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ABSTRACT
In a previous paper, we reported simulations of the evolution of the magnetic field in
neutron star cores through ambipolar diffusion, taking the neutrons as a motionless
uniform background. However, in real neutron stars, neutrons are free to move, and a
strong composition gradient leads to stable stratification (stability against convective
motions) both of which might impact on the time-scales of evolution. Here we address
these issues by providing the first long-term two-fluid simulations of the evolution
of an axially symmetric magnetic field in a neutron star core composed of neutrons,
protons, and electrons with density and composition gradients. Again, we find that
the magnetic field evolves towards barotropic “Grad-Shafranov equilibria”, in which
the magnetic force is balanced by the degeneracy pressure gradient and gravitational
force of the charged particles. However, the evolution is found to be faster than in the
case of motionless neutrons, as the movement of charged particles (which are coupled
to the magnetic field, but are also limited by the collisional drag forces exerted by
neutrons) is less constrained, since neutrons are now allowed to move. The possible
impact of non-axisymmetric instabilities on these equilibria, as well as beta decays,
proton superconductivity, and neutron superfluidity, are left for future work.
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1 INTRODUCTION

Neutron stars (NSs) are classified in several types based on
their substantially different observational properties, which
appear to be determined mainly by their rotation rates,
magnetic field strengths, and presence or absence of accre-
tion from a binary companion. In particular, the magnetic
fields control the torque that slows down their rotation, can
have a crucial effect on the free energy budget and radia-
tion processes, and influence the flow of accreted matter on
and around these stars. On the other hand, the structure
and evolution of these magnetic fields is far from under-
stood as different classes of NSs have very different mag-
netic field strengths, which appear to be correlated with
their age. Young NSs; such as magnetars, classical radio
pulsars, and high-mass X-ray binaries; have strong surface
magnetic fields ∼ 1011−15G; while the much older low-mass
X-ray binaries and millisecond pulsars have weaker fields
∼ 108−9G (Kaspi 2010; Viganò et al. 2013). This suggests
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a magnetic field decay, which is usually attributed to the
accretion process (Backer et al. 1982; Bhattacharya 1991,
1995; Tauris & van den Heuvel 2006), but might also be ex-
plainable through its own dynamics and spontaneous decay
as the NS cools and ages (Cruces et al. 2019). Furthermore,
the high time-averaged luminosity of magnetars is thought
to be linked to the decay of their magnetic field, since their
rotational energy loss is insufficient to account for it. Since
these objects appear to be isolated, their field decay must
be attributed to processes intrinsic to the NSs (Thompson
& Duncan 1995, 1996). Therefore, understanding the mech-
anisms that drive the long-term evolution of the magnetic
field in NSs may help us unveil the relation between their
different classes.

The physics of the evolution of the magnetic field varies
in different regions of the NS (Goldreich & Reisenegger
1992). For example, in the solid crust, ions have very re-
stricted mobility, so the currents are carried by electrons.
Therefore the long-term mechanisms that control the evolu-
tion of the field in this region are Ohmic diffusion, i. e. cur-
rent dissipation by electric resistivity; and Hall drift which
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2 Castillo et al.

corresponds to the transport of the magnetic flux by the
electron motion. Since the magnetic field dynamics is in-
trinsically non-linear, its recent studies have mainly taken a
numerical point of view (Hollerbach & Rüdiger 2002; Pons &
Geppert 2007; Pons et al. 2009; Viganò et al. 2012; Gourgou-
liatos et al. 2013; Viganò et al. 2013; Lander & Gourgouliatos
2019), finding that the magnetic field evolves towards stable
“attractor” configurations (Gourgouliatos & Cumming 2014;
Marchant et al. 2014).

In this work, we concentrate on the long-term magnetic
field dynamics in the core of NSs, which is conceptually
much more involved than in the crust. Indeed, the core of
a NS is a fluid mixture of neutrons, protons, and electrons,
joined by other species at increasing densities. The mecha-
nisms for field evolution in this region are strongly depen-
dent on the star’s core temperature T . Shortly after the NS is
formed, neutrons and charged particles are strongly coupled
by collisions, behaving essentially as a single fluid, coupled
to the magnetic flux. This fluid is stably stratified by its
composition gradient (due to the different density profiles
of charged particles and neutrons) (Pethick 1992; Goldreich
& Reisenegger 1992; Reisenegger 2009); thus, strong buoy-
ancy forces oppose convective motions. However, as noted
by Reisenegger (2007), weak interaction processes (so-called
“Urca reactions”; Gamow & Schoenberg 1941; Haensel 1995)
can quickly adjust the composition of a fluid element, over-
coming stable stratification and allowing the fluid to trans-
port the magnetic flux. In this “strong-coupling” regime, the
matter can be regarded as a single, stably stratified, non-
barotropic fluid (i.e., pressure depends on the non-uniform
chemical composition in addition to density). However, as
weak interactions are strongly temperature-dependent, this
regime applies only for a very short time after the NS birth
(while T & 5 × 108K). As the star cools, the progressive re-
duction of the collisional coupling makes relative motions
possible, so the charged particles can carry the magnetic
flux with a different velocity field than that of the neutrons,
a process called “ambipolar diffusion” (Pethick 1992; Gol-
dreich & Reisenegger 1992). Hence, on long time-scales, the
NS core is in a “weak-coupling” regime, in which neutrons
and charged particles act as independent barotropic fluids
(assuming charged particles other than p and e can be ig-
nored), with only the charged particles coupling significantly
to the magnetic field. It has been argued that ambipolar dif-
fusion may be relevant to explain the activity of magnetars
due to its strong dependence on the magnetic field intensity
(Thompson & Duncan 1995, 1996).

In Castillo et al. (2017) (hereafter paper I), we provided
the first simulations that evolve simultaneously and consis-
tently the structure of the magnetic field and the small den-
sity perturbations it induces on the charged particles (taken
to be a nearly uniform, locally neutral mix of protons and
electrons) inside the core of an isolated, spherical NS through
ambipolar diffusion in axial symmetry. We modeled the neu-
trons as a motionless uniform background that produces a
frictional drag on the charged particles (see Goldreich &
Reisenegger 1992) and neglected the currents in the crust,
assuming it has a very low conductivity. We also ignored the
effects of superfluidity, superconductivity, and weak interac-
tions (“Urca reactions”).

We found that the magnetic field evolves in the expected
time-scales, eventually reaching equilibrium states in which

the magnetic forces are balanced by the degeneracy pressure
gradient and gravitational force of charged particles. The lat-
ter, being a homogeneous mixture of protons and electrons,
can be regarded as a barotropic fluid (with a one-to-one re-
lation between pressure and density), so these equilibrium
states satisfy the Grad-Shafranov equation (Grad & Rubin
1958; Shafranov 1966), strongly constraining the magnetic
field configuration. The toroidal field is confined to regions
of closed poloidal field lines forming “twisted tori” whose
number is conserved by the evolution, since ambipolar diffu-
sion by itself cannot produce magnetic reconnection. Outside
these tori, i.e. along poloidal field lines that extend beyond
the star, the toroidal field disappears through “unwinding”
of the field lines by a toroidal component of the ambipolar
velocity. We also confirmed that previously found solutions
of the Grad-Shafranov equation (e.g., Armaza et al. 2015)
are stable in axial symmetry.

We must remark that barotropic axially symmetric
equilibria (as the ones found in paper I, and eventu-
ally in this work) are likely to become unstable under
non-axisymmetric perturbations, as there are numerous
magneto-hydrodynamic instabilities identified for axially
symmetric magnetic fields, all of which break the axial sym-
metry (Tayler 1973; Markey & Tayler 1973; Wright 1973).
Additionally, stable stratification (non-barotropy) appears
to be required to stabilize magnetic field configurations
(Braithwaite 2009; Reisenegger 2009; Mitchell et al. 2015).
Such instabilities might lead to a complete dissipation of
the field, unless the charged particle fluid is stably strati-
fied by a gradient of muons or other particle species, in ad-
dition to protons and electrons. Addressing 3-dimensional
motions, as well as the high temperature “strong-coupling”
regime (in which collisional coupling and weak interactions
between species become important) is left for future work.

Paper I was a starting point, but contains several simpli-
fications that must be considered. For instance, we modeled
the neutrons as a motionless, uniform background with the
only effect of providing a frictional force on the charged par-
ticles. However, in real NSs, neutrons can move, and both
neutrons and charged particles have strong, but different
density gradients, so their velocity fields must also be differ-
ent, as long as their relative abundances cannot be adjusted
“in real time” by Urca reactions, as is the case at high tem-
peratures. Thus, there will both be a bulk motion and a
relative motion of neutrons and charged particles, setting
time-scales that might be somewhat shorter than those pre-
viously found. This has been recently studied by Ofengeim &
Gusakov (2018), who evaluated the different instantaneous
particle velocities for a fixed magnetic field configuration,
finding that the magnetic field may lead to the generation of
a macroscopic fluid velocity that is substantially larger than
the relative velocities between species. The impact of the
neutron motion on an evolving magnetic field has been pre-
viously studied by Hoyos et al. (2008, 2010); however, their
one-dimensional simulations cannot capture all the relevant
physics of the process. Therefore, in the present work we
address those issues by numerically evolving the magnetic
field, including the motion of neutrons, in a spherical star
with an axially symmetric magnetic field.

In this paper, we neglect the effects of superfluidity and
superconductivity, which should at the very least change the
couplings between superfluid neutrons and superconducting
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protons, thus modifying the time-scales for the processes
simulated here, and possibly change the equilibrium con-
figurations found. These issues have been studied by sev-
eral authors in the last years (e.g., Glampedakis et al. 2011;
Graber et al. 2015; Elfritz et al. 2016; Passamonti et al.
2017a; Bransgrove et al. 2018), and the discussion has not
been exempt from controversy (Gusakov & Dommes 2016;
Dommes & Gusakov 2017; Passamonti et al. 2017b). Un-
til recently, the impact of superfluidity and superconduc-
tivity was thought to be well understood only in particu-
larly simple situations, such as the one studied by Kantor &
Gusakov (2018). However, it was not until very recently that
an expression for the force on proton vortices in superfluid
and superconducting matter (Gusakov 2019) was proposed,
which is a key ingredient for studying the long-term mag-
netic evolution. Thus, performing magneto-hydrodynamic
simulations including such effects is left for future work.

This paper is organized as follows. In § 2 we discuss
the physical model and construct the equations to be solved
in axial symmetry. Here, we also discuss the relevant time-
scales and describe our toy model for the equation of state.
In § 3.1 we test the impact of including an extra artificial
friction, which is used in our simulations to keep the mag-
netic field close to a magneto-hydrostatic quasi-equilibrium
throughout its evolution. In § 3.2 we check if the simulations
are in agreement with the analytically expected time-scales.
In § 3.3 we study the equilibrium configurations found. Fi-
nally, in § 4, our results are summarized and conclusions are
outlined.

2 PHYSICAL MODEL

2.1 Basic equations

As in Paper I, we model the interior of an isolated NS as a
plasma composed of neutrons, protons, and electrons. The
species are coupled by collisions and electromagnetic forces,
and their equations of motion are written as

ni
µi

c2
dvi
dt
= niqi

(
E +

vi
c
× B

)
− ni∇µi −

niµi
c2 ∇Ψ

−
∑
j,i

γi jninj
(
vi − v j

)
,

(1)

where ni and µi (i = n, p, e) are the number density and chem-
ical potential of species i, respectively; µi/c2 is the effective
mass of each species, which could include corrections due to
interactions and relativistic effects (Akmal et al. 1998); qi is
the electric charge of the respective particles; and vi is the
velocity of the ith species. We assume charge neutrality, so
that at all times np = ne ≡ nc . The forces acting on each
particle are, from left to right, the Lorentz force (where E
and B are the electric and magnetic fields), the degeneracy-
pressure gradient of species i, the gravitational force acting
on each fluid species (where Ψ is the gravitational poten-
tial), and the frictional drag forces due to collisions between
particles of different species. The later are parametrized by
rate coefficients γi j , so that momentum conservation implies
γi j = γji .

Under any perturbation, the star very quickly reaches a
magneto-hydrostatic quasi-equilibrium state in which all the
forces on a fluid element are close to balancing each other.

The time-scale to reach this state is a few Alfvén times,
tAlf ∼ (1014G/B) s. Since we are interested in the long-term
evolution of the field, which happens on much longer time-
scales, ∼ 103−10 yr, we do not intend to follow the propaga-
tion of sound waves, gravity (buoyancy) waves, and Alfvén
waves in detail. Instead, we filter them out by replacing the
inertial terms on the left-hand-side of the equations of mo-
tion by an artificial frictional force acting on the neutrons,
of the form fζ ≡ −ζnnvn (Hoyos et al. 2008). The balance
between this and the other forces acting on a fluid element
determines the velocity field vn, which quickly restores the
hydro-magnetic quasi-equilibrium by rearranging the parti-
cles and magnetic field on a time-scale set by the param-
eter ζ . The value of this parameter is chosen to be small
enough so its associated time-scale is much longer than the
dynamical time-scales (∼ Alfvén times), but shorter than the
time-scales relevant to us (see discussion in Section 2.6).

In paper I, we did not need to explicitly introduce such
mechanism. As we froze the neutrons, their friction with
the charged particles provided a mechanism ensuring that
the latter would evolve through successive quasi-equilibrium
states. In contrast, in the present work we are allowing neu-
trons to move and rearrange in a way in which they help to
maintain a hydro-magnetic quasi-equilibrium, which might
be much closer to reality.

The equations of motion then become:

0 = − nn∇µn −
nnµn

c2 ∇Ψ − γnennnc (vn − ve)

− γnpnnnc
(
vn − vp

)
− ζnnvn ,

(2)

0 = + nce
(
E +

vp

c
× B

)
− nc∇µp −

ncµp
c2 ∇Ψ

− γpen2
c

(
vp − ve

)
− γpnncnn

(
vp − vn

)
,

(3)

0 = − nce
(
E +

ve
c
× B

)
− nc∇µe −

ncµe
c2 ∇Ψ

− γepn2
c

(
ve − vp

)
− γenncnn (ve − vn) .

(4)

By taking the product of equation (3) with γen and equa-
tion (4) with γpn, and then subtracting them, we get

E = −
γpnve + γenvp

cγcn
× B +

J

σ

+
γen∇µp − γpn∇µe

eγcn
+
γenµp − γpnµe

ec2γcn
∇Ψ.

(5)

where γcn = γpn+γen is the net collisional coupling between
charged particles and neutrons,

σ = e2
(
γpe +

γenγpn

γcn

nn
nc

)−1
, (6)

is the electric conductivity, and J is the electric current den-
sity J = nce(vp − ve) = c∇×B/4π.

We define the “ambipolar diffusion velocity”, which rep-
resents the joint motion of the two charged particle species
relative to the neutrons, as

vad =
γpn(vp − vn) + γen(ve − vn)

γcn
, (7)

and the “Hall drift velocity”, which is proportional to the
electric current, as

vH = −
γpn − γen

γcn
(vp − ve) = −

γpn − γen
γcn

J

nce
. (8)
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Hence,
(
γpnve + γenvp

)
/γcn = vn+vad+vH , so the evolution

equation for the magnetic field is obtained from Faraday’s
law as

∂B

∂t
= ∇×

[
(vn + vad + vH ) × B − c

σ
J
]

− ∇
(

cγen
eγcn

)
× ∇µc − ∇

(
µpγen − µeγpn

ecγcn

)
× ∇Ψ ,

(9)

where we defined a total chemical potential for the charged
particles, µc ≡ µp + µe. The last term inside the curl rep-
resents Ohmic dissipation, and the two last terms represent
battery effects.

As discussed in Goldreich & Reisenegger (1992), in the
core of NSs the effects of Hall drift and Ohmic decay can be
orders of magnitude smaller than the ambipolar diffusion,
hence we neglect those terms. Also, as shown in paper I,
the time-scale on which the battery terms are relevant is
roughly the same as the Hall time-scale, therefore we also
neglect those terms, obtaining

∂B

∂t
= ∇×(vc × B) , (10)

where vc ≡ vn + vad is the velocity of the charged particles.
The relevant velocities can be computed from the equa-

tions of motion. By adding equations (2), (3), and (4), we
get the velocity field of the neutrons, parametrized by the
fictitious friction coefficient ζ , which replaces the very small
inertial terms,

vn =
1
ζnn

[
J

c
× B − nc

(
∇µc +

µc

c2 ∇Ψ
)
− nn

(
∇µn +

µn

c2 ∇Ψ
)]

.

(11)

From equations (3), (4), and (7) we obtain the ambipolar
diffusion velocity,

vad =
1

γcnncnn

[
J × B

c
− nc

(
∇µc + µc

∇Ψ
c2

)]
, (12)

which is proportional to the imbalance between the forces,
including (from left to right) the magnetic force density, the
gradient of the degeneracy pressure of the charged particles,
and the gravitational force on the charged particles. Thus,
the ambipolar diffusion is driven by the magnetic force, con-
trolled by the pressure gradient and gravitational forces act-
ing on the charged particles, and opposed by the collisional
drag of the neutrons. The terms in equation (11) have an
analogous interpretation.

To evolve the particle densities, we use the continuity
equations

∂nc
∂t
+ ∇ · (ncvc) = −∆Γ , (13)

∂nn
∂t
+ ∇ · (nnvn) = +∆Γ , (14)

where ∆Γ is the net rate per unit volume of conversion of
charged particles to neutrons by weak interactions, i. e., the
difference between the rates for the (direct or modified) Urca
processes, p + e → n + νe and n → p + e + ν̄e, where νe
and ν̄e denote electron neutrinos and electron antineutri-
nos, respectively. This quantity becomes very small in the
low-temperature regime (T . 5×108K) of interest here (Gol-
dreich & Reisenegger 1992; Reisenegger 1995), therefore we
ignore it in the present work.

nn/nn0

nn
(A)/nn0

nc/nc0

nc
(A)/nc0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

r/R

Figure 1. Comparison between nn/nn(0) and nc/nc (0) (ob-

tained by numerically solving the hydrostatic equilibrium equa-

tion 16), and the simple analytical approximations n
(A)
n /nn(0)

and n
(A)
c /nc (0), respectively. Here, n

(A)
n is computed from equa-

tion (19), using n
(A)
c , the analytical expression for nc given by

equation (20).

2.2 Background NS model

As in paper I, we consider the (realistic) situation where the
magnetic field induces only small perturbations with respect
to a hypothetical non-magnetized stellar structure (see also
Reisenegger 2009). Thus, we split the particle densities, and
hence the chemical potentials, in two:

1) time-independent background densities ni(r) and chemi-
cal potentials µi(r) determined by the conditions of chemical
(beta) equilibrium,

µn = µc ≡ µ(r), (15)

and hydrostatic equilibrium in the absence of the magnetic
field,

∇µ + µ∇Ψ/c2 = 0, (16)

and
2) much smaller time-dependent perturbations δnc , δnn,
δµc , and δµn, respectively, induced by the evolving magnetic
field (to be discussed in § 2.3).

An important improvement of the present work over paper
I is that we consider the non-magnetized background star
to have non-uniform particle densities, with different radial
gradients for the neutrons and charged particles, as imposed
by beta equilibrium.

For simplicity, we ignore strong interactions, treating
neutrons and protons (with the same mass m) as non-
relativistic Fermi gases and electrons as an extremely rel-
ativistic (massless) Fermi gas. Thus, the chemical potentials
are related to the particle densities by

µn(r) = mc2 +
pFn(r)2

2m
, (17)

µc(r) = mc2 +
pFc(r)2

2m
+ pFc(r)c , (18)

where pFi(r) = ~
[
3π2ni(r)

]1/3
are the Fermi momenta of

neutrons (i = n) and charged particles (i = c). Since we
assume charge neutrality, the densities (and thus the Fermi
momenta) of protons and electrons are the same. Thus, the
condition of chemical equilibrium (equation [15]) allows to
write the density of neutrons in terms of that of the charged
particles,

nn(r) =
[

2mc
~(3π2)1/3

nc(r)1/3 + nc(r)2/3
]3/2

. (19)
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For the background number density of charged particles,
we use the simple analytical approximation

nc(r) = nc0

[
sin(0.7πr/R)

0.7πr/R

]6
, (20)

where R is the radius of the core, taken as 70% of the stellar
radius. As can be seen in Fig. 1, this relation closely resem-
bles the numerical solution obtained by imposing Newtonian
hydrostatic equilibrium equation (16) on this Fermi gas, and
we adjusted the central density so ξ ≡ nn(0)/nc(0) = 10,
yielding a star of mass 1.58M� and radius 8.2 km.

The transport coefficients γi j (r,T) between species i and
j are computed for the relations derived for τi j (r,T) by
Yakovlev & Shalybkov (1990), where T denotes the core tem-
perature.

This stellar model, although very simplified, allows us
to capture the effects of radial density gradients, gravity,
and stable stratification into our simulations, which is a vast
improvement over paper I, where the background densities
were treated as fixed radially independent numbers.

2.3 Linearization

Since the density perturbations are small, we can linearize
δµn = Knnδnn (where Knn = dµn/dnn), and δµc = Kccδnc
(where Kcc = dµc/dnc). In our model, as there are no strong
interactions, the cross-derivatives Kcn = ∂µc/∂nn and Knc =

∂µn/∂nc vanish.
Dropping higher-order terms, we can write the full set

of equations to be solved as

∂B

∂t
= ∇×[(vn + vad) × B] , (21)

∂δnn
∂t
+ ∇ · (nnvn) = 0 , (22)

∂δnc
∂t
+ ∇ · [nc(vn + vad)] = 0 , (23)

vn =
1
ζnn
( fB + fn + fc) , (24)

vad =
1

γcnncnn
( fB + fc) , (25)

fB =
(∇×B) × B

4π
, (26)

fn = −nnµ∇
(
δµn
µ

)
, (27)

fc = −ncµ∇
(
δµc
µ

)
, (28)

δµn = Knnδnn , (29)

δµc = Kccδnc , (30)

where the degeneracy pressure gradients and the gravita-
tional forces for each species have been combined into the
“fluid forces” (more precisely, force densities) fn and fc us-
ing the hydrostatic equilibrium condition of the background,
equation (16).

2.4 Boundary conditions

For simplicity, we assume that currents in the crust decay
much faster than typical evolution time-scales in the core,
so we can treat the crust as a vacuum whose magnetic field

at any time is fully determined by the field in the core (see
discussion and more detail on the imposed boundary condi-
tions in paper I). This external current-free magnetic field is
computed at all time-steps as a multipolar expansion, whose
coefficients (a` , with ` = 1, 2, ...) are determined by the value
of the radial component of the magnetic field at the crust-
core interface. These coefficients also determine the energy
stored in the external magnetic field (see details in paper I),
namely

Uext ≡
∞∑
`=1

Uext,` =

∞∑
`=1

` + 1
2` + 1

a2
`

2
, (31)

where Uext,` is the energy stored in the `-th component of
the external field. Also, at the crust-core interface we assume
that the radial components of both the neutron velocity vn
and the charged-particle velocity vc are null. Therefore, at
the crust-core interface we have

∂

∂r

(
δµc
µ

)
=

f rB
ncµ

, (32)

∂

∂r

(
δµn
µ

)
= 0 . (33)

2.5 Axial symmetry

Lastly, we restrict ourselves to axial symmetry, so the mag-
netic field can be decomposed as

B = ∇α × ∇φ + β∇φ . (34)

Here the scalar potentials α(t, r, θ) and β(t, r, θ) generate the
poloidal and toroidal magnetic field, respectively, where t
denotes time, r is the radial coordinate, and θ and φ are the
polar and azimuthal angles, respectively, so ∇φ = φ̂/(r sin θ).
An explicit form for the evolution of the magnetic potentials
can be derived from equation (21), where we get

∂α

∂t
= r sin θ [(vn + vad) × B] · φ̂ , (35)

∂β

∂t
= r2 sin2 θ∇ ·

{
[(vn + vad) × B] × φ̂

r sin θ

}
. (36)

2.6 Time-scale estimates

2.6.1 Short-term relaxation through fictitious friction

In order to mimic the quick hydro-magnetic relaxation due
to the propagation and damping of sound waves, gravity
waves, and Alfvén waves, which happens much faster than
ambipolar diffusion, the fictitious friction parameter intro-
duced in equation (2) must satisfy ζ � γcnnc , so a net force
imbalance on a fluid element (in round brackets on the right-
hand side of equation [24]) is reduced by bulk motions (with
velocity vn) much more quickly than an imbalance of the
partial forces on the charged-particle component (in round
brackets on the right-hand side of equation [25]) is reduced
by ambipolar diffusion (with relative velocity vad). Thus,
for an arbitrary, non-equilibrium initial condition, the dy-
namics is initially dominated by a bulk motion with the
neutron velocity, vn. For a characteristic spatial scale L . R
of the magnetic field, the time-scales for the evolution of the
density perturbations, ∼ (δnn/nn)(L/vn) (from equation [22])
and ∼ (δnc/nc)(L/vn) (from equation [23]) are much shorter
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than that for the magnetic field, ∼ L/vn (from equation [21]).
Thus, for t � L/vn, the magnetic field can be regarded as
fixed, and only the density perturbations evolve.1

For an axially symmetric magnetic field configuration,
the Lorentz force density (equation [26]) can be decomposed
as

f B = f Pol
B + f Tor

B , (37)

where f Pol
B and f Tor

B are its poloidal and a toroidal com-
ponents. On the other hand, the fluid forces given by equa-
tions (27) and (28) are purely poloidal, therefore they cannot
balance f Tor

B . Furthermore, each of the fluid forces is pro-
portional to the gradient of a single scalar function, there-
fore an arbitrary f Pol

B can only be balanced for a particular,
non-trivial combination of chemical potential perturbations,
δµn(r, θ) and δµc(r, θ).

For definiteness, let us assume an initial condition with
vanishing density perturbations, δnn(t = 0) = δnc(t = 0) = 0.
In this case, the initial poloidal bulk velocity is vPol

n (t = 0) =
f Pol
B /(ζnn), and the density perturbations grow roughly as

|δnn/nn | ∼ |δnc/nc | ∼ vPol
n t/L. This causes a growth of the

fluid forces, fn ∼ Knnn2
nv

Pol
n t/L2 and fc ∼ Kccn2

cv
Pol
n t/L2,

until the larger of these, namely f n (because Knnnn ∼ Kccnc ,
whereas nc � nn) approaches the magnitude of f Pol

B . This
happens on a time-scale

tζp ∼
ζL2

Knnnn
, (38)

the analog of the propagation time of sound waves (p-modes)
when inertial effects are taken into account. However, as dis-
cussed in the previous paragraph, f n alone cannot balance
an arbitrary (poloidal) vector field f Pol

B (r, θ). Thus, vn might
now be a very different vector field than f B/(ζnn), but it will
still be roughly of the same order of magnitude, further mod-
ifying the density perturbations until f Pol

B + f n + f c ≈ 0, at
which point the density perturbations reach the (still very
small) fractional magnitudes |δnn |/nn ∼ B2/(4πKnnn2

n) and
|δnc |/nc ∼ B2/(4πKccn2

c). The latter happens on a time-scale

tζg ∼
L
vn

|δnc |
nc
∼ ζnnL2

Kccn2
c

, (39)

which should be roughly identified with the propagation
time of gravity waves (g-modes), i. e., the buoyancy (Brunt-
Väisälä) period in a realistic NS (Reisenegger & Goldre-
ich 1992), since balancing an arbitrary f Pol

B will gener-
ally require non-parallel vector fields ∇[δµn(r, θ, t)/µ(r)] and
∇[δµc(r, θ, t)/µ(r)], i. e., a baroclinic (non-barotropic) config-
uration.

On the other hand, f Tor
B cannot be canceled by fluid

forces and must thus decay to zero, which occurs on a longer
time-scale

tζB ∼
L
vn
∼ 4πζnnL2

B2 , (40)

which should be identified with an Alfvén-like time. The

1 Formally, equations (22) to (30) can be rewritten as a system
of two coupled diffusion equations for δnn and δnc with an inho-

mogeneous term linear in fB (which can be taken as a constant
in this regime) and diffusion coefficients (and thus characteristic

time-scales) independent of B.

latter evolution clearly also modifies f Pol
B , but the fluid dis-

placements can keep up, always maintaining the balance be-
tween f Pol

B and the gradient terms and eventually leading
to a nearly complete cancellation of the forces on the right-
hand side of equation (24), thus making |vn | comparable to
|vad |.

These arguments remain valid when removing the re-
striction of axial symmetry. As two gradient forces can only
balance two different components of the magnetic force (in
a time-scale tζg), one component will always remain unbal-
anced. Therefore, reaching a state of hydro-magnetic quasi-
equilibrium will always require the magnetic field to adjust
so that the latter component vanishes, which will happen
on a time-scale ∼ tζB. Since we are interested in an evolu-
tion on a time-scale many orders of magnitude longer than
an Alfvén-like time, we only need ζ to be small enough to
make tζB sufficiently short to maintain the hydro-magnetic
quasi-equilibrium discussed above.

Gusakov et al. (2017) used the time-derivative of
the toroidal component of the quasi-equilibrium condition,
∂ f Tor

B /∂t = 0, to obtain the macroscopic toroidal velocity
of the particle flow. However, solving this equation at all
time-steps in a simulation is unpractical, as it would require
high spatial resolution to properly resolve the fourth-order
derivatives over B. Our approach is simpler, as we do not
attempt to solve this equation directly, rather, we let the
system relax to this condition through the addition of the
fictitious friction force.

2.6.2 Long-term evolution through ambipolar diffusion

As the magnetic force acts only on the charged particles
(which are coupled to the neutrons only by collisions), it
induces a slow relative motion with velocity vad in which
the magnetic field lines are carried along with the charged
particles. This process slowly modifies the hydro-magnetic
quasi-equilibrium, eventually reaching a state in which the
magnetic force is balanced mainly by the fluid force of the
charged particles, while the contribution of the neutrons be-
comes negligible. During this process, the magnetic field
has to adjust, since it has to transition from a state in
which f Pol

B is balanced by the sum of two different gra-
dients to a state in which only one gradient is available.
While the charged particles diffuse through neutrons at a
velocity vad ∼ B2/4πLγcnncnn, the neutrons have to adjust
accordingly. Therefore, the velocity of the neutrons is also
controlled by γcn and independent of the value given to ζ

(granted that ζ is sufficiently small, so tζB is much shorter
than the ambipolar diffusion time-scale).

At this stage, we expect |∂δnc/∂t | ∼ |δnc |vad/L �
ncvad/L ∼ |∇·(ncvad)|, and therefore ∇·(ncvad) ≈ −∇·(ncvn).
This imposes a restriction on the irrotational component of
ncvad and ncvn, so we expect vad and vn to be of simi-
lar order of magnitude. The magnetic field will evolve un-
der this process until the fluid force of the charged particles
balances the magnetic force, reaching an equilibrium state
(which may not be stable in the presence of not axially sym-
metric instabilities, and can also be very slowly eroded by
Ohmic decay and other processes neglected in this analysis).
This dissipative process sets the long time-scale for magnetic
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field evolution, which can be estimated as

tad ∼
L

|vn + vad |
.

4πγcnncnnL2

B2

∼ 3 × 103
(

1015G

B

)2 (
T

108K

)2 (
L

1km

)2
yr. ,

(41)

where vn ∼ vad. (See Ofengeim & Gusakov 2018 for analytic
relations between these two velocity fields.)

2.7 Dimensionless equations

We have written the equations in dimensionless form,

∂α

∂t
= r sin θ [(vn + vad) × B] · φ̂ , (42)

∂β

∂t
= r2 sin2 θ∇ ·

{
[(vn + vad) × B] × φ̂

r sin θ

}
, (43)

∂δnn
∂t
+ ∇ · (nnvn) = 0 , (44)

∂δnc
∂t
+ ∇ · [nc(vn + vad)] = 0 , (45)

vn =
ξ

ζnn

[
b2 (∇×B) × B − ncµ∇

(
δµc
µ

)
− nnµ∇

(
δµn
µ

)]
,

(46)

vad =
ξ

γcnncnn

[
b2 (∇×B) × B − ncµ∇

(
δµc
µ

)]
, (47)

δµc = Kccδnc , (48)

δµn = Knnδnn , (49)

where distances have been normalized to the core radius R,
number densities nn and nc are in units of nc0, Knn and Kcc

are in units of Kcc0 = Kcc(r = 0), γcn is in units of γcn0 =
γcn(r = 0), time has been normalized to t0 = ξR2γcn0/Kcc0,
chemical potentials are in units of Kcc0nc0, ζ is in units of
γcn0nc0, velocities are normalized to R/t0, and the magnetic
field is in units of B0 (the root mean square of the initial
magnetic field in the volume of the star). α and β are in
units of R2B0 and RB0, respectively. We control the strength
of the magnetic field adjusting the parameter

b2 ≡
B2

0
4πKcc0n2

c0
, (50)

which is of the order of the (very small) ratio between
the magnetic pressure and the degeneracy pressure of
the charged particles. Thus, for our NS model, B0 =

nc0
√

4πKcc0 b = 2 × 1018b G.
Hereafter, we take the value of the different time-scales

at the center of the NS as reference values, which, in dimen-
sionless units read, from the shortest to the longest,

tζp ≡
Kccn2

c

Knnn2
n

�����
r=0

ζ x2 =
ζ x2

16.45
, (51)

tζg ≡ ζ x2 , (52)

tζB ≡
ζ x2

b2 , (53)

tad ≡
x2

b2 , (54)

where x ≡ L/R, and we take x = 1/4, since it roughly fits the

structure of the initial condition of our simulations. In order
to properly resolve all four time-scales in our simulations
without having to use a prohibitively small time-step, we
use unrealistically large values for the magnetic field (fixed
by b) and ζ , so the four time-scales are in the correct order
of sizes, but get much closer to each other than in reality.

In order to evolve the magnetic field in the NS core, we
upgraded the code described in paper I to include the motion
of neutrons and the radial density gradients, so it evolves the
set of equations (42)–(49). This is done by discretizing the
values of the variables over a staggered polar grid composed
of Nr points inhomogeneously distributed in the radial di-
rection inside the core and Nθ points equally spaced in the
polar direction, while the external multipolar expansion of
α(r, θ) is truncated to the first NExp terms. The numeri-
cal computation is done conservatively for the evolution of
the toroidal magnetic field and the density perturbations
of the charged particles and neutrons, using a finite-volume
scheme. The time derivative of the poloidal potential is com-
puted using finite differences, and the system is evolved to
second-order accuracy in time. This scheme guarantees that
the ∇ · B = 0 condition, as well as the total number of parti-
cles, are conserved at all times to machine precision. Details
on the numerical code can be seen in paper I.

3 RESULTS

3.1 Dependence on the artificial friction

In our model, the fictitious friction force is a device to al-
low the particle densities and the magnetic field configura-
tion to reach a hydro-magnetic equilibrium on time-scales
. tζB shorter than the ambipolar diffusion time tad, but
close enough to the latter for the numerical simulation to be
feasible. Thus, the friction parameter ζ needs to be chosen to
satisfy this compromise, and its value should not affect the
long-term evolution of the magnetic field on scales ∼ tad. In
order to estimate its optimal value, we compare three sim-
ulations that differ only by their value of ζ . Since the total
integration time is proportional to tad/tζp = 16.45/ζb2, de-
creasing the values of ζ and b increases the integration time
very quickly. Therefore, to keep it manageable, we perform
this test with an unrealistically large value of b2, namely,
10−2. For ζ , we take the values ζ1 = 10−2, ζ2 = 10−3, and
ζ3 = 10−4, which yield ratios tad/tζB = 102, 103, and 104,
respectively.

As initial condition, we choose the purely poloidal mag-
netic field generated by the potential

α1(r, θ) = α01r2
(
1 − 6

5
r2 +

3
7

r4
)

sin2 θ , (55)

where α01 = 1.336 is a normalization constant, fixed by the
condition 〈B〉 = 1 on the normalized magnetic field, where
〈.〉 denotes rms in the volume of the core. We chose this
configuration, as it is one of the simplest analytic expressions
matching all the constraints required for B, and it has been
widely used in the literature (Akgün et al. 2013; Passamonti
et al. 2017a; Ofengeim & Gusakov 2018). As in the discussion
of § 2.6.1, we take the initial conditions δnn = δnc = 0 for
the density perturbations.

Our results are summarized in Fig. 2. Panel (a) shows
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Figure 2. Comparison of the evolution of simulations using the

initial condition from equation (55) and three different values of

ζ (10−2, 10−3, and 10−4), which yield the following ratios between
the different relevant time-scales at the center of the star: tζ p :
tζg : tζB : tad = 1 : 16.45 : 1645 : 1.645×105 (continuous line), = 1 :
16.45 : 1645 : 1.645×106 (dashed), and = 1 : 16.45 : 1645 : 1.645×107

(dotted), respectively. The vertical lines show the value of the

time-scale tζB for each simulation. We show the time evolution

of (a) the magnetic field 〈B〉 in units of B0, where 〈.〉 denotes
rms in the volume of the core, (b) the neutron velocity 〈vn 〉,
(c) the ambipolar diffusion velocity 〈vad 〉, and (d) the ratio 〈∇ ·
(nivi )〉/〈[∇×(nivi )]φ 〉 for neutrons (i = n, black lines), and charged
particles (i = c, gray lines).

that during the early stages (∝ tζB), there is a small ad-
justment of the magnetic field. This is expected, as growing
the density perturbations up to |δni |/ni ∼ b2 (for i = n, c)
implies spatial displacements of a fraction ∼ b2 of the core
radius thus the magnetic field strength is expected to be re-
duced by a similar fraction. We also see that, while the early
dynamics is dominated by the artificial friction, the three
simulations converge to the same curve at t ∼ tζB ∝ ζ . This
can be seen more clearly in panel (b). The convergence of vn
for simulations with very different values of ζ confirms that
the scheme is indeed yielding the expected results, namely
fζ ∝ ζ , thus reproducing the correct “physical” neutron ve-
locity on time-scales t ∼ tζB, independent of the value used
for ζ (as long as it is sufficiently small). The good agree-
ment of the three curves after this time suggests that all
three values chosen for ζ are adequate for our purpose. To
be on the safe side, we will use ζ ∼ 10−3 to perform long-term
simulations (reaching t ∼ tad), as it still yields manageable
integration times.

It is usually assumed in the literature that during the
long-term evolution of the field, the time derivatives in the

continuity equations are negligible (Goldreich & Reisenegger
1992; Gusakov et al. 2017). Since in our approach we are
explicitly evolving the fluid perturbations, it is interesting
to see if our scheme confirms this assumption. Neglecting
time derivatives in equations (22) and (23) implies that both
nnvn and ncvc will be perfectly solenoidal during the long-
term evolution. The simulation shown in the next subsection
(see Figs. 3[d] and [e] at t = tζB) suggests that vn and vc =
vn + vad are indeed mostly solenoidal. This becomes even
clearer from Fig. 2(d). For neutrons,

∇ · (nnvn)
[∇×(nnvn)]φ

∼
δnn/tζB
nnvn/L

∼ δnn
nn
∼ B2

4πKnnn2
n

∼ b2

16
, (56)

which roughly agrees with our results. Similarly, for charged
particles, ∇ · (ncvc)/[∇×(ncvc)]φ ∼ δnc/nc ∼ b2. These esti-
mates are in agreement with the arguments used in the liter-
ature to neglect the time derivatives (Goldreich & Reiseneg-
ger 1992; Gusakov et al. 2017). As δni/ni scales with b2

(i = n, c), it is expected that both approaches are equiv-
alent when running simulations using realistic values of b
(10−20 < b2 < 10−4), however this is not possible at the
moment, due to computing time constraints.

It remains to be seen if the fictitious force is indeed
negligible during the long-term evolution of the field, and if
our estimates for the different time-scales of evolution are
in agreement with our results. This will be addressed in the
following section.

3.2 Hydro-magnetic evolution

3.2.1 Reaching hydro-magnetic quasi-equilibrium with a
purely poloidal configuration

In this section, we study the process in which the fictitious
friction rearranges the particle densities and magnetic field
to reach hydro-magnetic quasi-equilibrium, checking if the
associated timescales agree with the analytical estimates of
§ 2.6. For this purpose, we perform a simulation using the
same initial condition as in the previous section (see equa-
tion [55]). The initial condition and some snapshots of its
evolution are shown in Fig. 3.

The short time-scales tζp and tζg (equations 38 and 39,
respectively) are associated to a quick adjustment of the den-
sities in the presence of a magnetic force, nevertheless they
do not explicitly depend on the magnetic field strength. As
they are much shorter than the time-scales for magnetic field
evolution, the magnetic field remains essentially unchanged
during this process. Although in our simulations we use an
unrealistically high value of b, the value chosen is still small
enough to understand the dynamics of the fluid motion, since
tζp/tζB = 6 × 10−4. Also, here we are only interested in the
dynamics on time-scales ∼ tζB, thus we can use small values
of ζ without changing the total integration time as the re-
quired number of time-steps will be ∝ tζB/tζp, independent
of ζ . Therefore, we will focus, as suggested before, on the
simulation with ζ = ζ3 = 10−4.

We can see that, as expected, at short times (∼ tζp),
the magnetic field pushes the fluid, which grows density
perturbations δnn(r, θ) and δnc(r, θ) with similar structure,
in particular the same sign, as would happen in sound
waves (p-modes, in asteroseismology jargon). At later times
(∼ tζg), although by construction the two species are still
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Figure 3. Evolution of the magnetic field discussed in § 3.2.1,
with initial conditions set by α from equation (55) and β = 0,

and parameters ζ = 10−4 and b2 = 10−2, yielding time-scales at

the center of the star in proportions tζ p : tζg : tζB : tad = 1 :
16.45 : 1645 : 1.645 × 107. We used a grid of Nr = 60 radial steps

and Nθ = 91 polar steps inside the core, as well as NExp = 27
external multipoles. From left to right: (a) Configuration of the
magnetic field, where lines represent the poloidal magnetic field

and the colors the poloidal potential α; (b) and (c) density per-

turbations δnn and δnc , respectively, normalized to nc0; (d) and
(e) poloidal component of the neutron velocity, vn , and ambipo-

lar diffusion velocity, vad , where arrows represent the direction

and colors the magnitude normalized to R/t0. Rows correspond
to different times: t = 0, tζ p, tζg, 10tζg , and tζB .
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Figure 4. For the simulation of Fig. 3: Time evolution of the

force densities 〈fB 〉, 〈fn 〉, 〈fc 〉 and 〈fζ 〉, all of them normalized
by 〈fB (t = 0)〉, where 〈.〉 denotes rms in the volume of the core.

Time is in units of tad . The vertical lines show, from left to right,
the values of the time-scales tζ p , tζg , and tζB .
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Figure 5. From left to right: Snapshot of (a) fB , (b) fn , (c)

fc , and (d) fζ for the simulation of Fig. 3 at t = 10tζg . Arrows
represent the direction of the forces at each point, and colors their

magnitudes.

mostly moving together (as vn � vad, since we are still
out of quasi-equilibrium, implying vn ≈ vc), their different
background density profiles (nc(r)/nn(r) , constant) together
with a non-trivial velocity field vn(r, θ) allow their continuity
equations (44) and (45) to create density perturbations not
necessarily of the same signs (as they would have in so-called
“gravity waves” or “g-modes”, e. g., Reisenegger & Goldreich
1992), allowing their different fluid forces to jointly balance
both components of the poloidal magnetic force (see panels
at t = tζg and t = 10tζg). This leads joint radial motions to be
opposed by strong buoyancy forces (Pethick 1992; Goldre-
ich & Reisenegger 1992). Thus, the two components jointly
behave as a single, stably stratified, non-barotropic fluid.

The strength of the magnetic and fluid forces through-
out the simulation can be seen in Fig. 4. At early stages
(∼ tζp), the magnetic force is partially balanced by the fluid
force of the neutrons, while the contribution of the charged
particles is much smaller. This is because at this stage the
charged particles and neutrons at any point in the star are
jointly compressed or expanded by the magnetic force (with
δnc(r, θ)/nc(r) ∼ δnn(r, θ)/nn(r)). Since there are many more
neutrons than charged particles present, they represent the
main contribution to the pressure of the fluid. At later times
(∼ tζg), the neutron and charged-particle density perturba-
tions become very different and the latter also contribute
substantially to the fluid force. At first, it may be surprising
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that the two fluid forces do not act in the same direction,
opposite to the magnetic force. Instead, they grow very dif-
ferent density perturbations that, acting together, balance
the magnetic force (see the red line). It is clear from § 2.6.1
that to reach this kind of force balance, density perturba-
tions of similar magnitude (but not necessarily of the same
sign) are required. The relative smallness of fζ in Fig. 5(d),
shows that this force balance is being reached. Nevertheless,
as the magnetic flux is slowly being carried by the motion
of the fluid, a perfect force balance cannot be reached, as
seen in Fig. 4: After their fast initial growth (in a time-
scale ∼ tζg), the fluid forces reach a plateau. However, as
the magnetic field evolves (on a much slower time-scale),
the particles have to keep up, thus evolving at the same
rate as the magnetic field, until the latter reaches a new
quasi-equilibrium configuration at times ∼ tζB. At this point,
all forces are close to balancing, and the fictitious friction
becomes negligible compared to all of the physical forces
(| fζ |/min{| fB |, | fc |, | fn |} ∝ ζ/γcnnc). Thus, at this point the
fictitious force plays no significant role in the evolution of
the field, other than giving us a way of computing the neu-
tron velocity field needed to maintain the quasi-equilibrium
condition fζ ∼ 0. It is also worth noting that the topology of
the velocity fields at this point is consistent with the results
from Ofengeim & Gusakov (2018) (see Fig. 3[d] and [e] at
t = tζB), although a quantitative comparison is not possi-
ble since our toy-model equation of state does not consider
entrainment.

3.2.2 Long-term magnetic field evolution of a poloidal and
toroidal configuration

In the previous sections, we studied simulations of a purely
poloidal magnetic field, which is known to be unstable to
non-axisymmetric perturbations (Markey & Tayler 1973;
Flowers & Ruderman 1977; Marchant et al. 2011). Thus,
in order to study the long-term evolution, we now consider
a simulation for the much more realistic case of a field with
poloidal and toroidal components. This allows us to check
whether the time-scales for the magnetic field evolution from
section 2.6 (equations 40, and 41) are in agreement with our
numerical scheme, but mainly, it allows us to study the im-
pact of the neutron motions on the long-term evolution of
the magnetic field.

In addition to the dipolar potential α1 defined in § 3.1,
we now consider an additional quadrupolar poloidal poten-
tial,

α2(r, θ) = α02r3
(
1 − 10

7
r2 +

5
9

r4
)

sin2 θ cos θ , (57)

where α02 = 1.239 is a normalization constant, fixed by the
condition 〈BPol〉 = 1, and a toroidal potential

β1(r, θ) = β01r5(1 − r)2 sin2 θ sin(θ − π/5) , (58)

where β01 = 112.546 is fixed by the condition 〈BTor〉 = 1. We
choose the initial condition as

α(r, θ) =
√

0.18α1(r, θ) +
√

0.42α2(r, θ) , (59)

β(r, θ) =
√

0.4β1(r, θ) , (60)

so the toroidal magnetic field has 40% of the initial internal
magnetic energy. The artificial friction is set to ζ = 3× 10−3,
which yields an initial ratio 〈vn〉/〈vad〉 ∼ 130.
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Figure 6. Evolution of the magnetic field discussed in § 3.2.2
with initial conditions given by equations (59) and (60) (so the

poloidal component has 60% of the initial internal magnetic en-

ergy), and parameters ζ = 3 × 10−3 and b2 = 10−2. Thus, the
time-scales at the center of the star satisfy tζ p : tζg : tζB : tad =

1 : 16.45 : 1645 : 548500. We used a grid of Nr = 60 radial steps and

Nθ = 91 polar steps inside the core, as well as NExp = 27 external
multipoles. From left to right: (a) Configuration of the magnetic

field, where lines represent the poloidal magnetic field (labeled by

the magnitude of α) and colors the toroidal potential β; (b) and
(c) density perturbations δnn and δnc , respectively, both not-

malized to nc0; (d) and (e) poloidal component of the neutron
velocity, vn , and ambipolar diffusion velocity, vad , where arrows

represent the direction and colors the magnitude normalized to

R/t0. Rows correspond to different times: t = 0, tζ p, tζg, tζB , and
tad . MNRAS 000, 1–14 (2020)
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Figure 7. For the simulation of Fig. 6: Time evolution of (a)

the rms force densities 〈fBPol 〉, 〈fBTor 〉, 〈fn 〉, 〈fc 〉, and 〈fζ 〉,
all normalized by 〈fBPol(t = 0)〉, where 〈.〉 denotes rms in the

volume of the core; (b) the rms magnetic field 〈B〉 (in units of its

initial value B0) in the NS core. The dotted line corresponds to
〈B〉 on a simulation using the same initial condition, but taking

ζ →∞ (fixed neutrons); and (c) 〈vadPol 〉/〈vnPol 〉. For all panels,

time is in units of tad . The vertical lines show, from left to right,
the time-scales tζ p , tζg , tζB , and tad .

The initial configuration, as well as some snapshots of
its evolution, are shown in Fig. 6. We see how at t = tζp
the density perturbations grow together following δnc/nc ∼
δnn/nn, while at t = tζg they are evolving towards a state
in which their signs are not correlated, thus reproducing the
results from the previous section. This can also be observed
in Fig. 7(a), which shows the rms of the different fluid forces
throughout the simulation. During the first stages of the evo-
lution (t ∼ tζp–tζg), the magnetic force is partially balanced
by the fluid forces, which are dominated by the neutrons.

In the fourth row of Fig. 6 (at t = tζB), it can be seen
how the magnetic field unwinds, eliminating most of the
toroidal component, except in the regions of closed poloidal
field lines. As discussed in paper I, such “twisted-torus”
configurations are expected in axially symmetric hydro-
magnetic equilibria, because there is no toroidal pressure
gradient or gravitational force available to balance a toroidal
component of the Lorentz force. This implies the restric-
tion β = β(α) on the potentials, which is also verified in the
figure (see also Fig. 8). This state corresponds to a non-
barotropic quasi-equilibrium, as both charged particles and
neutrons, which have different fluid forces, are contributing
to balance the magnetic force. This can be seen more clearly
in Fig. 7(a), where the poloidal magnetic force and fluid
forces are all of the same order, but the poloidal force imbal-
ance 〈 fζ,Pol〉 is much smaller, meaning that in the poloidal
component there is a balance between the magnetic force
and the induced fluid forces. In the toroidal component,
fζ,Tor = fB,Tor always, but at tζB this force has become
much smaller than its initial value. Thus, the configuration

at t ∼ tζB is very close to a (non-barotropic) hydro-magnetic
quasi-equilibrium where even the toroidal component of fric-
tion force has become small.

On a much longer time-scale, this quasi-equilibrium is
slowly eroded by ambipolar diffusion. Charged particles,
pushed by the magnetic force, carry the magnetic flux rela-
tive to the neutrons until the magnetic force can be balanced
by the force due to the density perturbations of the charged
particles alone, choking the motion. This can be seen in the
last row of Fig. 6 (t = tad), where the ambipolar velocity is
much smaller than at tζB. Also, |δnc |/nc � |δnn |/nn, con-
firming that the magnetic force is mostly balanced by the
charged particles. This is further supported by Fig. 7(a),
which shows a transition from t = tζB, where the magnetic
force is balanced by the combined force from charged par-
ticles and neutrons, to t = tad, where it is balanced mostly
by the charged particles, while the contribution from the
neutrons becomes negligible.

However, this does not mean that the neutron motion is
irrelevant to the long-term evolution. While ambipolar diffu-
sion pushes the charged particles relative to the neutrons, all
components (neutrons, charged particles, and the magnetic
field) have to keep adjusting to successive quasi-equilibria,
thus inducing a slow macroscopic motion of the fluid. This
motion (controlled by the drag force between neutrons and
charged particles) gives the charged particles an extra push,
shortening the time-scale for the long-term magnetic evolu-
tion (∼ L/vc). This can be seen in Fig. 7(b), where the decay
of the magnetic field in the simulation with mobile neutrons
is much faster than in a simulation with the same initial
condition, but with fixed neutrons.

As discussed in § 2.6, we expect that in the quasi-
stationary state |∂δnc/∂t | is much smaller than both |∇ ·
(ncvad) | and |∇ · (ncvn) |. Thus, the irrotational compo-
nents of ncvn, and ncvad are of the same order. However,
as pointed out in § 3.1, both vector fields are dominated by
their solenoidal component, and Fig. 7(c) shows that, during
the long-term evolution from tζB to tad, vn becomes larger
than vad by a factor ∼ 4. Similar fractions were found for
different simulations in our tests. This is in agreement with
the results of Ofengeim & Gusakov (2018). In Fig. 7(c) we
also see that, towards the end on the simulation, the core
is reaching equilibrium, thus vad gets progressively smaller,
faster than vn. Sadly, at this point the numerical noise starts
to become dominant towards the center of the star, where
the coordinate system is singular (see Fig. 6[d] at t = tad).

3.3 Grad-Shafranov equilibria

We saw that, within a few tζB, the NS core reaches a hydro-
magnetic quasi-equilibrium in which all forces are close to
balance. As described in the previous section, this implies
that the toroidal magnetic force must vanish, since there
are no other azimuthal forces available to balance it, so

∇α × ∇β = 0, (61)

requiring (at least locally) a relation β = β(α). This can be
verified in Fig. 8, where at early times (∼ tζg) there is no
clear relation between the variables, while at ∼ tζB there is
an evident dependence of β on α. However, at that time, no
similar relations are found for other variables, such as δni or
δµi (i = n, c).
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Figure 8. For the simulation of Fig. 6: Scatter plot of α versus (a)

β, (b) χn , and (c) χc , showing all of the grid points at t = tζg ,
t = 5tζB , and t = tad , respectively. The axis label on the left

side of the figure corresponds to plot (a), while that on the right
corresponds to (b) and (c).

At later times (∼ tad), the velocities become much
smaller than their initial value, suggesting that the system
is approaching an equilibrium state in which both vn = 0
and vad = 0. The first condition implies fB + fn + fc = 0,
while the second implies fB + fc = 0 (see equations [24] and
[25]). As the toroidal magnetic force is already negligible at
this point, this requires

J

c
× B − ncµ∇

(
δµc
µ

)
= 0 , (62)

∇
(
δµn
µ

)
= 0 , (63)

implying that the neutrons are in diffusive equilibrium (un-
perturbed by the presence of the magnetic field), while
the forces due to the charged-particle density perturbations
must balance the Lorentz force. This, together with equa-
tion (61), implies that χc ≡ δµc/µ must also be a function of
α (while χn ≡ δµn/µ must be uniform). This can be verified
in Fig. 8, where at early times (∼ tζg and ∼ tζB) there is
no clear relation between the variables, while at later times
(∼ tad) there is an evident dependence on α for β and χc ,
while χn ≈ 0.

As discussed previously (Reisenegger 2009; Lander &
Jones 2009, 2012; Armaza et al. 2015; Castillo et al. 2017),
equation (61) can be used to rewrite equation (62) as
a “Grad-Shafranov (GS) equation” (Grad & Rubin 1958;
Shafranov 1966):

∆
∗α + ββ′ + 4πr2 sin2 θ nc(r)µ(r)χ′c = 0 , (64)

where

∆
∗ ≡ r2 sin2 θ∇ ·

(
∇

r2 sin2 θ

)
=

∂2

∂r2 +
sin θ
r2

∂

∂θ

(
1

sin θ
∂

∂θ

)
,

(65)

is the “GS operator”, β and χc are functions of α(r, θ), and
primes denote derivatives with respect to α. We emphasize
that (as seen in Fig. 8) this equation is generally not satisfied
in the previous stage (at t ∼ tζB), which is also a hydro-
magnetic quasi-equilibrium, but with neutrons and charged
particles collisionally coupled and thus jointly balancing the
Lorentz force.

In order to check if our simulations lead to configura-
tions in which the GS equation (64) is satisfied in the ex-
pected time-scale (a few tad), we evaluate the “GS integral”

Γ =

∫
V

d3x
��∆∗α + ββ′ + 4πr2 sin2 θ ncµχ′

��
V max |∆∗α | , (66)

where the derivatives on α are computed from our simula-
tions taking β′ = (∇β ·∇α)/|∇α |2, and χ′c = (∇χc ·∇α)/|∇α |2.
Fig. 7(b) and Fig. 9(a) show that, in the time interval
tζB < t < tad the rms magnetic field strength (and thus
square root of the internal magnetic energy) decays only
from 78% to 71%, the external magnetic energy decays from
87% to 48% of its initial value, and Γ decays from 30% to
0.5% of its initial value, clearly showing that the magnetic
field configuration approaches a GS equilibrium in t ∼ tad.
Fig. 9(b) shows that during this process the poloidal mag-
netic field, which is initially a combination of dipolar (` = 1)
and quadrupolar (` = 2) components, evolves towards a
mostly dipolar configuration, where the quadrupolar compo-
nent becomes progressively smaller, as an octupolar (` = 3)
component increases, reaching a similar magnitude in the
final equilibrium. It can also be seen that the contribution
of higher multipoles is negligible. Further simulations are
required to check if this behavior is generic. The results pro-
vided here may be a valuable resource for improving crustal
magnetic field evolution models, which usually use bound-
ary conditions relying on unphysical assumptions, such as
crust confinement.

4 CONCLUSIONS

In paper I, we studied the long-term evolution of the mag-
netic field of a NS through ambipolar diffusion, modeling
its core as a charged-particle fluid of protons and electrons,
which carries the magnetic flux through a motionless uni-
form background of neutrons. In the present paper, we ad-
dressed two of the main shortcomings of that work by allow-
ing neutrons to move as well as including different density
gradients for neutrons and charged particles, thus account-
ing for their stable stratification.

We know that the star can reach a hydro-magnetic
quasi-equilibrium many orders of magnitude faster than
the magnetic field evolution time-scales. To maintain
quasi-equilibrium realistically during the evolution of the
field would require following the propagation of sound,
gravity, and Alfvén waves. Resolving such processes would
make it impossible to simulate the long-term evolution

MNRAS 000, 1–14 (2020)
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Figure 9. For the simulation of Fig. 6: Time evolution of (a) the
“Grad-Shafranov integral” Γ (defined in equation [66]) and (b)

the magnetic energy stored in the `-th component of the external

magnetic field (see equation [31]). The vertical lines show, from
left to right, the time-scales tζ p , tζg , tζB , and tad .

of the field. We have addressed this issue by adding a
fictitious friction force to the equation of motion of the
neutrons (Hoyos et al. 2008). This force, which causes a
neutron velocity proportional to the net force imbalance at
each point, replaces the very small inertial terms present
in the equations of motions, and provides a mechanism to
maintain the hydro-magnetic quasi-equilibrium.

Our results can be summarized as follows:

(i) The addition of the fictitious friction in our simula-
tions was found to be a useful method to quickly reach
and then maintain the hydro-magnetic quasi-equilibrium
of the star without having to resolve the propagation of
sound, gravity, and Alfvén waves, leading to the same kind
of non-barotropic “twisted torus” quasi-equilibrium previ-
ously found in MHD simulations (Braithwaite & Spruit 2004;
Braithwaite & Nordlund 2006) in a time-scale tζB that can
be adjusted to make the simulations both doable and phys-
ically interesting.

(ii) We found good agreement between different expected
time-scales involved in this process (tζp, tζg, and tζB), and
simulations. The long-term evolution of the magnetic field is
not significantly affected by the fictitious friction force if the
ratio between the time-scale in which the hydro-magnetic
quasi-equilibrium is restored by this artificial friction and the
time-scale of ambipolar diffusion is small enough (tζB/tad ∼
ζ/γcnnc . 10−3 in our simulations).

(iii) Relaxing the unrealistic assumption of fixed neutrons
was found to impact the long-term evolution of the mag-
netic field in the following way: Since the density profiles of
neutrons and charged particles are different, joint motion of
the two species is strongly constrained by buoyancy forces.
Thus, there will always be relative motions between species
(i.e. ambipolar diffusion). This process, in which the mag-
netic force pushes the charged particles and magnetic flux
relative to the neutrons, slowly erodes the hydro-magnetic
quasi-equilibrium; therefore neutrons, charged particles, and
the magnetic field have to continuously adjust to restore it.

This motion makes the charged particles (and thus the mag-
netic flux) move faster than in the case of fixed neutrons,
thus shortening the time-scale for magnetic evolution. In our
simulations we find that the speed of neutrons and charged
particles can be ∼ 1–10 times larger than their relative ve-
locity, yielding a time-scale

tad ∼ (0.3 − 3) × 103
(

1015G

B

)2 (
T

108K

)2 (
L

1km

)2
yr. (67)

for the long-term evolution of the field.

(iv) The process described above leads to a final equilib-
rium state in which the magnetic force is balanced by the
pressure and gravitational forces of the charged particles,
while the neutron density perturbations become negligible,
thus recovering the barotropic “Grad-Shafranov equilibria”
from paper I.

The following two main caveats need to be addressed
by future work:

(i) It is likely that the magnetic equilibria found may be-
come unstable if we relax the axial symmetry restriction,
as previous works indicate that there are no stable hydro-
magnetic equilibria in barotropic stars (Braithwaite 2009;
Akgün et al. 2013; Mitchell et al. 2015). In that case am-
bipolar diffusion might dissipate all the magnetic flux, so the
low magnetic field of millisecond pulsars might be explained
by magnetic flux dissipation prior to accretion (Cruces et al.
2019). However, if the charged particles also include muons,
the charged fluid will no longer be barotropic, which may
help to stabilize the magnetic field.

(ii) Neutron star matter is expected to be superfluid
and superconducting at the temperatures of interest, which
might have a major impact on the time-scales described here,
as the coupling between the different species should, in prin-
ciple, be many orders of magnitude smaller. The dynamics
of the field evolution might also be quite different from what
we presented here, as the macroscopic effect of the dynam-
ics and interactions between quantized neutron vortices and
magnetic flux tubes needs to be taken into account.

(iii) In this work, we assumed a potential solution for the
crustal and external magnetic field, thus assuming that the
crust adjusts instantaneously to the evolution in the core.
However, if the crust is highly conductive, this may not be
the case as currents may keep circulating in the crust, lead-
ing to non-trivial configurations (see for instance Cumming
et al. 2004; Pons & Geppert 2007; Gourgouliatos et al. 2016;
Akgün et al. 2018). Ultimately, this might indicate that it is
the crust which sets the time-scale for the evolution of the
external field, leading to more restrictive equilibrium config-
urations in the core.
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Hollerbach R., Rüdiger G., 2002, MNRAS, 337, 216

Hoyos J., Reisenegger A., Valdivia J. A., 2008, A&A, 487, 789

Hoyos J., Reisenegger A., Valdivia J. A., 2010, MNRAS, 408, 1730

Kantor E. M., Gusakov M. E., 2018, MNRAS, 473, 4272

Kaspi V. M., 2010, PNAS, 107, 7147

Lander S. K., Gourgouliatos K. N., 2019, MNRAS, 486, 4130

Lander S. K., Jones D. I., 2009, MNRAS, 395, 2162

Lander S. K., Jones D. I., 2012, MNRAS, 424, 482

Marchant P., Reisenegger A., Akgün T., 2011, MNRAS, 415, 2426

Marchant P., Reisenegger A., Valdivia J. A., Hoyos J. H., 2014,

ApJ, 796, 94

Markey P., Tayler R. J., 1973, MNRAS, 163, 77

Mitchell J. P., Braithwaite J., Reisenegger A., Spruit H., Valdivia

J. A., Langer N., 2015, MNRAS, 447, 1213
Ofengeim D. D., Gusakov M. E., 2018, PhysRevD, 98, 043007

Passamonti A., Akgün T., Pons J. A., Miralles J. A., 2017a, MN-
RAS, 465, 3416

Passamonti A., Akgün T., Pons J. A., Miralles J. A., 2017b, MN-

RAS, 469, 4979
Pethick C., 1992, in Structure and Evolution of Neutron Stars.

p. 115

Pons J. A., Geppert U., 2007, A&A, 470, 303
Pons J. A., Miralles J. A., Geppert U., 2009, A&A, 496, 207

Reisenegger A., 1995, ApJ, 442, 749

Reisenegger A., 2007, AN, 328, 1173
Reisenegger A., 2009, A&A, 499, 557

Reisenegger A., Goldreich P., 1992, ApJ, 395, 240

Shafranov V. D., 1966, RvPP, 2, 103
Tauris T. M., van den Heuvel E. P. J., 2006, in Lewin W., van der

Klis M., eds, , Compact stellar X-ray sources. pp 623–665
Tayler R. J., 1973, MNRAS, 161, 365

Thompson C., Duncan R. C., 1995, MNRAS, 275, 255

Thompson C., Duncan R. C., 1996, ApJ, 473, 322
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