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Abstract
This paper introduces a new consideration in the well known chemostat model
of a one-species with a periodic input of single nutrient with period ω, which is
described by a system of differential delay equations. The delay represents the
interval time between the consumption of nutrient and its metabolization by the
microbial species. We obtain a necessary and sufficient condition ensuring the
existence of a positive periodic solution with periodω. Our proof is based firstly
on the construction of a Poincaré type map associated to an ω-periodic integro-
differential equation and secondly on the existence of zeroes of an appropriate
function involving the fixed points of the above mentioned map, which is proved
by using Whyburn’s Lemma combined with the Leray–Schauder degree. In
addition, we obtain a uniqueness result for sufficiently small delays.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The chemostat [21, 29, 31, 40] or continuous stirred-tank reactor (CSTR) is a continuous biore-
actor with a constant volume V where one or several microbial species are cultivated in a liquid
medium containing in abundance a broad set of resources with the exception of a specific
nutrient that will be called the limiting substrate or substrate.
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The chemostat and its mathematical modelling have an ubiquitous place in the study of bio-
processes and microbial ecology issues such as fermentation, anaerobic digestion, production
of cellular biomass, competition and predation between microbial species, microbial evolution,
etc.

In this article we consider and study a chemostat model described by the following
ω-periodic system of delay differential equations (DDE):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ṡ(t) =
F
V

s0(t) − F
V

s(t) − γ−1μ(s(t))x(t) if t � 0,

ẋ(t) = x(t)

{
μ(s(t − τ )) − F

V

}
if t � 0,

s(θ) = ϕ(θ) and x(0) = x0 if θ ∈ [−τ , 0],

(1)

where the maps t �→ s(t) and t �→ x(t) are, respectively, the densities of the substrate and the
microbial species at time t.

As usual, the DDE system (1) considers two simultaneous and continuous mechanical
processes:

(i) Continuous inputs: the device receives continuously (at rate F > 0) an input of liq-
uid volume containing a variable concentration of substrate described by a positive function
t �→ s0(t). In spite that the most common case in the literature is to consider a constant con-
centration, in this paper we will assume that s0(·) is a continuous periodic function of period
ω.

(ii) Continuous outputs: the device expulses continuously (at rate F > 0) towards the
exterior an output of liquid volume containing a mixing of microbial biomass and substrate.

From now on, we will adopt the classical notation D = F/V for the dilution rate. In addition,
let us recall that the DDE system (1) describes two biological processes:

(iii) Substrate consumption: the absorption of the substrate by the microbial species,
which will be described by a continuous and non negative function of type f(s(t))x(t). That
is, the consumption of substrate has a linear growth with respect to the microbial biomass
concentration.

(iv) Biomass growth: the effects of the above mentioned consumption in the per-capita
growth of the microbial species, which is described by a continuous and non negative function
of type g(s(t − τ ))x(t), where g is called the uptake function. The model described by the system
(1) assumes that the consumption on nutrient has no immediate effects on the microbial growth.
In fact, we follow an approach of Caperon [10], which considers the existence of a time interval
[t − τ , t] that the microbial species take to metabolize the substrate.
As in the vast majority of the chemostat literature, the model assumes that the consumption of
nutrient and the growth of microbial biomass have a coupling described by g(r) = γf(r) = μ(r),
where μ : [0,+∞) → [0,+∞), being γ > 0 a yield constant which relates both processes.

With respect to the above function μ(·), in this paper, we will assume that μ(·) has the
following properties:

(P) μ(·) is C1, μ′(s) > 0 for any s � 0 and μ(0) = 0,

and a classic example of uptake function μ(·) satisfying (P) is given by the Monod’s or
Michaelis–Menten function:

μ(s) =
μmaxs
ks + s

with D < μmax and ks > 0, (2)

which describes the growth of a wide range of microbial species.
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The refinement of the basic assumptions of the chemostat model has stimulated an impres-
sive amount of research in the qualitative theory of ordinary, impulsive and delay differential
equations, propelling as the development of new techniques of nonlinear functional analysis
as well as the innovative use of classical ones. In this theoretical and modelling context, we
point out that the terms s0(·) and D can be operated externally and are considered as inputs
of the system. To consider ω-periodic inputs has shown some advantages: it can provide a
better production of microbial biomass compared with constant inputs and allows to repro-
duce the essential features of simple microbial ecosystems, namely, a spatially homogeneous
and time-varying environment, which are useful to study microbial physiology. Finally, the
study of the ω-periodic and more general non autonomous chemostat models prompted some
original research in topics as bifurcation theory, uniform persistence and existence of periodic
solutions.

In spite of the fact that there exist several chemostat models described either by ω-periodic
ODE systems or by autonomous DDE systems, to the best of our knowledge, it is quite surpris-
ing that there exist no simple models coupling delay andω-periodicity. This fact stress the main
contributions of this article: in the first place, we introduce a simple ω-periodic and delayed
chemostat model and, in the second place, we prove the existence of ω-periodic solutions. Our
results partially generalize those obtained for the undelayed case and use in a creative way two
techniques: (i) the construction of Poincaré’s translation operators tailored for a one-parameter
family of integro-differential equations for the nutrient equation, and (ii) to construct a map
defined over the fixed points of the above mentioned Poincaré operators and related to the
biomass equation. We prove the existence of at least one zero of this map by means of the
Whyburn’s lemma and the Leray–Schauder’s degree. Although, in a general sense, the use
of Poincaré operators and the search of zeroes for maps has been used to cope with unde-
layed problems, we emphasize the novelty of our approach. We remark that, according to well
known results of dissipativeness for periodic processes, the problem of finding periodic pos-
itive solutions can be reduced to that of proving the permanence of the positive solutions of
(1). However, this latter problem may involve a lot of technicalities and subtleties such that it
is not clear whether or not the methods for the non-delayed case (see [14] and [42, ch 13]) can
be extended to the present context.
Structure of the article. Section 2 describes two systems which are particular cases of (1), an
autonomous DDE version and an ω-periodic ODE; in section 3 the main results are established.
The first result (theorem 1) states a sufficient condition for the chemostat washout; the second
result (theorem 2) is a necessary and sufficient condition ensuring the existence of positive
ω-periodic solutions of the model; the third result (theorem 3) concerns the uniqueness of
positive ω-periodic solutions for small delays. Section 4 is devoted to the proofs of the main
results. Section 5 introduces a numerical example inspired in the growth of the algae Dunaliella
tertiolecta under a limitation of nitrate. A short discussion is presented in section 6 and we
finish with an appendix devoted to some topological tools and results used in the paper.
Notation. As usual, the Banach space of the real valued continuous functions defined
in [−τ , 0] with the supreme norm is denoted by C([−τ , 0],R) and its positive cone as
C+([−τ , 0],R) :=C([−τ , 0],R+

0 ), where R+
0 := [0,+∞).

In addition, given ϕ∗ ∈ C+([−τ , 0],R) we will introduce the notation

{0 � ϕ � ϕ∗} =
{
ϕ ∈ C+([−τ , 0],R) : 0 � ϕ(θ) � ϕ∗(θ) for any θ ∈ [−τ , 0]

}
.

Moreover, the Banach space of the real valued continuous ω-periodic functions with
supreme norm will be denoted by Cω and its positive cone as C+

ω . The average of a function
f ∈ Cω is denoted by
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M{ f} :=
1
ω

∫ ω

0
f (t) dt.

In order to prove the existence of ω-periodic solutions we may assume, without loss of gen-
erality, that the delay satisfies the property τ ∈ [0,ω). Indeed, it is straightforward to verify that
the existence ofω-periodic solutions of (1) with delay τ = nω + τ ∗ (n ∈ N and 0 � τ ∗ < ω) is
equivalent to the existence of ω-periodic solutions of (1) with delay τ ∗ ∈ [0,ω). Nevertheless,
we emphasize that this assumption is only used to prove the sufficience part in theorem 2.

2. Delayed chemostat model

The ω-periodic DDE system (1) generalizes two well known chemostat models: the
autonomous DDE system{

ṡ(t) = Ds0 − Ds(t) − γ−1μ(s(t))x(t) if t � 0

ẋ(t) = x(t) {μ(s(t − τ )) − D} if t � 0,
(3)

and the ω-periodic ODE system{
ṡ(t) = Ds0(t) − Ds(t) − γ−1μ(s(t))x(t) if t � 0

ẋ(t) = x(t) {μ(s(t)) − D} if t � 0.
(4)

To the best of our knowledge, the system (3) has been considered in a work of Caperon [10],
which proposes some approaches to explain the gap between consumption of nutrient and its
effect on the species growth.

The mathematical study of (3) was started by Thingstad and Langeland in [45] and Bush
and Cook in [9]. By using (P), it is noticed that if the constant λ = μ−1(D) verifies λ ∈ (0, s0),
then E∗ = (γ[s0 − λ],λ) is the unique positive equilibrium of (3). This constant λ is called the
break-even concentration; this is, the minimal amount of substrate necessary to ensure a non-
negative growth of the microbial species. The linearization of (3) around E∗ and the study of
the corresponding characteristic equation allowed to obtain sufficient conditions ensuring the
local asymptotic stability of E∗ as done in [5, 24, 32] and also to prove the existence of peri-
odic solutions for a threshold delay [16, theorem 3.2]. Moreover, sufficient conditions for the
global stability of E∗ have been obtained by constructing a Lyapunov–Krasovskii functional in
[17, 28].

It is important to point out the existence of complementary approaches describing the delay
between consumption of nutrient and the corresponding growth of the microbial species. In
particular, we highlight the model described by the DDE system:⎧⎪⎪⎨

⎪⎪⎩
ṡ(t) = Ds0 − Ds(t) − γ−1μ(s(t))x(t) if t � 0

ẋ(t) = x(t − τ )μ(s(t − τ ))e−Dτ − Dx(t) if t � 0,

s(θ) = ϕ(θ) and x(θ) = ψ(θ) if θ ∈ [−τ , 0],

(5)

which has been introduced by Freedman et al [15] and Ellermeyer [12].
In spite that the dilution rate D has been preferably chosen as ω-periodic input instead of

s0 (we refer the reader to [34, p 73] and [40, ch 7] for details), the ω-periodic ODE system
(4) has been considered in several publications and its study has industrial and scientific moti-
vations: on one hand, the nice compilation of results elaborated by Bailey [4] pointed out
that periodically operated bioreactors can (at least from a theoretical point of view) improve
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Table 1. Summary of the study of (4) and its operational parameters.

Inputs Type References

s0 Continuousω − periodic [1, 2, 19, 22, 23, 39, 44]
s0 Piecewise continuousω − periodic [18, 44]
s0 Piecewise continuous [14, 36, 37]
s0 Almost periodic [37]
s0 and D Continuousω − periodic [35, 44, 48, 50]
s0 and D Continuous [11]
D Continuous ω − periodic [7, 26, 30, 33, 44]

the time-average performance of a bioprocess compared with a fixed parameters one. This
work stimulated a big amount of optimal control oriented research where (4) is widely studied
[1, 2, 22, 38]. On the other hand, the periodically operated chemostat allows to mimic some
environmental fluctuations in aquatic ecosystems (e.g., light/dark cycles or substrate oscilla-
tions) and to study the effect of these variations in microalgae physiology, we refer the reader
to [27] for details.

The study of (4) has stimulated mathematical research in several topics as bifurcation theory
[1, 3, 44] and uniform persistence [14, 37]. The existence, uniqueness and attractivity on ω-
periodic solutions has been studied initially by Hsu in [23], were numerical studies are carried
out. In addition, in [39, theorem 2.1] Smith proved that the existence of an ω-periodic solution
is equivalent to the existence of zeroes of a related map, which is verified by a refinement
of the implicit function theorem. The uniqueness and the attractiveness results of ω-periodic
solutions are proved by Hale and Somolinos in [19, corollary 5.6].

It is important to point out that (4) is a particular case of the model considered in
[35, 48, 50], where s0 and the dilution rate D are both ω-periodic. We also show a table
summarizing the study of (4) and other related models with time-varying parameters (table 1).

Moreover, we have to emphasize that in [19, 23, 35, 39, 48, 50], the system (4) and its related
ω-periodic models are considered as a previous step to the study of the system⎧⎪⎨

⎪⎩
ṡ(t) = Ds0(t) − Ds(t) −

n∑
i=1

γ−1
i μi(s(t))xi(t) if t � 0,

ẋi(t) = xi(t) {μi(s(t)) − D} if t � 0,

(6)

which describes an scenario of pure and simple competition between n microbial species for
the substrate. It is well known that if t �→ s0(t) is a positive constant function, the asymptotic
behaviour of (6) is the competitive exclusion, namely, at most one microbial species will survive
and the rest will become extinct (see [40, ch 2] for details). In this context, an ω-periodic input
s0 is introduced in order to promote the coexistence between all microbial species.

A careful revision of the chemostat literature shows a surprising fact: the lack of models
which couple the autonomous DDE system (3) with the ω-periodic ODE system (4). This is
due to the complexity of the problem, namely, the difficulty in to adapt the Poincaré operator
approach to the delayed case and highlights in some way the contribution of our work.

3. Main results

Let us observe, in the first place, that system (1) with any non-negative initial condition (ϕ, x0)
such that x0 = 0, becomes the scalar ODE
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v̇ = Ds0(t) − Dv. (7)

Lemma 1. The equation (7) has a unique ω-periodic solution v∗(·), which is positive and
can be described by:

v∗(t) =
∫ t

−∞
e−D(t−r)Ds0(r) dr. (8)

In addition, any solution t �→ v(t) of (7) verifies

lim
t→+∞

(v(t) − v∗(t)) = 0. (9)

Proof. As it was shown in [49, p 67], if D > 0 and t �→ s0(t) is bounded continuous on R,
then t �→ v∗(t) defined by (8) is the unique solution of (7) which is bounded on (−∞,+∞). On
the other hand, as t �→ s0(t) is ω-periodic, it is straightforward to verify that v∗(t) is ω-periodic
too.

The proof of (9) can be followed directly by the transformation w(t) = v∗(t) − v(t), which
leads to

v(t) = v∗(t) + {v(t0) − v∗(t0)}e−D(t−t0) (10)

for an arbitrary t0 � 0. �

Remark 1. It is important to note that:

(a) Theω-periodic function t �→ (v∗(t), 0) is known as the ‘washout’ solution in the chemostat
literature since one of its main goals is to produce microbial biomass. In this paper, we will
call t �→ (v∗(t), 0) the trivial solution and we define a non-trivial solution as any solution
t �→ (s(t), x(t)) distinct from the trivial one with nonnegative components.

(b) It is straightforward to verify that M{s0} = M{v∗}.

Remark 2. If x(0) = x0 > 0, it is straightforward to see that x(t) > 0 for any t � 0. More-
over, as t �→ s0(t) is positive and continuous and s(0) = ϕ(0) � 0, it follows that s(t) > 0 at
some interval (0, δ). Now, it is easy to prove that s(t) > 0 for any t > 0. Indeed, otherwise,
there exists t1 = min{t > 0 : s(t) = 0} verifying ṡ(t1) = Ds0(t1) > 0, which cannot occur.

Remark 3. Note that any solution t �→ (s(t), x(t)) is defined on [−τ ,+∞). This follows from
the fact that s′(t) � D(s0(t) − s(t)), then s is bounded and, in consequence, the function x(t) in
the second equation has a bounded logarithmic derivative.

The main results state that the existence and non-existence of ω-periodic functions depend
on the sign of M{μ(v∗)} − D:

Theorem 1. If the following inequality is satisfied

M{μ(v∗)} =
1
ω

∫ ω

0
μ(v∗(t)) dt � D, (11)

then the trivial solution t �→ (v∗(t), 0) of (1) is globally asymptotically stable for any initial
condition (ϕ, x0) ∈ C+([−τ , 0],R) × R

+
0 . That is

lim
t→+∞

(
s(t) − v∗(t)

)
= 0 and lim

t→+∞
x(t) = 0,

for any solution t �→ (s(t), x(t)) with initial condition (ϕ, x0).
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Theorem 2. The system (1) has a non-trivial and positive ω-periodic solution if and only if

M{μ(v∗)} =
1
ω

∫ ω

0
μ(v∗(t)) dt > D. (12)

Furthermore, if t �→ (s(t), x(t)) is a non-trivial nonnegative ω-periodic solution then
0 < s(t) < v∗(t) and x(t) > 0 for any t.

Theorem 3. The non-trivial ω-periodic solution t �→ (s∗(t), x∗(t)) of (1) is unique when the
delay τ > 0 is sufficiently small.

Theorem 1 generalizes a result also obtained by Wolkowicz and Zhao with τ = 0. Indeed,
the statement (b) of corollary 2.3 from [48] (see also theorem 2.2 from [19]) says that (11)
implies the global asymptotic stability of the trivial solution.

Theorem 2 partially extends a result obtained by Wolkowicz and Zhao with τ = 0. Indeed,
the statement (a) of corollary 2.3 from [48] says that (12) implies the existence and uniqueness
of a positive ω-periodic solution t �→ (s∗0(t), x∗0(t)) such that

lim
t→+∞

(
s(t) − s∗0(t)

)
= 0 and lim

t→+∞

(
x(t) − x∗0(t)

)
= 0,

for any positive solution t �→ (s(t), x(t)) of (1) with τ = 0.
Theorem 3 is a consequence of the above result of Wolkowicz and Zhao about the existence

and uniqueness of an ω-periodic solution t �→ (s∗0(t), x∗0(t)) when τ = 0, which combined with
the continuity of the solutions of (1) with respect to the delay τ (see e.g., theorem 2.2 from
[20, ch 2]), prompted us to obtain a uniqueness result for small delays.

The inequalities (11) and (12) can be seen also from a bioprocesses point of view as a
generalization to the ω-periodic framework of the inequality μ−1(D) = λ < s0 described in
the section 2, which is equivalent to the existence of a unique positive equilibrium E∗ of the
autonomous DDE system (3). In fact, note that E∗ is positive if and only if μ(s0) > D. Now if
the constant s0 > 0 is replaced by a positive and ω-periodic input t �→ s0(t), then the condition
(12) generalizes this last inequality for ω-periodic inputs.

4. Proof of the main results

4.1. Proof of theorem 1

Let t �→ (s(t), x(t)) be a solution of the system (1) with initial condition (ϕ, x0) ∈
C([−τ , 0],R+

0 ) × R
+
0 . If x0 = 0, then we have that x(t) ≡ 0 and lemma 1 implies that

lim
t→+∞

(v∗(t) − s(t)) = 0. From now on, we will assume that x0 > 0.

In addition, it will be useful to note that, given an arbitrary t0 � 0, it follows that

v∗(t) − s(t) = [v∗(t0) − s(t0)]e−D(t−t0) + γ−1
∫ t

t0

μ(s(ξ))eD(ξ−t)x(ξ) dξ. (13)

As a consequence, if v∗(t0) � s(t0) then v∗(t) > s(t) for any t > t0.
The proof will consider two cases:

Case M{μ(v∗)} < D: we shall proceed in several steps.

Step (1): for any ε > 0, there exists T := Tε > 0 such that

s(t) � v∗(t) + ε for any t > Tε. (14)
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In fact, the component t �→ s(t) of the solutions of (1) has the following behaviour: either (i)
t �→ s(t) > v∗(t) for any t � 0 or (ii) there exists some T1 � 0 such that s(T1) � v∗(T1). From
identity (13), we deduce:

In case (i), the non-negativeness of the solutions allows to prove that

0 � s(t) − v∗(t) � [s(0) − v∗(0)]e−Dt,

and we can easily deduce that, given ε > 0, there exists T := Tε > 0 such that (14) holds.
In case (ii), it follows that s(t) < v∗(t) for any t > T1 and (14) follows trivially.

Step (2): by the strict inequality in (11) there exists some ε0 > 0 small enough such that

1
ω

∫ ω

0
μ(v∗(t) + ε0) dt < D,

and the step 1 implies the existence of Tε0 > 0 such that (14) is verified for ε0, then (P) implies
that, for any t � Tε0 + τ :

∫ t+ω

t
[μ(s(ξ − τ )) − D]dξ �

∫ t+ω

t
[μ(v∗(ξ − τ ) + ε0) − D]dξ := c0 < 0.

Since t �→ v∗(t) is a positive continuous and ω-periodic function, it follows that 0 < v∗(t) �
v∗max := max

r∈[0,ω]
{v(r)}. The above inequality combined with (P) and the fact that any t � Tε0 + τ

can be written as t = t0 + nω + s with t0 = Tε0 + τ , n = 	t/ω
 ∈ N0 and s ∈ [0,ω] implies
that

ln x(t) � ln x(t0) + 	t/ω
c0 +
(
μ(v∗max + ε0) − D

)
ω,

then we can deduce that x(t) → 0 when t →+∞.
Finally, we use (13) to prove the existence of a positive constant C0 such that

lim sup
t→+∞

|v∗(t) − s(t)| � C0 sup
ξ�t1

x(ξ)

for arbitrary t1 � 0 and the result follows.
Case M{μ(v∗)} = D: the proof will be made in several steps.
Step (1): There exists T > 0 such that

s(t) < v∗(t) for any t � T. (15)

Indeed, we already know from (13) that the claim is true if v∗(t0) � s(t0) for some t0.
Suppose otherwise that s(t) > v∗(t) for all t � 0, then

1
ω

∫ t+ω

t
μ(s(r)) dr >

1
ω

∫ t+ω

t
μ(v∗(r)) dr = D for any t > 0.

Integrate the second equation of (1) and obtain that x(t + ω) > x(t) for any t > τ , this fact
implies that inf

t�0
x(t) > 0 and, consequently,

[s(t) − v∗(t)]′ � −D[s(t) − v∗(t)] − γ−1μ(v∗(t))inf
ξ�0

x(ξ) � −C1

for some constant C1 > 0. This, in turn, implies s(t) − v∗(t) →−∞, a contradiction.
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Step (2): the solutions have the following property:

lim sup
t→+∞

x(t) < +∞, and inf
t�0

s(t) > 0.

In addition, there exist positive constants c1 and c2 > 0 such that

c1(v∗(t) − s(t)) � μ(v∗(t)) − μ(s(t)) � c2(v∗(t) − s(t)) for all t � T.

Indeed, integrating the second equation of (1) we deduce as in the previous step that
x(t + ω) < x(t) for t � T + τ and, in particular, x is bounded from above. The proof that
inft�0s(t) > 0 can be made by contradiction: if inft�0s(t) = 0, then the fluctuation lemma (see
e.g. [41, p 154]) ensures the existence of a sequence {σn}n such that

lim
n→+∞

s(σn) = lim
n→+∞

ṡ(σn) = 0,

which combined with the boundedness of x implies that s0(σn) → 0, obtaining a contradiction
with the positiveness and ω-periodicity of s0.

The existence of c1 and c2 follows trivially from condition (P).
Step (3): any solution verifies lim inf

t→+∞
x(t) = 0. Indeed, otherwise, suppose that

lim inf
t→+∞

x(t) > 0 and hence inf
ξ�0

x(ξ) > 0. We deduce that

[v∗(t) − s(t)]′ � −D[v∗(t) − s(t)] + γ−1μ(inf
ξ�0

s(ξ))inf
ξ�0

x(ξ) for any t � 0.

The above inequality implies that v∗(t) − s(t) � C > 0 for all t � T. Then for N ∈ N and
t � T + τ we have that

x(t + Nω) = x(t)e
∫ t−τ+Nω

t−τ μ(s(r)) dr−NDω

= x(t)e
∫ t−τ+Nω

t−τ [μ(s(r))−μ(v∗(r))] dr

� max
ξ�0

x(ξ)e−NCωc1 ,

and we conclude that x(t) → 0 as t →+∞, a contradiction.
Step (4): we have that

∫ +∞

0
[v∗(r) − s(r)] dr = +∞.

Indeed, suppose that
∫ +∞

0 [v∗(r) − s(r)] dr < +∞ and integrate the second equation of (1)
between t0 + τ and t + τ with t � t0 � T, then we obtain that

ln x(t + τ ) = ln x(t0 + τ ) +
∫ t

t0

[μ(s(r)) − μ(v∗(r))] dr +
∫ t

t0

[μ(v∗(r)) − D] dr

� ln x(t0 + τ ) − c2

∫ t

t0

[v∗(r) − s(r)] dr + min
t∈[0,ω]

∫ t

0
[μ(v∗(r)) − D] dr

and hence t �→ ln x(t) � δ0 > −∞, obtaining a contradiction with the fact that lim inf
t→+∞

x(t) = 0.
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Step (5): end of proof: for t ∈ [T + τ , T + τ + ω] we may write as before

x(t + Nω) = x(t)e
∫ t−τ+Nω

t−τ μ(s(r)) dr−NDω

= x(t)e
∫ t−τ+Nω

t−τ [μ(s(r))−μ(v∗(r))] dr

� x(t)e−c1
∫ t−τ+Nω

t−τ [v∗(r)−s(r)] dr

� max
ξ�0

x(ξ)e−c1
∫ T+Nω

T+ω [v∗(r)−s(r)] dr.

Because the latter term tends to 0 as N →∞ independently of t, we deduce that x(u) → 0 as
u →+∞. Finally, for any t0 and t � t0 we have:

v∗(t) − s(t) � [v∗(t0) − s(t0)]e−D(t−t0) + γ−1 max
ξ�t0

x(ξ)
∫ t

t0

μ(s(ξ))e−D(t−ξ) dξ.

For η > 0, fix t0 such that the last term in the previous inequality is smaller than η to
obtain: lim supt→+∞[v∗(t) − s(t)] � η. Since η is arbitrary, we conclude that v∗(t) − s(t) → 0 as
t →+∞.

4.2. Proof of theorem 2

The necessity of condition (12) follows from theorem 1. Moreover, if t �→ (s(t), x(t)) �=
(v∗(t), 0) is a non-negative ω-periodic solution of (1) we will prove that 0 < s(t) < v∗(t) for
any t.

By ω-periodicity we have that∫ ω

0
{s0(r) − s(r)} dr =

γ−1

D

∫ ω

0
μ(s(r))x(r) dr > 0.

Because M{v∗} = M{s0}, we have that

0 =

∫ ω

0
{s0(r) − v∗(r)} dr <

∫ ω

0
{s0(r) − s(r)} dr

and, consequently, there exists t0 ∈ [0,ω] such that s(t0) < v ∗ (t0). By using (13) and the
periodicity again, we deduce that s(t) < v∗(t) for all t.

The sufficience of the condition (12) will be proved in several steps for the convenience of
the reader.
Step 1: it is readily seen that if L = γ−1x(0) > 0 is fixed, then upon integration of the second
equation, system (1) is equivalent to

ṡ(t) = Ds0(t) − Ds(t) − Lμ(s(t))e
∫ t

0 [μ(s(ξ−τ ))−D]dξ. (16)

Furthermore, we point out that as the right-hand side part of (1) is locally Lipschitz, the
solutions are continuous with respect to the initial conditions (see e.g., [20, ch 2, theorem 2.2])
and this property is inherited by the solutions of (16). This fact will be useful later.

For any fixed L > 0, ϕ ∈ C+([−τ , 0],R) and θ ∈ [−τ , 0], we construct the Poincaré
translation operator PL : C+([−τ , 0],R) → C+([−τ , 0],R) as follows:

PLϕ(θ) = sϕ(ω + θ), where sϕ(·) is the solution of (16) with initial conditionϕ.
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Let us define the set C∗ := {ϕ ∈ C([−τ , 0],R) : 0 � ϕ � v∗ in [−τ , 0]} and, in the same
way as before, we can observe that if ϕ ∈ C∗ then 0 < sϕ(t) < v∗(t) for any t > 0, which proves
that PL is well defined over C∗ and PL(C∗) ⊂ (C∗)◦, the interior of C∗.

On the other hand, we can verify that operator PL is compact. Indeed, the continuity of PL

follows from the continuous dependence on the initial conditions and, furthermore, because
0 � sϕ � v∗ we deduce that |ṡϕ(t)| is bounded by a fixed constant for t � 0. As it was stated
in the Introduction, we can assume that ω > τ , whence |(PLϕ)′(t)| is bounded for t ∈ [−τ , 0]
and ϕ ∈ C∗. Thus, the family {PLϕ : ϕ ∈ C∗} is equicontinuous and the conclusion follows
from the Arzelà–Ascoli theorem. Moreover, as C∗ is forward invariant under PL, Schauder’s
theorem implies the existence of at least one fixed point of PL, which lies in (C∗)◦. On the other
hand, the Poincaré operator is also defined when L = 0, for which there is a unique fixed point,
namely the function ϕ∗ := v∗|[−τ ,0].
Step 2: let us define the set C ⊂ C([−τ , 0],R) × [0,+∞) as follows:

C := {(ϕ, L) ∈ {ϕ ∈ C([−τ , 0],R) : 0 < ϕ < ϕ∗} × (0,+∞) : PLϕ = ϕ} ∪ {(ϕ∗, 0)},

which is equipped it the standard metric. Moreover, let us consider its fibers

CL := {ϕ : (ϕ, L) ∈ C},

which are non-empty for any L. Now, let us consider the map F : C →R, which is defined by

F(ϕ, L) :=
∫ ω

0
[μ(sϕ(ξ − τ )) − D] dξ,

where sϕ(·) is solution of (16) with initial condition ϕ.
Thus, the problem of finding positive ω-periodic solutions of (1) is equivalent to that of

finding (ϕ, L) ∈ C such that F(ϕ, L) = 0. Indeed, if t �→ (s(t), x(t)) is a positive ω-periodic
solution of (1), then the periodicity of ln x(t) implies that 1

ω

∫ ω

0 μ(s(t − τ )) dt = D, whence
F(ϕ, L) = 0 for ϕ := s|[−τ ,0] and L = γ−1x(0). Conversely, if F(ϕ, L) = 0 is verified for some
(ϕ, L) ∈ C then it is straightforward to see that

∫ ω

0 [μ(sϕ(ξ − τ )) − D] dξ = 0. Let us define
u(t) := sϕ(t + ω) for any t � −τ , which clearly satisfies u(θ) = ϕ(θ) for θ ∈ [−τ , 0].

In order to verify that t �→ sϕ(t) is ω-periodic, it is seen that

u̇(t) = Ds0(t + ω) − Dsϕ(t + ω) − Lμ(sϕ(t + ω))e
∫ t+ω

0 [μ(sϕ(ξ−τ ))−D]dξ

= Ds0(t) − Du(t) − Lμ(u(t))e
∫ ω

0 [μ(sϕ(ξ−τ ))−D]dξe
∫ t+ω
ω [μ(sϕ(ξ−τ ))−D]dξ

= Ds0(t) − Du(t) − Lμ(u(t))e
∫ t

0 [μ(u(ξ−τ ))−D]dξ ,

which implies that t �→ u(t) is solution of (16) with initial condition ϕ. Then, by the theorem
of existence and uniqueness of solutions we conclude that sϕ(t) = sϕ(t + ω).

Summarizing, the fact that F(ϕ, L) = 0 implies the existence of a positive ω-periodic
solution t �→ (s(t), x(t)) of (1), with

s(t) := sϕ(t) and x(t) :=Lγe
∫ t

0 [μ(sϕ(ξ−τ ))−D]dξ.

Step 3: there exists a constant k such that ‖ϕ− ϕ∗‖∞ � kL for any (ϕ, L) ∈ C.
Indeed, let (ϕ, L) ∈ C and fix t0 ∈ (0,ω] at which the maximum value of the function v∗ − sϕ

over (0,ω] is achieved, then (v∗ − sϕ)′(t0) � 0. On the other hand, as

(v∗(t) − sϕ(t))′ = D(sϕ(t) − v∗(t)) + Lμ(sϕ(t))e
∫ t

0 [μ(sϕ(ξ−τ )−D]dξ,
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since (ϕ∗, 0) and (ϕ, L) belong to C combined with the fact that τ < ω, it follows that

max
θ∈[−τ ,0]

{ϕ∗(θ) − ϕ(θ)} � max
t∈[0,ω]

{v∗(t) − sϕ(t)} = v∗(t0) − sϕ(t0),

which implies that

‖ϕ∗ − ϕ‖∞ � max
t∈[−τ ,ω]

{v∗(t) − sϕ(t)} � L
D
μ(sϕ(t0))e

∫ t0
0 [μ(sϕ(ξ−τ )−D]dξ.

Because sϕ � v∗ and μ is nondecreasing, we deduce that

‖ϕ∗ − ϕ‖∞ � kL

for some constant k which is independent of L.
Step 4: in order to prove the existence of (ϕ, L) ∈ C such that F(ϕ, L) = 0, it suffices to prove
that F : C → R is a continuous function which changes sign over a connected subset of C.

The continuity of F follows by using again the continuous dependence on the initial
conditions for the system (1).

Notice that the assumption (12) can be written as F(ϕ∗, 0) > 0. This fact, combined with the
continuity of F and the previous step implies that F(ϕ, L) > 0 for any (ϕ, L) ∈ C with L > 0
small enough.

Now, we claim that F(ϕ, L) < 0 for any (ϕ, L) ∈ C with sufficiently large values of L.
Indeed, by using the fact that sϕ(ω + θ) = PLϕ(θ) = ϕ(θ) for θ ∈ [−τ , 0], we can see that

max
t∈[−τ ,ω]

sϕ(t) = max
t∈(0,ω]

sϕ(t).

Fix t0 ∈ (0,ω] such that sϕ(·) reaches its maximum value on [−τ ,ω] at t0, then sϕ(t0) > 0
and ṡϕ(t0) � 0 or, equivalently

0 < Dsϕ(t0) � Ds0(t0) − Lμ(sϕ(t0))e
∫ t0

0 [μ(sϕ(ξ−τ )−D]dξ � Ds0(t0) − Lμ(sϕ(t0))e−Dω.

The previous inequality implies that μ(sϕ(t0)) � C
L for some constant C which, combined with

the properties of μ proves that sϕ(t0) = max−τ�t�ωsϕ(t) → 0 when L →+∞ and consequently
F(ϕ, L) < 0 for large values of L.

Next, fix 0 < L0 < L1 such that (−1) jF(ϕj, Lj) > 0 for any ϕ j ∈ CL j . It is easy to verify that
the set

K :=
⋃

L∈[L0,L1]

CL

is compact. Indeed, it is easy to see that K ⊂ C∗ is equicontinuous because the bound for
|ϕ̇(θ)| = |ṡϕ(θ + ω)| with θ ∈ [−τ , 0] can be chosen independently of L ∈ [L0, L1] due to

D(s0(t) − v∗(t)) − L1μ(v∗(t))e
∫ t

0 [μ(v∗(ξ−τ ))−D] < ṡϕ(t) � Ds0
max.

Moreover, continuous dependence also implies that if (ϕn, Ln) ∈ K is such that verifies
(ϕn, Ln) → (ϕ, L), then sLn

ϕn
, namely, the solutions of (16) with parameter Ln and initial condition

ϕn, converge to sL
ϕ uniformly on [ω − τ ,ω] which, in turn, implies that (ϕ, L) ∈ K.

The proof will follow if there exists a connected component of K that connects the fibers
CL0 and CL1 . Indeed, otherwise, by Whyburn’s lemma (see appendix for details) there exist two
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disjoint closed sets F j such that CL j ⊂ F j and K = F0 ∪ F1 and an open set Ω ⊂ {0 < ϕ <
ϕ∗} ⊂ C∗ such that

F0 ⊂ Ω, (17)

F1 ∩ Ω = � (18)

and

∂Ω ∩ K = �. (19)

Let us define the map P : Ω× [L0, L1] → C([−τ , 0],R) as follows

P(ϕ, L) = PL(ϕ),

where PL is the same map defined previously. By using again the Theorem of continuous depen-
dence with respect to the initial conditions from [20, pp 43 and 44] it can be proved that P is
continuous and its compactness can be verified straightforwardly.

Now let us define the map G : Ω× [L0, L1] → C([−τ , 0],R) as G(ϕ, L) = ϕ− P(ϕ, L) and
denote GL(ϕ) = G(ϕ, L).

By using (19), we can see that GL is different from zero on ∂Ω for any L ∈ [L0, L1] since by
definition the zeroes of G are in K. By homotopy invariance property of the Leray–Schauder
degree (see appendix for details), this implies that the degree verifies

deg(GL0 ,Ω, 0) = deg(GL1 ,Ω, 0) = 0. (20)

Indeed, notice that the last degree is 0 since identity (18) implies that Ω ∩ CL1 = �, that
is, GL1 does not vanish in Ω. Thus, the conclusion follows from the solution property of the
Leray–Schauder’s degree. On the other hand, property (17) implies that CL0 ⊂ Ω and hence
GL0 cannot be zero outside of Ω. By using the excision property of the degree, we have
that

deg(GL0 ,Ω, 0) = deg(GL0 , {ϕ ∈ C([−τ , 0],R) : 0 < ϕ < ϕ∗}, 0).

In order to compute the last above degree, for any ϕ ∈ C([−τ , 0],R) we construct a truncated
function ϕ̂ ∈ C∗ defined by

ϕ̂(t) =

⎧⎪⎪⎨
⎪⎪⎩
ϕ(t) if 0 < ϕ(t) < ϕ∗(t),

ϕ∗(t) if ϕ(t) � ϕ∗(t),

0 if ϕ(t) � 0,

and the operator P̂L : C([−τ , 0],R) → C([−τ , 0],R) defined by P̂L(ϕ) :=PL(ϕ̂). The continuity
and compactness is a direct consequence from the continuity of ϕ �→ ϕ̂ and the compactness
of PL.

Moreover, note that Im(P̂L) ⊂ {ϕ ∈ C([−τ , 0],R) : 0 < ϕ < ϕ∗}. Then, any fixed point ϕ
of λP̂L with λ ∈ [0, 1] verifies ϕ = λP̂Lϕ < ϕ∗ � v∗max. Thus taking R > v∗max we can see that
λP̂L has no fixed point on ∂BR(0) for λ ∈ [0, 1] and then the homotopy property implies
that

deg(I − P̂L, BR(0), 0) = deg(I, BR(0), 0) = 1.
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In addition, P̂L has no fixed points outside {0 < ϕ < ϕ∗} and coincides with PL on this set,
then the excision property of Leray–Schauder’s degree implies that

deg(I − PL, {ϕ ∈ C([−τ , 0],R) : 0 < ϕ < ϕ∗}, 0) = deg(I − P̂L, BR(0), 0) = 1.

As the previous identity is valid for any L > 0, we can deduce that

deg(GL0 , {ϕ ∈ C([−τ , 0],R) : 0 < ϕ < ϕ∗}, 0) = 1,

which contradicts (20). This proves the existence of a connected set X ⊂ C containing points
in CL0 and CL1 . By the intermediate value theorem we deduce the existence of (ϕ, L) ∈ X such
that F(ϕ, L) = 0.

4.3. Proof of theorem 3

The proof will be made in two steps:
An auxiliary result: in spite of the next result has been previously proved by Wolkowicz

and Zhao [48] (see also [50, corollary 5.2.1]) in a more general version, which considers ω-
periodic uptake functionsμ(t, ·) and dilution rates D(t) together decay rates for the species. The
restriction to our model allows an alternative proof, which has a remarkable simplicity.

Lemma 2. Let t �→ (s∗0(t), x∗0(t)) be a positiveω-periodic solution of (1) provided by theorem
2 when τ = 0. Then this solution is unique and globally asymptotically stable.

Proof. When τ = 0, the change of variables v := s + γ−1x and a straightforward computa-
tion shows that the undelayed system (1) is equivalent to{

ṡ = D(s0(t) − s) − μ(s)(v − s),

v̇ = D(s0(t) − v).

As done in lemma 1, we can verify that (v − v∗)′ = −D(v − v∗) is such that v(t) − v∗(t) → 0
when t →+∞ due to

v(t) − v∗(t) = [v(t0) − v∗(t0)]e−D(t−t0) for any t0 � 0. (21)

A direct consequence from (21) is the boundedness of any solution t �→ (s(t), x(t)). In turn,
t �→ ẋ(t) is bounded as well, which implies that t �→ x(t) is uniformly continuous.

Moreover, there exist ε and δ > 0, possibly dependent of the initial conditions such that
0 < δ < s(t) < v(t) < v∗(t) + ε for t large enough which, in turn, combined with (P) implies
that μ(s(t)) − μ(s∗0(t)) = a(t)[s(t) − s∗0(t)] with t �→ a(t) bounded and greater than a constant
α > 0 for all t.

With the change of variables w = x − x∗0, we can see that

ẇ = [μ(s∗0(t)) − D]w + x[μ(s∗0(t)) − μ(s(t))] = r(t)w(t) + x(t)a(t)(v(t) − v∗(t)),

with r(·) defined as follows:

r(t) :=μ(s∗0(t)) − D − γ−1x(t)a(t).

Note that t �→ x(t) is not integrable in [0,+∞). Indeed; otherwise; as x is uniformly
continuous, the Barbalat’s lemma [25, lemma 8.2] implies that x(t) → 0 and consequently
s(t) − v∗(t) → 0 when t →+∞. Then, the condition (12) implies the existence of c > 0 such
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that
∫ t+ω

t [μ(s(ξ)) − D] dξ � c > 0 for some t large enough, which implies x(t + ω) � x(t)ecω ,
contradicting the boundedness of x.

Note also that, because M(μ(s∗0)) = D, for arbitrary t1 > t0 � 0 we have

∫ t1

t0

[μ(s∗0(ξ)) − D] dξ � max
0�η�ω

∫ η

0
[μ(s∗0(ξ)) − D] dξ :=B.

Thus, for all σ � 0

Rσ(t) :=
∫ t

σ

r(ξ) dξ � B − αγ−1
∫ t

σ

x(ξ) dξ →−∞

as t →+∞. For fixed t0 > 0, we use (21) to see that

w(t) = w(t0)eRt0 (t) + [v(t0) − v∗(t0)]
∫ t

t0

x(ξ)a(ξ)eRξ (t)−D(ξ−t0) dξ

and from the boundedness of x(·) and a(·), combined with Rξ(t) � B we obtain:

|w(t) − w(t0)eRt0 (t)| � C|v(t0) − v∗(t0)|
∫ t

t0

e−D(ξ−t0) dξ � C
D
|v(t0) − v∗(t0)|

for some constant C > 0. Letting t →+∞ we see that |w(t)| � C
D |v(t0) − v∗(t0)| and, since t0

is arbitrary we deduce that x(t) − x∗0(t) → 0 as t →+∞. This, in turn, implies s(t) − s∗0(t) → 0
as t →+∞.

�
End of proof : let us consider the mapping

Φ : A× R→ Cω × Cω

given by

Φ(s, x, τ )(t) := (ṡ(t), ẋ(t)) − N(s, x)(t)

where A ⊂ C1
ω × C1

ω is defined as

A := {(s, x) : 0 < s < v∗, x > 0}

and N(s, x)(t) is the Nemitskii operator defined by right-hand side of (1). A straightforward
computation shows that Φ is of class C1 and

D(s,x)Φ(s, x, τ )(ϕ,ψ)(t) =
(
ϕ̇(t) + a(t)ϕ(t) + b(t)ψ(t), ψ̇(t) + c(t)ϕ(t − τ ) + d(t)ψ(t)

)
,

where

a(t) = D + γ−1μ̇(s(t))x(t), b(t) = γ−1μ(s(t))
c(t) = −x(t)μ̇(s(t − τ )), d(t) = −[μ(s(t − τ )) − D].

Firstly, by lemma 2 we can see that

Φ(s∗0, x∗0, 0) = 0, where x∗0(t) = γ(v∗(t) − s∗0(t)).
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Secondly, it can be verified that the map (ϕ,ψ) �→ D(s,x)Φ(s∗0, x∗0, 0)(ϕ,ψ) is an isomorphism
from C1

ω × C1
ω to Cω × Cω . Indeed, D(s,x)Φ(s∗0, x∗0, 0)(ϕ,ψ) = (0, 0) is equivalent to say that

(ϕ,ψ) is an ω-periodic solution of the ω-periodic system

u̇ = A(t)u with A(t) =

[
−[D + γ−1μ̇(s∗0(t))x∗0(t)] −γ−1μ(s∗0(t))

x∗0(t)μ̇(s∗0(t)) μ(s∗0(t)) − D

]
. (22)

Set ξ = ϕ+ γ−1ψ, then ξ̇(t) = −Dξ(t) and, as ξ ∈ Cω we can deduce that ξ = 0. Then we
have that

ϕ̇(t) = [μ(s∗0(t)) − D − γ−1μ̇(s∗0(t))x∗0(t)]ϕ(t)

and note that ϕ = 0, indeed, otherwise ϕ does not vanish and, by ω-periodicity it follows
that

∫ ω

0 [μ(s∗0(t)) − D − γ−1μ̇(s∗0(t))x∗0(t)] dt = 0. By (P) this yields 0 =
∫ ω

0 [μ(s∗0(t)) − D]
dt =

∫ ω

0 γ−1μ̇(s∗0(t))x∗0(t) dt > 0, a contradiction and consequently we have ϕ = ψ = 0. In
other words; D(s,x)Φ(s∗0, x∗0, 0) is injective; which is equivalent to say that the unique Cω solution
of (22) is t �→ u(t) ≡ 0.

Now we will prove that the map (ϕ,ψ) �→ D(s,x)Φ(s∗0, x∗0, 0)(ϕ,ψ) is surjective: let us con-
sider any vector function t �→ f(t) = (ζ(t), θ(t)) ∈ Cω × Cω . The surjectiveness is equivalent to
the existence of an ω-periodic solution of the non-homogeneous system

v̇ = A(t)v + f (t). (23)

Any solution t �→ v(t) of (23) has the form

v(t) = X(t)v(0) +
∫ t

0
X(t)X−1(s) f (s) ds,

where X(t) is a fundamental matrix of (22) with X(0) = I. A direct consequence of
the injectiveness is that det[X(ω) − I] �= 0. Then, we can consider the initial condition
v(0) = [I − X(ω)]−1

∫ ω

0 X(ω)X−1(s) f (s) ds and it follows easily that v(ω) = v(0) which is
equivalent to v ∈ Cω .

The open mapping Theorem allows to prove that the inverse of the map
(ϕ,ψ) �→ D(s,x)Φ(s∗0, x∗0, 0)(ϕ,ψ) is continuous.

By the implicit function theorem, we deduce the existence of a (locally unique) continu-
ous branch of positive ω-periodic solutions (s(τ ), x(τ )) for τ small. We claim that, making τ
smaller if necessary, there are no other positive ω-periodic solutions. Indeed, otherwise there
exists a sequence τ n → 0 together with two distinct positive Cω-solutions (s1

n, x1
n) and (s2

n, x2
n).

Passing to a subsequence, we can use theorem 2.2 from [20, ch 2] to verify that they converge
uniformly to some limits (sj, xj), which are Cω-solutions of the non-delayed problem. Because
M(μ(s j

n)) = D for all n, so does M(μ(s j)); thus we deduce that sj �= v∗ and lemma 2 says that
(s j, x j) = (s∗0, x∗0) for j = 1, 2. Thus, for n large both sequences enter into the neighbourhood
provided by the implicit function theorem, which yields a contradiction.

5. Numerical simulation

In order to illustrate our results we performed numerical simulations considering a Monod or
Michaelis–Menten type function (2) and a nutrient supply of type

s0(t) = Λ+ ε sin(2πt),
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Table 2. Parameters and their interval bounds.

Parameter Units Meaning Values

D l/day Dilution rate Arbitrary
Λ μmol l−1 Input nutrient concentration when ε = 0 [80, 120]
μmax l/day Maximum growth gate [1.2, 1.6]
ks μmol l−1 Half-saturation constant [0.01, 0.2]
γ μm3 μmol−1 Growth yield [0.15, 0.6]

Figure 1. Numerical example with parameters D = 0.2,Λ = 2, ε = 0.5,
τ = 0.33,μmax = 1.6, ks = 0.2, γ = 10, ϕ ≡ 0.01, x(0) = 10 and M{μ(v∗)} ≈
1.469 077 > D.

with the parameters and units from [46, p 491], which are described in the following table
(table 2):

The above parameters have been estimated when studying the growth of the microalgae D.
tertiolecta under a limitation of nitrate. The reader is referred to [6] for a deeper study of this
topic.

We carried our numerical simulations by using the library PBSddesolve in R [43] with
parameters from the above table and three delays lower than the period 1.

The figures 1 and 2 were carried out with initial conditions (0.01, 10) and (0.08, 10) ∈
C([−τ , 0],R) × R respectively. The parameters are chosen such that (12) is verified and
both figures confirm theorem 2. Nevertheless, the figures also suggest the uniqueness and
attractiveness of the ω-periodic solution t �→ (s∗(t), x∗(t)).

The figure 3 is carried out with an initial condition (0.08, 10) ∈ C([−τ , 0],R) × R. The
parameters are chosen such that (11) is verified and the theorem 1 is confirmed.
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Figure 2. Numerical example with parameters D = 0.7,Λ = 90, ε = 10,
τ = 0.014, μmax = 1.2, ks = 0.02, γ = 0.15, ϕ ≡ 0.08, x(0) = 10 and M{μ(v∗)} ≈
1.211 731 > D.

6. Discussion

We studied a model of a one species chemostat with ω-periodic input of a single substrate
whose metabolization has a delay with respect to its consumption, which is described by the
DDE system (1). Previous studies have been made for the undelayed case, where the change
of variables v = s + γ−1x leads to a nonlinear triangular system, whose study allows to obtain
necessary and sufficient conditions for the existence, uniqueness and attractivity, which coin-
cides with the average inequality (12). Nevertheless, the delayed case induces technical diffi-
culties which prompt to follow a completely different approach managing to obtain an existence
result, we also proved the uniqueness for small delays. We point out that if we consider D and
s0 as ω-periodic inputs in the model (1), the proof of our three results could be made in similar
way as in this work and the differences will be only technical. Obviously, the constant D must
be replaced by M(D) in (11) and (12).

As we stated on the introduction and section 2, the undelayed system (1) has industrial and
biologic motivations. We expect that our results could contribute to deepen those researches. In
addition and contrarily to the undelayed case, an extensive bifurcation analysis and a uniform
persistence study for (1) remains to be done (figure 4).

Our numerical simulations show the attractiveness of a non-trivial ω-periodic solution, we
expect to carry out a more complete study of the uniqueness and attractiveness problem in
a future work. We have in mind two approaches to cope with this problem: to construct a
Lyapunov–Krasovskii functional as in [17, 28], the second approach is to employ some new
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Figure 3. Numerical example with parameters D = 1.3,Λ = 80, ε = 20,
τ = 0.014, μmax = 1.2, ks = 0.2, γ = 0.6, ϕ ≡ 0.08, x(0) = 10 and M{μ(v∗)} ≈
1.208 972 < D.

Figure 4. Numerical simulations with the parameters of figure 2 and initial conditions
x1(0) = 10, x2(0) = 12, x3(0) = 14, x4(0) = 16 and ϕ1 = ϕ2 = ϕ3 = ϕ4 ≡ 0.08.

results from nonautonomous dynamical systems (pullback and forward attractors) as done in
[11] and references therein.
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Another interesting problem is to address a competitive periodic chemostat described by
the equations ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
ṡ(t) = Ds0(t) − Ds(t) −

n∑
i=1

γ−1
i μi(s(t))xi(t) if t � 0,

ẋi(t) = xi(t) {μi(s(t − τi)) − D} if t � 0,

s(θ) = ϕ(θ) and xi(0) = xi,0 (i = 1, . . . , n) if θ ∈ [−τi, 0],

(24)

which generalizes the ODE system (6) to a DDE framework. In [17, theorem1] it was proved
that if t �→ s0(t) is a positive constant function, the asymptotic behaviour of (24) is the com-
petitive exclusion. In addition, the competitive exclusion has also be proved for competitive
versions of the system (5) as done in [13].

As we stated in section 2, the existence of ω-periodic solutions of (4) was useful to prove
the existence of ω-periodic solutions for (6). Similarly, we hope that the main results of this
paper will be useful to find sufficient condition ensuring the existence of ω-periodic solutions
for (24).
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Appendix A. Technical results

For the convenience of the reader, we briefly describe two subjects that played a key role in the
proof of theorem 2.

Whyburn’s lemma. The following result was introduced by Whyburn in [47, p 12]:

Lemma 3. Let (X, d) be a metric space, and let K ⊂ X be compact. If K0 and K1 are disjoint
closed subsets of K such that no connected subset of K intersects both of them, then there exist
disjoint closed sets C0, C1 ⊂ K such that K0 ⊂ C0, K1 ⊂ C1 and K = C0 ∪ C1.

In addition, under the assumptions of lemma 3 it is easy to prove the existence of an open
bounded set Ω containing C0 such that Ω ∩ C1 = � and ∂Ω ∩ K = �. Take for instance Ω =⋃

x∈C0
B(x, ε/2), where ε = min

u∈C0,v∈C1
d(u, v).

Leray–Schauder degree. Let E be a Banach space and Ω ⊂ E be an open and bounded subset.
The Leray–Schauder degree [8] is a function that assigns to each operator F = I − K : Ω→ E
with K compact and 0 /∈ F(∂Ω) an integer with the following properties:

(a) Normalization:

deg(I,Ω, 0) =

{
1 if 0 ∈ Ω,

0 if 0 /∈ Ω.
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(b) Solution: if deg(F,Ω, 0) �= 0, then F vanishes in Ω.
(c) Excision: if Ω1 ⊂ Ω is open and F does not vanish in Ω\Ω1, then

deg(F,Ω, 0) = deg(F,Ω1, 0).

(d) Homotopy invariance: if K : Ω× [0, 1] → E is compact such that K(x,λ) �= x for x ∈ ∂Ω
and λ ∈ [0, 1], then deg(I − K(·,λ),Ω, 0) is constant.
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