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Abstract. In this paper, we develop a new flexible method for interval-valued intuitionistic fuzzy
decision-making problems with cosine similarity measure. We first introduce the interval-valued in-
tuitionistic fuzzy cosine similarity measure based on the notion of the weighted reduced intuition-
istic fuzzy sets. With this cosine similarity measure, we are able to accommodate the attitudinal
character of decision-makers in the similarity measuring process. We study some of its essential
properties and propose the weighted interval-valued intuitionistic fuzzy cosine similarity measure.

Further, the work uses the idea of GOWA operator to develop the ordered weighted interval-valued
intuitionistic fuzzy cosine similarity (OWIVIFCS) measure based on the weighted reduced intuition-
istic fuzzy sets. The main advantage of the OWIVIFCS measure is that it provides a parameterized
family of cosine similarity measures for interval-valued intuitionistic fuzzy sets and considers dif-
ferent scenarios depending on the attitude of the decision-makers. The measure is demonstrated to
satisfy some essential properties, which prepare the ground for applications in different areas. In
addition, we define the quasi-ordered weighted interval-valued intuitionistic fuzzy cosine similarity
(quasi-OWIVIFCS) measure. It includes a wide range of particular cases such as OWIVIFCS mea-
sure, trigonometric-OWIVIFCS measure, exponential-OWIVIFCS measure, radical-OWIVIFCS
measure. Finally, the study uses the OWIVIFCS measure to develop a new decision-making method
to solve real-world decision problems with interval-valued intuitionistic fuzzy information. A real-
life numerical example of contractor selection is also given to demonstrate the effectiveness of the
developed approach in solving real-life problems.
Key words: interval-valued intuitionistic fuzzy sets, weighted reduced intuitionistic fuzzy sets,
cosine similarity measure, ordered weighted average operator, multiple attribute decision-making.
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1. Introduction

Atanassov (1986) introduced the notion of intuitionistic fuzzy sets (IFSs) as a general-
ization of the concept of fuzzy sets proposed by Zadeh (1965) in 1965. An IFS is char-
acterized by two functions expressing the degree of membership and the degree of non-
membership, respectively. Later, Atanassov and Gargov (1989) further extended the IFS to
interval-valued intuitionistic fuzzy set (IVIFS) whose membership and non-membership
functions take values in terms of interval numbers rather than real numbers. Interval-
valued intuitionistic fuzzy sets provide more flexibility to represent vague information in
comparison to IFSs. In the past three decades, IFSs and IVIFSs have been successfully
applied in different application areas. The basic concepts and practical application of IFSs
and IVIFSs in can be found in Atanassov (1994, 2005), Verma and Sharma (2012, 2013a),
Vlochos and Sergiadis (2007), Verma and Sharma (2013b, 2013c), Park et al. (2009),
Verma and Sharma (2011), Aggarwal and Khan (2016), De et al. (2001), Xu (2010), Ye
(2012), Liu and Peng (2017), Zeng et al. (2016), Zhao and Xu (2016), Zhang et al. (2019).

A similarity measure is an essential tool for determining the degree of similarity be-
tween two objects. In 2002, Denfeng and Chuntian (2002) introduced the definition of a
similarity measure for IFSs and proposed a measure of similarity between IFSs. Mitchell
(2003) presented a modified version of Denfeng and Chuntian’s similarity for interval-
valued intuitionistic fuzzy sets. Later, Liang and Shi (2003) developed several similarity
measures to distinguish different IFSs and discussed the relationship between these mea-
sures. Szmidt and Kacprzyk (2013) defined a similarity measure for IFSs using a distance
measure. Hong and Kim (1995), Hung and Yang (2004), Xu (2008) defined independently
some intuitionistic fuzzy similarity measures based on different distance measures for
IFSs. In 2011, Ye (2011) proposed cosine similarity measure for IFSs as the idea par-
allel to the concept of fuzzy cosine similarity measure Salton and McGill (1983) and
applied it to solve pattern recognition and medical diagnosis related problems. Further,
Hung and Wang (2012) pointed out some drawbacks of Ye’s cosine similarity measure
and defined a modified cosine similarity measure for IFSs. Using the idea of generalized
ordered weighted aggregation (GOWA) operator Yager (2004), Zhou et al. (2014), pro-
posed the intuitionistic fuzzy ordered weighted cosine similarity (IFOWCS) measure and
made a comparative study among different similarity measures.

In many complex decision-making problems, the preference information provided by
the decision-makers is often imprecise or uncertain due to the increasing complexity of the
social-economic environment or a lack of data about the problem domain or the expert’s
lack of expertise to precisely express their preferences over the considered objects. In such
cases, it is suitable and convenient to express the decision-maker’s preference information
in terms of IVIFSs. Therefore, it is necessary to pay attention to the study of the similar-
ity measure for IVIFSs. There is some progress in this direction. Xu (2007) generalized
some similarity measures of IFSs to IVIFSs, which are based on distance measures for
IVIFSs. Zhang et al. (2011) proposed an efficient method to calculate the degree of simi-
larity between IVIFSs based on the Hausdorff metric. Wei et al. (2011) developed a new
method to construct the similarity measure for IVIFSs by using entropy function. In 2012,
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Singh (2012) defined a cosine similarity measure for IVIFSs and applied it to solve pat-
tern recognition problems. Further, Ye (2013) studied a new cosine similarity measure
with interval-valued intuitionistic fuzzy information and demonstrated its application in
multiple attribute decision-making problems. Recently, Liu et al. (2017) proposed the no-
tion of interval-valued intuitionistic fuzzy ordered weighted cosine similarity measure and
developed a method to solve group decision-making problems.

Note that the cosine similarity measures introduced by Singh (2012) and Ye (2013)
are used only for the middle points and the boundary points of the intervals, respectively,
to measure the degree of similarity between two IVIFSs. Due to this limitation, we cannot
accommodate the decision maker’s attitude in the measuring process. It shows the inability
and rigidness of the measures in solving real-world decision problems. So, we need a flex-
ible cosine similarity measure to accommodate the decision maker’s attitude preferences
in the measuring process under an interval-valued intuitionistic fuzzy environment.

To do so, we first propose a new cosine similarity measure for IVIFSs based on
the weighted reduced intuitionistic fuzzy sets (Ye, 2012). Secondly, using the idea of
GOWA operator (Yager, 2004), we develop a generalized cosine similarity measure for
IVIFSs. We call it ‘ordered weighted interval-valued intuitionistic fuzzy cosine similar-
ity (OWIVIFCS) measure’. This extension provides flexibility/choices at the aggregation
stage and gives a parameterized family of cosine similarity measures. Furthermore, the
work also develops a more general cosine similarity measure between IVIFSs based on
quasi-arithmetic means. The applicability of the proposed approach is studied in decision-
making problems with interval-valued intuitionistic fuzzy information.

The paper is organized as follows. Section 2 briefly reviews the basic concepts related
to fuzzy sets, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets, and OWA
operators. Section 3 introduces a cosine similarity measure for IVIFSs with some math-
ematical properties and special cases. Further, a weighted cosine similarity measure for
IVIFSs is also defined. In Section 4 we propose the ordered weighted interval-valued intu-
itionistic fuzzy cosine similarity (OWIVIFCS) measure between two intuitionistic fuzzy
sets. Some properties and different families of the OWIVIFCS measure are also analysed.
Futhermore, the quasi-OWIVIFCS measure is presented. Section 5, using the OWIVIFCS
measure, develops a multiple criteria decision-making model to solve real-world decision
problems with interval-valued intuitionistic fuzzy information and illustrate with a numer-
ical example. Section 6 summarizes the main results and conclusions of the paper.

2. Preliminaries

In this section, we present some basic concepts related to fuzzy sets, intuitionistic fuzzy
sets, interval-valued fuzzy sets, and OWA operators, which will be needed in the following
analysis.

Definition 1 (Fuzzy set, Zadeh, 1965). A fuzzy set Ã in a finite universe of discourse
X = {x1, x2, . . . , xn} is defined by Zadeh as

Ã = {〈
x,η

Ã
(x)

〉 ∣∣x ∈ X
}
, (1)
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where η
Ã
(x) : X → [0,1] is the membership function of Ã. The number η

Ã
(x) describes

the degree of membership of x ∈ X to Ã.

A cosine similarity measure is defined as the inner product of two vectors divided by
the product of their lengths. This is nothing but the cosine of the angle between the vectors
representation of two fuzzy sets.

Definition 2 (Cosine similarity measure for FSs, Salton and McGill, 1983). Let Ã and B̃

be two fuzzy sets in X = {x1, x2, . . . , xn} having membership values η
Ã
(xi) and η

B̃
(xi),

i = 1,2, . . . , n, respectively. A cosine similarity measure between two fuzzy sets Ã and
B̃ analogous to Bhattacharya’s distance (Bhattacharya, 1946) is defined as follows:

CFS(A,B) =
∑n

i=1 η
Ã
(xi)ηB̃

(xi)√∑n
i=1 η2

Ã
(xi)

√∑n
i=1 η2

B̃
(xi)

. (2)

Atanassov (1986) introduced the following generalization of fuzzy sets.

Definition 3 (Intuitionistic fuzzy set, Atanassov, 1986). An intuitionistic fuzzy set A∗ in
a finite universe of discourse X = {x1, x2, . . . , xn} is given by

A∗ = {〈
x,ηA∗(x),ψA∗(x)

〉 ∣∣x ∈ X
}
, (3)

where ηA∗ : X → [0,1] and ψA∗ : X → [0,1] with the condition 0 � ηA∗(x) +
ψA∗(x) � 1. For each x ∈ X, the numbers ηA∗(x) and ψA∗(x) denote the degree of mem-
bership and degree of non-membership of x to A∗, respectively. Further, we call ξA∗(x) =
1 − ηA∗(x) − ψA∗(x), the degree of hesitance or the intuitionistic index of x ∈ X to A∗.

For convenience, we abbreviate the set of all IFSs defined in X by IFS(X).
In 2011, Ye (2013) extended the idea of cosine similarity measure from fuzzy sets to

intuitionistic fuzzy set theory and proposed a cosine similarity measure for IFSs. Later,
Hung and Wang (2012) pointed out some drawbacks of Ye’s cosine similarity measure
and defined a modified cosine similarity measure for IFSs as follows:

Definition 4 (Cosine similarity measure for IFSs, Hung and Wang, 2012). Let A∗ and
B∗ be two intuitionistic fuzzy sets in X = {x1, x2, . . . , xn} having membership values
ηA∗(xi) and ηB∗(xi), i = 1,2, . . . , n, and non-membership values ψA∗(xi) and ψB∗(xi),
i = 1,2, . . . , n, respectively.

A cosine similarity measure between two intuitionistic fuzzy sets A∗ and B∗ is defined
as follows:

CIFS
(
A∗,B∗)

= 1

n

n∑
i=1

[
ηA∗(xi)ηB∗(xi) + ψA∗(xi)ψB∗(xi) + ξA∗(xi)ξB∗(xi)√

η2
A∗(xi) + ψ2

A∗(xi) + ξ2
A∗(xi)

√
η2

B∗(xi) + ψ2
B∗(xi) + ξ2

B∗(xi)

]
. (4)
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Atanassov and Gargov (1989) introduced the notion of the interval-valued intuitionis-
tic fuzzy set by generalizing the idea of IFSs.

Definition 5 (Interval-valued intuitionistic fuzzy set, Atanassov and Gargov, 1989). Let
X = {x1, x2, . . . , xn} be a finite universe of discourse and D[0,1] denote all the closed
subintervals of the interval [0,1]. An interval-valued intuitionistic fuzzy set A in X is
defined as:

A = {〈
x,
[
η−

A(x), η+
A(x)

]
,
[
ψ−

A (x),ψ+
A (x)

]〉 ∣∣x ∈ X
}
, (5)

where

[
η−

A(x), η+
A(x)

]⊆ [0,1] and
[
ψ−

A (x),ψ+
A (x)

]⊆ [0,1], (6)

with the condition

0 � η+
A(x) + ψ+

A (x) � 1 for any x ∈ X. (7)

Here the intervals [η−
A(x), η+

A(x)] and [ψ−
A (x),ψ+

A (x)], respectively, denote the degrees
of membership and non-membership of x ∈ X to A.

For any x ∈ X, we call the interval

[
ξ−
A (x), ξ+

A (x)
]= [

1 − η+
A(x) − ψ+

A (x),1 − η−
A(x) − ψ−

A (x)
]
, (8)

the interval-valued intuitionistic fuzzy index (hesitancy degree) of x ∈ X to A. We will
represent the set of all IVIFSs defined in X by IVIFS(X).

Clearly, if η−
A(x) = η+

A(x) = ηA(x) and ψ−
A (x) = ψ+

A (x) = ψA(x), then the given
IVIFS A is converted to an ordinary IFS.

In the study of IVIFSs, the set-theoretic operations are defined as follows:

Definition 6 (Set-theoretic operations on IVIFSs, Atanassov and Gargov, 1989). Let
A,B ∈ IVIFS(X) given by

A = {〈
x,
[
η−

A(x), η+
A(x)

]
,
[
ψ−

A (x),ψ+
A (x)

]〉 ∣∣x ∈ X
}
,

B = {〈
x,
[
η−

B (x), η+
B (x)

]
,
[
ψ−

B (x),ψ+
B (x)

]〉 ∣∣x ∈ X
}
,

then some set operations can be defined as follows:

(i) A ⊆ B if and only if η−
A(x) � η−

B (x), η+
A(x) � η+

B (x) and ψ−
A (x) � ψ−

B (x), ψ+
A (x) �

ψ+
B (x) ∀x ∈ X;

(ii) A = B , if and only if A ⊆ B and B ⊆ A;
(iii) AC = {〈x, [ψ−

A (x),ψ+
A (x)], [η−

A(x), η+
A(x)]〉 |x ∈ X};
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(iv) A∪B = {〈x, [η−
A(x)∨η−

B (x), η+
A(x)∨η+

B (x)], [ψ−
A (x)∧ψ−

B (x),ψ+
A (x)∧ψ+

B (x)]〉 |
x ∈ X};

(v) A∩B = {〈x, [η−
A(x)∧η−

B (x), η+
A(x)∧η+

B (x)], [ψ−
A (x)∨ψ−

B (x),ψ+
A (x)∨ψ+

B (x)]〉 |
x ∈ X}.

where ∨, ∧ stand for max. and min. operators, respectively.

Singh (2012) defined the cosine similarity measure between IVIFSs A and B as follows

CS(A,B)

= 1

n

n∑
i=1

( ( η−
A(xi )+η+

A(xi )

2

)( η−
B (xi )+η+

B (xi )

2

)+ (ψ−
A (xi )+ψ+

A (xi )

2

)(ψ−
B (xi )+ψ+

B (xi )

2

)
√( η−

A(xi )+η+
A(xi )

2

)2 + ( η−
B (xi )+η+

B (xi )

2

)2
√(ψ−

A (xi )+ψ+
A (xi )

2

)2 + (ψ−
B (xi )+ψ+

B (xi )

2

)2

)
.

(9)

In 2013, Ye (2013) proposed a new formula of interval-valued intuitionistic fuzzy cosine
similarity measure between two IVIFSs A and B given by

CYe(A,B)

= 1

n

n∑
i=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

η−
A(xi)η

−
B (xi ) + η+

A(xi)η
+
B (xi ) + ψ−

A (xi)ψ
−
B (xi )

+ ψ+
A (xi)ψ

+
B (xi ) + ξ−

A (xi)ξ
−
B (xi ) + ξ+

A (xi)ξ
+
B (xi )√

(η−
A(xi))2 + (ψ−

A (xi))2 + (ξ−
A (xi))2 + (η+

A(xi))2 + (ψ+
A (xi))2 + (ξ+

A (xi))2√
(η−

B (xi ))2 + (ψ−
B (xi ))2 + (ξ−

B (xi ))2 + (η+
B (xi ))2 + (ψ+

B (xi ))2 + (ξ+
B (xi ))2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(10)

Ye (2012) developed a method for transforming the interval-valued intuitionistic fuzzy
sets into the weighted reduced intuitionistic fuzzy sets. The method is briefly outlined
below:

Definition 7 (Method for transforming IVIFSs into the weighted reduced IFSs). Let A be
an interval-valued intuitionistic fuzzy set defined in X. Also, two weight vectors are U =
(u1, u2) and V = (v1, v2), u1, u2, v1, v2 ∈ [0,1] with u1 +u2 = 1, and v1 +v2 = 1. Then,
the weighted reduced IFS, denoted by

�

A, of an IVIFS A with respect to the adjustable
weight values of u1, u2, v1 and v2 is defined as

�

A = {〈
x,u1η

−
A(x) + u2η

+
A(x), v1ψ

−
A (x) + v2ψ

+
A (x)

〉 ∣∣x ∈ X
}
. (11)

By adjusting the values of u1, u2, v1 and v2, an IVIFS A can be converted into the weighted
reduced IFS as desired by a decision-maker.

Some special situations:

i. If u1 = 1, u2 = 0, v1 = 0 and v2 = 1, we get the pessimistic reduced IFS defined by
�

AP = {〈
x,η−

A(x),ψ+
A (x)

〉 ∣∣x ∈ X
}
. (12)
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ii. If u1 = 0, u2 = 1, v1 = 1 and v2 = 0, we get the optimistic reduced IFS defined by
�

AO = {〈
x,η+

A(x),ψ−
A (x)

〉 ∣∣x ∈ X
}
. (13)

iii. If u1 = u2 = v1 = v2 = 0.5, we get the neutral reduced IFS defined by

�

AN =
{〈

x,
η−

A(x) + η+
A(x)

2
,
ψ−

A (x) + ψ+
A (x)

2

〉 ∣∣∣x ∈ X

}
. (14)

2.1. From OWA Operator to the Quasi-OWA Operator

The OWA operator was introduced by Yager (1988) in 1988, and it provides a param-
eterized family of aggregation operators between the maximum and the minimum. The
OWA operator has been widely used in theory and applications (Merigó, 2012; Yager,
2002; Merigó and Yager, 2013; Merigó and Gil-Lafuente, 2011a, 2011b, 2010; Xu and
Da, 2002; Chen et al., 2004; Fodor et al., 1995; Xu and Chen, 2008; Zhou et al., 2013;
Zeng et al., 2017; Yu et al., 2015; Merigó and Casanovas, 2011; Xu, 2012; Su et al., 2013;
Yager, 1996, 2006; Verma and Merigó, 2019). It can be defined as follows.

Definition 8 (OWA operator, Yager, 1988). An OWA operator of dimension n is a map-
ping OWA : Rn → R that has an associated weighting vector w = (w1,w2, . . .wn) with
wj ∈ [0,1] and

∑n
j=1 wj = 1, such that

OWA(a1, a2, . . . , an) =
n∑

j=1

wjbj , (15)

where bj is the j th largest of the ai .
The OWA operator is commutative, monotonic, bounded, and idempotent. Especially,

if w = (1,0, . . . ,0)T , then OWA is reduced to the max operator; if w = (0,0, . . . ,1)T ,
then OWA is reduced to the min. operator, and if w = (1/n,1/n, . . . ,1/n)T , then OWA
becomes an arithmetic average (AA) operator.

Furthermore, in 2004, Yager (2004) developed the idea of generalized ordered
weighted aggregation (GOWA) operator. The GOWA operator is an aggregation opera-
tor, which includes the ordered weighted aggregation (OWA) operator (Yager, 1988), the
ordered weighted geometric (OWG) operator (Xu and Da, 2002) and the ordered weighted
harmonic averaging (OWHA) operator (Chen et al., 2004) as its particular cases.

Definition 9 (GOWA operator, Yager, 2004). A GOWA operator of dimension n is a
mapping OWA : Rn → R that has an associated weighting vector w = (w1,w2, . . .wn)

with wj ∈ [0,1] and
∑n

j=1 wj = 1, such that

GOWA(a1, a2, . . . , an) =
(

n∑
j=1

wjb
δ
j

)1/δ

, (16)

where bj is the j th largest of the ai , and δ is a parameter such that δ ∈ (−∞,∞).
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The quasi-arithmetic means are an important class of parameterized aggregation op-
erators that have been used extensively in different application areas. It includes a wide
range of aggregation operators such as arithmetic, quadratic, geometric, harmonic, root-
power, and exponential. Fodor et al. (1995) defined the quasi-ordered weighted averaging
(quasi-OWA) operator as follows.

Definition 10 (Quasi-OWA operator, Fodor et al., 1995). A quasi-OWA operator of di-
mension n is a mapping Quasi-OWA : Rn → R that has an associated weighting vector
w = (w1,w2, . . .wn) with wj ∈ [0,1] and

∑n
j=1 wj = 1, and a continuous strictly mono-

tonic function g(•), such that

Quasi-OWA(a1, a2, . . . , an) = g−1

(
n∑

j=1

wjg(bj )

)
, (17)

where bj is the j th largest of the ai .
The quasi-OWA operator is monotonic, commutative, bounded, and idempotent. If we

consider different functions g(•) in the quasi-OWA operator, then we can obtain a group
of particular cases.

In the next section, using the idea of weighted reduced IFS of an IVIFS, we propose a
new similarity measure on interval-valued intuitionistic fuzzy sets, called ‘interval-valued
intuitionistic fuzzy cosine similarity’ measure. One of the most significant features of the
IVIFCS is that it can accommodate the decision maker’s attitudinal character in the mea-
suring process.

3. Interval-Valued Intuitionistic Fuzzy Cosine Similarity Based on Weighted
Reduced Intuitionistic Fuzzy Sets

We proceed with the following formal definition:

Definition 11 (Interval-valued intuitionistic fuzzy cosine similarity measure). Let A and
B be two IVIFSs defined in a finite universe of discourse X = {x1, x2, . . . , xn} and two
weight vectors be U = (u1, u2) and V = (v1, v2), u1, u2, v1, v2 ∈ [0,1] with u1 +u2 = 1,
and v1 +v2 = 1. Then, according to Definition 7, the weighted reduced IFSs of the IVIFSs
A and B are given as

�

A = {〈
xi, u1η

−
A(xi) + u2η

+
A(xi), v1ψ

−
A (xi) + v2ψ

+
A (xi)

〉 ∣∣xi ∈ X
}
,

and

�

B = {〈
xi, u1η

−
B (xi) + u2η

+
B (xi), v1ψ

−
B (xi) + v2ψ

+
B (xi)

〉 ∣∣x ∈ X
}
.
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Let

ηi
�
A

= u1η
−
A(xi) + u2η

+
A(x), ψi

�
A

= v1ψ
−
A (xi) + v2ψ

+
A (xi),

ηi
�
B

= u1η
−
B (xi) + u2η

+
B (xi), ψi

�
B

= ν1ψ
−
B (xi) + ν2ψ

+
B (xi).

Thus, the weighted reduced IFSs of the IVIFSs A and B can be rewritten as

�

A = {〈
xi, η

i
�
A
,ψi

�
A

〉 ∣∣xi ∈ X
}

and
�

B = {〈
xi, η

i
�
B
,ψi

�
B

〉 ∣∣xi ∈ X
}
.

Analogous to the cosine similarity measure for IFSs given in Eq. (4), an interval-
valued intuitionistic fuzzy cosine similarity measure based on the weighted reduced IFSs
of IVIFSs A and B can be defined as follows

CIVIFCS(
�

A,
�

B)

= 1

n

n∑
i=1

( ηi
�
A
ηi

�
B

+ ψi
�
A
ψi

�
B

+ (1 − ηi
�
A

− ψi
�
A
)(1 − ηi

�
B

− ψi
�
B
)√

((ηi
�
A
)2 + (ψi

�
A
)2 + (1 − ηi

�
A

− ψi
�
A
)2)
√

((ηi
�
B
)2 + (ψi

�
B
)2 + (1 − ηi

�
B

− ψi
�
B
)2)

)
.

(18)

The new measure CIVIFCS(
�

A,
�

B) satisfies some important properties, which we study
in the following theorems.

Theorem 1. For A,B ∈ IVIFS(X), we have

(a) 0 � CIVIFCS(
�

A,
�

B) � 1;
(b) CIVIFCS(

�

A,
�

B) = CIVIFCS(
�

B,
�

A);
(c) CIVIFCS(

�

A,
�

B) = 1 if and only if A = B , i.e. η−
A(x) = η−

B (x), η+
A(xi) = η+

B (xi) and
ψ−

A (xi) = ψ−
B (xi), ψ+

A (xi) = ψ+
A (xi).

Proof. (a) It is evident that the property is true according to the cosine value of Eq. (18).
(b) This follows from the symmetry of CIVIFCS(

�

A,
�

B).
(c) First, let A = B , i.e. η−

A(x) = η−
B (x), η+

A(xi) = η+
B (xi) and ψ−

A (xi) = ψ−
B (xi),

ψ+
A (xi) = ψ+

A (xi). Then from Eq. (18), we get

CIVIFCS(
�

A,
�

B) = 1.

This proves the ‘sufficiency’ part of the statement. Next, suppose that CIVIFS(
�

A,
�

B) = 1,
i.e.

n∑
i=1

( ηi
�
A
ηi

�
B

+ ψi
�
A
ψi

�
B

+ (1 − ηi
�
A

− ψi
�
A
)(1 − ηi

�
B

− ψi
�
B
)√

((ηi
�
A
)2 + (ψi

�
A
)2 + (1 − ηi

�
A

− ψi
�
A
)2)
√

((ηi
�
B
)2 + (ψi

�
B
)2 + (1 − ηi

�
B

− ψi
�
B
)2)

)

= n, (19)
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or

ηi
�
A
ηi

�
B

+ ψi
�
A
ψi

�
B

+ (1 − ηi
�
A

− ψi
�
A
)(1 − ηi

�
B

− ψi
�
B
)

=
√

((ηi
�
A
)2 + (ψi

�
A
)2 + (1 − ηi

�
A

− ψi
�
A
)2)
√

((ηi
�
B
)2 + (ψi

�
B
)2 + (1 − ηi

�
B

− ψi
�
B
)2).

From the well known Cauchy–Schwarz inequality, we know

ηi
�
A
ηi

�
B

+ ψi
�
A
ψi

�
B

+ (1 − ηi
�
A

− ψi
�
A
)(1 − ηi

�
B

− ψi
�
B
)

�
√

((ηi
�
A
)2 + (ψi

�
A
)2 + (1 − ηi

�
A

− ψi
�
A
)2)
√

((ηi
�
B
)2 + (ψi

�
B
)2 + (1 − ηi

�
B

− ψi
�
B
)2),

(20)

and becomes equality if and only if

ηi
�
A

ηi
�
B

=
ψi

�
A

ψi
�
B

=
(1 − ηi

�
A

− ψi
�
A
)

(1 − ηi
�
B

− ψi
�
B
)

= k. (21)

From Eq. (21), we have ηi
�
A

= kηi
�
B

, ψi
�
A

= kψi
�
B

,
(
1 − ηi

�
A

− ψi
�
A

) = k
(
1 − ηi

�
B

− ψi
�
B

)
for

some positive real number k. Since

ηi
�
A
(x) + ψi

�
A
(x) + 1 − ηi

�
A
(x) − ψi

�
A
(x) = k

(
ηi

�
B
(x) + ψi

�
B
(x) + 1 − ηi

�
B
(x) − ψi

�
B
(x)

)
.

(22)

We have k = 1, i.e.
�

A = �

B ⇒ A = B .
This proves the theorem. �

For proof of the further properties, we will consider separation of X into two parts X1

and X2, such that

X1 = {xi |xi ∈ X,A ⊆ B}, (23)

X2 = {xi |xi ∈ X,A ⊇ B}. (24)

And note that for all xi ∈ X1,
[
η−

A(xi), η
+
A(xi)

]
�
[
η−

B (xi), η
+
B (xi)

]
and[

ψ−
A (xi),ψ

+
A (xi)

]
�
[
ψ−

B (xi),ψ
+
B (xi)

]
i.e.

η−
A(xi) � η−

B (xi), η
+
A(xi) � η+

B (xi),

ψ−
A (xi)� ψ−

B (xi),ψ
+
A (xi)� ψ+

B (xi)

}
. (25)
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As also ∀xi ∈ X2,

[
η−

A(xi), η
+
A(xi)

]
�
[
η−

B (xi), η
+
B (xi)

]
and[

ψ−
A (xi),ψ

+
A (xi)

]
�
[
ψ−

B (xi),ψ
+
B (xi)

]
i.e.

η−
A(xi)� η−

B (xi), η
+
A(xi) � η+

B (xi),

ψ−
A (xi) � ψ−

B (xi),ψ
+
A (xi) � ψ+

B (xi)

}
. (26)

For weighted reduced IFSs of IVIFSs A and B , the inequalities (25) and (26) become

∀xi ∈ X1, ηi
�
A
� ηi

�
B
, ψi

�
A
� ψi

�
B
. (27)

and

∀xi ∈ X2, ηi
�
A
� ηi

�
B
, ψi

�
A
� ψi

�
B
. (28)

Theorem 2. For A,B ∈ IVIFS(X),

CIVIFCS(
�

A ∪ �

B,
�

A ∩ �

B) = CIVIFCS(
�

A,
�

B).

Proof. Using Definition 8, we have

CIVIFCS(
�

A ∪ �

B,
�

A ∩ �

B)

= 1

n

n∑
i=1

( ηi
�
A∪�

B
ηi

�
A∩�

B
+ ψi

�
A∪�

B
ψi

�
A∩�

B
+ (1 − ηi

�
A∪�

B
− ψi

�
A∪�

B
)(1 − ηi

�
A∩�

B
− ψi

�
A∩�

B
)√

((ηi
�
A∪�

B
)2 + (ψi

�
A∪�

B
)2 + (1 − ηi

�
A∪�

B
− ψi

�
A∪�

B
)2)
√

((ηi
�
A∩�

B
)2 + (ψi

�
A∩�

B
)2 + (1 − ηi

�
A∩�

B
− ψi

�
A∩�

B
)2)

)

= 1

n

[ ∑
xi∈X1

( ηi
�
B
ηi

�
A

+ ψi
�
B
ψi

�
A

+ (1 − ηi
�
B

− ψi
�
B
)(1 − ηi

�
A

− ψi
�
A
)√

((ηi
�
B
)2 + (ψi

�
B
)2 + (1 − ηi

�
B

− ψi
�
B
)2)
√

((ηi
�
A
)2 + (ψi

�
A
)2 + (1 − ηi

�
A

− ψi
�
A
)2)

)

+
∑

xi∈X2

( ηi
�
A
ηi

�
B

+ ψi
�
A
ψi

�
B

+ (1 − ηi
�
A

− ψi
�
A
)(1 − ηi

�
B

− ψi
�
B
)√

((ηi
�
A
)2 + (ψi

�
A
)2 + (1 − ηi

�
A

− ψi
�
A
)2)
√

((ηi
�
B
)2 + (ψi

�
B
)2 + (1 − ηi

�
B

− ψi
�
B
)2)

)]

= CIVIFCS(
�

A,
�

B).

This proves the theorem. �

Theorem 3. For A,B,C ∈ IVIFS(X),

(i) CIVIFCS(
�

A ∪ �

B,
�

C) � CIVIFCS(
�

A,
�

C) + CIVIFCS(
�

B,
�

C),
(ii) CIVIFCS(

�

A ∩ �

B,
�

C) � CIVIFCS(
�

A,
�

C) + CIVIFCS(
�

B,
�

C).
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Proof. We prove (i) only, (ii) can be proved analogously.
(i) Let us consider the expression

CIVIFCS(
�

A,
�

C) + CIVIFCS(
�

B,
�

C) − CIVIFCS(
�

A ∪ �

B,
�

C)

= 1

n

n∑
i=1

( ηi
�
A
ηi

�
C

+ ψi
�
A
ψi

�
C

+ (1 − ηi
�
A

− ψi
�
A
)(1 − ηi

�
C

− ψi
�
C
)√

((ηi
�
A
)2 + (ψi

�
A
)2 + (1 − ηi

�
A

− ψi
�
A
)2)
√

((ηi
�
C
)2 + (ψi

�
C
)2 + (1 − ηi

�
C

− ψi
�
C
)2)

)

+ 1

n

n∑
i=1

( ηi
�
B
ηi

�
C

+ ψi
�
B
ψi

�
C

+ (1 − ηi
�
B

− ψi
�
B
)(1 − ηi

�
C

− ψi
�
C
)√

((ηi
�
B
)2 + (ψi

�
B
)2 + (1 − ηi

�
B

− ψi
�
B
)2)
√

((ηi
�
C
)2 + (ψi

�
C
)2 + (1 − ηi

�
C

− ψi
�
C
)2)

)

− 1

n

n∑
i=1

( ηi
�
A∪�

B
ηi

�
C

+ ψi
�
A∪�

B
ψi

�
C

+ (1 − ηi
�
A∪�

B
− ψi

�
A∪�

B
)(1 − ηi

�
C

− ψi
�
C
)√

((ηi
�
A∪�

B
)2 + (ψi

�
A∪�

B
)2 + (1 − ηi

�
A∪�

B
− ψi

�
A∪�

B
)2)
√

((ηi
�
C
)2 + (ψi

�
C
)2 + (1 − ηi

�
C

− ψi
�
C
)2)

)

= 1

n

[ ∑
xi∈X1

{ ηi
�
A
ηi

�
C

+ ψi
�
A
ψi

�
C

+ (1 − ηi
�
A

− ψi
�
A
)(1 − ηi

�
C

− ψi
�
C
)√

((ηi
�
A
)2 + (ψi

�
A
)2 + (1 − ηi

�
A

− ψi
�
A
)2)
√

((ηi
�
C
)2 + (ψi

�
C
)2 + (1 − ηi

�
C

− ψi
�
C
)2)

}

+ ∑
xi∈X2

{ ηi
�
B
ηi

�
C

+ ψi
�
B
ψi

�
C

+ (1 − ηi
�
B

− ψi
�
B
)(1 − ηi

�
C

− ψi
�
C
)√

((ηi
�
B
)2 + (ψi

�
B
)2 + (1 − ηi

�
B

− ψi
�
B
)2)
√

((ηi
�
C
)2 + (ψi

�
C
)2 + (1 − ηi

�
C

− ψi
�
C
)2)

}]

� 0. (29)

This proves the theorem. �

Theorem 4. For A,B,C ∈ IVIFS(X),

CIVIFS(
�

A ∪ �

B,
�

C) + CIVIFS(
�

A ∩ �

B,
�

C) = CIVIFS(
�

A,
�

C) + CIVIFS(
�

B,
�

C).

Proof. From Definition 8, we have

CIVIFS(
�

A ∪ �

B,
�

C)

= 1

n

n∑
i=1

( ηi
�
A∪�

B
ηi

�
C

+ ψi
�
A∪�

B
ψi

�
C

+ (1 − ηi
�
A∪�

B
− ψi

�
A∪�

B
)(1 − ηi

�
C

− ψi
�
C
)√

((ηi
�
A∪�

B
)2 + (ψi

�
A∪�

B
)2 + (1 − ηi

�
A∪�

B
− ψi

�
A∪�

B
)2)
√

((ηi
�
C
)2 + (ψi

�
C
)2 + (1 − ηi

�
C

− ψi
�
C
)2)

)

= 1

n

[ ∑
xi∈X1

{ ηi
�
B
ηi

�
C

+ ψi
�
B
ψi

�
C

+ (1 − ηi
�
B

− ψi
�
B
)(1 − ηi

�
C

− ψi
�
C
)√

((ηi
�
B
)2 + (ψi

�
B
)2 + (1 − ηi

�
B

− ψi
�
B
)2)
√

((ηi
�
C
)2 + (ψi

�
C
)2 + (1 − ηi

�
C

− ψi
�
C
)2)

}

+ ∑
xi∈X2

{ ηi
�
A
ηi

�
C

+ ψi
�
A
ψi

�
C

+ (1 − ηi
�
A

− ψi
�
A
)(1 − ηi

�
C

− ψi
�
C
)√

((ηi
�
A
)2 + (ψi

�
A
)2 + (1 − ηi

�
A

− ψi
�
A
)2)
√

((ηi
�
C
)2 + (ψi

�
C
)2 + (1 − ηi

�
C

− ψi
�
C
)2)

}]
,

(30)
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and

CIVIFS(
�

A ∩ �

B,
�

C)

= 1

n

n∑
i=1

( ηi
�
A∩�

B
ηi

�
C

+ ψi
�
A∩�

B
ψi

�
C

+ (1 − ηi
�
A∩�

B
− ψi

�
A∩�

B
)(1 − ηi

�
C

− ψi
�
C
)√

((ηi
�
A∩�

B
)2 + (ψi

�
A∩�

B
)2 + (1 − ηi

�
A∩�

B
− ψi

�
A∩�

B
)2)
√

((ηi
�
C
)2 + (ψi

�
C
)2 + (1 − ηi

�
C

− ψi
�
C
)2)

)

= 1

n

[ ∑
xi∈X1

{ μi
�
A
μi

�
C

+ νi
�
A
νi

�
C

+ (1 − μi
�
A

− νi
�
A
)(1 − μi

�
C

− νi
�
C
)√

((μi
�
A
)2 + (νi

�
A
)2 + (1 − μi

�
A

− νi
�
A
)2)
√

((μi
�
C
)2 + (νi

�
C
)2 + (1 − μi

�
C

− νi
�
C
)2)

}

+
∑

xi∈X2

{ μi
�
B
μi

�
C

+ νi
�
B
νi

�
C

+ (1 − μi
�
B

− νi
�
B
)(1 − μi

�
C

− νi
�
C
)√

((μi
�
B
)2 + (νi

�
B
)2 + (1 − μi

�
B

− νi
�
B
)2)
√

((μi
�
C
)2 + (νi

�
C
)2 + (1 − μi

�
C

− νi
�
C
)2)

}]
.

(31)

Adding Eq. (30) and Eq. (31), we get the result.
This proves the theorem. �

Theorem 5. For A,B ∈ IVIFS(X),

(a) CIVIFS(
�

A,
�

B) = CIVIFS(
�

AC,
�

BC);
(b) CIVIFS(

�

A,
�

BC) = CIVIFS(
�

AC,
�

B);
(c) CIVIFS(

�

A,
�

B) + CIVIFS(
�

AC,
�

B) = CIVIFS(
�

AC,
�

BC) + CIVIFS(
�

A,
�

BC),

where
�

AC and
�

BC represent the complement of the weighted reduced IFSs of IVIFSs A

and B , respectively.

Proof. (a) It follows from the relation of membership and non-membership of an element
in a set and its complement.

(b) It directly follows from Definition 11.
(c) It simply follows (a) and (b).
This proves the theorem. �

By adjusting the values of u1, u2, v1 and v2, we can obtain an interval-valued intu-
itionistic fuzzy cosine similarity measure between the IVIFSs A and B as desired by a
decision-maker.

i. If u1 = 1, u2 = 0, v1 = 0 and v2 = 1, then we get the pessimistic interval-valued intu-
itionistic fuzzy cosine similarity measure given by

PCIVIFCS(
�

A,
�

B)

= 1

n

n∑
i=1

(
η−

Aη−
B + ψ+

A ψ+
B + (1 − η−

A − ψ+
A )(1 − η−

B − ψ+
B )√

((η−
A)2 + (ψ+

A )2 + (1 − η−
A − ψ+

A )2)

√
((η−

B )2 + (ψ+
B )2 + (1 − η−

B − ψ+
B )2)

)
.

(32)
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ii. If u1 = 0, u2 = 1, v1 = 1 and v2 = 0, then we obtain the optimistic interval-valued
intuitionistic fuzzy cosine similarity measure given by

OCIVIFCS(
�

A,
�

B)

= 1

n

n∑
i=1

(
η+

Aη+
B + ψ−

A ψ−
B + (1 − η+

A − ψ−
A )(1 − η+

B − ψ−
B )√

((η+
A)2 + (ψ−

A )2 + (1 − η+
A − ψ−

A )2)

√
((η+

B )2 + (ψ−
B )2 + (1 − η+

B − ψ−
B )2)

)
.

(33)

iii. If u1 = u2 = 1
2 , and v1 = v2 = 1

2 , then the neutral interval-valued intuitionistic fuzzy
cosine similarity measure is obtained as

NCIVIFC(
�

A,
�

B)

= 1

n

n∑
i=1

⎛
⎜⎜⎜⎜⎜⎜⎝

( η−
A(xi )+η+

A(xi )

2

)( η−
B (xi )+η+

B (xi )

2

)+ (ψ−
A (xi )+ψ+

A (xi )

2

)(ψ−
B (xi )+ψ+

B (xi )

2

)
+ ( 2−η−

A(xi )−ψ−
A (xi )−η+

A(xi )−ψ+
A (xi )

2

)( 2−η−
B (xi )−ψ−

B (xi )−η+
B (xi )−ψ+

B (xi )

2

)
√√√√( η−

A(xi )+η+
A(xi )

2

)2 + ( η−
B (xi )+η+

B (xi )

2

)2

+( 2−η−
A(xi )−ψ−

A (xi )−η+
A(xi )−ψ+

A (xi )

2

)2

√√√√(ψ−
A (xi )+ψ+

A (xi )

2

)2 + (ψ−
B (xi )+ψ+

B (xi )

2

)2

+ ( 2−η−
B (xi )−ψ−

B (xi )−η+
B (xi )−ψ+

B (xi )

2

)2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(34)

iv. If η−
A(xi) = η+

A(xi), η−
B (xi) = η+

B (xi) and ψ−
A (xi) = ψ+

A (xi), ψ−
B (xi) = ψ+

B (xi)

∀i = 1,2, . . . , n, then CIVIFCS(
�

A,
�

B) reduces to intuitionistic fuzzy cosine similarity
measure defined by Ye (2011).

Weighted interval-valued intuitionistic fuzzy cosine similarity measure:
Assume that the elements in the universe of discourse X = {x1, x2, . . . , xn} have the

weight vector ω = (ω1,ω2, . . . ,ωn)
T such that ωi � 0 and

∑n
i=1 ωi = 1. The weighted

interval-valued intuitionistic fuzzy cosine similarity (WIVIFCS) measure based on the
weighted reduced IFSs of IVIFSs A and B is defined as

Cω
IVIFCS(

�

A,
�

B)

=
n∑

i=1

ωi

( ηi
�
A
ηi

�
B

+ ψi
�
A
ψi

�
B

+ (1 − ηi
�
A

− ψi
�
A
)(1 − ηi

�
B

− ψi
�
B
)√

((ηi
�
A
)2 + (ψi

�
A
)2 + (1 − ηi

�
A

− ψi
�
A
)2)
√

((ηi
�
B
)2 + (ψi

�
B
)2 + (1 − ηi

�
B

− ψi
�
B
)2)

)
.

(35)

Note. (i) If ω = (1/n,1/n, . . . ,1/n)T , then the measure defined in Eq. (35) is reduced
to measure given in Eq. (18).

Obviously, the Cω
IVIFCS(

�

A,
�

B) also satisfies the following properties:
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Theorem 6. For A,B ∈ IVIFS(X),

(a) 0 � Cω
IVIFCS(

�

A,
�

B) � 1;
(b) Cω

IVIFCS(
�

A,
�

B) = Cω
IVIFCS(

�

B,
�

A);
(c) Cω

IVIFCS(
�

A,
�

B) = 1 if A = B , i.e. η−
A(x) = η−

B (x), η+
A(x) = η+

B (x) and ψ−
A (x) =

ψ−
B (x), ψ+

A (x) = ψ+
B (x) ∀i = 1,2, . . . , n.

Proof. These properties can be proved easily on lines similar to the proof of Theorem 1. �

Note that the cosine similarity measures defined in Eq. (18) and Eq. (35) are used
the arithmetic average (AA) and weighted average (WA) for the normalization process.
These measures do not provide flexibility/choices to the user in the aggregation stage.
The OWA operator is a parameterized mean-like aggregation operator that reflects the un-
certain nature of the decision-maker with the ability to generate an aggregating result lying
between two extremes of minimum and maximum. In the past few years, the OWA oper-
ator has been used to normalize different measures, including distance measures (Merigó
and Yager, 2013; Merigó and Gil-Lafuente, 2011a, 2011b; Xu and Chen, 2008; Zhou et
al., 2013; Zeng et al., 2017; Yu et al., 2015; Merigó and Casanovas, 2011; Xu, 2012), sim-
ilarity measures (Zhou et al., 2014; Liu et al., 2017; Su et al., 2013), adequacy coefficient
(Merigó and Gil-Lafuente, 2010), variance (Yager, 1996, 2006; Verma and Merigó, 2019).
Motivated by the idea of generalized OWA operator (Yager, 2004), next, we propose an or-
dered weighted cosine similarity measure between IVIFSs. It is a similarity measure that
cannot only emphasize the importance of the ordered position of each similarity value but
also provide a parameterized family of cosine similarity between IVIFSs.

4. Ordered Weighted Interval-Valued Intuitionistic Fuzzy Cosine Similarity
(OWIVIFCS)

Let A and B be two IVIFSs in the finite universe of discourse X = {x1, x2, . . . , xn}
and two weight vectors be U = (u1, u2) and V = (v1, v2), u1, u2, v1, v2 ∈ [0,1] with
u1 + u2 = 1, and v1 + v2 = 1. Further, assume that

�

A = {〈xi, η
i
�
A
,ψi

�
A
〉 |xi ∈ X} and

�

B = {〈x,ηi
�
B
,ψi

�
B
〉 |xi ∈ X} denote the weighted reduced IFSs of the IVIFSs A and B .

Using the idea of generalized OWA (Yager, 2004), we propose with the following formal
definition:

Definition 12 (Ordered weighted interval-valued intuitionistic fuzzy cosine similarity
measure). A OWIVIFCS measure based on the weighted reduced IFSs of IVIFSs is a
mapping OWIVIFCS : IVIFS(X) × IVIFS(X) → [0,1] that has an associated weighting
vector w = (w1,w2, . . . ,wn) with wj ∈ [0,1] and

∑n
j=1 wj = 1, and defined according

to the following formula:

Cδ
OWIVIFCS(

�

A,
�

B) =
[

n∑
j=1

wj

(
CIVIFCS(

�

Aσ(j),
�

Bσ(j))
)δ]1/δ

, δ > 0, (36)
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where (σ (1), σ (2), . . . , σ (n)) is any permutation of (1,2, . . . , n), such that

CIVIFCS(
�

Aσ(j−1),
�

Bσ(j−1))� CIVIFCS(
�

Aσ(j),
�

Bσ(j)), j = 2,3, . . . , n, (37)

and CIVIFCS(
�

Aj ,
�

Bj ) denotes the interval-valued intuitionistic fuzzy cosine similarity
measure for the element xj .

The main advantages of the OWIVIFCS measure are that it is not only a straightfor-
ward generalization of measure defined in Eq. (18), but also it can relive (or intensify) the
influence of unduly large or unduly small cosine similarity value on aggregation result by
assigning them low (or high) weights as per our requirements.

Now consider the following numerical example to understand the computation proce-
dure more clearly.

Example 1. Let

A =

⎧⎪⎨
⎪⎩

〈x1, [0.5,0.6], [0.2,0.3]〉, 〈x2, [0.2,0.4], [0.4,0.5]〉,
〈x3, [0.4,0.6], [0.2,0.4]〉, 〈x4, [0.3,0.5], [0.2,0.4]〉,
〈x5, [0.5,0.6], [0.1,0.3]〉

⎫⎪⎬
⎪⎭

and

B =

⎧⎪⎨
⎪⎩

〈x1, [0.3,0.5], [0.4,0.5]〉, 〈x2, [0.5,0.6], [0.2,0.3]〉,
〈x3, [0.3,0.4], [0.4,0.6]〉, 〈x4, [0.4,0.5], [0.1,0.2]〉,
〈x5, [0.2,0.6], [0.3,0.4]〉

⎫⎪⎬
⎪⎭ ,

be two interval-valued intuitionistic fuzzy sets. Further, assume that U = (0.3,0.7) and
V = (0.5,0.5) are two weight vectors. The weighted reduced IFSs corresponding to IV-
IFSs A and B are obtained as

�

A = {〈x1,0.57,0.25〉, 〈x2,0.34,0.45〉, 〈x3,0.54,0.30〉, 〈x4,0.44,0.30〉,
〈x5,0.57,0.20〉},

and
�

B = {〈x1,0.44,0.45〉, 〈x2,0.57,0.25〉, 〈x3,0.37,0.50〉, 〈x4,0.47,0.15〉,
〈x5,0.48,0.35〉}.

Then by Eq. (18), we get

CIVIFCS(
�

A1,
�

B1) = 0.9255, CIVIFCS(
�

A2,
�

B2) = 0.8824,

CIVIFCS(
�

A3,
�

B3) = 0.9139, CIVIFCS(
�

A4,
�

B4) = 0.9500,

CIVIFCS(
�

A5,
�

B5) = 0.9582.
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Table 1
Values of Cδ

OWIVIFCS(
�
A,

�
B) for different values of δ.

δ 0.2 0.7 1 2 5 7 9 15 25

Cδ
OWIVIFCS 0.9303 0.9304 0.9305 0.9309 0.9317 0.9325 0.9331 0.9349 0.9374

Thus,

CIVIFCS(
�

Aσ(1),
�

Bσ(1)) = 0.9582, CIVIFCS(
�

Aσ(2),
�

Bσ(2)) = 0.9500,

CIVIFCS(
�

Aσ(3),
�

Bσ(3)) = 0.9255, CIVIFCS(
�

Aσ(4),
�

Bσ(4)) = 0.9139,

CIVIFCS(
�

Aσ(5),
�

Bσ(5)) = 0.8824.

Assume the weighting vector of ordered positions of cosine similarity measures
CIVIFCS(

�

Aj ,
�

Bj ) (j = 1,2, . . . ,5) is w = (0.30,0.15,0.10,0.25,0.20).
Taking different values of δ in Eq. (36), we can get the similarity measure between

IVIFSs A and B . The values of Cδ
IVIFCS(A,B) for different values of δ are shown in

Table 2.

4.1. Properties of the Ordered Weighted Interval-Valued Intuitionistic Fuzzy Cosine
Similarity (OWIVIFCS), Cδ

OWIVIFCS(
�

A,
�

B)

The OWIVIFCS measure is commutative, monotonic, bounded, idempotent, non-
negative, and reflexive. These properties can be proved with the following theorems:

Theorem 7 (Commutativity-GOWA aggregation). Let
�

A = {〈xi, η
i
�
A
,ψi

�
A
〉 |xi ∈ X} and

�

B = {〈x,ηi
�
B
,ψi

�
B
〉 |xi ∈ X} denote the weighted reduced IFSs of the IVIFSs A and

B . If (C′
IVIFCS(

�

A1,
�

B1),C
′
IVIFCS(

�

A2,
�

B2), . . . ,C
′
IVIFCS(

�

An,
�

Bn)) is any permutation of
(CIVIFCS(

�

A1,
�

B1),CIVIFCS(
�

A2,
�

B2), . . . ,CIVIFCS(
�

An,
�

Bn)), then

Cδ′
OWIVIFCS(

�

A,
�

B) = Cδ
OWIVIFCS(

�

A,
�

B). (38)

Theorem 8 (Commutativity-similarity measure). Let
�

A = {〈xi, η
i
�
A
,ψi

�
A
〉 |xi ∈ X} and

�

B = {〈x,ηi
�
B
,ψi

�
B
〉 |xi ∈ X} denote the weighted reduced IFSs of the IVIFSs A and B .

Then

Cδ
OWIVIFCS(

�

A,
�

B) = Cδ
OWIVIFCS(

�

B,
�

A). (39)

Theorem 9 (Monotonicity-similarity measure). Let
�

A = {〈xi, η
i
�
A
,ψi

�
A
〉 |xi ∈ X} �

B =
{〈x,ηi

�
B
,ψi

�
B
〉 |xi ∈ X} and

�

C = {〈x,ηi
�
C
,ψi

�
C
〉 |xi ∈ X} denote the weighted reduced IFSs

of the IVIFSs A, B and C. If CIVIFCS(
�

Ai,
�

Bi)� CIVIFCS(
�

Ai,
�

Ci)∀i, then

Cδ
OWIVIFCS(

�

A,
�

B) � Cδ
OWIVIFCS(

�

A,
�

C), (40)
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where CIVIFCS(
�

Ai,
�

Bi) is the interval-valued intuitionistic fuzzy cosine similarity measure
between Ai and Bi , and CIVIFCS(

�

Ai,
�

Ci) is the interval-valued intuitionistic fuzzy cosine
similarity measure between Ai and Ci .

Theorem 10 (Monotonicity-parameter δ). Let
�

A = {〈xi, η
i
�
A
,ψi

�
A
〉 |xi ∈ X} and

�

B =
{〈x,ηi

�
B
,ψi

�
B
〉 |xi ∈ X} denote the weighted reduced IFSs of the IVIFSs A and B . If δ1 � δ2,

then

C
δ1
OWIVIFCS(

�

A,
�

B) � C
δ2
OWIVIFCS(

�

A,
�

B). (41)

Theorem 11 (Idempotency). Let
�

A = {〈xi, η
i
�
A
,ψi

�
A
〉 |xi ∈ X} and

�

B = {〈x,ηi
�
B
,ψi

�
B
〉 |xi ∈

X} denote the weighted reduced IFSs of the IVIFSs A and B . If CIVIFCS(
�

Ai,
�

Bi) = θ∀i,
then

Cδ
OWIVIFCS(

�

A,
�

B) = θ. (42)

Theorem 12 (Nonnegativity). Let
�

A = {〈xi, η
i
�
A
,ψi

�
A
〉 |xi ∈ X} and

�

B = {〈x,ηi
�
B
,ψi

�
B
〉 |xi ∈

X} denote the weighted reduced IFSs of the IVIFSs A and B . Then

0 � Cδ
OWIVIFCS(

�

A,
�

B)� 1. (43)

Theorem 13 (Reflexivity). Let
�

A = {〈xi, η
i
�
A
,ψi

�
A
〉 |xi ∈ X} denote the weighted reduced

IFS of the IVIFS A. Then

Cδ
OWIVIFCS(

�

A,
�

A) = 1. (44)

Note that the proofs of these theorems are straightforward and thus omitted here.

4.2. Families of OWIVIFCS Measure

By using the different manifestation of the weighting vector w and parameter δ, we can
obtain a wide range of particular types of OWIVIFCS measures. The selection of a weight-
ing vector w and parameter δ depends on the decision maker’s attitude towards specific
considered problems.

4.2.1. Analysing the Parameter δ

When we consider different values of the parameter δ in Cδ
OWIVIFCS(

�

A,
�

B), we will get
different special cases of the cosine similarity measure defined in Eq. (36). Some notable
particular cases of Cδ

OWIVIFCS(
�

A,
�

B) are given by:

1. If δ = 1, then the OWIVIFCS measure gives the ordered weighted interval-valued in-
tuitionistic fuzzy arithmetic cosine similarity (OWIVIFACS) measure:

Cδ
OWIVIFCS(

�

A,
�

B) =
n∑

j=1

wj

(
CIVIFCS(

�

Aσ(j),
�

Bσ(j))
)
, (45)
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where (σ (1), σ (2), . . . , σ (n)) is any permutation of (1,2, . . . , n) such that the condi-
tion given in Eq. (37) holds. Note that if w = (1/n,1/n, . . . ,1/n) in Eq. (45), then
we get interval-valued intuitionistic fuzzy cosine similarity (IVIFCS) measure given
in Eq. (18). The weighted interval-valued intuitionistic fuzzy cosine similarity (WIV-
IFCS) measure (32) is obtained if the ordered position of CIVIFCS(

�

Aj ,
�

Bj ) is the same
as the ordered position of the CIVIFCS(

�

Aσ(j),
�

Bσ(j)).
2. If δ = 2, then the OWIVIFCS measure becomes

Cδ
OWIVIFCS(

�

A,
�

B) =
√√√√ n∑

j=1

wj

(
CIVIFCS(

�

Aσ(j),
�

Bσ(j))
)2

, (46)

where (σ (1), σ (2), . . . , σ (n)) is any permutation of (1,2, . . . , n) such that the condi-
tion given in Eq. (37). We call it the ordered weighted quadratic interval-valued intu-
itionistic fuzzy cosine similarity (OWQIVIFCS) measure.

3. If δ = 3, then the OWIVIFCS measure gives

Cδ
OWIVIFCS(

�

A,
�

B) =
[

n∑
j=1

wj

(
CIVIFCS(

�

Aσ(j),
�

Bσ(j))
)3

]1/3

, (47)

where (σ (1), σ (2), . . . , σ (n)) is any permutation of (1,2, . . . , n) such that the condi-
tion given in Eq. (37). We call it the ordered weighted cubic interval-valued intuition-
istic fuzzy cosine similarity (OWCIVIFCS) measure.

4. If δ → 0, then the OWIVIFCS measure reduces

Cδ
OWIVIFCS(

�

A,
�

B) =
n∏

j=1

(
CIVIFCS(

�

Aσ(j),
�

Bσ(j))
)wj , (48)

where (σ (1), σ (2), . . . , σ (n)) is any permutation of (1,2, . . . , n) such that the condi-
tion given in Eq. (37) holds. We call it the ordered weighted interval-valued intuition-
istic fuzzy geometric cosine similarity (OWIVIFGCS) measure. Note that the OWIV-
IFGCS measure can only be used in the situation when all the individual similarity
measures are different from 0, i.e. CIVIFCS(

�

Aj ,
�

Bj ) �= 0 ∀j .

4.2.2. Analysing the Weighting Vector w

By considering the different selections of the weighting vector, we are able to analyse the
cosine similarity measure between two interval-valued intuitionistic fuzzy sets from min.
similarity to max. similarity.

1. If w1 = 1 and wj = 0 ∀j �= 1, the Cδ
OWIVIFCS(

�

A,
�

B) gives interval-valued intuitionistic
fuzzy maximum cosine similarity (IVIFMAXCS) measure.

2. If wn = 1 and wj = 0 ∀j �= n, the Cδ
OWIVIFCS(

�

A,
�

B) gives interval-valued intuitionistic
fuzzy minimum cosine similarity (IVIFMINCS) measure.
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3. More generally, if wk = 1 and wj = 0 ∀j �= k, we obtain interval-valued intuitionistic
fuzzy step cosine similarity (IVIFSTEPCS) measure.

4. If wj = 1/n ∀j , then the Cδ
OWIVIFCS(

�

A,
�

B) becomes interval-valued intuitionistic
fuzzy normalized cosine similarity (IVIFNORCS) measure. Especially, if δ = 1,
IVIFNORCS gives the IVIFCS measure defined in Eq. (18), and if δ → 0, we get the
interval-valued intuitionistic fuzzy geometric cosine similarity (IVIFGCS) measure.

5. The WIVIFCS measure is obtained when the ordered position of the i is the same as
the ordered position of the j .

6. If w(n+1)/2 = 1,wj = 0, j �= (n + 1)/2, n is odd; or wn/2 = 1,wj = 0, j �= n/2,
n is even, then the Cδ

OWIVIFCS(
�

A,
�

B) is reduced to interval-valued intuitionistic fuzzy
median cosine similarity (IVIFMEDCS) measure.

7. If w1 = wn = 0 and wj = 1/(n − 2) ∀j �= 1, n, then Cδ
OWIVIFCS(

�

A,
�

B) reduces to
interval-valued intuitionistic fuzzy Olympic cosine similarity (IVIFOLMCS) measure.
Note that if n = 3 or n = 4, the IVIFOLMCS measure gives the interval-valued intu-
itionistic fuzzy median cosine similarity (IVIFMEDCS) measure.

8. If wj = 0 for j = 1,2, . . . , k, n,n − 1, . . . , n − k + 1; and for all others, wj = 1/(n −
2k), where k < n/2, then the Cδ

OWIVIFCS(
�

A,
�

B) gives the interval-valued intuitionistic
fuzzy general Olympic cosine similarity (IVIFGOLYCS) measure.

9. If wj = 1/m for k � j � k + m − 1, and wj = 0∀j � k + m and j < k, then
Cδ

OWIVIFCS(
�

A,
�

B) gives to interval-valued intuitionistic fuzzy window cosine similarity
(IVIFWINCS) measure.

It is interesting to note that the OWIVIFCS measure can be further generalized by using
the quasi-OWA operator in place of GOWA. We call it quasi-OWIVIFCS measure. It can
be defined as follows:

Definition 13 (Quasi-ordered weighted interval-valued intuitionistic fuzzy cosine sim-
ilarity measure). A quasi-OWIVIFCS measure based on the weighted reduced IFSs of
IVIFSs is a mapping Quasi-OWIVIFCS : IVIFS(X) × IVIFS(X) → [0,1] that has an as-
sociated weighting vector w = (w1,w2, . . . ,wn) with wj ∈ [0,1] and

∑n
j=1 wj = 1, and

defined by

quasi-COWIVIFCS(
�

A,
�

B) = g−1

[
n∑

j=1

wjg
(
CIVIFCS(

�

Aσ(j),
�

Bσ(j))
)]

, (49)

where (σ (1), σ (2), . . . , σ (n)) is any permutation of (1,2, . . . , n), such that

CIVIFCS(
�

Aσ(j−1),
�

Bσ(j−1))� CIVIFCS(
�

Aσ(j),
�

Bσ(j)), j = 2,3, . . . , n, (50)

and CIVIFCS(
�

Aj ,
�

Bj ) denotes the interval-valued intuitionistic fuzzy cosine similarity
measure for element xj and g is a strictly continuous monotonic function.

As we can see, when g(t) = tδ , then the quasi-COWIVIFCS(
�

A,
�

B) measure becomes
OWIVIFCS measure. Also, note that all the properties and particular cases associated
with OWIVIFCS measure are also applicable in the quasi-OWIVIFCS measure.
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Further, by assigning different functions to g(t), we can obtain a wide range of new
cosine similarity measures for interval-valued intuitionistic fuzzy sets.

For example:

(1) when g1(t) = sin((π/2)t), g2(t) = cos((π/2)t) and g3(t) = tan((π/2)t), we obtain
trigonometric-OWIVIFCS measures given by

sin−COWIVIFCS(
�

A,
�

B) = 2

π
arcsin

[
n∑

j=1

wj sin

(
π

2
CIVIFCS(

�

Aσ(j),
�

Bσ(j))

)]
, (51)

cos−COWIVIFCS(
�

A,
�

B) = 2

π
arccos

[
n∑

j=1

wj cos

(
π

2
CIVIFCS(

�

Aσ(j),
�

Bσ(j))

)]
, (52)

tan−COWIVIFCS(
�

A,
�

B) = 2

π
arctan

[
n∑

j=1

wj tan

(
π

2
CIVIFCS(

�

Aσ(j),
�

Bσ(j))

)]
. (53)

(2) When g(t) = λt , λ > 0, λ �= 1, we get exponential-OWIVIFCS measure as

exp−COWIVIFCS(
�

A,
�

B) = logλ

[
n∑

j=1

wjλ
CIVIFCS(

�
Aσ(j),

�
Bσ(j))

]
. (54)

(3) If g(t) = λ1/t , λ > 0, λ �= 1, then the quasi-OWIVIFCS measure gives a radical-
OWIVIFCS measure

Rad − COWIVIFCS(
�

A,
�

B) =
[

logλ

(
n∑

j=1

wjλ
1/CIVIFCS(

�
Aσ(j),

�
Bσ(j))

)]−1

. (55)

The OWIVIFCS measure can be applied to solve different problems, including
decision-making, medical diagnosis, pattern recognition, engineering, and economics. In
the next section, we present an application of the proposed OWIVIFCS measure to solve
the multiple criteria decision-making problem with the interval-valued intuitionistic fuzzy
information.

5. Multiple Criteria Decision-Making Method Based on OWIVIFCS Measure

IVIFS is a suitable tool for better modelling the imperfectly defined facts and data, as well
as imprecise knowledge. In this section, we present a 5-step method to solve a multiple
criteria decision-making problem under an interval-valued intuitionistic fuzzy environ-
ment.
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5.1. Method

Let O = (O1,O2, . . . ,Om) be a set of options and C = (C1,C2, . . . ,Cn) be a set of cri-
teria. Assume that the characteristics of the option Ok in terms criteria C, entered by the
decision-maker, are represented by the following IVIFSs:

Ok = {〈
Ci,

[
η−

Ok
(Ci), η

+
Ok

(Ci)
]
,
[
ψ−

Ok
(Ci),ψ

+
Ok

(Ci)
]〉 ∣∣Ci ∈ C

}
, k = 1,2, . . . ,m,

where [η−
Ok

(Ci), η
+
Ok

(Ci)] indicates the degree that the option Ok satisfies the criterion
Ci , and [ψ−

Ok
(Ci),ψ

+
Ok

(Ci)] denotes the degree that the option Ok does not satisfy the
criterion Ci .

Using the OWIVIFCS measure defined in Eq. (36), we set out the following approach
to solve multiple criteria interval-valued intuitionistic fuzzy decision-making problems.

Step 1: Find the ideal solution P defined as follows:

P = {〈
Ci,

[
η−

P (Ci), η
+
P (Ci)

]
,
[
ψ−

P (Ci),ψ
+
P (Ci)

]〉 ∣∣Ci ∈ C
}
, (56)

where for each i = 1,2, . . . , n,
〈[
η−

P (Ci), η
+
P (Ci)

]
,
[
ψ−

P (Ci),ψ
+
P (Ci)

]〉
=
〈[

max
k

η−
Ok

(Ci),max
k

η+
Ok

(Ci)
]
,
[
min

k
ψ−

Ok
(Ci),min

k
ψ+

Ok
(Ci)

]〉
. (57)

Step 2: Calculate the interval-valued intuitionistic fuzzy cosine similarity measures
CIVIFCS(

�

Pi,
�

Oki) for each option Ok (k = 1,2, . . . ,m) by the following formula:

CIVIFCS(
�

Pi,
�

Oki)

=
[ ηi

�
P
ηi

�
Ok

+ ψi
�
P
ψi

�
Ok

+ (1 − ηi
�
P

− ψi
�
P
)(1 − ηi

�
Ok

− ψi
�
Ok

)√
((ηi

�
P
)2 + (ψi

�
P
)2 + (1 − ηi

�
P

− ψi
�
P
)2)

√
((ηi

�
Ok

)2 + (ψi
�
Ok

)2 + (1 − ηi
�
Ok

− ψi
�
Ok

)2)

]
,

(58)

where

ηi
�
Ok

= u1η
−
Ok

(Ci) + u2η
+
Ok

(Ci), ν
i
�
Ok

= v1ψ
−
Ok

(Ci) + v2ψ
+
Ok

(Ci);

ηi
�
P

= u1η
−
P (Ci) + u2η

+
P (Ci), ν

i
�
P

= v1ψ
−
P (Ci) + v2ψ

+
P (Ci);

u1, u2, v1, v2 ∈ [0,1], u1 + u2 = 1 and v1 + v2 = 1.

Step 3: Utilize the OWIVIFCS measure

Cδ
OWIVIFCS(

�

P,
�

Ok) =
[

n∑
j=1

wj

(
CIVIFCS

( �

Pσ(j), (
�

Okσ(j))
))δ]1/δ

, (59)
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to aggregate the IVIFCS measures, CIVIFCS(
�

Pi,
�

Oki), into a collective value
Cδ

OWIVIFCS(
�

P,
�

Ok) of the alternative Ok , where

CIVIFCS
( �

Pσ(j−1), (
�

Okσ(j−1))
)
� CIVIFCS

( �

Pσ(j), (
�

Okσ(j))
)
, k = 1,2, . . . ,m. (60)

Step 4: Rank all the alternatives Ok (k = 1,2, . . . ,m) in accordance with the values of
Cδ

OWIVIFCS(
�

P,
�

Ok) in descending order and select the best one.

5.2. Numerical Example

In the following, we are going to consider a real-life numerical example to demonstrate
the applicability of the proposed method to multiple criteria decision making. To do so,
we consider below a contractor selection decision-making problem for road development.

Example 2. Chile is a South American country occupying a long, narrow strip of land
between the Andes to the east and the Pacific Ocean to the west. In Chile, tourism has
become one of the main sources of income for the people, especially living in its most ex-
treme areas. In 2018, a record of a total of 7 million international tourists visited Chile. The
online guestbook Lonely Planet listed ‘Chile’ as its number one tourist destination to visit
in the year 2018. Chile is typically divided into three geographic areas: (1) Continental
Chile (2) Insular Chile and (3) Chilean Antarctic Territory. Chile, with its unique natu-
ral features, attracts more and more tourists every year. The main attractions for tourists
are places of natural beauty situated in the extreme areas of the country including San
Pedro de Atacama, Valley of the Moon, Chungará Lake, Parinacota, Pomerape, Portillo,
Valle Nevado, Termas de Chillán, Conguillío National Park, Laguna San Rafael National
Park, Valparaíso. In order to promote and stimulate growth within Chile’s tourism sector,
the Chilean government wants to develop many road-building projects either to preserve
the roads which are already built or to undertake new roads. To do so, the Chilean gov-
ernment had issued the global tender in leading newspapers to select the contractor for
these projects and considered the following six criteria for it: (1) financial status (C1);
(2) organizational experience (C2); (3) past performance and knowledge (C3); (4) ability
to deal with unanticipated problems (C4); (5) completion time (C5); and (6) technical ca-
pability (C6). The five contractors (i.e. options), namely, (1) Sacyr Global Company (O1);
(2) Eurovia (O2); (3) Bechtel Group Inc. (O3); (4) Acciona Construction (O4); and (5)
Ecoroads (O5), bid for these projects. Here, the aim of the government is to recognize the
best contractor among Ok , (k = 1,2,3,4,5) who fulfills the desired goals of the project.
A committee of experts (appointed by government officials) evaluates these contractors
based on criteria Ci and provides their evaluation information in the form of following
interval-valued intuitionistic fuzzy sets:

O1 =
{〈

C1, [0.2,0.3],
[0.4,0.5]

〉
,

〈
C2, [0.6,0.7],

[0.2,0.3]
〉
,

〈
C3, [0.4,0.5],

[0.2,0.4]
〉
,

〈
C4, [0.7,0.8],

[0.1,0.2]
〉
,

〈
C5, [0.1,0.3],

[0.5,0.6]
〉
,

〈
C6, [0.5,0.7],

[0.2,0.3]
〉}

;
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O2 =
{〈

C1, [0.6,0.7],
[0.2,0.3]

〉
,

〈
C2, [0.5,0.6],

[0.1,0.3]
〉
,

〈
C3, [0.6,0.7],

[0.2,0.3]
〉
,

〈
C4, [0.6,0.7],

[0.1,0.2]
〉
,

〈
C5, [0.3,0.4],

[0.5,0.6]
〉
,

〈
C6, [0.4,0.7],

[0.1,0.2]
〉}

;

O3 =
{〈

C1, [0.4,0.5],
[0.3,0.4]

〉
,

〈
C2, [0.7,0.8],

[0.1,0.2]
〉
,

〈
C3, [0.5,0.6],

[0.3,0.4]
〉
,

〈
C4, [0.6,0.7],

[0.1,0.3]
〉
,

〈
C5, [0.4,0.5],

[0.3,0.4]
〉
,

〈
C6, [0.3,0.5],

[0.1,0.3]
〉}

;

O4 =
{〈

C1, [0.6,0.7],
[0.2,0.3]

〉
,

〈
C2, [0.5,0.7],

[0.1,0.3]
〉
,

〈
C3, [0.7,0.8],

[0.1,0.2]
〉
,

〈
C4, [0.3,0.4],

[0.1,0.2]
〉
,

〈
C5, [0.5,0.6],

[0.1,0.3]
〉
,

〈
C6, [0.7,0.8],

[0.1,0.2]
〉}

;

O5 =
{〈

C1, [0.5,0.6],
[0.3,0.4]

〉
,

〈
C2, [0.3,0.4],

[0.3,0.5]
〉
,

〈
C3, [0.6,0.7],

[0.1,0.3]
〉
,

〈
C4, [0.6,0.8],

[0.1,0.2]
〉
,

〈
C5, [0.6,0.7],

[0.2,0.3]
〉
,

〈
C6, [0.5,0.6],

[0.2,0.4]
〉}

.

The step-wise decision-making process as follows:

Step 1: We obtain the ideal solution P as:

P =

⎧⎪⎨
⎪⎩

〈C1, [0.6,0.7], [0.2,0.3]〉, 〈C2, [0.7,0.8], [0.1,0.2]〉,
〈C3, [0.7,0.8], [0.1,0.2]〉, 〈C4, [0.7,0.8], [0.1,0.2]〉,
〈C5, [0.6,0.7], [0.1,0.3]〉, 〈C6, [0.7,0.8], [0.1,0.2]〉

⎫⎪⎬
⎪⎭ .

Step 2: Using the formula defined in Eq. (58) to calculate CIVIFCS(
�

Pi,
�

Oki) for each option
Ok (k = 1,2, . . . ,5), taking different values of u1, u2, v1 and v2. We have the following
standard cases:

(i) Optimistic case: Let u1 = 0, u2 = 1, v1 = 1 and v2 = 0, we get Table 2.
(ii) Pessimistic case: Let u1 = 1, u2 = 0, v1 = 0 and v2 = 1, we get Table 3.

(iii) Neutral case: Let u1 = 0.5, u2 = 0.5, v1 = 0.5 and v2 = 0.5, Table 4 is obtained:

Step 3: We use the formula given in Eq. (59) to obtain the values of Cδ
OWIVIFCS(

�

P,
�

Ok)

in all three cases, by taking δ = 0.2, δ = 0.5, δ = 1, δ = 2, δ = 5, δ = 10, respectively.
Here, it is possible to consider different methods based on the OWIVIFCS measure for
the selection of the contractor. In this example, we consider IVIFMAXCS, IVIFMINCS,
IVIFNORCS, IVIFMEDCS, IVIFOLMCS, IVIFWINCS measures. We get the following
Tables 5, 6, 7:

(i) Optimistic case (see Table 6).
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Table 2
Values of CIVIFCS(

�
Pi ,

�
Oki) for different options Ok (k = 1,2, . . . ,m).

CIVIFCS(
�
P1,

�
O11) CIVIFCS(

�
P2,

�
O12) CIVIFCS(

�
P3,

�
O13) CIVIFCS(

�
P4,

�
O14) CIVIFCS(

�
P5,

�
O15) CIVIFCS(

�
P6,

�
O16)

0.7468 0.9883 0.8986 1.0000 0.6623 0.9883
CIVIFCS(

�
P1,

�
O21) CIVIFCS(

�
P2,

�
O22) CIVIFCS(

�
P3,

�
O23) CIVIFCS(

�
P4,

�
O24) CIVIFCS(

�
P5,

�
O25) CIVIFCS(

�
P6,

�
O26)

1.0000 0.9437 0.9883 0.9910 0.7349 0.9883
CIVIFCS(

�
P1,

�
O31) CIVIFCS(

�
P2,

�
O32) CIVIFCS(

�
P3,

�
O33) CIVIFCS(

�
P4,

�
O34) CIVIFCS(

�
P5,

�
O35) CIVIFCS(

�
P6,

�
O36)

0.9492 0.9437 0.9437 0.9883 0.9272 0.8547
CIVIFCS(

�
P1,

�
O41) CIVIFCS(

�
P2,

�
O42) CIVIFCS(

�
P3,

�
O43) CIVIFCS(

�
P4,

�
O44) CIVIFCS(

�
P5,

�
O45) CIVIFCS(

�
P6,

�
O46)

1.0000 0.9883 1.0000 0.7218 0.9832 1.0000
CIVIFCS(

�
P1,

�
O51) CIVIFCS(

�
P2,

�
O52) CIVIFCS(

�
P3,

�
O53) CIVIFCS(

�
P4,

�
O54) CIVIFCS(

�
P5,

�
O55) CIVIFCS(

�
P6,

�
O56)

0.9832 0.8022 0.9883 1.0000 0.9815 0.9650

Table 3
Values of CIVIFCS(

�
Pi ,

�
Oki) for different options Ok (k = 1,2, . . . ,m).

CIVIFCS(
�
P1,

�
O11) CIVIFCS(

�
P2,

�
O12) CIVIFCS(

�
P3,

�
O13) CIVIFCS(

�
P4,

�
O14) CIVIFCS(

�
P5,

�
O15) CIVIFCS(

�
P6,

�
O16)

0.7175 0.9832 0.8619 1.0000 0.5870 0.9492
CIVIFCS(

�
P1,

�
O21) CIVIFCS(

�
P2,

�
O22) CIVIFCS(

�
P3,

�
O23) CIVIFCS(

�
P4,

�
O24) CIVIFCS(

�
P5,

�
O25) CIVIFCS(

�
P6,

�
O26)

1.0000 0.9492 0.9832 0.9487 0.8043 0.8165
CIVIFCS(

�
P1,

�
O31) CIVIFCS(

�
P2,

�
O32) CIVIFCS(

�
P3,

�
O33) CIVIFCS(

�
P4,

�
O34) CIVIFCS(

�
P5,

�
O35) CIVIFCS(

�
P6,

�
O36)

0.9338 1.0000 0.9239 0.9832 0.9338 0.7235
CIVIFCS(

�
P1,

�
O41) CIVIFCS(

�
P2,

�
O42) CIVIFCS(

�
P3,

�
O43) CIVIFCS(

�
P4,

�
O44) CIVIFCS(

�
P5,

�
O45) CIVIFCS(

�
P6,

�
O46)

1.0000 0.9492 1.0000 0.6623 0.9806 1.0000
CIVIFCS(

�
P1,

�
O51) CIVIFCS(

�
P2,

�
O52) CIVIFCS(

�
P3,

�
O53) CIVIFCS(

�
P4,

�
O54) CIVIFCS(

�
P5,

�
O55) CIVIFCS(

�
P6,

�
O56)

0.9783 0.7285 0.9832 0.9847 1.0000 0.9239

Table 4
Values of CIVIFCS(

�
Pi ,

�
Oki) for different options Ok (k = 1,2, . . . ,m).

CIVIFCS(
�
P1,

�
O11) CIVIFCS(

�
P2,

�
O12) CIVIFCS(

�
P3,

�
O13) CIVIFCS(

�
P4,

�
O14) CIVIFCS(

�
P5,

�
O15) CIVIFCS(

�
P6,

�
O16)

0.7276 0.9858 0.8867 1.0000 0.6261 0.9766
CIVIFCS(

�
P1,

�
O21) CIVIFCS(

�
P2,

�
O22) CIVIFCS(

�
P3,

�
O23) CIVIFCS(

�
P4,

�
O24) CIVIFCS(

�
P5,

�
O25) CIVIFCS(

�
P6,

�
O26)

1.0000 0.9492 0.9858 0.9866 0.7674 0.9358
CIVIFCS(

�
P1,

�
O31) CIVIFCS(

�
P2,

�
O32) CIVIFCS(

�
P3,

�
O33) CIVIFCS(

�
P4,

�
O34) CIVIFCS(

�
P5,

�
O35) CIVIFCS(

�
P6,

�
O36)

0.9410 1.0000 0.9337 0.9913 0.9329 0.7995
CIVIFCS(

�
P1,

�
O41) CIVIFCS(

�
P2,

�
O42) CIVIFCS(

�
P3,

�
O43) CIVIFCS(

�
P4,

�
O44) CIVIFCS(

�
P5,

�
O45) CIVIFCS(

�
P6,

�
O46)

1.0000 0.9772 1.0000 0.6910 0.9815 1.0000
CIVIFCS(

�
P1,

�
O51) CIVIFCS(

�
P2,

�
O52) CIVIFCS(

�
P3,

�
O53) CIVIFCS(

�
P4,

�
O54) CIVIFCS(

�
P5,

�
O55) CIVIFCS(

�
P6,

�
O56)

0.9805 0.7670 0.9913 0.9970 0.9949 0.9509

(ii) Pessimistic case (see Table 7).
(iii) Neutral case (see Table 8).

Step 4: Rank all the options Ok (k = 1,2, . . . ,m) in accordance with the values of
Cδ

OWIVIFCS(
�

P,
�

Ok) in descending order. The results are presented in Table 8.
As we can see, depending on the cosine similarity measure used, the ranking order

of the available options is different. Therefore, depending on the similarity measure em-
ployed, the results may lead to different decisions. In this problem, the IVIFMAXCS is the
most optimistic cosine similarity measure because it considers only the highest similarity
value. On the other hand, IVIFMINCS is the most pessimistic one. The IVIFNORCS is a
neutral measure because it gives the same weights to all the characteristics.
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Table 5
Values of Cδ

OWIVIFCS(
�
P,

�
Ok) under different similarity measures.

IVIFMAXCS IVIFMINCS IVIFNORCS IVIFMEDCS IVIFOLMCS IVIFWINCS

δ = 0.2 Cδ
OWIVIFCS(

�
P,

�
O1) 1.0000 0.6623 0.8723 0.9883 0.9010 0.9010

Cδ
OWIVIFCS(

�
P,

�
O2) 1.0000 0.7349 0.9364 0.9883 0.9770 0.9770

Cδ
OWIVIFCS(

�
P,

�
O3) 1.0000 0.8547 0.9430 0.9492 0.9521 0.9521

Cδ
OWIVIFCS(

�
P,

�
O4) 1.0000 0.7218 0.9439 1.0000 0.9929 0.9929

Cδ
OWIVIFCS(

�
P,

�
O5) 1.0000 0.8022 0.9512 0.9832 0.9795 0.9795

Cδ
OWIVIFCS(

�
P,

�
O1) 1.0000 0.6623 0.8755 0.9883 0.9027 0.9027

δ = 0.5 Cδ
OWIVIFCS(

�
P,

�
O2) 1.0000 0.7349 0.9380 0.9883 0.9771 0.9771

Cδ
OWIVIFCS(

�
P,

�
O3) 1.0000 0.8547 0.9434 0.9492 0.9522 0.9522

Cδ
OWIVIFCS(

�
P,

�
O4) 1.0000 0.7218 0.9458 1.0000 0.9929 0.9929

Cδ
OWIVIFCS(

�
P,

�
O5) 1.0000 0.8022 0.9521 0.9832 0.9795 0.9795

Cδ
OWIVIFCS(

�
P,

�
O1) 1.0000 0.6623 0.8807 0.9883 0.9055 0.9055

δ = 1 Cδ
OWIVIFCS(

�
P,

�
O2) 1.0000 0.7349 0.9406 0.9883 0.9771 0.9771

Cδ
OWIVIFCS(

�
P,

�
O3) 1.0000 0.8547 0.9440 0.9492 0.9524 0.9524

Cδ
OWIVIFCS(

�
P,

�
O4) 1.0000 0.7218 0.9489 1.0000 0.9929 0.9929

Cδ
OWIVIFCS(

�
P,

�
O5) 1.0000 0.8022 0.9534 0.9832 0.9795 0.9795

Cδ
OWIVIFCS(

�
P,

�
O1) 1.0000 0.6623 0.8904 0.9883 0.9109 0.9109

δ = 2 Cδ
OWIVIFCS(

�
P,

�
O2) 1.0000 0.7349 0.9452 0.9883 0.9773 0.9773

Cδ
OWIVIFCS(

�
P,

�
O3) 1.0000 0.8547 0.9452 0.9492 0.9526 0.9526

Cδ
OWIVIFCS(

�
P,

�
O4) 1.0000 0.7218 0.9543 1.0000 0.9929 0.9929

Cδ
OWIVIFCS(

�
P,

�
O5) 1.0000 0.8022 0.9558 0.9832 0.9795 0.9795

Cδ
OWIVIFCS(

�
P,

�
O1) 1.0000 0.6623 0.9142 0.9883 0.9247 0.9247

δ = 5 Cδ
OWIVIFCS(

�
P,

�
O2) 1.0000 0.7349 0.9560 0.9883 0.9779 0.9779

Cδ
OWIVIFCS(

�
P,

�
O3) 1.0000 0.8547 0.9486 0.9492 0.9535 0.9535

Cδ
OWIVIFCS(

�
P,

�
O4) 1.0000 0.7218 0.9664 1.0000 0.9930 0.9930

Cδ
OWIVIFCS(

�
P,

�
O5) 1.0000 0.8022 0.9619 0.9832 0.9797 0.9797

Cδ
OWIVIFCS(

�
P,

�
O1) 1.0000 0.6623 0.9388 0.9883 0.9409 0.9409

δ = 10 Cδ
OWIVIFCS(

�
P,

�
O2) 1.0000 0.7349 0.9666 0.9883 0.9788 0.9788

Cδ
OWIVIFCS(

�
P,

�
O3) 1.0000 0.8547 0.9536 0.9492 0.9549 0.9549

Cδ
OWIVIFCS(

�
P,

�
O4) 1.0000 0.7218 0.9774 1.0000 0.9931 0.9931

Cδ
OWIVIFCS(

�
P,

�
O5) 1.0000 0.8022 0.9689 0.9832 0.9798 0.9798

From Table 8, it is also interesting to note that the ranking orders may vary accord-
ing to the attitude of the decision-makers towards the considered problem. It is a natural
phenomenon in real-world decision-making problems. Because an optimistic decision-
maker always chooses the upper values of the membership intervals and lower values of
the non-membership intervals in the measuring process, whereas a pessimistic decision-
maker considers the lower value of the membership interval and the upper value of the
non-membership interval. A neutral decision-maker always concentrates on the central
values of both intervals.
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Table 6
Values of Cδ

OWIVIFCS(
�
P,

�
Ok) under different similarity measures.

IVIFMAXCS IVIFMINCS IVIFNORCS IVIFMEDCS IVIFOLMCS IVIFWINCS

δ = 0.2 Cδ
OWIVIFCS(

�
P,

�
O1) 1.0000 0.5870 0.8380 0.9492 0.8729 0.8729

Cδ
OWIVIFCS(

�
P,

�
O2) 1.0000 0.8043 0.9200 0.9832 0.9313 0.9313

Cδ
OWIVIFCS(

�
P,

�
O3) 1.0000 0.7235 0.9124 0.9338 0.9435 0.9435

Cδ
OWIVIFCS(

�
P,

�
O4) 1.0000 0.6623 0.9246 1.0000 0.9823 0.9823

Cδ
OWIVIFCS(

�
P,

�
O5) 1.0000 0.7285 0.9288 0.9832 0.9673 0.9673

Cδ
OWIVIFCS(

�
P,

�
O1) 1.0000 0.5870 0.8426 0.9492 0.8748 0.8748

δ = 0.5 Cδ
OWIVIFCS(

�
P,

�
O2) 1.0000 0.8043 0.9211 0.9832 0.9321 0.9321

Cδ
OWIVIFCS(

�
P,

�
O3) 1.0000 0.7235 0.9139 0.9338 0.9435 0.9435

Cδ
OWIVIFCS(

�
P,

�
O4) 1.0000 0.6623 0.9275 1.0000 0.9823 0.9823

Cδ
OWIVIFCS(

�
P,

�
O5) 1.0000 0.7285 0.9305 0.9832 0.9674 0.9674

Cδ
OWIVIFCS(

�
P,

�
O1) 1.0000 0.5870 0.8498 0.9492 0.8780 0.8780

δ = 1 Cδ
OWIVIFCS(

�
P,

�
O2) 1.0000 0.8043 0.9230 0.9832 0.9334 0.9334

Cδ
OWIVIFCS(

�
P,

�
O3) 1.0000 0.7235 0.9164 0.9338 0.9437 0.9437

Cδ
OWIVIFCS(

�
P,

�
O4) 1.0000 0.6623 0.9320 1.0000 0.9825 0.9825

Cδ
OWIVIFCS(

�
P,

�
O5) 1.0000 0.7285 0.9331 0.9832 0.9675 0.9675

Cδ
OWIVIFCS(

�
P,

�
O1) 1.0000 0.5870 0.8631 0.9492 0.8839 0.8839

δ = 2 Cδ
OWIVIFCS(

�
P,

�
O2) 1.0000 0.8043 0.9265 0.9832 0.9539 0.9359

Cδ
OWIVIFCS(

�
P,

�
O3) 1.0000 0.7235 0.9208 0.9338 0.9440 0.9440

Cδ
OWIVIFCS(

�
P,

�
O4) 1.0000 0.6623 0.9400 1.0000 0.9827 0.9827

Cδ
OWIVIFCS(

�
P,

�
O5) 1.0000 0.7285 0.9379 0.9832 0.9679 0.9679

Cδ
OWIVIFCS(

�
P,

�
O1) 1.0000 0.5870 0.8939 0.9492 0.8995 0.8995

δ = 5 Cδ
OWIVIFCS(

�
P,

�
O2) 1.0000 0.8043 0.9362 0.9832 0.9427 0.9427

Cδ
OWIVIFCS(

�
P,

�
O3) 1.0000 0.7235 0.9316 0.9338 0.9448 0.9448

Cδ
OWIVIFCS(

�
P,

�
O4) 1.0000 0.6623 0.9565 1.0000 0.9833 0.9833

Cδ
OWIVIFCS(

�
P,

�
O5) 1.0000 0.7285 0.9490 0.9832 0.9688 0.9688

Cδ
OWIVIFCS(

�
P,

�
O1) 1.0000 0.5870 0.9234 0.9492 0.9180 0.9180

δ = 10 Cδ
OWIVIFCS(

�
P,

�
O2) 1.0000 0.8043 0.9486 0.9832 0.9513 0.9513

Cδ
OWIVIFCS(

�
P,

�
O3) 1.0000 0.7235 0.9432 0.9338 0.9464 0.9464

Cδ
OWIVIFCS(

�
P,

�
O4) 1.0000 0.6623 0.9702 1.0000 0.9843 0.9843

Cδ
OWIVIFCS(

�
P,

�
O5) 1.0000 0.7285 0.9603 0.9832 0.9703 0.9703

Further, in order to validate the performance of the developed different cosine similar-
ity measures, a comparative study has been conducted and analysed in detail. Based on
the normal distribution method (Xu, 2005), we obtain the optimal ordered weight vector
w = (0.1400,0.1710,0.1890,0.1890,0.1710,0.1400) associated with the criteria. Then,
the similarity values and the corresponding ranking order of the options are summarized
in Table 9.

From Table 9, it has been observed that the option O5 or option O4 is the best al-
ternative in most cases, whereas the option O1 is the worst one. It is also worth to note
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Table 7
Values of Cδ

OWIVIFCS(
�
P,

�
Ok) under different similarity measures.

IVIFMAXCS IVIFMINCS IVIFNORCS IVIFMEDCS IVIFOLMCS IVIFWINCS

δ = 0.2 Cδ
OWIVIFCS(

�
P,

�
O1) 1.0000 0.6261 0.8575 0.9766 0.8898 0.8898

Cδ
OWIVIFCS(

�
P,

�
O2) 1.0000 0.7674 0.9346 0.9866 0.9641 0.9641

Cδ
OWIVIFCS(

�
P,

�
O3) 1.0000 0.7995 0.9311 0.9410 0.9495 0.9495

Cδ
OWIVIFCS(

�
P,

�
O4) 1.0000 0.6910 0.9454 1.0000 0.9896 0.9896

Cδ
OWIVIFCS(

�
P,

�
O5) 0.9970 0.7670 0.9438 0.9913 0.9793 0.9793

Cδ
OWIVIFCS(

�
P,

�
O1) 1.0000 0.6261 0.8614 0.9766 0.8918 0.8918

δ = 0.5 Cδ
OWIVIFCS(

�
P,

�
O2) 1.0000 0.7674 0.9357 0.9866 0.9642 0.9642

Cδ
OWIVIFCS(

�
P,

�
O3) 1.0000 0.7995 0.9319 0.9410 0.9496 0.9496

Cδ
OWIVIFCS(

�
P,

�
O4) 1.0000 0.6910 0.9378 1.0000 0.9896 0.9896

Cδ
OWIVIFCS(

�
P,

�
O5) 0.9970 0.7670 0.9450 0.9913 0.9793 0.9793

Cδ
OWIVIFCS(

�
P,

�
O1) 1.0000 0.6261 0.8676 0.9766 0.8949 0.8949

δ = 1 Cδ
OWIVIFCS(

�
P,

�
O2) 1.0000 0.7674 0.9375 0.9866 0.9643 0.9643

Cδ
OWIVIFCS(

�
P,

�
O3) 1.0000 0.7995 0.9331 0.9410 0.9497 0.9497

Cδ
OWIVIFCS(

�
P,

�
O4) 1.0000 0.6910 0.9416 1.0000 0.9897 0.9897

Cδ
OWIVIFCS(

�
P,

�
O5) 0.9970 0.7670 0.9469 0.9913 0.9794 0.9794

Cδ
OWIVIFCS(

�
P,

�
O1) 1.0000 0.6261 0.8787 0.9766 0.9009 0.9009

δ = 2 Cδ
OWIVIFCS(

�
P,

�
O2) 1.0000 0.7674 0.9408 0.9866 0.9646 0.9646

Cδ
OWIVIFCS(

�
P,

�
O3) 1.0000 0.7995 0.9354 0.9410 0.9500 0.9500

Cδ
OWIVIFCS(

�
P,

�
O4) 1.0000 0.6910 0.9483 1.0000 0.9897 0.9897

Cδ
OWIVIFCS(

�
P,

�
O5) 0.9970 0.7670 0.9505 0.9913 0.9796 0.9796

Cδ
OWIVIFCS(

�
P,

�
O1) 1.0000 0.6261 0.9067 0.9766 0.9161 0.9161

δ = 5 Cδ
OWIVIFCS(

�
P,

�
O2) 1.0000 0.7674 0.9491 0.9866 0.9654 0.9654

Cδ
OWIVIFCS(

�
P,

�
O3) 1.0000 0.7995 0.9451 0.9410 0.9510 0.9510

Cδ
OWIVIFCS(

�
P,

�
O4) 1.0000 0.6910 0.9626 1.0000 0.9899 0.9899

Cδ
OWIVIFCS(

�
P,

�
O5) 0.9970 0.7670 0.9590 0.9913 0.9800 0.9800

Cδ
OWIVIFCS(

�
P,

�
O1) 1.0000 0.6261 0.9336 0.9766 0.9334 0.9334

δ = 10 Cδ
OWIVIFCS(

�
P,

�
O2) 1.0000 0.7674 0.9583 0.9866 0.9666 0.9666

Cδ
OWIVIFCS(

�
P,

�
O3) 1.0000 0.7995 0.9494 0.9410 0.9527 0.9527

Cδ
OWIVIFCS(

�
P,

�
O4) 1.0000 0.6910 0.9748 1.0000 0.9902 0.9902

Cδ
OWIVIFCS(

�
P,

�
O5) 0.9970 0.7670 0.9680 0.9913 0.9807 0.9807

that when tan−COWIVIFCS is used to calculate the aggregated similarity value for differ-
ent options, then the obtained ranking order coincides with the ranking order attained by
IVIFMAXCS in all three cases.

6. Conclusions

In this paper, we have suggested a new and flexible method for measuring the similarity
between interval-valued intuitionistic fuzzy sets. Using the idea of weighted reduced in-
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Table 8
Ranking of options based on different similarity measures.

Optimistic case

δ = 0.2 IVIFMAXCS O1 = O2 = O3 = O4 = O5 δ = 0.5 IVIFMAXCS O1 = O2 = O3 = O4 = O5

IVIFMINCS O3 � O5 � O2 � O4 � O1 IVIFMINCS O3 � O5 � O2 � O4 � O1

IVIFNORCS O5 � O4 � O3 � O2 � O1 IVIFNORCS O5 � O4 � O3 � O2 � O1

IVIFMEDCS O4 � O2 = O1 � O5 � O3 IVIFMEDCS O4 � O2 = O1 � O5 � O3

IVIFOLMCS O4 � O5 � O2 � O3 � O1 IVIFOLMCS O4 � O5 � O2 � O3 � O1

IVIFWINCS O4 � O5 � O2 � O3 � O1 IVIFWINCS O4 � O5 � O2 � O3 � O1

δ = 1 IVIFMAXCS O1 = O2 = O3 = O4 = O5 δ = 2 IVIFMAXCS O1 = O2 = O3 = O4 = O5

IVIFMINCS O3 � O5 � O2 � O4 � O1 IVIFMINCS O3 � O5 � O2 � O4 � O1

IVIFNORCS O5 � O4 � O3 � O2 � O1 IVIFNORCS O5 � O4 � O3 = O2 � O1

IVIFMEDCS O4 � O2 = O1 � O5 � O3 IVIFMEDCS O4 � O2 = O1 � O5 � O3

IVIFOLMCS O4 � O5 � O2 � O3 � O1 IVIFOLMCS O4 � O5 � O2 � O3 � O1

IVIFWINCS O4 � O2 � O5 � O1 � O3 IVIFWINCS O4 � O5 � O2 � O3 � O1

δ = 5 IVIFMAXCS O1 = O2 = O3 = O4 = O5 δ = 10 IVIFMAXCS O1 = O2 = O3 = O4 = O5

IVIFMINCS O3 � O5 � O2 � O4 � O1 IVIFMINCS O3 � O5 � O2 � O4 � O1

IVIFNORCS O4 � O5 � O2 � O3 � O1 IVIFNORCS O4 � O5 � O2 � O3 � O1

IVIFMEDCS O4 � O2 = O1 � O5 � O3 IVIFMEDCS O4 � O2 = O1 � O5 � O3

IVIFOLMCS O4 � O5 � O2 � O3 � O1 IVIFOLMCS O4 � O5 � O2 � O3 � O1

IVIFWINCS O4 � O5 � O2 � O3 � O1 IVIFWINCS O4 � O5 � O2 � O3 � O1

Pessimistic case

δ = 0.2 IVIFMAXCS O1 = O2 = O3 = O4 = O5 δ = 0.5 IVIFMAXCS O1 = O2 = O3 = O4 = O5

IVIFMINCS O2 � O5 � O3 � O4 � O1 IVIFMINCS O2 � O5 � O3 � O4 � O1

IVIFNORCS O5 � O4 � O2 � O3 � O1 IVIFNORCS O5 � O4 � O2 � O3 � O1

IVIFMEDCS O4 � O5 = O2 � O1 � O3 IVIFMEDCS O4 � O5 = O2 � O1 � O3

IVIFOLMCS O4 � O5 � O3 � O2 � O1 IVIFOLMCS O4 � O5 � O3 � O2 � O1

IVIFWINCS O4 � O5 � O3 � O2 � O1 IVIFWINCS O4 � O5 � O3 � O2 � O1

δ = 1 IVIFMAXCS O1 = O2 = O3 = O4 = O5 δ = 2 IVIFMAXCS O1 = O2 = O3 = O4 = O5

IVIFMINCS O2 � O5 � O3 � O4 � O1 IVIFMINCS O2 � O5 � O3 � O4 � O1

IVIFNORCS O5 � O4 � O2 � O3 � O1 IVIFNORCS O4 � O5 � O2 � O3 � O1

IVIFMEDCS O4 � O5 = O2 � O1 � O3 IVIFMEDCS O4 � O5 = O2 � O1 � O3

IVIFOLMCS O4 � O5 � O3 � O2 � O1 IVIFOLMCS O4 � O5 � O2 � O3 � O1

IVIFWINCS O4 � O5 � O3 � O2 � O1 IVIFWINCS O4 � O5 � O3 � O2 � O1

δ = 5 IVIFMAXCS O1 = O2 = O3 = O4 = O5 δ = 10 IVIFMAXCS O1 = O2 = O3 = O4 = O5

IVIFMINCS O2 � O5 � O3 � O4 � O1 IVIFMINCS O2 � O5 � O3 � O4 � O1

IVIFNORCS O5 � O4 � O2 � O3 � O1 IVIFNORCS O4 � O2 � O2 � O3 � O1

IVIFMEDCS O4 � O5 = O2 � O1 � O3 IVIFMEDCS O4 � O5 = O2 � O1 � O3

IVIFOLMCS O4 � O5 � O3 � O2 � O1 IVIFOLMCS O4 � O5 � O2 � O3 � O1

IVIFWINCS O4 � O5 � O3 � O2 � O1 IVIFWINCS O4 � O5 � O2 � O3 � O1

(continued on next page)
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Table 8
(continued)

Neutral case

δ = 0.2 IVIFMAXCS O1 = O2 = O3 = O4 � O5 δ = 0.5 IVIFMAXCS O1 = O2 = O3 = O4 � O5
IVIFMINCS O3 � O2 � O5 � O4 � O1 IVIFMINCS O3 � O2 � O5 � O4 � O1
IVIFNORCS O4 � O5 � O2 � O3 � O1 IVIFNORCS O5 � O4 � O2 � O3 � O1
IVIFMEDCS O4 � O5 � O2 � O1 � O3 IVIFMEDCS O4 � O5 � O2 � O1 � O3
IVIFOLMCS O4 � O5 � O2 � O3 � O1 IVIFOLMCS O4 � O5 � O2 � O3 � O1
IVIFWINCS O4 � O5 � O2 � O3 � O1 IVIFWINCS O4 � O5 � O2 � O3 � O1

δ = 1 IVIFMAXCS O1 = O2 = O3 = O4 � O5 δ = 2 IVIFMAXCS O1 = O2 = O3 = O4 � O5
IVIFMINCS O3 � O2 � O5 � O4 � O1 IVIFMINCS O3 � O2 � O5 � O4 � O1
IVIFNORCS O5 � O4 � O2 � O3 � O1 IVIFNORCS O5 � O4 � O2 � O3 � O1
IVIFMEDCS O4 � O5 � O2 � O1 � O3 IVIFMEDCS O4 � O5 � O2 � O1 � O3
IVIFOLMCS O4 � O5 � O2 � O3 � O1 IVIFOLMCS O4 � O5 � O2 � O3 � O1
IVIFWINCS O4 � O5 � O2 � O3 � O1 IVIFWINCS O4 � O5 � O2 � O3 � O1

δ = 5 IVIFMAXCS O1 = O2 = O3 = O4 � O5 δ = 10 IVIFMAXCS O1 = O2 = O3 = O4 � O5
IVIFMINCS O3 � O2 � O5 � O4 � O1 IVIFMINCS O3 � O2 � O5 � O4 � O1
IVIFNORCS O5 � O4 � O2 � O3 � O1 IVIFNORCS O5 � O4 � O2 � O3 � O1
IVIFMEDCS O4 � O5 � O2 � O1 � O3 IVIFMEDCS O4 � O5 � O2 � O1 � O3
IVIFOLMCS O4 � O5 � O2 � O3 � O1 IVIFOLMCS O4 � O5 � O2 � O3 � O1
IVIFWINCS O4 � O5 � O2 � O3 � O1 IVIFWINCS O4 � O5 � O2 � O3 � O1

tuitionistic fuzzy sets, the work has developed a new interval-valued intuitionistic fuzzy
cosine similarity measure and proved some of its basic and essential properties. Its fun-
damental advantage is the ability to combine the subjective knowledge and attitudinal
character of the decision-maker in measuring the process of similarity degree. Further,
we have defined the ordered weighted interval-valued intuitionistic fuzzy cosine similar-
ity measure. It is a similarity measure that uses the notion of GOWA in the normalization
process of interval-valued intuitionistic fuzzy cosine similarity based on reduced intuition-
istic fuzzy sets. This approach alleviates the influence of unduly large (or small) similarity
values on aggregation results by assigning them low (or high) weights. Moreover, it also
provides a parameterized family of cosine similarity measures from minimum cosine sim-
ilarity to maximum cosine similarity between two interval-valued intuitionistic fuzzy sets.
We have studied some of its main properties and particular cases.

The use of quasi-arithmetic means under this framework has also been studied to ob-
tain the quasi-ordered weighted interval-valued intuitionistic fuzzy cosine similarity mea-
sure. This cosine similarity measure includes a wide range of particular cases, includ-
ing the OWIVIFCS measure, the trigonometric-OWIVIFCS measures, the exponential-
OWIVIFCS measure, and the radical-OWIVIFCS measure.

The newly developed interval-valued intuitionistic cosine similarity measures can be
applied in different real-world decision problems. This paper has focused on multiple cri-
teria decision-making problems. We have developed a decision-making method based on
OWIVIFCS to solve real-world decision problems with interval-valued intuitionistic fuzzy
information. Finally, a numerical example has been provided to illustrate the multiple cri-
teria decision-making process. We have seen that this approach provides more informa-
tion for decision making because it can consider a wide range of situations depending on
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Table 9
Ranking of options based on different cosine similarity measures under IVIF environment.

O1 O2 O3 O4 O5 Ranking order

Optimistic OWIVIFACS 0.8860 0.9468 0.9451 0.9560 0.9577 O5 � O4 � O2 � O3 � O1
OWQIVIFCS 0.8950 0.9509 0.9462 0.9606 0.9598 O4 � O5 � O2 � O3 � O1
OWCIVIFCS 0.9031 0.9544 0.9472 0.9646 0.9617 O4 � O5 � O2 � O3 � O1
OWIVIFGCS 0.8763 0.9422 0.9441 0.9505 0.9553 O5 � O4 � O3 � O2 � O1
sin−COWIVIFCS 0.8310 0.8983 0.9296 0.8963 0.9239 O3 � O5 � O2 � O4 � O1
cos−COWIVIFCS 0.8889 0.9479 0.9453 0.9572 0.9581 O5 � O4 � O3 � O2 � O1
tan−COWIVIFCS 1.0000 1.0000 1.0000 1.0000 1.0000 O1 = O2 = O3 = O4 = O5
exp−COWIVIFCS 0.8915 0.9494 0.9458 0.9589 0.9590 O5 � O4 � O2 � O3 � O1
Rad − COWIVIFCS 0.8566 0.9324 0.9421 0.9385 0.9507 O5 � O3 � O4 � O2 � O1
OWIVIFCS 0.8553 0.9258 0.9204 0.9404 0.9391 O4 � O5 � O2 � O3 � O1

Pessimistic OWQIVIFCS 0.8673 0.9292 0.9242 0.9472 0.9432 O4 � O5 � O2 � O3 � O1
OWQIVIFCS 0.8779 0.9323 0.9276 0.9529 0.9468 O4 � O5 � O2 � O3 � O1
OWIVIFGCS 0.8418 0.9223 0.9161 0.9321 0.9344 O5 � O4 � O2 � O3 � O1
sin−COWIVIFCS 0.7976 0.8921 0.8848 0.8729 0.8934 O5 � O2 � O3 � O4 � O1
cos−COWIVIFCS 0.8599 0.9265 0.9215 0.9425 0.9402 O4 � O5 � O2 � O3 � O1
tan−COWIVIFCS 1.0000 1.0000 1.0000 1.0000 1.0000 O1 = O2 = O3 = O4 = O5
exp−COWIVIFCS 0.8623 0.9280 0.9228 0.9446 0.9417 O4 � O5 � O2 � O3 � O1
Rad − COWIVIFCS 0.8128 0.9158 0.9071 0.9128 0.9244 O5 � O2 � O4 � O3 � O1
OWIVIFCS 0.8734 0.9419 0.9353 0.9493 0.9524 O5 � O4 � O2 � O3 � O1

Neutral OWQIVIFCS 0.8840 0.9448 0.9373 0.9551 0.9554 O5 � O4 � O2 � O3 � O1
OWQIVIFCS 0.8934 0.9474 0.9391 0.9599 0.9581 O4 � O5 � O2 � O3 � O1
OWIVIFGCS 0.8616 0.9387 0.9332 0.9425 0.9489 O5 � O4 � O2 � O3 � O1
sin−COWIVIFCS 0.8151 0.9064 0.9113 0.8847 0.9104 O5 � O4 � O3 � O2 � O1
cos−COWIVIFCS 0.8771 0.9426 0.9357 0.9510 0.9531 O5 � O4 � O2 � O3 � O1
tan−COWIVIFCS 1.0000 1.0000 1.0000 1.0000 0.9914 O1 = O2 = O3 = O4 � O5
exp−COWIVIFCS 0.8797 0.9437 0.9366 0.9530 0.9543 O5 � O4 � O2 � O3 � O1
Rad − COWIVIFCS 0.8372 0.9322 0.9291 0.9269 0.9419 O5 � O2 � O3 � O4 � O1

the interest of decision-makers. The proposed approach also has some limitations. The
developed interval-valued intuitionistic fuzzy cosine similarity measures can be utilized
in situations where the degrees of membership and non-membership values take inter-
val numerical values. However, in many real-life situations, linguistic variables are used
to represent qualitative information. These similarity measures cannot be utilized under
the linguistic environment. So, we need a further study of these similarity measures with
linguistic interval-valued intuitionistic fuzzy information.

In future research, we expect to develop further extensions by using more complex for-
mulations, including the use of inducing variables, probabilities, moving averages, power
averages, Bonferroni means, etc. Other important issues to consider are consensus (Chi-
clana et al., 2013; del Moral et al., 2018), large-scale decision-making (Dong et al., 2018;
Zhang et al., 2018), social networks decision making (Ureña et al., 2019). As we know,
consensus measures play a very vital role in group decision-making problems. A high
level of consensus among experts is needed before reaching a solution. We will also focus
on the development of different consensus measures by utilizing proposed cosine similar-
ity measures and study their applications in large-scale decision-making, social networks
decision-making problems under different uncertain environments.
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