
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE INGENIERÍA MATEMÁTICA

DETECCIÓN DE CLASES DE GRAFOS EN EL MODELO INTERACTIVO DE
VERIFICACIÓN DISTRIBUIDA.

TESIS PARA OPTAR AL GRADO DE
MAGÍSTER EN CIENCIAS DE LA INGENIERÍA, MENCIÓN MATEMÁTICAS

APLICADAS
MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL MATEMÁTICO

DIEGO NICOLÁS RAMÍREZ ROMERO

PROFESOR GUÍA:
IVÁN RAPAPORT ZIMERMANN

PROFESOR GUÍA 2:
PEDRO MONTEALEGRE BARBA

MIEMBROS DE LA COMISIÓN:
MARCOS KIWI KRAUSKOPF

MARTÍN MATAMALA VÁSQUEZ

Este trabajo ha sido parcialmente financiado por Proyecto Fondecyt 1170021 y CMM
ANID PIA AFB170001

SANTIAGO DE CHILE
2020

RESUMEN DE LA MEMORIA, FECHA: 22/10/2020

DETECCIÓN DE CLASES DE GRAFOS EN EL MODELO INTERACTIVO DE
VERIFICACIÓN DISTRIBUIDA.

En este trabajo se estudia el modelo interactivo de verificación distribuida. En este
modelo hay dos entidades: un probador con poder ilimitado, identificado como Merlín,
y un verificador distribuido identificado como Arturo, que corresponde a una red de
comunicación representada por un grafo conexo G. Cada nodo del grafo interactúa con
Merlín en una serie de interacciones en las que lanza monedas y recibe una respuesta de
éste que puede depender de la topología de la red, así como de las interacciones pasadas.
El objetivo de estas interacciones es convencer con buena probabilidad a los nodos de que
la topología de la red satisface algún predicado. Luego del último mensaje enviado por
Merlín, sigue una ronda de verificación entre cada nodo y sus vecinos. Se dirá que las
interacciones son de tipo Arturo-Merlín (dAM) o Merlín-Arturo (dMA) dependiendo de
si la ronda de verificación es determinista o aleatorizada, donde en el segundo caso los
nodos realizan un nuevo lanzamiento de monedas previo al intercambio de mensajes.

El primer capítulo se centra en definir este modelo y sus variantes, además de presentar
el marco teórico de este trabajo. En el segundo capítulo se describe el diseño de protocolos
usando sólo una ronda de interacción para distintas clases de grafos. De aquí se despren-
den protocolos eficientes para problemas como la detección de grafos de intervalos, grafos
cordales, grafos de arcos circulares, entre otros. En el tercer capítulo, se continúa presen-
tando protocolos interactivos, pero permitiendo múltiples rondas de interacción. Aquí se
estudian problemas como la presencia de una cierta estructura como subgrafo o menor,
para luego ver el caso de la ausencia de estructuras. Se desprenden protocolos para clases
tales como cografos, grafos de distancia hereditaria y grafos libres de triángulos.

En el cuarto capítulo se deja de lado el diseño de protocolos para estudiar la construc-
ción de cotas inferiores: mediante distintas técnicas se obtienen cotas inferiores para el
cálculo de la degenerancia y la detección de cografos. Luego, se presenta una técnica
general para obtener cotas inferiores basada en el pegado de soluciones correctas de forma
de engañar a la red. Se obtienen cotas para una ronda y para múltiples rondas de inter-
acción en que la aleatoriedad es compartida entre los nodos. De aquí se desprende que los
resultados obtenidos para varios de los problemas anteriores son ajustados. Por último, se
extiende un resultado previo sobre el problema de Simetría que consiste en decidir si un
grafo admite un automorfismo no trivial. De aquí se obtiene una cota inferior en múltiples
rondas de interacción cuando la fuente de aleatoriedad es privada para cada nodo.

Finalmente, en el quinto capítulo, se estudian los efectos sobre el modelo al cambiar
la fuente de aleatoriedad, comparando el caso en que ésta es compartida entre los nodos
de la red y el caso en que es privada. Se obtiene que hay diferencias en el poder del
modelo dependiendo de si la última interacción le corresponde a Merlín o Arturo. Si ésta
es de tipo dAM se tiene que el modelo a moneda privada admite protocolos con un costo
asintóticamente más pequeño que el segundo, aún para múltiples rondas de interacción.
Por otro lado, si Arturo es el último en interactuar, el uso de moneda compartida permite
una mejora sustancial en el largo de los mensajes por sobre aquellos con moneda privada.

i

GRAPH CLASS DETECTION IN THE DISTRIBUTED INTERACTIVE PROOFS
MODEL

In this work we study the distributed interactive proofs model. This model consists of
two entities: an all-powerful prover identified as Merlin, and a distributed verifier identified
as Arthur, which corresponds to a communication network represented by a connected
graph G. Each node in the graph interacts with Merlin by a series of interactions where it
draws coins and receives an answer from Merlin. This answer may depend on the network
topology, as well as on all previous interactions. The objective of these interactions is
to convince the nodes, with good probability, that the network topology satisfies some
predicate. After the last message sent by Merlin, a single round of verification between
each node and its neighbors follows. We say that the interactions are of type Arthur-
Merlin (dAM) or Merlin-Arthur(dMA) depending on whether the verification round is
deterministic or randomized where, in the second case, the nodes draw a new set of coins
previous to the exchange of messages.

The first chapter centers around defining this model and its variants, as well as pre-
senting the theoretic framework of this work. In the second chapter we describe protocols
using a single round of interaction for different graph classes. From here we obtain ef-
ficient protocols for problems such as the recognition of interval graphs, chordal graphs,
circular-arc graphs, among others. In the third chapter, we continue showing different
interactive protocols, but where multiple rounds of interaction are considered. We study
problems such as detecting the presence or absence of some structure as a subgraph or
minor. From here we obtain protocols for classes such as cographs, distance-hereditary
graphs and triangle-free graphs.

In the fourth chapter we leave aside the design of protocols to study the construction
of lower bounds. By using different techniques we obtain lower bounds for computing the
degeneracy and the recognition of cographs. Then, we present a general technique for
obtaining lower bounds based on "glueing" correct solutions in order to fool the network.
We obtain bounds for a single and multiple rounds of interaction, where the source of
randomness is shared between the nodes. From here we conclude that the results obtained
for many of the previous problems are tight. Lastly, we extend a previous result for the
problem of Symmetry, which corresponds to recognizing graphs that admit a non trivial
automorphism. We obtain a lower bound on multiple rounds of interaction when the
source of randomness is private for each node.

Finally, in the fifth chapter, we study the effects of changing the source of randomness
in the model, by comparing the case when the source of randomness is shared between
the nodes in the network and when it is private for each node. We conclude that there
are differences in the power of the model depending on whether the last interaction cor-
responds to Merlin or Arthur. If the interaction is of type dAM we have that the model
using private randomness admits protocols with an asymptotically smaller cost than the
latter, even for multiple rounds of interaction. On the other hand, we prove that, if Arthur
is the last party to interact, then the use of shared randomness allows for a substantial
improvement in message size over those using private randomness.

ii

“Mañana está en duda, pero hoy gané”
Bronko Yotte

iii

iv

Agradecimientos

Este trabajo ha sido producto del esfuerzo y apoyo de muchas personas y, si bien no puedo
incluirlos a todos, llevo los nombres de todos ustedes conmigo y les estoy tremendamente
agradecido.

En primer lugar quiero dar las gracias a mi familia, a mis tíos, a mis primos y, en
especial, a mi mamá Pilar y a mis abuelos Guillermina y Carlos, por darme todo su amor
y apoyo y darme todas las herramientas para perseguir mis intereses y convertirme en la
persona que soy en este momento.

Quiero darle gracias a mis amigos, los que han estado en distintas etapas de mi vida y
que han ayudado a que el paso por la universidad sea mucho más especial. A mis amigos
del colegio, a Pedro, Jorge, Billy, Aaron y Aylén por aguantarme 10 años y ser la familia
que encontré. A Joaquin, Lucca, Nico Vera y Nico Avilés por las tantas risas y aventuras
juntos desde el día 1 en la universidad. A mis amigos del DIM, a Nicolás, Andrés, Pablo,
Juan Pedro, Alonso y Julio, por todas nuestras payadas, sesiones de estudio, y muchas
conversaciones que me enseñaron mucho más que matemáticas, con especial mención a
Tomás y Eduardo por ser tremendos amigos y por convencerme y motivarme a perseguir
las matemáticas.

También quiero incluir a los profesores que tuve en el departamento, que fueron un
pilar fundamental de mi aprendizaje, en particular a José Soto y Andreas Wiese, quienes
despertaron mi interés por las matemáticas discretas. A Pedro Montealegre e Iván Rapa-
port, por su presencia en cada aspecto de esta tesis, desde las pausas de café a las muchas
conversaciones sobre matemáticas, dando su apoyo siempre que surgieron problemas. A
Marcos Kiwi y Martín Matamala por ser excelentes profesores y por sus aportes en la
revisión de este trabajo. A Natacha, Karen, Eterin, Kuky, Óscar y los demás funcionarios
del departamento, por siempre prestar su ayuda y hacer del DIM el departamento que es.

Por último a Constanza, por ser la mejor compañera que podría desear y darme fuerzas
en todo momento, incluso cuando creía no poder terminar este trabajo.

v

vi

Contents

Introduction 1

1 Preliminaries and Model Definition 8
1.1 Preliminaries . 8
1.2 The Distributed Interactive Proofs Model 9
1.3 Other Communication Models. 12

1.3.1 Alice and Bob, 2-Party Communication. 12
1.3.2 The Simultaneous Messages Model 13
1.3.3 The Congest Model . 15
1.3.4 Broadcast Congested Clique . 16

1.4 Some Important Results . 17

2 Protocols Using a Single Interaction 24
2.1 Degeneracy . 24
2.2 Twins . 26
2.3 Proper Interval Graphs . 29
2.4 Chordal Graphs and Interval Graphs . 32
2.5 Circular Arc Graphs . 38

2.5.1 Proper Circular Arc . 39

3 Protocols Using Multiple Rounds of Interaction 45
3.1 H-subgraph and H-minor . 45

3.1.1 The Problem of H-freeness . 48
3.2 Clique . 49
3.3 Cograph . 50
3.4 Distance Hereditary . 56
3.5 Detection of Triangle-free Graphs . 60

4 Lower Bounds 65
4.1 A dAM lower bound for the degeneracy . 65
4.2 A dM lower bound for cograph. 68
4.3 A general lower bound for public dAM . 70
4.4 A lower bound for Symmetry . 78

5 Shared versus Private Randomness 80

vii

5.1 The Limits of Shared Randomness . 81
5.2 Shared dAM versus Private dAM . 85
5.3 Shared dMA versus Private dMA . 88

5.3.1 The upper bound . 91
5.3.2 The lower bound . 92

Conclusion 98

Bibliography 101

A Graph problems 107

viii

Introduction

Distributed computing concerns situations in which many entities, located at certain
points in a network, must operate in a noninterfering and cooperative manner by commu-
nicating with each other through a set of channels in the network, in order to perform a set
of individual tasks. These tasks can be related to each other, such that the entities (while
executing their own protocol) may need to exchange information or share resources in or-
der to fulfill them. Distributed computing deals with many activities occurring today, from
their applications in telecommunication networks such as the Internet, the management
of distributed databases such as Google’s Cloud Spanner [CDE+13], to parallelizing com-
putationally large tasks using multiple processors as in NLHPC’s Guacolda-Leftraru [Lef],
the coordination of autonomous mobile sensors [ERSR12], as well as many others.

The study of problems in this setting may present multiple challenges that do not
appear in its centralized counterpart. First, each entity only has knowledge of its own
local input, which means that it is completely unaware of the information held by other
participants in the network. Second, each entity is allowed to interact locally, with its
neighbors in the network. Last, but not less important, it might be unfeasible for the
entities to send extremely large messages due to resource restrictions, given that there is
an associated energy cost, a network of small bandwidth, etc. There can be other issues
(not addressed in this work) such as the network recovering from an incorrect state (Self-
stabilization) or the ability of maintaining functionality when some nodes in the network
fail (Fault-tolerance).

Distributed decision refers to the problem of checking that the actual input graph (i.e.,
the network itself) satisfies a given predicate. Here, the nodes from the network interact
with each other by exchanging messages following a set of rules through a series of interac-
tions, after which they must output a decision (either accept or reject). The decision rule
typically specifies that (once the protocol terminates), if the predicate is satisfied, then all
nodes must accept and, otherwise, at least one node must reject. A single rejecting node
can indeed trigger an alarm (in, e.g., hardwired networks), or launch a recovery procedure
(in, e.g., virtual networks such as overlay networks). This is an important subject of study
because, as for centralized computing, distributed algorithms often assume promises on
their inputs, and many algorithms are designed for specific families of graphs, including
regular graphs, planar graphs, graphs with bounded arboricity, bipartite graphs, graphs
of bounded treewidth, etc.

There are some properties which can be decided locally easily. For example, deciding

1

whether a graph is regular or if a given coloring is proper can be done by exchanging
messages between neighbors. However, other properties such as deciding whether the
network is a tree or if the network is bipartite may require long-distance communication
for detecting the presence of an (odd) cycle.

The proof-labeling schemes model (PLS) provides a remedy to this issue [KKP10].
These mechanisms have a flavor of NP-computation, but in the distributed setting. That
is, an all-powerful, but untrustable prover provides each node with a certificate, and the
collection of certificates is supposed to be a distributed proof that the graph satisfies the
given predicate. The nodes check locally the correctness of the proof. The specification
of a proof-labeling scheme for a given predicate is that, if the predicate is satisfied, then
there must exist a certificate assignment leading all nodes to accept, and, otherwise, for
every certificate assignment, at least one node rejects. As an example, for the case of the
bipartiteness predicate, if the graph is bipartite, then a prover can provide a partition by
coloring the nodes either red or blue. It is then sufficient for each node to locally check
that all its neighbors have the same color, different from its own color, and to accept or
reject accordingly. If the graph is not bipartite, then there is no way that a dishonest
prover can fool the nodes, and make them all accept the graph.

Another example could be the verification of a spanning tree construction previously
computed in the graph. Such a proof may be encoded distributedly by providing each node
with a certificate containing the id of the root of T , and the distance d(v) from v to the
root (see, e.g., [KK07]). Indeed, every node v can simply check that d(p(v)) = d(v)−1 (to
guarantee the absence of cycles), and that it was given the same root id as all its neighbors
in the network (for guaranteeing the unicity of the tree). And thus, with such elements,
no dishonest prover can fool the network into accepting an incorrect construction. Similar
variants were also introduced: non-deterministic local decisions [FKP13], locally checkable
proofs [GS16], and others which carry the same spirit of verification, with slight differences
on the initial information or the verification procedure. Through several results in this
regard, it has been shown that the inclusion of nondeterminism can greatly increase the
power of distributed algorithms.

A positive result in this line is that all (Turing-decidable) predicates on graphs admit
a proof-labeling scheme. The difficulty is that there are simple graphs properties (e.g.,
existence of a non-trivial automorphism [KKP10], non 3-colorability [GS16], bounded
diameter [CHPP20], etc.) which require certificates even up to Ω(n2) bits in n-node
graphs (Ω(n) in the case of graphs with bounded diameter). Such large certificates do not
fit with the requirement that checking algorithms must not only be local, but they must
also consume little bandwidth.

In this work we study a recent model which extends the proof labeling scheme set-
ting by allowing interaction with the prover. In distributed interactive protocols, a
notion initially introduced by Kol, Oshman and Saxena [KOS18] and further studied
in [CFP19, FMO+19, NPY20], a centralized all powerful yet untrustable prover (whom
we call Merlin) exchanges messages with a randomized distributed algorithm (to which
we refer by Arthur). Specifically, Arthur and Merlin perform a sequence of exchanges
during which every node queries the prover by sending a random string, to which Merlin

2

replies to each node by sending a string called proof. Neither the random strings nor the
proofs need to be the same for each node. After a certain number of rounds, every node
exchanges information with its neighbors in the network, and decides (i.e., it outputs
accept or reject).

From an applied perspective, this type of "assisted computation" is specially relevant
today due to the rise of protocols on mobile networks, services based on cloud computing
or tasks that require a large amount of data to be processed which proves to be difficult
in a more traditional setting. In the event that some entity were to present some failure
or may be intervened by a malicious source we need to identify such an issue and respond
accordingly.

Two model variants arise in this new randomized scenario, regarding the order of
the phases. Let us assume first that we have two phases. When the random phase
precedes the non-deterministic phase, we refer to distributed Arthur-Merlin protocols , and
we denote them by dAM (following the terminology and notation of [KOS18]). Conversely,
when nodes access randomness only after receiving the certificates, we refer to distributed
Merlin-Arthur protocols, and we denote them by dMA. Note that Merlin is the powerful
but untrustable prover of the PLS model, while Arthur represents the nodes, which are
simple and limited verifiers that can flip coins. While in a dAM protocol all randomness is
seen by Merlin, as it is sent to it before its last interaction, in a dMA protocol, the prover
does not see the nodes’ randomness when choosing the certificates. Instead, only once
the prover assigns certificates to the nodes, each node randomly selects a message that
broadcasts to its neighbors. Then, (in both cases) each node decides whether to accept
or reject, based on its randomness, input, certificate, and the messages it received from
its neighbors.

In distributed interactive proofs, Merlin tries to convince the nodes that G satisfies
some property in a small number of rounds and through short messages. We say that an
algorithm uses k rounds and O(f(n)) bits if k exchanges of information occur between
both parts where the messages exchanged between the nodes (in the verification round)
and also the messages exchanged between the nodes and the prover are upper bounded
by O(f(n)). The case when k equals one is treated differently depending if the protocol
is of type dAM or dMA. While the former uses non-determinism and no randomness
(coinciding with protocols in the PLS model), the latter omits all interaction with the
prover and relies only on randomized verification. For a problem admitting a protocol
with k rounds of interaction and bandwidth bound O(f(n)), such a problem is said to be
in the class dAM[k, f(n)] and dMA[k, f(n)] for the corresponding protocols.

Throughout this work, we study the power of interactive proofs both through the
design of protocols for the recognition of different graph classes (and the construction of
lower bounds for them) and through its variations on the use of randomness.

The design of protocols gives some insight on the extent to which interaction can be
used to improve the communication cost for distributed decision problems in comparison
to other models, and how techniques in these models can be extended to obtain lower
bounds in our setting. In this regard, we show protocols using one or multiple rounds of

3

interaction on the detection of problems which can be local in nature (such as triangle-free
graphs), as well as others that depend on global information (such as the presence of a
fixed subgraph or a minor), or even some graph classes with a well known structure (such
as chordal graphs, cographs, distance-hereditary graphs, among others). Then, we study
lower bounds for the previous problems, showing that our protocols for many of them are
tight. This is achieved by combining results from extremal graph theory, as well as other
techniques from the communication complexity setting.

As for the use of randomness, an issue well-studied in the context of communication
complexity, but much less considered in distributed computing, provides separation results
for the different flavors of interaction as the impact of the two forms of randomness is
very different depending on whether we are considering Arthur-Merlin protocols or Merlin-
Arthur protocols. By studying protocols (and lower bounds) for two different problems
we show that: While private randomness gives more power to the first type of protocols,
shared randomness provides more power to the second. These results provide a wider
perspective to the study of distributed interactive proofs.

Organization

In the first chapter we start by describing the different phases in a distributed interactive
protocol, and then we define the distributed Arthur-Merlin model in both its shared
randomness, and private randomness versions. From here we obtain a full description of
both the dAM and dMA classes. Then, in Section 1.3 we go over some important models
in the field of communication complexity that will be relevant for this work. Next, in
Section 1.4, we describe some important results from the literature which will be used.
Finally, in Section , we give a brief summary of the results obtained with regards to the
complexity of different graph classes.

In the second and third chapter, we study the design of distributed interactive proto-
cols.

In the second chapter we show many problems that admit protocols with small mes-
sages and a single round of interaction: In Sections 2.1 and 2.2 we define the problems
d-degenerate and twins and obtain single round dAM protocols(dM) for each of them
(as well as their complementary classes. Next, we focus on problems based on the in-
tersection of different objects: In Sections 2.3 and 2.4, we study the problems proper
interval, interval and chordal, for which we obtain single-round dAM protocols
(simply written asdM) using small messages for each of them (which we later show to be
tight). Then, following the same ideas, we look at the problems proper circ-arc and
circular-arc, obtaining an efficient dM protocol for both problems.

In the third chapter, we describe protocols using many rounds of interaction for dif-
ferent graph problems: First we study problems which involve detecting the presence (or
lack) of graph structures. Here, we obtain simple, constant size, three round protocols for
the problems H-subgraph and H-minor, which are the problems of detecting the pres-
ence of a fixed subgraph, or minor H, respectively. Next, we show two round protocols

4

for the classes clique and cograph. While the former is a simple use of randomiza-
tion that can be implemented in the Congest model (where the network nodes interact
with each other through rounds of O(log n)-size messages), the latter corresponds to an
adaptation of a protocol in the Broadcast Congested Clique model [KMRS15] (where the
network nodes write on a shared blackboard) by exploiting the high connectivity in this
class. By use of the tools from this last result we show a three round protocol for the
class dist-hereditary as well. Finally, in Section 3.5, we obtain a 2k round protocol in
the dMA model using shared randomness with bandwidth cost n

1
k+1 log n for verifying the

absence of triangles in a graph, which improves on the result by Crescenzi et al. [CFP19].

Next, in the fourth chapter, we focus on the construction of lower bounds. In Sec-
tion 4.1 we show lower bounds in dM and dAM (using shared randomness) for the problem
d-degenerate, by adapting a technique from [FH18]. Next, in Section 4.2 we obtain a
dM lower bound for the problem cograph, by use of a technique described in [FPSP19]
which constructs a No-instance by crossing edges in a correct instance. Later, in Sec-
tion 4.3 we adapt and extend a lower bound construction initially described in [GS16]
which allows us to "glue" correct solutions in a dAM protocol using shared randomness
and k rounds of interaction and provide an accepting bad instance given sufficiently small
messages and any fixed k. We also adapt this technique to provide lower bounds in the
dMA model. Finally, in Section 4.4, we extend a lower bound construction for the class
symmetry initially shown in [KOS18] which proves a Ω(log log n) barrier in the private
randomness variant even if we increase the amount of interactions

Finally, in the fifth chapter, we study the impact of the use of randomness depending
on the type of interaction. First, we show in Section 5.1 that any interactive protocol
that uses shared randomness can be derandomized into a non-deterministic proof with
an exponential factor overhead in the bandwidth, which induces several lower bounds on
other problems described in the literature. Next, in Section 5.2, we separate the two
variants of the dAM model through the language amos, which is the language of n-node
graphs having at most one selected node. It is known that it can be decided with two
rounds of interaction and cost O(1) when private randomness is used, whereas for any
constant number of rounds we show that the use of shared randomness can not achieve a
bandwidth cost smaller than Ω(log log n). This shows there is an unbounded gap between
the two models. Finally, in Section 5.3, we show that roles are reversed if we consider
dMA protocols instead. More precisely, first we get an analogous result to that of [CFP19]
proving that dMA protocols with shared randomness are more powerful than their private
counterpart, albeit with a small additional bandwidth cost of O(log n). Then we separate
both classes through the language 2-col-eq which consists of graphs with n-bit labels
corresponding to proper 2-colorings. We show that while this language requires Θ(log n)
bits of communication when shared randomness is used, the use of private randomness
implies a bandwidth cost of Θ(

√
n).

A list of all problems considered in this work is presented in the appendix at the end
of this document.

5

Results
We go over the positive results obtained in Chapters 2 and 3, as well as the lower bound
results obtained in Chapter 4.

First, we include the positive results obtained in Chapter 2. That is, all problems for
which we obtained a protocol using a single round of interaction. As will be discussed
in Chapter 1, these values hold up to a constant factor. We use asymptotic notation to
emphasize on those problems whose results (as is shown in Chapter 4) are tight.

Property Cost Reference.

twins Θ(log n) Prop. 2.3
twin-free O(log n) Prop. 2.5
d-degenerate Θ(log n) Prop. 2.1
d-degenerate O(log n) Prop. 2.2
proper interval Θ(log n) Prop. 2.9
interval Θ(log n) Cor. 2.15
proper circ-arc Θ(log n) Prop. 2.18
circular-arc Θ(log n) Prop. 2.20
chordal Θ(log n) Thm. 2.14

Now, we include the positive results obtained in Chapter 3. These are all problems
that admit efficient protocols using multiple rounds of interaction: We separate them
according to the number of interactions and whether the source of randomness is shared
or private to each node.

Property Class Random Cost Reference

clique dAM private O(1) Prop. 3.3
cograph shared O(log n) Thm. 3.10
amos shared Θ(log log n) Lem. 5.11
H-subgraph dMAM private O(|H|) Prop. 3.1
H-minor private O(|H|) Prop. 3.2
dist-hereditary shared O(log n) Thm. 3.14
∆-free dMA[2k] shared O(n

1
k+1 log n) Thm. 3.16

2-col-eq dMA private Θ(
√
n) Lem. 5.15

6

We also include a compilation of the lower bounds obtained in Chapter 4, as well as
those appearing in the literature, which we extend following the results in Section 5.1.
Notice, again, that these values hold save for a constant factor. Those entries labeled with
∗ indicate that the lower bound is obtained by the same result as the entry to the left.

Class dM dMApub dMApriv dAMpub[k] dAMpriv[k]

diameter n/ log n [CHPP20] n/ log n n/ log n log n
symmetry n2 [GS16] n2 n2 log n log log n
3-col n2/ log n [GS16] n2/ log n n2/ log n log n
mst log2 n [KK07] log log n log log n
2-col-eq n log n

√
n log n

amos log n [FMO+19] log n ∗ log log n
interval log n log n ∗ log log n
chordal log n log n ∗ log log n
planar log n [FFR+20] log n ∗ log log n

∆-free n/e
√

logn [DKO14] log n log n
circular-arc log n log n ∗ log log n

7

Chapter 1

Preliminaries and Model Definition

1.1 Preliminaries

A simple undirected graph, from here on simply referenced as graph, is a pair of sets
G = (V,E) where V is a finite set, called node set, and E is a subset of the 2-sets of V
called edge set, that is, E ⊆ {e ∈ 2V such that |e| = 2}. Whenever we consider an edge
e = {u, v} we shall refer to it simply as e = uv, and say that u and v are adjacent. If
several graphs are being considered, we will denote each graph’s node set and edge set as
V (G) and E(G) respectively.

We write n(G) to denote the number of nodes of G and m(G) for the number of edges
of G, where we will simplify this notation to simply n and m whenever we are safe from
any type of confusion.

For a set U contained in the node set V , we define the induced subgraph of G = (V,E)
according to U as the pair (U,E(U)), where E(U) = {vw ∈ 2U such that vw ∈ E}.
Whenever such a graph exists we say that H is an induced subgraph of G and denote it
by H ⊆ G. If, instead, we have a graph with node set U such that its edges are only
contained in E(U) we simply call it a subgraph of G.

We say that a node u belongs to a graph G, which we write as u ∈ G whenever u
belongs to its node set V (G). For such a node, we define its (open) neighborhood N(u) as
the nodes v ∈ G which are adjacent to u, that is, the pair e = uv belongs to G’s edge set.
Similarly, we define its closet neighborhood N [u] to be the union of N(u) and {u}. We
define the degree of a node v in G to be the size of N(v). Given a graph G with node set
V we define the minimum degree of G to be the smallest value for d(v) among all nodes
in V and denote its value as δ(G).

A path P in a graph G is an ordered collection of distinct nodes v1, . . . vk such that
for all i ∈ 1, . . . k − 1 the pair vi and vi+1 are adjacent. The nodes x1 and xk are said to
be linked by P , with x1 and xk its ends. Similarly, a cycle can be defined as a sequence
of nodes v1, . . . vk, with k ≥ 3, which form a path where the nodes vk and v1 are also

8

adjacent. We say that a graph G is connected if for any pair of nodes u, v ∈ G there exists
a path {w1, . . . wk} where w1 = u and wk = v for some integer k. A clique of a graph G
is a subset C of its node set V such that all pairs of nodes in C are adjacent.

A tree T is an undirected graph such that it is connected and does not have any
cycle. A spanning tree T of some graph G is a subgraph of G that is a tree such that
V (T) = V (G).

Given two node-disjoint graphs G1 = (V1, E1) and G2 = (V2, E2), we define the join
between both graphs, denoted by G1 ∗G2 as the graph Ĝ = (V̂ , Ê), with V̂ = V1∪V2 and
Ê = E1 ∪ E2 ∪ {v1v2 such that v1 ∈ V1, v2 ∈ V2}.

Throughout this work several graph properties and classes will be defined or men-
tioned. For further details on these concepts please refer to the book “Graph Theory” by
Diestel [Die06], or the survey on graph classes by Brandstadt [BS+99]. For a list of all
problem definitions, please refer to the annex at the end.

Finally, for simplifying the notation, for a predicate p(x), we denote Jp(x)K to be the
function that equals one if and only p(x) is true.

1.2 The Distributed Interactive Proofs Model
Let G be a simple connected n-node graph, let I : V (G) → {0, 1}∗ be an input function
assigning labels to the nodes of G, where the size of all inputs is polinomially bounded
on n. Let id : V (G) → {1, . . . , poly(n)} be a one-to-one function assigning identifiers to
the nodes. A distributed language L is a (Turing-decidable) collection of triples (G, id, I),
called network configurations.

A distributed interactive protocol consists of a constant series of interactions between
a prover called Merlin, and a verifier called Arthur. The prover Merlin is centralized, has
unlimited computing power and knows the complete configuration (G, id, I). However, he
can not be trusted. On the other hand, the verifier Arthur is distributed, represented by
the nodes in G, and has limited knowledge. In fact, at each node v, Arthur is initially
aware only of his identity id(v), and his label I(v). He does not know the exact value of n,
but he knows that there exists a constant c such that id(v) ≤ nc. Therefore, for instance,
if one node v wants to communicate its id(v) to its neighbors, then the message is of size
O(log n).

Given any network configuration (G, id, I), the nodes of G must collectively decide
whether (G, id, I) belongs to some distributed language L. If this is indeed the case, then
all nodes must accept; otherwise, at least one node must reject (with certain probabilities,
depending on the precise specifications we are considering).

There are two types of interactive protocols: Arthur-Merlin and Merlin-Arthur. Both
types of protocols have two phases: an interactive phase and a verification phase. Let
us define first Arthur-Merlin interactive protocols . If Arthur is the party that starts the
interactive phase, he picks a random string r1(v) at each node v of G (this string could

9

be either private or shared) and sends them to Merlin. Merlin receives r1, the collection
of these n strings, and provides every node v with a certificate c1(v) that is a function of
v, r1 and (G, id, I). Then again Arthur picks a random string r2(v) at each node v of G
and sends r2 to Merlin, who, in his turn, provides every node v with a certificate c2(v)
that is a function of v, r1,c1, r2 and (G, id, I). An example of this interaction is shown in
Figure 1.1.

This process continues for a fixed number of rounds. If Merlin is the party that starts
the interactive phase, then he provides at the beginning every node v with a certificate
c0(v) that is a function of v and (G, id, I), and the interactive process continues as ex-
plained before. In Arthur-Merlin protocols, the process ends with Merlin. More precisely,
in the last, k-th round, Merlin provides every node v with a certificate cdk/2e(v). Then, the
verification phase begins. This phase is a one-round deterministic algorithm executed at
each node. More precisely, every node v broadcasts a message Mv to its neighbors. This
message may depend on id(v), I(v), all random strings generated by Arthur at v, and all
certificates received by v from Merlin. Finally, based on all the knowledge accumulated by
v (i.e., its identity, its input label, the generated random strings, the certificates received
from Merlin, and all the messages received from its neighbors), the protocol either accepts
or rejects at node v. Note that Merlin knows the messages each node broadcasts to its
neighbors because there is no randomness in this last verification round.

M

v1 v2 vi vn

v1 v2 vi vn v1 v2 vi vn
G G

G

ξ ξ ξ ξ ξ

ck1 ck2 cki ckn

rk1 rk2 rki rkn

Shared

rk

randomness randomness
Private

Figure 1.1: On any fixed round k, each v generates a seed rv from a source of randomness
ξ. Then, it receives a message from MerlinM which depends on each rv and all previous
interaction. If the graph uses shared randomness (left) all nodes access the same source
of randomness, while in the private randomness version (right) all nodes have their own
source.

10

v

G

M
mv mv

mv

mv

Figure 1.2: During the verification round, a node v in the network broadcasts a message
mv which contains all certificates received as well as all coins drawn during the protocol.
In case of interactions of type dMA, these messages may depend on a fresh set of random
bits.

A Merlin-Arthur interactive protocol of k interactions is an Arthur-Merlin protocol
with k − 1 interactions, but where the verification round is randomized. More precisely,
Arthur is in charge of the k-th interaction, which includes the verification algorithm. The
protocol ends when Arthur picks a random string r(v) at every node v and uses it to
perform a (randomized) verification algorithm. In other words, each node v randomly
chooses a message Mv from a distribution specified by the protocol, and broadcast Mv

to its neighbors as shown in Figure 1.2. Finally, as explained before, the protocol either
accepts or rejects at node v. Note that, in this case, Merlin does not know the messages
each node broadcasts to its neighbors (because they are randomly generated). If k = 1, a
distributed Merlin-Arthur protocol is a (1-round) randomized decision algorithm; if k = 2,
it can be viewed as a non-deterministic version of randomized decision, etc.

Given a distributed interactive protocol, its (bandwidth) cost is defined as the largest
size of any message sent by Merlin or any node v during either the interactive phase or
the verification phase.

Having described distributed interactive protocols, we are ready to define the classes
dAM and dMA, as studied in [KOS18, NPY20, CFP19].

Definition 1.1 Let V be a verifier and M a prover of a distributed interactive proof
protocol for languages over graphs. If (V ,M) corresponds to an Arthur-Merlin (resp.
Merlin-Arthur) k-round, O(f(n)) bandwidth protocol, we write (V ,M) ∈ dAMprot[k, f(n)]
(resp. (V ,M) ∈ dMAprot[k, f(n)]).

Definition 1.2 Let ε ≤ 1/3. The class dAMε[k, f(n)] (resp. dMAε[k, f(n)]) is the class
of languages L over graphs for which there exists a verifier V such that, for every config-
uration (G, id, I) of size n, the two following conditions are satisfied.

Completeness. If (G, id, I) ∈ L then, there exists a proverM such that

11

(V ,M) ∈ dAMprot[k, f(n)] (resp. (V ,M) ∈ dMAprot[k, f(n)]) and

Pr
[
V accepts (G, id, I) in every node givenM

]
≥ 1− ε.

Soundness. If (G, id, I) /∈ L then, for every proverM such that

(V ,M) ∈ dAMprot[k, f(n)] (resp. (V ,M) ∈ dMAprot[k, f(n)]),

Pr
[
V rejects (G, id, I) in at least one node givenM

]
≥ 1− ε.

We also denote dAM[k, f(n)] = dAM1/3[k, f(n)] and dMA = dMA1/3[k, f(n)].

We omit the subindex ε when its value is obvious from the context. For small values
of k, instead of writing dAM[k, f(n)] and dMA[k, f(n)], we alternate Ms and As. For
instance: dMAM[f(n)] = dAM[3, f(n)], dAMA[f(n)] = dMA[3, f(n)], etc. In particular
dAM[f(n)] = dAM[2, f(n)], dMA[f(n)] = dMA[2, f(n)].

Definition 1.3 The shared randomness setting may be seen as if all the nodes, in any
given round, sent the same random string to Merlin. In order to distinguish between the
settings of private randomness and shared randomness, we denote them by dAMpriv[k, f(n)]
and dAMpub[k, f(n)], respectively.

Finally, to simplify notation, we may write P ∈ dAM[k,Ω(f(n))] to denote that, if
some problem P is in dAM[k, g(n)] it implies that g(n) = Ω(f(n)). In the same way, we
may write P ∈ dAM[k,Θ(f(n))] to denote that the cost f(n) is tight.

1.3 Other Communication Models.
In this section we mention other computational models related to communication com-
plexity and distributed computing that may be of interest for this work. Specifically, we
go over the classic model of 2-party communication complexity, where two entities, Alice
and Bob, must jointly compute a 2-input function f(·, ·) while communicating the least
number of bits possible.

1.3.1 Alice and Bob, 2-Party Communication.

In the 2-party communication model two entities, namely Alice and Bob, own an n bit
input each, denoted by x and y respectively, and their goal is to jointly compute the value
of a Boolean function that depends on both inputs f(x, y) with f : {0, 1}n × {0, 1}n →
{0, 1}.

A protocol between Alice and Bobmay be seen as a sequence of interactions, where they
exchange bits until one of them is able to compute an answer. For any given problem
P, its (deterministic) complexity in the 2-party communication model corresponds to
the minimum number of bits needed to be sent by Alice and Bob in order to decide

12

the problem. On the other hand, we include the help of a Prover to the model, which
sends a certificate to both Alice and Bob during the communication process, the non-
deterministic complexity of a problem is defined as the minimum number of bits on the
certificate provided by the Prover, combined with the size of the messages sent by both
parties.

One of the reasons for this model’s importance is that it’s sufficiently broad to allow
the use of both its protocols and lower bounds in a diverse range of subjects beyond
distributed computing, allowing new results in areas such as Computational Complexity,
Game Theory, Data Structures, etc.

This work will make use of the lower bounds for the problem equality, where Alice
and Bob must determine whether their inputs x and y are equal. An important result for
this problem is that in order to obtain the solution, the best possible method is for one of
the entities to simply send its whole input, even if we allow the use of non determinism.

For a formal proof of this result, please check [Kus97].

Theorem 1.4 The non deterministic complexity of equality in the 2-party commu-
nication model is Ω(n).

1.3.2 The Simultaneous Messages Model

In the simultaneous messages model (SM) there is a third player, the referee, who wishes,
together with Alice and Bob, to compute a function f(x, y). Alice and Bob are given
inputs x and y, respectively. The referee has no input. Alice and Bob are unable to
communicate with each other, but, instead, are able to send a single message to the
referee. Their messages depend on their inputs and a number of random bits. Then,
using only the messages of Alice and Bob and eventually another random string, the
referee has to output f(x, y) (up to some error probability ε, given by the coins of Alice,
Bob, and the referee). A randomized protocol with error ε is correct in the SM model if
the answer is correct with probability at least 1− ε.

We are only interested in the SMmodel with private coins, i.e. when the random strings
generated by Alice, Bob, and the referee are not shared with each other. Interestingly,
in this model, the power of randomness is very restricted. Indeed, in [BK97], Babai and
Kimmel show that any randomized protocol computing a function f in the SM model
using private coins requires messages of size at least the square root of its deterministic
complexity. More precisely, if we define the deterministic complexity of f , D(f), as the size
of the messages of an optimal SM deterministic protocol for f , the following proposition
holds.

Proposition 1.5 ([BK97], Theorem 1.4) Let f : X ×Y → {0, 1} be any Boolean function.
Let 0 ≤ ε < 1

2
. Any ε-error SM protocol for solving f using private coins needs the

messages to be of size at least Ω
(√

D(f)
)
.

13

Aside from a negative result, they show a protocol for the problem equality, which
makes the previous result tight.

Proposition 1.6 ([BK97]) There exists a randomized protocol in the SM model for
equality with cost O(

√
n)

We proceed to describe the protocol for the sake of completeness.

Proof. Let t be the least integer such that n ≤ t2/4. Let Ω = Ft2 be a vector space with
the usual product u·v =

∑t
i=1 uivi. Set S ⊆ Ω and define S⊥ = {u ∈ Ω : ∀v ∈ S, u·v = 0}

to be the orthogonal subspace to the set S. Also, in order to simplify notation, we denote
{u}⊥ simply as u⊥.

Lemma 1.7 ([BK97]) There are at least 2t
2/4 subspaces of Ω with dimension t/2.

Now, by using Lemma 1.7 it is possible to assign, for each z ∈ {0, 1}n a subspace of Ω,
which we denote by Uz with dimension t/2.

With this tool we can proceed to describe the protocol. Given input x ∈ {0, 1}n, Alice
chooses a vector u at random from Ux and sends it to the referee, while Bob chooses,
given y ∈ {0, 1}n an element v ∈ U⊥y uniformly at random and sends it to the referee as
well. Finally, the referee accepts if and only if u⊥v.

As both u, v are elements of Ω = Ft2, we have that Alice and Bob send t = O(
√
n) bits

each to the referee.

Remark If U is a subspace of Ω and u /∈ U , then u⊥ + U⊥.

Indeed, as Ω has finite dimension we have that u⊥ ⊇ U⊥ ↔ {u} = u⊥⊥ ⊆ U⊥⊥ = U .

It follows that, if x = y, then the referee always accepts, as u ∈ Ux and v ∈ U⊥x .

In case that x 6= y, it follows that Ux 6= Uy and therefore |Ux∩Uy| ≤ |Ux|/2: indeed,
let B be a base of the subspace Ux ∩ Uy and F be its extension to Ux. As Ux is not
contained in Uy, we have that |B|+ 1 ≤ |F |, and so

|Ux|
2

=
2|F |

2
≥ 2|B|+1

2
=
|Ux ∩ Uy|

2
.

Therefore, we have that the probability that u is chosen at random in Ux \ Uy is at
least 1

2
.

If Alice picks u ∈ Ux \Uy, we have by the previous remark that, u⊥ + U⊥y and, once
again, |U⊥y ∩ u⊥| ≤ |U⊥y |/2. Then, the probability, given that u /∈ Uy, of v /∈ u⊥ is

14

at least 1/2. By combining both results

Pr(u��⊥v) ≥ Pr(v��⊥u | u /∈ Uy) · Pr(u /∈ Uy) ≥
1

4
.

It then follows that, by running parallel (independent) repetitions of this protocol,
it is possible to make this error arbitrarily small.

By incorporating a prover, we can define interactive proofs in the SM model. More
precisely, we define MAsym as follows.

Definition 1.8 Let f : X × Y → {0, 1} be a Boolean function. We say that f ∈ MAsym
ε if

there exists a protocol for Alice and Bob, where:

A fourth player, the prover, provides Alice and Bob with a proof m (which he builds
as a function of the input of Alice x ∈ X and the input of Bob y ∈ Y).

Alice and Bob simultaneously send a message to the referee, that depends on their
inputs, their own randomness, and the certificate m provided by the prover. Let
ω = ωx,m(r) be the message sent by Alice given the input x and the seed r and let
ϕ = ϕy,m(s) be the message sent by Bob, given y and the seed s.

Finally, let ρ(ω, ϕ) be the random variable indicating the referee’s decision given the
messages ω, ϕ and its random bits.

For all x ∈ X, y ∈ Y , the protocol must satisfy the following:

Completeness.

If f(x, y) = 1, there exists a proof m such that Pr (ρ(ωx,m, ϕy,m = 1) ≥ 1− ε.

Soundness. If f(x, y) = 0 then, for any proof m, Pr(ρ(ωx,m, ϕy,m) = 1) ≤ ε.

Let f : X × Y → {0, 1} be a Boolean function. The cost of an MAsym protocol that
solves f is the sum of the proof size, along with the maximum size of a message considering
all possible random realizations. When there is no randomness we recover the classical
definition of non-deterministic complexity in the SM model, which we denote by Msym(f).

Remark The assumption that both Alice and Bob receive the same proof does not affect
the definition of the class: in case that Alice receives ma and Bob receives mb as proofs,
then Merlin may concatenate mamb and then Alice and Bob just consider their part of
the message (the referee verifies that Alice and Bob received, indeed, the same message).

1.3.3 The Congest Model

The Congest model can be thought of as the classic model in distributed computing, where
the communication network is an undirected graph G and the nodes are only allowed to

15

exchange messages through these channels in a series of synchronous rounds, where at
most O(log n) bits can be sent through each channel.

In this model we can pay attention to two different types of protocols. Those where the
nodes send the same message to all their neighbors at each round (broadcast) and those
where the nodes have the freedom to choose a specific message for each of their neighbors
(unicast).

Korman et al. show that any broadcast protocol in this model can be naturally sim-
ulated in the Proof Labeling Scheme(PLS) model [KKP10], which is essentially a variant
of the dM model where the nodes know their neighborhood. It suffices for Merlin to send
to each node the transcript of the messages exchanged at each round between nodes in
the original Congest protocol. Then, by exchanging these messages sequentially check the
transcript’s correctness.

Theorem 1.9 Let A be a synchronous protocol for some problem P in the broadcast,
Congest with τ rounds. Then, there exists a dM protocol for P with cost O(τ · log n)
bits.

One of the goals of this work is to find protocols whose total communication is smaller
than the one obtained by applying Theorem 1.9 (even if more rounds of interaction are
necessary).

1.3.4 Broadcast Congested Clique

The Broadcast Congested Clique model assumes a similar setting as the former model. The
BCC model is a message passing model where n nodes communicate with each other in
synchronous rounds over a complete network [BMRT20]. The joint input to the n nodes
is an undirected graph G on the same set of nodes, with node u receiving the list of its
neighbors in G. Nodes have pairwise distinct identities between 1 and n. All nodes know
n, the size of the network. Each node broadcasts, in each round of the algorithm, a single
f(n)-bit message along each of its n − 1 communication links. The size of the messages
is known as the bandwidth of the system, which is a function of n. Broadcasting is
equivalent to writing the messages on a whiteboard, visible to every node. In each round
every node produces its message using its input, the contents of the whiteboard, and,
possibly, a sequence of random bits. An algorithm is correct if it terminates with every
node knowing the correct answer with high probability

As it is a strong model (yet not as strong as its unicast variant) it is interesting to study
whether either we can simulate its protocols or compete with their costs. Particularly in
regards to its reconstruction results [MPSRT18] and some useful protocols such as the
one for the cograph problem, which will be mentioned again in Subsection 3.3.

16

1.4 Some Important Results

In this section we include some results from the literature that will either be useful for
our constructions or important benchmarks. First, we include some classic tools from
computational complexity and graph theory that will be used repeatedly in this work.

We consider a simple result related to the density of prime numbers. This theorem
is useful when we need to use algebraic techniques in randomization that require us to
choose a polinomially bounded prime number.

Lemma 1.10 (Bertrand’s Postulate) For any integer n bigger than 1, it is possible to
find a prime number p such that n ≤ p ≤ 2n.

An example on how to apply this result is the case we need a compact encoding of
a set of objects distributed across the network. If we represent these objects by use of
a polynomial defined over a finite field of p elements, for some prime p (which we can
represent through O(log n) bits), then we can test the equality of different objects by
choosing an element at random in this field. If two objects are different, we have that
the probability of collision between two different encodings based on this random element
can be made polinomially small.

For a formal proof of this result, the reader can refer to [AB09].

Lemma 1.11 (Schwartz-Zippel [Sch80, Zip79]) Let p ∈ F[x] be a non-zero polynomial with
coefficients in a field F and degree d. Consider r to be an element F taken uniformly at
random. Then, the probability that r is a root of p is at most d/|F|

In probability theory it is useful to have an estimation of how much can a random
variable deviate from its expected value. Classical tools such as the Markov or Cheby-
shev inequalities provide bounds on the probability of such events on arbitrary random
variables. Next, we include a classic result used in complexity theory that provides expo-
nentially decreasing lower bounds on the tails of a sum of independent Bernoulli random
variables.

Lemma 1.12 (Chernoff bounds [Hoe48, C+52]) Let X1, . . . Xk be a collection of inde-
pendent random variables, such that E(Xi) = pi. Let X =

∑k
i=1 Xi with µ = E(X) =∑k

i=1 pi. Then, the following inequalities hold.

Pr[x ≥ (1 + ε)µ] ≤ exp

(
− ε2

2 + ε
µ

)
.

Pr[x ≤ (1− ε)µ] ≤ exp

(
−ε

2

2
µ

)
.

Now we present a result from extremal graph theory which we use extensively in
Section 4.3 for the construction of lower bounds. Proved in the year 1974 and extending a

17

conjecture by Erdős, it shows that whenever we have a graph which is sufficiently dense,
we can find large even cycles contained in it [BS74].

Lemma 1.13 (Bondy-Simonovits) Let G be an n-node graph with m edges. Let k be an
integer.

Then, if m > 100k · n1+ 1
k it follows that C2` ⊂ G, for all ` ∈ [k, k · n

1
k]

Now we mention a result that follows a similar spirit as the previous one and which
we use in the same context, on the study of structures in hyper-graphs. Initially shown
by Erdős in the year 1964, it says that, if we have an r-uniform hyper-graph with a large
number of hyper-edges, then we can find a structure that allows us to make "swaps" on
our hyper-edges while staying inside this structure [Erd64]. More specifically, if we set
K(r)(`) to be a r-uniform hyper-graph, where we can split the set of nodes into r parts,
with size ` each, such that we have a hyper-edge for any selection of elements from each
of the r different parts, then we have the following result.

Lemma 1.14 (Erdős) Let G be an r-uniform hyper-graph. If G does not contain a
K(r)(`) as a subgraph, then |E(G)| ≤ n1−1/`r−1.

Where we say that an r-uniform hyper-graph H is a subgraph of an r-uniform hyper-
graph G if the node set of H is contained in that of G, and each hyper-edge in H is a
hyper-edge in G.

Next, we mention some recent results in the subject of distributed interactive proofs
which are repeatedly used throughout this work.

First we start with the IP compiler, constructed by Naor, Parter and Yogev. It states
that if we are given a centralized interactive proof protocol, we can translate it into
a distributed interactive proof by splitting the set of coins to be sent (and the proofs
answered by the prover) among the nodes in the network and then, in the verification
round, we simply need to check the consistency of a computation transcript, which can
be easily done by use of a set equality protocol [NPY20].

Theorem 1.15 Let P ∈ AM be a public coin interactive protocol that uses k rounds
(with k > 1) for deciding some language L such that the verification round requires
time τ(n)m with τ(n) = Ω(n). Then, L ∈ dAMpriv[k+2, τ(n) log(n)/n]. In particular,
if L ∈ NP and the verifier runs in time O(n), then L ∈ dMAMpriv[(log n)].

In essence, this compiler provides a black-box for the design of protocols for different
graph problems by simply paying the running time of the verifier. This is specially useful
on properties which can be decided in time linear on the size of the graph, examples of
this are hereditary graph classes such as Interval Graphs, Chordal Graphs [HMPV00],
Cographs [GP12], Circular arc graphs [McC03], among others. This may also prove spe-

18

cially useful if the classes to be considered are sparse such as planar graphs [HT74],which,
by this result, admits a dMAM[O(log n)] protocol.

Now, if we were to consider other important compiler-like results on interactive proofs,
we can combine them with the previous theorem and obtain a wider variety of dis-
tributed interactive proofs. Starting with verifiers that use small space, by adapting
a compiler described in [RRR16], if some problem can be solved using logarithmic space,
then there exists a (centralized) interactive proof that requires O(1) many rounds and
requires poly log(n) bandwidth.

Theorem 1.16 (by [RRR16]) Let L be a language that can be decided using O(log n)
space. Then, there exists an AM protocol for L with perfect completeness and sound-
ness error 1/2 such that, with access to an oracle, has the following properties

The number of rounds is O(1).
The bandwidth at each round is poly log(n).
The prover runs in time poly(n) and the verifier runs in time poly log(n).

Where we say that an interactive protocol has perfect completeness if it always accepts
on a correct instance.

If we combine these results, and simulating the access to the aforementioned oracle,
we then have the following: for any language which can be decided in logarithmic space
there exists a dAM protocol using O(1) rounds of interaction with the prover and cost
O(log n). The RRR compiler is useful for problems such as determining if a graph is free
of triangles, or the fact that (for any fixed constant t) a graph has treewidth at most
t [EJT10]. We do not know whether these problems admit a centralized protocol with
small verification time, yet we know that both can be solved with an efficient use of space.

Finally, the GKR compiler, which shares similar properties to the RRR compiler,
allows us to obtain protocols on languages that can be decided by circuits of low depth.
More precisely, let uniform NC, be the class of languages that can be decided by a family
of circuits constructible in O(log n) space, which have size poly(n) and whose depth is
O(poly log n).

Theorem 1.17 (by [GKR15]) Let L be a language in uniform NC. Then, there exists an
AM protocol where the verifier runs in time n · poly log(n) with bandwidth poly log(n)
with oracle access.

By combining this result with Theorem 1.15 we have that this language admits a
dAM protocol with poly log(n) rounds and bandwidth poly log(n).

This last result gives another way for obtaining protocols. A specially interesting one
is the problem of deciding whether the diameter of a graph has a given value, which
we know to be in NC [ABCP92] (and therefore has a poly log(n) round protocol with

19

bandwidth poly log(n)). On the other hand, we know that any node in the network needs
to send Ω(n) bits in a dM protocol [CHPP20] (which coincides with non-deterministic
verification) .

Now, we describe the protocol that is used the most in this work, which is the one
for constructing a spanning tree. This is very useful as it allows us to locally verify the
presence of global properties of the graph, like the existence of a unique marked node, as
well as computing and verifying functions that can be aggregated across the tree, such as
partially adding the total number of nodes or edges “up” the tree, or computing a sum of
values spread across the graph.

Protocol 1.18 (Spanning tree) For this problem, each node v ∈ G has a single marked
edge ev and the nodes need to collectively verify that {ev}v∈V represents a tree.

Notice that a protocol for this problem using O(log n) bits is equivalent to constructing
the tree entirely as a tool in other protocols, instead of simply verifying its correctness.
Indeed, Merlin can also provide the identifier of the parent of a node v along with the
proof and thus, verify that this new set of edges forms a tree. Now, we describe dM
protocol using O(log n) bits.

Merlin provides each node v with a pair 〈id(ρ), dv〉 where the first message represents
the identifier of a root ρ for the tree and dv represents the distance between v and ρ along
the unique path between them in T . During the verification round, all nodes exchange
these messages along with their identifier id(v) and check that:

1. If tv is the other endpoint of ev, which we consider to be its parent over T , it holds
that dv = dtv + 1.

2. All nodes check that they received the same identifier id(ρ) and those with dv = 1
check that ρ is the other endpoint of ev.

Notice that both parts of the message require O(log n) bits. Now we check the correctness
of the protocol.

Completeness. An honest prover will provide a unique valid identifier id(ρ), along
with the correct distances to ρ, therefore all nodes accept.

Soundness. Merlin must provide a unique valid identifier for ρ as otherwise the
nodes would notice when they exchange messages that there is more than one iden-
tifier and those nodes v with dv = 1 must have ρ as a neighbor. Also, if there exists
a set C ⊆ V such that {ev}v∈C forms a cycle, the node with lowest value of dv
among those in C would reject as its parent in the tree must have a larger distance
value.

As for the chance of obtaining a better protocol for this problem, it was shown in [GS16]
that, any proof for the spanning tree problem in the dM model, requires messages of
size Ω(log n).

20

Now we include the (multi)set equality protocol described in [NPY20], which is the
basis for the compiler in Theorem 1.15, where the use of interaction proves really useful
and, by its generality, it can be used in many different essential protocols. Here, we have
a pair of (multi)sets A and B whose elements are spread across the graph and we wish to
check that they match on each element’s multiplicity.

Protocol 1.19 (Equality) For this problem, each node v in a graph G has a pair of lists
{aiv}`i=1 and {biv}`i=1 as input , with ` ≤ n where each element in the list can be described
with c log n bits and the goal is to decide if the following two multi-sets are equal:

A = {aiv : v ∈ V, i ∈ [l]} and B = {biv : v ∈ V , i ∈ [`]}.

We show that this can be decided using two rounds of interaction and O(log n) bits:

First, consider that any element a of c log n bits is can be thought of as part of a finite
field Fq with nc+3 ≤ q ≤ 2nc+3 so that any multiset A is represented by a polynomial
pA(·) as follows:

A; pA(x) =
∏
a∈A

(a− x).

As each multiset has size at most n, each polynomial has degree at most n · ` ≤ n2, and so
for any pair of multisets A and B, the functions pA, pB can match in at most n2 different
points. And so, if A does not match B, by taking an element s ∈ Fq uniformly at random,
the probability that their evaluations pA(s) and pB(s) match is at most 1

nc
. With this we

may proceed to describe the protocol.

Each node v generates a seed sv and some number αv with αv ∈ [n2] (which requires
O(log n) bits) and sends them to Merlin. Then, Merlin answers by broadcasting the pair
〈s̄, ᾱ〉 where ᾱ is the smallest value for αv drawn by a node v̄ along with s̄. Also, he sends
the triple 〈id(ρ), dv, tv〉 where ρ is the root of a spanning tree T of G, tv corresponds to
the parent of v at T and dv is the distance between v and ρ through T .

Finally, to each node v he sends the pair 〈pvA(s̄), pvB(s̄)〉 which corresponds to the partial
product of pA and pB at s̄ up to the sub-tree Tv.

Now, during the verification round, the nodes exchange the messages previously de-
scribed and locally check that

1. The triple 〈id(ρ), dv, tv〉 is consistent according to Protocol 1.18.

2. There exists a single node v̄ that sent αv̄ and sv̄.

3. Considering Cv to be the set of children of v at T it holds that

pvA(s̄) =
∏
u∈Cv

puA(s̄)×
∏̀
i=1

(aiv − s̄), pvB(s̄) =
∏
u∈Cv

puB(s̄)×
∏̀
i=1

(biv − s̄).

21

Accepting if these conditions occur and rejecting otherwise. As for checking that A and B
are equal, the node ρ owns the correct values for pA(s̄) and pB(s̄). Therefore, ρ compares
these values and accepts if they are equal and reject otherwise. As stated above, the
probability that the protocol fails is the probability that there exists a node v where
Merlin provided the wrong function pA(s̄). And we have that these values match with
arbitrarily low probability.

Finally, if all previous messages in the tree are consistent, then the root ρ has the
correct representations of A and B and, if they are different, these values will differ with
high probability.

One variation of the previous protocol which is used several times in this work, is that
of checking if a given set of labels in the graph corresponds to a permutation in [n(G)]. As
an honest prover provides an ordering of the nodes in the graph satisfying some property,
we need to verify that this set of labels in the graph are all distinct and lie in the interval
[n(G)].

Protocol 1.20 (Permutation) For this problem, every node v in an n-node graph G owns
a number {av}v∈G ∈ [n] and they wish to verify that all numbers are distinct.

Protocol for permutation
1. Local: Each node v, given its input av defines yv to be av + 1 mod n.
2. P ↔ v (messages 1-2): Both Merlin and the verifier interact through the

Equality protocol in order to check that the sets {av}v∈G and {yv}v∈G are
equal.

Most protocols have cost Ω(log n) as a natural barrier, as essentially any action below
this message size impedes a node from sharing its identifier, as well as counting the size
of the graph, or choosing a leader [GS16]. Here we mention a three round protocol by
[NPY20], that requires O(1) bits for constructing a spanning tree which, as described
above, is specially useful for spreading information through the graph. We describe the
protocol along with a proof of its correctness for the sake of completeness.

Protocol 1.21 (Spanning Tree with O(1) bits)

Merlin picks an element ρ and sends to each node v its distance to ρ in a BFS tree
rooted at ρ modulo 3, that is, dv mod 3. Then, each node partitions its neighborhood
into three sets. Those who have distance 0, 1 and 2 modulo 3 respectively.

Lv = {u ∈ N(v) : du ≡3 dv + 1} Mv = {u ∈ N(v) : du ≡3 dv}

Uv = {u ∈ N(v) : du ≡3 dv − 1}

If a node v is such that Uv = ∅ it declares itself to be the root of the tree.

This is important as any BFS tree in a graph G has the following property: for any
node v all its neighbors are either in the same layer as v, one layer above or one layer
below.

22

Then, each node defines its parent in the tree to be the node u with the smallest port
ordering (that is, the anonymous order in its neighborhood input) such that u ∈ Uv. Thus,
for the case of a Yes-instance, an honest prover will originally provide a BFS tree which
after this modification remains a tree rooted at ρ even though it may loose its original
structure.

In the next round, each v generates a random bit bv ∈ {0, 1} which it sends to Merlin.
He then responds to each v with the parity of the sum of random bits sent by all nodes
in the unique path Pv between v and ρ, that is, s(v) =

∑
u∈Pv bv mod 2. He also sends

bρ, which is the random bit originally sent by the root.

Finally, if we set tv to be the parent selected by v after the first round, v locally checks
that s(v) = s(tv)+bv mod 2 and that all its neighbors received the same bit bρ supposedly
sent by the root.

Completeness. It follows directly that an honest prover will choose only one root
and constructs a correct BFS tree and its distances.

Soundness. As all nodes choose a unique parent before the random bits are drawn,
two problems could arise:

1. The tree has no root. If T has no root, then it must contain a cycle C. Then,
with probability 1/2 we have that

∑
v∈C bv mod 2 = 1. Therefore, if C can be

written as v1, v2, ..vk, such that s(vi) = s(vi+1) + bvi mod 2 for each i, we can
show inductively that for any value of s(vi) this leads to a contradiction.

2. The tree T has more than one root. If this is the case, let ρ, ρ′ be two different
roots, then with probability 1/2 we have that bρ 6= bρ′ .

As described above, the protocol has one-sided error. Therefore, by amplifying the
error in the standard way we can reduce the acceptance error to any ε using a
constant number of bits.

Protocol for spanning tree
1. M→ v: The prover chooses a root ρ, constructs a BFS tree T and sends each

node dv mod 3.
2. v →M: Each v generates a random bit bv and sends it to the prover.
3. M → v: The prover answers to each node with the bit bρ and the value of

s(v) =
∑

u∈Pv bv mod 2, where Pv is the unique path between ρ and v.
4. Local: All nodes exchange their values of bv, dv and sv and then check that

s(v) is consistent with its parent’s and that they received the same bρ.

23

Chapter 2

Protocols Using a Single Interaction

In this chapter we study problems that can be solved by one round of interaction.
First, in Sections 2.1 and 2.2, we study simple protocols for the problems twins and
d-degenerate respectively, as well as their complementary classes. These are simple
problems that act as benchmarks for different models in the literature [FOZ16, BMRT14]
and their protocols are sufficiently simple to give a first approach to the study of dis-
tributed interactive proofs. Then, we study two problems related to graphs that admit a
global structure by way of an intersection model: The graphs in each of these problems
can be represented by a set of objects, where the adjacencies of each node are deter-
mined by the intersections of these objects. In this regard, in Sections 2.3, 2.4 and 2.5
,we study the problems of interval, chordal and circular-arc respectively, along
with the variants proper interval and proper circ-arc . We show that all these
problems are in dM[log n]. Later, in Chapter 4, we show that the bounds obtained for
these problems are tight.

2.1 Degeneracy
The degeneracy of a graph G , written as deg(G), can be defined as the maximum value
of the minimum degree over all induced subgraphs, or as the smallest integer d such that
we may sequentially prune the graph deleting at most d nodes at each step. From this
we obtain the following result:

deg(G) = max
H⊆G

δH = min
π∈Sn

max
j

d+
π (vj),

where Sn is the set of all possible permutations of [n], and d+
π is the out-degree of the

directed graph induced by π, where ~uv ∈ E ⇔ π(u) < π(v). This represents the order in
which nodes are trimmed.

Observe that, for any fixed d, d-degenerate graphs are sparse. Indeed, we know that if a
graph is d-degenerate, then it can be encoded using d ·n log(n) bits following the ordering
described above. For example, it is known that the classes of trees and planar graphs are
1 and 5-degenerate respectively. Any graph G with no copy of H as an induced subgraph

24

satisfies that deg(G) ≤ 4ex(H,n)/n, where ex(H,n) denotes the extremal number for
H [DKO14], which is the maximum amount of edges an n-node graph can have without
having H as a subgraph. Also, if a graph is H-minor free, there exists a constant cH such
that G is cH-degenerate. By bounding the degeneracy, we may approximate the arboricity
of a graph up to a factor of 2, from which several tools used in distributed computing
can be derived, such as partitioning the graph into layers where each node has a bounded
number of neighbors in upper layers [BE10].

Getting an upper bound for computing the degeneracy

In the problem d-degenerate we wish to verify that, given an undirected graph G, the
value of deg(G) is upper bounded by d.

Proposition 2.1 d-degenerate ∈ dM[log n]

Proof. Given the above definition, it is possible to identify the elimination ordering π for
G by directing the edges of G such that the resulting graph is acyclic and its out-degree at
every node is at most d. Indeed, it suffices for Merlin to assign to each node v its position
πv in the elimination ordering and, during the verification round, all nodes exchange these
values and locally direct their edges to their neighbors with a smaller label. A node rejects
if it has more than d neighbors with a label lower than πv

Completeness. An honest prover will provide the right elimination ordering π such
that all nodes have at most d neighbors with a lower label and, therefore, all nodes
accept.

Soundness. If we consider ~G to be the graph obtained by orienting the edges ac-
cording to π, then it cannot have any cycles as, otherwise, there would be a sequence
of nodes in the cycle v1, ..vk, v1 such that their positions according to π would de-
crease at some point, which is not possible. Then, if the graph has degeneracy bigger
than d, then some node has out-degree bigger than d and, therefore, it rejects.

Protocol for d-degenerate
1. M→ v: The prover sends to each v its position in an elimination ordering πv.
2. Local: Each v checks that it has at most d neighboring nodes at a higher

position according to π, accepting accordingly.

The simplicity of this protocol turns out to be an interesting result when we relate it
to the compiler described in Section 1.4. As we know from Theorem 1.17, any problem
computable with small depth circuits admits a dAM protocol with bandwidth poly log(n).
Yet, we know that computing the degeneracy of a graph is P-complete [KT96], and there-
fore very unlikely to be in NC. This may tell us that problems in NC may admit more

25

concise protocols and that it is unlikely for the hardness of a problem according to its
circuit complexity to relate to its distributed interactive proof complexity. On a side
note, the fact that computing the degeneracy can be done in linear time by sequentially
removing minimum degree nodes, by using the other variant of the compiler we obtain a
three round protocol with cost O(log n), which we still improve upon by use of a single
round.

Verifying high degeneracy

To determine if the degeneracy of a graph G is strictly bigger than d, it suffices to mark
a subgraph F such that the minimum degree in such subgraph is strictly bigger than d.
In one round of interaction the prover can send to each node v the triple 〈id(ρ), dv, tv〉
that defines a spanning tree, a single bit bF (v) such that bF (v) = 1 ⇔ v ∈ F , and the
minimum degrees of the nodes in F intersected with the nodes in the subtree Tv associated
to v (from here on referred to as a sum protocol), which we denote by δF (Tv) (assigning
+∞ if there are none).

Then, the nodes locally check the correctness of the tree according to Protocol 1.18,
and the sum protocol for computing the minimum degree of nodes in F . This means that,
each node v must compare its value for δF (Tv) with that of its children in the tree T ,
and check that its value corresponds to the minimum among all values provided by its
children, rejecting if this is not the case. Then, as the values received by the leaves of the
tree T are correct, by an inductive argument it follows that the root of the tree, denoted
by ρ, must hold the correct value for δF (Tρ) = δ(F). Finally, the root ρ accepts if and
only if the value obtained for the minimum degree is strictly bigger than d.

Proposition 2.2 d-degenerate ∈ dM[log n].

Protocol for d-degenerate
1. M → v: The prover sends to each v the triple 〈id(ρ), dv, tv〉 and a single bit

bF (v).
2. M → v: The prover sends to each v: the degree dF (v) and δF (Tv), the

minimum degree of F intersected with the nodes in Tv.
3. Local: Each node v checks the spanning tree, the value for dF (v) and checks

that δF (Tv) = min{ min
u:tu=v

δF (Tu), dF (v)}, accepting iff these values are correct.

The root ρ accepts iff δF (Tρ) = δF > d.

2.2 Twins

We now focus on the problem twins. For a graph G, the problem twins consists of
determining if there exists a pair of nodes u, v ∈ V such that their neighborhoods are equal.

26

That is, N(u) = N(v) or N [u] = N [v]. In the case that u, v are adjacent (N [u] = N [v])
we refer to them as true twins and, otherwise, we refer to them as false twins. This
problem, despite being a simple one to describe, has been used as a benchmark in different
distributed models as it allows to encode problems such as ExistsEq in the context of
multi-party simultaneous messages [FOZ16], where k players wish to check if at least two
of them own the same input.

We show how to construct a dM protocol for this problem that relies in connectivity
and has cost O(log n), which we then get down to constant cost using interaction.

Proposition 2.3 twins ∈ dM[log n].

Proof. Suppose that G has a pair of twins u and v, then Merlin simply marks both u
and v with •, so that they and their neighbors know they are twins. Then, Merlin marks
each neighbor of u and v with � to mark these as neighbors of u and v. Finally, the
prover sends a spanning tree triple 〈id(ρ), dv, tv〉 for a tree T and a sum protocol to verify
there are at most nodes marked with •: Each node v receives a value m(Tv) corresponding
to the number of •-marked nodes in the subtree Tv induced by v, then v compares this
message with those received by its children, rejecting if the sum of the messages received
by its children do not match m(Tv). By an inductive proof, it follows that ρ has the total
amount of •-marked nodes, rejecting if m(Tρ) 6= 2.

During the verification round, all nodes check the tree structure following Protocol 1.18,
and the sum protocol as described above. Finally, all •-marked nodes check that they
have at most one •-marked neighbor and every other neighbor is marked with �. Also,
all �-marked nodes check that they have exactly two •-marked neighbors, rejecting if any
of these conditions do not occur.

Completeness. If G has a pair of twins u, v, an honest prover marks u and v with
• and all their neighbors with �, marking no other node. Then, all nodes correctly
check that there are two •-marked nodes and that the marks of their neighbors are
correct, making all nodes accept.

Soundness. If G has no pair of twins, by the correctness of the sum protocol, there
must be exactly two marked nodes u and v, which must check the correctness of
the marks received by their neighbors. Hence, either u, v or their neighbors notice
that the marks received by them are not consistent, as N(u) − v 6= N(v) − u and,
therefore, one of these nodes reject.

27

Protocol for twins
1. M→ v: The prover chooses a fixed pair of twins and sends the mark • if the

node is a twin or � if it is the neighbor of a twin, besides sending a triple for
verifying a spanning tree 〈id(ρ), dv, tv〉 and a sum protocol for computing the
number of nodes marked with •.

2. Local: The nodes check that the spanning tree is correct. Nodes marked with
• check that all neighbors are marked with �, while those marked with �
check that they received exactly two • and, through the tree T , they check
that there are at most two •.

Note that it is important to use a spanning tree in order to check that there are at most
two • marked nodes, as otherwise the graph could be tricked into accepting a set of nodes
that share only a portion of their neighborhood (we show this in detail in Section 4.3).
Finally, we observe that by using Protocol 1.21 for computing a spanning tree, we easily
obtain that twins ∈ dAM[3, 1].

Corollary 2.4 twins ∈ dMAM[1].

Graphs with no pair of twins

Now we study the complementary class for our original problem. For the problem twin-
free given a graph G, the nodes wish to check if G does not have any pair of nodes with
the same open neighborhood. Such problem can be directly solved using two rounds and
O(log n) bits.

Proposition 2.5 twin-free ∈ dAM[log n].

Proof. Each node v interprets its identifier id(v) as an element in a field Fq with nc+3 ≤
q ≤ 2nc+3. Then v defines a function to represent its open neighborhood as pv =∏

u∈N(v)(id(u)− x) mod q. Notice that such a polynomial has degree at most n.

Next, each v sends to Merlin a pair 〈sv, αv〉 where sv is a seed in Fq and, therefore,
can be represented by O(log n) bits and αv is a number in [n2]. The prover sends to each
node v the seed s̄ = sv∗ , where αv∗ = minv αv, besides a spanning tree triple 〈id(ρ), dv, tv〉
and their function evaluation pv(s̄).

Finally, all nodes check the correctness of the tree and the seed. While the tree is
verified according to Protocol 1.18, the seed is verified by checking that there is a unique
element providing the smallest value for αv (which occurs with high probability) and
that its value for sv matches the seed received by the network. Afterwards, the nodes
reconstruct their function pv(s̄). Here, node v rejects if and only if there exists a pair of
nodes in its closed neighborhood u 6= w ∈ N [v] such that pu(s̄) = pw(s̄).

Completeness. If the graph has no pair of twins, the probability that some node

28

rejects is the probability that there exists a pair such that their function evaluations
match for the seed s̄. Then, if s̄ was chosen uniformly at random, the probability
that this occurs is at most 1

nc
.

Soundness. If G has a pair of twins, namely u and v, then the graph will always
reject, as there will be a node in their neighborhoods that finds the pair pu(s̄), pv(s̄)
and reject.

Protocol for twin-free
1. v →M: Each v sends the pair 〈sv, αv〉, corresponding to a candidate for the

seed, and a number in [n2]. to choose it.
2. M → v: The prover sends to each v the triple 〈id(ρ), dv, tv〉, along with the

pair 〈s̄, αv̄〉. Last, he sends the evaluation pv(s̄).
3. Local: All nodes check that the tree is correct and that their evaluations are

consistent. A node rejects if there exists a pair in its neighborhood whose
valuations pu(s̄) = pw(s̄) match.

As this corresponds to a protocol with perfect soundness, no prover can fool the graph
and make it accept. Yet, as the chance of error lies in choosing a bad seed s, we simply
need to ask Merlin to choose a seed s that will make us accept, provided we can assure
that one exists.

If a graph G has no twins, then for each pair of nodes u, v their neighborhoods (and,
therefore, their encodings) do not match. Then, if we consider the set of elements s in Fq
such that there exists a pair of nodes u, v with pu(s) = pv(s), then there can be at most
n3 such elements, as each encoding pu(·) has degree n and therefore (pu − pv)(·) has at
most n roots.

If we simply consider q = Ω(n4) then there must exist an element for which no pairs
match. And we can replicate the previous protocol by asking Merlin to provide such an
element and proceed as before. This shows that twin-free can be solved in a single
round of interaction and O(log n) bits.

Corollary 2.6 twin-free ∈ dM[log n].

2.3 Proper Interval Graphs

We start with the class of interval graphs, that is, the class of graphs that admit a
representation through the intersection of intervals on the real line. These graphs have
several applications related to optimization theory, mostly concerning resource allocation
through scheduling problems [BNBYF+01]. The class of interval graphs has not been
studied in the distributed setting, other than reconstruction results on hereditary graph

29

classes [MPSRT18]. Yet, we consider it to be an interesting first step as its structure
allows to make good use of the assistance given by a prover.

By defining our problem and studying a simpler variant when the intervals to be
considered are not contained in any other. The general case (which allows for inclusions)
is studied alongside chordal graphs in Section 2.4, an example of an interval graph and
its representation by intervals can be seen in Figure 2.1.

Definition 2.7 We say that a graph G = (V,E) is an interval graph if there exists a
universe U = (0, poly(n(G))) ⊆ Z and a family of interval configurations {Iv}v∈V such
that the adjacency of G is uniquely determined by the intersections between each pair of
nodes’ intervals, that is:

∀v ∈ V, ∃Iv ⊆ U : ∀u,w ∈ V, uw ∈ E ⇐⇒ Iu ∩ Iw 6= ∅

v1

v2

v3
v4

v5
v6

v7

v8

v1
v2

v3

v4

v5

v6

v7

v8

Figure 2.1: An example of an interval graph. On the left side a representation of the graph
by overlapping intervals. On the right side its associated graph given by the intersection
of these intervals.

We say that G is also proper if for no pair of intervals one is properly contained in the
other. A graph G will be called unitary if all intervals have length one. It is known that
these two definitions coincide: any proper interval graph admits a representation via unit
length intervals [Rob69].

Proper interval graphs

We begin by studying the class of proper interval graphs, which admit a characterization
which is suitable for a distributed algorithm [Gar07]:

Proposition 2.8 A graph G admits a representation by proper intervals if and only if
there exists an ordering {vi}ni=1 such that:

∀i, j : i ≤ j, vivj ∈ E =⇒ vivk ∈ E and vkvj ∈ E, ∀i ≤ k ≤ j

Having this characterization, it is immediate to construct a protocol.

Proposition 2.9 proper interval ∈ dM[log n].

30

Proof. The proof that Merlin sends to a node v is comprised of three different messages:

1. Its interval’s center, given by c(v), as well as its position when ordering each center
from left to right, given by πv.

2. The id of the node whose center is farthest to the left, which we call v1, along with
the corresponding value c(v1), and a spanning tree triple 〈id(ρ), dv, tv〉 to verify its
correctness.

3. A range, given by [πvmin
, πvmax] that indicates the neighbors of v according to their

positions.

Then, the nodes locally check that the tree is correct according to Protocol 1.18. They
also check that the value for the size of the graph n(G) is correct and that there is a
unique node with the smallest value for its intervals’ center, given by c(v1). The first
condition can be checked by providing each node with the number of nodes up to the
subtree Tv induced by each node v; in this way, it suffices for each node to compare its
value with the sum of those received by its children and rejecting if these are not equal.
By an inductive argument, this leaves the root ρ with the correct value for n(G) and it
rejects if it does not match with the number provided by the prover. The argument for
checking that v1 is unique follows in a similar manner.

From here on out, all nodes check that their neighbors intervals intersect theirs, and
that each of their neighbors have an assigned [πvmin

, πvmax] such that all positions are
covered. Finally, each node v from v1 onward such that πv = i checks that it has a unique
neighbor with position i + 1 whose center is immediately right of his. Node v rejects if
any of these conditions does not hold.

Completeness. We can check directly that an honest prover will send the identifier
of the node whose center is furthest to the left in the real line and send each node
their correct position in the ordering, where each node has a neighborhood matching
the range it received.

Soundness. We have that each node knows the size of the graph and there is a
unique node positioned first. As all nodes positioned at i ∈ [n − 1] have a unique
neighbor positioned at i+ 1, it follows that all nodes must have different positions.
Now, if G is not a proper interval graph, by Proposition 2.8 there must exists a node
such that its neighborhood does not match its range and therefore such node must
reject.

31

Protocol for proper interval
1. M → v: Merlin sends to each v the identifier of the node whose center is

farthest to the left, along with its center c(v1), and the range of positions that
v must be neighbors with, given by [πvmin

, πvmax].
2. Local: The nodes check that there is a unique neighbor v1 with the farthest

left center. Also, if v is positioned at πv it checks that it has a unique neighbor
positioned at πv + 1 and that its range matches its neighborhood’s positions.

It is known that proper interval graphs can be recognized in the centralized setting
(that is, by a single computation unit) in linear time in the size of the graph [HMPV00],
which implies, by use of the NPY compiler, a protocol in dMAMpriv with costO(n+m

n
log n).

As this class contains the class clique among other classes with a large number of edges,
this implies that the protocol can be of cost up to O(n log n), showing that our protocol
is a great improvement both in the number of rounds and the bandwidth.

2.4 Chordal Graphs and Interval Graphs

A graph G is said to be chordal if any cycle of length at least four has a chord. That is,
for any integer k ≥ 4, G does not have a Ck as an induced subgraph. These graphs are
specially relevant from an algorithmic perspective as several graph properties (finding the
largest independent set or clique, computing the chromatic number, etc) can be efficiently
computed when the input graph is restricted to this class [Hoà94, RTL76].

As for interval graphs, the structure of a chordal graph is determined by its maximal
cliques: while an interval graph can be represented as a path formed by its maximal
cliques, in the case of chordal graphs these can be seen as a tree.

a
b

c

d

h
b

b
e

f
b
e

c
g

ea
c

u

c e

b

c

e

g

a

u

fd

h

Figure 2.2: An example of a chordal graph, represented in the right by its clique-tree,
and in the left by its corresponding drawing. Notice that all bags containing a fixed node
form a connected subgraph.

32

A tree decomposition of some graph G is a tree TG where each node b ∈ TG (referred to
as bags) represents a set of nodes b ⊆ V in the original graph with the following properties:
(1) each node v ∈ G is present in at least one bag, (2) for every edge e = uv ∈ E(G)
there exists a bag b that contains both u and v and (3) if we define Tv as the set of bags
in TG to which v belongs, they form a connected subgraph of TG. From this we can define
a clique-tree of a graph G as the special case of a tree decomposition for G where each
bag represents a maximal clique of G.

Similarly, we define a path decomposition of a graph G as a tree decomposition when
the tree TG in question is a path [Bod98]. Following the previous notation, we define a
clique-path of a graph G as the special case of a path decomposition for G where each bag
represents a maximal clique of G.

Proposition 2.10 ([BS+99]) A graph G is said to be chordal if and only if it admits
a clique-tree.

Proposition 2.11 ([BS+99]) A graph G is said of be an interval graph if and only if
it admits a clique-path.

Our goal in this section is to show a proof for recognizing chordal graphs using a single
round of interaction. For this, we would like to find a way to simulate the nodes in the
clique-tree by choosing a set of leaders for each maximal clique. Then, we would like to
label each node with the range of cliques it belongs to. The problem is that, while interval
graphs require only two endpoints to encode such a range, in the case of chordal graphs
we would need to encode an entire subtree which would require labels of size O(n log n).
Therefore, we need to find a way to encode a tree.

For this, we show that we can "trim" the graph by sequentially removing nodes from
it by using the tree structure. If we consider a clique-tree rooted at some node ρT and
trim the graph in a series of d steps, with d the depth of the clique-tree, we can partition
the set of nodes as follows. At each step i, we assume that the clique-tree TG has depth
i and look at the leaves at the deepest level in the clique-tree, and, for each such leaf b,
delete all nodes which belong only to this bag and name Fb such a set. Then, we continue
to step i − 1 (where our new tree has depth i − 1) and repeat this process. We know
this set is non-empty by the maximality of the clique represented by the bag b. As this
goes on for d steps, we have that a node v is eliminated from the clique-tree at the step
corresponding to the lowest depth of a bag containing the node v, as it can be seen in
Figure 2.2,

Lemma 2.12 For any chordal graph G, where TG is a clique-tree rooted at some bag ρT ,
consider {Mb}b∈TG to be its set of maximal cliques. Then, it is possible to partition the
nodes in V into a family {Fb}b∈TG such that for any pair of bags b 6= b′ with depth(b) ≥
depth(b′) it holds that Fb ⊆Mb \Mb′.

33

b
a

c

ggc

d

c

c cb b

b
dd

b

e

g

f hk

b
a
c

d

e

g

f hk

Figure 2.3: Graph partition according to Lemma 2.12. Given a tree decomposition, each
node v is positioned at a different set depending on the bag containing v such that its
depth is the lowest in the clique-tree.

Proof. We show this by induction on the number of bags in the clique-tree of a graph
G, given by |TG|. Indeed, if TG is composed of only two bags b and b′ with TG rooted at
b then, as both Mb and Mb′ are maximal cliques, we simply consider Fb′ to be Mb′ \Mb

and Fb = Mb. Clearly these sets are disjoint.

Consider now |TG| = k with k ≥ 3. Then, as TG is a tree, there must exists a bag
b ∈ TG with degree 1, with b′ its parent in TG. We then have that Fb = Mb \Mb′ is disjoint
with all other bags in the tree TG as, otherwise, if there exists a node in Fb that is also
in a bag at a lower depth then, by the definition of a clique-tree, it must belong to Mb′ .
From there, we have that the tree T ′ = T ′G− b is a clique-tree for the graph G′ = G− Fb.
It follows, by induction, that there exists a disjoint collection {Fb̄}b̄∈TG−b with the above
properties. Hence, the family {Fb̄}b̄∈TG−b ∪ {Fb} is as desired.

Now, we would like to select a collection of leaders from each bag in TG and provide
a proof to these leaders in order to simulate the overlaying clique-tree. Two difficulties
arise:

1. The leaders in each pair of adjacent bags in G, may not be connected, as by con-
struction the leader in some bag b does not belong to b’s parent. Therefore, we
would like to consider another collection of leaders (in the intersection of adjacent
bags) in order to simulate TG’s edges.

2. If we could solve the first problem, we have no guarantees that we are able to choose
a leader for each edge of TG in an injective manner: it could be the case that a leader
belongs to the Ω(n) maximal cliques adjacent to the same bag, and should therefore
handle too many messages.

To solve the first issue, we show how to choose a root for TG and a collection of nodes
that belong to the intersection of adjacent bags in such a way that we are able to verify

34

the correctness of the tree structure.

Lemma 2.13 Given a chordal graph G, there exists a rooted clique-tree T such that it is
possible to choose a collection of leaders for each bag {vb}b∈T and auxiliary nodes {w`}`∈T
for each leaf in T such that, if depth(b) is the depth of a bag b in the tree and t(b) is the
parent of the bag b in T , then:

For each b ∈ T, vb ∈ b.

For each b ∈ T , vbvt(b) ∈ E(G).

If depth(b) 6= depth(b′), then vb 6= vb′.

If b ∈ T is a leaf, then wbvb ∈ E(G) .

{vb}b∈T ∩ {w`}`∈T = ∅.

Proof. Let T be a rooted clique-tree in G such that its set of leaves is the largest and the
sum of their depths is as small as possible. Consider now bρ ∈ T to be the root of T , and
let some arbitrary node vr ∈ bρ = b0 be its leader. If we define {b1

i }`i=1 to be the children
of bρ in T , for each i we choose an arbitrary leader v1

i in br ∩ b1
i , which is non empty as G

is connected.

Consider bj to be any node at level j ≥ 1 of the tree with bj−1 its parent, with vj its
leader and vj ∈ bj ∩ bj−1.

If bj is a leaf, we choose an auxiliary node wj ∈ bj with wj /∈ bj−1. We can pick
such a node because bj represents a maximal clique in G and, otherwise, it would
be contained in bj−1.

If bj is not a leaf, let {bji}ki=1 be the set of bj’s children. For each i we choose a leader
for bji in bj ∩ b

j
i − bj−1 as, otherwise, we would have that bj ∩ bji ⊆ bj−1 for some i.

This implies that bji ∩ bj ⊆ bj−1 ∩ bji and it would be possible to define a new tree
T ′ where bji is a child of bj−1 instead of bj. Now, if bji was not a leaf, we would have
a tree with more leaves than T . Otherwise, in case that bji were a leaf, the sum of
the depths of each of its leaves decreases by one. This contradicts our choice for T .

Hence, we can choose a leader vji in bji ∩ bj for each value of i and then go for the
next level.

From the construction we have that for any pair of adjacent bags in T , either their leaders
match or are adjacent, as both belong to the intersection of their respective bags. Also, by
the way the leaders were chosen in the latter point, by choosing bags at different depths,
it follows directly that their leaders must be different.

Now we have a set of leaders which belong to the intersection of bags at different levels
of a rooted clique-tree. Yet, these leaders may have several bags from the same level

35

e

g

u
x

b0

b1

b2

b2
v w

y

f

u v
w

u v

h

e

u x
b0

b1

v
w

y

f

u v
w

g

u
v h

Figure 2.4: Transition from a tree decomposition to another one by reassigning a leaf
at an upper level, in case that a bag intersection (b1 ∩ b2 = {u, v}) is contained in an
intersection at an upper level (b0 ∩ b1 = {u, v, w}). We can do this while keeping a
feasible decomposition.

assigned to it, as a multiple bags may share a unique element at the intersection with the
previous level.

To solve this issue we simply need to make use of the tree structure by setting, for each
leader of a bag ρb, its proof to be provided by one of its children (e.g. the one with the
smallest identifier). If a node is leader of several bags, it still receives all corresponding
proofs after these are exchanged at the verification round, with auxiliary nodes being
chosen in order to cover the case when a node is leader of multiple leaves in the tree.
Hence, we have that each bag leader will receive a unique message, no matter the number
of bags it represents. Now we are ready to prove the theorem.

Theorem 2.14 chordal ∈ dM[log n].

Proof. Assuming that G is chordal, we first select a collection of nodes which represents
a bag b in TG. We do this by selecting a single element ρb from each set Fb according to
Lemma 2.12, as well as a spanning tree triple for simulating the overlaying clique-tree,
which we denote by 〈id(ρT), dT (v), tT (v)〉 indicating the unique leader for the root of the
clique tree, as well as the distance to it and ρb’s parent in this structure.

Also, the prover to provides each node v ∈ Fb with

The size of the clique tree |TG|, along with the id of the leader for its root ρT .

A label F (v) corresponding to the identifier id(ρb) of the leader in the set Fb to

36

which a node v belongs to, as well as the size of Fb.

The distance from the bag b to the root ρT in the clique tree with v ∈ Fb, given by
depth(v).

Also, in order to verify the tree structure, we choose a collection of leaders {ebb′} for
each edge bb′ ∈ E(TG) according to Lemma 2.13, as well as the corresponding auxiliary
nodes to pass these messages. Then, the nodes exchange their messages and they check
the following:

1. The collections {ρb}b∈TG and {ebb′}bb′∈E(TG) verify in conjunction the correctness of
the tree structure.

2. There is a unique root ρT .

3. If v ∈ Fb, then v checks that the nodes with F (u) = id(ρb) form a clique.

4. If v and u are adjacent with depth(v) ≤ depth(u), then v is adjacent to all the leaders
ρb (and their sets Fb) in the unique path between F (v) and F (u) which also coincides
with the unique path between F (u) and ρT . In particular, if depth(v) = depth(u),
then they must have the same leader.

If all the previous conditions hold, then all nodes accept. Now, we check the correctness
of this protocol.

Completeness. Suppose first that the graph G is chordal. An honest prover will
provide each node v with its correct set Fb according to the underlying clique tree
TG which all leaders check correctly. By the definition of the clique tree it follows
that no node has a neighbor at the same depth from a different bag. As the set of
bags that v belongs to correspond to a connected subgraph, it follows that if v is
in a bag b and it is connected to a node u (which belongs to a bag b′) at a bigger
depth, then it is adjacent to all nodes in the bags (and therefore the sets Fb′) in the
path between b and b′.

With this, each node v recognizes that its sets Fb is a clique, and that the depth
for the set of each of his neighbors is consistent with its set. Therefore, all nodes
accept.

Soundness. Suppose now that the graph G is not chordal. We have that, by the
constructions in Lemmas 2.12 and 2.13, the leaders chosen for both the bags and
the edges between them can correctly verify the structure of the clique tree. Now,
suppose that G has an induced cycle {v!, . . . vk} with its nodes arranged such that
v1 is the node of largest depth. It must be that at least one of them has different
depth from the rest as otherwise they would reject either because their leaders are
different, or because the corresponding set Fb should be a clique and there exists
at least two non adjacent nodes. Suppose that depth(v1) = i, depth(vk) = j and
depth(v2) = k with i > j ≥ k. Then, it must be that vk’s leader lies in the unique
path between ρT and v1’s leader as otherwise it would notice an inconsistency with

37

v1’s proof and it would reject. This must also be true for v2 for being at a smaller
depth. Then, it must lie in the path between v1’s leader and ρT and, therefore,
adjacent to vk’s leader and subsequently to vk itself, which contradicts the fact that
they are not adjacent as they belong to a large induced cycle.

Protocol for chordal
1. M→ v: Merlin selects, a set of leaders ρb, ebb′ for each bag b and each edge

between bags bb′, and sends to each of them the proof of a spanning tree
structure between bags, given by 〈id(ρT).dT (v), tT (v)〉.
Also, he sends to each node v, a label F (v) indicating the bag at the lowest
depth to which v belongs to, as well as its size, the id of a leader for such a
bag and the id of ρT , the leader of the root of the clique tree.

2. Local: Each bag leader checks, in conjunction with the leaders from the bag
edges, the consistency of the tree structure. Each node v checks that it shares
the same id for ρT , as well as checking that the nodes labeled by F (v) form
a clique and that, for each neighbor u with a leader at a higher depth, v sees
both the leader of u and all cliques in the path from F (u) to F (v).

As a corollary, we obtain a dM protocol for the problem interval by considering the
fact that, as described above, interval graphs are a particular subclass of chordal graphs
where the clique-tree corresponds to a path [Bod98]. From here it suffices to repeat the
same protocol while each leader (with the exception of the root leader) additionally verifies
that any bag assigned to it has a unique children in the clique tree TG.

Corollary 2.15 interval ∈ dM[log n]

Again, these results are an improvement over those derived from the NPY compiler
as we showed a way to obtain a protocol using a single round of interaction and cost
O(log n) while, as chordal graphs (and interval graphs) can be dense graphs, the use of
the compiler leads to a three round protocol with cost at most O(n log n).

2.5 Circular Arc Graphs

Circular arc graphs are a natural extension of interval graphs. Indeed, they are the
graphs that admit a representation by arcs on a circle, and appear in the study of resource
allocation problems for periodic tasks [MP06]. We study this class of graphs as we wish to
check whether previous results can be extended to this new setting without a large increase
in the cost. We start by defining this new class and, again, studying two variations: where
no pair of arcs are properly contained and then the general case.

For the sake of simplifying notation, we identify the set of id’s [n] with {0, . . . n− 1}.
We say that a graph G = (V,E) admits a circular arc representation if there exists a

38

family of arcs in the unit circle {Av}v∈V such that the adjacency of G can be determined
by the intersection of arcs . That is

∀v ∈ V, ∃Av : ∀u,w ∈ V, uw ∈ E ⇐⇒ Au ∩ Aw 6= ∅

v1

v1 v2
v2

v3

v4
v5

v6
v7

v8

v9

v3 v4

v5

v6

v7

v8v9

Figure 2.5: An example of a circular arc graph: the left side shows a representation with
overlapping arcs in the circle, while the right side shows its associated graph construction.

We say that some graph G is a proper circular arc graph, if it admits a representation
where no arc is contained in another.

2.5.1 Proper Circular Arc

Here we can try to extend our idea for verifying proper interval graphs by considering an
order according to their arcs positions. Nevertheless, two problems arise.

The first is that, in contrast with proper interval graphs, these are a different class
than its unit arc variant [DGS14] which is a minor issue as we can, instead of focusing
on interval centers consider one of its endpoints and sort them accordingly. The second
thing is that, in the case of proper interval graphs, the adjacency of a node could be given
as an interval. Hence, it was easier to encode and verify. Now, the natural extension
would be for a node adjacency to behave like an "interval in a circle". That is, if we had
nodes numbered from 1 to n, we could say that, given i < j, the adjacency of a node is
given either by (i, j), which we define as {i, i + 1, . . . j} or (j, i), which we could set to
be {j, j + 1, ..n− 1, 0, ..i}. If a graph G satisfies this property we say that its augmented
adjacency matrix (the adjacency matrix of G with the addition of 1’s in the diagonal),
denoted by M∗(G), has the circular 1’s property [Tuc70].

Now, again, we have graphs that have this property, yet they are not proper circular
arc graphs. So there must be a another property that we need in order to pin down this
graph class. Fortunately, given a characterization by Tucker [Tuc70], we can show how to
recognize this class with a single round of interaction. For this we start by giving some
definitions for symmetric matrices.

First, consider π to be a permutation of [n] and some matrix M . The matrix Mπ is
the resulting matrix when both the rows and columns of M are reordered according to π.
Second, consider a symmetric {0, 1}-matrix M with 1’s in the diagonal and the circular

39

1’s property. Then, we define last[M, j] to be the largest value i such that Mi,j = 1 and
Mi+1,j = 0. If such an i does not exists (meaning the column M·,j has only 1 entries) we
set last[M, j] = ⊥.

Last, for the sake of notation, consider σinv : [n]→ [n] to be the permutation given by
i → n − i if i 6= n and n otherwise and σsh : [n] → [n] to be the permutation given by
i→ i+ 1 if i 6= n and 1 otherwise.

Definition 2.16 Given a symmetric {0, 1} matrix M with ones in the diagonal, we say
that it has circularly compatible 1’s ifM has the circular 1’s property and, for any reorder-
ing π of the rows (and respective columns) of the matrix constructed by a finite composition
of σinv and σsh, last[Mπ, 0] ≤ last[Mπ, 1], unless one of these values is ⊥.

With this we can finally describe the characterization by Tucker for this class of graphs,
which we include without a proof:

Proposition 2.17 ([Tuc70]) A graph G is a proper circular arc graph if and only if
its nodes admit an ordering {πv}v∈V such that its augmented adjacency matrix M∗(G)
has the circularly compatible 1’s property.

This characterization suits us greatly as its condition is highly local. If we were able
to find such an ordering, we would only need to verify it by checking the previous and
next nodes in the ordering. For this we note two important remarks.

Remark ([Tuc70]) If we sort the nodes according to their right endpoint in counter-
clockwise order, we have that the nodes adjacency matrix has the circularly compatible
1’s property according to this ordering.

Remark We can rotate the arcs in a graph in such a way that, if each node v is sorted
according to the previous order π it follows that v is adjacent to πv−1 and πv +1 modulo
n, with the exception of the last node (in position n) which may not be connected to the
first.

Now we can start to describe the protocol.

Proposition 2.18 proper circ-arc ∈ dM[log n].

Proof. Assume that Merlin assigns to each node a pair Av = (rv, `v) which correspond
to v’s arc coordinates when the arc is visited in a counter-clockwise direction. Here we
assume that such coordinates are given as a value in (0, 360) with any pair of values being
at distance at least 1/poly(n) from each other (and, as such, we require O(log n) bits to
encode them). Now, let v1 be the node such rv is the smallest and such that, in case the

40

graph is a proper interval graph, is the first node if we sort them according to their left
endpoint as in Proposition 2.3.

Now, first we ask Merlin to provide the identifier id(v1) of such a node, as well as a
proof that it is the only node with the smallest right endpoint, which can be provided by
sending a spanning tree triple 〈id(ρ), dv, tv〉 as well as a verification through the spanning
tree that v1 is the unique node with the smallest value for rv. We also ask Merlin to
provide the size of the graph n(G) which can also be verified through the spanning tree.

Next, we ask Merlin to send to each node a position πv such that πv = imeans that rv is
the i-th largest value for a right endpoint in counter-clockwise order. Also, we ask Merlin
to provide each node with a range (vmin, vmax) which correspond to the positions in π such
that v’s adjacency equals the set of nodes whose positions are {vmin, vmin + 1, . . . vmax}
given as a circular sequence as described previously.

Then, at the verification round, all nodes exchange these messages, verifying the ex-
istence of a node v1 by using the spanning tree and, starting from v1, each node v with
πv = i checks that there is a unique node labeled by i + 1 whose arc intersects with its
own and whose left endpoint is immediately after his. They also check that their adja-
cency is circular, meaning that it has a neighbor labeled with each position in the range
(vmax, vmin), with arcs consistent with such an order.

Finally, in order to check that the matrix has the circularly compatible 1’s property,
they do the following. In order to check the first two columns in each permutation obtained
by a composition of σinv or σsh we simply ask each node to adjust its range according to
these permutations, such that each node v positioned at πv with neighbors w and u such
that πw = πv − 1 and πu = πv + 1 must simply consider two cases: (1) When v is first
and u is second, which occurs when we shift π (by applying σsh) until v is first in the
order or (2) when v is first and w is second, which occurs when we invert the order by
applying σinv and then shift π until v is first. In this way, the verification of all 2n possible
permutation to is distributed among the nodes, with each v in charge of two cases.

We explain how to handle both cases by adjusting the range of v and that of its
neighbors as follows:

If v is first and u is second, we can obtain the corresponding range by setting
k = n− πv + 1 and translating both ranges by k mod n as (v̄min, v̄max) = (vmin + k
mod n, vmax + k mod n) and a similar construction for u.

If v is first and w is second, first we obtain the range after applying σinv as (v̄min, v̄max) =
(n− vmax + 1 mod n, n− vmin + 1 mod n) and then shifting v to the first position
by adding πv on both sides modulo n, and a similar construction for w.

Given these two different ranges, each node checks that (unless either itself or w or u
are universal nodes) the range v̄max ≤ ūmax (respectively v̄max ≤ w̄max), accepting if this
holds and rejecting otherwise.

We have that all these messages are of length O(log n) in one round of interaction.

41

Therefore, it only remains to check the correctness of this protocol.

Completeness. Suppose that G is proper circular arc, an honest prover will provide
each node with an ordering π according to each arc’s left endpoint, as well a the
correct range which all nodes can verify and accept.

Soundness. Now, suppose thatG is a No-instance. From what was described above,
all nodes correctly compute a starting node v1 as well as the size of the graph. Also,
each node v with πv = i checks that it has a unique neighbor positioned as i + 1,
which is consistent with its arc. Combining both statements we have that all nodes
must have different values in π that match the order of their left endpoints.

Now, if all nodes check that their adjacency is indeed circular there must exists a
node v which, when permuting its order such that it becomes first either v̄max > ūmax

or v̄max > w̄max, and then it would immediately reject.

The general case

To cope with the general case, it suffices to adapt the characterization found in [Tuc70]
for this class of graphs. Given a symmetric {0, 1}-matrix M , with ones in the diagonal,
consider a column i and define Ui as the set of 1′s starting from the diagonal and going
downwards in a circular manner, until a zero appears. Now, define Vi as the set of 1′s on
row i starting from the diagonal and going rightwards in the same manner. M is said to
have the quasi-circular 1′s property if all 1′s in the matrix are covered by some Ui or Vi.
It is important to mention that, since M is symmetric, we have that Ui and Vi have the
same size.

v7

v4 v2

v1v6

v5 v3
v6

v5

v7

v2

v3

v4

v1

Figure 2.6a: A circular arc representation for a graph, along with its associated drawing.

Proposition 2.19 ([Tuc70]) Let M∗(G) be the augmented adjacency matrix of G. We
have that G is a circular arc graph if and only if there exists an ordering for the nodes
such that M∗(G) has quasi-circular 1′s.

42

1 1 1

1

1

1 1 1

1

1

1

1

1

1

1

1 1 1

1

1

1

1

1

1

11

11 1

1

1

v1 v2 v3 v4 v5 v6 v7
v1

v2

v3

v4

v5

v6

v7

Figure 2.6b: Augmented adjacency matrix for the previous graph with the quasi-circular
1′s property.

From here, we can describe a three round protocol with cost O(log n).

Proposition 2.20 circular-arc ∈ dM[log n].

Proof. First, the prover sends to each node v:

1. Its position in the ordering πv as well as the total number of nodes n(G).

2. A spanning tree given by the triple 〈id(ρ), dv, tv〉.

3. The size of its set Uπv denoted by Lv.

After the nodes exchange their certificates, they check the consistency of the spanning
tree and use it in order to verify that the total number of nodes is correct. Then, in order
to verify the consistency of π(·) as a correct ordering, the nodes proceed as follows.

If we set Nπ(v) to be the set of nodes in N(v) such that they are positioned between
πv and πv + Lv − 1, for i ∈ {0, . . . n− 2} each node v in position πv = i must check that
it has a unique neighbor u positioned at πu = j for all positions j in {πv + hv}, where
w ∈ Nπ(v) with πw = hv is the first node such that πw + Lw − 1 > πv + Lv − 1. By this
process, each node starting from i = 0 makes sure that there are nodes labeled with a
position in Uπv and that there is a unique node that can continue this process after him.
As G is connected, we can assume that this process continues on until all nodes with
positions in {0, n − 1} are verified. As there are n nodes in the graph, all positions are
distinct.

Finally, each node v with a neighbor u checks that, either u ∈ Nπ(v) or v ∈ Nπ(u)
and that v is adjacent to all nodes with positions in Nπ(v). Rejecting if any of these
conditions are not satisfied.

43

Completeness. We have that, ifG is a circular arc graph, then it admits an ordering
with the previous property. Then, each node v has neighbors whose positions are
between πv and πv+Lv circularly and any other neighbor is such that v verifies that
property for them. Therefore, all nodes always accept.

Soundness. If G is not a circular arc graph, then we’ll have that, for any ordering,
there exists a pair of adjacent nodes u, v such that, as a pair, do not belong to any
Ui or Vi. Thus, we have that either u rejects as πu ≤ πv +Lv−1 mod n or v rejects
as one of them notices that fact.

.

Protocol for circular-arc
1. M → v: The prover sends to each v its position πv, the number of nodes

n = n(G), a spanning tree triple 〈id(ρ), dv, tv〉 and Lv.
2. Local: The nodes check that the spanning tree is consistent, n is correct, all

values for π(·) are distinct, and both v and each of its neighbors u satisfy that
either v ∈ Nπ(u) or u ∈ Nπ(v).

These results directly improve in the only previous result in this setting, which is
derived from the NPY compiler. As (proper) circular arc graphs can be recognized in
linear time in the centralized setting [McC03], this induces a protocol using three rounds
and O(n+m

n
log n) bits, where m is the number of edges in the graph. As each of these

classes can contain arbitrarily dense graphs, this can be at most O(n log n). Both our
protocols for proper circular arc graphs and circular arc graphs improve on this result, as
we obtained a one round protocol for both with cost O(log n).

44

Chapter 3

Protocols Using Multiple Rounds of
Interaction

In this chapter, we study a different set of problems for which we obtained efficient pro-
tocols by use of multiple rounds of interaction. First we study the problem of detecting
the presence (or absence) of some graph structure. These are interesting problems from
an algorithmic perspective as different graph problems are determined by the absence of
some structure [BS+99, RS04] or allow for the efficient computation of different graph pa-
rameters [HRSS14, PS15]. We study the problems H-subgraph and H-minor obtaining
dMAM protocols for each of them. On the problem of H-freeness, first we obtain proto-
cols for the particular cases when a graph is free of a P3 or a P4 as an induced subgraph,
which correspond to the problems clique and cograph obtaining dAM protocols for
both, deriving a set of tools for a dMAMpub protocol for the problem dist-hereditary
as an extension of the latter. Then, for any fixed k we show a 2k round protocol for the
problem ∆-free with a sublinear cost decreasing in k.

3.1 H-subgraph and H-minor

In this section we focus on the problem of detecting the presence of some graph structure,
as it is a common question from a distributed perspective. In this regard, we are interested
in two different questions: Whether some fixed graph is present as a subgraph, or whether
it appears as a minor.

We start with the H-subgraph problem. Here, the nodes want to check, for some
fixed graph H, whether they have an isomorphic copy of H as an induced subgraph.

H-subgraph

For this, the most direct approach would be to mark each node v in the isomorphic copy
of H by sending to v a new, extra identifier idH(v), and to count (through a spanning
tree) the number of nodes which were assigned such a label. Then, the nodes simply need

45

to exchange these identifiers and see that their adjacencies matches the ones of idH(v) in
the graph H. At each of H’s connected components, starting from a selected node, we
can verify that all nodes in H’s copy are identified and therefore all nodes accept. This
shows that we can solve H-subgraph in a single round and cost O(log n+log |H|), where
the first additive factor comes from the spanning tree construction and the second one
from send to each v its identifier in H.

Now, we can improve this protocol by making the verification independent from the
size of the graph. We can have the nodes run a spanning tree protocol as described in
Protocol 1.21, along with a permutation protocol, in order to check that all identifiers
are distinct and accepting if their adjacencies are consistent.

As the permutation protocol requires two rounds, a spanning tree and cost O(log k),
to be implemented, where k is the maximum value of a label, we have that H-subgraph
can be solved in three rounds and cost O(log |H|).

Proposition 3.1 H-subgraph ∈ dMAM(log |H|).

Protocol for H-subgraph
1. M → v: The prover sends to each node in the copy of H its identifier given

by idH(v).
2. M↔ v (messages 2-3) The nodes run a spanning tree and a permutation

protocol in order to check that the identifiers are unique.
3. Local: All nodes exchange id’s and check that its adjacency according to H is

consistent, rejecting otherwise.

H-Minor

Now we go over the recognition of graph structures as a minor. In the problem H-minor
we would like to determine if for some fixed graph H, G contains H as a minor, that is,
there exists a sequence of edge contractions and either node or edge deletions on G such
that the resulting graph after all these operations is H.

The detection of minor graph structures is specially relevant given a result by Robertson
& Seymour [RS04] stating that any graph property closed under taking minors can be
characterized by a finite family of forbidden minor structures. As proving that a graph
is H-minor free can be much harder, as a first approach we go over detecting a minor
structure.

Since the previous definition might not be useful in the distributed setting, we use the
following characterization: We say that H is a minor of G with |H| = k if there exists a
function µ : V → [k] that partitions the set of nodes into disjoint sets V =

⋃
· ki=1 Vi such

that, for each i, the graph G(Vi) is connected and for any edge e = uu′ ∈ E(H) there
exists a pair of nodes adjacent nodes vw ∈ E(G) such that µ(v) = u, µ(w) = u′. We call
such a function a model of H in G.

46

T (i)

M → ρi : adjiρi

Figure 3.1: An example of the proof given by Merlin in the protocol for H-minor. The
blue areas show each connected subgraph representing a node in the model for a K4. The
large gray nodes are the roots ρi at each component, to which Merlin sends a proof adjiof
the adjacency of the node they represent.

With this characterization in mind we proceed to describe a dM protocol using O(|H|+
log n) bits, where the O(log n) term arises from the construction of a spanning tree.
Therefore, by using Protocol 1.21 we obtain a three round private coin protocol using
O(|H|) bits.

Proposition 3.2 Let H be a fixed graph. Then, H-minor ∈ dAMpriv[3, |H|].

Proof. The message of the prover is divided into three parts:

1. An identifier idH(v) ∈ [k] denoting which of H’s nodes is represented by v, where
k = |V (H)|.

2. A pair of triples 〈ρ0, t0v, d
0
v〉, 〈ρi, tiv, div〉 containing information about the root, parent

and distance to the root in the spanning trees T of G and T (i) of G(Vi), when
idH(v) = i.

3. The vectors adjvi and labelv in {0, 1}k. With the former allowing the nodes to check
that the adjacency of i ∈ H is consistent with that of the neighbors of the i-labeled
nodes and the latter being used to check that no labels in [k] are repeated in different
components (verification that will be run by the root of each component).

Finally, each node locally checks the correctness of the main spanning tree, as well as
the trees of each component. For this, consider a node v in the main tree T , it collects the
sets accu = {j ∈ [k] : labelu[j] = 1} for all u that are children of v in T and checks that
they are pairwise disjoint. Now, if v has been assigned an index i ∈ [k] such that v = ρi,
it then checks that, in position i, the vector labelv has value 1 and the vector labelu has
value 0 for all u which are children of v in T .

From here we know that for each set the partition of V , there is a unique node labeled

47

as the root ρi for some i where they all have different labels. In order to check the vectors
adjiv, consider a tree T (i) and its root ρi. By the correctness of the vector labelρ0 , we have
that this tree is unique as there is a unique root. Now, it suffices to run another sum
protocol across the tree T (i) as follows: for any node v such that idH(v) = i, v first checks
that if there exists a node u among its children in the tree T (i) such that adjiu[j] = 1, then
its entry for j must also be 1. Then, v considers the set of entries that have value 0 for
all its children. For any entry k in this set, it checks that adjiv[k] has value 1 if and only
if there exists a node w in v’s neighborhood such that idH(w) = k. If this is correct, it
then accepts and, by a sum protocol, we have that adjiρi has the correct value among all
nodes labeled i, therefore a node accepts if and only if the entries in the vector match the
adjacency vector for i in H.

Protocol for H-minor
1. M→ v: The prover sends to each v its label i = idH(v), a spanning tree triple

for its label component 〈ρi, tivdiv〉 and the vector adjiv which lets it check the
adjacency of the label i up to the subtree T (i).

2. M→ v: The prover also sends to each v a spanning tree triple 〈ρ0, t0v, d
0
v〉 for

G and a vector labelv which keeps track of the number of component roots
assigned up to Tv for each label.

3. Local: Nodes check the spanning trees correctness, the roots ρi check that the
vector label is correct, and at each spanning tree, all nodes check that their
adjiρ is correct.

3.1.1 The Problem of H-freeness

In the H-free problem, our objective is to certify that a graph G has no copy of H as
an induced subgraph. This problem is relevant in both the centralized and distributed
setting because of the fact that many graph properties are related to the absence of
a certain local structure. It has been shown, by reductions to 2-party communication
complexity, that it can be "almost maximally hard", in the sense that for any integer k
there exists a graph H with k nodes such that, to solve H-freeness, even with the help
of non determinism or randomization, it would require Ω(n2− 1

k) rounds of interaction in
the Congest model [FGKO18], which naturally gives us the exact same lower bound for a
proof size in the dM model.

However, several results have appeared in the distributed setting for specific cases such
as triangles [ILG17], large cycles [FGKO18], trees [EFF+17] and many others both in the
Congest model and its fully connected sibling, the Congested Clique model.

Depending on the graph H to be selected, several structural results arise that may
be used to our advantage. We start by studying the class of graphs that have no P3 as
an induced subgraph, which turns out to be a disjoint union of cliques, sometimes called
cluster graphs. As we start by assuming that our configuration network is connected, this

48

class reduces to the clique class.

3.2 Clique

As previously described, for the problem clique we have an n-node graph G and we wish
to check if all nodes are connected with each other. If we are allowed to obtain a leader
(and therefore a root for a tree), we can solve this problem directly by allowing all nodes
to check that their degree matches the size of the graph and comparing such a value to
their neighbors.

Proposition 3.3 clique ∈ dM[log n] and dAMpriv[1].

A trivial algorithm is a dM protocol with cost O(log n) in order to compute n(G) and
compare it with the degree of each node. Indeed, the prover sends a spanning tree triple
〈id(ρ), dv, tv〉 to each node, along with the total size of the graph n(G) which the nodes
verify by means of a sum check protocol: A node v computes the size of the graph up
to a subtree rooted at v, by comparing this number to the one in its children’s subtree.
From here, they can easily check that the spanning tree is correct, as well as the sum at
each level. Then, they accept iff the size of each node’s neighborhood is n(G)

Protocol for clique
1. M→ v: The prover sends to each node v a spanning tree triple 〈id(ρ), dv, tv〉,

the size of the graph n(G) and a partial computation of this value up to the
subtree Tv.

2. Local: The nodes check that they all have the root of the tree as a neighbor,
that they have n(G) neighbors and that the computation of n(G) is correct.

Now, it is easy to show that, using randomness, the cost can be greatly reduced.
Indeed, consider the following protocol: each node draws a single bit bv and sends it
to the prover. Then, Merlin answers to each node v with the sum of all bits drawn in
its closed neighborhood, that is, sv =

∑
u∈N [v] bu. At the verification round, each node

broadcasts to its neighbors its value for sv. Finally, all nodes accept depending on whether
they all received the same value for sv.

Completeness. If the graph is indeed a clique then naturally all nodes will have
the same value for sv as sv =

∑
v∈G bv and therefore all nodes will accept.

Soundness. If the graph is not a clique then there exists a pair of adjacent nodes
u, v such that N(u) 6= N(v). Then, the probability that the values for su and sv
match is exactly 1/2. Therefore, if we run several repetitions in parallel of this
process we can make this value arbitrarily small.

From here we have that from a dM protocol with costO(log n), we can easily go down to
a constant cost by an addition of a single round of interaction, which is merely a restriction

49

of our model as the protocol can be set to work in the (broadcast) Congest model with
randomization. Yet we think that clique is an interesting problem to consider as it is a
natural question for the nodes to check that they are all connected, and which we would
expect to have a lower bound of Ω(log n) for a single round of interaction. However, we
have not been able to obtain such a bound, as all lower bound results we will study later
in Section 4.3 rely on the fact that the graph admits a small cut. It is therefore an open
question to obtain such a bound or make use of the high connectivity of the network to
our advantage for achieving a smaller message size.

3.3 Cograph

Following our interest in the detection of forbidden structures we study the cograph
class. In this problem we are given an n-node graph G and we wish to check that it has no
P4 as an induced subgraph. Cographs often appear in the literature related to algorithmic
graph theory as many different (hard to compute) graph parameters (such as the maximum
clique size, chromatic number, treewidth, etc) can be computed efficiently [BS+99] when
the input is restricted to cographs. This class has been recently studied in the Congested
Clique model, where a public-coin broadcast algorithm was obtained [KMRS15], as well
as a private-coin reconstruction result [MPSRT18] in the same model.

An advantage of this graph class is that it admits other characterizations that may
be useful for local verification. Another equivalent definition states that cographs are the
graphs which can be obtained recursively following three rules: (1) A single node is a
cograph, (2) the disjoint union between two cographs is a cograph and (3) the join of
two cographs is a cograph. This result, while not easy to verify by itself, proves useful
when combining its structural properties with other characterization. We define a twin
ordering as an ordering of the nodes V = {vi}ni=1 such that, for each j ≥ 2, vj has a twin
in G(v1, ..vj).

Proposition 3.4 (by [KMRS15]) Given a graph G the following are equivalent:

1. G is a cograph.
2. Each non trivial induced subgraph of G has a pair of twins.
3. G is P4-free.
4. G admits a twin ordering.

In order to describe a protocol, we first show a way to distribute the proofs received by
the network in such a way that we can centralize the verification process, by considering
properties of cographs related to their connectivity.

Remark If G is a connected cograph, then it can be written as the join between two
cographs G1, G2.

50

a
d

e
xf

cb

(1, e)

(3, f)

(4, a)(7, f)

(6, f)

(2, x) (5, a)

Figure 3.2: A cograph with labels according to a twin ordering. The first entry represents
the step at which they are removed, while the second entry indicates the node’s twin at
such step

Lemma 3.5 Given a connected n-node cograph G, it is possible to construct a spanning
tree T of depth two, such that each node at the first level has at most one child.

Proof. As G is connected, as per the previous Remark, it follows that G can be obtained
from the join of two smaller cographs G1 and G2. Then, let G1 be the one with at least
n
2
nodes. Consider now ρ ∈ G2, the root of the tree T to be constructed. It follows that

ρ has all of G1 as neighbors. Then, for each node in G1, we set ρ to be its parent in T .

Finally, we have that, Ĝ = G(G1, G2 − ρ), this is, the bipartite graph obtained by
considering only the edges between G1 and G2, is a complete bipartite graph, with n(G2−
ρ) < n

2
. Therefore, by Hall’s theorem it follows that there exists a matching M between

both sides of Ĝ such that all nodes in G2 − ρ have a match. Thus, for u ∈ G2 − ρ, we set
its parent in T to be its match m(u) in G1. The lemma follows.

By the previous lemma, we know that for any two round protocol P over a cograph
G with cost Ω(log n) bits, we may assume, without loss of generality, that there is a root
ρ with access to all coins and messages received by the whole network: Simply construct
such a spanning tree, by choosing the root ρ in a standardized manner (a bipartite graph
can be easily constructed and verified, and ρ can be chosen to be the node in G2 with the
smallest identifier). Then, it suffices to assign to each node u of depth one in the spanning
tree, both its proof and the proof received by its child w, along with the random coin it
drew. Finally, the nodes can locally verify the consistency of this message and the root
will have received the entirety of messages in the network.

Lemma 3.6 On any connected cograph, there exists a node ρ which can be assumed to
receive all certificates in a dAM protocol with cost L by including an additive cost of
O(log n).

51

An advantage of this procedure is that we may simulate any protocol in the Broadcast
Congested Clique model (by using the root ρ as referee) by either using one round (if it
is deterministic) or two rounds (either with public or private coins). From here it follows
that we can use the public coin protocol by [KMRS15] to recognize cographs, therefore
constructing a protocol for cograph detection in two rounds of interaction and O(log n)
bits. That is, cograph ∈ dAMpub[log n].

We now describe the protocol for the sake of completeness.

Definition 3.7 Given a cograph G = (V,E), we can define its canonical order as follows:

We start by choosing the smallest pair of twins, that is, those with the smallest identi-
fiers in lexicographic order (which we know to exist by Proposition 3.4, second property).
Next, we choose and remove the smallest node from this pairing. Then, we repeat this
process by finding another pair and removing one of its members until we end up with a
single node.

Let p be a prime and φ = (φw)w∈V be a family of linearly independent polynomials in
Fp[x]. Given w ∈ V we define, qw =

∑
w′∈N(w) φw′ and q̄w = qw + φw. We also define the

derivated polynomials of φ as the collection

αu,v = φu − φv βu,v = qu − qv, γu,v = q̄u − q̄v, u.v ∈ V

Now, given a pair of twins u and v, we assign to G − v the collection of polynomials
{φ′w}w∈V−v defined as

φ′w =

{
φw if w 6= u

φu + φv if w = u

With this construction, from φu(x) = xid(u) it is possible to construct a sequence of
polynomials φiu for i ∈ [n] according to the canonical order {vi}ni=1 and u in the graph G−
{vj}nj=i+1. We call these functions the basic polynomials of G. And so the canonical family
of polynomials of G is defined as the union between its basic and derived polynomials. It
follows that this family of functions has at most 3n3 elements.

Definition 3.8 We say that a vector m = ((aw, bw))w∈V ∈ (Zp)2n is valid for G in t ∈ Fp
if there exists a family of linearly independent polynomials (φw)w∈V in Fp[X] such that
aw = φw(t) and bw = qw(t) for each w ∈ V .

Lemma 3.9 Let m = ((aw, bw))w∈V ∈ (Zp)2n be a valid vector for G in t. Consider u, v
to be a pair of twins in G such that au 6= av. Then, the vector m′ = ((a′w, b

′
w))w∈V−v ∈

(Zp)2n−2 is valid for G− v in t, where its coordinates are given by

(a′w, b
′
w) =

{
(aw, bw) if w ∈ V − {u, v}
(au + av, bu − avδuv) if w = u

where δuv equals one if and only if au + bu = av + bv

52

Proof. Let (φw)w∈V be a family of linearly independent polynomials associated to m.
Given that u are v are twins and au 6= av it follows that au + bu = av + bv if and only if u
are v adjacent. Therefore, δu,v = 1 iff u are v are adjacent.

Let now (φ′w)w∈V−v where φ′w = φw for all w 6= u, and φ′u = φu + φv. It is clear that
this family is linearly independent.

For w 6= u we have that a′w = aw = φw(t) = φ′w(t). Also, b′w = bw and bw = qw(t).
Now, as u v are twins either both nodes are in N(w) or neither u nor v are. In both cases
it follows that b′w = q′w(t)

By definition we have that a′u = au + av = φu(t) + φv(t) = φ′u(t) and b′u = bu − δuvav.
As bu = qw(t) = δuvφv(t) + q′w(t) , we finally have that b′u = q′w(t).

With this lemma now me can proceed to describe the protocol

Theorem 3.10 For any c > 0 we have that cograph ∈ dAM1/nc [log n]

Proof. Let G = (V,E) be an n-node graph. Without loss of generality we may assume
the graph has identifiers in [n] as, following Lemma 3.5, it is possible to implement a
permutation protocol in a single round: Merlin sends to each node v an identifier
īd : V → [n] and the root, by receiving all proofs according to Lemma 3.6, can see that
they all received distinct identifiers which are consistent with their original ones.

Let p be a prime such that 3nc+4 ≤ p ≤ 6nc+4. The protocol is the following: All nodes
collectively generate a seed t ∈ Fp uniformly at random. Then, Merlin sends to each node
w a message mw such that m = (mw)w∈V is a valid vector for G at t. Each node then
defines φw(x) = xīd(w) and computes the message provided by Merlin.

After the nodes exchange messages, once again following Lemma 3.5 the root ρ will
own a vector m ∈ F2n

p . From here, the root repeats the following procedure at most n− 1
times trying to construct a canonical ordering {vi}ni=1 for G.

At step i, it starts at graph Gi and a vector mi ∈ F2(n−i+1)
p (where G1 = G and

m1 = m) and looks for a pair of nodes u, v in Gi such that aiu 6= aiv and either biu = biv or
aiu + biu = aiv + bib.

Then it chooses, among all pairs it has found, the first of these in lexicographic order.
If no such pair exists, then he rejects. On the contrary, he defines Gi+1 = Gi − v, and
setting vn−i+1 = v (without loss of generality we assume that id(v) < id(u)). Then the
root computes mi+1 from the previous vector mi following Lemma 3.9. If the root reaches
step n− 1 then he accepts.

Completeness. & Soundness. It follows then that as the messages depend on the

53

original identifiers and the root ρ has access to all messages, then both acceptance
errors depend solely in the BCC construction. Now, by Lemma 3.9 it follows that
the only point at which the protocol might fail is if the chosen t turns out to be a
root for any of the polynomials in the canonical family from Definition 3.7. Then,
as there are at most 3n3 such functions with degree at most n , we have that the
acceptance error is at most 3n4/3nc+4 = 1/nc and the theorem follows.

This protocol improves on the result on the NPY compiler: Given that cographs can
be recognized in linear time [DHP01], its use would provide a protocol using private
randomness and three rounds of interaction. As the class of cographs contains graphs
with a large set of edges, the protocol obtained by the compiler can have a cost up to
O(n log n), which is a large gap in comparison to this protocol.

Given the correctness of this proof, and the fact that it uses two rounds in order to
simulate the randomness in the BCC model, the next question would be if there exists
either a dM protocol, or a one round deterministic protocol in the BCC model, which
would imply a protocol for our model following Lemma 3.5. Indeed, we can not provide
a sub linear one round protocol for this problem (the proof that cograph ∈ dM[n] is
trivial) and currently there are no known deterministic BCC protocols for the cograph
class. Yet, we take note of the following corollary which may be of interest, in case that
there exists a positive result:

Corollary 3.11 Any (non deterministic) protocol for cograph in the BCC model with
cost L would imply a dM protocol with bandwidth L+O(log n).

This adds a new perspective either for the search of protocols (we can simulate any non
deterministic protocol in the BCC model following Lemma 3.5) or the search for negative
results in our model in a future work, implying lower bounds in the BCC model.

A dMAMpub protocol for cograph

Now, we proceed to describe a way to change the verification routine for our protocol
so that it can be done in a distributed manner. This will be done using three rounds
of interaction so that this new protocol can be adapted for the class dist-hereditary
which will appear in the following section.

Notice that for the protocol in Theorem 3.10, the verification process is done by the
root as it prunes the graph for n−1 steps. This leads to an order by which the nodes were
selected which we call the canonical ordering. For this ordering and a node v, consider the
predecessor of v, denoted by ant(v), to be v’s neighbor whose value for π(·) is immediately
after that of v among its neighbors. With this, for distributing the verification process,
Merlin provides each node v with an ordering π(v) (which the nodes will verify in parallel
through rounds 2 and 3 by means of the permutation protocol), along with:

54

1. The id of v’s twin at step πv of the computation, denoted by twin(v).

2. The id of ant(v) according to π.

3. The id of the predecessor of twin(v) according to π. That is, ant(twin(v)).

4. The number of v’s neighbors that claim to have v as their twin according to the
order π, which we denote by #v

The nodes (collectively), set a finite field Fp, with p = poly(n) sufficiently large, and
send a seed t ∈ Fp. Then, Merlin proceeds to answer with the two coordinates (av, bv)
belonging to v in the original valid vector m described in Theorem 3.10, as well as the
two coordinates belonging to v in the vector that the root would have obtained at step
πv of the computation, which we denote by (aπv , b

π
v).

Finally, at the verification round, all nodes start by computing their canonical family
of functions, and therefore their values for av and bv, rejecting if these do not match.

Fix a node v. The node ant(v) has the role of checking that, first, there are exactly
#v nodes u such that twin(u) = v at some step of the computation which know ant(v)
to be v’s predecessor (otherwise they would reject, as ant(v) is unique) and, second, the
valid vectors (aπu, b

π
u) match v’s vector at the step u is pruned off, after which v’s vector

is updated according to Lemma 3.9. This goes on until until arriving at vector aπv , bπv .

More precisely, the node ant(v) sorts each of the nodes who have v as a twin according to
their value for π(·). Let this ordering be w1, . . . w#v(v). Now suppose we are at step i of the
computation and let (aiv, b

i
v) be the pair of v′s coordinates at step i with (a1

v, b
1
v) = (av, bv).

Then, ant(v) compares the value for aiv+biv with aπwi +bπwi (if wi is assigned as a true twin)
and rejects if they differ. Otherwise, it sets (ai+1

v , bi+1
v) = (aiv + aπwi , b

i
v − aπwiδvwi) (where

δv,wi = 1 if and only if v and wi are adjacent) and proceeds to step i+ 1.

Finally, at step i = #v it checks that (ai+1
v , bi+1

v) = (aπv , b
π
v). and accepts if these values

are equal and reject otherwise. Now, we prove the correctness of this protocol.

Completeness. & Soundness. Notice that, under the correctness of the per-
mutation protocol, we can assume with high probability that π(·) values are all
distinct as otherwise some node would reject. Now, fix a node v, and consider its
predecessor ant(v), according to the ordering π. Any node that claims to have v as
its (true or false) twin must have ant(v) as a neighbor. Therefore, he is aware of all
nodes that have to be present in the computation of (aπv , b

π
v) as otherwise he would

reject. Then, as for the computation of the twin ordering by the root in the original
protocol, we have that for each node v the values (av, bv) are only updated when it
is either deleted from the graph, or when it is twin of a node in some higher layer.
Therefore, the computation for each of these values can be done in a distributed
manner, as the only information we need are the proofs received by the nodes that
have v as their twin. As ant(v) receives all these messages, it can check the cor-
rectness of v’s vector. And so we have, by an inductive proof, that for each node
v, the value of its coordinates at point πv are correctly computed with the same

55

probability as that in the original protocol. Then, the graph either fails to find such
an ordering or accepts a false ordering with probability at most 1/nc.

3.4 Distance Hereditary

As a consequence of the protocol described for cographs, it is possible to derive an inter-
active protocol for another graph class which admits a similar construction. A graph G is
said to be dist-hereditary if for any induced subgraph H ⊆ G and any pair u, v ∈ H
we have that dH(u, v) = dG(u, v). That is, any induced path between a pair of nodes is a
shortest path. This class of graphs has not been previously studied in the distributed set-
ting, yet it is an interesting problem to consider as it appears frequently in Port Routing
problems [CDSF01] and may be used for other routing schemes.

A relevant (more related to what has been discussed) characterization for this class is
the following.

Proposition 3.12 ([BS+99]) An n-node graph G is said to be distance hereditary iff
there exists an ordering {vi}ni=1 such that, for any i ∈ [n], either there exists j < i
such that vi and vj are twins in Gi = G(v1, ..vi) or vi is a pending node at Gi.

That is, any distance-hereditary graph can be constructed by sequentially adding twins
or pending nodes.

Using this result, we can construct a dMAMpub protocol for this class by adapting
the protocol for the cograph class from Theorem 3.10 with some small adjustments.
While we can not delegate the verification routine to a single node (as distance-hereditary
graphs can have arbitrarily large diameter), we can distribute the verification process by
letting different nodes check different steps of the computation. As the rule described in
Lemma 3.9 for pruning the graph involves only the pair of twins at each step, we only
need to find nodes that, for a fixed node v, can receive all the proofs sent by v, its twins
and its pending nodes.

First, in order to prune the graph in this new setting, we need a rule for pruning
pending nodes from a graph and updating the vectors of each node accordingly. Once
again, we use the definition of a valid vector as described in Section 3.3.

Lemma 3.13 Let m = ((aw, bw))w∈V ∈ (Zp)2n be a valid vector for G at some point t.
If u ∈ G has v as a leaf adjacent to it, then, the vector m′ = ((a′w, b

′
w))w∈V−v ∈ (Zp)2n−2

is valid for G− v in t, where the coordinates of m′ are given by

(a′w, b
′
w) =

{
(aw, bw) if w ∈ V − {u, v}
(aw, bw − av) if w = u

56

Proof. If {φw}w∈V is a family of linearly independent polynomials associated to m, we
can use this family and, as v was only connected to u, it follows that b′u = bu − av =
qu(t)− φv(t) =

∑
w∈N(u)−v φw(t) = q′u(t).

Combining both rules from Lemmas 3.9 and 3.13, we can establish the following:

Theorem 3.14 dist-hereditary ∈ dMAMpub[log n].

Proof. We simply need to check that, given an ordering π (which we can compute by
use of the permutation protocol) we can compute the coordinates for a valid vector at
each step of the computation by delegating this information to the correct nodes. Indeed,
for each node v, we define twin(v) to be the node assigned as its twin, ant(v) to be its
predecessor according to the definition of the previous section, Twins(v) to be the set of
nodes u such that twin(u) = v and Pending(v) to be the set of nodes that have v as their
unique neighbor according to π. First, Merlin sends, to each node v, a set of messages
similar to those described in Protocol 3.3, that is

1. Its position in the ordering π given by πv.
2. The id of the unique neighbor which is immediately after it at π, which we denoted

by ant(v).
3. If v is removed from the graph as a pending node

a. The id of the node to which v is a pending node, denoted by pending(v).
4. If v is removed from the graph as a twin,

a. The id of v’s twin at step πv of the computation, denoted by twin(v).
b. The id of ant(twin(v)), i.e. the id of the predecessor of the twin of v according

to π.
5. The number of neighbors u of v such that twin(u) = v according to π, denoted by
|Twins(v)|.

This set of certificates, while similar to those in the previous section, are not sufficient.
By receiving these certificates, ant(v) can collect all proofs received by each node u with
twin(u) = v yet we cannot follow the same decomposition in order to check that the pair
(aπv , b

π
v) is correct. Indeed, the nodes in Pending(v) are not adjacent to ant(v), so ant(v)

can not see these proofs.

To fix this, Merlin will distribute a set of proofs between v and those in Twins(v). First,
Merlin sends to v:

6. The number of nodes u such that pending(u) = v, that is, |Pending(v)|.
7. The id of the node u ∈ Pending(v) with the smallest value for π(·), denoted by

m-leaf(v), as well as πu.

Now, fix some node u such that twin(u) = v. Then, Merlin sends to u

8. The id of the node in Twins(v) whose value for π is immediately after π(u), denoted

57

by co-twin(u).
9. The number of nodes in Pending(v) with values for π between those for u and

co-twin(u).

n 1

v uco-twin()uant()v

πv

Twins(v)

Pending(v)

Figure 3.3: Visualization of ant(v) and the sets Pending(v) and (v) for some node v: the
neighbor ant(v) sees all nodes in (v), which are the nodes u that are assigned as twins
of v. If we order these according to π, there may have nodes in Pending(v) positioned
between them.

After this first interaction, all nodes (collectively) send a seed t ∈ Fp, with p = poly(n)
a prime number to be defined accordingly. From here, Merlin answers to each node v with
the following set of messages. First, he sends (in the same way as in the previous proce-
dure) the pair of coordinates (av, bv) which belong to v at the start of the computation,
as well as the pair he would have sent at step πv of the computation, denoted by (aπv , b

π
v).

Then, he sends the value P (v, t) =
∑

u∈Pending(v) φu(t) which is an encoding for the set of
v’s pending nodes according to t. Finally, if v is assigned as a twin, with twin(v) = u,
Merlin sends the message

∑
w∈S(v) aw. Where we define the set S(v) as

S(v) = {w ∈ Pending(u) : πco-twin(v) > πw > πv},

that is, the set of pending nodes connected to v’s twin such that they appear between
twin(v) and co-twin(v).

Finally, at the verification round, the nodes exchange their certificates and they try to
collectively compute the correct values for (aπv , b

π
v) as follows: First, each node checks that

its original values for the pair (av, bv) are correct, along with the size of its set of pending
nodes Pending(v) and ant(v). Now, if v is assigned as a leaf, it simply checks that it is
adjacent to pending(v) and that it is the only neighbor with a larger position at π. If v
is assigned as a twin instead, with u = twin(v), it delegates this verification to the node
ant(u) in a similar manner as that of Protocol 3.3, with the following modifications.

First, the node ant(u) compares the number of nodes adjacent to it which are assigned
as twins of u with the size of the set Twins(u) sent by Merlin. Then, it sorts the nodes in
Twins(u) in increasing order according to π , and name them w1, . . . w|Twins(v)|. For each i,
it checks that co-twin(wi) = wi+1. The only issue we are left to determine is the values for
P (i, t) := P (wi, t). That is, the encoding for all pending nodes that lie between wi and
wi+1 for i = 1, . . .Twins(u), where we set wTwins(u)+1 = u. We can assume that we know
the encoding for any pending node that occurs before w1 as they can be checked by u and
sent to ant(u) during the verification round. This is because Merlin can send to node u
the position of the first node which has u as a twin.

To obtain P (i, t), we simply need to show that ant(u) is able to partition the set
Pending(u) (and its encoding) into groups according to their positions in the permutation

58

1.

2.

3.

4.

5.

6.

7.

8.

9.

v5
5

v6

⊥
v9

(t, v6)

(̄t, v7)(t, v7)(t, v9)

(p, v9)

(t, v9)

(p, v9)

(p, v10)

(∗)

0

1

v1

v3

v7

1

v3

(p, v5)

v10

v9

v8

v7

v6

v5 v4

v2

Figure 3.4: An example of a first round of interaction for a fixed node v5. Given a
distance-hereditary graph, each node is identified according to their ordering π and labeled
depending on the way they are removed from the graph. The first entry shows whether
some node is a false twin (t), a true twin (̄t) or a pending node (p), with the second entry
showing its assigned node on each of these cases. A list of all certificates sent by Merlin
to v5 according to the previous list is included.

in-between nodes assigned as twins. Indeed, as ant(u) knows the size of Pending(u) ,
it simply needs to sum the number of pending nodes that appear between wi and wi+1

according to wi from message (9). We know that these value are correct. Each wi can
count them (it knows that wi+1 = co-twin(v)). Thus, ant(u) computes the size of the
parts of Pending(u) according to the collection {wi}i. If these values do not match the
size of Pending(u), it simply rejects.

Finally, as ant(u) knows that the partition is correct, it simply considers the values for
P (i, t) provided by wi and computes the values for (aiv, b

i
v) at each step of the computation:

At step i, it obtains a pair (āiv, b̄
i
v), it compares its sum with that of (aπwib

π
wi

) and rejects
in case these values are not equal. Then, in order to obtain (ai+1

v , bi+1
v) it follows the rule

from Lemma 3.9, deletes Pi(t) from bi+1
v and goes to the next step. At the end of this

computation, it remains to check whether the obtained pair equals (aπv , b
π
v), and accept or

reject accordingly.

Completeness. An honest prover will provide the nodes with the correct ordering.
Then, as we have described above, the nodes compute the correct values for each of
their coordinates in a valid vector.

Soundness. If G is not distance hereditary, because of the permutation proto-
col, we have that Merlin should provide a correct ordering with high probability.
Therefore, it remains to check that π satisfies the above properties. Indeed, each
v which is assigned as a leaf, trivially computes it has a unique neighbor with a
higher value for π that matches pending(v) and therefore it accepts. For any node
v we have that ant(v) should compute that the pair sent to v is correct at each

59

step of the computation and that all nodes u such that twin(u) = v are correct.
We have that the values for the set of pending nodes in-between nodes assigned as
twins is correctly computed as described above. Moreover, for a valid pair which
has not been correctly computed at some step of the computation, it should occur
that the seed t is bad for some canonical polynomial. A this family of functions is
polinomially bounded beforehand, we have that at least one node should reject with
high probability.

This improves on the result obtained by direct use of the NPY compiler (Distance-
hereditary graphs can be recognized in linear time [DHP01]) which implies a three round
protocol with cost O(n log n). Observe that cographs are a subclass of the class of
Distance-hereditary graphs). On the other hand, we obtained a protocol with cost
O(log n).

3.5 Detection of Triangle-free Graphs

The recognition of triangle-free graphs plays a central role in graph algorithms in the
distributed setting as, for several graph problems, efficient algorithms are known for
triangle-free graphs [HRSS14, PS15]. Its verification has been largely studied, and re-
cent sub-linear protocols in the Congest model have been achieved in [ILG17], as well as
proofs of the hardness of obtaining lower bounds when nodes are allowed to send different
messages trough each channel [EFF+19]. Other results include protocols which use ma-
trix multiplication techniques in the Congested Clique model [CHKK+19] and a dMApub

protocol based on a 2-party protocol for the problem disjointness [FMO+19].

Despite its highly local nature, obtaining concise protocols in the dM model has proven
to be rather difficult. In this section, by assuming the nodes know the identifiers of its
neighbors, we show a distributed interactive proof with sub linear cost for this problem
by extending the protocol of Crescenzi et al. [CFP19], which is in itself an adaption of
a protocol for the disj problem in the 2-party MA model, obtained by Aaronson and
Wigderson [AW09]. Assuming that the nodes know their neighbors beforehand is not a
big obstacle to our model, as we show how to adapt it to our model by simply adding an
extra round of interaction.

In order to prove our result, we begin by describing a simpler version of the protocol
using four rounds of interaction and O(n

1
3 log n) bits of bandwidth. Then, we proceed to

describe the general case.

Four rounds of interaction

We start describing a simplified version that uses four rounds of interaction, where the last
round corresponds to a randomized verification process. Every node v creates a polynomial
on three variables ψv(x, y, z) that encodes its neighborhood, from which it can obtain a
function Ψv(x) which encodes its participation in a triangle. As this function depends

60

also on the vicinity of its neighbors, it can not obtain it right away, as they would have
to send very large messages. Yet, the nodes can have Merlin provide such functions and
then convince them of their correctness with high probability. For this, in the next round
the nodes will (collectively) choose some random value r for the first variable of ψv, after
which Merlin is required to send a partial construction of Ψv, setting x = r. Finally,
in the verification round the nodes choose a second value r̄ at random for ψv’s second
variable, by which they can now send the function ψv(r, r̄, z). With these values in mind,
the nodes can now construct the value for Ψv by comparing its value at a random point to
the function τv that Merlin previously committed to. We show that, in case that Merlin
would have lied, then the nodes can detect an error with high probability and therefore
can correctly compute Ψv.

If there is a node that participates in a triangle, with high probability it would have
a point in its polynomial whose value is non-zero and one of the nodes would therefore
reject.

Proposition 3.15 If the nodes know the identifiers of their neighbors, then ∆-free ∈
dMApub[4, n

1
3 log n].

Proof. Without loss of generality, we may assume that the nodes have identifiers in [n], as
in three rounds we can run a permutation protocol in parallel where nodes are assigned
such identifiers and may verify that they are all distinct. Also, we may assume that n(G)

1
3

is an integer, as otherwise we take n̄ = (ceil(n
1
3))3, where ceil(·) is the ceiling function.

With this, the nodes can identify each identifier in [n] with elements in [n
1
3]× [n

1
3]× [n

1
3].

Before the protocol starts, each node represents its neighborhood N(u) as a function
ψv : [n

1
3]3 → {0, 1} where ψv(i, j, k) = 1 if and only if there exists a u such that id(u) is

identified with (i, j, k) and u ∈ N(v). These functions can be extended to a polynomial
ψv : F3

q → Fq with q = Θ(poly(n)) with degree n
1
3 − 1 [CLF12]. Using this, we can define

a polynomial Ψuv = ψu · ψv that represents the intersection between N(u) and N(v). In
fact, N(u) ∩N(v) = ∅ if and only if Ψuv(x, y, z) = 0 for any (x, y, z) ∈ [n

1
3]× [n

1
3]× [n

1
3].

Notice that these polynomials have degree bounded by (2n
1
3 − 2).

We also have that u does not participate of any triangle if and only if Ψuv(x, y, z) = 0

for all v ∈ N(u) and all (x, y, z) ∈ [n
1
3]3.

Finally, we define the functions

Ψu(x) =
∑

v∈N(u)

∑
y,z

Ψuv(x, y, z)

τu(x, y) =
∑

v∈N(u)

∑
z

Ψuv(x, y, z)

Both polynomials have degree at most 2(n
1
3 − 1) and have the following property: a node

u does not participate in any triangle if and only if Ψu(x) = 0 for any x ∈ [n
1
3]. This

61

occurs because, by extending the original function φu each term in [n
1
3] for the sum in Ψu

can be at most n · n 2
3 . Therefore, by considering q > n2, we have that q is strictly larger

than all values for Ψu.

Now we proceed to describe the protocol:

In the first round, Merlin sends to each node u a function Φu : Fq → Fq of degree
O(n

1
3) which is a candidate for Ψu. Then, the nodes collectively send (that is, by use of

shared randomness) a seed r ∈ Fq. In the first round Merlin sends O(n
1
3 log n) bits while

in the second one the nodes send O(log n) bits.

In the next round, Merlin sends to each node the function τ ru(y) which is a candidate
for τu(r, y). This once again requires Merlin to send O(n

1
3 log n) bits.

Finally, during the verification round, the nodes collectively generate a second seed r̄ of
O(log n) bits, locally construct a function ψu(r, r̄, z) and send it to their neighbors. With
this, each node u reconstructs the value of τu(r, r̄) and compares it to τ r(r̄), rejecting in
case that these values differ.

Then they proceed to construct
∑

y τ
r
u(y) and compare it to the value of Φu(r). Once

again they reject in case that these values are different. If u has not rejected so far, they
continue to evaluate Φu(x) for x ∈ [n

1
3] and accept if and only Φu vanishes at each of

these values.

Completeness. It follows that if G has no triangles then an honest prover will
send the functions Ψu and τ(r, u) accordingly and therefore all nodes will always
accept.

Soundness. Suppose that G contains a triangle. We have that each node will
construct τu(r, r̄) and, if Merlin sent a polynomial τ ru(y) that does not match τu(r, y)
then, as he already committed to a value for r, with probability 1

nc
(where can choose

c > 3 to be arbitrarily large) its valuations in r̄ must differ and u rejects. Then,
with high probability we can assume that each node u is able to construct the right
value of Ψu(r) and compare it to Φu(r). Once again, if Merlin was not honest then
the probability that Ψu(x) matches Ψu(x) in r for some node is at most 1/nc−7/3.

It follows that ∆-free ∈ dMApub[4, n
1
3 log n].

Extension to multiple rounds

Now we go over the description of the full protocol. In a similar fashion as previously
described, a node v will encode its neighborhood (and the intersection between those
of its neighbors) by a k + 1variable polynomial Ψv which he doesn’t know right away,
as obtaining its full description would require him to send large messages, but tries to
reconstruct it by a series of partial evaluations τ iv provided by Merlin, where at each

62

round Merlin commits to a certain value for a variable in this function. After all 2k
rounds occur, the only thing that v is sure of is that he computed the right value for
Ψv when he evaluates it at all random values already sent, if all these evaluations are
consistent to the previous information he is assured that the function provided by Merlin
is the right one, therefore he will decide depending on the values provided by it.

Theorem 3.16 Let k ≥ 2 be an integer. If the nodes know their neighbors’ identifiers,
then ∆-free ∈ dMApub[2k, n

1
k+1 log n].

Proof. Once again, we may assume that the nodes have identifiers in [n] which can be
seen as elements from [n

1
k+1]k+1.

Then, the nodes define the functions ψu,Ψuv : Fk+1
q → Fq analogously to Proposi-

tion 3.15, where nc ≤ q ≤ 2nc, with c to be chosen arbitrarily large. Finally, for i ∈ [k]
they define the functions τ iu as:

Ψu(x1) =
∑
xj :j>1

∑
v∈N(u)

Ψuv(x1, . . . xk+1)

τ iu(x1, . . . xi) =
∑

v∈N(u)

∑
xj :j>i

Ψuv(x1, . . . xk+1)

where all these polynomials have degree at most 2(n
1
k+1 − 1) and we notice that τ 1

u = Ψu.
It also holds that u does not participate of any triangle if and only if Ψu(x1) = 0 for all
x1 ∈ [n

1
k+1].

With this we can describe the protocol:

In the first round, Merlin sends to each node u the function Φu which is a candidate for
Ψu. Then, consider round 2`, for ` ∈ [k−1]. Arthur sends a seed r` of O(log n) bits. From
this message, Merlin proceeds to answer to each node with the functions τ̂ `+1

~r (u, x`+1),
with ~r = (r1, . . . r`), corresponding to a candidate for the polynomial τ `+1

u (r1, . . . , r`, x`+1).

At last, in round 2k, Arthur generates a seed rk and, during the verification round,
each node sends ψu(r1, . . . , rk, xk+1), which has degree at most n

1
k+1 − 1.

Now, locally, each node u constructs Ψuv(r1, . . . , rk, xk+1) and, summing over v ∈ N(u)
and over xk+1, it constructs τ ku (r1, . . . rk) comparing it to τ̂ k~r (u, rk). and accepting if these
values match and rejecting otherwise. Afterwards, for each ` = 1, . . . k− 1, each u verifies
that

τ̂ `~r (u, r`) =
∑
x`+1

τ̂ `+1
~r (u, x`+1)

and rejects otherwise, where we denote τ̂ 1(u, r1) = Φu(r1).

If all these equalities hold, then node u accepts if and only if Φu(x1) = 0 for each
x1 ∈ [n

1
k+1].

63

Completeness. It follows that if G has no triangles, an honest Merlin will send
for each ` the correct τ `, the same as Ψu, for which all nodes accept.

Soundness. During the local verification round, each node u will reconstruct the
right value of τ ku (r1, . . . rk). Therefore, given that Merlin has already committed to
values for r1, . . . rk−1, if Merlin was not honest at the last round, the probability that
his function evaluated at rk matches τ ku (r1, . . . rk) for some node u is bounded by
1/nc−

k+2
k+1 . Therefore, we may assume that Merlin provided the functions the nodes

requested during the last round.

Now, set any ` ∈ [k−1], and suppose that τ̂ `+1
~r (u, x`+1) equals τ `+1

u (r1, . . . , r`, x`+1) in
Fq. Then, it follows that if u sums up over the values of x`+1 then

∑
x`+1

τ̂ `+1
~r (u, x`+1)

matches the real value of τ `u(r1, . . . , r`). Now, given that Merlin has already commit-
ted to the values for r1, . . . r`−1, if Merlin were to send τ̂ `~r (u, x`) 6≡ τu(r1, . . . r`−1, x`),
then the probability that their values match is bounded by 1/nc−

2k+3
k+1 . In the event

that Merlin was honest at each phase of the protocol, then, if G has a triangle there
will exist a node u for which Φu(x

∗) 6= 0 at some point x∗ and therefore rejects the
protocol.

We can see that this improves the result by [CFP19] which is a dMApub with cost
O(
√
n log n) and required all nodes to have identifiers in [n], something that we can bypass

by the use of more rounds. It is also interesting to compare to the protocol for the Congest
model for triangle detection, which requires O((n log n)2/3) rounds of communication.
However, we are unable to improve the cost obtained by the compiler from [NPY20] in
combination with Theorem 1.16 as it obtained a (non-constructive) protocol for triangle
detection using O(1) rounds and bandwidth O(log n) as it is a class which can be easily
detected using logarithmic space. Regardless, the fact that our protocol uses shared
randomness (while the one by the NPY compiler uses private randomness), indicates that
this is still an improvement over what is currently known, as dAMpriv protocols can be
stronger than dAMpub protocols (we refer to Section 5.2 for more on this discussion).

The fact that, for the protocol to be correct, we need to assume that the nodes know
the identifiers of their neighbors, relies on the fact that the last polynomial sent by the
nodes depends on these values. This restriction can be avoided by adding an additional
round of interaction at which Merlin sends to all nodes the function they would have sent
had they known the identifiers, and then verify these value when the nodes exchange id’s.
In such case, we would have that ∆-free ∈ dAMpub[2k + 1, n

1
k+1].

64

Chapter 4

Lower Bounds

This chapter is devoted mainly to the study of lower bounds for interactive proofs for the
problems studied in Chapters 2 and 3. We show, by adapting different techniques present
in the literature, how to obtain lower bounds for the problems previously described in
both the dM and dAM models. In Section 4.1, we show how to obtain a Ω(log n) lower
bound for the problem d-degenerate as well as an extension to a Ω(log log n) lower
bound in dAMpub, for any fixed k. In Section 4.2, we show a Ω(log n) lower bound on any
dM protocol for the problem cograph. In Section 4.3, by adapting a technique by Göös
and Suomela [GS16] for locally checkable proofs, we show a general result which provides
lower bounds on both the dM and dAMpub models, obtaining lower bounds on many
problems described in the previous chapters. Specifically, we show that any protocol for
the problems twins, dist-hereditary, interval, proper interval, circular-arc,
proper circ-arc and chordal has cost Ω(log n) and Ω(log log n) on the models dM and
dAMpub[k] (for any fixed k) respectively. Also, we include a way to extend these lower
bounds to the dMA model, obtaining a bound of Ω(log n) for the problems mentioned
before. Finally, in Section 4.4, we extend a lower bound for the problem symmetry
obtaining a Ω(log log n) lower bound for dMAMpriv[k] protocols on any fixed k.

4.1 A dAM lower bound for the degeneracy

In Section 2.1, on Proposition 2.1 we showed a dM protocol for the problem d-degenerate
with cost O(log n). It follows to ask whether this is tight. In this section we show a lower
bound using a technique described in [FH18]. We construct a family of path-like Yes-
instances that share the same proof, by which we can fool the network into accepting
a No-instance that locally behaves like these graph. With this we show that there is
no better protocol for computing the degeneracy, and that no more than an exponential
improvement can be obtained if we add interaction in the shared randomness setting. We
start by describing the construction.

Let p ≥ 1 be an integer and, without loss of generality, suppose that n = (d+1)(p+2).
For each r ∈ {0, .., p+ 1}, we define a node block Br consisting of d nodes with identifiers

65

in r(d+ 1), r(d+ 1) + 1, .., (d+ 1)(r + 1) forming a clique.

We consider two special blocks: an initial block B0 and a final block Bp+1. Any other
block will be called ordinary.

Given a labeled clique C as defined above, we write Cr and C` to denote the sets of
d|C|/2e and b|C|/2c nodes of C with largest and smallest identifiers, respectively.

From here we define a connection from a block Bi to a block Bj as a join between the
sets Br

i and B`
j .

Consider now π to be a permutation of p elements. To construct a π-path of block
nodes, it suffices to define a series of connections from B0 to Bπ−1(1), from Bπ−1(1) to
Bπ−1(2) and so on until we connect Bπ−1(p) to Bp+1.

Br
iB`

i Br
jB`

j Br
kB`

k

.

.

Figure 4.1: Case d = 3: Each tree node block is partitioned into left and right sub-blocks
which are connected with all nodes in the previous right sub-block or next left sub-block
respectively.

In a similar manner, we may define a π-block cycle as follows: given two values c < c′

lying between 1 and p, we make a connection from Bπ−1(`) to Bπ−1(`+1) for ` ∈ {c, . . . c′−1}
and a connection from Bπ−1(c′) to Bπ−1(c). It is important to mention that a block cycle
only consider a portion of all blocks. Also, as the identifiers for each block are different,
both block paths and block cycles are well defined as configurations.

Claim 4.1 Let d be an integer. For any permutation π, Pπ has degeneracy at most d

Proof. It suffices to trim the blocks one by one, from B0 to Bp+1. If the first block in a
path is B followed by B̄, by deleting all nodes in B`, the nodes in Br are only adjacent to
each other and to the nodes in B̄`. Therefore, these have degree dd/2e+ bd/2c = d.

Claim 4.2 Let d be an integer bigger than 2. For any permutation π, any cycle Cπ induced
by it has degeneracy strictly bigger than d

Proof. Given an arbitrary block B in the cycle, such that there is a connection from B̄
to B and from B to B̂, any node in B` has degree d+ bd/2c > d whenever d ≥ 2. For the
case of nodes in Br, the proof is analogous.

66

To finally obtain our result, it is sufficient to combine both claims and show that it is
impossible to distinguish between block paths and block cycles when Merlin’s messages
are small.

Proposition 4.3 Let d be an integer. If d-degenerate ∈ dM[f(n)], then f(n) =
Ω(log n).

Proof. The case d = 1 corresponds to testing if a graph is acyclic, which is known [GS16]
to require Ω(log n) bits in a single round of interaction, therefore we ignore this case.

Consider then d ≥ 2 and, assuming that there exists a dM protocol P with cost
g(n) = o(log n), we will prove that there exists a pair of paths for which Merlin provides
the same set of proofs.

Indeed, if we consider the set of possible proofs sent by Merlin that an arbitrary block
B may receive, we have that there are at most 2(d−1)g(n) such possible proofs.

Notice that there are at least 2(d−1)g(n)p possible labeled blocks. Finally, given a path
forming p different blocks with a valid label configuration according to some ordering π,
there are p! possible paths to be constructed, which will receive proofs from Merlin.

Considering that p = Θ(n), and comparing the logarithm of the previous values we
notice that they have the following asymptotic behavior:

log
(
2(d−1)g(n)p

)
= o(n log n) and log(p!) = Ω(n log n)

By the pigeonhole principle, it follows that there exist two paths P and P̄ which receive
the same set of proofs, which respect the order by which these paths are conformed, such
that the nodes in them accept the protocol for d-degenerate.

Without loss of generality, we have that P is constructed according to the identity
ordering. Then, for the permutation π that defines P̄ we have that there exists a pair of
positions i < j such that πi > πj. From here we may construct a block cycle C as follows:
the blocks Bi, Bi+1, . . . Bj are connected consecutively and we add a last connection from
Bi to Bj as in Figure 4.2.

B`
i Br

i
. B`

j Br
j

Figure 4.2: For small sized proofs, it is possible to find an ordering π where the block Bj

mistakes the next block with Bi, as they both locally behave like an accepting instance.

With this, any node u in
⋃j−1
k=i+1Bk∪Br

i ∪B`
j believes that it belongs to the path P (as

67

locally they behave the same and have the same proof) and accepts. Finally, any node
w ∈ Br

j ∪B`
i believes itself to be in P̄ and accept as well.

We conclude that there exists a graph with large degeneracy which receives proofs of
size o(log n) such that its nodes accept, contradicting the correctness of P .

To study lower bounds for more interactions, it is possible to extend the previous result
to obtain lower bounds in the dAMpub model, where we have that any protocol using a
constant number of rounds can have at most an exponential improvement.

Corollary 4.4 Let k ≥ 2 be an integer. If d-degenerate ∈ dAMpub[k, f(n)] , then
f(n) = Ω (log log n).

Proof. If we use the same block construction as before, it follows that, if f(n) = o(log log n)
and we consider a function g(·) : {0, 1}` f(n) → {0, 1}d·p·`·g(n) with ` = bk/2c that assigns
the random coins used in the k rounds of interaction to the corresponding proofs sent by
Merlin at each round, we have that there are at most

2`f(n)kp·2`f(n)

such possible assignments, while there are at most p! permutations, with p = Θ(n).
Therefore, once again comparing the logarithms of both numbers and comparing their
asymptotic behavior we have that, if f(n) = o(log log n), then it is possible to replicate
the previous fooling configuration such that all nodes locally believe they belong to some
yes instances for all k rounds of interaction and will accept the protocol with constant
probability.

4.2 A dM lower bound for cograph.
In this section, we construct a lower bound using the edge crossing technique defined in
[FPSP19]. Given a proof m for a yes-instances with multiple copies of some structure, we
can "mix" a set of edges between these structures and still use m as an accepting proof
as long as we respect the port ordering of the edges involved.

Now, in order to prove the result, we first describe the edge crossing lemma (and its
proof, for the sake of completeness) and for then to describe how to apply it to our case.

Given a graph G = (V,E) and a pair of isomorphic subgraphs H1 and H2 such that
they are node-disjoint and have no edges between them (we say that H1 and H2 are
independent) with the isomorphism σ : V (H1) → V (H2), we define the crossing of G
induced by σ, denoted by σ./(G), as the graph obtained by replacing all edges {u, v} ∈
E(V1) and {σ(u), σ(v)} ∈ E(H2) by the pair {u, σ(v)} and {σ(u), v}.

Lemma 4.5 (by [FPSP19]) Let P be a dM protocol for some language L with cost L. Sup-
pose there exists a configuration (G, id, I) where G contains k pairwise independent iso-

68

morphic subgraphs {Hj}kj=1 with s edges each and let σj : H1 → Hj be a Port-preserving
isomorphism for each i ∈ [k]. If L < log k

2s
, then there exists a prover M and a pair

i < j ∈ [k] such that all nodes in the configuration 〈G, id, I〉 accept givenM if and only
all nodes in the configuration (σ̂./(G), id, I) accept givenM, where σ̂ = σj ◦ σ−1

i .

Proof. Let (G, id, I)be a configuration as previously described. Assume that L < log k
s
,

and consider a collection {σj}kj=1 of port preserving isomorphisms. For each j, consider
wj to be the concatenation of proofs given byM to the nodes of Hj in the order induced
by σj. As n(Hj) ≤ 2s, then |wj| < log k for each j . And so there are at most k different
value for wj in total. By the pigeonhole principle, there must exists a pair i < j such that
wi = wj. Set σ̂ = σj ◦ σ−1

i and the graph σ̂./ with the same input and identifiers.

Now, suppose that all nodes in the configuration 〈G, id, I〉 accept given a proof provided
byM. Then, all nodes in V (G) \ V (Hi ∪Hj) accept. Now consider a node v ∈ Hi. Each
neighbor V (Hi) is replaced by its counterpart in Hj. Then, as w and σ̂(w) have the same
label and v does not know its neighbors identifiers, then from v’s perspective its vicinity
behaves essentially the same as in G. From here it follows directly that, if the proof
provided byM is accepted at every node of G, then it is accepted at every node at σ̂./(G)
and if there exists a node in G that rejects, its counterpart in σ̂./(G) would also reject
and the lemma follows.

Proposition 4.6 If cograph ∈ dM[f(n)], then f(n) = Ω(log n).

Proof. Without loss of generality set n = 1 mod 3 and consider a graph G given by a
collection of disjoint triangles {Hi}ki=1 with k = bn

3
c and a universal node v̄. We have

that G is a cograph as it is the join between v̄ and a disjoint union of cliques.

v̄

H1

Hi

Hj

Hk

Figure 4.3: A Yes-instance for cograph. There is a collection of disjoint small cliques
(triangles Hj) which are joined to a single node v̄.

69

Now suppose that there exists a dM protocol P with proofs of size o(log n). Then,
by defining a collection {σj}kj=1 that preserves the order in each triangle we can use
Lemma 4.5 to construct an instance Ĝ where the edges between a pair of triangles H1

and H2 are crossed according to σ2 ◦ σ−1
1 . Then, as G is a cograph and therefore there

exists a proverM that makes G accept following P , then Ĝ accepts for the same prover.
But, by flipping a pair of triangles in Ĝ, we created an induced 6-cycle, and therefore an
induced P4. This contradicts the correctness of P .

1

3

2 3

1

2

Figure 4.4: Fooling construction for the cograph problem. As the graph contains several
independent triangles, there exists two of them such that , if we connect them according
to their port orderings, the corresponding nodes accept under the same proofs, as they
can not see the identifiers of their neighbors.

Notice that this lower bound also holds when distance-hereditary graphs are considered:
Our construction has an induces 8 cycle and it is known that this class of graphs can not
have cycles of length at least 5 without any diagonals [BS+99].

Corollary 4.7 If dist-hereditary ∈ dM[f(n)] then f(n) = Ω(log n).

We show this result again in Section 4.3 in the stronger setting where the nodes are
aware of the identifiers of their neighbors.

4.3 A general lower bound for public dAM

In this section, we proceed to extend and apply some lower-bound techniques from other
non deterministic models such as LCP with special interest in the "glueing" technique by
Göös and Suomela [GS16]. This technique consists in combining several positive instances,
which can be partitioned by a small cut, into a new, negative, instance. The fact that the
cut is small allows to study the collection of accepting proofs for the whole graph solely
through the proofs provided to this cut, which can then be extended to both parts. If the
proofs are sufficiently small we can find a family of correct instances with a similar cut
which can then be "glued" together, as the cut behaves essentially the same in both the
original instances and in the glued instance.

We consider some modifications in order to be applicable in our model. We obtain
different lower bounds for the problems studied in Chapters 2 and 3 problems in both the
dMA and dAM[k] (where k is fixed) interactive classes.

70

We start by describing a general version of the protocol that depends on two graphs
GA and GB which we will define later. Depending on the properties of these two graphs
we obtain lower bounds for different graph classes.

Theorem 4.8 If any of the classes twins, dist-hereditary, interval, proper
interval, circular-arc, proper circ-arc and chordal is in dM[f(n)], then
f(n) = Ω(log n). Moreover if, for any fixed k, any of them is in dAMpub[k, g(n)], then
g(n) = Ω(log log n).

Proof. We first describe a construction for lower bounds in dAMpub, then we explain how
to deduce stronger lower bound on dM protocols. We begin by obtaining lower bounds
for the classes twins and dist-hereditary.

Without loss of generality, we may assume that n is even. Let A be a partition of
[1, n2] into n sets of size n, and let B be a similar partition of [n2 + 1, 2n2]. Let G be a
family of n-node graphs satisfying some property related to our problem: In the case of
the problem twins, the graphs in G correspond to be the class of twin-free graphs. As
for the problem dist-hereditary, we consider G to be the class of cographs.

Set now GA to be the set of labeled graphs in G, with label sets picked from A. Let Fa
be a graph in GA, and let v∗ be the node of Fa labeled with the smallest label. Similarly,
we define GB as the set of graphs in G labeled with labels in B.

For (Fa, Fb) ∈ GA × GB let G(Fa, Fb) be the graph defined by the disjoint union of
graphs Fa and Fb plus four additional nodes xA, yA, xB, yB. These nodes are labeled with
different numbers in the set C = [2n2 + 1, 3n2]. Nodes xA and xB are both adjacent only
to yA and yB. Node yA is adjacent only to xA, xB and va, where va is some node of Fa.
Node yB is adjacent only to xA, xB and vb, where vb is some node of Fb. Observe that all
nodes in Fa communicate with Fb only through the nodes xA, yA, xB, yB.

From the families G described above we have that the graph G(Fa, Fb) is a Yes-instance
for both problems: In twins, we have that there is a unique pair of twins (namely
(xA, xB)), as both Fa and Fb are twin-free graphs. As for dist-hereditary, we have
that, for any (a, b) ∈ A × B, the graph G(Fa, Fb) is distance hereditary: simply start by
sequentially constructing a C4 (namely {xA, yA, xB, yB}) , add two pending nodes, namely
vA and vB and proceed to construct both graphs Fa and Fb in parallel by a sequence of
(true or false) twins.

Let P be a k-round distributed interactive proof with shared randomness verifying
a property P with bandwidth K = δ log log n and error probability ε. Let us call
{xA, yA, xB, yB} the bridge of G(Fa, Fb). We can assume, without loss of generality, that
P satisfies that for any (shared) random string generated by Arthur, the nodes in the
bridge {xA, yA, xB, yB} receive the same proof. Indeed, if we have a protocol that is not
simple, with cost L, we can design a new protocol that is simple and whose proof has
length 4L by making each node pick their portion of the proof and going by the original

71

Fa Fb

xA

xB

yA yB vbva

Figure 4.5: The auxiliary graph G(Fa, Fb), with a ∈ A and b ∈ B. This is a yes-instance
for twins, as there is a unique pair of twins in the middle. It is also a yes-instance for
dist-hereditary, as we can set both parts to hold a cograph, united by a 4-cycle.

protocol afterwards.

Given sequence of random strings r = (r1, r2, . . . rk), we call mr the sequence indexed
by nodes v ∈ V (G[Fa, Fb]), such thatmr

v is the set of certificates that Merlin sends to node
v in protocol P , when Arthur communicate string ri on round i. Let mab : {0, 1}Kk →
{0, 1}Kk be the function that associates to each sequence r = (r1, r2, . . . rk) the tuple
(mr

xA
,mr

xB
,mr

yA
,mr

yB
) such that it extends to a proof assignment for the nodes in both Fa

and Fb. that make them accept whenever the bridge accepts.

Now consider the complete bipartite graph Ĝ = A ∪ B. For each a ∈ A and b ∈ B,
color the edge {a, b} with the function mab. There are at most 2Kk2Kk possible functions.
Therefore, by the pigeonhole principle, there exists a monochromatic set of edges W of
size at least n2

2Kk2Kk
.

A B

a1

a2

b1

b2

m̄

Figure 4.6: Auxiliary (complete bipartite) graph Ĝ = A∪B with each node representing
a set of identifiers a ∈ A, b ∈ B . The gray edges show a monochromatic set W colored
by m̄, the green edges show a 4-cycle present in W .

Observe that for sufficiently small δ and large n, 2Kk2Kk = (log n)δk logδk(n) = o(n1/2).
Indeed, if n > 2kδ and δ < 1/(4k) have that δk logδk(n) log log(n) ≤ log2δk(n) < 1

2
log n.

Following a result of Bondy and Simunovitz given in Lemma 1.13, we have that there
exists a 4-cycle a1, b1, a2, b2 in the subgraph Ĝ induced by W .

Consider now the graph G(a1, b1, a2, b2) defined as follows: First. take a disjoint union
of Fa1 , Fb1 , Fa2 and Fb2 . Then, for each i ∈ {1, 2} add nodes xiA, xiB, yiA, yiB, labeled with
different labels in [2n2 + 1, 3n2] corresponding to the yes instances formed by Fai and Fbj .

72

For each i ∈ {1, 2}, the node yiA is adjacent to xiA, x
i+1
B and the node vai ∈ Fai . Similarly,

yiB is adjacent to the nodes xiA, x
i+1
B and the node vbi ∈ Fbi , where the i + 1 is taken

mod 2.

x2
A

y2B y2A va2
vb2

x1
A

y1A y1B

vb1va1

Fb2 Fa2

Fa1
Fb1

x2
B x1

B

Figure 4.7: A No-instance for twins and dist-hereditary, with messages of size
o(log n). From every node’s perspective, the graph behaves like a Yes-instance, but there
are no twins in the former, and a large cycle without diagonals for the latter.

It remains to show that the graph G(a1, b1, a2, b2) is a No-instance for the properties
P in {twins,dist-hereditary}.

As we said above, for the class twins we have that both graphs Fa and Fb are twin-
free graphs, for any pair (a, b). However, the graph G(a1, b1, a2, b2) is a twin-free
graph, which is easy to see as it is connected and does not have any 4-cycles.

As for the problem dist-hereditary, it suffices to consider another characteriza-
tion for the class dist-hereditary, namely these are the graphs such that any
cycle of length at least 5 has a pair of crossing diagonals [BS+99] , we can easily
show that the graph G(a1, b1, a2, b2) can not be distance hereditary, as it contains
an 8-cycle with no diagonals as an induced subgraph.

From here we show that this No-instance is capable of fooling the verifier. Indeed, all
nodes of the set x1

A, x
1
B, y

1
A, y

1
B, x2

A, x
2
B, y

2
A, y

2
B receive the same answers by Merlin which

extends to assignments for the nodes in Fai and Fbi that make them accept with the same
probability as the nodes in the bridge, as they locally place themselves in a previously
defined yes instance. Therefore all nodes accept two thirds of all possible random coins.
This contradicts the fact that P was a correct distributed interactive proof for P.

Now, if we consider the classes proper interval, interval, circular-arc, proper
circ-arc and chordal, we consider a slight modification in the graph construction
G(Fa, Fb) in order for the previous argument to work, with help from a result from [Erd64].
Indeed, consider again n to be even and A to be a partition of [1, n2] into n sets of size n,
and B a partition of [n2 + 1, 2n2] in a similar manner. Let G be a family of n-node graphs
satisfying some property P among those mentioned.

73

Fa Fb

c

d

yA yB vbva

Figure 4.8: A yes-instance for interval and its super-classes, as Fa and Fb are two
interval graphs which are connected through a 4-clique in the middle.

Set GA and GB to be the set of labeled graphs in G, with label sets picked from A and
B respectively. Let Fa be a graph in GA and Fb a graph from GB. Finally consider two
disjoint sets C and D in [2n2 + 1, 3n2] of size n.

For (Fa, Fb, c, d) ∈ GA × GB × C × D let G(Fa, Fb, c, d) be the graph defined by the
disjoint union of graphs Fa and Fb plus four additional nodes yA, yB, c, d. The nodes yA, yB
are labeled with different numbers in a set from [2n2 +1, 3n2] disjoint from C and D. The
nodes yA, yB, c and d form a 4-clique, while the nodes yA is connected to some node va
in Fa. Node yB is similarly adjacent some node vb in Fb. Observe that all nodes in Fa
communicate with Fb only through the nodes yA, yB, c and d.

Let P be a k-round distributed interactive proof with shared randomness verifying
the property P with bandwidth K = δ log log n and error probability ε. Let us call
{yA, yB, c, d} the bridge of G(Fa, Fb, c, d). We can assume, without loss of generality, that
P satisfies that for any (shared) random string generated by Arthur, the nodes in the
bridge {yA, yB, c, d} receive the same proof. Indeed, if we have a protocol that is not
simple, with cost L, we can design a new protocol that is simple and whose proof has
length 4L by making each node pick their portion of the proof and going by the original
protocol afterwards.

Given a sequence of random strings r = (r1, r2, . . . rk), we call mr the sequence indexed
by nodes v ∈ V (G[Fa, Fb, c, d]), such that mr

v is the set of certificates that Merlin sends
to node v in protocol P , when Arthur communicate string ri on round i. Let mabcd :
{0, 1}Kk → {0, 1}Kk be the function that associates to each sequence r = (r1, r2, . . . rk)
the tuple (mr

yA
,mr

yB
,mr

c,m
r
d,) such that it extends to a proof assignment for the nodes in

both Fa and Fb. that make them accept whenever the bridge accepts.

Now consider the complete 4-partite, 4-uniform hyper-graph graph G̃ = A∪B∪C∪D.
For each a ∈ A, b ∈ B, c ∈ C and d ∈ D, color the edge {a, b, c, d} with function mabcd.
There are at most 2Kk2Kk possible functions. Therefore, by the pigeonhole principle,
there exists a monochromatic set of hyper-edges H of size at least n4

2Kk2Kk
. Observe that

for sufficiently small δ and large n, 2Kk2Kk = (log n)δk logδk(n) = o(n1/8). Indeed, if n > 2kδ

and δ < 1/(24k) have that δk logδk(n) log log(n) ≤ log2δk(n) < 1
8

log n. Now, following a
result from Ërdos, described in Lemma 1.14, by setting ` = 2, r = 4 we have that there
exists a K(r)(`) subgraph in G̃ induced by H. That is, the complete r-uniform, r-partite
hyper-graph, where each part has size exactly `. Let {ai, bi, ci, di}2

i=1 be the nodes involved
in such a graph.

74

A B
a1

a2

b1

b2

C

D

c1 c2

d1 d2

Figure 4.9: Auxiliary (complete) 4-uniform, 4 partite hyper-graph G̃ = A∪B∪C∪D with
each node in A and B representing a subgraph Fa, Fb and nodes in C and D representing
single nodes in the original graph construction. The green and orange edge blocks are a
pair of blocks from a monochromatic K(4)(2) structure present in the graph.

Consider now the graph G(ai, bi, ci, di) defined as follows: First. take a disjoint union
of Fa1 , Fb1 , Fa2 and Fb2 . Then, for each i ∈ {1, 2} add nodes yiA, yiB, ci, di, labeled with
different labels in [2n2 + 1, 3n2] correspondent to the yes instances formed by the graphs
Fai Fbj , and the nodes ck and dh . For each i ∈ {1, 2}, the node yiA is adjacent to yiB, ci,
di+1 and the node vai of Fai . Also, the node yiB is adjacent to ci, di and the node vbi ∈ Fbi
and ci is adjacent to di+1 Where the i+ 1 is taken mod 2.

It remains to show that the graph G(a1, b1, a2, b2) is a No-instance for the properties
P in {proper interval, interval,proper circ-arc ,circular-arc,chordal}.

As for the classes interval and proper interval we simply define Fa and Fb to
be a pair of proper interval graphs of size O(n), then G(Fa, Fb, c, d) is also admits a
representation through proper intervals as we simply connect both graphs through
their extremes by a small clique. Finally, the newly constructed graph has an
induced 6-cycle therefore can not have a representation by intervals.

As for proper circ-arc and circular-arc, by using the same construction
(by assuring that each part has a large diameter), we also have a valid instance as
(proper) interval graphs are in particular (proper) circular arc graphs. We simply
consider their representation through intervals in the real line as a big arc in a
portion of the circle. As for the newly obtained instance, we have a large, induced
cycle which is consistent with a construction for a circular arc graph, while we also
have large paths on each side which are in conflict with the cycle as a (proper)
circular arc graph behaves locally like an interval graph and therefore can not have
an asteroidal triple (three nodes at the extreme of each interval graph)

Finally, for chordal we can use the same graph described for the class interval

75

c2

y2B y2A va2
vb2

c1

y1A y1B

vb1va1

Fb2 Fa2

Fa1
Fb1

d2 d1

Figure 4.10: A No-instance for interval and its super-classes, as the graph admits a
large cycle without any chords (and with large diameter subgraphs Fai , Fbj), it can not
admit a representation through intervals or circular arcs, nor can be a chordal graph.

as they are also chordal graphs. Finally, we have that the newly constructed graph
has a 6-cycle without any chords. Therefore, it is not in chordal.

This technique (in its two flavors) proves to be a very useful way to obtain simple
lower bounds on the models dM and dAMpub[k] for relatively simple graph classes, as this
construction can be extended to other problems by choosing graph families GA and GB
(and their inputs) appropriately as long as they admit a constant size cut. It is important
to mention that this technique can not provide lower bounds stronger than Ω(log n) for
the dM class or Ω(log log n) for the dAM[k] class as a natural barrier in this construction
is the fact that each configuration admits identifiers in a polinomially bounded set, and
therefore the previously defined sets A and B can not be too large.

Now, by recycling the graph constructions from Theorem 4.8 and following a result
by Fraigniaud et al. [FMO+19], we show that we can also obtain "strong" lower bounds
for the models dMA in both its shared and private randomness versions if the acceptance
probability is sufficiently good.

Corollary 4.9 If any of the problems twins or dist-hereditary is in dMA1/5[f(n)],
then f(n) = Ω(log n). If any of the problems interval, proper interval, proper
circ-arc , circular-arc or chordal is in dMA1/7[g(n)], then .g(n) = Ω(log n).

Proof. We use the constructions from Theorem 4.8 and change the ways each edge in the
auxiliary (hyper) graph is colored. By bounding the acceptance probability according to
what each node in the construction can see, we obtain the result.

We start with the classes twins and dist-hereditary. Indeed, suppose that we
have a dMA protocol P with acceptance probability ε ≤ 1

5
. We repeat the construction

for the graph G(Fa, Fb) given a set of identifiers (a, b) ∈ A × B as well as the bipartite

76

graph Ĝ = A ∪ B and, using the result of Lemma 1.13, we obtain a monochromatic
4-cycle colored by the proof m̄. Now we study the acceptance probability of the new
instance G(a1, a2, b1, b2) by going over the perspective of each node in the graph during
the verification round. Let V := V (G[a1, b1, a2, b2]) and let Gij be the graph G(Fai , Fbj).
Then, the acceptance probability for our prover can be bounded as

Pr[Some v in V rejects] ≤ Pr[Some v in V (Fb2) ∪ {y2
B, x

2
A} rejects at G22]

+ Pr[Some v in V (Fa2) ∪ {y2
A, x

1
B} rejects at G21]

+ Pr[Some v in V (Fb1) ∪ {y1
B, x

1
A} rejects at G11]

+ Pr[Some v in V (Fa1) ∪ {y1
A, x

2
B} rejects at G12]

<
4

5
.

As each term represents a portion of the graph that computes its decision according to
the vicinity that it sees, each term is bounded by 1/5. From here we have a contradiction
as, by G(a1, b1, a2, b2) being a bad instance, the acceptance probability should be smaller
than 1/5.

Now, for the classes proper interval, interval, proper circ-arc , circular-
arc and chordal suppose we have a protocol P in dMA with acceptance probability
ε ≤ 1

7
. We repeat again the construction G(Fa, Fb, c, d) with (a, b, c, d) ∈ A×B×C×D, as

well as the 4-partite hyper-graph G̃ = A∪B ∪C ∪D. Using the result of Lemma 1.14 we
obtain a monochromatic K(4)(2) graph colored by the proof m̄. Now in order to study the
acceptance probability of G(ai, bi, ci, di), we define Gijkh to be the graph G(ai, bj, ck, dh),
from here we bound the acceptance probability as

Pr[Some v in V rejects] ≤ Pr[Some v in V (Fb2) ∪ {y2
B} rejects at G2222]

+ Pr[Some v in V (Fa2) ∪ {y2
A, c2} rejects at G2221]

+ Pr[Some v in V (Fb1) ∪ {y1
B} rejects at G1111]

+ Pr[Some v in V (Fa1) ∪ {y1
A, c1} rejects at G1112]

+ Pr[Some v in {d1} rejects at G2121]

+ Pr[Some v in {d2} rejects at G1212]

<
6

7

Once again each term represents a portion of the graph that accepts with good probability
(at least 6/7) as any combination of the above vicinities is considered in the monochro-
matic K(r)(`). Finally, we have a contradiction on P ’s correctness as G(ai, bi, ci, di) is a
bad instance that should accept with probability smaller than 1/7.

We can extend this same technique for the lower-bound construction for the class

77

d-degenerate described in subsection 2.1. By considering of the acceptance probabilities
of each node block, these leads to a Ω(log n) lower bound for dMA in both shared and
private randomness.

Corollary 4.10 If d-degenerate ∈ dMApub[f(n)], then f(n) = Ω(log n).

4.4 A lower bound for Symmetry

In this section, we extend a lower bound previously constructed by [KOS18] for the
problem symmetry. That is, the class of graphs that have a non-trivial automorphism.
This result shows the first dAMpriv lower bound for any fixed k which complements the
original lower bound by Oshman et al. [KOS18], as well as complementing the dAMpub

lower bound to be described later in Section 5.1. As a particular result, we can study
the problem Dsym corresponding to the problem symmetry restricted to the family of
dumbbell graphs, which are the graphs defined as in the previous construction. It is known
that this class is in dM[Ω(n2)] [GS16](making it the hardest problem in this class) and
dAMpriv[Ω(log log n)] by the previous construction, as well as admitting a dAMpub[O(log n)]
protocol described in [KOS18]. It was shown in [NPY20] that by a clever use of their
compiler such a protocol can be pushed to obtain a dMAMAMpriv[O(log log n)], surpassing
the log n barrier that appears natural in most problems. This shows that the cost on the
result by Naor et al. is tight and can not be improved no matter the number of additional
rounds considered.

We describe this construction with the proper adjustments.

Theorem 4.11 For any integer k, if symmetry ∈ dAMpriv[k, f(n)], then f(n) =
Ω
(

log logn
k

)
.

Proof. Consider G to be a family of n-node asymmetric graphs of size 2Ω(n2) which is
known to exist [ER63]. Now, given FA, FB ∈ G we define G(FA, FB) as follows.

We connect FA from an arbitrary node, to FB through a 4-path which we denote by
{vA, xA, xB, vB}. Now, set k ≤ 2 and consider P to be a dAMp[k] protocol for symmetry
with bandwidth cost L. Without loss of generality we may assume that the protocol P is
simple, in the sense that all nodes in the 4-path {vA, xA, xB, vB} receive the same proof
at any round of the protocol. Indeed, it suffices to send the concatenation of each node
in the path in order, where each of them extracts its portion of the proof for themselves
and proceed accordingly, thus increasing the proof size by a factor of 4.

Given ` = dk
2
e, set F ∈ G, and consider r ∈ {0, 1}n×L·(`−1), m ∈ {0, 1}L·`. We say

that a proof m is (F, r) consistent for P if m can be seen as a sequence of ` proofs given
by Merlin to the node xA in the graph G(F, F), where mi is the answer to the messages
{mj}j<i sent by xA with random coins {rj}j<i sent by the whole graph, such that m

78

FA FB
xA xBvA vB

Figure 4.11: Lower-bound construction for symmetry. Two asymetric graphs FA and
FB are connected by a 4 node path. The graph obtained is in symmetry if and only if
FA = FB.

admits an extension to a set of proofs for FA, where all nodes in VA accept. With this,
we can define the set

CA(F, r) = {m ∈ {0, 1}L·` : m is (F, r) consistent for P}

and define CB(F, r) in a similar manner. Notice that m ∈ CA(FA, r) ∩ CB(FB, r) implies
that all nodes accept in G(FA, FB) when the random coin r is used.

Remark Given these sets we can characterize the acceptance probability of P over the
graphs G(FA, FB) as:

max
C

Pr(V accepts (G(FA, FB), id) givenM) = Pr(CA(FA, r) ∩ CB(FB, r) 6= ∅).

We may conclude then, by the correctness of P that, for all FA, FB ∈ G:

If FA equals FB, then Pr(CA(FA, r) ∩ CB(FB, r) 6= ∅) ≥ 2
3

If FA differs from FB, then Pr(CA(FA, r) ∩ CB(FB, r) 6= ∅) ≤ 1
3

Now, notice that, as C(F, r) is in the power set of {0, 1}L·`, there are at most d = 22L·`

possible values for C(F, r). Therefore, if we consider µA(FA) to be the distribution of
C(F, r) over r, we can picture µA(FA) as a unit vector in (Rd, ‖ · ‖1).

By the previous remark, we then have that any pair of vectors in {µA(F)}F∈G are at
distance at least 2/3 from each other, as there exists an event Q such that, for F 6= F ′ ,
|µA(F)[Q]− µA(F ′)[Q]| ≥ 1

3
.

Finally, we consider the following lemma that we include without proof [KOS18].

Lemma 4.12 Let U be a collection of vectors in Rd where for every pair x 6= x′ ∈ U we
have that ‖x− x′‖ ≥ 1

2
, then |U| ≤ 5d.

By applying the previous lemma to the collection {µA(F)}F∈G we have that |G| ≤ 5d,
and considering that |G| ≥ 2Ω(n2), it follows that L = Ω

(
log logn

k

)
.

79

Chapter 5

Shared versus Private Randomness

We take a step back from looking at protocols and focus on the intricacies of the model.
In this chapter, we look at the two possible types of randomness used in the network
to see how they relate to each other in terms of power and how the last interaction
can affect this result. In Section 5.1 we show that any interactive protocol using shared
randomness can be derandomized into a non-interactive proof, with an exponential-factor
overhead in the bandwidth. Roughly, we prove that, if L ∈ dAMpub[k, f(n)], then L ∈
dM(2O(k f(n)) + log n). From this we conclude many lower bounds. For instance, we can
conclude that symmetry ∈ dAMpub[k,Ω(log n)], for any fixed k. This result is tight,
because it is already known that symmetry ∈ dMAMpub[log n] (in fact, it is known
that symmetry ∈ dMAMpriv[log n] [KOS18], but the private coin protocol can be easily
adapted to work with shared randomness). Then, we show how to turn a k-round dAM
protocol using shared randomness where the nodes accept with high probability into a
protocol with perfect completeness, with an addition of an extra round of interaction in
case that k is even.

Later, in Section 5.2, we separate the models with private and shared randomness
through the language amos, which is the language of labeled graphs having at most
one selected node. More precisely, amos is the language of n-node graphs with labels
in {0, 1}, and where at most one node is labeled 1. In [FMO+19] it is shown amos
is easy for private-coin Arthur-Merlin protocols, as amos ∈ dAMpriv[1]. We prove that
amos ∈ dAMpub[k,Θ(log log n)] and hence there exists an unbounded gap between the
two models.

Interestingly, regarding private and shared randomness, roles are reversed when we
address dMA protocols instead of dAM protocols. In fact, in Section 5.3, we get an
analogous result to that in [CFP19] by proving that dMA protocols with shared random-
ness are more powerful than dMA protocols with private randomness. More precisely, if
L ∈ dMApriv

ε [f(n)], then L ∈ dAMpub
ε+δ[f(n) + log n + log(δ−1)]. We then separate the two

classes. We introduce another language denoted 2-col-eq, which consists of graphs with
n-bit labels corresponding to proper 2-colorings. In other words, the language consists of
bipartite graphs where each part is colored with an n-bit label. We show that 2-col-eq

80

separates shared and private randomness on distributed Merlin-Arthur protocols. More
precisely, we show first that 2-col-eq ∈ dMApub[log n]. Then, we show that, for ε < 1/4,
2-col-eq ∈ dAMpriv

ε [Θ(
√
n)].

5.1 The Limits of Shared Randomness

In this section we show that the largest possible gap between non-interactive proofs and in-
teractive proofs with shared randomness is exponential. More precisely, we show that any
interactive protocol using shared randomness can be derandomized into a non-interactive
proof, with an exponential-factor overhead in the bandwidth. From this result we can
obtain lower bounds, some of them even tight, for the bandwidth of interactive-proofs
with shared randomness.

Theorem 5.1 Let k ≥ 1 and let L be a language such that L ∈ dAMpub[k, f(n)].
Then, L ∈ dM[2O(k f(n)) + log n].

Proof. Let P be a protocol deciding L using shared randomness, k rounds of interaction,
bandwidth f(n), and with error probability 1/3. We use P to define a protocol P ′ for L
with only one round of interaction and bandwidth 2O(k·f(n)) + log n. Let us fix (G, id, I),
an instance of L.

For a prover M for protocol P , we define a transcript of a node v ∈ G as a k-tuple
τ(M, v) = (τ1, τ2, . . . , τk) such that τi ∈ {0, 1}f(n) is a sequence of bits communicated in
the i-th round of interaction of P , for each i ∈ {1, . . . , k}. If both k and i are even, then
τi is a message thatM sends to node v in the i-th interaction. If k is even and i is odd,
then τi is a random string drawn from the shared randomness. Finally, roles are reversed
in the case where k is odd.

Let us fix ` = bk
2
c and let R be the set of all `-tuples r = (r1, . . . , r`) such that

ri ∈ {0, 1}f(n), for each i ∈ {1, . . . , `}. For v ∈ G and r ∈ R and a fixed prover M, we
call τ(M, v, r) the transcript τ(M, v) such that τ2i−1 = ri when k is even and τ2i = ri
otherwise, for each i ∈ {1, . . . , `}. In words, τ(M, v, r) is the transcript of the protocol,
when the nodes draw the random strings from r.

We can construct a one-round protocol P ′, where the prover sends to each node v the
following certificate:

1. A spanning tree T given by the id of a root ρ, the parent of v in the tree, denoted
by tv, and the distance in T from ρ to v, given by dv.

2. The list mv = {mv
r}r∈R, where mv

r ∈ {0, 1}kf(n) is interpreted as τ(M, v, r).

3. A vector acc(v) ∈ {0, 1}|R| where acc(v)r indicates that u accepts in the transcript
given by mu

r , for all u in the subtree Tv associated to v.

81

Given the messages received from the prover, the nodes first verify the consistency of
the tree given by (1), following the spanning tree protocol given in [KKP10]. Then, each
node v checks that for each r ∈ R the given transcript mr

v is consistent with r. Then, for
each r ∈ R, each node simulates the k rounds of protocol P using the certificates of its
neighborhood, and decides whether to accept or reject. That information is stored in a
vector av ∈ {0, 1}|R|. In order to check the consistency of the vector acc(v), for each r ∈ R
we say that acc(v)r = 1 if and only if avr = 1 and acc(u)r = 1 for every children u in Tv.
If all previous conditions are satisfied and v is not the root, then v accepts. Finally, the
root ρ verifies previous conditions and counts the number of accepting entries in acc(ρ)
and accepts if they are at least two-thirds of the total. In any other case, the nodes reject.

The number of bits sent by the prover is: O(log n) in (1), (kf(n))·2O(k·f(n)) = 2O(k·f(n))

in (2) and 2O(k·f(n)) in (3). So, in total, the number of bits communicated in any round
is 2O(k·f(n)) + log n. We now explain the completeness and soundness.

Completeness. If an instance (G, id, I) is in L, an honest prover will send the
real answers that each node would have received in the k-round protocol. In such
a protocol, all nodes accept for at least two-thirds of the coins, therefore the root
accepts.

Soundness. Suppose now that (G, id, I) is not in L, and suppose by contradiction
that there exist a prover M̃ of protocol P ′ accepted by all nodes. Let mv be the
certificate that M̃ gives to node v given by (2). Now, let M̂ be a prover of P such
that τ(M̂, v, r) = mr

v, for each r ∈ R. Since the root accepts, all nodes must accept
two thirds of the transcripts, which contradicts the soundness of P .

A direct consequence of previous result is the transfer of lower bounds from non-
determinism to distributed interactive protocols with shared randomness.

Corollary 5.2 Let k ≥ 1 and let L be a language such that L ∈ dM[Ω(f(n))]. Then,
L ∈ dAMpub[k,Ω(log f(n)

k
)] .

Corollary 5.3 Let k ≥ 1. Then, problems symmetry, diameter, 3-col and
∆-free∈ dAMpub[k,Ω(log n)]. Also, mst ∈ dAMpub[k,Ω(log log n)].

Proof. We just need to apply already known lower bounds: symmetry ∈ dM[Ω(n)]
from [GS16], diameter ∈ dM[Ω(n)] from [CHPP20], 3-col ∈ dM[Ω(n)] from [GS16],
4-free ∈ dM[Ω(n)] from [CFP19], mst ∈ dM[Ω(log2 n)] from [KK07].

Remark The lower bound saying that symmetry ∈ dAMpub[k,Ω(log n)] is tight. More
precisely, the dMAMpriv[log n] protocol given by Kol, Oshman and Saxena [KOS18] for
solving symmetry can be easily adapted to work with shared randomness. In fact, the

82

protocol is somehow designed in that way, where one particular node generates the random
string and shares it with the other nodes (through Merlin). Therefore, symmetry ∈
dMAMpub[Θ(log n)]. On the other hand, symmetry ∈ dM[Ω(n2)] [GS16].

In the proof of Theorem 5.1, in order to design a dM protocol, we had to construct a
spanning tree for verifying that two thirds of all coins are accepted by all nodes . In fact,
it could be the case that, for negative instances, every node rejects a very small portion
of the coins, getting the wrong idea that the instance is positive. For avoiding that, and
coordinating the nodes, in the dM protocol we construct a spanning tree. This is where
the additive log n term comes from. The next result states that the previous situation
does not occur if, instead of two thirds, we ask the interactive protocol to accept with
high probability.

Theorem 5.4 Let k ≥ 1 and let L be a language such that L ∈ dAMpub
ε [k, f(n)], with

ε < 1
n+1

. Then, L ∈ dM[2O(k f(n))].

Proof. Let L be a language over instance (G, id, I) with n(G) = n and let P be a k
round protocol for L with f(n) bits such that its acceptance error is less than 1

m
, where

m > n+ 1.

In order to construct the protocol, we proceed in a similar way as in the proof of the
previous theorem: Merlin sends to each node an enumeration mv

r of the answers to each
possible coin that the original prover sends to each node. Then, all nodes share their
certificates to each coin sequence, simulate all of them and each node v accepts iff (1− 1

m
)

of the coin sequences are accepted by him.

We have that if G is a yes instance, an honest prover will return the answers to the
original protocol and all nodes will accept (1− 1

m
) of all possible coins, therefore all accept

the protocol.

If G is a no instance and all nodes accept the protocol, we have that all nodes reject at
most 2k f(n)

m
coin sequences, therefore the total amount of coins that are rejected by some

node is at most n2k f(n)

m
, which is strictly less than (1− 1

m
)2k f(n).

Corollary 5.5 Let k ≥ 1 and let L be a language such that L ∈ dM[Ω(f(n))]. Then,
L ∈ dAMpub

ε [k,Ω(log f(n)
k

)] = dAMpub
ε [k,Ω(log f(n))], with ε < 1

n+1
.

Corollary 5.6 Let k ≥ 1. Then, problems planar, outerplanar, spanning-tree
∈ dAMpub

ε [k,Ω(log log n)], with ε < 1
n+1

.

Proof. All these languages belong to dM[Θ(log n)] [GS16, FFR+20].

83

A know result in (centralized) AM protocols is that a public coin protocol can be
assumed to have perfect completeness by an addition of an extra round of interaction, here
we show how to extend this fact to the distributed setting whenever shared randomness
is considered.

Theorem 5.7 If L ∈ dAMpub
ε [k, f(n)] then L ∈ dAMpub[k′, k·f(n)2

log(1/ε)
] with perfect com-

pleteness, where k′ = k + 1 if k is even and k′ = k otherwise.

Proof. We directly prove the case when k is odd, as the case when k is even is slightly
simpler. Let P be a protocol deciding L using shared randomness, k rounds of interaction,
bandwidth L and error probability ε. We use P to define a protocol P ′ for L using the
same amount of interactions and perfect completeness, while increasing the bandwidth
in a constant factor. Let us fix 〈G, id, I〉, an instance of L. Set ` = bk

2
c and given a

proverM for protocol P define SG(M) as the set of `-tuples (r1, . . . r`), where each rj is
in {0, 1}f(n) such that for each i ∈ [`] Merlin sends at round 2i− 1 a proof m ∈ {0, 1}f(n)

for each node that depends on all previous messages making all nodes accept.

We show by the probabilistic method that there exists a collection Z = {zi}ti=1 of coins
(with t = t(ε, n) to be set after) such that any element in {0, 1}`·f(n) can be obtained as a
“translation” of SG(M) by some element in Z. That is, ∪iSG(M)⊕ zi = {0, 1}`·f(n) with
⊕ corresponds to adding two elements by bit-wise XOR.

Indeed, consider a collection Z of t elements chosen all independently and uniformly
at random and study the event when this translation of SG(M) according to Z does not
cover all coins possibly drawn during the protocol. If 〈G, id, I〉 is a Yes-instance for L, we
have that |SG(M)| ≥ (1− ε)2L. Then, if we define R to be the set of all possible random
sequences drawn during a protocol

PrZ[∃r /∈ ∪z∈ZSG(M)⊕ z] = PrZ[∃r ∈ ∩iSG ⊕ zi]

≤
∑
r∈R

t∏
i=1

Prz1 [r ∈ SG ⊕ z1]

=
∑
r∈R

t∏
i=1

Prz1 [r ⊕ z1 /∈ SG]

≤ 2k·f(n)εt

Then, if we set t > k · f(n)/ log(1/ε) we have that 2k·f(n)εt is strictly smaller than 1.
Therefore there exists a set Z satisfying our condition. Now, consider the case when
〈G, id, I〉 /∈ L, it follows then by P ’s correctness that |SG(M)| ≤ 2Lε. Then, we have
that:

Pr[∪z∈ZSG ⊕ z] ≤
∑
z∈Z

Pr[SG ⊕ z] ≤ t · ε

Where the above probability is taken over all possible random sequences drawn. As for

84

any z a translation by it does not change the size of SG, then we just need t to be smaller
than 1/3ε for the above probability to be smaller than 1

3
.

And so, if we set f(n)/ log(1/ε) ≤ t ≤ O(1/ε). We can describe a k round protocol P ′
as follows:

Merlin first provides each node with the collection {zi}ti=1 (with a cost of t · ` · f(n)),
then all nodes proceed through k rounds of interaction simulating protocol P with a
slight modification: Suppose we are at round 2i and the verifier has drawn the coins
(r1, . . . ri), then Merlin at round 2i+ 1 answers with t messages (mi,1,mi,2 . . .mi,t), where
mi,j corresponds to the answer Merlin would have sent if the coin sequence (r1, . . . ri)⊕z(i)

j

was sent, with z(i)
j the first i · f(n) bits of zj.

Finally, at the last round, consider r = (r1, . . . r`) to be the coin sequence sent by the
the nodes through all interactions, then Merlin sends in its last message an index j ∈ [t]
and the answer he would have sent if the challenge were r ⊕ zj. Then, at the verification
round, all nodes check they received the same collection {zi}i and the same index j
and exchange messages running P ’s verification procedure on messages (m1,j, . . .m`+1,j)
accepting or rejecting accordingly.

By the previous construction we have that, if 〈G, id, I〉 is a Yes-instance, the nodes will
always accept and, otherwise, then all nodes accept with probability at most 1

3
. As for

the case when k is even, we simply need to define SG(M) ignoring the initial certificate,
then we add an extra round in order for Merlin to provide the collection {zi}i.

Notice that we require ε to be such that f(n) ≤ O(1/ε)/ log(1/ε) which is an easy
restriction to fulfill as we are mostly interested in the cases when f(n) is sub-linear.
Indeed, even if we had a protocol P for some class L with bandwidth f(n) and fixed error
probability ε it is known that we can amplify this error by parallel repetition and using
standard techniques [CFP19] if we increase the bandwidth to O(K · f(n)) + log n, as in
such a case we can get an error δ with 1/δ = 2O(K).

A direct application of this result is to consider f(n) = O(log n), if we had a protocol
that occurs with high probability (i.e. ε(n) = 1/n) then we can push our protocol to
perfect completeness with an increase in bandwidth by at most a constant factor.

Corollary 5.8 Let L ∈ dAMpub
1/n [k,O(log n)] then L ∈ dAMpub[k′,O(log n)] with perfect

completeness, where k′ = k + 1 if k is even and k′ = k otherwise.

5.2 Shared dAM versus Private dAM

A recent result shows that dAM protocols with private randomness are more powerful
than dAM protocols with shared randomness [CFP19]. The precise result corresponds to
next proposition.

85

Proposition 5.9 ([CFP19]) Let k ≥ 1, 0 < ε < 1
2
, and L be a language such that

L ∈ dAMpub
ε [k, f(n)]. Then, L ∈ dAMpriv

ε [k, f(n) + log n].

A natural question is whether the two models are equivalent. In this section we give
a negative answer. We separate them through the problem amos. Recall that amos is
the language of labeled graphs where at most one node is selected. It is already known
that amos ∈ dM[Θ(log n)] [GS16]. Moreover, in [FMO+19] the authors show that adding
randomness after the nondeterministic round does not help. More precisely, amos ∈
dMApriv

ε [Ω(log n)], for 0 < ε < 1
5
.

The situation changes dramatically when randomness goes before nondeterminism, as
explained in the following proposition.

Proposition 5.10 ([FMO+19]) Let 0 < ε < 1
2
. Then, amos ∈ dAMpriv

ε [log(ε−1)] =

dAMpriv
ε [1].

In the shared randomness framework, we can construct a protocol for amos that uses
bandwidth O(log log n). As we are going to see in Theorem 5.12, this upper bound is
indeed tight.

Lemma 5.11 amos ∈ dAMpub[log log n].

Proof. The protocol is the following. First, each node considers the smallest prime q such
that logc+2 n ≤ q ≤ 2 logc+2 n and constructs a polynomial over the field Fq associated to
its id given by pv(x) =

∑
i≤log(id(v)) bini(id(v)) · xi. Where bini(m) corresponds to i-th bit

in the binary representation of m. All nodes generate a random string s ∈ Fq using the
shared randomness. Then, the prover sends to each node the random evaluation of the
selected node v0. More precisely, p̄ = pv0(s), which is of size O(log log n). The nodes first
check they received the same value of p̄. If a node v is not selected, then it always accepts;
otherwise, it accepts if and only if pv(s) = pv0(s). If an instance belongs to amos, then
all nodes accept. Otherwise, there will exist at least two selected nodes that accept, such
that their id’s polynomial matches on s with probability at most 1

logc n
.

From Corollary 5.5 we conclude that, for every k ≥ 1, amos ∈ dAMpub
ε [k,Ω(log log n)]

with ε < 1
n+1

. In other words, the protocol given in Lemma 5.11 matches the lower bound
for all correct protocols that run with high probability. The next theorem shows that the
upper bound is matched even when ε = 1

3
.

Theorem 5.12 Let k ≥ 1. Then, amos ∈ dAMpub[k,Θ(log log n)].

86

Proof. We follow a technique by [GS16] for “glueing” solutions together to form a bad
instance, with some modifications. Without loss of generality, we may assume that n is
even. Let A be a partition of [1, n2] into n sets of size n, and let B be a partition of
[n2 + 1, 2n2] in a similar manner. Let G be a family of n-node graphs.

Set now GA to be the set of labeled graphs in G, with label sets picked from A. Let Fa
be a graph in GA, and let v∗ be the node of Fa labeled with the smallest label. Consider
the input Ia such that Ia(v) = 0 for every node v ∈ V (Fa) except for the node v∗, for
which Ia(v∗) = 1. Similarly, we define GB as the set of graphs in G labeled with labels in
B. For each graph Fb ∈ GB, we define the input Ib such that Ib(v) = 0 for all v ∈ V (Fb).

For (Fa, Fb) ∈ GA × GB let G(Fa, Fb) be the graph defined by the disjoint union of
graphs Fa and Fb plus four additional nodes xA, yA, xB, yB. These nodes are labeled with
different numbers in the set C = [2n2 + 1, 3n2]. Nodes xA and xB are both adjacent only
to yA and yB. Node yA is adjacent only to xA, xB and va, where va is some node of Fa.
Node yB is adjacent only to xA, xB and vb, where vb is some node of Fb. Observe that
v∗ 6= va and all nodes in Fa communicate with Fb only through the nodes xA, yA, xB, yB.

Consider now the input I of G(Fa, Fb) such that I(v) = Ia(v) if v ∈ V (Fa), I(v) = 0
otherwise. Observe that v∗ ∈ V (Fa) is the only node in V (G(Fa, Fb)) satisfying I(v∗) = 1.
Therefore, the graph G = G(Fa, Fb) is a Yes-instance of amos.

Fa Fb

xA

xB

yA yB vbva

Figure 5.1: The auxiliary graph G(Fa, Fb), with a ∈ A and b ∈ B. This is a yes-instance
for amos, as there is only one selected node (in Fa).

Let P be a k-round distributed interactive proof with shared randomness verifying
amos with bandwidth K = δ log log n and error probability ε. Let us call {xA, yA, xB, yB}
the bridge of G(Fa, Fb). We can assume, without loss of generality, that P is simple, that
is, it satisfies that for any (shared) random string generated by Arthur, the nodes in the
bridge {xA, yA, xB, yB} receive the same proof. Indeed, if we have a protocol that is not
simple, with cost L, we can design a new protocol that is simple and whose proof has
length 4L by making each node pick their portion of the proof and going by the original
protocol afterwards.

Given sequence of random strings r = (r1, r2, . . . rk), we call mr the sequence indexed
by nodes v ∈ V (G[Fa, Fb]), such thatmr

v is the set of certificates that Merlin sends to node
v in protocol P , when Arthur communicates string ri on round i. Let mab : {0, 1}Kk →
{0, 1}Kk be the function that associates to each sequence r = (r1, r2, . . . rk) the tuple
(mr

xA
,mr

xB
,mr

yA
,mr

yB
) such that it extends to a proof assignment for the nodes in both Fa

and Fb that make them accept whenever the bridge accepts.

Now consider the complete bipartite graph Ĝ = A ∪ B. For each a ∈ A and b ∈ B,

87

color the edge {a, b} with function mab. There are at most 2Kk2Kk possible functions.
Therefore, by an averaging argument, there exists a monochromatic set of edgesW of size
at least n2

2Kk2Kk
.

Observe that for sufficiently small δ and large n, 2Kk2Kk = (log n)δk logδk(n) = o(n1/2).
Indeed, if n > 2kδ and δ < 1/(4k) have that δk logδk(n) log log(n) ≤ log2δk(n) < 1

2
log n.

Following a result of Bondy and Simonovits [BS74], we have that there exists a 4-cycle
a1, b1, a2, b2 in the subgraph Ĝ induced by W .

Consider now the graph G(a1, b1, a2, b2) defined as follows: First. take a disjoint union
of Fa1 , Fb1 , Fa2 and Fb2 . Then, for each i ∈ {1, 2} add nodes xiA, xiB, yiA, yiB, labelled with
different labels in [2n2 + 1, 3n2] correspondant to the yes instances formed by Fai and Fbj .
For each i ∈ {1, 2}, the node yiA is adjacent to xiA, x

i+1
B and the node vai of Fai . Similarly

yiB is adjacent to the xiA, x
i+1
B and the node vbi of Fbi . Where the i + 1 is taken mod 2.

Finally, define the input I as I(v) = Iai(v) if v belongs to Fai and I(v) = 0 otherwise.

x2
A

y2B y2A va2
vb2

x1
A

y1A y1B

vb1va1

Fb2 Fa2

Fa1
Fb1

x2
B x1

B

Figure 5.2: A No-instance for amos, with messages of size o(log n). From every node’s
perspective, the graph behaves like a Yes-instance, but there are two selected nodes.

Observe that G(a1, b1, a2, b2) is a No-instance of amos, as there are two selected nodes:
one in V (Fa1) and another one in V (Fa2). Moreover, all nodes of the set x1

A, x
1
B, y

1
A, y

1
B,

x2
A, x

2
B, y

2
A, y

2
B receive the same answers by Merlin which extends to assignments for the

nodes in Fai and Fbi that make them accept with the same probability as the nodes in the
bridge, as they locally place themselves in a previously defined yes instance. Therefore
all nodes accept two thirds of all possible random coins. This contradicts the fact that P
was a correct distributed interactive proof for amos.

5.3 Shared dMA versus Private dMA

In this section we first show that, continuing with the comparison between private and
shared randomness, roles are reversed when we address dMA protocols instead of dAM pro-
tocols. In fact, we get a result analogous to that of Crescenzi, Fraigniaud, and Paz [CFP19]
(Proposition 5.9) by proving that dMA protocols with shared randomness are more pow-
erful than dMA protocols with private randomness.

88

Theorem 5.13 Let ε, δ > 0 with ε + δ < 1
2
and consider L to be a language with

inputs of polynomial size over the graph’s nodes such that L ∈ dMApriv
ε [f(n)]. Then,

L ∈ dAMpub
ε+δ[f(n) + log n+ log(δ−1)].

Proof. Let L be a distributed language in dMApriv
ε [f(n)] over a network configuration

I = (G, id, I), and let P be the protocol that witnesses that membership.

Let Z(I,m, r) be a random variable that equals 1 if and only if Arthur is wrong about
the membership of I in L given the proof m and the coin sequence r in an occurrence of
the protocol P . Observe that both r and m are a sequence of n · f(n) bits, with the i-th
portion of the sequence containing the message sent or received by the node identified as
the i-th node of G.

We show by the probabilistic method that there exists a collection {ri}ti=1 of random
strings such that, for all network configurations I, we can design a correct protocol that
only relies on these coins, with a small increase in error.

Indeed, let {ri}ti=1 be a collection of random strings of length f(n) and consider a
network configuration I such that I ∈ L. We define YI to be the following event over all
random coin sequences {ri}ti=1

YI = {∀m ∈ {0, 1}n·f(n) Ei(Z(I,m, ri)) > ε+ δ}

where Ei(·) is the expected value over a fixed sequence of random coins considered. We
also define, for I /∈ L, the event over a random coin sequences {ri}ti=1

NI = {∃m ∈ {0, 1}n·f(n) s.t. Ei(Z(I,m, ri)) > ε+ δ}

Now, by the correctness of P , we have that for I ∈ L there exists a proof mI such that
Arthur errs with small probability, therefore we have that Er(Z(I,mI , r)) ≤ ε and by a
Chernoff bound:

Pr(YI) ≤ Pr

[(
1

t

t∑
i=1

Z(G,mI , ri)− ε

)
> δ

]
≤ 2e−2δ2t

Where the above probability is taken over all possible random coin sequences {ri}ti=1.

Now consider the case when I /∈ L. It follows that, from the correctness of P we obtain
that Er(Z(I,mI , r)) ≤ ε for any m ∈ {0, 1}n·f(n). Thus, by a union bound and another
Chernoff bound, we obtain:

Pr(NI) = Pr

[
∃m ∈ {0, 1}n·f(n) s.t.

(
1

t

t∑
i=1

Z(I,m, ri)− ε

)
> δ

]
≤ 2n·f(n) ·2e−2δ2t.

Where the above probability is taken over all possible random coin sequences {ri}ti=1.
Therefore, if we consider B =

⋃
I∈L YI ∪

⋃
I /∈LNI to be the union of YI over all I ∈ L

and of NI over all I /∈ L and make a union bound, we get:

89

Pr(B) ≤
∑
G∈L

2e−2δ2t +
∑
G/∈L

2e−2δ2t · 2n·f(n).

Now, remember from the definition of a distributed language that we assume that the
set of all possible network configurations defined over graphs of size n is at most 2poly(n).
Therefore, if we take t = Θ(poly(n)+n·g(n)

δ2
) the probability of B is strictly smaller than one.

And so, there exists a collection {ri}ti=1 such that for any network configuration I
defined over graphs of n nodes:

I ∈ L =⇒ ∃m Ei (Z(I,m, ri)) ≤ (ε+ δ)⇒ ∃m Pr(Z(I,m, ri) = 0) > 1− (ε+ δ)

I /∈ L =⇒ ∀m Ei (Z(I,m, ri)) ≤ (ε+ δ)⇒ ∀m Pr(Z(I,m, ri) = 0) > 1− (ε+ δ)

Now we can describe a dMApub protocol for L: Merlin sends Arthur the proof m that
he would send in protocol P . Then, Arthur proceeds to draw a random integer i ∈ [t].
Then, all nodes take their portion of ri and proceed with the protocol P using proof m
and ri. The completeness and soundness of the protocol is guaranteed by the choice of
the set {ri}ti=1. The total bandwidth of the protocol is f(n) + log t = f(n) +O(log(n) +
log(δ−1) + log(f(n))) bits. We deduce that L belongs to dMApub[f(n) + log n+ log(δ−1)].

As we did in the previous section for dAM protocols, we are going to give here a negative
answer to the question whether dMApub and dMApriv are equivalent models. For obtaining
such separation, we use the problem 2-col-eq. Recall that this language is the set of
network configurations (G, id, I), where I is a function I : V (G)→ {0, 1}n, such that I is
a proper two-coloring of G. In other words, (G, id, I) belongs to 2-col-eq if and only if
there is a partition {V0, V1} of V (G), such that both V0 and V1 are independent sets and,
for all v, w ∈ Vi, we have that I(v) = I(w), for i ∈ {0, 1}.

The next lemma shows that 2-col-eq is “easy" to solve using shared randomness.

Lemma 5.14 2-col-eq ∈ dMApub[log n].

Proof. The prover sends each node a bit cv ∈ {0, 1} to denote the coloring. Then each
node considers a prime q such that nc+2 ≤ q ≤ 2nc+2 and constructs a polynomial
associated to I(v) given by pv(z) =

∑n
i=1 I(v)i z

i, during the verification round, all nodes
generate a random string s ∈ Fq using the shared randomness, and communicate pv(s).
In the verification round, each node locally verifies the consistency of the 2-coloring and
that pu(s) equals pw(s), for every pair of neighbors u,w. Accepting if both conditions are
satisfied and rejecting otherwise. In total, the bandwidth of the protocol is O(log n) bits.

Completeness. If (G, id, I) is a yes-instance of 2-col-eq, then the input graph is
bipartite, and I(u) = I(v) for each u, v in the same partition. Obviously in this case
pu(s) = pv(s), and therefore the nodes always accept.

90

Soundness. If G is not bipartite the nodes immediately reject because in this case
the coloring c is not consistent (i.e. cv = cu for two adjacent nodes u, v). Suppose
now that G is bipartite with partitions V0 and V1, and suppose without loss of
generality that there are two nodes u, v in V0 such that I(u) 6= I(v). Observe that,
since G is connected, we can choose u, v with a common neighbor w ∈ V1. Then w
receives pu(s) and pv(s) in the verification round. Observe that the probability that
pu(s) = pv(s) is at most n/q. Indeed, p(z) = pu(z)− pv(z) is a polynomial of degree
at most n in Fq, and then it has at most n roots in Fq. We conclude that w fails to
verify I(u) 6= I(v) with probability at most 1/nc+1.

We deduce that 2-col-eq belongs to dMApub[log n].

The goal now is to prove that 2-col-eq ∈ dMApriv[Θ(
√
n)]. We divide this proof in

two subsections: the first for the upper bound and the second for the lower bound.

5.3.1 The upper bound

Babai and Kimmel devise a private coin, randomized protocol in the simultaneous mes-
sages model (SM) that solves equality communicating O(

√
n) bits [BK97]. Problem

equality consists in deciding whether two n-bit Boolean vectors, the inputs of Alice and
Bob, are equal.

By using the protocol of Babai and Kimmel, we can directly construct a dMApriv

protocol for 2-col-eq.

Lemma 5.15 2-col-eq ∈ dMApriv[
√
n].

Proof. The prover sends each node v the bit cv that defines the 2-coloring and then the
nodes proceed to broadcast a message according to the protocol in Proposition 1.6. Then,
they locally verify the consistency of the 2-coloring and each node w in Vi proceeds to act
as referee for each pair of nodes u, v in its vicinity, accepting if for each pair of nodes the
referee would accept.

Completeness. If the input corresponds to a Yes-instance, then the nodes always
accept: they receive and verify the 2-coloring and for all pairs of neighbors check
that the equality protocol holds, as the protocol from Proposition 1.6 has one sided
error, the graph accepts with perfect probability.

Soundness. Suppose that the input corresponds to a No-instance. If G is not
bipartite the nodes immediately reject because in this case the coloring c is not
consistent (i.e. cv = cu for two adjacent nodes u, v). Suppose now that G is bipartite
with partitions V0 and V1, and suppose without loss of generality that there are two
nodes u, v in V0 such that I(u) 6= I(v). Observe that, since G is connected, we
can choose u, v with a common neighbor w ∈ V1. Then, the probability that w
accepts is at most ε, where ε is the acceptance error of the protocol described in
Proposition 1.6.

91

5.3.2 The lower bound

In order to give a lower-bound on the bandwidth of any dMApriv protocol solving 2-col-eq,
we show that the result of Babai and Kimmel given by Proposition 1.5 can be extended
to the scenario where Alice and Bob have access to random bits.

Theorem 5.16 Let f : X × Y → {0, 1} be any Boolean function. Let 0 < ε < 1
2
. Any

ε-error MAsym protocol for solving f using private coins needs the messages to be of
size at least Ω

(√
Msym(f)

)
.

Proof. Let f : X × Y → {0, 1} be a boolean function and consider P to be a MAsym

protocol with two sided error ε, where the size of the messages sent by Alice and Bob and
the size of the proof are bounded by K.

Let Γ be the set of all possible proofs sent by Merlin. Let Ω and Φ to be the set of
all possible messages sent by Alice and Bob, with a and b bits, respectively. Now, given
input x and proof m, we define µx,m to be distribution of messages sent by Alice given
her input and the proof received. We define νy,m analogously for Bob.

Now, set T = {wi}ti=1 to be a multiset of elements in Ω obtained uniformly at random,
with µ(T) =

∑t
i=1 µ(wi) and define ρ(ω, ϕ) as the indicator function of whether the referee

accepts given messages ω and ϕ.

We then have that P ’s correctness can be restated as follows:

f(x, y) = 1 =⇒ ∃m,
∑
ω,ϕ

µx,m(ω) · νy,m(ϕ)ρ(ω, ϕ) ≥ 1− ε

f(x, y) = 0 =⇒ ∀m,
∑
ω,ϕ

µx,m(ω) · νy,m(ϕ)ρ(ω, ϕ) ≤ ε

Finally, consider the strength of ϕ over x, given the proof m to be defined as

F (x, ϕ,m) =
∑
ω∈Ω

µx,m(ω) · ρ(ω, ϕ)

And, given an input x ∈ X, a proof m, ϕ and a multiset T = {wi}ti=1 we define the
variables

ξi(ϕ,m) =

{
1 if the referee accepts (ωi, ϕ) given m
0 if not

Remark The variables ξi(ϕ,m) are independent and their expected value is F (x, ϕ,m)

92

Claim 5.17 For every input x and proof m there exists a multiset Tx,m = {w1, . . . wt}
with t = O(log(|Φ|)) such that for any ϕ ∈ Φ.∣∣∣∣ t∑

i=1

ξi(ϕ,m)− t · F (x, ϕ,m)

∣∣∣∣ ≤ δ · t

Proof. Indeed, by choosing T uniformly at random, we define the event Λ(ϕ,m, T) as{
|
∑t

i=1 ξi(ϕ,m)− t · F (x, ϕ,m)| > δ · t
}
. Following the previous Remark, we obtain by

a Chernoff bound that:

PrT (Λ(ϕ,m, Tx)) < 2 · e−(δ·t)2/2t = 2e−tδ
2/2 <

1

2|Φ|

By taking a large enough constant for t. Then

PrT (∃ϕ s.t. Λ(ϕ,m, Tx)) < 1/2

And so, by the probabilistic method, there exists a Tx,m such that for any ϕ we have∣∣∣∣ t∑
i=1

ρm(ωi, ϕ)− t · F (x, ϕ,m)

∣∣∣∣ ≤ δ · t

We construct a collection {Ty,m}(y,m)∈Y×Γ for each input y for Bob and each proof m
in a similar way .

Claim 5.18 For any x, y and proof m the pair (Tx,m, Ty,m) induces a non deterministic
protocol for f .

Proof. We may first assume, without loss of generality, that the referee’s decision is
deterministic: for any tuple (ω, ϕ,m) the referee outputs the most probable answer over
his random bits, duplicating the error [NS96]. And so we may consider ρm(ω, ϕ) to be
the indicator function over the referee’s decision given messages (ω, ϕ) and the proof m.

For x ∈ X, consider Tm,x = (ω1, . . . , ωt) and for y ∈ Y , Tm,y = (ϕ1, . . . , ϕt) the
collection of messages obtained by Claim 5.17.

Also, we consider the acceptance probability of the pair x, y given a proof m as

F (x, y,m) =
∑
ω,ϕ

µx,m(ω) νy,m(ϕ) · ρm(ω, ϕ)

By the definition of Tx,m and Ty,m we have that:∣∣∣∣ t∑
i=1

ρm(ωi, ϕ)− t · F (x, ϕ,m)

∣∣∣∣ ≤ δ · t and
∣∣∣∣ t∑
j=1

ρm(ω, ϕj)− t · F (ω, y,m)

∣∣∣∣ ≤ δ · t

93

with the strength of ϕ and ω with respect to x and y being defined in the same way as
before. And so

∑
ω

µx,m(ω)ρm(ω, ϕ) ≤ 1

t

t∑
i=1

ρm(ωi, ϕ) + δ

∑
ϕ

νy,m(ϕ)ρm(ω, ϕ) ≤ 1

t

t∑
j=1

ρm(ω, ϕj) + δ

this allows to bound the acceptance probability of x and y as:

F (x, y,m) ≤
∑
ω

µx,m(ω)

(
1

t

t∑
j=1

ρm(ω, ϕj) + δ

)

≤ δ +

(∑
ω

µx,m(ω)
1

t

t∑
j=1

ρm(ω, ϕj)

)

≤ δ +
1

t

t∑
j=1

(∑
ω

µx,m(ω)ρm(ω, ϕj)

)

≤ 2δ +
1

t2

t∑
i,j=1

ρm(ωi, ϕj)

by replicating the above procedure for the other direction we obtain:∣∣∣∣ t∑
i,j=1

ρm(ωi, ϕj)− t2 · F (x, y,m)

∣∣∣∣ ≤ 2δt2

In other words, if the referee receives Tx,m and Ty,m he may estimate the value of F (x, y,m)
by a factor of 2δ and accept or reject accordingly.

From here we can define the protocol P∗ simply as follows: Alice and Bob send Tx,m
and Ty,m respectively. Then the referee takes de average answer for all pairs (ωi, ϕj) given
m and accepts if the majority of the cases accept.

Completeness. If (x, y) is a yes-instance, then there exists a proof m such that
F (x, y,m) is large (≥ 1−ε) . As we know that 1

t2
|
∑t

i,j=1 ρm(ωi, ϕj)−t2·F (x, y,m)| ≤
2δ we have that 1

t2

∑t
i,j=1 ρm(ωi, ϕj) ≥ 1−ε−2δ. Therefore by choosing δ sufficiently

small the referee accepts Tx,m and Ty,m.

Soundness. If (x, y) is a no-instance, then for any proof m if follows that F (x, y,m)
is small (≤ ε). And as we know that 1

t2
|
∑t

i,j=1 ρm(ωi, ϕj)− t2 ·F (x, y,m)| ≤ 2δ then
we have that 1

t2

∑t
i,j=1 ρm(ωi, ϕj) ≤ ε+ 2δ. And so the referee rejects Tx,m and Ty,m

for any m.

94

Thus given an MAsym protocol for f using O(K) bits we obtained a Msym protocol that
uses O(K2) bits. Therefore K = Ω

(√
Msym(f)

)
.

Lemma 5.19 If 2-col-eq ∈ dMApriv
ε [f(n)] with ε < 1/4, then there exists a protocol P

solving Equality in the MAsym model with bandwidth O(f(n)).

Proof. Indeed, let P be a protocol for 2-col-eq in the model dMA using random coins.
We design a protocol P∗ in the MAsym defined as follows. Let x, y ∈ {0, 1}n, and assume
without loss of generality that n is even. Given n ∈ N Alice, Bob and the referee construct
the following network configuration (G, id, I):

G is a path of 2n+ 1 nodes v1, . . . , v2n+1.

id(vi) = i for each i ∈ {1, . . . , 2n+ 1}.

I(vi) =


0n if i is odd
x if i is even and i ≤ n
y if i is even and i > n

v1 v2 . . . vn92 vn91 vn vn+1 vn+2 . . . v2n91 v2n

0n 0n 0n 0n0nx x y y

Figure 5.3: An instance (G, id, I) constructed by Alice and Bob: the blue box corresponds
to the set of nodes assigned to Alice, along with input x, those in the red box are the ones
assigned to Bob, along with the input y while the orange box containing a single node is
assigned to the referee, whose input is fixed.

Given the input x for Alice and y for Bob, they proceed to construct the instance
(G, id, I): Alice takes the first n nodes of G while Bob takes the last n. Finally, the
central node is assigned to the referee.

For each v ∈ G, let m(v) be the certificate that Merlin sends to node v according to
protocol P . In protocol P∗, Alice receives from the prover the certificate (m(vn),m(vn+1)),
and Bob receives the certificate (m(vn+1),m(vn+2)). Then, Alice proceeds to enumerate
all possible certificates for the nodes v1, . . . , vn+1, along with all possible random messages
that these nodes may generate, depending on each certificate and input. Likewise, Bob
enumerates all possible certificates and random messages for nodes vn+1, . . . , v2n+1.

Having simulated all possible interactions between the nodes in their section and the
referee, Alice draws a random string r1 and communicate the following to the referee the
message (accA, sn,m(vn+1)), where:

95

accA ∈ {0, 1} and equals 1 if and only if all the nodes v1, . . . , vn accept in protocol
P for more than 1− ε of all possible random bits;

sn is the message that node vn sends to vn+1 in the verification round of protocol
P , given the string r1, the input x and the certificate m(vn).

Analogously, Bob draws a random string r2 and sends the ref the message (accB, sn+2,m(vn+1)),
such that accB ∈ {0, 1} and equals 1 if and only if all the nodes vn+2, . . . , v2n+1 accept in
protocol P for more than 1− ε of all possible random bits; and sn+2 is the message that
vn+2 sends to vn+1 in the verification round of P , given r2, the input y and the certificate
m(vn+2). We have that both Alice and Bob send O(K) bits each.

Having these messages, the referee verifies that accA = accB = 1 and that both send
the same certificate for node vn+1, rejecting if any of these fails. Then the referee draws a
random string r3 and simulates the verification round between the central node vn+1, and
nodes vn and vn+2. Given the messages received from Alice and Bob, the referee has the
messages that vn+1 receives in the verification round of P . Finally, the referee accepts if
vn accepts. We now analyze the soundness and completeness of P∗.

Completeness. If x = y then (G, id, I) is a yes-instance of 2-col-eq. By the
completeness of P , all the nodes in G accept with probability greater than 1 − ε.
This implies that Alice and Bob communicate accA = accB = 1 to the referee. It also
implies that vn+1 accepts. Therefore, the referee accepts with probability greater
than 1− ε.

Soundness. In the case that x 6= y, we have that, by the correctness of P , the
probability that all nodes accept is strictly less than ε.

Now consider A to be the variable that equals 1 if Alice’s portion of the graph
accepts when vn receives r3 from vn+1 and B be the variable that equals 1 if Bob’s
portion accepts given r3. As accA = accB = 1 we have that

Pr(The referee accepts) = Pr(A,B and the referee accept)
+ Pr(The referee accepts and A = 0 or B = 0)

< ε+ 2ε

As Alice and Bob each reject the protocol with probability less than ε. Therefore,
with probability 1− 3ε > 3

4
we have that the referee rejects.

Finally, as there is a gap between both acceptance probabilities, the error can be reduced
by standard amplification. We conclude that P∗ is a protocol for Equality in the MAsym

model with bandwidth O(f(n)).

96

Theorem 5.20 2-col-eq ∈ dMApriv
ε [Θ(

√
n)] for any ε < 1

4
and 2-col-eq ∈

dMApub
1/3 [Θ(log n)].

Proof. Indeed, it is known that in the classic 2-party communication model of Alice and
Bob the problem equality has complexity Θ(n) even with the help of no-determinism
[Kus97]. This bound translates naturally to the simultaneous messages model, and so
N(equality) = Θ(n). From Theorem 5.16 we deduce that any protocol in the model
MAsym for equality using random bits requires Θ(

√
n) bits. Now, set ε < 1/4. If there

exists a protocol P for 2-col-eq using o(
√
n) bits and with and error smaller than ε,

then by Lemma 5.19 there would exist a protocol P∗ for equality in the model MAsym

using o(
√
n) bits and error smaller than 1/3, a contradiction.

Moreover, for every ε ≤ 1/3, if 2-col-eq belongs to dMApub
ε [f(n)] then f(n) = Ω(log n)

as we can derandomize the protocol and it would contradict the bound for equality.
Thus by Lemma 5.14 we conclude that the protocol is tight.

97

Conclusions and future work

Throughout this work, first we saw how the help of a prover can allow us to locally rec-
ognize properties which can be global in nature, or properties that, even while local in
nature may require the network to communicate very large messages (such as triangle-free
graphs). Moreover, by interacting for several rounds, the prover can provide even more
help, allowing us to recognize more graph classes with smaller messages. As such, we
obtained protocols for different types of graph classes that are hard to pin down because
of their high connectivity such as cographs, distance hereditary graphs, or chordal graphs.
As many of them are shown to be tight, we improve on the previous known results in
this model, such as the compiler by Naor, Parter and Yogev. Also, we explored how
the presence of different information bottlenecks allow us to use different lower bound
techniques, combining tools from extremal graph theory (Theorem 4.8) and packing ar-
guments in vector spaces (Theorem 4.11), to obtain Ω(log n) or Ω(log log n) lower bounds
for the classes dM and dAMpub respectively.

Second, we saw how the type of randomness that is used by a protocol can impact
greatly on the power of interactive proofs. We showed in Theorem 5.1 how the existence
of large lower bounds (ω(log n)) in the dM model can force an, at most, exponential gap
when a larger number of interactions using shared randomness occur. Then, in Sections 5.2
and 5.3, we showed how dAM and dMA protocols can simulate one another depending on
the type of randomness that is chosen by paying a small additive cost. Also, we provided
separation results between the two variants of distributed interactive proofs by studying
two problems (namely amos and 2-col-eq) that admit a large separation between the
costs of using shared and private randomness.

Now, as it is natural for this type of work, several questions arise that can lead to
interesting lines of future work. Starting with the design of interactive proofs, a first
natural question is whether we can find better protocols for the problems we considered
here by either reducing their costs (as ∆-free) or reducing the number of rounds of
interaction by exploiting some structure in the graph (e.g. cograph dist-hereditary
or circular-arc). On the contrary, it would be interesting to study new types of lower
bound techniques for classes that do not admit a small cut (e.g. clique and cograph)
or simply finding a general method for obtaining bounds in the dAMpriv model, where
only a lower bound by a packing argument has been found for the problem symmetry.

Another interesting problem, which has not been considered in this work, is under
which conditions we can simulate protocols in other models: We saw in Section 3.3 that

98

we can simulate a BCC protocol for the problem cograph given its special structure
which involves a join between two graphs. Given this highly arbitrary condition we would
like to look for some other cases by which we could obtain such a result.

Another model that we are interested in, and which we would naturally compare to, is
the Congest model. As described in Theorem 1.9 any protocol in the Congest model where
messages are broadcast in nature can be easily simulated by dAM protocols and therefore
distributed interactive proofs are simply stronger. As for its unicast variant, it is easy to
show that if our graph has bounded degeneracy, we can simulate it by assigning each node
the messages that go through each edge that comes with him in an elimination ordering,
increasing the cost by a factor of deg(G). Yet this leaves open the question of whether this
is the only case when it is possible, or there exists another condition by which we can do
it with a small increase in cost. Finding such a result (or its negative) would be specially
interesting as it opens a broader set of tools for us to use in the obtainment of efficient
protocols or in the proof of hardness of lower bounds, if we were to follow the routing
schemes of Ghaffari et al. [GKS17] or the recent results by Oshman et al. [EFF+19] which
would relate the existence of lower bounds to the possibility of simulating some families
of circuits in graphs with small mixing time.

Besides the main questions regarding the actual power of dAM and dMA, and a general
method to obtain lower-bounds on these models, this work leaves open other interesting
research lines regarding the study of the distributed interactive proofs model. First,
Theorem 5.1 shows that, if f = Ω(log n), then dAMpub[f] ⊆ dM[2f]. Is it possible to
obtain such an inclusion even for f = o(log n)? We were able to show that this is indeed
the case when the interactive proof is restricted to randomized protocols with low error
(see Theorem 5.4), but it is unclear whether this holds in general.

Another question along this line is about the maximum gap between dAM protocols
with private and shared randomness. More precisely, is there a language contained in both
dAMpub[Ω(n)] and dAMpriv[O(1)]? Such a result would further increase our separation gap
between both variants and give some insight into the structure of problems for which such
gap holds.

Finally, we can consider another model variant, which combines the power of shared
and private randomness on any round. Namely, a model where the nodes use private
randomness to interact with the prover and shared randomness in the verification round.
How powerful is this model compared to the one with only private coins?

99

100

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern ap-
proach. Cambridge University Press, 2009.

[ABCP92] Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. Low-
diameter graph decomposition is in nc. In Proceedings of the Scandinavian
Workshop on Algorithm Theory, pages 83–93. Springer, 1992.

[AW09] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in com-
plexity theory. ACM Transactions on Computation Theory, 1(1):1–54,
2009.

[BE10] Leonid Barenboim and Michael Elkin. Sublogarithmic distributed mis al-
gorithm for sparse graphs using nash-williams decomposition. Distributed
Computing, 22(5-6):363–379, 2010.

[BK97] László Babai and Peter G Kimmel. Randomized simultaneous messages:
Solution of a problem of Yao in communication complexity. In Proceed-
ings of Computational Complexity. Twelfth Annual IEEE Conference, pages
239–246. IEEE, 1997.

[BMRT14] Florent Becker, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca. The
simultaneous number-in-hand communication model for networks: Private
coins, public coins and determinism. In Proceedings of the International
Colloquium on Structural Information and Communication Complexity,
pages 83–95. Springer, 2014.

[BMRT20] Florent Becker, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca. The
impact of locality in the broadcast congested clique model. SIAM Journal
on Discrete Mathematics, 34(1):682–700, 2020.

[BNBYF+01] Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph Naor, and Baruch
Schieber. A unified approach to approximating resource allocation and
scheduling. Journal of the ACM, 48(5):1069–1090, 2001.

[Bod98] Hans L Bodlaender. A partial k-arboretum of graphs with bounded
treewidth. Theoretical Computer Science, 209(1-2):1–45, 1998.

101

[BS74] John A Bondy and Miklós Simonovits. Cycles of even length in graphs.
Journal of Combinatorial Theory, Series B, 16(2):97–105, 1974.

[BS+99] Andreas Brandstadt, Jeremy P. Spinrad, et al. Graph classes: a survey,
volume 3. SIAM, 1999.

[C+52] Herman Chernoff et al. A measure of asymptotic efficiency for tests of a
hypothesis based on the sum of observations. The Annals of Mathematical
Statistics, 23(4):493–507, 1952.

[CDE+13] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-
pher Frost, Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev,
Christopher Heiser, Peter Hochschild, et al. Spanner: Google’s globally
distributed database. ACM Transactions on Computer Systems, 31(3):1–
22, 2013.

[CDSF01] Serafino Cicerone, Gabriele Di Stefano, and Michele Flammini. Compact-
port routing models and applications to distance-hereditary graphs. Journal
of Parallel and Distributed Computing, 61(10):1472–1488, 2001.

[CFP19] Pierluigi Crescenzi, Pierre Fraigniaud, and Ami Paz. Trade-offs in dis-
tributed interactive proofs. In 33rd International Symposium on Distributed
Computing. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[CHKK+19] Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen,
Ami Paz, and Jukka Suomela. Algebraic methods in the congested clique.
Distributed Computing, 32(6):461–478, 2019.

[CHPP20] Keren Censor-Hillel, Ami Paz, and Mor Perry. Approximate proof-labeling
schemes. Theoretical Computer Science, 811:112–124, 2020.

[CLF12] Yaotsu Chang, Chong-Dao Lee, and Keqin Feng. Multivariate interpola-
tion formula over finite fields and its applications in coding theory. arXiv
preprint arXiv:1209.1198, 2012.

[DGS14] Guillermo Durán, Luciano N. Grippo, and Martín D. Safe. Structural re-
sults on circular-arc graphs and circle graphs: A survey and the main open
problems. Discrete Applied Mathematics, 164:427–443, 2014.

[DHP01] Guillaume Damiand, Michel Habib, and Christophe Paul. A simple
paradigm for graph recognition: application to cographs and distance
hereditary graphs. Theoretical Computer Science, 263(1-2):99–111, 2001.

[Die06] R. Diestel. Graph Theory. Electronic library of mathematics. Springer,
2006.

[DKO14] Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the
congested clique model. In Proceedings of the 2014 ACM symposium on

102

Principles of distributed computing, pages 367–376, 2014.

[EFF+17] Guy Even, Orr Fischer, Pierre Fraigniaud, Tzlil Gonen, Reut Levi, Moti
Medina, Pedro Montealegre, Dennis Olivetti, Rotem Oshman, Ivan Rapa-
port, et al. Three notes on distributed property testing. In 31st Inter-
national Symposium on Distributed Computing. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

[EFF+19] Talya Eden, Nimrod Fiat, Orr Fischer, Fabian Kuhn, and Rotem Oshman.
Sublinear-time distributed algorithms for detecting small cliques and even
cycles. In 33rd International Symposium on Distributed Computing. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[EJT10] Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace versions of
the theorems of bodlaender and courcelle. In IEEE 51st Annual Symposium
on Foundations of Computer Science, pages 143–152. IEEE, 2010.

[ER63] Paul Erdős and Alfréd Rényi. Asymmetric graphs. Acta Mathematica
Academiae Scientiarum Hungarica, 14(3-4):295–315, 1963.

[Erd64] P Erdös. On extremal problems of graphs and generalized graphs. Israel
Journal of Mathematics, 2(3):183–190, 1964.

[ERSR12] Milan Erdelj, Tahiry Razafindralambo, and David Simplot-Ryl. Covering
points of interest with mobile sensors. IEEE Transactions on Parallel and
Distributed Systems, 24(1):32–43, 2012.

[FFR+20] Laurent Feuilloley, Pierre Fraigniaud, Ivan Rapaport, Éric Rémila, Pedro
Montealegre, and Ioan Todinca. Compact distributed certification of planar
graphs. arXiv preprint arXiv:2005.05863, 2020.

[FGKO18] Orr Fischer, Tzlil Gonen, Fabian Kuhn, and Rotem Oshman. Possibilities
and impossibilities for distributed subgraph detection. In Proceedings of the
30th on Symposium on Parallelism in Algorithms and Architectures, pages
153–162, 2018.

[FH18] Laurent Feuilloley and Juho Hirvonen. Local verification of global proofs.
arXiv preprint arXiv:1803.09553, 2018.

[FKP13] Pierre Fraigniaud, Amos Korman, and David Peleg. Towards a complexity
theory for local distributed computing. Journal of the ACM, 60(5):1–26,
2013.

[FMO+19] Pierre Fraigniaud, Pedro Montealegre, Rotem Oshman, Ivan Rapaport, and
Ioan Todinca. On distributed merlin-arthur decision protocols. In Inter-
national Colloquium on Structural Information and Communication Com-
plexity, pages 230–245. Springer, 2019.

103

[FOZ16] Orr Fischer, Rotem Oshman, and Uri Zwick. Public vs. private randomness
in simultaneous multi-party communication complexity. In Proceedings of
the 2016 International Colloquium on Structural Information and Commu-
nication Complexity, volume 9988 of Lecture Notes in Computer Science,
pages 60–74, 2016.

[FPSP19] Pierre Fraigniaud, Boaz Patt-Shamir, and Mor Perry. Randomized proof-
labeling schemes. Distributed Computing, 32(3):217–234, 2019.

[Gar07] Frédéric Gardi. The roberts characterization of proper and unit interval
graphs. Discrete Mathematics, 307(22):2906–2908, 2007.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating
computation: interactive proofs for muggles. Journal of the ACM, 62(4):27,
2015.

[GKS17] Mohsen Ghaffari, Fabian Kuhn, and Hsin-Hao Su. Distributed MST and
routing in almost mixing time. In Proceedings of the ACM Symposium on
Principles of Distributed Computing, pages 131–140, 2017.

[GP12] Emeric Gioan and Christophe Paul. Split decomposition and graph-labelled
trees: characterizations and fully dynamic algorithms for totally decompos-
able graphs. Discrete Applied Mathematics, 160(6):708–733, 2012.

[GS16] Mika Göös and Jukka Suomela. Locally checkable proofs in distributed
computing. Theory of Computing, 12(1):1–33, 2016.

[HMPV00] Michel Habib, Ross McConnell, Christophe Paul, and Laurent Viennot.
Lex-BFS and partition refinement, with applications to transitive orienta-
tion, interval graph recognition and consecutive ones testing. Theoretical
Computer Science, 234(1-2):59–84, 2000.

[Hoà94] Chính T Hoàng. Efficient algorithms for minimum weighted colouring of
some classes of perfect graphs. Discrete Applied Mathematics, 55(2):133–
143, 1994.

[Hoe48] W Hoeffding. Probability inequalities for sums of random variables. Annals
of Mathematical Statistics, 10:293–325, 1948.

[HRSS14] Juho Hirvonen, Joel Rybicki, Stefan Schmid, and Jukka Suomela. Large
cuts with local algorithms on triangle-free graphs. arXiv preprint
arXiv:1402.2543, 2014.

[HT74] John Hopcroft and Robert Tarjan. Efficient planarity testing. Journal of
the ACM, 21(4):549–568, 1974.

[ILG17] Taisuke Izumi and François Le Gall. Triangle finding and listing in con-
gest networks. In Proceedings of the ACM Symposium on Principles of

104

Distributed Computing, pages 381–389, 2017.

[KK07] Amos Korman and Shay Kutten. Distributed verification of minimum span-
ning trees. Distributed Computing, 20(4):253–266, 2007.

[KKP10] Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes.
Distributed Computing, 22(4):215–233, 2010.

[KMRS15] Jarkko Kari, Martín Matamala, Ivan Rapaport, and Ville Salo. Solving
the induced subgraph problem in the randomized multiparty simultaneous
messages model. In International Colloquium on Structural Information
and Communication Complexity, pages 370–384. Springer, 2015.

[KOS18] Gillat Kol, Rotem Oshman, and Raghuvansh R. Saxena. Interactive dis-
tributed proofs. In Proceedings of the 2018 ACM Symposium on Principles
of Distributed Computing, pages 255–264. ACM, 2018.

[KT96] Lefteris M Kirousis and Dimitris M Thilikos. The linkage of a graph. SIAM
Journal on Computing, 25(3):626–647, 1996.

[Kus97] Eyal Kushilevitz. Communication complexity. In Advances in Computers,
volume 44. Elsevier, 1997.

[Lef] NLHPC’s Guacolda-Leftraru’s infraestructure. https://www.nlhpc.cl/
infraestructura/. Accessed: 2020-08-14.

[McC03] Ross M. McConnell. Linear-time recognition of circular-arc graphs. Algo-
rithmica, 37(2):93–147, 2003.

[MP06] Swagata Mandal and Madhumangal Pal. Maximum weight independent set
of circular-arc graph and its application. Journal of Applied Mathematics
and Computing, 22(3):161–174, 2006.

[MPSRT18] Pedro Montealegre, Sebastian Perez-Salazar, Ivan Rapaport, and Ioan Tod-
inca. Two rounds are enough for reconstructing any graph (class) in the
congested clique model. In International Colloquium on Structural Infor-
mation and Communication Complexity, pages 134–148. Springer, 2018.

[NPY20] Moni Naor, Merav Parte, and Eylon Yogev. The power of distributed
verifiers in interactive proofs. In Proceedings of the 14th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 1096–115. SIAM, 2020.

[NS96] Ilan Newman and Mario Szegedy. Public vs. private coin flips in one round
communication games. In Proceedings of the 28th ACM Symposium on
Theory of Computing, STOC 2009, pages 561–570, 1996.

[PS15] Seth Pettie and Hsin-Hao Su. Distributed coloring algorithms for triangle-
free graphs. Information and Computation, 243:263–280, 2015.

105

https://www.nlhpc.cl/infraestructura/
https://www.nlhpc.cl/infraestructura/

[Rob69] Fred S. Roberts. Indifference graphs. proof techniques in graph theory. In
Proceedings of the Second Ann Arbor Graph Conference, Academic Press,
New York, 1969.

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round
interactive proofs for delegating computation. In Proceedings of the 48th
annual ACM symposium on Theory of Computing, pages 49–62. ACM, 2016.

[RS04] Neil Robertson and Paul D. Seymour. Graph minors. XX. Wagner’s con-
jecture. Journal of Combinatorial Theory, Series B, 92(2):325–357, 2004.

[RTL76] Donald J. Rose, R. Endre Tarjan, and George S. Lueker. Algorithmic
aspects of vertex elimination on graphs. SIAM Journal on Computing,
5(2):266–283, 1976.

[Sch80] Jacob T Schwartz. Fast probabilistic algorithms for verification of polyno-
mial identities. Journal of the ACM, 27(4):701–717, 1980.

[Tuc70] Alan Tucker. Characterizing circular-arc graphs. Bulletin of the American
Mathematical Society, 76(6):1257–1260, 11 1970.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Interna-
tional symposium on symbolic and algebraic manipulation, pages 216–226.
Springer, 1979.

106

Appendix A

Graph problems

Here we include the list of problems to be considered in this work, following the defini-
tions used in [Die06] and [BS+99], as well as the graph-theoretic definitions described in
Section 1.1. For the sake of notation, we define NG to be the set of nodes in a graph G
which are adjacent to v (where we ignore the sub-index when there is no confusion on
the graph considered). We define dG(v) to be the size of NG(v) and δG = δ(G) to be the
minimum degree among all nodes in graph G. We define Pk to be the path-graph on k
nodes, Ck to be the cycle-graph on k nodes, Km to be the complete graph (i.e. where all
pairs of nodes are adjacent) of m nodes, Km,n to be the complete bipartite graph with
parts of size n and m respectively.

Consider a set O of polynomial size in n, where the inclusion and intersection between
objects is well-defined, which we call object space. An intersection model for a graph G
is defined as a set of objects {Ov}v∈V (G) from a object space O such that u and v are
adjacent in G if and only if their respective objects Ou and Ov is non-empty and belongs
to O.

Given a configuration 〈G, id〉 with G a graph of n nodes and a permutation σ : [n]→ [n]
we define σ(G, id) as the resulting configuration from permuting the id’s of the nodes of
G according to σ when sorting the nodes of G increasingly according to their identifiers.
Finally, we denote ι : [n]→ [n] to be the identity function.

d-degenerate= {〈G, id, d〉 s.t. max
H⊆G

δH}

twins= {〈G, id〉 s.t. there exists u, v ∈ G with N(u) = N(v)}

∆-free= {〈G, id〉 s.t. K3 is not a subgraph of G}

chordal= {〈G, id〉 s.t. for any k ≥ 4, Ck is not an induced subgraph of G}

interval= {〈G, id〉 s.t. G admits an intersection model of intervals on the real line}

In which case, we say that G is an interval graph.

107

proper interval= {〈G, id〉 s.t. G is an interval graph with no inclusions between intervals}

circular-arc= {〈G, id〉 s.t. G admits an intersection model of arcs in a circle}

In which case, we say that G is an circular-arc graph.

proper circ-arc = {〈G, id〉 s.t. G is a circular arc graph with no inclusions between arcs}

cograph = {〈G, id〉 s.t. G has no P4 as an induced subgraph}

dist-hereditary = {〈G, id〉 s.t. for every H ⊆ G, and u, v ∈ V, dH(u, v) = dG(u, v)}

clique = {〈G, id〉 s.t. for any u, v ∈ V (G), u and v are adjacent}

H-subgraph= {〈G, id〉 s.t. G has isomorphic copy of H as a subgraph}

H-minor= {〈G, id〉 s.t. G contains H as a minor}

3-col= {〈G, id〉 s.t. G is not 3-coloreable}

planar= {〈G, id〉 s.t. K3,3 is not a minor of G}

outerplanar = {〈G, id〉 s.t. K2,3 is not a minor of G}

diameter = {〈G, id, k〉 s.t. max
u,v

dG(u, v) ≤ k}

symmetry = {〈G, id〉 s.t. exists σ : [n]→ [n] with σ(G, id) ∼= 〈G, id〉 and σ 6= ι}

amos = {〈G, id, I〉 s.t. I : V (G)→ {0, 1} and |{v ∈ V (G) : I(v) = 1}| ≤ 1},

2-col-eq = {〈G, id, I〉 s.t. I : V (G)→ {0, 1}n is a proper two-coloring of G}.

108

	Introduction
	Preliminaries and Model Definition
	Preliminaries
	The Distributed Interactive Proofs Model
	Other Communication Models.
	Alice and Bob, 2-Party Communication.
	The Simultaneous Messages Model
	The Congest Model
	Broadcast Congested Clique

	Some Important Results

	Protocols Using a Single Interaction
	Degeneracy
	Twins
	Proper Interval Graphs
	Chordal Graphs and Interval Graphs
	Circular Arc Graphs
	Proper Circular Arc

	Protocols Using Multiple Rounds of Interaction
	H-subgraph and H-minor
	The Problem of H-freeness

	Clique
	Cograph
	Distance Hereditary
	Detection of Triangle-free Graphs

	Lower Bounds
	A dAM lower bound for the degeneracy
	A dM lower bound for cograph.
	A general lower bound for public dAM
	A lower bound for Symmetry

	Shared versus Private Randomness
	The Limits of Shared Randomness
	Shared dAM versus Private dAM
	Shared dMA versus Private dMA
	The upper bound
	The lower bound

	Conclusion
	Bibliography
	Graph problems

