 2

3
(c3 + c4) + c5 . (17)

Note that only five of the seven invariants

h = 1

Ep
trT = 1

Ep
tr(QT QT ) , σ̄ ∗

i (T ) = σ̄ ∗
i (QT QT ) , ζi (18)

characterizing the scalar function (12), are independent due to the constraints (11), and

σ̄ ∗
1 + σ̄ ∗

2 + σ̄ ∗
3 = 0 . (19)

The strain–stress constitutive equation is given by

ε = ∂�(T )

∂T
= 2b1T̄∗ + 2b2h I + b3

[
AT̄∗ + T̄∗A − 2

3
tr(AT̄∗)I

]
+ 2b4tr(AT̄∗)

[
A − 1

3
I
]

+ b5

[(
A − 1

3
I
)
h + tr(AT̄∗)I

]
, (20)
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where A = a ⊗ a and

T̄∗ = T̂ − h

3
I . (21)

The volume change is

trε = 6b2h + 3b5tr(AT̄∗) . (22)

When the body is incompressible, νzp = 0.5 and 1 − νa − νp = 0, in view of (14) and (17), we have
b2 = b5 = 0, and hence,

trε = 0 . (23)

3.2 Nonlinear strain–stress constitutive equation

Using the quadratic function � in (13) as inspiration or starting point, we propose the non-quadratic function

�(T )

E2
p

= b1K0 + b2g0(h) + b3K1 + b4K
2
2 + b5K3g1(h) , (24)

where

K0 =
∑
i=1

f0(σ̄
∗
i ) , (25)

and

Kα =
3∑

i=1

ζi fα(σ̄ ∗
i ) , α = 1, 2, 3 . (26)

In order to be consistent with the linearized model (12), we impose the conditions

f0(0) = f ′
0(0) = g′

0(0) = f1(0) = f ′
1(1) = 0 , f ′′

0 (0) = g′′
0 (0) = f ′′

1 (0) = 2 ,

fβ(0) = g1(0) = 0 , f ′
β(0) = g′

1(0) = 1 , β = 2, 3 . (27)

We also impose the conditions f0, g0, f1 ≥ 0, f ′
0, g

′
0, f

′
1 are strict monotonic functions, i.e. f ′′

0 , g′′
0 , f ′′

1 > 0,
and f ′

0(x), g
′
0(x), f ′

1(x) > 0 and f ′
0(x), g

′
0(x), f ′

1(x) < 0 for x > 0 and x < 0, respectively. The functions
fβ , g1 (β = 2, 3) are strictly monotone, i.e. f ′

β, g′
1 > 0. Note that �(T ) must satisfy the P-property (see [51]),

i.e. that it has a unique value when two or more of the σ̄ ∗
i have the same value and it satisfies the symmetric

property described below,

�(T ) = �t (σ̄
∗
1 , σ̄ ∗

2 , σ̄ ∗
3 , ζ1, ζ2, ζ3) = �t (σ̄

∗
2 , σ̄ ∗

1 , σ̄ ∗
3 , ζ2, ζ1, ζ3)

= �t (σ̄
∗
1 , σ̄ ∗

3 , σ̄ ∗
2 , ζ1, ζ3, ζ2) = �t (σ̄

∗
3 , σ̄ ∗

2 , σ̄ ∗
1 , ζ3, ζ2, ζ1) . (28)

The infinitesimal strain is given by

ε =
3∑

i, j=1

(
∂�(T )

∂T

)

i j
vi ⊗ v j , (29)

where, following the work of Shariff [52], we have
(

∂�(T )

∂T

)

i i
= ∂�t

∂σi
, (30)

(
∂�(T )

∂T

)

i j
= aia j

(σi − σ j )

(
∂�t

∂ζi
− ∂�t

∂ζ j

)
i 	= j , (31)

where ai = vi · a.
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In view of the results

Ep
∂K0

∂T
=

3∑
i=1

f ′
0(σ̄

∗
i )

(
vi ⊗ vi − 1

3
I
)

, Ep
∂gα

∂T
= g′

α(h)I , α = 0, 1 , (32)

Ep
∂Kα

∂T
=

3∑
i=1

ζi f
′
α(σ̄ ∗

i )

(
vi ⊗ vi − 1

3
I
)

+
3∑

i 	= j=

fα(σ̄ ∗
i ) − fα(σ̄ ∗

j )

σ̄ ∗
i − σ̄ ∗

j
ai a jvi ⊗ v j ,

α = 1, 2, 3 , (33)

we have the volume change,

trε = 3b2g
′
0(h) + 3b5K3g

′
1(h) . (34)

If b2 = b5 = 0, we have trε = 0, and in such a situation, we can model the behaviour of an incompressible
body.

We also show that the proposed constitutive equation can be easily converted to allow the mechanical
influence of compressed fibres to be excluded and to model a body that is inextensible in the preferred direction
a. In the case when the influence of compressed fibres is negligible, we have

Ea = Ep , νa = νzp = νp , Ep = 2μa(1 + νa) , (35)

and hence,

c3 = c4 = c5 = b3 = b4 = b5 = 0 . (36)

We note that

ϕ = a · (εa) =
5∑

m=1

bmψm , (37)

where

ψ1 =
3∑

i=1

f ′
0(σ̄

∗
i )

(
ζi − 1

3

)
, ψ2 = g′

0(h) , (38)

ψ3 =
3∑

i=1

f ′
1(σ̄

∗
i )ζi

(
ζi − 1

3

)
+

∑
i 	= j=1

f1(σ̄ ∗
i ) − f1(σ̄ ∗

j )

σ̄ ∗
i − σ̄ ∗

j
ζiζ j , (39)

ψ4 = 2I2

3∑
i=1

f ′
2(σ̄

∗
i )ζi

(
ζi − 1

3

)
+

∑
i 	= j=1

f2(σ̄ ∗
i ) − f2(σ̄ ∗

j )

σ̄ ∗
i − σ̄ ∗

j
ζiζ j , (40)

ψ5 = g1(h)

3∑
i=1

f ′
3(σ̄

∗
i )ζi

(
ζi − 1

3

)
+

∑
i 	= j=1

f3(σ̄ ∗
i ) − f3(σ̄ ∗

j )

σ̄ ∗
i − σ̄ ∗

j
ζiζ j + K3g

′
1(h) . (41)

To take into account that the influence of compressed fibres is negligible, we can easily modify our constitutive
equation (24) by using a function q(p), given in Appendix A, where the modified scalar potential takes the
form

�(T )

E2
p

= b1K0 + b2g0(h) + q(p)(ϕ)[b3K1 + b4K
2
2 + b5K3g1(h)] , (42)

taking note that when a fibre is in compression, we have ϕ < 0 and q(p)(ϕ) = 0.
When the fibres are inextensible, ϕ = 0, and (42) is replaced by

�(T )

E2
p

= b1K0 + b2g0(h) + q(p)(ϕ)[b3K1 + b4K
2
2 + b5K3g1(h) + λ̂ϕ] , (43)
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where λ̂ is a Lagrange multiplier. The strain is given by

ε

E2
p

= b1
∂K0

∂T
+ b2

∂g0
∂T

+ q(p)(ϕ)

{
b3

∂K1

∂T
+ 2b4K2

∂K2

∂T
+ b5

[
g1(h)

∂K3

∂T
+ K3

∂g1
∂T

]
+ λ̄

∂ϕ

∂T

}
, (44)

where it is emphasized that, for practical purposes, we let the value of the derivative of q(p) be zero.
The nonlinear model presented in this Section can be used not only to model rock, as studied in detail in

Sect. 5, but to model nonlinear behaviour of small strains and rotations of any transversely isotropic elastic
material.

4 Homogeneous boundary value problems

In the problems presented in this Section we assume homogeneous time-independent distributions for the
stresses and strains, which automatically satisfy the equilibrium and compatibility equations.

4.1 Cylindrical axial deformation

Consider a cylinder with the configuration

0 ≤ r ≤ A , 0 ≤ θ ≤ 2π , 0 ≤ z ≤ L , (45)

and the case a = ez with the Cauchy stress having the form

T = σr er ⊗ er + σθ eθ ⊗ eθ + σzez ⊗ ez , (46)

where v1 = er , v2 = eθ , and v3 = ez . In this case, we have ζ3 = 1 and ζ1 = ζ2 = 0, and clearly, from (31),
we obtain εrθ = εr z = εzθ = 0, and hence the strain ε is coaxial with the Cauchy stress T .

We first consider the case when σr = σθ = Epκ and σz = Epτ , where κ and τ are dimensionless variables.
Hence,

σ̄ ∗
1 = σ̄ ∗

2 = τ − κ

3
= γ = σ̄ ∗

3

2
. (47)

The nonzero strain components take the forms

εzz = 2

3
b1[ f ′

0(2γ ) − f ′
0(−γ )] + b2g

′
0(h) + 2

3
b3 f

′
1(2γ ) + 4

3
b4 f2(2γ ) f ′

2(2γ )

+ b5

[
2

3
g1(h) f ′

2(2γ ) + f2(2γ )g′
1(h)

]
, (48)

εrr = εθθ = 1

3
b1[ f ′

0(−γ ) − f ′
0(2γ )] + b2g

′
0(h) − 1

3
b3 f

′
1(2γ ) − 2

3
b4 f2(2γ ) f ′

2(2γ )

+ b5

[
−1

3
g1(h) f ′

3(2γ ) + f3(2γ )g′
1(h)

]
. (49)

When the lateral deformation is not constrained, σr = σθ = 0 and σz = Epτ , and we use the value of γ = −τ

3
for the different functions given in (48) and (49).

For the case when the lateral deformation is constrained such that εrr = εθθ = 0, we have for σz = Epτ
that

Epσ̄
∗
1 = 2σr

3
− 1

3
(σθ + Epτ) , Epσ̄

∗
2 = 2σθ

3
− 1

3
(σr + Epτ) , Epσ̄

∗
3 = 2Epτ

3
− 1

3
(σr + σθ ) . (50)

In view of the above, we have

εrr = 0 = 1

3
b1[2 f ′

0(σ̄
∗
1 ) − f ′

0(σ̄
∗
2 ) − f ′

0(σ̄
∗
3 )] + b2g

′
0(h) − 1

3
b3 f

′
1(σ̄

∗
3 ) − 2

3
b4 f2(σ̄

∗
3 ) f ′

2(σ̄
∗
3 )

+ b5

[
−1

3
g′
1(h) f ′

3(σ̄
∗
3 ) + f3(σ̄

∗
3 )g′

1(h)

]
(51)
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and

εθθ = 0 = 1

3
b1[2 f ′

0(σ̄
∗
2 ) − f ′

0(σ̄
∗
1 ) − f ′

0(σ̄
∗
3 )] + b2g

′
0(h) − 1

3
b3 f

′
1(σ̄

∗
3 ) − 2

3
b4 f2(σ̄

∗
3 ) f ′

2(σ̄
∗
3 )

+ b5

[
−1

3
g′
1(h) f ′

3(σ̄
∗
3 ) + f3(σ̄

∗
3 )g′

1(h)

]
. (52)

It is clear from (51) and (52) that

f ′
0(σ̄

∗
1 ) = f ′

0(σ̄
∗
2 ) . (53)

Since f ′
0 is a monotonic function, f ′

0 is invertible and (53) implies σr = σθ , and they can be expressed in terms
of τ in any of the two equations (51) or (52).

4.2 Compression and tension of a slab

Let xi be the Cartesian coordinates with basis {g1, g2, g3} and consider the configuration of a slab described
by

− Li

2
≤ xi ≤ Li

2
. (54)

In this Section, we consider the Cauchy stress to take the form

T =
∑
i=1

σi gi ⊗ gi , (55)

i.e. vi = gi , and we consider the preferred direction a to be given as

a = sv1 + cv2 , (56)

where c = cos(φ), s = sin(φ), and φ is the angle a makes with direction g2. We then have

a1 = s , a2 = c , a3 = 0 , ζ1 = s2 , ζ2 = c2 , ζ3 = 0 . (57)

It is clear from (31) that ε13 = ε23 = 0.
In this Section, we give results for the case σ1 = σ3 = 0 and σ2 = Epτ (where τ is a dimensionless

variable), where the results will be used to compare with the experimental data of Jin et al. [49] given in
Sect. 5. Hence,

σ̄ ∗
1 = σ̄ ∗

2 = −τ

3
= −γ = − σ̄ ∗

3

2
, h = τ . (58)

The strain components have the forms

ε22 = 2

3
b1[ f ′

0(2γ ) − f ′
0(−γ )] + b2g

′
0(τ ) + 1

3
b3[2c2 f ′

1(2γ ) − s2 f1(−γ )]

+ 2

3
b4K2[2c2 f ′

2(2γ ) − s2 f2(−γ )] + b5[g1(τ )(2c2 f ′
3(2γ ) − s2 f3(−γ )) + K3g

′
1(τ )] , (59)

ε11 = 1

3
b1[ f ′

0(−γ ) − f ′
0(2γ )] + b2g

′
0(τ ) + 1

3
b3[2s2 f ′

1(−γ ) − c2 f1(2γ )]

+ 2

3
b4K2[2s2 f ′

2(−γ ) − c2 f2(2γ )] + b5[g1(τ )(2s2 f ′
3(−γ ) − c2 f3(2γ )) + K3g

′
1(τ )] , (60)

ε33 = 1

3
b1[ f ′

0(−γ ) − f ′
0(2γ )] + b2g

′
0(τ ) − 1

3
b3[2s2 f ′

1(−γ ) + c2 f1(2γ )]

− 2

3
b4K2[2s2 f ′

2(−γ ) + c2 f2(2γ )] + b5[−g1(τ )(2s2 f ′
3(−γ ) + c2 f3(2γ )) + K3g

′
1(τ )] , (61)

ε12 = cs

τ
{b3[ f1(2γ ) − f1(−γ )] + 2b4K2[ f2(2γ ) − f2(−γ )] + b5g1(τ )[ f3(2γ ) − f3(−γ )]} , (62)

where

K2 = s2 f2(−γ ) + c2 f2(2γ ) , K3 = s2 f3(−γ ) + c2 f3(2γ ) . (63)
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5 Modelling of transversely isotropic rock

Complementing the information provided in the Introduction, at the beginning of this Section we review briefly
someexperimental evidence regarding sources of anisotropy for rock, andwealso discusswhynonlinearmodels
are necessary to analyze the behaviour of such material.

In the case of applications to the modelling of transversely isotropic rocks, the source of such transversely
isotropic behaviour (and more general anisotropic behaviour) for rocks is multiple. In some cases, such as
for sandstones3, it is possible to clearly see the presence of ‘layers’, where it is expected that the mechanical
behaviour is different in the direction perpendicular to these layers (or lamination depending on the scale)
from that in the other directions. In other cases, the source of anisotropy is connected with some particular
orientations of the ‘grains’ or minerals that form rocks, which in some cases have an elongated geometry
oriented in some particular directions4. The presence of joints, in particular if there is one family of joints
oriented in a particular direction (joint set), can also be taken as a reason to consider rock as a transversely
isotropic body, and such structures can be incorporated as a part of �, in the case that the space or distance
between each joint is very small in comparisonwith the overall size of the body being studied5 [23,31,57]. Note
that the presence of cracks and micro-cracks in rock, which may or may not have any particular orientation,
may also contribute towards the mechanical behaviour of rock. In compression, some of such cracks can close,
whereas in tension they will open, and in both cases, the mechanical behaviour will be different, and it will
depend on the stresses; therefore, in general, there is a need for using elaborate models to capture the nonlinear
mechanical behaviour of rocks6. The presence of cracks and their behaviour in tension and compression is the
reason that in the literature, in geology and geomechanics, researchers speak about the ‘induced anisotropy’
when referring to rock with families of pre-existing cracks [23,24,58,62].

In many applications in geomechanics and geophysics, we may have dissipation of energy, due to, for
example, the creation and growth of cracks. In order to simplify our mathematical models, in this Sections we
do not consider such dissipation of energy, and we assume that rock is approximately an elastic solid.

In this Section, we compare our theory with the axial tension and compression experiment of Jin et al. [49]
on Marcellus shale. We use Eq. (59) to compare our theory with their axial stress–strain experimental data.
It is reported in Jin et al. [49] that the ground-state material constants for the tension data are different from
those for the compression data. In axial tension, where h̄ > 0, their ground-state constants are:

Ea = 11.50 ± 1.36GPa , Ep = 37.06 ± 14.18GPa ,

νzp = 0.33 ± 0.13 , νp = 0.18 ± 0.01 , μa = 6.40 ± 1.74GPa. (64)

To compare with the axial tension data of Jin et al. [49], we use the ground-state values

Ea = 11.50GPa , Ep = 25.06GPa , νzp = 0.33 , νp = 0.18 , μa = 6.40GPa . (65)

These are the same values as those given in (64), taking note that although Ep = 25.06 MPa it is within the
tolerance range. In axial compression, where h̄ < 0, Jin’s et al. [49] ground-state constants are:

Ea = 16.12 ± 1.29GPa , Ep = 37.72 ± 7.04GPa ,

νzp = 0.35 ± 0.15 , νp = 0.25 ± 0.01 , μa = 6.87 ± 1.19GPa. (66)

We use the ground-state values

Ea = 13.0GPa , Ep = 30.72GPa , νzp = 0.35 , νp = 0.25 , μa = 5.68GPa . (67)

Except for Ea , all our ground-state values are the same (within the tolerance range) as Jin’s et al. [49] values.
We just do a simple ad hoc fitting using the functions

f0(x) = f1(x) = x2 , g1(x) = f2(x) = f3(x) = x, (68)

3 See, for example, [21–23,28,29,53–55] and Figures 1 and 9 of [36].
4 See Figure 1 of [56], Figures 4–10, 4–13, and 5–14 in [37] and [36].
5 Other types of discontinuities in rocks that are larger than joints, such as faults, should be incorporated directly in the geometry

of the body being studied, and not considered as a part of �.
6 See, for example, [23–25,54,58], Figure 11 of [59], [60,61], Figures 2 and 4 of [31], Figure 4 of [63], Figure 5 of [55], Figure

5 of [62], and Figures 8 to 11 in [33].
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Fig. 1 Strain–stress curves for a uniaxial tension deformation. The points are from the experimental tests of Jin et al., and θ is
the angle between the normal vector and the bedding planes with respect to the direction of the load [49]

and

g′
0(x) = 2

edx − 1

d
, (69)

where d is a dimensionless parameter. Since the compression/tension behaviour is different, for an ad hoc
fitting we use d = −0.01 for compression and d = −2 for tension. We plot the strain–stress equation (59)
when a has the directions described by the angles θ = 0◦, 30◦, 45◦, 60◦, 90◦ (see Eq. (56)). The tension and
compression curves are given in Figs. 1 and 2, respectively. From both Figures, it is clear that our theory
captures the behaviour of the experimental data, taking note that some of the curves fit the experiment data
quite well.

5.1 Shear and compression of a slab

In this Section, we use the model for rock proposed above to study the behaviour of a slab under shear and
compression. Here, we consider the stress distribution to take the form

T
Ep

= σ g1 ⊗ g1 + τ(g1 ⊗ g2 + g2 ⊗ g1) (70)

and the preferred direction a given by (56), where σ and τ are dimensionless variables. We then have the
principal stresses

σ̂1 = σ1

Ep
= 1

2
(σ +

√
σ 2 + 4τ 2) , σ̂2 = σ2

Ep
= 1

2
(σ −

√
σ 2 + 4τ 2) , σ̂3 = σ1

Ep
= 0 , (71)
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Fig. 2 Strain–stress curves for a uniaxial compression deformation. The points are from the experimental test of Jin et al. [49]

h = σ , and the eigenvectors

v1 = 1

γ2
g1 + 1

γ1
g2 , v2 = − 1

γ1
g1 + 1

γ2
g2 , v3 = g3 , (72)

where

1

γ1
= τ√

σ̂ 2
1 + τ 2

,
1

γ2
= σ̂1√

σ̂ 2
1 + τ 2

. (73)

For a of the form (56), the spectral components are

a1 = c

γ2
+ s

γ1
, a2 = −c

γ1
+ s

γ2
, a3 = 0, (74)

taking note that ζi = a2i and

σ̄ ∗
1 = σ

6
+

√
σ 2 + 4τ 2

2
, σ̄ ∗

2 = σ

6
−

√
σ 2 + 4τ 2

2
, σ̄ ∗

3 = −σ

3
. (75)

The shear strain in the 1 − 2 direction, for example, is given by

ε12 = 1

γ1γ2
[κ1 − κ2 + κ3(γ

2
1 − γ 2

2 )] , (76)
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where

κ1 = b1
3

[2 f ′
0(σ̄

∗
1 ) − f ′

0(σ̄
∗
2 ) − f ′

0(σ̄
∗
3 )] + b2g

′
0(σ ) + b3

3
[2ζ1 f ′

1(σ̄
∗
1 ) − ζ2 f

′
1(σ̄

∗
2 )]

+ 2b4K2

3
[2ζ1 f ′

2(σ̄
∗
1 ) − ζ2 f

′
2(σ̄

∗
2 )] + b5

{
g1(σ )

3
[2ζ1 f ′

3(σ̄
∗
1 ) − ζ2 f

′
3(σ̄

∗
2 )] + K3g

′
1(σ )

}
, (77)

κ2 = b1
3

[2 f ′
0(σ̄

∗
2 ) − f ′

0(σ̄
∗
1 ) − f ′

0(σ̄
∗
3 )] + b2g

′
0(σ ) + b3

3
[2ζ2 f ′

1(σ̄
∗
2 ) − ζ1 f

′
1(σ̄

∗
1 )]

+ 2b4K2

3
[2ζ2 f ′

2(σ̄
∗
2 ) − ζ1 f

′
2(σ̄

∗
1 )] + b5

{
g1(σ )

3
[2ζ2 f ′

3(σ̄
∗
2 ) − ζ1 f

′
3(σ̄

∗
1 )] + K3g

′
1(σ )

}
, (78)

κ3 =
[
b3

f1(σ̄ ∗
1 ) − f1(σ̄ ∗

2 )

σ̄ ∗
1 − σ̄ ∗

2
+ 2b4K2

f2(σ̄ ∗
1 ) − f2(σ̄ ∗

2 )

σ̄ ∗
1 − σ̄ ∗

2
+ b5g1(σ )

f3(σ̄ ∗
1 ) − f3(σ̄ ∗

2 )

σ̄ ∗
1 − σ̄ ∗

2

]
a1a2 , (79)

where

K2 = ζ1 f2(σ̄
∗
1 ) + ζ2 f2(σ̄

∗
2 ) , K3 = ζ1 f3(σ̄

∗
1 ) + ζ2 f3(σ̄

∗
2 ) . (80)

In the case of a shear stress without compression, the results are obtained from the above by putting σ = 0.
In Fig. 3, the shear strain ε12 is plotted against the scaled shear stress τ for various values of σ and preferred

direction. To depict the Figures, we only consider h = σ ≤ 0, and we use the functions in (68) and (69) with
d = −0.01. Since h = σ ≤ 0, we use the ground-state constant values given in (67). In Fig. 3(1), we see
that larger shear strain is required to maintain the deformation as the magnitude of σ increases. Interestingly,

it is indicated in Fig. 3(3) that for the preferred direction, taking a =
[

1√
2
,

1√
2
, 0

]T
, the compression stress

causes the shear strain to take a negative value at τ = 0. This is an expected behaviour since at τ = 0 the slab
is in pure compression, and since the strain tensor is not coaxial with the Cauchy stress tensor, a shear strain
is required to maintain the axial stress field.

6 Conclusions

In this communication, we have presented a constitutive equation for transversely isotropic nonlinear elastic
bodies, wherein the linearized strain is a function of the Cauchy stress tensor. In order to show the possible
applications of this model, we have applied it to the modelling of a type of transversely isotropic rock. The
model captures in a rather simple manner the most significant features of the mechanical behaviour of such
material, as indicated in Sect. 5. Rocks are very heterogeneous materials, and even for the same class of rocks,
the mechanical behaviour of two samples can be different if they are obtained from two different places.
Therefore, it was not the intention of this paper to provide a mathematical model that would fit perfectly a
given set of experimental data7 for a specific type of transversely isotropic rock, but to have a model that can
be used in the future to fit data for as many types of transversely isotropic rocks as possible, and also for other
types of materials.

In a future work, the behaviour of the P and S waves for transversely isotropic solids will be studied.
From the experimental point of view, it is relatively easy to produce small waves travelling across a sample
of material under compression for different directions of the preferred direction a. The nonlinear constitutive
model presented in this paper should be able to capture in particular the dependency of the wave speed in terms
of the compressive (time-independent) load (see, for example, [16,66]).

Finally, we note that materials such as rock can show more than one source of anisotropy (see [23,30],
Figure 2 of [67] and Figures 4–14 of [37]), and in some cases, it may be necessary to consider two, three or
more unit vectors that represent the particular directions where rock is not isotropic. Such cases will be studied
in a future work as well.

Acknowledgements The research of R. Bustamante was supported by a grant awarded by FONDECYT (Chile) Under No.
1160030.

7 As the nonlinear models presented here are new, and only some other few such nonlinear models are available in the literature
[16,64,65], most of the experimental data available in the literature are concerned with the determination of the parameters
including Young’s modulus, shear modulus, etc., that are mostly interesting within the context of the linearized theories.
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Fig. 3 Shear strain ε12 vs scaled shear stress τ for different values of σ and preferred directions a

Appendix A

In a general boundary value problem, the values of h̄ (or h) themselves depend on the constitutive equation
(for details, see [50]), and hence, they cannot be used as a hypothesis to decide what are the appropriate values
of the ground-state constants (compression or tension constants) required in a boundary value problem solving
process, especially in using the finite element method. To overcome this ‘vicious circle’, we approximate our
proposed discrete constants using the following continuous and differentiable functions:

q(p)(h) = [1 + erf(C̄h)]
2

, q(n)(h) = [1 − erf(C̄h)]
2

, (A.1)

where erf is the error function and C̄ is a very large positive number. Let Et
a , E

t
p, ν

t
zp, ν

t
p, μ

t
a and Ec

a , E
c
p, ν

c
zp,

νcp, μ
c
a be the tension and compression ground-state values of Ea , Ep, νzp, νp, and μa , respectively. We then
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Fig. 4 Plot of q(p)(h), when c̄ = 1000

use the functions

Ea = Et
aq(p)(h) + Ec

aq(n)(h) , Ep = Et
pq(p)(h) + Ec

pq(n)(h) , νzp = νtzpq(p)(h) + νczpq(n)(h) ,

νp = νtpq(p)(h) + νcpq(n)(h) , μa = μt
aq(p)(h) + μc

aq(n)(h) . (A.2)

For the benefit of the readers, the plot of q(p)(h) with C̄ = 1000 is given in Fig. 4. It is clear from Fig. 4
that the continuous approximation of the discrete function is not accurate, when the argument h (say) of the
function is very close to zero. The accuracy of the continuous function could be improved by using a value of
C̄ larger than 1000. For practical purposes, we let the value of the derivatives of q(p) and q(n) be zero.
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