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Abstract
The conditional simulation of Gaussian random vectors is widely used in geostatistical applications to quantify uncertainty

in regionalized phenomena that have been observed at finitely many sampling locations. Two iterative algorithms are

presented to deal with such a simulation. The first one is a variation of the propagative version of the Gibbs sampler aimed

at simulating the random vector without any conditioning data. The novelty of the presented algorithm stems from the

introduction of a relaxation parameter that, if adequately chosen, allows quickening the rates of convergence and mixing of

the sampler. The second algorithm is meant to convert the non-conditional simulation into a conditional one, based on the

successive over-relaxation method. Again, a relaxation parameter allows quickening the convergence in distribution to the

desired conditional random vector. Both algorithms are applicable in a very general setting and avoid the pivoting,

inversion, square rooting or decomposition of the variance-covariance matrix of the vector to be simulated, thus reduce the

computation costs and memory requirements with respect to other discrete geostatistical simulation approaches.

Keywords Gaussian random fields � Gibbs sampler � Mixing � Gauss-Seidel method � Successive over-relaxation method

1 Introduction

The simulation of random fields is widespread in geostatis-

tics to quantify the uncertainty in regionalized phenomena

that have been observed at a limited number of sampling

locations. Applications in the earth sciences, among other

disciplines, include the modeling of mineral deposits,

hydrocarbon reservoirs, aquifers, forests, bedrocks, soils,

lands and agricultural fields, see for instance Delfiner and

Chilès (1977), Journel and Huijbregts (1978), Delhomme

(1979), Matérn (1986), Shive et al. (1990), Chilès and Allard

(2005) and Webster and Oliver (2007).

When restricting to Gaussian random fields (i.e., random

fields whose finite-dimensional distributions are multi-

variate normal) and to finitely many locations in space, the

problem boils down to simulating a n-dimensional Gaus-

sian random vector Y with a pre-specified mean m and

variance-covariance matrix C. Numerous algorithms have

been proposed in the past decades to perform such a sim-

ulation, see, for instance, Lantuéjoul (2002) and Chilès and

Delfiner (2012) for a general overview. A few of them,

such as the covariance matrix decomposition (Davis 1987;

Alabert 1987; Rue 2001), circulant-embedding (Chellappa

and Jain 1992; Dietrich and Newsam 1993; Pardo-Igúz-

quiza and Chica-Olmo 1993), perturbation-optimization

(Orieux et al. 2012), autoregressive and moving average

(Box and Jenkins 1976; Guyon 1995) algorithms, are exact

in the sense that the simulated vector has a multivariate

Gaussian distribution with the desired first- and second-

order moments, but their implementation is straightforward

only for particular structures of the covariance matrix C or

its inverse, hence, unless the dimension n is small, they are

applicable only for specific covariance models and/or for a

regular (gridded) configuration of the locations targeted for

simulation.

& Daisy Arroyo

darroyof@udec.cl

Xavier Emery

xemery@ing.uchile.cl

1 Department of Statistics, University of Concepción,

Concepción, Chile

2 Department of Mining Engineering, University of Chile,

Santiago, Chile

3 Advanced Mining Technology Center, University of Chile,

Santiago, Chile

123

Stochastic Environmental Research and Risk Assessment (2020) 34:1523–1541
https://doi.org/10.1007/s00477-020-01875-0(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00477-020-01875-0&amp;domain=pdf
https://doi.org/10.1007/s00477-020-01875-0
Claudia
Resaltado

Claudia
Resaltado



Most of the other simulation algorithms available to date

are approximate, either because the simulation is not exactly

Gaussian or because it does not exactly have the desired first-

and second-order moments. Non-Gaussianity often stems

from a central limit approximation, e.g. when using the

dilution (Alfaro 1980; Matérn 1986), continuous spectral

(Shinozuka 1971; Emery et al. 2016) and turning bands

(Matheron 1973; Emery and Lantuéjoul 2006) algorithms.

The approximate moment reproduction arises due to a

moving neighborhood implementation, e.g. when using the

sequential Gaussian algorithm (Emery and Peláez 2011;

Safikhani et al. 2017), or to the recourse to finitely many

iterationswhen usingMonteCarloMarkovChain algorithms

(Lantuéjoul 2002).

Forcing the simulation to reproduce sampling data is

another challenge in many geostatistical applications. In

the case of ‘hard’ data, i.e., when the regionalized phe-

nomenon is observed without uncertainty at finitely many

locations in space, the simulated random field can be

conditioned to these data by kriging the residual between

the data values and the simulated values at the data loca-

tions and by adding the kriged residual to the non-condi-

tional simulation (Journel and Huijbregts 1978; Chilès and

Delfiner 2012). However, in the presence of very large data

sets, kriging is often set up in a moving neighborhood

instead of a unique neighborhood, which makes the con-

ditional simulation approximate (Chilès and Delfiner 2012;

Marcotte and Allard 2018a).

This paper addresses the problem of the non-conditional

and conditional simulation of a Gaussian random vector by

means of iterative algorithms and presents some enhance-

ments aimed at quickening the rate of convergence of these

algorithms to the target (non-conditional or conditional)

vector. The algorithm under consideration for the non-con-

ditional simulation is the propagative version of the Gibbs

sampler, initially proposed byGalli and Gao (2001) and later

by Lantuéjoul and Desassis (2012) and Arroyo et al. (2012).

In this case, the proposed enhancement consists of the use of

a relaxation parameter, which will be studied in the next

section. Concerning the conditioning process, the algorithm

under consideration will rely on the method of successive

over-relaxation, as will be detailed in Sect. 3. A general

discussion and conclusions will follow in Sects. 4 and 5.

The motivation is to design efficient iterative algorithms

that allow both the non-conditional and conditional simula-

tion of Gaussian random vectors or random fields with any

correlation structure, without the need for pivoting, invert-

ing, square rooting or decomposing the target variance-co-

variance matrix. Therefore, these algorithms can be applied

to the simulation of large random vectors and/or to the

conditioning to a large set of hard data with affordable

computational costs and memory requirements. The case of

‘soft’ data, such as interval data used in the simulation of

truncated Gaussian and plurigaussian random fields (Arm-

strong et al. 2011), is out of the scope of this paper and the

reader is referred to Geweke (1991), Freulon and de Fouquet

(1993), Freulon (1994), Wilhelm and Manjunath (2010),

Emery et al. (2014), Pakman and Paninski (2014) and Mar-

cotte and Allard (2018b) for iterative algorithms adapted to

this case.

2 Non-conditional simulation

2.1 Problem setting

It is of interest to simulate a Gaussian random vector

Y with n components, with zero mean and variance-co-

variance matrix C assumed to be (strictly) positive definite,

i.e., without any redundancy between the vector compo-

nents; note that it is possible to reduce to the case of a

positive definite covariance matrix by removing redundant

vector components. Under this assumption, the covariance

matrix is invertible and we can introduce the ‘dual’

Gaussian random vector X = B Y, with B = C-1, which

has zero mean and variance-covariance matrix B (Galli and

Gao 2001; Arroyo et al. 2012).

2.2 Gibbs sampling on the dual vector X

Following Arroyo et al. (2012), the random vector X can be

simulated iteratively by Gibbs sampling, by constructing a

sequence of vectors {X(k): k = 0, 1, 2, …} in the following

way:

(1) Initialization: set X(0) = 0 (a column vector of zeros).

(2) Iteration: for k = 1, 2, …

a. Randomly split the vector [1, …, n] into two

disjoint subsets I and J with n - p and p com-

ponents, respectively, in such a way that every

integer in [1, …, n] has a non-zero probability to

be included in subset J. Since the splitting varies

with k, we should actually denote the subsets as

Ik and Jk, but we will omit the index k to keep a

lighter notation. Hereunder, the subscripts I and

J will denote the subvectors or submatrices

whose components are indexed by I and J,

respectively, and the bullet (•) will be used as a

shortcut to [1,…, n].

b. Define X(k) as the random vector such that

X
ðkÞ
I ¼ X

ðk�1Þ
I

X
ðkÞ
J ¼ XJI X

ðk�1Þ
I þ RðkÞ;

(
ð1Þ

where XJI is the p 9 (n – p) matrix of simple

kriging weights to predict XJ from XI, and R(k) is
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a Gaussian random vector, independent of

X
ðk�1Þ
I , with zero mean and variance-covariance

matrix equal to the p 9 p variance-covariance

matrix RJ of the associated simple kriging errors.

These matrices can be obtained from the vari-

ance-covariance matrix C as follows (Emery

2009):

XJI ¼ �C�1
JJ CJI

RJ ¼ C�1
JJ :

�
ð2Þ

In practice, the sequence is stopped after K iterations,

where K is a large enough integer, and X(K) is delivered as

an approximate simulation of X.

Arroyo et al. (2012) propose to choose R(k) = SJ U(k),

where SJ S
T
J ¼ RJ and U(k) is a standard Gaussian random

vector with p independent components, independent of

X(k-1). SJ could be, for instance, the Cholesky factor of RJ

or any symmetric square root matrix of RJ .

A more general formalism consists in choosing R(k) as a

linear combination of a Gaussian random vector indepen-

dent of X(k-1) with zero mean variance-covariance matrix

RJ , and the vector of simple kriging error

XJIX
ðk�1Þ
I � X

ðk�1Þ
J :

RðkÞ ¼ q �C�1
JJ CJI X

ðk�1Þ
I � X

ðk�1Þ
J

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
SJU

ðkÞ;

ð3Þ

with q [ ]–1,1[ and U(k) an independent standard Gaussian

random vector defined as above. It can be shown that this

choice still ensures that X(k) converges in distribution to

X (Appendix 1).

2.3 Gibbs sampling on the direct vector Y

By putting Y(k) = C X(k), one obtains a sequence of random

vectors {Y(k): k = 0, 1, 2, …} that starts with Y(0) = 0 and

converges in distribution to Y = C X as k tends to infinity.

Based on Eqs. (1) and (2), the transition from Y(k-1) to Y(k)

can be expressed as follows:

Y
ðkÞ
I ¼ CIIX

ðkÞ
I þ CIJX

ðkÞ
J

¼ CIIX
ðk�1Þ
I þ CIJX

ðk�1Þ
J

þ CIJ RðkÞ � C�1
JJ CJJX

ðk�1Þ
J þ CJI X

ðk�1Þ
I

� �� �
¼ Y

ðk�1Þ
I þ CIJ RðkÞ � C�1

JJ Y
ðk�1Þ
J

� �
;

ð4Þ

and

Y
ðkÞ
J ¼ CJIX

ðkÞ
I þ CJJX

ðkÞ
J

¼ CJIX
ðk�1Þ
I þ CJJX

ðk�1Þ
J

þ CJJ RðkÞ � C�1
JJ CJJX

ðk�1Þ
J þ CJI X

ðk�1Þ
I

� �� �
¼ Y

ðk�1Þ
J þ CJJ RðkÞ � C�1

JJ Y
ðk�1Þ
J

� �
;

ð5Þ

which reduces to

YðkÞ ¼ Yðk�1Þ þ C�J RðkÞ � C�1
JJ Y

ðk�1Þ
J

� �
¼ Yðk�1Þ þ C�J �qC�1

JJ Y
ðk�1Þ
J

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
SJU

ðkÞ � C�1
JJ Y

ðk�1Þ
J

�
¼ Yðk�1Þ þ C�J

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
SJU

ðkÞ � ð1þ qÞC�1
JJ Y

ðk�1Þ
J

� �
:

ð6Þ

q can be interpreted as a relaxation parameter, which can

range from - 1 to 1 (both bounds being excluded). When

q = 0, one finds the Gibbs sampler proposed by Arroyo

et al. (2012).

The idea of introducing a relaxation parameter in Gibbs

sampling is not new and dates back from Adler (1981),

Whitmer (1984), Barone and Frigessi (1990) and Galli and

Gao (2001). Its combination with the propagative version

of the Gibbs sampler, where the simulation of the target

vector Y relies on the Gibbs sampling of the dual vector X,

has been proposed by Lantuéjoul and Desassis (2012), but

their formulation differs from the one above presented, the

transition from Y(k-1) to Y(k) proposed by these authors

being

Y
ðkÞ
J ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
S�1
J

� �T
UðkÞ þ qYðk�1Þ

J

Y
ðkÞ
I ¼ Y

ðk�1Þ
I þ CIJ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
S�1
J

� �T
UðkÞ � ð1� qÞYðk�1Þ

J

� �
¼ Y

ðk�1Þ
I þ CIJ CJJ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
SJU

ðkÞ � ð1� qÞC�1
JJ Y

ðk�1Þ
J

� �
:

8>>><
>>>:

ð7Þ

2.4 Rate of convergence

Since Y(0) = 0 and {U(k): k = 1, 2,…} is a sequence of

independent Gaussian random vectors with zero mean, the

successive random vectors Y(k) (k = 0, 1, 2, …) are also

Gaussian random vectors with zero mean. To assess the

convergence rate of the Gibbs sampler, let us calculate the

variance-covariance matrix C(k) of Y(k) (k C 1) as a func-

tion of the simulation parameters (C and q) and the vari-

ance-covariance matrix C(k-1) of Y(k-1). Denoting by T in

superscript the transposition and by E the expectation

operator and using Eq. (6) and the fact that U(k) is
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independent of X(k-1) (therefore, also independent of

Y(k-1)), one has:

CðkÞ ¼ E YðkÞYðkÞT
n o

¼ E Yðk�1ÞYðk�1ÞT
n o

� ð1þ qÞC�J C
�1
JJ E Y

ðk�1Þ
J Yðk�1ÞT

n o
� ð1þ qÞE Yðk�1ÞTY

ðk�1ÞT
J

n o
C�1

JJ CJ�

þ C�J ð1� q2Þ SJE UðkÞUðkÞT
n o

STJ

�
þð1þ qÞ2C�1

JJ E Y
ðk�1Þ
J Y

ðk�1ÞT
J

n o
C�1

JJ

�
CJ�;

ð8Þ

that is:

CðkÞ ¼ Cðk�1Þ � ð1þ qÞ C�JC
�1
JJ C

ðk�1Þ
J� þ C

ðk�1Þ
�J C�1

JJ CJ�

� �
þ C�J ð1� q2ÞC�1

JJ þ ð1þ qÞ2C�1
JJ C

ðkÞ
JJ C

�1
JJ

� �
CJ�:

ð9Þ

Together with C(0) = 0, it is therefore possible to cal-

culate C(k) for any integer k. The fact that the sequence

{Y(k): k = 0, 1, 2, …} converges in distribution to Y im-

plies that C(k) converges to C as k tends to infinity. The

question to elucidate is for which value of q the conver-

gence is the fastest one. A partial answer to this question

will be provided in the next subsection.

2.5 Experimental results

In this subsection, we investigate the convergence of C(k) to

C through synthetic case studies. Though the Gibbs sam-

pler proposed in Eq. (6) is applicable to the simulation of

large random vectors, the following experiments consider a

vector of reduced size (n = 2500 components) in order to

ease the calculation and storage of the successive covari-

ance matrices C(0),…, C(K) and the sensitization to the

relaxation parameter q and to the target covariance matrix

C. The goal is to provide a ‘proof of concept’ and practical

guidelines on how to choose a relaxation parameter that

quickens the convergence of the simulated vector to the

target vector and on how many iterations (K) are needed

before stopping the Gibbs sampler.

In detail, we consider a two-dimensional regular grid

with 50 9 50 nodes and mesh 1 9 1. The sampler is ini-

tialized with Y(0) = 0 and is set in order to update one

vector component at a time (p = 1) and to visit the grid

nodes following random permutations, i.e., all the vector

components are updated once after each 2500 iterations of

the sampler. Six spatial correlation models (all of them

with a unit variance) are put to the test:

• a stationary isotropic spherical covariance with range

10 units;

• a stationary isotropic spherical covariance with range

50 units;

• a stationary isotropic cubic covariance with range 10

units;

• a stationary isotropic cubic covariance with range 50

units;

• a stationary isotropic exponential covariance with scale

parameter 10 units (practical range 30 units);

• a non-stationary Matérn covariance with scale param-

eter varying linearly from 1 to 20 from left to right and

shape parameter varying linearly from 0.25 to 1.75 from

top to bottom.

The equation of the spherical, cubic and exponential

covariances can be found in the literature (Chilès and

Delfiner 2012). The non-stationary Matérn covariance with

location-dependent scale parameter a and shape parameter

m is given by (Emery and Arroyo 2018):

Cðx; x0Þ ¼ 2aðxÞ aðx0Þ
�aðx; x0Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð mðxÞÞCð mðx0ÞÞ

p
� jjx� x0jj

2 �aðx; x0Þ

� 	�mðx;x0Þ
K�mðx;x0Þ

jjx� x0jj
�aðx; x0Þ

� 	
; ð10Þ

with �aðx; x0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðxÞþa2ðx0Þ

2

p
, �mðx; x0Þ ¼ mðxÞþmðx0Þ

2
, C the gamma

function and Km the modified Bessel function of the second

kind of order m. The chosen models exhibit varied short-

scale behavior (continuous but irregular for the spherical,

exponential and Matérn with shape parameter lower than

0.5, smooth for the cubic and Matérn with shape parameter

higher than 0.5) and large-scale behavior (correlation range

or scale parameter) of the random field to be simulated.

Also, the first four models (spherical and cubic) are com-

pactly supported, with a finite correlation range, while the

last two ones (exponential and Matérn) are not.

Following Arroyo et al. (2012), the deviation between

the variance-covariance matrix of the simulated random

vector Y(k) and the target variance-covariance matrix C is

measured by the Frobenius norm of the difference between

both matrices, divided by the Frobenius norm of the target

covariance matrix:

gk ¼
jjCðkÞ � CjjF

jjCjjF
¼ jjCðkÞ � CjjF

jjCð0Þ � CjjF
; ð11Þ

where ||.||F indicates the Frobenius norm. This index is

equal to 1 for k = 0 (initial state) and to 0 when conver-

gence is perfectly reached, which eases its interpretation

and the comparison of the different target covariance

models. Any other matrix norm could be used instead of

the Frobenius norm, such as the spectral norm (which, here,

coincide with the spectral radius, as one deals with sym-

metric matrices); however, the calculation of the latter is

much more time consuming than that of the Frobenius

norm.
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The sampler is tested with q between - 0.8 and 0.8 and

stopped after K = 37,500 iterations, i.e., when each vector

component has been updated 15 times. For each value of q
and k ranging from 0 to 37,500, the covariance matrix C(k)

and the standardized Frobenius norm gk are calculated as

per Eqs. (9) and (11). The results are summarized in

Tables 1, 2 and 3 and Fig. 1 and call for the following

comments:

(1) In all the cases, the convergence of the non-relaxed

Gibbs sampler (q = 0) is very fast. The standardized

Frobenius norm of the difference between the

covariance matrix of the simulated vector C(k) and

the target covariance matrix C is, by construction,

equal to 1 in the initial state (k = 0), a figure that

drops to less than 0.057 after 5 permutations (12,500

iterations) and to less than 0.01 after 15 permuta-

tions, for all the models under study. In other words,

after 15 permutations, the covariance matrix of the

simulated vector differs from the target covariance

matrix less than 1% of what it differed in the initial

state, suggesting that convergence is practically

reached. Similar findings about convergence have

already been pointed out by Arroyo et al. (2012).

(2) For almost all the covariance models put to the test,

the convergence turns out to be the slowest when

choosing a relaxation parameter close to 1 (q = 0.8)

and the fastest when choosing a negative relaxation

parameter comprised between - 0.6 and - 0.8,

which can reduce the standardized Frobenius norm

by a factor of up to 70% with respect to the non-

relaxed Gibbs sampler. In particular, positive relax-

ation parameters lead to a significantly slower

convergence than negative or zero relaxation param-

eters. The only exception is the short-range spherical

model, for which the convergence turns out to be

faster with a relaxation parameter of 0.2 but, even in

this case, the standardized Frobenius norm gk is less

than 0.01 (i.e., convergence is practically reached)

after 15 permutations or 37,500 iterations for any q
comprised between - 0.6 and 0.6. Analogous results

showing a faster convergence with the use of a

negative relaxation parameter have been reported for

both the traditional (Adler 1981; Whitmer 1984;

Green and Han 1992; Neal 1998) and the propagative

(Lantuéjoul and Desassis 2012) versions of the Gibbs

sampler, although the latter authors use a variant that

differs from the one presented here (Eq. 7) and do

not provide details on their numerical experiments.

This faster convergence can be explained by the

principle of antithetic sampling, which counteracts

the autocorrelation between consecutive states of the

sampler, allowing greater moves and, therefore, a

more efficient exploration of the state space than the

non-relaxed sampler does.

(3) From the previous statements, the fastest conver-

gence of the Gibbs sampler is almost always reached

with a negative relaxation parameter. As a rule of

thumb, q = - 0.6 proves to be appropriate (if not

optimal) in all the cases under consideration, which

correspond to covariance models commonly used in

geostatistics. After only 15 permutations over the

target grid nodes, the deviation between the covari-

ance matrix of the simulated vector and the target

covariance matrix is less than 1% of the norm of the

target covariance matrix, which gives an insight into

how many iterations (K = 15 n, with n the dimension

of Y) are required. Users can also make small-scale

experiments like the one presented here to corrob-

orate these ‘default’ choice of q and K.

Table 1 Convergence of the Gibbs sampler: standardized Frobenius norm gk (Eq. 11) for the spherical covariance models and k = 12,500,

25,000 or 37,500 iterations

q Spherical covariance with range 10 Spherical covariance with range 50

12,500 iterations 25,000 iterations 37,500 iterations 12,500 iterations 25,000 iterations 37,500 iterations

- 0.8 0.0339 0.0222 0.0107 0.0065 0.0049 0.0030

- 0.6 0.0311 0.0211 0.0076 0.0094 0.0074 0.0044

- 0.4 0.0364 0.0243 0.0062 0.0137 0.0106 0.0060

- 0.2 0.0449 0.0289 0.0052 0.0190 0.0146 0.0078

0 0.0566 0.0345 0.0045 0.0260 0.0199 0.0099

0.2 0.0737 0.0426 0.0041 0.0360 0.0274 0.0127

0.4 0.1022 0.0564 0.0043 0.0518 0.0395 0.0171

0.6 0.1591 0.0873 0.0061 0.0818 0.0624 0.0258

0.8 0.3115 0.1917 0.0208 0.1645 0.1269 0.0535
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2.6 Mixing

To conclude the analysis of Gibbs sampling, it remains to

study the mixing property of the sequence of random

vectors {Y(k): k = 0, 1, 2, …}, which can be helpful to

derive multiple non-conditional realizations of Y without

having to restart the sequence from scratch. The rationale is

the following: starting from a zero random vector Y(0) (or

any other initial state) and based on the previous guideli-

nes, one obtains a random vector Y(K) considered as an

acceptable simulation of Y after K iterations (referred to

the ‘burn-in’ period). Now, if more realizations of Y are

required, instead of running the Gibbs sampler again and

again, it may be preferable to follow with the same

sequence and to retain the vectors obtained after every

q iterations, i.e., consider {Y(K), Y(K?q), Y(K?2q),…} as the

successive realizations of Y. This procedure is

advantageous if one can obtain independent realizations

(i.e., Y(K) has no or very little correlation with Y(K?q)) for

some q less than K.

Consider first the Gibbs sampling on the dual random

vector X and assume that the sampler converges to X after

K iterations, i.e., X(K) has zero mean and variance-covari-

ance matrix B. Owing to the invariance of the target dis-

tribution under the transition kernel (Lantuéjoul 2002),

every vector X(K?q) with q[ 0 also has zero mean and

variance-covariance matrix B. It is of interest to calculate

the correlation between two consecutive such vectors.

Based on Eq. (1), one has:

Table 2 Convergence of the Gibbs sampler: standardized Frobenius norm gk (Eq. 11) for the cubic covariance models and k = 12,500, 25,000 or

37,500 iterations

q Cubic covariance with range 10 Cubic covariance with range 50

12,500 iterations 25,000 iterations 37,500 iterations 12,500 iterations 25,000 iterations 37,500 iterations

- 0.8 0.0153 0.0094 0.0046 0.0018 0.0010 0.0005

- 0.6 0.0115 0.0077 0.0032 0.0014 0.0008 0.0004

- 0.4 0.0119 0.0078 0.0033 0.0015 0.0009 0.0005

- 0.2 0.0137 0.0088 0.0039 0.0018 0.0011 0.0006

0 0.0169 0.0107 0.0049 0.0023 0.0015 0.0008

0.2 0.0218 0.0137 0.0066 0.0030 0.0019 0.0010

0.4 0.0302 0.0189 0.0093 0.0042 0.0027 0.0014

0.6 0.0478 0.0299 0.0146 0.0066 0.0042 0.0023

0.8 0.1024 0.0642 0.0306 0.0135 0.0087 0.0049

Table 3 Convergence of the Gibbs sampler: standardized Frobenius norm gk (Eq. 11) for the exponential and Matérn covariance models and

k = 12,500, 25,000 or 37,500 iterations

q Exponential covariance with scale parameter 10 Matérn covariance with varying scale and shape parameters

12,500 iterations 25,000 iterations 37,500 iterations 12,500 iterations 25,000 iterations 37,500 iterations

- 0.8 0.0163 0.0116 0.0062 0.0076 0.0048 0.0022

- 0.6 0.0207 0.0152 0.0067 0.0080 0.0052 0.0021

- 0.4 0.0280 0.0202 0.0071 0.0108 0.0067 0.0026

- 0.2 0.0369 0.0258 0.0072 0.0148 0.0083 0.0034

0 0.0483 0.0327 0.0072 0.0201 0.0102 0.0046

0.2 0.0646 0.0420 0.0075 0.0280 0.0129 0.0064

0.4 0.0909 0.0569 0.0086 0.0409 0.0175 0.0093

0.6 0.1419 0.0872 0.0121 0.0668 0.0276 0.0141

0.8 0.2780 0.1811 0.0306 0.1409 0.0634 0.0273
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Fig. 1 Convergence of the Gibbs sampler: standardized Frobenius

norm gk for k varying between 0 and 37,500 and q varying

between - 0.8 and 0.8. a Spherical covariance with range 10,

b spherical covariance with range 50, c cubic covariance with range

10, d cubic covariance with range 50, e exponential covariance with

scale parameter 10, f Matérn covariance with spatially varying scale

and shape parameters
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EfXðKþ1Þ XðKÞTg ¼ EfXðKÞ
I XðKÞTg

EfðXJI X
ðKÞ
I þ RðKþ1ÞÞXðKÞTg

" #
;

ð12Þ

with (Eqs. 2–3)

XJI ¼ �C�1
JJ CJI

RðKþ1Þ ¼ q �C�1
JJ CJI X

ðKÞ
I � X

ðKÞ
J

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
SJU

ðKþ1Þ:

(

ð13Þ

Accounting for the fact that U(K?1) is not correlated with

X(K), it comes:

EfXðKþ1Þ XðKÞTg ¼
BII BIJ

XJIBII � qC�1
JJ CJI BII � qBJI XJIBIJ � qC�1

JJ CJI BIJ � qBJJ


 �

¼
In�p 0

�ð1þ qÞC�1
JJ CJI �q Ip


 �
B;

ð14Þ

with In–p and Ip the identity matrices of size (n – p) 9 (n –

p) and p 9 p, respectively, and 0 a zero matrix of size (n –

p) 9 p. In term of the direct vector Y, this translates into:

EfYðKþ1Þ YðKÞTg ¼ C EfXðKþ1Þ XðKÞTgC

¼ C
In�p 0

�ð1þ qÞC�1
JJ CJI �q Ip


 �
:

ð15Þ

A recursive application of Eq. (15) allows calculating

the covariance matrix C(K,K?q) between Y(K) and Y(K?q) for

any positive integer q.

As an illustration, let us revisit the numerical experi-

ments shown in Sect. 2.5, consisting of simulating a

Gaussian random vector of size n = 2500. Following

Arroyo et al. (2012), we define the following standardized

index aimed at measuring the mixing property:

hq ¼
jjCðK;KþqÞjjF

jjCjjF
¼ jjCðK;KþqÞjjF

jjCðK;KÞjjF
; ð16Þ

with K a large integer such that the convergence of the

Gibbs sampler can be considered as reached. As for gk

(Eq. 11), this new index hq is equal to 1 for q = 0 and to 0

in case of perfect mixing (independence between Y(K) and

Y(K?q)), which eases the comparison of the different target

covariance models and the comparison with the conver-

gence results presented in Sect. 2.5. The evolution of hq as
a function of q is shown in Fig. 2, for the six covariance

models under consideration, q varying between - 0.8 and

0.8 and q varying between 0 and 37,500. Table 4 only

presents the values of h37,500 in each case. The following

comments can be made:

(1) Mixing occurs for all the covariance models under

consideration at a rate comparable to the rate of

convergence (the standardized index h37,500 is of the
same order of magnitude as g37,500 and below 1% in

all the cases with a suitable choice of the relaxation

parameter q).
(2) Unlike the convergence results, here there seems to

be no or little advantage of using a relaxation

parameter: taking q = 0 practically leads to the

highest mixing rate for all the covariance models,

irrespective of the number of iterations q (the purple

curve in Fig. 2 is consistently below the other

curves). This makes sense if one looks at Eq. (15),

which suggests that q = 0 minimizes the correlation

between consecutive states of the sampler.

(3) In practice, to generate several realizations of the

target Gaussian random vectors, rather than running

the sampler once and retaining every q states after

the burn-in period, it may be faster to run the sampler

with different initial states (for instance, the initial

state can be a vector of ones multiplied by a standard

normal random variable), which allows drawing

several independent random vectors with the same

choice of the subsets (I, J) at each iteration and

saving time in the calculation of the covariance

matrices and vectors (Eq. 6) required at such an

iteration.

3 Simulation conditioned to hard data

3.1 Problem setting

It is now of interest to simulate a n-dimensional Gaussian

random vector Y with zero mean and positive definite

variance-covariance matrix C, conditionally to the knowl-

edge of some of the vector components. For the sake of

simplicity, let us reorder the vector to be simulated as

follows:

Y ¼ YU

YO

� 	
; ð17Þ

where YU and YO are subvectors with n - o and o com-

ponents, corresponding to the unknown (U) and observed

(O) values of Y, respectively. The problem therefore

amounts to simulating YU conditionally to YO = y.

Notation: hereunder, the subscripts NCS and CS will be

used to refer to non-conditional and conditional simulation,

respectively.
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Fig. 2 Mixing of the Gibbs sampler: standardized Frobenius norm hq
for q varying between 0 and 37,500 and q varying between - 0.8 and

0.8. a Spherical covariance with range 10, b spherical covariance with

range 50, c cubic covariance with range 10, d cubic covariance with

range 50, e exponential covariance with scale parameter 10, f Matérn

covariance with spatially varying scale and shape parameters
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3.2 Conditioning the direct and dual random
vectors by residual kriging

As in the previous section, let us introduce the dual vector

X = B Y with B = C-1. This vector can also be split into

two subvectors with n - o and o components:

X ¼ XU

XO

� 	
; ð18Þ

such that

YU

YO

� 	
¼ COO COU

CUO CUU

� 	
XU

XO

� 	
; ð19Þ

with COO, COU ¼ CT
UO and CUU the suitable block-matri-

ces extracted from C.

Let YNCS be a non-conditional simulation of Y, which

can be constructed by Gibbs sampling (Sect. 2.3) or any

other Gaussian simulation algorithm. A simulation YCS

conditioned to YO = y is obtained by residual kriging

(Journel and Huijbregts 1978; Chilès and Delfiner 2012):

YCS;U ¼ YNCS;U þ CUO C�1
OO ðy� YNCS;OÞ

YCS;O ¼ YNCS;O þ COO C�1
OO ðy� YNCS;OÞ ¼ y;

�
ð20Þ

where CUOC
�1
OO and COOC

�1
OO are matrices of simple krig-

ing weights. Now, let us examine the conditioning process

on the dual vector X. We start by writing the conditional

vector as XCS = B YCS, which can be split into two sub-

vectors XCS,U and XCS,O such that:

XCS;U ¼ BUU YCS;U þ BUO YCS;O

¼ BUU YNCS;U þ BUUCUO C�1
OO ðy� YNCS;OÞ þ BUO y

¼ BUU YNCS;U � BUOCOO C�1
OO ðy� YNCS;OÞ þ BUO y

¼ BUU YNCS;U þ BUO YNCS;O

¼ XNCS;U ;

ð21Þ

and

XCS;O ¼ BOU YCS;U þ BOO YCS;O

¼ BOU YNCS;U þ BOUCUO C�1
OO ðy� YNCS;OÞ þ BOO y

¼ BOU YNCS;U þ ðIo � BOOCOOÞC�1
OO ðy� YNCS;OÞ þ BOO y

¼ BOU YNCS;U þ BOO YNCS;O þ C�1
OO ðy� YNCS;OÞ

¼ XNCS;O þ C�1
OO ðy� YNCS;OÞ:

ð22Þ

Equations (21) and (22) have been established by using the

identities BUU CUO = –BUO COO and BUO CUO = (Io –

BOO COO) (with Io the identity matrix of size o 9 o),

which stem from the fact that B = C-1. They prove that the

conditioning process has no effect on subvector XU, the

conditional simulation of which is exactly the same as its

non-conditional simulation, and only affects subvector XO,

the conditional simulation of which is the sum of the non-

conditional simulation XNCS,O and the kriging of XNCS,O

from the residual y – YNCS,O.

Accordingly, a conditional simulation of the dual vector

X, and therefore of the direct vector Y, can be obtained by

simulating X without any conditioning data, and then only

conditioning the subvector XO corresponding to the indices

of the conditioning data.

Table 4 Mixing of the Gibbs sampler: standardized Frobenius norm hq (Eq. 16) for the spherical, cubic, exponential and Matérn covariance

models and q = 37,500 iterations

q Spherical (range 10) Spherical (range 50) Cubic (range 10) Cubic (range 50) Exponential Matérn

- 0.8 0.0160 0.0021 0.0073 0.0007 0.0065 0.0031

- 0.6 0.0110 0.0016 0.0050 0.0005 0.0048 0.0019

- 0.4 0.0088 0.0016 0.0041 0.0004 0.0043 0.0015

- 0.2 0.0077 0.0016 0.0037 0.0003 0.0042 0.0013

0 0.0072 0.0018 0.0037 0.0003 0.0044 0.0012

0.2 0.0072 0.0020 0.0041 0.0004 0.0047 0.0013

0.4 0.0080 0.0023 0.0049 0.0004 0-0053 0.0016

0.6 0.0105 0.0021 0.0068 0.0006 0.0068 0.0021

0.8 0.0226 0.0053 0.0127 0.0009 0.0124 0.0041
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3.3 Solving the conditioning equations
by the Gauss-Seidel method

Because Y = C X, Eq. (22) can be rewritten as follows:

XCS;O ¼ XNCS;O þ C�1
OO ðy� COUXNCS;U � COOXNCS;OÞ

¼ C�1
OO ðy� COUXNCS;UÞ:

ð23Þ

Equivalently,

COO XCS;O ¼ y� COUXNCS;U : ð24Þ

Having calculated a non-conditional simulation of X,

the conditional subvector XCS,O can be obtained by solving

this linear system of equations. To avoid inverting or

pivoting matrix COO, which can be large in the presence of

many conditioning data (o � 1), one can solve the system

iteratively with the Gauss-Seidel method (Young 2003).

The convergence of this method is ensured because COO is

symmetric positive definite.

The algorithm is the following:

(1) Initialization: set X
ð0Þ
CS ¼ XNCS and Y

ð0Þ
CS ¼ CXNCS

(non-conditional simulations of X and Y).

(2) Iteration: for m = 1, 2, …,

(a) Set j – (n – o ? 1) = (m – 1) [mod o] (where

‘mod’ stands for modulo), so that j repeatedly

loops over the indices of subset O = [n –

o ? 1, …, n] as m increases.

(b) Update the j-th component of XCS as follows:

X
ðmÞ
CS;j ¼ C�1

jj yj � CjUXNCS;U

�
� CjOX

ðm�1Þ
CS;O � CjjX

ðm�1Þ
CS;j

� ��
¼ X

ðm�1Þ
CS;j þ C�1

jj yj � Y
ðm�1Þ
CS;j

� �
:

ð25Þ

(c) Update vector YCS as follows:

Y
ðmÞ
CS ¼ Y

ðm�1Þ
CS þ C�j C

�1
jj yj � Y

ðm�1Þ
CS;j

� �
:

ð26Þ

In practice, the sequence is stopped after M iterations,

where M is a large enough multiple of o, and Y
ðMÞ
CS is

delivered as an approximate simulation of YCS.

Interestingly, Eq. (26) shows that the j-th component of

Y
ðmÞ
CS perfectly matches the j-th conditioning data:

Y
ðmÞ
CS;j ¼ yj. However, the remaining components of Y

ðmÞ
CS;O

have no reason to match the remaining data, except

asymptotically when m tends to infinity and convergence of

the Gauss-Seidel method is reached.

Also note the similarity between Eqs. (6) and (26) when

taking J = j and q = 0 (non-relaxed Gibbs sampler): both

equations formally look the same, except that the random

vector SJ U
(k) of Eq. (6) is substituted in Eq. (26) with the

deterministic value C�1
jj yj. The parallel between Gibbs

sampling and the Gauss-Seidel method has already been

pointed out by Galli and Gao (2001).

3.4 Solving the conditioning equations
by the method of successive over-relaxation

An improvement to the Gauss-Seidel method is that of

successive over-relaxation, which depends on a relaxation

parameter x [ ]0,2[ (Young 2003). The update associated

with the j-th component at iteration m is expressed as

follows:

X
ðmÞ
CS;j ¼ x X

ðm�1Þ
CS;j þ C�1

jj yj � Y
ðm�1Þ
CS;j

� �� �
þ ð1� xÞXðm�1Þ

CS;j

¼ X
ðm�1Þ
CS;j þ xC�1

jj yj � Y
ðm�1Þ
CS;j

� �
;

ð27Þ

and

Y
ðmÞ
CS ¼ Y

ðm�1Þ
CS þ xC�j C

�1
jj yj � Y

ðm�1Þ
CS;j

� �
: ð28Þ

Equations (27) and (28) generalize Eqs. (25) and (26) that

correspond to the particular case x = 1.

3.5 Rate of convergence

To assess the rate of convergence of the sequence {Y
ðmÞ
CS :

m = 0, 1, 2,…} when starting from a non-conditional

simulation Y
ð0Þ
CS ¼ CXNCS (assumed to be perfect, as if it

were obtained after infinitely many Gibbs sampling itera-

tions), let us calculate the expectation vector ~E
ðmÞ

and the

variance-covariance matrix ~C
ðmÞ

of Y
ðmÞ
CS (with m C 1), as a

function of the expectation vector ~E
ðm�1Þ

and variance-

covariance matrix ~C
ðm�1Þ

of Y
ðm�1Þ
CS .

3.5.1 Expectation vector

The expectation of Y
ð0Þ
CS is zero: ~E

ð0Þ ¼ 0. For m[ 0, the

expectation of Y
ðmÞ
CS is (Eq. 28):

~E
ðmÞ ¼ ~E

ðm�1Þ þ x C�j C
�1
jj yj � ~E

ðm�1Þ
j

� �
: ð29Þ

3.5.2 Non-centered covariance matrix

Before dealing with the variance-covariance matrix, we

start by calculating the non-centered covariance matrix of

Y
ðmÞ
CS (hereafter denoted with a hat):
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Ĉ
ðmÞ ¼ E Y

ðmÞ
CS Y

ðmÞT
CS

n o
: ð30Þ

Based on Eq. (28), it comes, for m C 1:

Ĉ
ðmÞ ¼ Ĉ

ðm�1Þ þ x2 C�j Cj� C
�2
jj y2j � 2yj ~E

ðm�1Þ
j þ Ĉ

ðm�1Þ
jj

� �
þ xC�1

jj yj ~E
ðm�1Þ � Ĉ

ðm�1Þ
�j

� �
Cj�

þxC�1
jj C�j yj ~E

ðm�1Þ � Ĉ
ðm�1Þ
�j

� �T

:

ð31Þ

3.5.3 Variance-covariance matrix

This matrix is calculated as: ~C
ðmÞ ¼ Ĉ

ðmÞ � ~E
ðmÞ ~E

ðmÞT
.

Based on Eqs. (29) and (31), one finds, after simplification:

~C
ðmÞ ¼ ~C

ðm�1Þ � xC�1
jj

~C
ðm�1Þ
�j Cj� þ C�j ~C

ðm�1Þ
j�

� �
þ x2 C�2

jj
~C
ðm�1Þ
jj C�j Cj�: ð32Þ

Together with ~C
ð0Þ ¼ C, one can calculate ~C

ðmÞ
for any

integer m. The fact that the sequence {Y
ðmÞ
CS : m = 0, 1, 2,

…} converges in distribution to the desired conditional

random vector YCS implies that the expectation vector

converges elementwise to the conditional expectation

(simple kriging predictor) and the variance-covariance

matrix converges elementwise to the variance-covariance

matrix of simple kriging errors, that is:

~E
ðmÞ �!

m!þ1
~E
ð1Þ ¼ CUO C�1

OO y
y

� 	
; ð33Þ

and (Alabert 1987)

~C
ðmÞ �!

m!þ1
~C
ð1Þ ¼ CUU � CUO C�1

OOCOU 0
0 0

� 	
: ð34Þ

Numerical experiments are presented in the next sub-

section, in which the rate of convergence is examined as a

function of the relaxation parameter x.

3.6 Experimental results

We go back to the numerical experiments presented in

Sect. 2.5 and randomly select 200 conditioning data points

among the 2500 grid nodes. For each covariance model

under study, a reference non-conditional simulation is

constructed with the Cholesky decomposition algorithm

(Davis 1987) and used to fix the values at the conditioning

data points.

The method of successive over-relaxation (Eq. 28) is

then used to progressively convert another non-conditional

simulation into a conditional one, for different values of x
between 0 and 2. The iterations are stopped at M = 5000,

i.e., after 25 loops over the 200 components of the obser-

vation subset O. For each value of x and m, the expectation

vector ~E
ðmÞ

(Eq. 29) and the variance-covariance matrix

~C
ðmÞ

(Eq. 32) are calculated. The convergence to the target

expectation vector and variance-covariance matrix is

assessed through the standardized Frobenius norms:

lm ¼ jj ~EðmÞ � ~E
ð1ÞjjF

jj ~Eð0Þ � ~E
ð1ÞjjF

¼ jj ~EðmÞ � ~E
ð1ÞjjF

jj ~Eð1ÞjjF
; ð35Þ

mm ¼ jj ~CðmÞ � ~C
ð1ÞjjF

jj ~Cð0Þ � ~C
ð1ÞjjF

¼ jj ~CðmÞ � ~C
ð1ÞjjF

jjC� ~C
ð1ÞjjF

: ð36Þ

The results, summarized in Tables 5 and 6 and Figs. 3

and 4, indicate that, with a suitable choice of the relaxation

parameter x, both ~E
ðmÞ

and ~C
ðmÞ

quickly converge to the

target conditional expectation vector and conditional vari-

ance-covariance matrix: after only 25 permutations over

the data points (M = 5000 iterations), lM and mM decrease

by more than 85% and 99%, respectively, from their initial

value l0 = m0 = 1 when x is comprised between 0.6 and

1.4. In particular, the convergence turns out to be the

fastest with x close to 1.4 for the compactly-supported

covariance models with a short-range (10 units), and with

x close to 0.6 for the compactly-supported covariance

models with a long range (50 units). As a rule of thumb, a

relaxation parameter around 1.2 yields good convergence

results for all the tested covariance models, irrespective of

whether or not they are compactly-supported or stationary.

In contrast, relaxation parameters close to 0 or 2 consis-

tently yield the slowest convergence.

4 Discussion and synthesis

The previous theoretical and experimental results prove

that iterative algorithms (propagative version of the Gibbs

sampler and method of successive over-relaxation) can be

used for both the non-conditional and conditional simula-

tion of Gaussian random vectors. The simulated vector

converges quickly in distribution to the desired vector, and

the convergence can even be made faster with a suit-

able choice of the relaxation parameter. As a rule of thumb

derived from the experiments shown in Sects. 2.5 and 3.6,

q = - 0.6 and x = 1.2 lead to nearly optimal convergence

results for all the tested covariance models; similar con-

clusions have been obtained with experiments involving

other grid sizes and covariance models (not shown in this

paper).

Although the size of the chosen simulation grid was

purposely small (2500 nodes) in order to evaluate and store

the successive variance-covariance matrices, the proposed
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algorithms are applicable to large-scale problems. As an

illustration, Fig. 5 shows one realization of a stationary

Gaussian random field with an isotropic spherical covari-

ance of range 100 units on a grid with 500 9 500 nodes,

conditioned to o = 10,000 data whose coordinates have

been randomly chosen over the target grid and whose

values have been generated by the Cholesky decomposition

algorithm. The non-conditional simulation is obtained by

Gibbs sampling with K = 250,000 iterations (1 permutation

over all the grid nodes), a relaxation parameter q = - 0.6

and the updating of p = 5 9 5 adjacent nodes at each

iteration. As for the conditioning process, it is obtained

with a relaxation parameter x = 1.2 and M = 2,000,000

iterations (200 permutations over the conditioning data

set). The resulting realization exhibits a continuous spatial

structure with an irregular short-scale behavior, consistent

with the covariance model (spherical). Also, it almost

perfectly matches the conditioning data, with an average

absolute deviation between data values and simulated

values at the data locations equal to 0.0025 and a maximum

absolute deviation of 0.0287, corroborating the

convergence of the successive over-relaxation method for

the conditioning process.

The presented iterative algorithms have the following

advantages over existing methods, as summarized in

Table 7:

(1) Versatility: there is no restriction on the covariance

structure of the target random vector. Accordingly,

the algorithms can be used to simulate any type of

Gaussian random field (stationary or not, scalar-

valued or vector-valued) in any space (Euclidean

space of any dimension, sphere, sphere crossed with

time, etc.) at finitely many locations that can be

evenly distributed or not. The proposed algorithms

therefore offer a very general solution to the

simulation of Gaussian random vectors and random

fields, whereas most of other algorithms (in partic-

ular, turning bands, continuous and discrete spectral

algorithms) are applicable only in Euclidean spaces,

for regularly-spaced locations or covariance models

that are stationary or have a known spectral

Table 5 Convergence of the successive over-relaxation method: standardized Frobenius norm l5000 (Eq. 35) for the expectation vector

x Spherical (range 10) Spherical (range 50) Cubic (range 10) Cubic (range 50) Exponential Matérn

0.2 0.0864 0.1436 0.2294 0.0950 0.1084 0.1965

0.4 0.0317 0.1197 0.1677 0.0793 0.0594 0.1464

0.6 0.0143 0.1086 0.1310 0.0786 0.0447 0.1356

0.8 0.0069 0.0999 0.1064 0.0806 0.0344 0.1323

1 0.0033 0.0940 0.0896 0.0836 0.0252 0.1321

1.2 0.0016 0.0904 0.0781 0.0895 0.0176 0.1376

1.4 0.0010 0.0889 0.0709 0.1026 0.0119 0.1534

1.6 0.0017 0.0892 0.0706 0.1302 0.0076 0.1887

1.8 0.0159 0.0868 0.0940 0.1763 0.0282 0.2606

Table 6 Convergence of the successive over-relaxation method: standardized Frobenius norm m5000 (Eq. 36) for the variance-covariance matrix

x Spherical (range 10) Spherical (range 50) Cubic (range 10) Cubic (range 50) Exponential Matérn

0.2 3.57E-3 3.36E-3 4.13E-2 2.57E-3 2.63E-3 3.64E-3

0.4 5.94E-4 3.23E-3 2.26E-2 1.76E-3 1.09E-3 2.36E-3

0.6 1.55E-4 3.20E-3 1.43E-2 1.67E-3 6.07E-4 2.04E-3

0.8 4.73E-5 3.18E-3 1.01E-2 1.84E-3 3.69E-4 1.97E-3

1 1.35E-5 3.24E-3 7.93E-3 2.24E-3 2.14E-4 2.11E-3

1.2 4.02E-6 3.43E-3 6.82E-3 2.91E-3 1.17E-4 2.43E-3

1.4 2.17E-6 3.86E-3 6.47E-3 3.99E-3 7.12E-5 3.08E-3

1.6 5.30E-6 5.02E-3 7.12E-3 6.13E-3 8.33E-5 4.57E-3

1.8 2.71E-4 1.07E-2 1.25E-2 1.35E-2 7.33E-4 9.86E-3
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representation (Lantuéjoul 2002; Chilès and Delfiner

2012).

(2) The numerical cost is proportional to the number of

target locations (n) and to the number of iterations

Fig. 3 Convergence of the successive over-relaxation method: stan-

dardized Frobenius norm lm for m varying between 0 and 5000 and x
varying between 0.2 and 1.8. a Spherical covariance with range 10,

b spherical covariance with range 50, c cubic covariance with range

10, d cubic covariance with range 50, e exponential covariance with

scale parameter 10, f Matérn covariance with spatially varying scale

and shape parameters
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(which can itself be proportional to the number of

locations), i.e., O(n2), thus cheaper than other one-

size-fits-all approaches for simulating random

vectors such as the Cholesky decomposition algo-

rithm whose complexity is O(n3) (same complexity

for the traditional Gibbs sampler, which requires

Fig. 4 Convergence of the successive over-relaxation method: stan-

dardized Frobenius norm mm for m varying between 0 and 5000 and x
varying between 0.2 and 1.8. a Spherical covariance with range 10,

b spherical covariance with range 50, c cubic covariance with range

10, d cubic covariance with range 50, e exponential covariance with

scale parameter 10, f Matérn covariance with spatially varying scale

and shape parameters
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inverting C). Also, several realizations can be

obtained simultaneously by running the propagative

Gibbs sampler with different initial states but the

same choice of the subsets (I, J) at each iteration,

which allows saving computing time with respect to

the alternative of iterating the sampler K times to

reach convergence and then retaining the states

obtained after multiple of q iterations, based on the

mixing property. The successive over-relaxation

method also allows conditioning several realizations

with a single run with the same choice of the index

j at each iteration.

(3) The memory requirements are affordable and con-

siderably smaller than that of Cholesky decomposi-

tion and traditional Gibbs sampling, as the storage of

the covariance matrix C or of its inverse, square root

or Cholesky factor is not needed: each iteration only

requires the knowledge of one or a few (p) columns

of C, which can therefore be calculated ‘on the fly’.

Memory limitations are less severe for the simulation

of stationary random fields on regular grids, in which

Fig. 5 Ten thousand conditioning data (a) and a conditional simu-

lation (b) obtained by Gibbs sampling (stopped after K = 250,000

iterations with a 5 9 5 blocking strategy) followed with the

successive over-relaxation method (stopped after M = 2,000,000

iterations) over a grid with 500 9 500 nodes. The covariance model

is spherical with range 100 units

Table 7 Properties of current algorithms for simulating Gaussian random vectors and random fields

Algorithm Restriction on covariance structure Restriction on

space definition

Restriction on

target locations

Numerical

complexity

Memory

storage

requirements

Covariance matrix (LU, Cholesky

or square root) decomposition

None None None O(n3) O(n2)

Circulant-embedding and discrete

spectral

Stationary covariance whose periodic

repetition is still a valid covariance

Euclidean

spaces and

spheres

Evenly spaced O(nln(n)) O(n)

Autoregressive and moving

average

Stationary covariance belonging to a

specific subclass

Euclidean

spaces

Evenly spaced O(n) O(1)

Continuous spectral Covariance with known spectral

representation

Euclidean

spaces and

spheres

None O(n) O(1)

Turning bands Stationary covariance belonging to a

specific subclass

Euclidean

spaces

None O(n) O(1)

Traditional Gibbs sampler None None None O(n3) O(n2)

Propagative Gibbs sampler (our

proposal)

None None None O(n2) O(n)
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case (unless a huge grid is considered) the entries of

C can be calculated once for all and stored before the

iteration phase.

The previous results open several perspectives, the study

of which deserves further research:

(1) The use of a non-homogeneous Markov chain for the

Gibbs sampler, where the transition kernel depends

on the iteration k. In particular, it may be interesting

to take a non-constant relaxation parameter q(k), for
instance, negative for the first iterations and pro-

gressively tending to zero as the iteration number

increases, a scheme suggested by the convergence

results displayed in Fig. 1.

(2) Likewise, for the successive over-relaxation method,

the relaxation parameter x could also depend on the

iteration number m. Also, instead of systematically

looping over the observation subset O (step 2a in the

presentation of the Gauss-Seidel method), the index j

may be selected randomly and non-uniformly, for

instance, with a probability that is all the higher as

the deviation between Y
ðm�1Þ
CS;j and yj is large. This

way, the updating would preferentially focus on the

data for with the highest mismatch between the

observed and simulated values.

(3) A blocking strategy (updating p vector components,

with p[ 1, at each iteration) could also be designed

for the successive over-relaxation method, as it is

done for the Gibbs sampler.

(4) Another idea would be to use the successive over-

relaxation method (Eq. 28) to improve the quality of

a conditional simulation obtained with any approx-

imate algorithm, e.g., a non-conditional simulation

that has been turned into a conditional one by means

of a kriging within a moving neighborhood. It is not

obvious that such a procedure would be successful,

insofar as the convergence of the method is guaran-

teed only if the initial vector Y
ð0Þ
CS is associated with a

dual vector X
ð0Þ
CS such that X

ð0Þ
CS;U constitutes a non-

conditional simulation of XU (Eq. 21). A better idea

would be the following:

(a) Non-conditionally simulate X by Gibbs sam-

pling. Obtain a dual vector XNCS and calculate

the associated direct vector YNCS.

(b) Approximately condition XNCS,O by kriging

within a moving neighborhood (add the kriged

residual y – YNCS,O to the non-conditional

simulation XNCS,O), see Eq. (22). For instance,

if kriging is performed with a neighborhood

containing only one data, it suffices to replace

C�1
OO in Eq. (22) by the identity matrix. Obtain

a dual vector X
ð0Þ
CS and calculate the associated

direct vector Y
ð0Þ
CS .

(c) Apply the successive over-relaxation method

(Eq. 28) with vector Y
ð0Þ
CS obtained in the

previous step as the initial vector. This initial

vector is ‘closer’ to the desired conditional

vector than the non-conditional vector YNCS,

so that the convergence of the method should

be faster.

5 Conclusions

Two iterative algorithms for simulating a Gaussian random

vector, without (Gibbs sampling) or with (Gibbs sampling

followed with successive over-relaxation) conditioning

data, have been presented. Both algorithms provide a

simulated Gaussian random vector that converges in dis-

tribution to the desired random vector and the convergence

can be made faster with a suitable choice of the relaxation

parameter.

The experimental results suggest that, most often, the

optimal relaxation parameter of the Gibbs sampler is neg-

ative, whereas that of the successive over-relaxation

method is greater than 1. Recommended values could be -

0.6 and 1.2, respectively, as a rule of thumb. If several non-

conditional realizations are drawn from the same run (by

retaining the vectors obtained at iterations K, K ? q,

K ? 2q, etc.) based on the mixing property, then the pre-

sented numerical experiments suggest to set the relaxation

parameter to zero after the burn-in period.

The algorithms can be applied in very general settings to

simulate stationary or non-stationary scalar or vector ran-

dom fields at a set of gridded or non-gridded locations in

any Euclidean or non-Euclidean space.
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Appendix 1

Let X(0) = 0 and, for any positive integer k, X(k) be the

random vector defined as per Eqs. (1) and (3). The

sequence {X(k): k = 0, 1, 2, …} so obtained constitutes a

Markov chain. It is easy to check that this chain is

homogeneous (for k C 1, the distribution of X(k) knowing

X(k-1) does not depend on k), irreducible (because 1–

Stochastic Environmental Research and Risk Assessment (2020) 34:1523–1541 1539

123



q2 = 0, any nonempty open set of Rn can be reached by

the chain after finitely many iterations) and aperiodic.

Accordingly, to prove that the chain converges in

probability to X, it remains to show that the distribution of

X is invariant under the transition kernel of the chain

(Lantuéjoul 2002). Suppose that X(k-1) is a Gaussian ran-

dom vector with zero mean and variance-covariance matrix

B. In such a case, the simple kriging error

�C�1
JJ CJI X

ðk�1Þ
I � X

ðk�1Þ
J and SJ U

(k) are two independent

Gaussian random vectors with zero mean and variance-

covariance matrix RJ and are independent of X
ðk�1Þ
I . R(k),

as defined by Eq. (3), is therefore a Gaussian random

vector independent of X
ðk�1Þ
I , with zero mean and variance-

covariance matrix RJ , irrespective of the choice of q. The
proof by Arroyo et al. (2012) can be adapted to establish

that, under these conditions, X(k) is a Gaussian random

vector with zero mean and variance-covariance matrix B,

Q.E.D.
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