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TRANSITION TO SPATIOTEMPORAL INTERMITTENCY AND DEFECT
TURBULENCE IN SYSTEMS UNDER TRANSLATIONAL COUPLING

Una di�cultad frecuente que se enfrenta al realizar experimentos con retroinyección óptica
es el correcto alineamiento de sus componentes. Un desalineamiento puede resultar en un
acoplamiento traslacional en la dinámica de las variables físicas estudiadas. Un sistema
posee un acoplamiento traslacional cuando la evolución de sus variables físicas en cada punto
depende de sus valores locales y de sus valores a una distancia �ja. Observaciones exper-
imentales realizadas sobre una válvula de cristal líquido con acoplamiento traslacional en
el textit Laboratorio de fenómenos robustos en óptica muestran una transición de patrones
de rayas estacionarios hacia ondas viajeras, intermitencia espaciotemporal y turbulencia de
defectos. Esta tesis tiene como objetivo caracterizar esta transición en un modelo prototipo
de formación de patrones con acoplamiento traslacional.

En el Capítulo 1, explicamos algunos conceptos preliminares de la física no lineal relacionados
con la teoría de bifurcaciones y dinámica caótica. Estos conceptos son útiles para comprender
los resultados de esta tesis.

El capítulo 2 está dedicado a hacer una breve reseña sobre sistemas con formación de pa-
trones. Explicamos en detalle un mecanismo particular de formación de patrones conocido
como las inestabilidades de Turing. También hacemos un resumen sobre el modelo de Swift-
Hoheneberg, considerado como la ecuación más simple que tiene una inestabilidad de Turing.
Exploramos su fenomenología y derivamos ecuaciones de amplitud que describen sus com-
portamientos.

En el Capítulo 3, hacemos una reseña sobre la ecuación compleja de Ginzburg-Landau uni-
dimensional. Exploramos su relevancia en diferentes contextos de la física, discutimos sus
soluciones conocidas, mostramos su diagrama de bifurcación y explicamos el mecanismo que
da lugar a sus regímenes complejos en el sentido espaciotemporal.

En el Capítulo 4, explicamos cómo funciona el experimento de la válvula de cristal líquido
con retroinyección, mostramos la fenomenología observada que es de interés para esta tesis
y derivamos un modelo teórico que describe parcialmente esta fenomenología. Presentamos
una posible explicación al origen de los regímenes complejos en el sentido espaciotemporal
que observamos en este experimento.

En el Capítulo 5, presentamos un modelo prototipo de formación de patrones con acoplamiento
traslacional: La ecuación de Swift-Hoheneberg con acoplamiento traslacional. Exploramos
su fenomenología, la cual exhibe transiciones entre patrones estacionarias, intermitencia es-
paciotemporal, y turbulencia de defectos. Caracterizamos estas transiciones derivando una
ecuación de amplitud: La ecuación compleja de Ginzburg-Landau. Este modelo nos permite
revelar el diagrama de bifurcación del modelo prototipo y comprender el mecanismo que
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da origen a sus comportamientos complejos. Exploramos brevemente la dinámica bidimen-
sional del modelo prototipo y proponemos generalizaciones utilizando núcleos de interacción.
Realizamos comparaciones entre simulaciones numéricas del modelo y observaciones experi-
mentales hechas sobre válvula de cristal líquido desalineada de forma intencional. Finalmente,
proponemos una modi�cación del experimento para explorar los efectos de otras interacciones
de largo alcance en sistemas de formación de patrones.
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A common di�culty faced when performing experiments with optical feedback is the proper
alignment of its components. Misalignment may result in a translational coupling in the dy-
namics of physical quantities under study. A system is said to have a translatioanl coupling
when the evolution of its physical variables depends on their values at their local position and
their values at some �xed distance from this position. Experimental observations conducted
in a liquid crystal light valve with translational coupling in the Laboratorio de fenómenos

robustos en óptica show a transition from stationary striped patterns to propagation, spa-
tiotemporal intermittency, and defect turbulence of stripped waves. This dissertation aims to
characterize this transition in a general pattern forming system with translational coupling.

In Chapter 1, we explain some preliminary concepts of nonlinear physics related to bifurcation
theory and chaotic dynamics, which are useful to understand the results of this thesis.

Chapter 2 is dedicated to doing a brief review of pattern formation. We explain in detail
a particular pattern-forming mechanism known as Turing instabilities. We also review the
Swift-Hoheneberg model, regarded as the simplest equation having a Turing instability. We
explore its phenomenology and derive amplitude equations that describe its behaviors.

In Chapter 3, we review the dynamics of the one-dimensional cubic complex Ginzburg-Landau
equation. We explore its relevance in di�erent contexts in physics. We discuss its known
solutions, show its bifurcation diagram, and explain the mechanism that gives rise to its
complex spatiotemporal regimes.

In Chapter 4, we explain how the liquid crystal light valve experiment works, we show the
observed phenomenology, which is of interest for this dissertation, and derive a theoretical
model that partially describes this phenomenology. We present a possible explanation of the
complex dynamics this experiment exhibits.

In Chapter 5, we introduce a prototype pattern forming system with translational coupling,
namely the Swift-Hoheneberg equation with translational coupling. We explore its phe-
nomenology, which exhibits transitions to spatiotemporal intermittency and defects turbu-
lence from stationary striped patterns. We characterize these transitions deriving an am-
plitude equation, namely, the cubic complex Ginzburg-Landau equation. This model allows
us to reveal the bifurcation diagram of the prototype model and understand the mechanism
that gives rise to the complexity. We brie�y explore the two-dimensional dynamics of our
prototype model and propose generalizations using interaction kernels. We compare numer-
ical simulations with experimental observations in the liquid crystal light valve. Finally,
we propose a modi�cation to the experiment that explores the e�ects of other long-ranged
interactions in pattern-forming systems.
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In Chapter 6, we explore and brie�y characterize the phenomenology of a di�erent pattern-
forming model with an asymmetrical and non-local coupling far from its convective instability,
the longitudinal Lugiato-Lefever equation with Raman interaction.

iv



Agradecimientos

El año 2020 es probablemente uno de los años más irregular y caótico de muchos quienes
están leyendo esta parte de mi tesis. Ahora bien, tanto la cuarentena y la incertidumbre que
se vive han sido una fracción de las di�cultades que me ha tocado enfrentar en todo el camino
que he recorrido para ir convirtiéndome en un cientí�co. He tenido la fortuna de siempre
haber estado acompañado y haberme sentido querido en cada una de estas di�cultades, es por
esto que me gustaría expresar unas palabras a quienes estuvieron presente en este recorrido:

A mis los miembros de mi familia: Mis padres Gladys y Adolfo, mis hermanos Nicolás.,
Camilo, Gabriel y Adrián, y mis tíos Marianela y Polo. Quienes han estado conmigo de
forma incondicional a lo largo de toda mi vida.

Al profesor Marcel Clerc, por haber sido un excelente guía y un verdadero maestro. Muchas
gracias por su constante preocupación y por haberme ayudado a desarrollar una buena dis-
ciplina de trabajo. Asimismo, quiero agradecer a Saliya Coulibaly por haberme recibido
en Lille y por su constante preocupación durante mi estadía allá. Muchas gracias por tu
paciencia a la hora ayudarme con los cálculos más difíciles de esta tesis.

A mis amigos y compañeros del LAFER: Cami, Vale, Gregorio, Gladys, Seba, David, Karin,
Michel, Ale, Robert, Martín y Pedro. Muchas gracias a todos por las discusiones cientí�cas,
las sobremesas extendidas y todas las buenas experiencias en nuestro subterráneo.

A mis amigos del plan común (también denominados la geobancada unión el Mati) Lore,
Kim, Alonso, Mati y Ale. Muchas gracias por todo el apañe, anécdotas, conos robados, por
ponerme en diagonal y todos los buenos momentos que hemos vivido los últimos 7 años.

A mis amigos y futuros colegas de la Salita: Archi, Miguel, Cris, Coté, Sca, Tere, Magda,
Gerd, Almendra, Chesta, Eli, Rojo, Erick y Aaron. Desde los Carcas, las sobremesas en las
banquitas, y las conversaciones profundas (tanto las cientí�cas y las que no, y tanto aquellas
que se justi�caban y las que no iban a ninguna parte).

A Jose�na, por tu amor, compañía y apoyo con el que he contado este último año, me siento
muy afortunado de haberte conocido.

A Ignacio Vergara, por todos los encuentros y desencuentros que tuvimos en los años que
vivimos y compartimos juntos.

À Marie et Olivier pour avoir fait de le con�nement en Willems une belle expérience.

v



vi



Contents

Introduction 1
0.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 Preliminary concepts 3
1.1 Bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Normal forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Lyapunov exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Spatiotemproal chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Pattern formation 9
2.1 Turing instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 The Swift-Hohenberg model . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 General remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 One dimensional dynamics . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Two dimensional dynamics . . . . . . . . . . . . . . . . . . . . . . . . 15

3 The Complex Ginzburg-Landau equation 19
3.1 Plane wave solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Localized solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Chaotic regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1 Spatiotemporal intermittency . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 Phase turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.3 Defect turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Two-dimensional dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 The liquid crystal light valve experiment 26
4.1 Nematic liquid crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Electrical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.2 Optical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.1 Optical components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Experimental observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.1 Pattern formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.2 Spatiotemporal chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vii



4.4 Theoretical description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Translational coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Route to the complexity 37
5.1 The one-dimensional SHTC . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.1 Convective instability . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1.2 Phenomenology of states . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.3 Normal form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Two dimensional SHTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.1 Convective instability . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.2 Phenomenonlogy of states . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.3 Normal form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4 Relation to the LCLV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4.1 Experimental proposition . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 The Lugiato-Lefever equation with Raman interaction 55
6.1 The longitudinal Lugiato-Lefever equation . . . . . . . . . . . . . . . . . . . 55
6.2 The Raman scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3 Convective instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.4 Reducing the complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Conclusion 63

A Transition to Spatiotemporal Intermittenct and Defect Turbulence in Sys-
tems under Translational Coupling 71

viii



List of Figures

1.1 Pitchfork bifurcation. Two stable equilibria emegeres at µ = 0 (solid blue
line), the solution xeq = 0 looses stability at this point (dashed blue line) . . 4

1.2 Phase portrait of equations (1.2). The red dots correspond to the new equilib-
ria emerging when ε becomes positive. The black dot is the unstable equilib-
rium. The green solid corresponds to the center manifold of the unperturbed
system, in this particular example it coincides with the critical eigenspace. . 6

1.3 Examples of turbulence a) Motions of gas in the surface of Jupiter b) Turbulent
dynamics in the a video feedback experiment [29] c) Pictorical image of a
energy cascade. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Patterns in di�erent contexts in nature . . . . . . . . . . . . . . . . . . . . . 10
2.2 Dispersion relation of dynamical system having a Turing mode at qc 6= 0 . . 11
2.3 a) Dispersion relation of the one dimensional Swift-Hohenebrg equation, hav-

ing only 2 critical modes b) Dispersion relation of the two dimensional Swift-
Hohenberg equation having a continuum of Turing modes. The light blue
plane corresponds λ~q = 0. The critical modes correspond to those located at
the brown dashed circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Striped pattern observed at ε = −0.2, ν = 1, with von Neumman boundary
conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Bifrucation diagram of the one dimensional Swift-Hohenberg equation . . . . 16
2.6 Several striped patterns coexisting at ε = −.1, ν = 2 . . . . . . . . . . . . . . 16
2.7 Left: Hexagons invading the homogeneus steady state. Right: Hexagons co-

existing with stripes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 a) Envelope of A(x, t) the depicting 2 Nozzaki-Bekki holes and a sink b)
Spatiotemporal diagram showing the evolution of the holes and sink. Waves
traveling in opposite directions can be seen. . . . . . . . . . . . . . . . . . . 22

3.2 Bifurcation diagram of the CGLE in one dimension (Image from: https://codeinthehole.com/tutorial/coherent.html). 22
3.3 Spatiotemporal interrmittency at 2 di�erent points of the parameter space

a)α = −0.5 and β = −4.0, Sierpinsky carpet is coexisting with traveling
waves. b) α = 0.5 and β = −1.75. . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Spatiotemporal evolution of phase turbulent regime at α = 2 and β = 0.9.
Ripples over the homogeneous state can seen on the evolution of the envelope 24

3.5 Defect turbulence observed at α = 2 and β = −1.9. On the left panel, blue
regions correspond to zones where the amplitude is close to 0. . . . . . . . . 25

ix



4.1 Left: Shape of nematic liquid crystal. Right: Representation of the nematic
phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Nematic liquid crystal cell with planar anchoring. At the boundaries liquid
crystal molecules are oriented parallel to the plates. A photoresistive wall is
located at the back of the cell which allows to spatially modulate the voltage
at the cell using light. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Liquid crystal light valve with optical feedback setup. An incident laser beam
passes through a polarized beam splitter where it acquires a �xed polarization.
The beam then enters into a liquid crystal cell and is re�ected by a mirror
located at the back of the cell, when coming out of the cell, the beam has a
circular polarization. The polarization is converted into amplitude modulation
by the polarized beam splitter and an arrange of mirrors and lenses is used to
direct the beam into a �ber bundle, where ir later directed into a photoresitive
wall at the back of the liquid crystal cell. . . . . . . . . . . . . . . . . . . . . 29

4.4 Polarized beam splitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 a) Physical location of the 4f array in the LCLV. b) A typycal 4-f array . . . 31
4.6 Upper line: Near �eld observations of a) Stripped pattern b)Hexagonal

pattern c) Coexitence between stripped and hexagonal patterns. Botom line:
Far �eld observations of the patterns above. Figure from [72] . . . . . . . . . 32

4.7 a) Snapshots of typical patterns observed in the LCLV for a quasi one di-
mensional and two dimensional masks. b) Spatiotemporal diagrams of a one
dimensional section of the patterns using both masks depicting di�erent dy-
namical regimes for the. Figure from [20]. . . . . . . . . . . . . . . . . . . . 33

4.8 Left: Power density spectrum for patterns at di�erent values of V0. Right:
Largest Lyapunov exponent for di�erent values of V0. Figure from [20]. . . . 33

4.9 Surface de�ning the stationary solutions of equation 4.13. Figure from [21] . 34
4.10 Modi�ed LCLV where is possible to move the entry of the �ber bundle in the

transversal direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.11 Spatiotemporal diagrams of patterns at di�erent values of δ with their respec-

tive power density spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Stability limit for the homogeneous steady state u(y, t) = 0 to perturbations of
�nite wavelength for ν = 1. The solid black curve correspond to the numerical
solution δ(ε) of equations 5.7a and 5.7b. The dashed red curve correspond to
the approximation given 5.10. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Spatiotemporal evolution of patterns in the Swift- Hohenberg model with
translational coupling 5.1. The left, center, and right panels are spatiotem-
poral diagrams of u(y, t), envelope H(y, t) of the patterns, and the tempo-
ral average power spectra S of the envelope, for (a) ε = −0.08, δ = 0.0,
(b)ε = −0.3, δ = 1.0 (c) ε = −0.3, δ = 1.35 , and (d)ε = −0.8, δ = 1.51. The
insets illustrate a magni�cation of the temporal space diagram. . . . . . . . . 40

5.3 a) Bifurcation diagram of equation 5.1 for ν = 1. HSS, TW STI, and DT stand
for homogeneous steady state, traveliing wave, spatiotemporal intermittency,
and defect turbulence respectively. The red dots correspond to the transition
lines obtained by direct numerical simulations b) Bifurction diagram of the
one dimensional complex Ginzburg-Landau equation. The red solid curve
correspond to the mapping of α(εc, δc(εc)) and β(εc, δc(εc)) . . . . . . . . . . 44

x



5.4 Turing instability for two dimensional Swift-Hohenberg with translational cou-
pling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.5 a)Snapshot of the two-dimensional SHTC in the region where is constant cre-
ation and destruction of defects and int envelope computed using the Hilbert
transform. b) Spatiotemporal evolution with its envelope of the dashed black
segment in the snapshot of the pattern. . . . . . . . . . . . . . . . . . . . . 46

5.6 Snapshot of the anistropic Ginzburg-Landau in region of creation and destruc-
tion of spiral emitting holes for α = 0.15 and β = −2.0. . . . . . . . . . . . 48

5.7 a) Plot of the di�erent Kernels used in the numerical simulations. b) Traveling
waves' regime for both Kernels; σ = and δ = for G1(z); σ = and b = for G2(z).
c) Spatiotemporal inttermittency regime for both kernels; σ = and δ = for
G1(z); σ = and b = for G2(z). . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.8 Spatiotemporal evolution and the temporal average power spectra S(k) of
the envelope of the pattern observed in the one dimensional SHTC for ε =
−0.1 and the liquid crystal valve with translational optical feedback. Left
panels numerical simulations with δ = 0.0 (a), 0.2 (b), and 1.51(c).Left panels
experimental observations with δ = 0 ± 5 µm (d), δ = 25 ± 5 µm (e), and
δ = 50± 5 µm (f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.9 Liquid crystal light valve experiment with a spatial light modulator (SLM) in
the Fourier plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1 Fiber ring. A beam splitter (BS) of low transmittance is used to inject the
pulses into the �ber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Pictorial represetantion of the Raman stimulated scttering. . . . . . . . . . . 57
6.3 a) Raman gain in Silica �bers b)Raman response function in Silica �bers. . . 59
6.4 Di�erent dynamical regimes found at di�erent values of fR . . . . . . . . . . 61
6.5 Spatial correlation length for the asympotic states for di�erent values of fR . 62
6.6 The Yorke-Kaplan dimension of the Lugiato-Lefever equation with Raman

interaction for di�erent values of fR . . . . . . . . . . . . . . . . . . . . . . . 62

xi



xii



Introduction

Macroscopic systems under constant injection and dissipation of energy may lead to the
formation of dissipative structures [60]. Examples of these structures are fronts, solitons,
and patterns [63]. This dissertation is concerned about patterns, which consist of spatially
periodic behaviors. They can be found in di�erent contexts in nature, such as the formation
of sand ripples, chemical reactions, vegetation self-organization; the emergence of convection
rolls in Rayleigh-Benard cells; and development of hexagon and stripes in nematic liquid
crystal cells [63, 60, 26, 28, 67, 7, 56, 72], to mention a few. The emergence of these behaviors
can be mathematically described in an universal manner by amplitude equations that do not
depend on the internal physics of each one of these systems [42, 32]. This feature re�ects the
universality and robustness of pattern formation.

A nematic liquid crystal cell with optical feedback can be used to study pattern-formation[72].
An external electric �eld is used to align the liquid crystal molecules in a particular direc-
tion. On the other hand, the molecules have a property called birefringence [13], which means
they have two di�erent refraction indexes. A polarized light beam traversing a section of the
liquid crystal cell will become circularly polarized depending on the local orientation of the
molecules. Optical feedback is used to spatially modulate the external electric �eld according
to the local orientation of the molecules. This experiment is called the liquid crystal light
valve with optical feedback [3], which exhibits a wide variety of robust phenomena, includ-
ing stripped and hexagonal patterns [72]. A common di�culty faced in experiments with
optical feedback is the alignment. The transition between hexagonal and square patterns
has been reported as a consequence of imperfect alignment [1, 69]. It has also been shown
that it can induce localized structures emitting vortices resembling a von Karman street [30].
Preliminary experimental observations in the liquid crystal light valve experiment located at
the Laboratio de fenómenos robustos en óptica show that an intentional misalignment can
also trigger a transition from the stationary striped pattern into traveling, spatiotemporal
intermittency and defect turbulence of stripped waves. A full theoretical characterization of
the emergence of this complexity has not been done.

A misalignment can be modeled by translational coupling [17, 30]. A spatially extended
system is said to have a translational coupling when the local evolution of the physical
quantities under study depend on their values locally, and at a given distance. A translational
coupling is a particular case of long-ranged and asymmetric interaction. These interactions
are not modeled merely by di�erential terms in the equations that govern the evolution,
but rather by integrodi�erential terms . This kind of modeling can be found naturally in
ecological communities, population dynamics, and optical �bers [33, 56, 22]. Understanding
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the e�ects of a translational coupling we will shed light on the consequences of having more
complicated asymmetric couplings.

0.1 Objectives

The main objective of this thesis is to characterize the transition from a steady pattern into
complex spatiotemporal dynamics in a pattern forming system with translational coupling.
The speci�c objectives of this dissertation are listed below

• Stablish a minimal Swift-Hohenberg type model with translational coupling.

• Conduct numerical simulations to explore and characterize the dynamical states of this
model.

• Derive an amplitude equation that accounts for the observed transitions.

• Reveal the bifurcation diagram of the one-dimensional Swift-Hohenebrg equation with
translational coupling.

• Relate the phenomenology of the prototype model with the observed phenomena in the
liquid crystal light valve.

• Derive a Swift-Hohenberg equation with translational coupling in some limit of the
Liquid crystal light valve experiment.

• Explore the e�ects of other asymmetric non-local couplings in pattern-forming systems.

2



Chapter 1

Preliminary concepts

1.1 Bifurcations

A bifurcation is a qualitative change of the solutions of a dynamical system when the pa-
rameters on which the system depends on are smoothly modi�ed. These changes can either
be: the emergence or destruction of �xed points, periodic orbits, or other invariant sets, such
as strange attractors [83], in the phase portrait of the dynamical system; or a change in the
stability of any of these structures, likewise, a bifurcation corresponds to a qualitative change
in the phase portrait [65]. For illustrative purposes, let us consider the following dynamical
system.

∂tx = µx− x3, (1.1)

This example is referred as the Pitchfork bifurcation. When µ < 0, the system only has
one equilibrium x = 0, which is an attractor of the system. However, when µ > 0, the
equilibrium x = 0 losses stability and two symmetric stable equilibria emerges x = ±√µ. A
way to visualize this is through a bifurcation diagram, which is a plot of the equilibria of
the system as a function of the parameters, in this case, µ (see �gure 1.1).

1.2 Normal forms

A �xed point in a dynamical system is linearly stable if all the eigenvalues of the Jacobian
of the system evaluated at the �xed point have a negative real part. If the real part of
one or more of these eigenvalues becomes positive while modifying the parameters of the
system, the �xed point turns unstable. A critical situation happens when the real part of at
least one eigenvalue becomes zeros while remaining negative for the other eigenvalues. The
center manifold theorem states the existence of a center manifold close to the �xed point
and tangent to the eigenvector associated with the critical eigenvalue [42]. This manifold
is invariant, which means that trajectories starting from the manifold remain contained in
it. Since all other directions around the �xed point are attractive, the system dynamics
eventually converges into the dynamics of the center manifold, thus the center manifold
is attractive. It is possible to parametrize a trajectory inside this manifold with a scalar
amplitude. The equation that governs the evolution of this amplitude is known as a normal
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0

Figure 1.1: Pitchfork bifurcation. Two stable equilibria emegeres at µ = 0 (solid blue line),
the solution xeq = 0 looses stability at this point (dashed blue line)

form [32]. If there is more than one critical mode, the center manifold has a greater dimension,
and then more scalar amplitudes are needed. Having the exact parameters for the system
to have a critical mode is not generic; it is only possible to be close to the critical situation
in practice. Singular perturbation theory introduces corrections to the normal forms when
the parameters are slightly shifted from the critical case [42, 32]. The corrected normal form
can always be expanded in powers of the amplitude if one assumes that the dynamics of
the system happens close to the �xed point that loses stability. This allows us to capture
generic bifurcations, such as equation (1.1), in di�erent physical contexts, since the dynamics
are reduced to a scalar amplitude, which is not a physical quantity but is related to real
physical quantities by a change of variables. To illustrate how a normal form is obtained, let
us consider the following example

∂tx = εx− (x2 + y2)x, (1.2a)

∂ty = y − (x2 + y2)y. (1.2b)

The system has �xed point at (x, y) = (0, 0), the Jacobian L evaluated at the �xed point
reads

L =

(
ε 0
0 −1

)
, (1.3)

whose eigenvalues are λ1 = ε and λ2 = −1. When ε = 0, the system is critically unstable,
namely, the systems presents an instability. The eigenvector asociated with the critical
eigenvalue is

~v =

(
1
0

)
. (1.4)

Assuming ε = 0, we introduce the following Ansatz, which reduces the system to the center
manifold (see �gure 1.2) (

x
y

)
= u~v + ~W (u), (1.5)
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where ~W (u) is a correction that depends on higher powers of u. We also suppose

∂tu = a3u
3 + a5u

5 + .... (1.6)

Replacing the Ansatz in the original equation , up to order 3 in powers of u, we get

a3u
3~v = u3~v + L ~W (u), (1.7)

Rearranging terms we get

L ~W (u) = (a3 + 1)u3~v, (1.8)

For the equation (1.8) to have a solution, we must impose the Fredholm alternative [37].
According to this theorem, a linear system of the form

L ~X = ~b, (1.9)

has a solution only if ~b /∈ Ker(L†) ⇐⇒ ~b · ~a = 0 ∀~a ∈ Ker(L†). It is necesary then to
de�ne a proper inner product. For equation (1.8), we choose the euclidean inner product.
Since L = L†, and L~v = 0, we must have

a3 = −1, (1.10)

from where we conclude

∂tu
[3] = −u3, (1.11)

which implies
~W (u) = 0, (1.12)

Now we assume ε � 1. Then we have to introduce the following perturbations to our
solutions

~W (u) = ε ~Wε(u), (1.13a)

∂tu = −u3 + εfε(u), (1.13b)

Replacing the Ansatz in the original system we now obtain

L ~Wε(u) = (fε − εu)~v, (1.14)

imposing the Fredholm alternative we get

fε = εu, (1.15)

from where we conclude in the normal form

∂tu = εu− u3. (1.16)

To study other examples of normal forms, see textbook [42].
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Figure 1.2: Phase portrait of equations (1.2). The red dots correspond to the new equilibria
emerging when ε becomes positive. The black dot is the unstable equilibrium. The green solid
corresponds to the center manifold of the unperturbed system, in this particular example it
coincides with the critical eigenspace.

1.3 Chaos

1.3.1 Lyapunov exponents

A system is said to be chaotic when it exhibits exponential sensibility to initial conditions.
This means that when one considers tow arbitrary close initial conditions, the distance be-
tween the trajectories evolving from these points diverges exponentially according to a char-
acteristic time scale known as the Lyapunov time [62]. The inverse of this time scale is called
the largest Lyapunov exponent [62]. A rigorous de�nition of this number is the following, let
two initial conditions separated by a distance |δ ~X0|and let |δ ~X0(t)| be the evolution of this
distance, the largest Lyapunov exponent is given by

λ = lim
t→∞

lim
δ ~X0→0

1

t
ln

(
|δ ~X(t)|
|δ ~X0|

)
, (1.17)

these limits do not commute. If the system is not chaotic, then λ ≤ 0. When one introduces a
perturbation into a trajectory, the perturbation may expand, contract, or remain unchanged
in each direction. If the perturbation is small, its evolution is governed by the equations of
the system linearized around the trajectory. Thus, the perturbation evolution is led by an
exponential growth characterized by a set of N exponents, where N is the number of degrees
of freedom the system has. One can label each one of these exponents by a number i ∈ [0, N ]
and order them in a decreasing manner. If this process is repeated many times while averaging
every new set of exponents with all the previous ones, the average converges into a set of N
numbers. The whole set is referred to as the characteristic Lyapunov exponents [62]. The
greatest of this number coincides with the largest Lyapunov exponent de�ned at (1.17). An
algorithm to compute these exponents is presented in the work of Skokos [81]. Any trajectory
that does not converge into a single point has at least one exponent equal to 0, associated
with perturbations along the trajectory. Consequently, the greatest Lyapunov exponent for
stable periodic and quasiperiodic orbits is always 0, which allows us to distinguish between
quasiperiodic behaviors that may appear complicated, with generally chaotic dynamics.
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Trajectories in a chaotic dissipative system typically converge into an invariant set of
points called a strange attractor. These sets are not curves nor surfaces but rather structures
of fractal dimension. The Yorke-Kaplan conjecture [46] states that the dimension of a strange
attractor is related to the Lyapunov exponents in the following way

DY K = j +

∑j
i=0 λi
|λj+1|

, (1.18)

where j is the maximum integer so that
∑j

i=0 λi > 0. Many positive Lyapunov exponents
combined with many negative exponents close to 0 result in a greater Yorke-Kaplan dimen-
sion; this can be interpreted as many unstable directions with many directions that barely
stable. This accounts for a sort of hyperbolic structure. Thus, we can use the Yorke-Kaplan
dimension to measure the complexity of the system, and then we can say a system is more
complex than others in an objective way.

1.3.2 Spatiotemproal chaos

Spatially extended systems have in�nite degrees of freedom, which results in an in�nite
number of Lyapunov exponent since there is one exponent for each spatial coordinate. There
are two possible manifestations of chaos: Low dimensional chaos and spatiotemporal chaos
[59]. The di�erence between these behaviors is how they behave when the size of the system
is increased. It is useful to plot the normalized labels {i/N} vs. the set of characteristic
Lyapunov exponents {λi}, namely, the Lyapunov Spectrum, to distinguish between these two
behaviors. If the set of positive Lyapunov exponents always remains discrete, independent
of the system's size, we are facing low dimensional chaos; a consequence of this is that in
the limit of in�nite size, the dynamics converge into a strange attractor of �nite dimension.
On the other hand, if the set of positive Lyapunov exponents converges into a continuum in
the limit when the size of the system approaches into in�nity, we are facing spatiotemporal
chaos, this means that the dimension of the strange attractor escalates with the size of the
system and eventually becomes in�nite [74]. In this thesis, we exclusively refer to chaotic
spatiotemporal behaviors.

1.4 Turbulence

The turbulence concept was initially introduced in �uid dynamics, where a �ow is said to be
turbulent when it is highly irregular, chaotic and have and usually large structures, namely
vortices, that split into smaller ones (see �gure 1.3-a-b). This kind of �ow arises as a conse-
quence of high energy injection compared with the �uid's viscosity. Nevertheless, turbulence
is not restricted only to �ows and should be regarded as sort of spatiotemporal chaos in other
contexts in physics. In this thesis, we are concerned with the emergence of turbulent-like
behaviors in pattern-forming systems. Due to its chaotic nature, a statistical approach has
been mainly used in the characterization of turbulence. Some shared features among in usual
turbulent systems are [39, 92, 53]

• The energy is injected into the system in the large scales; this means the energy injected
is restricted to the Fourier modes of long-wavelength (λ > l1). A pressure di�erence in
a pipe is and the sun irradiating the surface of a planet are examples of this kind of
energy injection.
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• Dissipation of energy only happens on the short scales of the systems; these means that
small wavelength modes are damped (λ < l2). Microscopic collisions are an example of
this mechanism.

• There is an inertial scale between the injection and dissipation scales (l2 < λ < l1)
where energy �ows from higher scales into lower scales. For example, in a �uid, big
vortices are created in the injection scales; these vortices split into smaller ones, which
eventually split into new ones successively upon reaching the dissipation scale. A way
of characterizing this energy cascade is trough the power energy distribution S(k); this
physical quantity is the square modulus of the Fourier transform of the variable under
study; it measures the amount of energy in each mode averaged over time. An energy
cascade looks like a power law in the inertial range (2π

l1
< k < 2π

l2
) of the power density

spectrum (see �gure 1.3-c).

The above features describe the well known normal cascade. However, there exist other
turbulent behaviors characterized by an inverted cascade, where the injection is in the small
scales [39, 57].

Energy inyection
at large scales

Energy cascade

Energy dissipation
at short scales

Figure 1.3: Examples of turbulence a) Motions of gas in the surface of Jupiter b) Turbulent
dynamics in the a video feedback experiment [29] c) Pictorical image of a energy cascade.
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Chapter 2

Pattern formation

Patterns consist of spatially periodic behaviors. They can be found in several contexts in
nature, such as Faraday waves, the Taylor-Coutte instability, ripples in the sand, thermal
convection rolls, chemical reactions, distribution of biomass in ecological communities, animal
fur, and nematic liquid crystal cells, to mention a few [35, 85, 63, 60, 26, 28, 67, 7, 56, 72] (see
�gure 2.1). A pattern forming mechanism that gives rise to patterns of a speci�c wavelength
was introduced by Alan Turing while shedding light on the origin of morphogenesis [86]. In
his article, he proposed that during a chemical reaction, the law of mass action is locally
satis�ed when the system is divided into cells. The substances involved in the process can
�ow between adjacent cells. According to Fick's law, this can be modeled as a di�usion when
the cells are su�ciently small [25]. A model taking into account the law of mass action and
the transport phenomena is known as a reaction-di�usion system, which reads

∂t ~X = D∇2 ~X + F ( ~X), (2.1)

components of ~X are regarded as the local concentrations of the di�eretn substances involved
in a chemical reaction, ~F ( ~X) is the local production rate of each of these substances, and D
is the di�usivity matrix. Turing showed that under a speci�c choice of parameters, a �xed
point of 2.1 becomes unstable to perturbations of speci�c wavenumbers. This phenomenon
is referred to as a Turing instability. Reaction-di�usion systems have also been proposed in
other contexts, such as population dynamics and propagation of genes [36, 47, 44]. Later on,
Swift and Honenberg derived a scalar equation exhibiting a Turing instability while studying
the appearance of convection rolls in the Rayleigh-Bénard experiment[84, 71, 10]. This
equation is known as the Swift-Hohenberg equation, which is the simplest model exhibiting
a pattern forming instability. Even more, this equation can be derived as a normal form
in some reaction-di�usion systems. The beginning of this chapter is dedicated to discussing
the Turing mechanism of pattern formation. In the second part, we talk about the Swift-
Hohenberg equation and expose its known behaviors.

2.1 Turing instabilities

Fixed points in dynamical systems can become unstable to spatially modulated perturbations
of a speci�c wavelength when the parameters reach a critical threshold. Let us consider a

9



Figure 2.1: Patterns in di�erent contexts in nature

dynamical system described by the order parameter ~X(~r, t) having a �xed homogeneous
solution ~X0

∂t ~X = ~G( ~X), (2.2)

~G( ~X0) = 0. (2.3)

Let us lineraize 2.2 around ~X0

~X = ~X0 + δ ~X, (2.4)

∂tδ ~X = Lδ ~X, (2.5)

where L is the Jacobian of the system evaluated at the �xed point. We introduce a repre-
sentation of the perturbation δ ~X in a Fourier basis

δ ~X =
∑
~q

~X~qe
i~q·~r+λ~qt, (2.6)

where λ~q is the growth rate of a given Fourier mode. Replacing this representation in equation
(2.5) we get an equation for each mode

λ~q ~X~q = L~q ~X~q, (2.7)

⇒ (L~q − λ~qI) ~X~q = 0, (2.8)

with L~q being the action of the Jacobian on a Fourier mode. Equation (2.8) is an eigenvalue
problem. An expression for λ~q in terms of ~q, namely the dispersion relation, can not always
be computed analytically but can be determined numerically. The real part λ~q is the growth
rate of each mode. If Re{λ~q} has a a maximum at ~qc 6= 0 and Re{λ~qc} = 0 (see �gure 2.2),
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the system is said to have a spatial instability and qc is referred as a Turing mode, which is
determined by solving the following system of equations

Re{λ~qc} = 0, (2.9a)

∇~qRe{λ~qc} = 0, (2.9b)

When this happens, a pattern of wave number ~qc emerges. It is important to consider the
imaginary part of the dispersion relation at the critical mode

Ω = Im{λ~qc}. (2.10)

When Ω = 0, the pattern is referred as stationary. In the other hand, if Ω(q) 6= 0, the
instability gives rise to a traveling wave. If Ω(q) is even function, the system exhibits an
stationary wave, and if it an odd function, the system evolves into a single traveling wave
moving in a particular direction, in this case the instability is said to be convective [15]. A

0

0

Figure 2.2: Dispersion relation of dynamical system having a Turing mode at qc 6= 0

system may have several Turing modes. The interaction of this modes is what gives origin to
more complex structures other than stripes such as hexagons and squares [26]. Normal forms
can be used to derive coupled amplitude equations describing the evolution and interaction
of these modes [63]. To further illustrate this mechanism, let us consider a reaction-di�usion
system having two coupled scalar �elds ~X = (U(~r, t), V (~r, t)), and let (U, V ) = (0, 0) be a
�xed point of the system

∂t

(
U
V

)
=

(
D1∇2 0

0 D1∇2

)(
U
V

)
+

(
f(U, V )
g(U, V )

)
. (2.11)

The linearized equation reads

∂t

(
U
V

)
=

(
fU +D1∇2 fV

gU gV +D1∇2

)(
U
V

)
, (2.12)

L~F =

(
fU fV
gU gV

)
. (2.13)
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Where L~F is the Jacobian of the production rate de�ned in (2.1). If we introduce the Fourier
representation of (U, V ), the Jacobian of the whole system reads

L~q =

(
fU −D1q

2 fV
gU gV −D2q

2

)
. (2.14)

They eigenvalues of this matrix are given by

λ~q =
tr(L~q)±

√
tr(L~q)2 − 4det(L~q)

2
, (2.15)

having
det(L~q) = D1D2q

4 − (D1gv +D2fu)q
2 + (fugv − fvgu), (2.16)

tr(L~q) = fu + gv − (D1 +D2)q
2, (2.17)

The eigenvalue having the most prominent real part is the one with the + sign. Expanding
(2.15) around q = 0 one obtains

λ~q = C0 + C2q
2 − C4q

4 +O(q6), (2.18)

where the coe�cients C0, C2, C4 depend on the parameters of the system. For demonstrative
purposes, let us assume that all these coe�cients are real. A necessary condition for the
system to have a Turing instability is that C1 > 0 and C2 < 0. The coe�cient C0 can be
adjusted to reach the onset of instability.

2.2 The Swift-Hohenberg model

2.2.1 General remarks

A model having a Turing instability relaying on a single scalar order parameter is the Swift-
Hohenberg equation, which reads

∂t = εu− u3 − ν∇2u−∇4u (2.19)

As stated at the beginning of this chapter, this equation was derived close to instability in
�uid dynamics while describing the emergence of rolls in the Rayleigh-Benard experiment
[84]. In the other hand, if one considers a reaction-di�usion model like the equation (2.11)
choosing the parameters so that C0 = C2 = 0 in equation (2.18), then the system has a
critical mode at q = 0. When introducing a perturbation into the parameters of the system
and applying a normal form analysis to �nd an equation that describes the evolution of the
amplitude of the critical mode, the Swift-Hohenberg equation can be derived (see reference
[63] for further details of the derivation). This can be done to any system that haves a
dispersion relation like 2.18, which re�ects the universality of this model.

An important feature of the Swift-Hohenberg equation is its variational nature, we can
de�ne the following free energy

F =

∫ (
−εu

2

2
+ u4 − ν (∇u)2

2
+

(∇2u)2

2

)
dV, (2.20)
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so

∂tu = −δF
δu
, (2.21)

→ dF
dt

= −(∂tu)2. (2.22)

This implies that the Swift-Hohenberg equation will evolve until reaching a stationary state.
Thus, this equation can not exhibit chaotic spatiotemporal dynamics.

Now we characterize the Turing bifurcation this equation presents. A trivial solution to
the Swift-Hohenberg equation is u(~r, t) = 0, we introduce a perturbation δu and express it
in the Fourier basis like expression (2.6). The dispersion relation reads

λq = ε+ νq2 − q4. (2.23)

For a �xed ν, the system has a Turing instability at εc. The critical mode ~qc satis�es equations
2.9a, and 2.9b

0 = ε+ νq2c − q4c , (2.24)

0 = 2νqc − 4q3c , (2.25)

This allows to solve for εc and a expression for q2c

εc = −ν
4

(2.26)

q2c =
ν

2
. (2.27)

0.0

0.0

a) b)

Figure 2.3: a) Dispersion relation of the one dimensional Swift-Hohenebrg equation, having
only 2 critical modes b) Dispersion relation of the two dimensional Swift-Hohenberg equation
having a continuum of Turing modes. The light blue plane corresponds λ~q = 0. The critical
modes correspond to those located at the brown dashed circle

For the one-dimensional Swift-Hohenberg equation, there only exist two critical modes,
this is depicted in �gure 2.3-a. However, for higher dimensions, there is a continuum of
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critical modes which can be seen in �gure 2.3-b, which allows the appearance of more complex
structures other than stripes.

The Swift-Hohenberg equation describes the emergence of patterns close to the onset
of bistability between two symmetric states. In realistic models, this symmetry is usually
broken. While deriving the Swift-Hohenberg equation performing a normal form analysis, a
term proportional u2 can appear. Through a change of variables, this is equivalent to add a
constant to the Swift-Hohenberg equation

∂tu = η + εu− u3 − ν∇2 −∇4u, (2.28)

which is known as the generalized Swift-Hohenberg. The homogeneous solution is no longer
u = 0. However, when deriving the dispersion relation for perturbations to this new solution,
its structure looks the same as the case having η = 0, having 2 Turing modes in one dimension,
and a continuum of critically unstable modes for higher dimensions, with the instability
happening at another εc = εc(η). In one dimension, this additive constant only shifts the
point around where the pattern oscillates. Nevertheless, in two dimensions, this constant can
account for the emergence of hexagonal patterns.

2.2.2 One dimensional dynamics

The one dimensional Swift-Hohenberg model equation reads

∂t = εu− u3 − ν∂yyu− ∂yyyyu. (2.29)

We already know this equation has a Turing instability at εc = −ν
4
; beyond this point, striped

patterns with wavenumber close to qc can be found (see �gure 2.4) In order to describe the

0.0

Figure 2.4: Striped pattern observed at ε = −0.2, ν = 1, with von Neumman boundary
conditions.

evolution of the pattern close to bifurcation, we set ε = εc+∆ε, we then propose the following
Ansatz

u = A(y1, t)e
iqcy + Ā(y1, t)e

−iqcy +W (A, Ā). (2.30)
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We assume that the amplitude A of the patterns depend on rescalated spatial variable y1 =
µy, with µ � 1 a dummy scaling parameter for the envelope of the pattern. We also need
introduce the following inner product between functions

f · g =
qc
2π

∫ y0+
2π
qc

y0

f̄(y′)g(y′)dy′, (2.31)

for some arbitrary y0. In particular we have

einqcy · eimqcy = δmn for n,m ∈ Z (2.32)

Introducing the Ansatz into equation (2.29) and keeping up to lowest order in µ we get

∂tAeiqcy + c.c. = ∆εAeiqcy2 +
���

���
���:0

(εc + νq2c − q4c ) Aeiqcy − iµ���
���

�:0
(2νqc − 4q3c ) ∂y1Aeiqcy

+ µ2(6q2c − ν)∂y1y1Aeiqcy − 3|A|2Aeiqcy − A3e3iqcy + LW. (2.33)

Where we the linear operator L is given by

L = ε− ν∂yy − ∂yyyy, (2.34)

this linear operator is self-adjoint, so eiqcy2 and e−iqcy2 belong to the Kernel of L†. Rearranging
terms of 2.33 we get

LW (A, Ā) = (−∂tA+ ∆εA− 3|A|2A+ 4q2c∂yyA)eiqcy − A3e3iqcy + c.c. (2.35)

Applying the solvability condition, we �nally get the real Ginzburg-Landau equation [50]

∂tA = ∆εA− 3|A|2A+ 4q2c∂yyA. (2.36)

For all these terms to be of the same order, we require that A ∼ µ ∼ (∆ε)
1
2 . Thus we expect

that beyond εc the emergence of patterns supercritically whose amplitude is proportional to√
∆ε.

2.2.3 Two dimensional dynamics

Since there is a continuum of Turing modes, we expect that the system to have them all
interacting. To brie�y discuss this, we introduce a new space independent Ansatz to equation
2.19

u =
∑
~qi

Ai(t)e
i~qi·~r + Ā(t)e−i~qi·~r (2.37)

where ~qi is a di�erent Turing mode. We expect that each amplitude equation looks like

∂tAi = ∆εAi − 3Ai|Ai|2 − 6Ai

∑
j

|Aj|2 (2.38)

Solutions to these equations consist in only one dominant mode suppressing all others. We
then expect that solutions of the Swift-Hohenberg equation, close to the Turing instability,
consist of dominions having patterns of the same wavenumber but di�erent directions, as
depicted in �gure 2.6. It is possible to derive an amplitude equation to describe the evolution
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HSS

Pattern

Figure 2.5: Bifrucation diagram of the one dimensional Swift-Hohenberg equation

Figure 2.6: Several striped patterns coexisting at ε = −.1, ν = 2

of each of these domains far from their boundaries. Unlike the one dimensional case, the
evolution of the amplitude of a given critical mode is not described by a real Ginzburg-
Landau equation but by the Newell-Whitehead-Segel equation [58]. Without loss of generality
we choose a critical mode pointing in the y direction, recall that every direction is equivalent
and propose the following Ansatz to equation 2.19

u = A(x1, y1, t)e
iqcy + Ā(x1, y1, t)e

iqcy +W (A, Ā). (2.39)
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Replacing this Ansatz on equation (2.19)

LW (A, Ā) =
���

���
��:0

(ε+ νq2c − q4c ) Aeiqcy − iµ2���
���

�:0
(2νqc − 4q3c ) ∂y1Aeiqcy +���

���:0
(2q2c − ν) (µ2

1∂x1x1 + µ2
2∂y1y1)Aeiqcy

+ ∆εAeiqcy + 4µ2
2q

2
c∂y1y1Aeiqcy − 2iµ2qc∂y1(µ

2
1∂x1x1 + µ2

2∂y1y1)Aeiqcy

− (µ4
1∂x1x1x1x1 + 2µ2

1µ
2
2∂x1x1y1,y1 + µ4

2∂y1y1y1y1)Aeiqcy − ∂tAeiqcy

− 3|A|2Aeiqcy − A3e3iqcy + c.c. (2.40)

Where we have supposed again that the amplitude A depends on re escalated spatial variables
x1 = µ1x and y1 = µ2y, where the scaling parameters are not necessarily of the same order.
Keeping the terms of the lowest order in µ1 and µ2

LW (A, Ā) = ∆εA− 3|A|2A+ 4µ2
1q

2
c∂y1y1A+ 2iµ1µ

2
2qc∂y1x1x1A− µ4

2∂x1x1x1x1A. (2.41)

We keep the term proportional to µ1µ
2
2 because by demanding that all of the terms in the

equation to be of same order we must have µ2 ∼ µ
1
2
1 and then µ1µ

2
2 ∼ µ4

2 ∼ µ2
1. Applying the

solvability condition and returning to the original coordinates we get [58]

∂tA = ∆εA− 3|A|2A+ 4q2c (∂yyA− i
1

qc
∂yxxA−

1

4q2c
∂xxxxA). (2.42)

comes from the fact that we broke the symmetry by choosing and arbitrary direction on the
pattern under study. We showed the scale in the x direction is much shorter than the scale
in the y, so stripes are more sensible to bending than to being compressed or extended. This
phenomenon is not restricted to the Swift-Hohenberg equation, but general pattern forming
systems with rotational symmetry. The e�ects of breaking this symmetry are discussed in
chapter 5.

Let us now consider the generalized Swift-Hohenberg equation. Recall that the additive
constant η is equivalent to have a term proportional to u2 in the original Swift-Hoheneberg
equation when applying a change of variables. If we have 3 Turing modes ~q1, ~q2 and ~q3
satisfying

~q1 + ~q2 + ~q3 = 0, (2.43)

known as a resonance conditions, when introducing the Ansatz (2.37) into the Swift-Hohenberg
equation with a quadratic term, the condition (2.43) makes it possible to a quadratic term
to enter in the amplitude equation of each mode. The equation for A1 looks like [26]

∂tA1 = ∆εA1 − αĀ2Ā3 − A1

∑
j

βj|Aj|2. (2.44)

Equations for A2, A3 are of the same form by symetry arguments. System of equations of
this form may admit solutions where |A1| = |A2| = |A1| 6= 0. Since q1 = q2 = q3 = qc,
condition (2.43) is ful�lled by 3 modes forming an angle of 2π/3 between them, this is always
possible because there is a continuum of critical modes. This kind of solution accounts for
the formation of hexagonal patterns, which may coexist with stripped patterns, as depicted
in �gure 2.7.
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Figure 2.7: Left: Hexagons invading the homogeneus steady state. Right: Hexagons coexist-
ing with stripes.
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Chapter 3

The Complex Ginzburg-Landau equation

The dimensionless complex Ginzburg-Landau equation (CGLE) reads

∂tA = µA− (1 + iβ)|A|2A+ (1 + iα)∇2A, (3.1)

Where µ is the bifurcation parameter, β is the nonlinear frequency response, and α is a
dispersion coe�cient. As discussed in chapter 1, normal forms describe the dynamics of a
system close to instability. A complex order parameter is necessary when describing an oscil-
latory bifurcation, namely an Andronov-Hopf [5] bifurcation when describing the evolution of
a critical mode in a Turing instability or an oscillatory spatial instability. The cubic CGLE
describes a slowly varying amplitude rising supercritically from one of these bifurcations when
the system is weakly nonlinear, and it has translational and re�ection symmetry. This equa-
tion was introduced with no time dependency and coupled with a magnetic �eld by Ginzburg
and Landau while developing a theory for superconductivity [50], where the interpretation
of the complex order parameter is the generalized wave function. A time-dependent version
of this equation was later introduced phonologically by Schmid[76] and formally derived by
Gorkov and Eliashberg [40]. The CGLE expressed as (3.1) appeared later in �uid dynam-
ics, where Stuart and Stewartson[82] �rst derived it while describing an oscillatory spatial
instability giving rise to waves in a plane Poiseuille �ow. Other physical systems where this
equation can be found include the Rayleigh-Benard convection [77], and electroconvection
in nematic liquid crystal cells[48] and in laser dynamics [24]. Even though this equation
can be derived in various physical systems, there are limitations in its applicability. When
describing waves emerging from a convective instability, two coupled amplitude equations
are needed to account for waves traveling in opposite directions if the system has re�ection
symmetry. A second limitation exists for two dimensional systems with spatial instability.
If the system is isotropic, when performing a normal form analysis on an unstable mode,
an anisotropic di�erential operator enters in the solvability condition instead of a Laplacian.
This phenomenon is brie�y discussed in chapter 2 for two-dimensional pattern-forming sys-
tems. The amplitude equation derived for this case is known as the Newell-Whitehead-Segel
equation [58]. In this chapter, we are mostly concerned about the one-dimensional CGLE.

∂tA = µA− (1 + iβ)|A|2A+ (1 + iα)∂xxA. (3.2)

We will describe solutions to this equation, explore its dynamical regimes, chaotic on spa-
tiotemporal sense, show its bifurcation diagram, and discuss the origin of complexity. At the
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end of this chapter we brie�y descibes about the dynamics of the 2 dimensional CGLE.

3.1 Plane wave solutions

The bifurcation parameter µ can always be set equal to 1 by rescaling the time, space and
the amplitude. Simple coherent solutions of equation (3.2) are plane waves of the form [6]

Aq(x, t) = Rqe
iqx+ωqt+φ, (3.3)

Rq =
√

1− q2, (3.4)

ωq = β(1− q2) + αq2. (3.5)

Only solutions having q2 < 1 exist. Let us study the linear stability of these solutions by
making perturbations on the modulational part of these waves

A(x, t) = [Rq + f(t)eikx + g∗(t)e−ikx]eiqx+ω(q)t+φ. (3.6)

If we linearize equation (3.2) around the plane wave solution, we get the following linear
system for f(t) and g(t)

∂t

(
f(t)
g(t)

)
=

[
u+ z v
v∗ u∗ − z∗

](
f(t)
g(t)

)
, (3.7)

with

u = −(1 + iβ)R2
q − (1 + iα)k2,

v = −(1 + iβ)R2
q ,

z = −2qk(1 + iα). (3.8)

Consider solutions of the form f = f0e
λt and g = g0e

λt. Replacing this Ansatz on equation
(3.7), a relation between the complex growing rate of the linear perturbation λ and its
wavenumber k can be found [6]

λ = −ivgk −D2k
2 +O(k3), (3.9)

having

vg = 2(α− β)q2,

D2 =

(
1 + αβ +

q2(1 + β2)

R2
q

)
. (3.10)

The instability occurs when the real part of the growing rate λ becomes positive. This
happens when D2 becomes negative. This gives a condition for stability of waves which is

q2 <
1 + αβ

3 + αβ + 2β2
= q2E. (3.11)

This means for �xed parameters α and β only waves having q2 < q2E are stable to linear
perturbations. The special case when qE = 0 de�nes a relation known as the Benjamin-
Feir relation [11]

1 + αβ = 0, (3.12)

this relation implies that if αβ > −1, then the homogeneous state A0 = eiφ is no longer stable
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3.2 Localized solutions

Domains of di�erent wave solutions of the CGLE are connected by localized structures. To
characterize these solutions the following Ansatz is used

A = a(x− vt)eiφ(x−vt)+iω, (3.13)

where v, and ω are respectively the characteristic velocity and frequency, which are in prin-
ciple free parameters. Replacing the Ansatz on equation (3.2) results in a set of 2 di�erential
equations, having de�ned ψ = ∂xφ, and b = ∂xa [88]

∂xb = aψ2 − 1

1 + α2
[(1 + αω)a+ v(b+ αψa)− (1 + αβ)a3], (3.14a)

∂xψ = 2
bψ

a
+

1

1 + α2
[(α− ω) + v(α

b

a
− ψ)− (α− β)a2]. (3.14b)

Waves de�ned by (3.3) correspond to �xed points of this set of equations. Heteroclinic and
homoclinic orbits in this phase space describe coherent structures having as their asymp-
totic state [52]. Characteristic solutions to the CGLE are hole-like solutions, also known
as defects [52], they consist of localized dips on the amplitude and localized peaks in the
local wavenumber, namely the phase gradient. Holes can emit waves traveling in opposite
directions, having di�erent wave numbers, these solutions are known as Nozakki-Bekki
holes [9] and correspond to heteroclinic orbits of equations (3.14). Holes connecting waves
with the same number are known as homoclons as they correspond to homoclinic orbits of
equations (3.14); holes connecting the homogeneous state with itself can be found in this
category. The dynamics of these defects give origin to the complex spatiotemporal dynamics
such as defect turbulence and spatiotemporal intermittency [87]. This will be discussed in
the following section. On the other hand, colliding waves form sinks, which look like a bump
in the amplitude. Nozakki-Bekki holes and sinks are depicted in �gure 3.1.

3.3 Chaotic regimes

The CGLE has complex spatiotemporal regimes, including phase turbulence, defect turbu-
lence, and spatiotemporal intermittency in di�erent parameter space regions. The bifurcation
diagram of this equation is shown in �gure 3.2[79, 19].

3.3.1 Spatiotemporal intermittency

Below the Benjamin-Feir curve, strange attractors coexist with waves. The dynamics in these
attractors consist of patches where the amplitude remains homogeneous, and the wavenumber
is close to 0. These patches appear and disappear over temporal evolution. The spatiotempo-
ral evolution looks like a characteristic fractal pattern known as a Sierpinski carpet.[80](see
�gure 3.3). These almost homogeneous regions patches may coexist with regions where the
wavenumber is di�erent from 0 separated by Nozzak-Bekki holes and sinks (see �gure 3.3 a)).

Holes connect the homogeneous patches. As the wavenumber, there is approximately 0;
holes can be regarded as homoclons. The dynamics of these holes come from the fact that
they are unstable [87]. They may evolve in two ways, either they decay, or the peak in its
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Figure 3.1: a) Envelope of A(x, t) the depicting 2 Nozzaki-Bekki holes and a sink b) Spa-
tiotemporal diagram showing the evolution of the holes and sink. Waves traveling in opposite
directions can be seen.
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Figure 3.2: Bifurcation diagram of the CGLE in one dimension (Image from:
https://codeinthehole.com/tutorial/coherent.html).

phase gradient, namely ψ, starts to grow into a phase slip. A second negative in the phase
gradient appears, so the total phase across the hole is conserved. Eventually, a new hole is
nucleated, traveling in the opposite direction that later may su�er the same instability. The
motions of holes create a characteristic zig-zag motion of holes [87]. The conservation of the
phase gradient across the hole can be deduced from integrating equation (3.14b) across the

22



Re A(x,t)

Re A(x,t)

x

t

a)

b)

Figure 3.3: Spatiotemporal interrmittency at 2 di�erent points of the parameter space a)α =
−0.5 and β = −4.0, Sierpinsky carpet is coexisting with traveling waves. b) α = 0.5 and
β = −1.75.

hole and using that the asymptotic state of the phase gradient is well de�ned and that the
gradient of the amplitude, namely ∂xa, is an odd function. L2 transition line is determined
numerically simulating the equation and slowly tuning the parameters until there are no more
collisions of localized structures [19]. We also computed the spectral energy distribution

S(k) = 〈 ˜|A|2(k)〉T , (3.15)

where the brackets represent an average over time, and the tilde denotes the spatial Fourier
transform. In both examples in �gure 3.3, we observe a power law in the in the spectrum,
which is consistent with the self-similar behavior

3.3.2 Phase turbulence

The homogeneous state is no longer stable above the Benjamin-Feir curve (αβ > −1). How-
ever, there is a region in the parameter space where this does not lead to the appearance
and disappearance of holes. Rather the amplitude of the �eld remains close to the homoge-
neous, and ripples appear over this state, which presents venous structure when recording its
spatiotemporal evolution (see �gure 3.4). To describe this behavior, we start by taking the
Ansatz of the homogeneous state AH = eiφ and promoting the φ into a slowly varying function
of time and space. A gradient expansion is made in order to respect phase invariance, and
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the linear coe�cients are matched, so the equation has the same linear stability properties
as equation (3.7). Non linearities are included by replacing q by ∂xφ in the de�nition of D2

in equation (3.10)[45]. When doing so, the Kuramoto Sivanchinky equation is derived from
[49, 73]

∂tφ = D2∂xxφ−D4∂xxxxφ+ c1(∂xxu)2. (3.16)

This equation is known to exhibit spatiotemporal chaos, which accounts for the dynamics
observed in this regime of the CGLE. The spectral energy distribution decays as a power law,

x

t

Re A(x,t)

Figure 3.4: Spatiotemporal evolution of phase turbulent regime at α = 2 and β = 0.9.
Ripples over the homogeneous state can seen on the evolution of the envelope

that it why this state is referred as turbulence. In the region labeled as bichaos it is possible
to �nd coexistence phase turbulence and spatiotemporal intermittency.

3.3.3 Defect turbulence

Further up the Bejanmin-Feir curve, the homogeneous patches that characterize spatiotem-
poral intermittency shrink and disappear, leaving a large isotropic region of creation and
destruction of defects. The L1 transition line is determined by measuring extrema in the
correlation functions [31], or by measuring where the density of defects vanishes [79]. Its
power density distribution also shows a power law, which is the reason why this state is
called defect turbulence .

3.4 Two-dimensional dynamics

Waves are also solutions in tow dimensions. They have the described by relation (3.3)
promoting q into a vector ~q:

Aq(x, t) = Rqe
i~q·~r+ωqt+φ, (3.17)

A linear stability analysis yields similar conditions for stability. Using the Ansatz (3.6), but
promoting k into a a vector ~k, the complex growth rate of each mode is given by

λ = −i~v′g · ~k −D′2k2 +O(k3), (3.18)
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Figure 3.5: Defect turbulence observed at α = 2 and β = −1.9. On the left panel, blue
regions correspond to zones where the amplitude is close to 0.

where

~v′g = 2(α− β)~q,

D′2 =

(
1 + αβ +

q2k(1 + β2)

R2
q

)
,

qk =
~k · ~q
k
. (3.19)

When perturbations are parallel to ~q, the conditions are the same as the one-dimensional
case. Thus, the Benjamin-Fair condition for the stability of the homogeneous state can be
derived.

A hole like solutions behaves di�erently. They are located at the intersections of the
nullclines of the real and imaginary parts of A(x, y); they correspond to singularities in the
�eld phase, and these solutions are topological. Integrating the local wavenumber ∇φ along
a path enclosing the hole gives integer multiples of 2π:

m =
1

2π

∮
∇φ · ~dr =

1

2π

∮
dφ m ∈ Z, (3.20)

Quantity m is called the topological charge of the defect. The total topological charge in the
CGLE is a conserved quantity [64]; thus, defects can only be created or destroyed in pairs of
opposite charge, di�erently from the one-dimensional case holes can fade out or nucleate new
ones. Holes emitting spiral waves exist. Their asymptotic wavenumbers correspond to the
ones of the stable waves given by (3.3). Colliding waves emitted by source holes form shocks,
similar to sinks in the one-dimensional case. Holes that absorb waves are formed at the
corners where shocks intersect. The system can evolve into a glassy state, made of domains
having a spiral in its center, and separated by shocks and vortexes at their intersections.

A new mechanism of the emergence of complexity is observed, where creation and an-
nihilation oh defects are always happening or in the form of phase turbulence [55] where
no defects are observed. There is no direct analogy to the one-dimensional spatiotemporal
intermittency. However, in chapter 5, a modi�ed two-dimensional CGLE is presented where
a behavior resembling this chaotic regime is observed.
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Chapter 4

The liquid crystal light valve experiment

The liquid crystal light valve (LCLV) is an experiment that takes advantage of the optical
properties of nematic liquid crystals to observe diverse phenomena such as localized struc-
tures, hexagonal and striped patterns, and spatiotemporal chaos. In this chapter, we explain
how the experiment works, show the phenomenology of interest for this thesis, derive a the-
oretical model describing this phenomenology partially, and o�er a possible explanation of
the complex dynamics this experiment may exhibit.

4.1 Nematic liquid crystals

Liquid crystal corresponds to an intermediate state of matter between isotropic �uids and
crystalline solids; this means it can �ow while its molecules preserve a crystal-like orientation.
In this thesis, we are interested in a nematic liquid crystal [66]. Its molecules are rod-like
shaped tend to preserve locally the same orientation, but having no positional order (see
�gure 4.1). The molecular orientation is characterized by a unitary vector ~n(~r) called the
director

Figure 4.1: Left: Shape of nematic liquid crystal. Right: Representation of the nematic
phase.
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4.1.1 Electrical properties

The anisotropy of the liquid crystal molecules implies they dielectric permittivity is a tensor
εij with 2 degrees of freedom rather than a constant. In other words, they have a dielectric
permittivity ε‖ for the longitudinal axis of the molecules, namely the extraordinary axis, and
other dielectric constant ε⊥ for the other two directions, namely the ordinary axes. We de�ne
the dielectric anisotropy as the di�erence between the dielectric permittivities of the ordinary
and extraordinary axes: ∆ε = ε‖ − ε⊥.

The quadrupole moment of the liquid crystal molecules allows them to align themselves
parallel or perpendicular to an external electric �eld depending on the sign of its dielectric
anisotropy. Recall the de�nition of the electric displacement on a linear anisotropic medium
and energy density of an electric �eld [18]

Di = εijEj = ε⊥Ei + (ε‖ − ε⊥)Ejnjni = ε‖Ei + ∆εEjnjni, (4.1)

u = −1

2
EiDi = −1

2
(ε‖EiEi + ∆ε(Eini)

2). (4.2)

The second term on (4.2) is the square of the projection of the external electric �eld on the
director. When the sign of ∆ε is positive (negative), the potential energy is minimized when
the molecule is oriented parallel (orthogonal) to the electric �eld.

We are concerned in a nematic liquid crystal cell, which consists of two parallel glass plates
�lled with a nematic liquid crystal of positive dielectric anisotropy (∆ε > 0). Glass plates
are treated so that the molecules located just over their surfaces remain parallel to them, the
cell is said to have a planar anchoring. A sinusoidal voltage of amplitude V0 is set between
the plates, taking the precaution that the voltage period is shorter than the characteristic
timescale of the molecular reorientation. A photoresistive wall is located at the back of the
cell, so the voltage can be modulated using a light beam. As explained before, the molecules
would like to orient themselves in the direction of the external electric �eld; however, its
elasticity and the boundary conditions imposed at the glass plates constrain the rotation
of the molecules. Experimentally, it has been observed that for voltages below a threshold
VF , the molecules remain parallel to plates. Over this threshold, the inclination angle of the
molecules averaged along the thickness of the cell is given by

θ =
π

2

(
1−

√
VF
V0

)
, (4.3)

VF is known as the Fréedericksz voltage, and this phenomenon is known as the Fréedericksz
transition [38].

4.1.2 Optical properties

Having tow di�erent electric permittivities also implies the existence of two refraction indexes.
This property is called birefringence and is characterized by the di�erence ∆n = n‖ − n⊥.
When a linearly polarized wave traverses a liquid crystal cell, it comes out with circular
polarization depending on how the polarization is oriented with respect to the mean direction
of the director across the cell. If we consider a cell of thickness d when a linearly polarized
wave traverses the cell, the two components of its polarization acquire a phase di�erence

27



ϕ because each polarization propagates with a di�erent speed inside the cell. The relation
between the envelope of the electric �eld before and after it passes through the cell, ~Ein and
~Eout respectively, is given by [13]

~Ein =

(
cosψ1

sinψ1

)
E0, (4.4)

~Eout =

[
e−iϕ 0

0 1

](
cosψ1

sinψ1

)
E0 (4.5)

ϕ = kd∆n cos2 θ(x, y) +O(∆n2), (4.6)

Where θ is the local molecular orientation averaged over thickness of the cell, which may not
be homogeneous along the cell

d

Photoresistive wall

Figure 4.2: Nematic liquid crystal cell with planar anchoring. At the boundaries liquid
crystal molecules are oriented parallel to the plates. A photoresistive wall is located at the
back of the cell which allows to spatially modulate the voltage at the cell using light.

4.2 Experimental setup

The liquid crystal light valve experiment (see �gure 4.3) was originally designed Akhmanov
et al. [3]. It consists of a liquid crystal cell whose voltage is spatially modulated according to
the averaged orientation of the molecules at each point. This is done through optical feedback
and the photoresistive wall. A laser beam with a given polarization is directed into the cell;
the beam is re�ected by a mirror located at the back of the cell and traverses back the cell.
The components of the polarization acquire a phase di�erence of ϕ = 2kd cos2 θ(x, y).The
factor 2 comes from the beam traversing the cell twice. The local phase di�erence is converted
into spatial modulation of the envelope using a polarizer. Through the optical feedback the

28



modulated wave is directed to the photoresistive wall at the back of the liquid crystal cell. A
spatial light modulator (SLM) is used to set the shape of the beam. A quasi-one-dimensional
mask or a two-dimensional one can be used.

L
CCD

PBS
Lens

M

M

Lens

Lens

V0
z

y
x

LCLV

FB

Figure 4.3: Liquid crystal light valve with optical feedback setup. An incident laser beam
passes through a polarized beam splitter where it acquires a �xed polarization. The beam
then enters into a liquid crystal cell and is re�ected by a mirror located at the back of the
cell, when coming out of the cell, the beam has a circular polarization. The polarization
is converted into amplitude modulation by the polarized beam splitter and an arrange of
mirrors and lenses is used to direct the beam into a �ber bundle, where ir later directed into
a photoresitive wall at the back of the liquid crystal cell.

4.2.1 Optical components

Polarized beam splitter (PBS)

We use a PBS to set the polarization of the incoming beam and convert the polarization
modulation into amplitude modulation of the outcoming wave [75]. A PBS (see �gure 4.4)
transmits light with a speci�c polarization, characterized by an angle ψ1 while it re�ects light
with the orthogonal direction of polarization. Let us consider a linearly polarized wave of
amplitude E0. When the wave passes the �rst time on the PBS, the electric �eld is given by
~Ein, when it comes out of the liquid crystal cell is given by ~Eout, and when it passes a second
time on the PBS, the value of the electric �eld is given by ~Em (see �gure 4.4)

~Ein =

(
cosψ1

sinψ1

)
E0, (4.7)

~Eout =

(
e−iϕ cosψ1

sinψ1

)
E0, (4.8)
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Laser
PBS

Figure 4.4: Polarized beam splitter

~Em = (−e−iϕ sinψ1 cosψ1 + cosψ1 sinψ1)

(
− sinψ1

cosψ1

)
E0. (4.9)

The 4-f array

We require to reproduce the intensity pro�le of the modulated beam into the photoresistive
cell. A 4-f array allows us to reproduce an image four focal distances further away. This
arrangement works with two convergent lenses. When an image is located at the focus of
the �rst convergent lens, its Fourier transform is formed one focal distance from the back of
the lens, called the Fourier plane [75]. Another convergent lens is located at a focal distance
away from the Fourier plane. This equivalent to taking another Fourier transform. The
composition of 2 Fourier transforms forms an inverted version of the original image four focal
distances away from it (see �gure 4.5). A slot can be located at the Fourier plane to �lter
out the dynamics of any of the transversal directions.

The �ber bundle (FB)

To transfer the resulting image from the 4-f array, we use the �ber bundle, a collection of
optical �bers. The FB is twisted in 180◦, so the projected image into the photoresistive wall is
oriented in the same way as the original one. The FB can be displaced along the optical axis
by a distance L (see FB at �gure 4.3). The paraxial equation [?] can describe the evolution
of the amplitude of the wave along with the distance

∇2
⊥E + 2ik∂zE = 0, (4.10)

the resulting amplitude Ew can be computed applying a di�raction operator on Em

Ew = e−i
L
2k
∇2

⊥Em = ei
L
2k
∇2

⊥(−e−iβ cos2 ϕ(x,y) cosψ1 sinψ1 + cosψ1 sinψ1)E0. (4.11)
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Figure 4.5: a) Physical location of the 4f array in the LCLV. b) A typycal 4-f array

Choosing ψ1 = 45◦. Since the intensity of light reaching the photoresisitve wall is porpor-
tional to |Ew|2 we have

Iw =
I0
4
|e−i

L
2k
∇2

⊥(1− e−iβ cos2 ϕ(x,y))|2, (4.12)

where I0 is intensity of initial beam.

4.3 Experimental observations

4.3.1 Pattern formation

The LCLV exhibits a wide variety of dissipative structures such as fronts, solitons, and
patterns [72]. For this thesis, we will be interested in the dynamics of the last ones. Typical
snapshots of two-dimensional patterns of di�erent kinds are depicted in the upper panels
of �gure 4.6. The bottom panels are snapshots of the far-�eld observations of each of the
patterns above. Looking at the far-�eld is equivalent to look at the Fourier plane [13]

4.3.2 Spatiotemporal chaos

Patterns are not necessarily static; it has been shown that if one keeps track of their temporal
evolution, they may exhibit complex spatiotemporal dynamics [20]. In �gure 4.7 a) there are
two snapshots of the experiment, one using a quasi one- dimensional mask and the other
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Figure 4.6: Upper line: Near �eld observations of a) Stripped pattern b)Hexagonal pattern
c) Coexitence between stripped and hexagonal patterns. Botom line: Far �eld observations
of the patterns above. Figure from [72]

using a rectangular one. The dashed red line represents a section of the pattern tracked over
time. A slot is used to �lter out the dynamics in the x direction, forcing the patterns to be
in the y direction. It is possible to distinguish stationary, quasiperiodic, intermittent, and
turbulent like dynamics for di�erent values of V0

Figure 4.8 a) represents the power density spectrum for distinct values of V0 exhibiting
di�erent regimes. The blue corresponds to the stationary case, with only one characteristic
frequency, whereas the red represents a quasiperiodic regime, characterized by several in-
commensurable frequencies. The black curve resembles a power law, which is characteristic
for turbulent like dynamics. Figure 4.8 b) represents the largest Lyapunov exponent of the
system measured for di�erent values of V0. Recall that for positive values of this physical
quantity, the system is said to be chaotic. This plot shows transitions from stationary and
quasiperiodic patterns to complex spatiotemporal dynamics.

4.4 Theoretical description

A simple reaction di�usion equation describing the evolution of θ(x, y) reads [21].

∂tθ = −(θ − θ0(x, y)) + l2∇2θ, (4.13)

θ0(x, y) is the angle of equilibrium of the Frederikz transition. Recall (4.3), describing the
equilibrium inclination angle in a liquid crystal cell, we replace V0 with e�ective voltage at
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a)

b)

Figure 4.7: a) Snapshots of typical patterns observed in the LCLV for a quasi one dimensional
and two dimensional masks. b) Spatiotemporal diagrams of a one dimensional section of the
patterns using both masks depicting di�erent dynamical regimes for the. Figure from [20].

Figure 4.8: Left: Power density spectrum for patterns at di�erent values of V0. Right:
Largest Lyapunov exponent for di�erent values of V0. Figure from [20].

each point of the cell.

θ0 =
π

2

(
1−

√
ΓVF

ΓV0 + αIw(θ)

)
. (4.14)
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Stationary and homogeneous solutions of equation 4.13 in terms of V0 and I0 are depicted
in �gure 4.9. The corrugated structure of this surface shows there exist regions having two
stable and one unstable solution [21]. Close to the onset of bistability, a model describing
an imperfect pitchfork bifurcation can be derived [21]. Let θ0 be the equilibrium angle on
the onset of bistability, an equation for the evolution of a perturbation u(~r, t) of this angle
is derived.

Figure 4.9: Surface de�ning the stationary solutions of equation 4.13. Figure from [21]

θ = θc + u, (4.15)

∂tu = η + εu− u3 + h.o.t. (4.16)

To add a spatial dependency to equation 4.16, we expand the di�raction operator in powers
of L in equation 4.12

e−i
L
2k
∇2

⊥ = 1− i
L

2k
∇2
⊥ −

L2

4k2
∇4
⊥ +O(L3), (4.17)

we keep up to second order in L because the di�usion in equation 4.13 can turn negative
after the previous expansion. After some straightforward algebra one gets [4]

∂tu = η + εu− u3 + (l2 − ν(L))∇2
⊥u− h(L2)∇4

⊥u+ h.o.t., (4.18)

ν =
βLθc

4k(ΓV0 + αI0(1 + cos β cos2 θc))
sin 2θc sin β cos2 θc, (4.19)

h =
θcL

2

8k2(ΓV0 + αI0(1 + cos β cos2 θc))
(1 + cos β cos2 θc). (4.20)

Equation 4.18 is the type Swift-Hohenberg model. As discussed in Chapter 3, this model can
explain the formation of stripped and hexagonal patterns. However, this equation cannot
describe the transition from quasiperiodicity into complex dynamics discussed in section
4.3.2. due to its variational nature.
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4.5 Translational coupling

We propose that the origin of the complex spatiotemporal dynamics comes from the intrinsic
misalignment into the experiment, which is also generic for every optics experiment. The
experiment is modi�ed to include movement in the transversal direction of the �ber bundle,
depicted in �gure 4.10. This has the consequence that the voltage in the LC at the point ~r =
(x, y) now depends of the orientation of the LC at the point ~r+~δ. We called this a translational
coupling and was introduced by F. del Campo in his Master's thesis [17, 30] studying the
e�ects of misalignments in localized structures. Figure 4.11 shows spatiotemporal diagrams
and power density spectra for patterns at di�erent values of δ. We observe a transition from
periodic waves into a state resembling spatiotemporal intermittency. The power density
spectrum of �gure 4.11 c) shows a power-law signaling a rather turbulent dynamic. The
theoretical aspects of the translational coupling will be discussed in the next chapter.

Slot

Figure 4.10: Modi�ed LCLV where is possible to move the entry of the �ber bundle in the
transversal direction
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Figure 4.11: Spatiotemporal diagrams of patterns at di�erent values of δ with their respective
power density spectra.
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Chapter 5

Route to the complexity

In the previous chapter, we showed that the generalized Swift-Hoheneberg equation can
describe the molecular orientation in the Liquid crystal cell in some limit. This equation
captures the emergence of stripped and hexagonal patterns in the experiment, however, due
to its variational nature, it can not account for the complex spatiotemporal dynamics of the
experiment. We showed that when the experiment is intentionally misaligned, it exhibits a
transition from quasiperiodic behaviors to rather turbulent dynamics. To shed light on this
complexity's origin, we consider a Swift-Hohenberg model with non-variational terms that
account for the misalignment.

∂tu = εũ− ũ− ν∇2u−∇4u, (5.1)

where
ũ = u(~r + ~δ, t), (5.2)

with ~δ a constant vector. We refer to this equation as the Swift-Hohenberg equation with
translational coupling (SHTC). It is possible to set the parameter ν equal to 1 by a re-scaling
the time, the spatial coordinates the �eld u, so that the dynamics of equation (5.1) can be
described only by the parameters ε and δ. We keep this parameter because it introduces a
characteristic scale for the wavelength of the patterns, and thus, sets a limit for where our
approximations remain valid. This equation was already studied to describe the e�ects of
misalignment in localized structures by Francisco del Campo in his thesis [17, 30]. In his
work, he reported the emergence of spatiotemporal intermittency, however, a full description
of the origin of this complexity has not been made. The fact that the di�erential terms
in equation 5.1 are not a�ected by the transnational coupling may seem like an arbitrary
choice and not a completely realistic one. Recall that equation 5.1 is a prototype model for
understanding the emergence of complexity in a general pattern-forming system and not a
model of the liquid crystal light valve experiment.

In the �rst part of this chapter, we consider the one-dimensional SHTC. We explore its
phenomenology and derive an amplitude equation that qualitatively accounts for its di�erent
dynamical regimes. In the second half, we brie�y discuss the two-dimensional SHTC, and
also talk about further generalizations of the one-dimensional SHTC. We �nally relate this
prototype model with the liquid crystal light valve experiment, and propose a modi�cation
to it.
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5.1 The one-dimensional SHTC

5.1.1 Convective instability

Let us consider the one-dimensional SHTC

∂tu = εũ− ũ− ν∂yyu− ∂yyyyu, (5.3)

where
ũ = u(y + δ, t). (5.4)

Equation (5.3) has a trivial homogeneous solution u(y, t) = 0, we start by studying the
stability of this solution. We compute the dispersion relation for a perturbation δu to the
homogeneous steady state

δu =
∑
q

uqe
iqy+λqt, (5.5)

replacing this expression on the linear part of equation (5.3) we get the following relation

λ~q = εeiqδ + νq2 − q4. (5.6)

We impose the conditions (2.9a) and (2.9b) for the system to have a Turing instability

0 = ε cos(qδ) + νq2 − q4, (5.7a)

0 = εδ sin(qδ) + 2νq − 4q3. (5.7b)

These equations are di�cult to solve algebraically. Since for the regular Swift-Hoheneberg
equation qc ∼

√
ν, we expect that this also holds for the Swift-Hohenberg equation with

translational coupling. It is reasonable then to expand cos(qδ) and sin(qδ) around q = 0

0 = ε+ (ν − εδ2

2
)q2 − (1− εδ4

24
)q4 +O(q6), (5.8a)

0 = 2(ν − εδ2

2
)q − 4(ν − εδ4

24
)q3 +O(q5). (5.8b)

We solve 5.8b and �nd an expression for q2c

q2c =
(ν − εδ2

2
)

2(1− εδ4

24
)
. (5.9)

Replacing (5.9) in (5.8a), we �nd a relation between ε and δ de�ning the curve of instability
for the homogeneous steady state u(y, t) = 0

δc =

√√√√6νε+ 6|ε|
√
ν2 − 1

3
(ν2 + 4ε)

ε2
. (5.10)

This approximation remains fairly good when ε ∼ ν2 or smaller. By making the transforma-
tion ε = ν2ε′, with ε′ of order O(1), we found that δc ∼ ν−1/2. The approximate instability
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curve given by (5.10) is depicted in �gure 5.1 along with the numerical solutions of equations
5.7 for ν = 1. According to (5.9), the critical wavelength λc ful�lls

λc =
2π

qc
≈ 10√

ν
, (5.11)

⇒ δc
λc
∼ 1

10
. (5.12)

We conclude taht the instability happens when transnational coupling length is a fraction of
the wavelength of the pattern. In the next section we show this enough for �nding complex
spatiotemproal dynamics.

The imaginary part of (5.6)
Im{λq} = ε sin qδ. (5.13)

Since this corresponds to an odd function of q, a traveling wave emerges when the instabil-
ity threshold for the homogeneous steady state is reached. Thus, we say the instability is
convective.

-0.75 -0.5 -0.25-1.0

0.4

0.0

0.8

1.2

1.6

Stable

Unstable

Figure 5.1: Stability limit for the homogeneous steady state u(y, t) = 0 to perturbations of
�nite wavelength for ν = 1. The solid black curve correspond to the numerical solution δ(ε)
of equations 5.7a and 5.7b. The dashed red curve correspond to the approximation given
5.10.

5.1.2 Phenomenology of states

We start by exploring the phenomenology of 5.1 for di�erent values of ε and δ in the region
where the homogeneous steady state is convectively unstable. We restrict to the case having
ν = 1 and impose periodic boundary conditions to the simulations. We also compute the
envelope through the Hilbert transform, which is given by

H(y, t) = 2

∣∣∣∣ ∫ ∞
0

eiqy
∫ ∞
−∞

u(y′, t)e−iqy
′
dy′dq

∣∣∣∣. (5.14)
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Spatiotemporal diagrams of u(y, t) for di�erent regions of the ε − δ parameter space are

-1 10 0 10.5

(a)

(b)

(c)

(d)

Figure 5.2: Spatiotemporal evolution of patterns in the Swift- Hohenberg model with trans-
lational coupling 5.1. The left, center, and right panels are spatiotemporal diagrams of
u(y, t), envelope H(y, t) of the patterns, and the temporal average power spectra S of the
envelope, for (a) ε = −0.08, δ = 0.0, (b)ε = −0.3, δ = 1.0 (c) ε = −0.3, δ = 1.35 , and
(d)ε = −0.8, δ = 1.51. The insets illustrate a magni�cation of the temporal space diagram.
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depicted in �gure 5.2. We observe that complex spatiotemporal dynamics arises for high val-
ues of δ. Two di�erent complex regimes can be distinguished: spatiotemporal intermittency
and defect turbulence. The �rst regime is characterized by regions of a �nite size separated
by holes where the patterns' amplitude remains homogeneous. The second regime corre-
sponds to a more isotropic state, where the dynamics are dominated by the appearance and
disappearance of holes in a background pattern, leaving no extended laminar regions. We
considered the the fraction χ = δ/λp, where λp is the wavelength of the background pattern.
We found that χ = 0.18 for the state represented in �gure 5.2-c, and χ = 0.22 for the state
depicted in 5.2-d, which is consistent with what we concluded in the previous section.

5.1.3 Normal form

To elucidate the origin of the complex spatiotemporal dynamics, we derive an amplitude
equation close to the homogeneous state's convective instability limit. Let qc, εc and δc be
solutions of (5.7). We introduce a perturbation to the parameters

ε = εc + ∆ε, (5.15)

δ = δc + ∆δ. (5.16)

Now we propose the following Ansatz to equation (5.3)

u(y, t) = A(y1, t)e
iqcy + Ā(y1, t)e

iqcy +W (A, Ā), (5.17)

y1 = ξy, (5.18)

with ξ a dummy scaling parameter. Replacing the Ansatz, the left hand side of the equation
reads

∂tAeiqcy + ∂tĀe−iqcy +
∂W

∂A

∂A

∂t
+
∂W

∂Ā

∂Ā

∂t
. (5.19)

The eigenvalues of the critical modes have non-zero imaginary parts given by (5.13), then to
the lowest order in A we expect ∂tA ≈ iΩA. By using this approximation, the left-hand side
reads

∂tAeiqcy + ∂tĀe−iqcy + GW (A, Ā). (5.20)

G = iΩ

(
A
∂

∂A
− Ā ∂

∂Ā

)
. (5.21)

Since Ω is not a small parameter, then we can not neglect the time derivative of W in the
equation. After replacing the Ansatz on the right hand side of (5.3), rearranging terms, and
using (5.8a) and (5.7b) we get

LW (A, Ā) = [iεc sin qcδcA+ (∆ε cos qcδc − εcqc∆δc sin qcδc)A+ ξεcδc cos qcδc∂y1A

+ ξ2(6q2c − ν +
εcδ

2
c

2
eiqcδc)∂y1y1A− 3eiqcδcA|A|2 − ∂tA]eiqcy

− e3iqcδcA3e3iqcy + c.c.+O(ξ3), (5.22)

where
L = G − L0, (5.23)

L0 = εeδ∂y − ν∂yy − ∂yyyy. (5.24)
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The operator L0 operates only on functions of the fast variable y, while G only does it on
the amplitudes of the critical modes. To apply the solvavility condition to (5.22) we need to
introduce a proper inner product [78, 8]

f(y, A, Ā) · g(y, A, Ā) =
2

qc

∫ y0+
2π
qc

y0

[ ∫
C

e−|A|
2

f(y, A, Ā)ḡ(y, A, Ā)dudv

]
dy, (5.25)

where A = u + iv and the second integral is taken into the whole complex plane. Under
this inner product, the adjoint of the operator σA = A is σ†A = ∂

∂A
. These operators can be

regarded as creation and annihilation operators in a Segal-Bargmann space [78, 8]. Using
this inner product we can compute the adjoints of G and L0, which are given by

G† = −iΩ

(
A
∂

∂A
− Ā ∂

∂Ā

)
. (5.26)

L†0 = εe−δ∂y − ν∂yy − ∂yyyy. (5.27)

Let us consider the actions of H† and L†0 on a function of the form A|A|meiqcy with m ∈ Z

G†A|A|meiqcy = −iΩ[(m+ 1)A|A|m −mA|A|m]eiqcy = −iΩA|A|meiqcy, (5.28)

L†0A|A|meiqcy = −iΩA|A|meiqcy, (5.29)

then we have
L†A|A|meiqcy = (G† − L†0)A|A|meiqcy = 0. (5.30)

Analogously, if we consider the actions of H† and L†0 on Ā|A|me−iqcy we have

L†Ā|A|me−iqcy = 0. (5.31)

Since we have found the Kernel of L†, we can apply the solvability condition to equation (5.22)
and derive an equation for the evolution of A. After returning to the original coordinates,
we get

∂tA = (µ+ iΩ)A− 3eiqcδc|A|2A+ D̃∂yyA+ v∂yA, (5.32)

where

µ = ∆ε cos qcδc − εcqc∆δ sin qcδc, (5.33a)

D̃ = 6q2c − ν +
εcδ

2
c

2
eiqcδc , (5.33b)

v = εcδc cos qcδc. (5.33c)

Even though the term proportional to ∂yyA is of a higher order than the drift term v∂yA,
we keep it on the equation because, under periodic boundary conditions, the drift term can
be eliminated by expressing the equation from a moving reference frame having the group
velocity v. A more realistic model should have von Neumann or Dirichlet boundary conditions
instead of periodic ones. In these scenarios, the amplitude equation is still valid far away
from the boundaries, but it is not possible to express the equation in a moving frame because
the translational symmetry is broken. We can renormalize the amplitude and the spatial
coordinate y

A→
√

1

3 cos qcδc
Beiωt, (5.34)

42



y →
√

1

6q2c − ν + εcδ2c
2

cos qcδc
Y, (5.35)

the amplitude equation reads

∂tB = µB − (1 + iβ)|B|2B + (1 + iα)∂Y YB + v′∂YB, (5.36)

where

α =
sin qcδc

6q2c − ν + εcδ2c
2

cos qcδc
(5.37a)

β = tan qcδc (5.37b)

v′ =
v√

6q2c − ν + εcδ2c
2

cos qcδc

(5.37c)

Having α and β as functions of ε and δ allow us to map the bifurcation diagram of the
complex Ginzburg-Landau equation into the ε − δ parameter space close to the instability
curve as depicted in �gure 5.3-a. The brown striped region in Figure 5.3-a corresponds
to the zone where the parameters α and β are within the curve L2 and the Benjamin-
Fir curve in Figure 5.3-b. In this region, it possible to �nd spatiotemporal intermittency
and traveling waves depending on the initial conditions. Recall the mechanism that gives
rise to spatiotemporal intermittency, perturbations to the traveling waves may create holes
in the pattern. These holes are unstable in this region of the parameter, and they can
either fade out, or a phase slip event happens in the core of the hole, which nucleates a
new defect, the new. Further up, traveling waves having a homogeneous envelope are no
longer stable, so the system constantly creates and destroys holes in the pattern, leaving
no laminar patches between them. We showed that the transition curves predicted by the
Ginzburg-Landau normal form match well with the transitions points we have found by
direct numerical simulations, which are represented by the red dot in �gure 5.3-a. The
�gure 5.3-b is the bifurcation diagram of the complex Ginzburg-Landau equation, already
presented in chapter 3. The solid red curve within this diagram corresponds to the mapping
of α(εc, δc(εc)) and β(εc, δc(εc)). Consistently with what we expect, this curve converges to
the origin when εc → −0.25 and δc → 0. For high values of δc the function β(εc, δc(εc))
quickly diverges while α(εc, δc(εc)) remains a slow-growing function. Since the Benjamin-Feir
and the L1 curves match asymptotically for β → −∞ in the bifurcation of the complex
Ginzburg-Landau equation, we do not observe a phase turbulence region; instead, we the
observe a direct transition from spatiotemporal intermittency to defect turbulence.

5.2 Two dimensional SHTC

5.2.1 Convective instability

Let us now consider a two-dimensional Swift-Hohengerg equation with transnational coupling

∂tu = εũ− ũ3 −∇2u−∇4u, (5.38)

where
ũ = u(x, y + δ, t). (5.39)
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Figure 5.3: a) Bifurcation diagram of equation 5.1 for ν = 1. HSS, TW STI, and DT stand
for homogeneous steady state, traveliing wave, spatiotemporal intermittency, and defect tur-
bulence respectively. The red dots correspond to the transition lines obtained by direct nu-
merical simulations b) Bifurction diagram of the one dimensional complex Ginzburg-Landau
equation. The red solid curve correspond to the mapping of α(εc, δc(εc)) and β(εc, δc(εc))
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Computing the dispersion relation we have

λ~q = eiqyδ + νq2 − q4. (5.40)

The conditions for the Turing instabily read

0 = ε cos qyδ + νq2 − q4, (5.41)

0 = εδ sin qyδ + 2νq − 4q3. (5.42)

Equation 5.41 reveals that the homogeneous steady state is more sensible to perturbation in
y direction since when ε < 0, this is represented in �gure 5.4. The convective instability is
given by the same expression as the one-dimensional case (see �gure 5.1). When reaching
the threshold of instability, only two modes lose stability rather than a continuum of modes.
Thus, close to instability we expect the emergence of a traveling wave in the y direction.

0.0

Figure 5.4: Turing instability for two dimensional Swift-Hohenberg with translational cou-
pling

5.2.2 Phenomenonlogy of states

We have conducted simulations of equation 5.38 under periodic boundary conditions close to
the instability curve considering ν = 1. We used a random state as an initial condition. For
values of δ ranging from 0 to around 1.3, we observe that the random initial condition �rst
develops into a labyrinth pattern resembling �gure 2.6. These labyrinths slowly evolve into a
single traveling wave in the y direction. Depending on the initial conditions, bounded pairs of
dislocations can be formed. When reaching the equilibrium state, these bounded states travel
as rigid bodies along with the pattern at a constant speed. Starting from δ ∼ 1.3, we observe
that system evolves into a background traveling wave in the y direction, but dislocations are
constantly being created and destroyed, this is depicted in �gure 5.5. We kept track of a
traversal segment of the pattern; its spatiotemporal diagram resembles a distorted Sierpinski
carpet, suggesting we face a rather intermittent state.
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-1 10 0 10.5

Figure 5.5: a)Snapshot of the two-dimensional SHTC in the region where is constant cre-
ation and destruction of defects and int envelope computed using the Hilbert transform. b)
Spatiotemporal evolution with its envelope of the dashed black segment in the snapshot of
the pattern.

5.2.3 Normal form

We propose the following Ansatz

u(x, y, t) = A(x1, y1, t)e
iqcy + Ā(x1, y1, t)e

−iqcy +W (a, Ā), (5.43)

where
x1 = ξ1x, (5.44)

y1 = ξ2y. (5.45)
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We get

LW (A, Ā) = [iεc sin qcδcA+ (∆ε cos qcδc − εcqc∆δc sin qcδc)A+ ξ2εcδc cos qcδc∂y1A

+ ξ22(6q2c − ν +
εcδ

2
c

2
eiqcδc)∂y1y1A− 3eiqcδcA|A|2 + ξ21(2q2c − ν)∂x1x1A

− ∂tA]eiqcy − e3iqcδcA3e3iqcy + c.c., (5.46)

where
L = G − (εeδ∂y − ν∇2 −∇4). (5.47)

Di�erently from the regular Swift-Hohenberg equation, the term (2q2c − ν) in (5.46) does not
vanish,

(2q2c − ν) ≈ νεcδ
2
c

2
(
δ2c
12
− 1). (5.48)

If we are on a region where δ2c < 12, then (2q2c − ν) > 0 since εc < 0. We can neglect
higher powers of ξ1 in equation (5.46). Applying the solvavility condition an returning to the
original coordinates we have

∂tA = (µ+ iΩ)A− 3eiqcδ|A|2A+D1∂xxA+ D̃2∂yyA+ v∂yA, (5.49)

where
D1 = (2q2c − ν), (5.50)

and

D̃2 = (6q2c − ν +
εcδ

2
c

2
cos(qcδc)e

iqcδc). (5.51)

We introduce the following rescalings

A =
1√

3 cos(qcδc)
B, (5.52a)

X =
1√
D1

x, (5.52b)

Y =
1√

Re{D̃2}
y (5.52c)

we then get
∂tB = µB − (1 + iβ)|A|2A+∇′2A+ iα∂Y YA+ v′∂yA, (5.53)

where

∇′2 = ∂XX + ∂Y Y , (5.54a)

α =
sin qcδc

6q2c − ν + εcδ2c
2

cos qcδc
, (5.54b)

β = tan qcδc, (5.54c)

v′ =
v√

6q2c − ν + εcδ2c
2

cos qcδc

(5.54d)
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This corresponds to a particular case of the anisotropic Ginzburg-Landau equation [6, 16].
Note that the parameters α and β have the same expressions as the one-dimensional SHTC.
We computed these parameters in the regions where the solution SHTC converges into an
almost homogeneous traveling wave, and where it has a permanent complex spatiotemporal
dynamics. We then conducted simulations of the anisotropic Ginzburg-Landau equation using
the computed parameter. For the �rst regime, we observe that the anisotropic Ginzburg-
Landau converges into a solution having a homogeneous envelope |A|. On the other hand, in
the complex regime, the anisotropic Ginzburg-Landau equation exhibit constant creation and
destruction of spiral emitting holes. The bifurcation diagram of the anisotropic Ginzburg-
Landau equation has not been fully characterized. Di�erences in the region of phase chaos
respect to the isotropic Ginzburg-Landau equation have been reported [34]; nevertheless,
a complete description of its other complex dynamical regimes has not been done. The
anisotropic Ginzburg-Landau equation does not capture bounded states. These phenomenon
has been reported in other anisotropic pattern-forming systems [89]. Amended amplitude
equations with non-resonant terms that account for the background pattern have been derived
in these systems. These terms successfully explain the bounding. We have not characterized
the bifurcation diagram of the two-dimensional SHTC.

-1 10 0 10.5

Figure 5.6: Snapshot of the anistropic Ginzburg-Landau in region of creation and destruction
of spiral emitting holes for α = 0.15 and β = −2.0.

5.3 Generalizations

A translational coupling can be regarded as a particular case of a more general kind of
non-local interaction. Pattern-forming systems can have long-range interactions, which are
modeled by means of integral Kernels. This kind of couplings has been introduced in reaction-
di�usion models that describe vegetation patterns and population dynamics [56, 12]. We
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show that transition from traveling waves to complex spatiotemporal dynamics can also be
found in pattern-forming systems with asymmetric long-ranged interactions. Let us consider
a Swift-Hoheneberg model with an interaction Kernel

∂tu = εũ− ũ3 − ν∂yy − ∂yyyyu, (5.55)

where

ũ(y, t) =

∫ ∞
−∞

G(z, ~p)u(y + z)dz. (5.56)

The vector ~p correspond to the parameters that characterize each kernel, Note that is we
choose G(z, δ) = δ(z−δ), we recover the Swift-Hoheneberg model with translational coupling.

For illustrative purposes, we conducted simulations using two di�erent asymmetric integral
kernels: A shifted uniform distribution, and a slightly asymmetric Gaussian function (see
�gure 5.7-a)

G1(z)

{
1
σ

if z ∈ [−σ/2 + δ, σ/2 + δ],

0 else.
(5.57)

G2(z) = (1 + bz)e−(x/σ)
2

. (5.58)

We observe that when the parameter that characterizes the asymmetry of the Kernels is
tuned, δ for G1(z), and b for G2(z)), we encounter the same kind of transitions we found
in the one-dimensional SHTC. Spatiotemporal diagrams of the patterns observed and their
envelopes are depicted in �gure 5.7-b-c To generalize the previous results of this chapter, we
compute the dispersion relation (5.55) for and arbitrary Kernel G(z)

λq = ε

∫ ∞
∞

G(z, ~p)eiqzdz + νq2c − q4c , (5.59)

separating between real and imaginary parts we have

Re{λq} = ε

∫ ∞
∞

G(z, ~p) cos(qz)dz,+νq2c − q4, (5.60)

Im{λq} =

∫ ∞
∞

G(z~p) sin(qz)dz. (5.61)

It is always possible to separate G(z, ~p) into its symmetric and antisymmetric parts

GS =
G(z, ~p) +G(−z, ~p)

2
, (5.62)

GAS =
G(z, ~p)−G(−z, ~p)

2
. (5.63)

Using parity properties we have

Re{λq} = ε

∫ ∞
∞

GS(z, ~p) cos(qz)dz + νq2c − q4, (5.64a)

Im{λq} =

∫ ∞
∞

GAS(z, ~p) sin(qz)dz. (5.64b)
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0.0

0.0

0.0

Figure 5.7: a) Plot of the di�erent Kernels used in the numerical simulations. b) Traveling
waves' regime for both Kernels; σ = and δ = for G1(z); σ = and b = for G2(z). c) Spa-
tiotemporal inttermittency regime for both kernels; σ = and δ = for G1(z); σ = and b = for
G2(z).

For simplicity we assume G(z, ~p) is a rapid decaying function so that
∫∞
−∞ z

nG(z, ~p)dz remains
�nite for n ∈ N0, this is refered as weak interaction [33]. We can expand (5.64a) around q = 0,
and impose (2.9a) and (2.9b)

0 = ε+ (ν − εκ2)q2 − (1− εκ4)q4 +O(q6), (5.65a)

0 = 2(ν − εκ2)qc − 4(1− εκ4)q3c +O(q5), (5.65b)

where

κn =
1

n!

∫ ∞
−∞

znG(z, ~p)dz. (5.66)

It is in principle possible to �nd solutions to equations (5.65a) and (5.65b) which depend
on the shape of G(z). In the other hand we have that after the expansion, the expression
(5.64b) reads

Im{λq} =

∫ ∞
∞

GAS(z, ~p) sin(qz)dz = κ1q +O(q3), (5.67)

which is always an odd function of q when GAS 6= 0. This means that if the system has a
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Turing instability, it will always be of a convective nature when the interaction Kernel has
an antisymmetric part.

Assuming we choose the parameters ε and ~p so that we are close to the convective insta-
bility, we propose the following Ansatz

u(y, t) = A(y, t)eiqcy + Ā(y, t)e−iqcy +W (A, Ā). (5.68)

The following approximation can be made∫ ∞
∞

G(z, ~p)A(y + z)eiqc(y+z) ≈ γ0A(y, t)eiqcy + γ1∂yAeiqcy + γ2∂yyAeiqcy. (5.69)

where

γn =
1

n!

∫ ∞
−∞

znG(z, ~p)eiqczdz. (5.70)

We also de�ne the following linear operator

L = G −
(
ε

∫ ∞
∞

GS(z, ~p){·}(y + z)dz − ν∂yy − ∂yyyy
)
. (5.71)

which is analogous to the operator de�ned at (5.23). Replacing the Ansatz on (5.55) and
rearranging terms, we get

LW (A, Ā) = [iRe{γ0}A+ µA+ ξRe{γ1}∂y1A+ ξ2(6q2c − ν + γ2)∂y1y1A

− 3|γ0|2γ0A|A|2 − ∂tA]eiqcy − e3iqcδcA3e3iqcy + c.c.+O(µ3). (5.72)

Applying the solvability condition, we again get a cubic complex Ginzburg-Landau equation

∂tA = µA+ iΩA− 3|γ0|2γ0|A|A2 + D̃∂yyA+ v∂yA, (5.73)

where

Ω =

∫ ∞
−∞

GAS(z, ~p) sin(qz)dz, (5.74a)

µ = ∆ε+
∑
pi

∆pi

∫ ∞
−∞

∂G

∂pi
(z, ~p)eiqczdz, (5.74b)

v =

∫ ∞
−∞

zGAS(z, ~p) cos(qz)dz, (5.74c)

D̃ = 6q2c − ν + γ2. (5.74d)

Asymmetry in the interaction kernel is necessary for the coe�cients γ0 and D̃ to be com-
plex numbers since Fourier transforms of even and odd functions are purely real and purely
imaginary numbers, respectively. Equation (5.73) is enough to capture the transition into
spatiotemporal intermittency we observe in �gure 5.7. Some considerations need to be taken
to 5.72 before applying the solvability condition. If the real part of γ0 < 0, the bifurcation
turns subcritical and becomes necessary to add higher-order terms of A and Ā to saturate the
instability. This is done by explicitly computing the correction W (A, Ā) up to third order in
A, and then add these terms to the Ansatz (5.68), this allows to get a term proportional to
A|A|4 in the normal form becoming a quintic Ginzburg-Landau equation. A similar situation
happens if the real part of D turns negative. In this case, we need to keep higher-order
spatial derivatives and obtain a di�erent amplitude equation.
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5.4 Relation to the LCLV

Recall equation (5.1) is just a prototype pattern forming model which accounts for a transla-
tional coupling or a misalignment in the context of optics. Nevertheless, this model captures
the transition qualitatively into the complexity of stripped patterns. A comparison between
the experimental results an numerical simulations are depicted in �gure 5.8. Experimentally,
it is possible to observe patterns of around 20 wavelengths. To perform a fair comparison,
we choose a simulation domain so that the patterns have no more than 20 wavelengths. We
also consider Dirichlet boundary conditions (u(0, t) = u(L, t) = 0). The wavelength of the
experimental patters λe ∼ 250µm. Numerical simulations and experimental observations
show a qualitative agreement. We considered the fraction between the translational coupling
length and the wavelength of the background pattern in the experiment χe = δ/λe. In the
complex regime, depicted in �gure 5.8-f, χe ≈ 0.2, which is consistent with our theoretical
results.
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Figure 5.8: Spatiotemporal evolution and the temporal average power spectra S(k) of the
envelope of the pattern observed in the one dimensional SHTC for ε = −0.1 and the liquid
crystal valve with translational optical feedback. Left panels numerical simulations with
δ = 0.0 (a), 0.2 (b), and 1.51(c).Left panels experimental observations with δ = 0 ± 5 µm
(d), δ = 25± 5 µm (e), and δ = 50± 5 µm (f).

In chapter 4 showed that the generalized Swift-Hohenberg equation is derived by some
limit of a reaction-di�usion model for the experiment. This reaction-di�usion system is
a simpli�cation of a model for the local molecular orientation derived from a variational
principle. The linear term in this model depends on the local electric �eld applied to the
liquid crystal molecules. This electric �eld is a function of the molecular orientation at
a distance δ. To account for this, we propose a modi�ed reaction-di�usion model with a
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translational coupling
τ∂tθ = −(θ̃ − θ̃0) + l2∇2

⊥θ, (5.75)

where

θ̃ = θ(x, y + δ, t), (5.76a)

θ̃0 =
π

2

(
1−

√
ΓVF

ΓV0 + αĨw
)

)
, (5.76b)

Ĩw =
I0
4
|e−i

L
2k
∇2

⊥(1 + e−iβ cos2 θ(x,y+δ))|2. (5.76c)

Homogeneous solutions are not a�ected by the translational coupling, so these solutions are
still represented by the surface in �gure 4.13. Performing the same analysis we made in
chapter 4, we stand on the onset of bistability of the homogeneous solution at θc, and derive
an equation for a perturbation u

θ = θc + u, (5.77)

∂tu = η + εũ− ũ3 + l2∇2
⊥u− ν(L)∇2

⊥ũ+ h(L)∇4
⊥ũ. (5.78)

This corresponds to a more general version of the Swift-Hohenberg equation with transna-
tional coupling. We need to take some consideration in this equation. Since the di�erential
terms are now a�ected by the translational coupling, when computing the dispersion relation
for perturbations of de�nite wavenumber q, we �nd terms of the form q2eiqδ and q4eiqδ, whose
real parts can become an arbitrarily large number for q → ∞. We can overcome this by
introducing a cut-o� wavenumber q0 before the change of sign of cos qδ. Experimentally this
can be made by �ltering short wavelength modes in the Fourier plane of the experiment.

5.4.1 Experimental proposition

A long-ranged interaction can be introduced to the experiment using a spatial light modulator
in the Fourier plane. This device can change the phase and the intensity of the beam at each
point; this is equivalent to multiplying the envelope of the beam's electric �eld by some
complex function. Since at the spatial light modulator the envelope is given by the Fourier
transform of the envelope of the beam just coming out from the liquid crystal cell, then the
change of the Fourier transform of the envelope while passing through all the 4-f array is
given by

Êout(~q) = Ĝ(~q)Êout(~q), (5.79)

with ˆG(~ )q a complex transmission factor at each point of the spatial light modulator. Recall
that multiplication in the Fourier space is equivalent to do convolution in the spatial coor-
dinates. Then the relation between the envelopes at the start and the end of the 4-f array
reads

Eout(~r) =

∫
R2

G(~r′)Ein(~r − ~r′)dx′dy′. (5.80)

This makes it possible to introduce an interaction Kernel to the system. We expect that in
the pattern forming regime, the orientation of the molecules can be described by a Swift-
Hoheneberg equation. A rigorous derivation of this kind of model has not been done in this
thesis.
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Figure 5.9: Liquid crystal light valve experiment with a spatial light modulator (SLM) in the
Fourier plane.
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Chapter 6

The Lugiato-Lefever equation with

Raman interaction

Other optical pattern-forming systems are optical cavities �lled with a Kerr medium. When
a light beam passes through a Kerr medium, its refraction index is modi�ed by a quantity
proportional to the intensity of the beam. This phenomenon accounts for the non-linearity in
the equation that governs the evolution of the electric �eld's envelope within an optical cavity
known as the Lugiato-Lefever equation [54]. This model neglects the inelastic scattering of
photons that happens when light interacts with matter. When these e�ects are considered
into the model, they result in long-ranged temporal couplings, which are intrinsically asym-
metric since they must respect causality. In this chapter, we brie�y discuss the model that
describes the evolution of the electric �eld's envelope of light beam injected in a �ber ring,
which constitutes an optical cavity. We then introduce the e�ects of the Raman stimulated
scattering into the model and explore its consequences.

6.1 The longitudinal Lugiato-Lefever equation

A �ber ring is depicted in �gure 6.1. Let tR be the round trip time of the �ber ring; short
pulses are injected into the �ber with frequency 1/tR. The system has two di�erent time
scales: t is slow time representing the evolution after each successive roundtrip of a pulse in
the �ber; τ is a fast time variable in the moving reference frame of the pulse traveling inside
the �ber. A longitudinal Lugiato-Lefever equation can be derived for the evolution of the
envelope the electric �eld as a �rst approximation [41]

∂tE = S − (α + iθ)E − i|E|2E + i∂ττE, (6.1)

where S in the amplitude of the injected pulses, α is the dissipation coe�cient of the ring.
The coe�cient α can always be set to 1 by a rescaling the coordinates and the amplitude E.
For the rest of this chapter, we will assume α = 1. Homogeneous solutions to equation (6.1)
are found by solving the following algebraic equation

|S|2 = [1 + (θ − |E|2)2]|E|2. (6.2)
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BS

Figure 6.1: Fiber ring. A beam splitter (BS) of low transmittance is used to inject the pulses
into the �ber.

The system has an imperfect and supercritical pitchfork bifurcation at θc =
√

3 [54]. For our
further analysis, we restrict the monostable regime (θ <

√
3). We study the stability of the

homogeneous solution to linear perturbations to the homogeneous solutions of the form

(
E
Ē

)
=

(
EH
ĒH

)
+

(
δE
δĒ

)
eiqτ+λqt. (6.3)

The system has a Turing instability at qc = ±
√

2− θ, for |Sc| =
√

1 + (θ − 1)2 [54]. Close to
the instability, a real Ginzburg-Landau equation can be derived to evolution the amplitude
of the emerging pattern [61]. However, far away from the instability, the system exhibits a
transition to a complex spatiotemporal intermittency, for even higher injection of energy, the
system exhibits a transition into turbulence [23]. We note that the real Ginzburg-Landau
equation captures none of these transitions due to its variational nature.

Equation (6.1) is a good approximation when the width of the pulses is much longer that
1 ps. However, for widths shorter than 1 ps, the e�ects of inelastic scattering of photons
within the �ber can not be neglected. In the next section, we discuss this phenomenon and
introduce a modi�ed version of (6.1)
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6.2 The Raman scattering

When a photon of given frequency ω interacts with a molecule in the �ber, it can excite a
vibrational state of the molecule. This state can decay into a lower energy state, emitting
a new photon. If the �nal state of the molecule is the same as the initial one, the emitted
photon has the same frequency as the absorbed one; this phenomenon is known as Rayleigh
scattering [70]. However, suppose the �nal state of the molecules is not the same as its
initial state. In that case, the emitted photon will have a lower frequency given by ω −∆ω;
this phenomenon is known as spontaneous Raman scattering [68, 51]. This process can be
enhanced when two beams of di�erent frequencies ωp, and ωs = ωp −∆ω, interact with the
�ber. Let Ip and Is be the intensities of each of these beams. The rate at which photons of
frequency ωp into photons of frequency ωs is proportional to a coe�cient gR, which depends
on the frequency di�erence ∆ω, and to the product of the intensities of the beams. This
process is known as stimulated Raman scattering [91, 90, 43]. The following set of equations
describe the evolution of the intensity of the beams while traversing a �ber

∂zIp = −ωp
ωs
gR(∆ω)IpIs − α′Ip, (6.4a)

∂zIs = gR(∆ω)IpIs − α′Is, (6.4b)

where z is a spatial coordinate in the propagation axis, and α′ is a dissipation coe�cient.
The function gR(∆ω) is referred to as the Raman gain. This function can be experimentally
measured and reaches its maximum at ∆ω ≈ 10THz in Silica �bers (see Figure 6.3-a). The
width of the spectrum of ultrashort pulses (< 1ps) can be of the order of tens of Terahertz so
that the e�ect of the stimulated Raman interaction can not be neglected. The Raman gain

Virtual state

Raman gain

Raman loss

Figure 6.2: Pictorial represetantion of the Raman stimulated scttering.

is proportional to imaginary part of the third-order electric suceptibility of the �ber [1].

gR(∆ω) ∝ Im{χ[3](∆ω)} = Im{ĥR(∆ω)}, (6.5)

where ĥR(∆ω) if the Fourier transform of the Raman response function hR(t) (see �gure 6.3-
b). The whole third-order response of the �ber will have an instantaneous part, associated
with the Kerr e�ect, and a delayed response associated with Raman scattering. The equation
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that governs the evolution of the envelope of the electric �eld is equation (6.1) with another
non-linearity that accounts for the Raman response [22], this equation reads

∂tE = S − (α + iθ)E + i(1− fR)|E|2E + i∂ττE + ifRE

∫ τ

−∞
h′R(τ − τ ′)|E|2(τ ′)dτ ′. (6.6)

where
h′R(τ) = τ0hR(τ0τ), (6.7)

The integral in the right-hand side is taken up to τ , since it has to respect causality. The
parameter τ0 sets a characteristic time scale for the fast time variable τ ; it depends on the
length of the cavity and its dissipation coe�cient. The parameter fR re�ects the relevance
of the Raman interaction in the system, and it depends on the properties of the �ber. The
response function hR(τ) is determined by experimentally measuring gR(∆ω) and then using
the Kramers-Kronig relations [14]. Nevertheless, a good approximation for the response
function in Silica �ber is given by [2]

hR =
τ 21 + τ 22
τ1τ 22

sin τ/τ1e
−τ/τ2 , (6.8)

where τ1 and τ2 depend on the properties of the �ber-.

6.3 Convective instability

The integral term in equation (6.6) breaks the symmetry τ,−τ ; thus, the Turing instability
of the original system turns into a convective one. To illustrate this, let us linearize equation
(6.6) around its homogeneous solution and consider linear perturbations to it(

E
Ē

)
=

(
EH
ĒH

)
+

(
δE
δĒ

)
eiqτ+λqt. (6.9)

Replacing this expression in equation (6.6) and keeping just linear terms in δE we get the
following problem of eigenavalues

λq

(
δE
δĒ

)
=

[
−1 + i(2|EH |2 − θ − q2) iE2

H

−iĒ2
H −1− i(2|EH |2 − θ − q2)

](
δE
δĒ

)
+ fRγ

[
i iE2

H

−iĒH
2 −i

](
δE
δĒ

)
, (6.10)

where we have de�ned

γ(q) =

∫ ∞
0

h′R(τ ′)e−iqτ
′
dτ ′ − 1 =

q2τ 21 /τ
2
0 − 2iqτ 21 τ2/τ0

τ 21 + τ 22 (1− q2τ 21 /τ 20 ) + 2iqτ 21 τ2/τ0
= γr + γi. (6.11)

If fR � 1, then the second term in (6.10) can be taken as perturbative. We already know at
which parameter the spatial instability happens for the system without the Raman interac-
tion. With the Raman term, the spatial instability should happen at

|Ec
H | ≈ 1 + fRER, (6.12)
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Figure 6.3: a) Raman gain in Silica �bers b)Raman response function in Silica �bers.

using this approximation, equation (6.10) reads

λq

(
δE
δĒ

)
=

[
−1 + i(2− θ − q2) ie2iφ

−ie−2iφ −1− i(2− θ − q2)

](
δE
δĒ

)
+ fRγ

[
i ie2iφ

−ie−2iφ −i

](
δE
δĒ

)
+ fRER

[
2i ie2iφ

−ie−2iφ −2i

](
δE
δĒ

)
, (6.13)

where EH = eiφ, with φ some phase that is not relevant for solving the eigenvalue problem.
Since we know the solution of the unperturbed case, we use standard perturbation theory to
�nd the corrections to critical eigenvalues. To �rst order in fR we have

ER = −γr(qc), (6.14)

λqc = ifRγi(qc), (6.15)

With qc = ±
√

2− θ, corrections to qc are of order f 2
R. According to (6.11) γi(q) is an odd

function, so the instability becomes convective.
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We conducted numerical simulations of equation (6.6); we found that close to the onset of
instability for di�erent values of fR, the system converges into a traveling wave solution. Due
to symmetry breaking, the amplitude equation that describes the evolution of the envelope
of these waves is a complex cubic Ginzburg-Landau equation whose imaginary terms are
proportional to fR; however, since simulations show the Raman interaction induces no tran-
sition into complex dynamics, we did not characterize this amplitude equation. The Raman
interaction has a relevant e�ect on solutions far away from the convective instability; this is
discussed in the following section.

6.4 Reducing the complexity

We conducted numerical simulations of equation (6.6), using τ0 = 1, τ1 = 0.12, τ2 = 0.32, S =
2.15 and θ = 1, in this region the unperturbed Lugiato-Lefever equation converges into a
complex intermittent state. We tuned the value of fR starting from this complex state and
found that for fR ∼ 0.06, the system transitions into a di�erent type of spatiotemporal
intermittency. This new dynamical regime resembles to the spatiotemporal intermittency
exhibited the complex cubic Ginzburg-Landau equation. Further up, for values fR ∼ 0.12
and higher, the drift induced by the Raman interaction too strong and drags away the
characteristic structures of the spatiotemporal intermittency. Figure 6.4 depicts the di�erent
regimes observed while increasing fR.

The transition between the di�erent regimes can be characterized using the fast time
correlation length τcorr. We computed this by the method of Cross [27] (see �gure 6.5).
When approaching the region of Sierpinsky spatiotemporal intermittency, we observe an
increase in the correlation length and observe a peak at the transition point. Moreover,
we computed the Lyapunov spectra and the Yorke-Kaplan dimension for di�erent values of
fR(see �gure 6.6). We found that the Raman interaction e�ectively lowers the complexity
of the system since there is a diminution in the Yorke-Kaplan dimension. We have not
characterized the bifurcation diagram of equation (6.6), but we have found enough tools to
characterize this transition. Experimentally, it is only possible to tune the coe�cient τ0, the
parameters fR, τ1, τ2 depend on the Fiber material. As future perspectives, we expect to
conduct simulations of equation (6.6) �xing all parameters except for τ0 and try to �nd the
same transition. If this is possible, we also expect this phenomenon to be found in the �ber
ring experiment.
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Figure 6.4: Di�erent dynamical regimes found at di�erent values of fR
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Figure 6.5: Spatial correlation length for the asympotic states for di�erent values of fR

Figure 6.6: The Yorke-Kaplan dimension of the Lugiato-Lefever equation with Raman inter-
action for di�erent values of fR
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Conclusion

In this dissertation, we presented experimental observations from the liquid crystal light valve
experiment that shows a transition which is triggered form stationary patterns to propaga-
tion, spatiotemporal intermittency, and defect turbulence of stripped waves. To shed light on
the origin of this complexity, we proposed a prototype pattern forming system that consid-
ers the e�ect of misalignment, characterized by a parameter δ, namely, the one-dimensional
Swift-Hoheneberg model with translational coupling. We showed that this equation has
a convective instability that gives rise to traveling stripped waves from the homogeneous
state. When increasing the value of δ, the envelope of these waves exhibits transition into
spatiotemporal intermittency defect turbulence, which is in qualitative agreement with the
experimental observations. We derived an amplitude equation close to the convective insta-
bility of our model, namely, the cubic complex Ginzburg-Landau equation, which successfully
accounts for the complex regimes of the prototype model. This allowed us to reveal the bifur-
cation diagram of the model close to its convective instability and understand the mechanisms
that give rise to its complexity. We explored the two-dimensional extension of the prototype
model, where we found a complex regime. When considering the temporal evolution of a line
segment parallel to the translational coupling direction, we found a spatiotemporal diagram
resembling the one-dimensional Siperpinski spatiotemporal intermittency. We generalized
our results for more general long-ranged and asymmetric interaction mediated through in-
teractions kernels; we showed that the same phenomenology, and that the cubic complex
Ginzburg-Landau equation can also be derived in these models. This allows us the apply
our results to pattern-forming systems in contexts other than nonlinear optics, such as pop-
ulation dynamics and ecology. We proposed a modi�cation to the liquid crystal light valve
experiment, introducing a spatial light modulator in the Fourier plane, which allows us to ex-
perimentally explore the e�ects of di�erent interaction Kernels in a pattern-forming system.
Finally, we explored a speci�c pattern-forming system with a long-ranged asymmetric inter-
action. We studied a speci�c pattern-forming system with an asymmetric interaction far from
its convective instability, the longitudinal Lugiato-Lefever equation with Raman interaction,
which describes the evolution of the envelope of the electric �eld of short light pulses injected
in a �ber ring. We showed that the inclusion of the Raman interaction induces a transition
between di�erent types of spatiotemporal intermittency. We characterized this change in the
complexity by means of Lyapunov Spectra and spatial correlation functions. Experimental
observations can be done in a �ber ring to compare with the theoretical predictions
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Appendix A

Transition to Spatiotemporal

Intermittenct and Defect Turbulence in

Systems under Translational Coupling

In this section we include a copy of the paper titled "Transition to Spatiotemporal Intermit-
tenct and Defect Turbulence in Systems under Translational Coupling" published in Physical
Review Letters.
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Out of equilibrium systems under the influence of enough energy injection exhibit complex
spatiotemporal behaviors. Based on a liquid crystal light valve experiment with translational optical
feedback, we observe propagation, spatiotemporal intermittency, and defect turbulence of striped waves. A
prototype model of pattern formation with translational coupling shows the same phenomenology. Close to
the spatial instability, a local amplitude equation is derived. This amplitude equation allows us to reveal the
origin and bifurcation diagram of the observed complex spatiotemporal dynamics. Experimental
observations have a qualitative agreement with theoretical findings.
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Nonequilibrium processes often lead to the formation of
dissipative structures in nature [1–4]. These processes are
characterized by constantly injecting and dissipating
energy. When the injection of energy is small compared
to dissipation, equilibria are usually characterized by being
uniform and stationary. Increasing the energy injection can
develop a pattern from a homogeneous state through
spontaneous breaking of symmetries [1–4]. At the onset
of this instability, a general strategy to describe the
dynamics is achieved through amplitude equations [3–5].
This description permits us to explain the emergence of
stripes, hexagons, rhombic, quasicrystals, superlattice tex-
tures, and the alternation between them among other
phenomena [3–7]. In nonlinear optics, the coupling of
light to a polarizable medium is the primary mechanism of
pattern formation (see review [8] and references therein).
One of the difficulties to face is the proper alignment of the
light since a small deviation can generate deformations and
dynamics of patterns. This misalignment can trigger a
transition from hexagon to stripe or square pattern [9,10].
From a theoretical point of view, optical misalignment can
be modeled by translational couplings. Namely, the
dynamics that are steering the system under study depend
on physical variables in its local position and on what
happens in a position at a given distance [10–12]. This type
of dynamics can induce that localized patterns to propagate
and even emit vortices with a structure such as von Kármán
street [12]. Asymmetric differential integral terms can be
described by translational couplings. This type of coupling
has been used to describe the dynamical behaviors of
several systems such as neurons [13], vegetation self-
organization in nonuniform topography [14], fluid surface
dynamics, and optical fibers [15]. Selection and transition
of stationary two-dimensional patterns in optical experi-
ments with translational coupling have been established

[9,10]. However, the understanding of complex spatiotem-
poral patterns remains unexplored.
This Letter aims to investigate how the translational

coupling in pattern-forming systems brings out the emer-
gence and transition of complex spatiotemporal behaviors.
Based on a liquid crystal light valve experiment with
translational optical feedback, we observe the emergence
of striped patterns. Increasing the length of the translational
coupling, the system exhibits transitions to traveling,
spatiotemporal intermittency, and defect turbulence of
striped waves. A universal pattern model, the Turing-
Swift-Hohenberg equation [16,17] with translational cou-
pling, is analyzed. Increasing the length of the translational
coupling, this model exhibits a transition between traveling,
spatiotemporal intermittency, and defect turbulence of
waves. Close to spatial instability, the complex Ginzburg-
Landau equation is derived. This local model allows us to
reveal the origin and bifurcation diagram of the observed
dynamical behaviors. The sequence of experimental bifur-
cations and observations have a qualitative agreement with
theoretical findings.
A flexible and straightforward experiment that displays

pattern formation is the liquid crystal light valve (LCLV)
with optical feedback (see review [18] and references
therein). Figure 1 shows a schematic representation of a
LCLV with an optical feedback. The LCLV is composed of
a nematic liquid crystal (LC) film between a glass and a
photoconductive plate. A dielectric mirror is deposed over
the photoconductive plate. The LC film is planarly aligned,
with a thickness d ¼ 15 μm. The liquid crystal used is a
nematic LC-654 (NIOPIK) with positive dielectric
anisotropy Δε ¼ 10.7, and large optical birefringence
Δn ¼ 0.2. To obtain the maximum polarization change
on the light, we set an angle π=4 between the electric field
orientation of the incident light and the anchoring of the
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cell. Transparent electrodes permit the application of an
external electrical potential V ¼ V0 cosðωtÞ across the LC
layer (ω ¼ 1.0 kHz). The LCLV is illuminated by an
expanded He-Ne laser beam, λ ¼ 633 nm, with 1.5 cm
transverse radius and power Iin ¼ 7.0 mW=cm2. Once the
light is injected into the LCLV, the beam is reflected by the
dielectric mirror. Light is sent to the polarizing beam
splitter cube (PBS), which will carry the light into the
feedback loop given the polarization change the light has
undergone in the LCLV. A nonpolarized beam splitter M
and an optical fiber bundle (FB) have been used to close the
loop. To record the liquid crystal cell plane, we collect the
light with a coupled charge device (CCD) camera.
A 4 − f array is placed in the optical feedback loop to

obtain a self-imaging and the Fourier plane. By means of
the optical fiber bundle, it is possible to adjust the free
propagation length characterized by the L parameter [18].
In order to introduce a translational coupling on the LCLV,
the FB also is displaced in a distance δ in the y direction
(cf. Fig. 1) [9]. When considering a negative free propa-
gation length and a translational coupling (δ ≠ 0), the
hexagonal patterns become striped patterns. Figure 1(b)
shows a typical striped pattern as the consequence of
translational coupling. Unexpectedly, these patterns are
not static. To characterize its dynamics, we monitor the
spatiotemporal evolution of an arbitrary horizontal line of
these patterns. Figure 1(c) illustrates the spatiotemporal
dynamics exhibited by the LCLV with translational cou-
pling. This dynamic behavior presents complex spatiotem-
poral evolution similar to that exhibited by the optical valve
with an anisotropic filter in the Fourier plane [19]. Observe
that if one considers another line, the dynamical behavior
exhibited by the system is similar.

To shed light on the observed dynamics in the LCLV
with optical feedback and translational coupling, let us
consider a simplified mathematical model of pattern
formation with translational coupling, which reads (the
Swift-Hohenberg model with translational coupling [11])

∂tuðy; tÞ ¼ ϵũ − ũ3 − ν∂yyu − ∂yyyyu; ð1Þ

where uðy; tÞ is a scalar order parameter, y and t account
for the spatial coordinate and time, respectively, ũ≡
uðyþ δ; tÞ stands for the translational coupling, ϵ is a
bifurcation parameter, and ν accounts for the local spatial
coupling (coupling to nearest neighbors). When ν is
negative (positive) the term proportional to it accounts
for a diffusive (antidiffusive) process. ∂yy and ∂yyyy are the
Laplacian and bi-Laplacian operator, respectively. For the
sake of simplicity, we consider periodic boundary con-
ditions. A qualitatively similar model to Eq. (1) has been
used to describe the LCLV with translational coupling [9].
When δ ¼ 0, model Eq. (1) becomes the Swift-Hohenberg
model [20]. This paradigmatic equation was deduced
originally to describe the pattern formation on Rayleigh-
Bénard convection [20]. The Swift-Hohenberg equation is
the most simple isotropic and reflection symmetry real
model that shows pattern formation [4].
For ϵ < −ν2=4 and δ ¼ 0, the only equilibrium pre-

sented by the model Eq. (1) is uðy; tÞ ¼ 0. When ϵ ≥
−ν2=4 and δ ¼ 0, the model presents a family of motion-
less patterns of wave number of the order

ffiffiffi
ν

p
, which

emerge through a supercritical transition. Figure 2(a)
shows the spatiotemporal evolution and envelope of
uðy; tÞ of the typically observed pattern. The envelope of
uðy; tÞ is computed by the transformation Hðy; tÞ ¼
j R∞

−∞½
R∞
0 uðy0; tÞeikðy0−yÞdy0�dk=πj [21]. In addition,

the right panels display the temporal average of the
power spectrum of the envelope SðkÞ ¼R
T
0 j R∞

−∞ Hðy; tÞe−ikydyj2dt= ffiffiffiffiffiffiffiffiffi
2πT

p
. From this figure, we

infer that the pattern has a well-defined dominant wave-
length. By increasing the translational parameter, stationary
patterns become propagative waves in a direction deter-
mined by the δ sign [see Fig. 2(b)]. Note that these waves
are slightly asymmetric and have a uniform envelope. This
propagative phenomenon can be understood as a result that
small translational coupling induces linear and nonlinear
drag effects [22]. Namely, it is possible to approximate the
nonlocal term by ũ ≈ uðy; tÞ þ δ∂yu when δ ≪ 1.
Notwithstanding, when δ is large enough, uniform

traveling waves suffer an instability that gives rise to the
emergence of defects in the traveling wave. Defects are
characterized by being zero of the envelope wave, i.e., the
wave exhibits a phase singularity. Observe that defects
separate regions with almost uniform wave amplitudes.
Defect dynamics present complex spatiotemporal evolution
characterized by generating triangular shaped regions of
uniform wave amplitude with different sizes. Figure 2(c)
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M
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FIG. 1. (a) Schematic representation of the setup. LCLV is a
liquid crystal light valve, PBS polarized beam splitter, M
accounts for mirrors, V0 the voltage applied to the liquid crystal
layer, CCD charge-coupled device camera, L free propagation
length, FB optical fiber bundle, and δ translational length.
(b) Snapshot of the striped pattern obtained with L ¼ −4.0 cm
and δ ¼ 50 μm. (c) Spatiotemporal evolution of the profile of the
striped pattern in the dashed line illustrated in (b).
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shows the typical observed dynamics. The envelopeHðy; tÞ
allows us to clearly visualize the complex dynamics.
Hence, in the spatiotemporal diagram, the system is
characterized by presenting an alternation between regular
and irregular region. This type of dynamical behavior is
usually called spatiotemporal intermittency [23]. The
temporal average of the power spectrum of the envelope
allows us to find relationships between the dynamics of
different spatial modes. Right panel of Fig. 2(c) illustrates
this power spectrum SðkÞ. This spectrum is characterized
by having a power law for large wave numbers, SðkÞ ∼ k−5.
From this figure, we infer that the dynamics exhibited by
the defects of the traveling waves has a turbulentlike nature
[24]. Further increasing the translational coupling param-
eter δ, the spatiotemporal intermittency is replaced by the
permanent or almost uniform emergence of defects [see
Fig. 2(d)]. Namely, the appearance of defects is not
intermittent. From the behavior of the envelope and its
respective power spectrum, we conclude that this type of
spatiotemporal dynamics corresponds to defect turbulence
[23]. The power spectrum is characterized by maintaining a

power law for large wave number SðkÞ ∼ k−5. From the
point of view of defect production, it is not possible to
identify the transition between spatiotemporal intermit-
tency and defects turbulence. An efficient way to determine
this transition is characterizing the statistics of regular and
irregular regions of spatiotemporal evolution [25,26]. From
defect turbulence equilibrium, when one decreases δ the
emergence of spatiotemporal intermittency is observed,
which remains in a large area of the parameter space
coexisting with the uniform traveling wave. Hence, spa-
tiotemporal intermittency presents a hysteresis loop with
the traveling wave of uniform amplitude. Figure 3 shows
the numerical phase diagram of the Swift-Hohenberg
model with translational coupling Eq. (1).
To shed light on the origin of the previous dynamical

behaviors, we will perform a weakly nonlinear analysis.
Close to the transition between the homogeneous state and
the traveling waves, convective instability induced by the
nonlocal term [27,28], we can introduce the envelope
ansatz

uðx; tÞ ¼ aAeiðkcy−ωctÞ þ aĀe−iðkcy−ωctÞ þWðA; ĀÞ; ð2Þ
in Eq. (1), where A is the complex amplitude of the critical
wave, kc is the critical wave number that satisfies the
relation k4c ¼ ε cosðkcδÞ þ νk2c, ωc ¼ ϵ sinðkcδÞ is the wave
frequency, μ ¼ Δϵ cosðkcδÞ − ϵkcΔδ sinðkcδÞ is the bifur-
cation parameter that characterizes the convective insta-
bility, a ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 cosðkcδÞ

p
is a normalization constant, and

WðA; ĀÞ accounts for nonlinear corrections in amplitude A.
Linearizing in W and imposing a solvability condition, the
amplitude satisfies the convective and complex Ginzburg-
Landau equation [29]

-1 10 0 10.5

(a)

(b)

(c)

(d)

FIG. 2. Spatiotemporal evolution of patterns in the Swift-
Hohenberg model with translational coupling Eq. (1). The left,
center, and right panels are spatiotemporal diagrams of uðy; tÞ,
envelope of uðy; tÞ [HðuÞ], and the temporal average power
spectra SðkÞ of the envelope. (a) ϵ ¼ −0.08, δ ¼ 0.0,
(b) ϵ ¼ −0.3, δ ¼ 1.0, (c) ϵ ¼ −0.3, δ ¼ 1.35, and
(d) ϵ ¼ −0.8, δ ¼ 1.51. The insets illustrate a magnification of
the temporal space diagram.

DT

HSS

DT

HSS

STI

DT

TW

TW

FIG. 3. Phase diagram of the Swift-Hohenberg model with
translational coupling Eq. (1) with ν ¼ 1.0. HSS, TW, STI, and
DT account for the homogeneous steady state u ¼ 0, traveling
wave with uniform envelope, spatiotemporal intermittency, and,
defect turbulence, respectively. The solid (red) curve, μ ¼ 0,
accounts for the convective instability. The solid curve BF
describes the Benjamin-Fair instability. The dashed line Γ
accounts for the transition between spatiotemporal intermittency
to traveling waves. Red dots are the transition lines obtained by
direct numerical simulations. The insets show the respective
dynamic behaviors observed.
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∂tA ¼ μA − ð1þ iβÞjAj2Aþ ð1þ iαÞ∂2
zAþ v∂zA; ð3Þ

where the dimensionless spatial coordinate z≡ x=z0
with z0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6k2c − νþ εδ2 cosðkcδÞ=2

p
, diffraction α≡

εδ2 sinðkcδÞ=2z20, nonlinear frequency response β≡
tanðkcδÞ, and advective speed v ¼ εδ cosðkcδÞ=z0.
In the limit of local dynamic, δ ¼ 0, one recovers the

Ginzburg-Landau equation with real coefficients
(α ¼ β ¼ v ¼ ω ¼ 0), which describes the emergence of
patterns [3]. In the case of periodic boundary conditions by
considering the comobile coordinate system, the advective
term in Eq. (3) can be eliminated. However, for other
boundary conditions, this advective term is relevant to
explain the transition from convective and absolute insta-
bility [27] and pinning-depinning of patterns [30]. The
bifurcation parameter μ ¼ 0 accounts for the convective
instability of the homogeneous state (see Fig. 3). This
instability gives rise to a family of traveling waves of the
form Apðy; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ − p2

p
ei½pyþðv−βðμ−p2Þ−αp2Þt�. Stability

analysis of this traveling wave for p ¼ 0, allows obtaining
the Benjamin-Fair (BF) critical curve, 1þ αβ ¼ 0 [29].
Figure 3 shows the BF curve in the parameter space fϵ; δg.
It is expected to find phase turbulence for small β and
significant α [23]. However, this is not possible to observe
for the parameters generated from the fϵ; δg space. The
only phenomenon observed from the Ginzburg-Landau
equation is the transition from waves to defect turbulence,
which is expected for small α and large β [23]. It is also well
known that this instability is of a subcritical nature; that is,
coexistence is observed between the defects turbulence and
traveling waves. By decreasing the parameter of instability,
the defects’ turbulence is replaced by spatiotemporal
intermittency, which coexists with the traveling waves.

Note that this dynamical behavior is consistent with the
phenomena observed in the spatiotemporal intermittency
region in Fig. 3. The transition between spatiotemporal
intermittency to traveling waves was characterized numeri-
cally [23]. Using this numerical characterization, we have
interpolate this transition curve, indexed by Γ, in the phase
space represented in Fig. 3. In brief, the Ginzburg-Landau
equation allows us to reveal the origin of all the intricate
dynamics exhibited by the prototype pattern formation
model with the translational coupling Eq. (1).
To compare the entire previous scenario with experi-

mental observations onto the liquid crystal light valve with
optical translational feedback, we must first consider more
realistic boundary conditions than periodic ones and
adequate domain of simulation. We have conducted
numerical simulations of model Eq. (1), where a few
numbers of wavelength is allowed. Note that experimen-
tally, we observe about 20 wavelengths. Furthermore,
we have considered Dirichlet boundary conditions
uðy ¼ 0; tÞ ¼ uðy ¼ L; tÞ ¼ 0.
Experimentally and numerically, the parameters are in

the region where pattern formation is observed. When a
small translational length is included, we observe a static
pattern due to pinning, induced by the boundary conditions
[30] (see top panels in Fig. 4). When δ is increased, the
pattern become propagative, but as a consequence of the
boundary conditions, systematically appear and disappear
dislocations in the spatiotemporal diagrams [cf. Figs. 4(b)
and 4(e)]. Further increasing the translational coupling
length, patterns exhibit intermittent behaviors, character-
ized by having a power spectrum with power laws. Figure 4
summarizes the spatiotemporal evolution of the pattern
observed in the model Eq. (1) and the liquid crystal valve
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FIG. 4. Spatiotemporal evolution and the temporal average power spectra SðkÞ of the envelope of the pattern observed in the model
Eq. (1) by ϵ ¼ −0.1 and the liquid crystal valve with translational optical feedback. Left panels: numerical simulations with δ ¼ 0.0 (a),
0.2 (b), and 1.51(c). Right panels: experimental observations with δ ¼ 0� 5 μm (d), δ ¼ 25� 5 μm (e), and δ ¼ 50� 5 μm (f).
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with optical translated feedback. Hence, experimental
observations and sequence of transitions have a qualitative
agreement with theoretical findings. However, the critical
exponents of the spatiotemporal intermittency are not the
same. Theoretical characterization from a first principles
model is in progress.
In conclusion, we have shown that systems under

translational coupling exhibit transition to spatiotemporal
intermittency and turbulence of defects. The translational
coupling can be described as an asymmetric differential
integral term. This type of coupling has been used to
describe various systems in population dynamics, nonlinear
optics, fluids, and ecology. Hence, the results presented are
relevant in various physical contexts.
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