
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

MODEL INTERPRETABILITY THROUGH THE LENS OF COMPUTATIONAL COMPLEXITY

TESIS PARA OPTAR AL GRADO DE
MAGÍSTER EN CIENCIAS MENCIÓN COMPUTACIÓN

MEMORIA PARA OPTAR AL TÍTULO DE
INGENIERO CIVIL EN COMPUTACIÓN

BERNARDO ANÍBAL SUBERCASEAUX ROA

PROFESOR GUÍA :
PABLO BARCELÓ BAEZA

PROFESOR GUÍA 2:
JORGE PÉREZ ROJAS

MIEMBROS DE LA COMISIÓN:
JÉRÉMY BARBAY

JOSÉ ALBERTO PINO URTUBIA
MATTHIEU VERNIER

Este trabajo ha sido parcialmente �nanciado por el Instituto Milenio Fundamento de los Datos, y
está basado en trabajo realizado junto a ambos guías y Mikaël Monet.

SANTIAGO DE CHILE
2020

RESUMEN

El área de interpretabilidad o explicabilidad en inteligencia arti�cial busca estudiar y diseñar mod-
elos que los seres humanos podamos comprender, y por tanto con�ar en ellos y manejarlos e�-
cazmente.

A pesar de frecuentes a�rmaciones diciendo que algunas clases de modelos son más inter-
pretables que otras – e.g., “los modelos lineales son más interpretables que las redes neuronales
profundas” – aún no existe una noción bien fundamentada de interpretabilidad que permita com-
parar formalmente diferentes clases de modelos. Tomamos un paso hacia una tal noción estu-
diando si las creencias populares sobre interpretabilidad pueden respaldarse desde la complejidad
computacional.

Nos enfocamos en preguntas de explicabilidad locales y post-hoc que, intuitivamente, intentan
explicar por qué una entrada particular es clasi�cada de una cierta forma por un modelo dado.

En pocas palabras, decimos que una clase C1 de modelos esmás interpretable que otra clase C2, si
la complejidad computacional de responder preguntas de explicabilidad post-hoc sobre modelos
en C2 es superior que para modelos en C1. En este trabajo probamos que esta noción provee
una buena contraparte teórica a las creencias actuales sobre interpretabilidad de modelos; en
particular, mostramos que bajo nuestra de�nición y asumiendo hipótesis comunes de complejidad
(tales como P 6= NP), tanto los modelos lineales como los modelos basados en árboles son más
interpretables que las redes neuronales.

Nuestro análisis de complejidad, sin embargo, no es capaz de diferenciar claramente entre
modelos lineales y modelos basados en árboles, obteniendo diferentes resultados dependiendo del
tipo particular de explicación post-hoc considerada.

Aplicando un análisis de complejidad más �no, basado en complejidad parametrizada, pode-
mos probar un resultado teórico sugiriendo que las redes neuronales con menos capas son más
interpretables que las más profundas.

Finalmente mostramos cómo el análisis teórico realizado permite aplicarse a problemas rela-
cionados a la detección de sesgo, concluyendo también que estos problemas son más difíciles sobre
redes neuronales que sobre modelos lineales o basados en árboles.

i

ii

ABSTRACT

The �eld of interpretability or explainability in arti�cial intelligence aims to design models that
humans can understand, trust, and manage e�ectively.

In spite of several claims stating that some models are more interpretable than others – e.g.,
“linear models are more interpretable than deep neural networks” – we still lack a principled
notion of interpretability to formally compare among di�erent classes of models. We make a step
towards such a notion by studying whether folklore interpretability claims have a correlate in
terms of computational complexity theory.

We focus on local post-hoc explainability queries that, intuitively, attempt to answer why indi-
vidual inputs are classi�ed in a certain way by a given model. In a nutshell, we say that a class C1

of models is more interpretable than another class C2, if the computational complexity of answer-
ing post-hoc queries for models in C2 is higher than for those in C1. We prove that this notion
provides a good theoretical counterpart to current beliefs on the interpretability of models; in
particular, we show that under our de�nition and assuming standard complexity-theoretical as-
sumptions (such as P 6= NP), both linear and tree-based models are strictly more interpretable
than neural networks.

Our complexity analysis, however, does not provide a clear-cut di�erence between linear and
tree-based models, as we obtain di�erent results depending on the particular post-hoc explana-
tions considered.

By applying a �ner complexity analysis based on parameterized complexity, we are able to
prove a theoretical result suggesting that shallow neural networks are more interpretable than
deeper ones.

Finally, we show how the theoretical analysis carried thus far has applications in problems
related to bias detection and fairness, concluding that such tasks are also harder over neural net-
works than they are over linear o tree-based models.

iii

iv

Agradezco en primer lugar a mi familia. A mi mamá quien además de haber cuidado
siempre por las condiciones materiales que me permitiesen trabajar, alimentó mi curiosidad e in-
quietud académica desde mi más temprana infancia. También a mi padre Pedro, quien ha inte-
grado nuestra familia con amor y compromiso, sacri�cándose por nosotros todos estos años y
enseñándonos de la mayor variedad de cosas. A mi hermana Nani, a quien dedico este trabajo
muy particularmente, por su inmenso apoyo y camaradería, que ha sido uno de mis descubrim-
iento más felices y fructíferos de los últimos años. A mi tio Armando, quien me enseño a valorar
la música, el fútbol, y la raíz de mi escepticismo: desobedecer a mi mamá. Recuerdo muy es-
pecialmente a mi fallecida abuela Tita, imaginando la emoción que le produciría mi graduación
universitaria.

Le agradezco también a mis amistades, que ruego sabrán perdonar mi ausencia de estos últimos
tiempos de arduo trabajo. Le agradezco a mis amigos del colegio, de la chanca, quienes moldearon
mi sentido del humor, y con quien he compartido muchas alegrías desde hace más de 10 años. Le
agradezco también a mi amigo Eugenio, a quien admiro y debo un montón de fructíferas ideas
y conversaciones. Le agradezco luego a mis amistades universitarias. A mi amiga Belén, por su
eterno apoyo y cariño, y una bondad profundamente inspiradora. A Cristobal, Agustín, Rorro,
Nico, Richi y Felipes, por su amistad.

Le agradezco a mis amistades más cercanas durante mi paso por Francia, a Pablo, mi compañero
de aventuras, a Francisco, Andrés, Matías, Rocio, Ignacios y Max. Agradezco a Diego por su
especial amistad durante mi segundo año allá. Agradezco a Roberto Torretti, quien me incitó
tempranamente al rigor intelectual, y la �losofía. A la gente de las crêmès, por su constante ayuda y
conversación. Le agradezco a Kate por todo lo que me enseño y alentarme siempre en mi búsqueda
académica. Le agradezco a mi amigo Robinson, quien junto a Lucas me introdujó en el mundo
de la computación. Les agradezco a ambos por acogerme en su equipo y enseñarme tantas cosas,
siendo que sabía mucho menos que ellos. Le agradezco particularmente a Robinson, cuya forma
de interpretar el mundo, de emprender proyectos, y de conversar en toda sinceridad, ha marcado
profundamente mi forma de ver el mundo.

Agradezco a mis profesores guía y coautores. Jorge me convenció inicialmente de dedicarme a
la computación, y más que un profesor ha sido un maestro de quien he aprendido lecciones funda-
mentales en comunicación, pedagogía, y muchas otras cosas. El curso de matemáticas discretas de
Pablo fue cuando por primera vez sentí “a esto me quiero dedicar”, y le agradezco particularmente
por mostrarme una perspectiva académica seria y honesta, no centrada en la publicación, sino en
aportar al entendimiento colectivo. Agradezco a ambos profundamente por la con�anza que han
depositado en mí a través de los años. Agradezco a mi coautor Mikaël, por sus demostraciones y
cuidadosas correcciones.

Agradezco a otros profesores que han con�ado en mí, y cuya calidad docente me ha marcado:
Álvaro Sánchez, Andreas Wiese, Éric Tanter, Gonzalo Navarro y Jérémy Barbay. Me han con-
vencido empíricamente del impacto que un profesor puede tener en el desarrollo de sus alumnos.
Agradezco la con�anza de Jérémy y Andreas, por trabajar conmigo en proyectos de investigación
en paralelo.

Agradezco a los miembros de mi comisión por sus comentarios y sugerencias, y a Ren Cerro
por sus correcciones al inglés de esta tesis. A Sandra y Angélica por su constante ayuda.

v

Contents

Introduction 1

1 Preliminaries on Interpretablity and Complexity 3

1.1 Cat Recognition, a bottom-up example to get started 3
1.2 But what is interpretability after all? A brief literature discussion 6

1.2.1 Transparency . 7
1.2.2 Explanations or Post-hoc interpretability 7
1.2.3 Interpretability vs. Explainability . 8
1.2.4 Desiderata . 8

1.3 Background in Complexity Theory . 9

2 A framework to measure and compare model interpretability 13

2.1 Models and instances . 13
2.2 Explainability Queries . 14
2.3 Interpretability in terms of complexity . 16

3 The computational complexity of interpreting di�erent models 18

3.1 Speci�c models . 18
3.2 Main interpretability theorems . 19
3.3 The complexity of interpretability queries . 21

3.3.1 The complexity of MinimumChangeReqired 22
3.3.2 The complexity of CheckSufficientReason 27
3.3.3 The complexity of MinimalSufficientReason 28
3.3.4 The complexity of MinimumSufficientReason 30
3.3.5 The complexity of CountCompletions 36

4 The parameterized complexity of interpreting Neural Networks: deeper is harder

than shallow 41

4.1 Required background in parameterized complexity 42
4.2 Statement of a parameterized result and sketch of proof 43

4.2.1 The graph interpretation of (r)MLPs . 44
4.3 Constructions and transformations . 44
4.4 A proof for Theorem 4.1 . 48
4.5 Application of the parameterized result . 56

5 Applications to Fairness and Bias Detection 57

5.1 About the notion of (un)fairness used . 57

vi

5.2 De�nitions of bias . 58
5.3 On the complexity of bias detection . 59

6 Discussion 67

A About our results . 67
B Related work . 68
C Open problems and future research directions . 69

Bibliography 70

vii

viii

Introduction

Machine learning, and statistical models in general, empower many of the technologies we use
daily. Assistants in our phones, �lm recommendations that we get, and search engines that make
science easily accesible over the internet; they all rely to a certain degree on these methods.
Nonetheless, di�erent forms of arti�cial intelligence are used as well in high-stake domains, like
the judicial system, healthcare, bank loans, self-driving cars, etc. While annoying, a mistake in the
voice recognition component of our favorite phone assistant is usually not a big deal. However,
a single wrongful conviction made with the assistance of a machine learning model is more than
enough to deeply worry about the role of arti�cial intelligence in our society. Unfortunately, such
cases have already been reported [6, 24, 50]. It is thus essential to produce models that we humans
can manage e�ectively, and whose decisions we can understand and trust. This is precisely the
purpose of Explainable Arti�cial Intelligence (XAI), also referred to as interpretability [30].

It is not easy to de�ne the precise meaning of concepts like "understand" or "interpret". Nonethe-
less, these concepts are crucial for the �eld, and despite substancial work [15, 24, 38] the inter-
pretability community does not seem to have achieved consensual de�nitions [6]. But even with-
out a precise de�nition, several claims [6, 30, 43] state that some models are more interpretable
than others – e.g., “linear models are more interpretable than deep neural networks” – making
up for a folklore wisdom of the �eld. However, we still lack a principled notion of interpretability
that allows us to formally compare among di�erent classes of models.

A principled understanding of model interpretability is particularly important when discussing
which systems are suitable for high-stake decisions, like justice or healthcare. Part of the research
community [50] claims that models that we cannot easily interpret should not be used for such
delicate tasks. Moreover, this idea has even become part of legislative discussions and regulations.
A widely debated example is that of the European Union’s General Data Protection Regulation,
and in particular, its Article 22, which is argued to guarantee citizens a “right to an explanation”
[27].

In order to study and compare the interpretability of di�erent classes of models, we focus on
local post-hoc explanations [6, 29, 38, 41, 42]. The term “local” refers to explaining the verdict of the
system for a particular input [29, 42]. The term “post-hoc” refers to interpreting the system after it
has been trained and without elucidating its internal mechanisms [38, 41]. In particular, we study
the computational complexity of a set of explainability queries, that is, well-de�ned computational
problems whose answer serves as a post-hoc explanation for a given decision taken by a system.
As a result, we �nd that answering these explainability queries is inherently harder for certain
classes of models than it is for others. We largely develop and extend this idea, providing a frame-

1

http://www.privacy-regulation.eu/en/22.htm

work that allows to formally prove statements of the form “linear models are more interpretable
than deep neural networks”, under a precise mathematical de�nition of more interpretable than.

The main contribution of this thesis is thus the proposal of a formal and objective

framework to measure and compare the theoretical interpretability of di�erent classes

of Machine Learning models. Its main goal is to take a step towards a rigorous science

of interpretability.

As for the organization, Chapter 2 presents our main contribution: a framework based on
computational complexity for measuring and comparing the interpretability of di�erent classes of
models. In a nutshell, we say that a class C1 of models is more interpretable in terms of complexity
(abbreviated as more c-interpretable) than another class C2, if the computational complexity of
answering post-hoc explainability queries for models in C2 is higher than for those in C1. We
prove, throughout Chapter 3, that this notion provides a good theoretical counterpart for the
folklore wisdom on the interpretability of models [30, 38, 43]. For this, we focus on linear models,
FBDDs (a superclass of decision trees) and neural networks (referred to as Multilayer Perceptrons
or MLPs).

Then, in Chapter 4, we use the more re�ned notion of parameterized complexity [16, 22] to
compare the interpretability of MLPs according to their number of layers. Using this theory, we
are able to prove that there are explainability queries that are more di�cult to solve for deeper
MLPs compared to shallow ones, thus giving theoretical evidence that shallow MLPs are more
interpretable.

In Chapter 5 we study the correlation between the presented framework and the complexity
of detecting bias. Under a precise de�nition, we prove that detecting bias in MLPs is harder than
it is for linear models and FBBDs.

We end by dedicating Chapter 6 to discuss the achievements and limitations of our work,
together with a brief mention of similar e�orts in the literature, and future directions of work.

But before diving into deep waters, we take 3 preliminary sections in Chapter 1 to get the
reader started and well motivated. Section 1.1 walks the reader through an example that will help
us unpack the di�erent components of the core issue at hand, and provide some intuition on the
framework that will be presented throughout this document. Section 1.2 aims to put our work in
context by presenting a brief discussion on the problem of de�ning interpretability, and the role
of explanations in the �eld. Finally, Section 1.3 presents the required background in complexity
theory.

2

Chapter 1

Preliminaries on Interpretablity and

Complexity

1.1 Cat Recognition, a bottom-up example to get started

Most of the problems that traditional algorithms were designed to solve can be easily formalized
in mathematical language, like �nding the employee with the largest salary in a company, or
detecting if every router in a network is reachable from a given source. However, a wide variety of
the problems we encounter on a daily basis, like distinguishing familiar faces, seem to elude such
formalisms. Consider the problem, stated in Figure 1.1 of looking at a black-and-white picture
of 128x128 pixels and deciding whether it portrays a cat or not. This problem can be interpreted
as computing a function f : {0, 1}128x128 → {0, 1}, that even children seem to be e�ective at
computing, and yet for which we lack a simple mathematical description. What we do tend to
have is data; millions of pictures of cats, and millions of pictures of things that are not cats.
Deducing such a function f from this data in such a way that it can make good decisions on new
pictures (that is, not present in the data it was generated with) is the whole goal of Supervised
Learning. However, this thesis is not about the process of how one gets to learn such functions,
but rather about understanding them once they have already been learned.

(a) A 128x128 B&W picture of a cat (b) A 128x128 B&W picture that does not portray a cat

Figure 1.1: We can easily recognize a cat on the left image. It is harder, however, to explain the
exact characteristics of the image that trigger such classi�cation.

3

But before we get to discuss about understanding functions, it is convenient to take a look at
how to represent them. Listing every single 128x128 picture that a function classi�es as a cat is
prohibitively expensive, as some functions would require the inconceivable amount of 2128×128

bits to be represented. By a similar argument, if one wished to learn an arbitrary function this
way, and by looking at a labeled picture one was able to discard half of the possible functions,
there would be some functions requiring 2128×128 pictures to be learned. The natural consequence
of this limitation is that instead of trying to learn or represent arbitrary functions, one �rst �xes
a particular class F of syntactically restricted functions, that can then be learned and represented
e�ciently. For example, consider the class of functions ft that upon a picture X decide if X
portrays a cat in the following way:

ft(X) =

{
1 if X has at least t black pixels
0 otherwise

This class of functions can be easily represented, and the value of t that minimizes the error
over a set of pictures can be e�ciently learned. These syntactically restricted classes of functions
are referred to as classes of models. For example, we can say that the functions ft described above
are threshold models. A model is thus an instance of a class of models.

Consider the model f10,000. One can check (hopefully with the help of a computer) that the
picture in Figure 1.1a is correctly classi�ed as a cat by this model, while that of Figure 1.1b is
correctly classi�ed as not-a-cat. Both humans and f10,000 agree on the fact Figure 1.1a portrays a
cat, however, while it is hard for a human to describe the precise characteristics that let them know
the picture portrays a cat, it is trivial to answer why f10,000 claims it. Indeed, f10,000 claims there
is a cat on the picture because it contains 12,427 black pixels, while its counterpart, Figure 1.1b
contains only 8,969 and is thus classi�ed as not-a-cat. By listing the coordinates of the �rst 10,000
black pixels (in lexicographic order, for instance) of Figure 1.1a, we have described a precise set of
characteristics that explain its classi�cation. We can explain as well that Figure 1.1b is classi�ed
as not-a-cat by listing 128 · 128− 10,000 + 1 = 6,385 white pixels in it.

Now that we understand how f10,000 works, we have clear reasons to not trust it. As shown in
Figure 1.2, the number of black pixels alone is not a good criterion for recognizing cats. Once we
understand how f10,000 works, it becomes evident that it is not a good classi�er, but it could be
far from obvious if we had only presented a maliciously crafted dataset over which f10,000 could
perform very well, and a highly obfuscated code for it.

Imagine that this is the case, we are given a model as a �le with thousands of lines of code,
that is completely unreadable, and a dataset for which it performs extremely well. If our life
depended on the performance of this model over new examples, we would be in trouble; we do
not understand how it works. So how can we increase our trust in the model? Well, we do
know that the model has made some right decisions in the past, but what we lack is a principled
understanding of the reasons behind such decisions. In the case of f10,000, as mentioned before,
listing any set of 10,000 black pixels is enough to explain its decision over the picture of a cat
in Figure 1.1a. We present a possible explanation for this decision in Figure 1.3a, where exactly
10,000 black pixels of the original picture are displayed. This explanation is a clear argument for
not trusting f10,000, and if we obtained a similar one for the obfuscated classi�er we received, we
would know that it is not trustworthy either. On the other hand, if we knew that a classi�er has

4

(a) An adversarial 128x128 B&W picture of
a cat misclassi�ed by f10,000

(b) A 128x128 B&W picture that does not portray a
cat, and yet is accepted by f10,000

Figure 1.2: Examples of mistakes that f10,000 makes as a cat-classi�er.

(a) An explanation for why f10,000 classi-
�ed Figure 1.1a as a cat. (b) A more convincing explanation for classifying a cat

Figure 1.3: Minimum su�cient reasons for cat recognition. Pixels that belong to the minimum
su�cient reasons have been colored with red (dark red if they were previously black, light red if
they were previously white)

decided based on the set of pixels that we associate with the cat, our trust would increase; we now
know that the model is at least looking at the right thing.

This kind of explanation, that we will de�ne with precision in Chapter 2, is called a Minimum
Su�cient Reason (MSR), and intuitively represents the minimum portion of an input that allows
a model to take a decision, regardless of the rest of the input.

It is algorithmically easy to compute an MSR for f10,000. Indeed, if for a picture X we have
f10,000(X) = 1, then iterating over the pixels of X and listing the �rst 10,000 black pixels we �nd
is enough. On the other hand, if f10,000(X) = 0, it is enough to list the �rst 128 ·128−10, 000 + 1
white pixels we �nd, as even if all the rest were black, one could not achieve the 10,000 required
to be classi�ed as a cat. As it will be proved in Chapter 3, �nding an MSR is algorithmically easy
for a class of models that includes f10,000 as a very particular case; linear models, as for example
used in a logistic regression. We will prove as well that �nding an MSR is computationally hard
for more sophisticated models like Multilayer Perceptrons (MLPs).

We have showed, with a simple example, that explanations like an MSR o�er insight into the

5

way a model works, and with this, increase our trust and understanding. This implies, as it will
be developed in Chapter 2, that in a precise sense it is easier to interpret and understand decisions
made by models like f10,000 than it is to do so over MLPs, as it is computationally easier to obtain
explanations for the former than it is for the latter.

We can now better understand the main contribution of this work: we develop a framework
that allows us to formally compare the interpretability of di�erent classes of models by studying
the computational complexity of obtaining explanations for a decision a model has taken.

In the next section we visit the main challenges of interpretability and the related work, as this
will help us to set the context required for a deeper understanding of our particular inquiry.

1.2 But what is interpretability after all? A brief literature

discussion

We have used the word interpretability a few times thus far, but without giving it a precise mean-
ing. This section discusses potential de�nitions, challenges and relevant research in the area.

Let us start with a simple proposal that captures well the intuition behind the concept. We will
then unpack its di�erent components, and use it as well as a starting point to go through some of
the discussions that are present in the literature.

Proposed De�nition 1 (Miller [40], Biran & Cotton [9], Doshi-Velez et al. [15]) Interpretability
is the degree to which a human can understand the cause of a decision.

First, it is relevant to notice that this de�nition directly involves humans in the loop, and thus,
accounts for an inherently social nature to the concept. The relationship between explainable
AI and social sciences is thoroughly developed in the work of Miller [40], and a practical inter-
pretability setup with humans in the loop is explored for example in the work of Lage et al. [37].
This idea is directly contrasted by some other authors [32], stating that human bias towards sim-
ple explanations can be dangerous, and one should be wary as well of incentivizing persuasive
systems rather than transparent systems.

It is the last part of this de�nition however that is the most controversial. Even if one could un-
derstand the cause of every decision of a decision-taking-agent, that does not necessary elucidate
the means and inner mechanisms through which the agent has arrived to it. As a consequence, it
is necessary to distinguish between two di�erent forms in which decisions can be easily under-
stood. On the one hand, it could be that the mechanisms by which an agent takes decisions are
self-explanatory, evident, or more generally transparent. But it could be as well that, while the
mechanisms are opaque, an agent could present convincing explanations for its decisions. Taking
on an example by Miller [40], imagine person A closes the window of their room, and person B
asks “Why did you do that?” It seems a priori that “Because I was cold.” could be a convincing
explanation for the decision taken. However, we completely lack a principled understanding of
person A’s thought process. This could be important, say, if person B was not convinced about
why did A not choose to put on a coat instead. While one could argue that a more detailed expla-

6

nation from A could clarify this point, there is still a fundamental lack. This distinction, between
an agent’s decision process being transparent, and the ability of its decisions being justi�ed, is
consistently made throughout the literature [6, 38, 40]. The latter is referred to as post-hoc ex-
plainability or post-hoc interpretability [6, 38, 40].

Summarizing, the proposed De�nition 1 identi�es degrees of interpretability either with an
inherent degree of transparency, or with the degree to which it is easy to provide convincing
explanations. The exact de�nition presented by Doshi-Velez et al. [15] aligns more with the latter,
as it says that “interpretability is the ability to explain or to present in understandable terms to a
human”.

1.2.1 Transparency

While the concept of transparency is not easy to de�ne either, certain key aspects are identi�ed
in the the work of Lipton [38] describing properties of transparent models. We present here a
summary inspired by the survey of Arrieta el al. [6].

• Simulatability: how easy it is for humans to manually simulate the model. This encom-
passes the size of models, and their associated computational cost.

• Decomposability: how easy it is to explain the di�erent parts (parameters, hyper-parameters,
input, etc.) of a model independently.

• Algorithmic Transparency: how easy it is for humans to understand the process fol-
lowed by the model to produce any given output from its input data. This includes the
mathematical guarantees (e.g. convergence) that we have around models.

A relevant distinction to our work is that simulatability can be understood in two di�erent
ways: (i) as a predicate one evaluates over each individual case, which would imply for example
that no model with an output size big enough could ever be transparent, even if the model’s
processing was simply to add 1 to every coordinate in the input, or (ii) as a property of the model
stating that, for a �xed input/output size, the simulation is easier to perform than it is for other
models. We take the latter interpretation.

1.2.2 Explanations or Post-hoc interpretability

Beyond the transparency that is inherent to a model, one can gain understanding of a system
through explanations that enhance its interpretability. This can even be done in a way that treats
systems as black-boxes, without any access to their internal mechanisms, as in the case of LIME
(Local Interpretable Model-Agnostic Explanations)[48]. A relevant distinction is that of local vs.
global explanations [29, 42]. While local explanations attempt to clarify the particular reasons why
a certain decision has been taken, global explanations attempt to give insight into the decision-
taking process as a whole, in a way that would allow the explainee to understand further decisions.
LIME [48] is an example of local explanations as it approximates a given black box model on a
given input by a more interpretable one (e.g., a linear model) in the neighborhood of the input.
This means that the explanation is faithful to the model only in a local region of the input space.
On the other hand, many have approached interpretability for Deep Learning by creating models
of supposedly more inherent transparency, like decision trees, or rule based models [6, 24, 31, 59].

7

The idea is to build a proxy model that approximates a given Deep Neural Network as faithfully
as possible. This is an example of a global explanation method, as the model that is used as a
proxy attempts to approximate the original model in the whole input space.

There is substantial literature from the social sciences on what explanations are, their relation
with causality and their relationship with humans. The subject has been thoroughly studied since
Hume [33], and great reviews on di�erent de�nitions and components of explanations, and what
constitutes a good explanation can be found in the work of Miller [40], or by following the leads
in Gilpin et al. [24].

1.2.3 Interpretability vs. Explainability

A core problem associated with this de�nition is that of the di�erence between interpretability and
explainability. Both terms are used substantially throughout the literature, and their respective
popularity has changed over time. While that of interpretability was used more often in the past,
the concept of explainability has gained more traction since 2019 [6]. But, do they mean the same
or are they truly di�erent? According to Gilpin et al. [24], interpretability and explainability have
been used interchangeably in the literature, and yet they present subtle but important di�erences.
Gilpin et al. [24] claim that explainability goes one step further than interpretability – “Explainable
models are interpretable by default, but the reverse is not always true”. On the other hand, Rudin
[50] suggests that, especially in high-stakes decisions, one should aim for interpretability instead
of explainability. The argument Rudin makes includes potential issues with explanations, as a
lack of faithfulness with respect to the model. For example, one could train a complex model both
to make predictions and to write convincing explanations in natural language, but how could we
guarantee that the explanations actually account for how the computation is being done? It is
also argued in the work of Rudin [50] that explanations often do not make sense nor are precise
enough to fully explain phenomena. Up to the present date, there does not seem to be a universally
accepted clear cut between interpretability and explainability.

1.2.4 Desiderata

Perhaps disappointingly, there is still no consensus on the de�nition of interpretability [15, 38].
However, given that signi�cant work [15, 38] has been done in this direction, it is to be seen
in the upcoming years whether the community will agree upon a de�nition. In the meantime,
there seems to be an implicit agreement on what the goals of interpretability are [38, 6]. While
models tend to be evaluated on predictive performance during testing, once they are deployed
the stakeholders desire things that usually cannot be easily captured by mathematical functions.
Taking Lipton’s example [38], a model used for hiring decisions should take into account not only
predictive performance, but also legality and ethics.

More precisely, several authors have described a desiderata of interpretability [6], meaning a
certain set of characteristics that the models that we deem interpretable should have. We refer in
particular to that of Lipton [38].

• Trust: Often portrayed as one of the main goals of interpretability [6], it has to do with the
con�dence that a model inspires on humans about its performance, fairness and behavior
on new and more diverse examples.

8

• Causality: Refers to the desire of obtaining and understanding causality relations through
the interpretation of models. It is covered extensively by Miller [40], and the foundations
of the underlying mathematical theory date back to Judea Pearl [45].

• Transferability: Refers to the ability of a model to transfer skills to unfamiliar situations,
or to generalize. In particular, it has to do with models retaining predictive performance
once deployed.

• Informativeness: For models whose purpose is to help human decision-makers, one would
desire to be able to not get only answers, but the most information possible from the models.

• Fairness: It is often argued that interpretability is required to assess whether automatic
decisions adhere to ethical standards. The desire is that of systems whose decisions are
contestable, and that can provide clear reasoning based on falsi�able propositions.

Finally, for a detailed survey on Explainable AI and practical methods, we direct the reader
to the survey of Barredo Arrieta et al. [6], and for discussions on the principles of explanations
and interpretability, we refer to the work of Lipton [38], Doshi-Velez et al. [15], Rudin [50] and
Miller [40].

1.3 Background in Complexity Theory

A general background in discrete mathematics (as presented for example in the appendix of Arora
and Barak [5]) is assumed, including the de�nition of both deterministic and non-deterministic
Turing Machines. In a nutshell, Turing Machines are abstract state machines, that operate over
an in�nite tape which they can read (and write into) one symbol at a time, according to a �nite
set of rules.

Let Σ be a �nite alphabet, and Σ∗ the set of all �nite strings whose symbols all belong to Σ. Any
subset L of Σ∗ is said to be a language or, equivalently, a problem. Given a Deterministic Turing
Machine (DTM) M , de�ned over the alphabet Σ, we can identify the set L = L(M) of strings
accepted byM , and analogously, we can do so for a Non-deterministic Turing Machine (NTM) by
considering the set of strings for which there is a computation path leading to an accepting state.
For any Turing Machine, deterministic or not, we can de�ne a function timeM : Σ∗ → N such
that timeM(w) describes the number of steps in the computation of string w by the machine
M . This naturally de�nes a function tM : N→ N for any Turing Machine M , such that tM(n) =
maxw,|w|=n timeM(w). This de�nition allows us to de�ne the following classes:

De�nition 1.1 (PTIME) The class PTIME is the class of all problems that can be solved in poly-
nomial time by a DTM. More precisely:

PTIME = {L | there exists a DTM M such that L = L(M) and tM(n) ∈ nO(1)}

Note that we have kept the alphabet Σ implicit in the notation, and will do so repeatedly.1

1It is easy to show that the classes we de�ne in this section are essentially equal for any �xed alphabet of size at

9

De�nition 1.2 (NP) The class NP is the class of all problems that can be solved in polynomial
time by a NTM. More precisely:

NP = {L | there exists an NTM M such that L = L(M) and tM(n) ∈ nO(1)}

As DTMs are a particular case of NTMs, we trivially have that PTIME ⊆ NP . On the other
hand, perhaps the most important open problem in theoretical computer science is whether
PTIME = NP. It is widely believed that this is not the case, and many of the results presented in
this work are conditioned by the hypothesis PTIME 6= NP.

We now present an equivalent de�nition for the class NP, that will be amply used.

De�nition 1.3 (NP, Veri�er based2) The class NP is the class of all problems that can be veri�ed
in polynomial time by a DTM. More precisely, a language L belongs to NP if and only if there is
a DTM M such that for every string w in L there exists a string c, that we call a certi�cate for w,
such that the string 〈w, c〉 is accepted by M , and timeM(〈w, c〉) ∈ |w|O(1).

For any class C, we de�ne co−C as the set of languages whose complement belongs to C. A
particular case we will refer to is that of co-NP, the class of problems whose complement is in
NP. It is not known whether NP ⊆ co-NP or co-NP ⊆ NP but it is widely believed that neither
inclusion holds [5]. We now de�ne a new class, DP (Di�erence Polynomial Time) that closely
relates to both NP and co-NP.

De�nition 1.4 (DP) We say a language L belongs to DP if L = L1 \ L2 for L1, L2 ∈ NP, or
equivalently L = L1 ∩ L′2 for L1 ∈ NP, L′2 ∈ co-NP.

One can de�ne as well classes of machines that depend on oracles. Intuitively, an oracle can
be thought of as a magical entity that augments Turing Machines and allows them to outsource
computational work that will be done for them in constant time. For example, a DTM equipped
with an oracle DotProduct for the problem of deciding whether the dot product between two
vectors is a vector of zeros, can verify that the product of two n×n matrices is the null matrix in
timeO(n2), by performing n2 calls to DotProduct. For a formal de�nitions of oracles we refer
the reader to Arora and Barak [5]. We note MA the machine equivalent to equipping machine
M with an oracle for problem A. Based on this notion of oracle, we can de�ne new complexity
classes. Let C be a complexity class de�ned through a time restriction on Turing Machines, and A
a problem. We say CA is the class of problems that can be accepted by a machine complying with
the time restriction of C but having an oracle to problem A. For a complexity class D, we de�ne
CD = ∪A∈DCA. We can now de�ne an important class based on this notion of oracle.

De�nition 1.5 (Σp
2) The class Σp

2 is the class of problems that can be solved by an NTM in polyno-
mial time with access to an oracle to any problem in the class NP. Formally, Σp

2 = NPNP = NPco-NP.

least 2. In general, very small alphabets are enough to encode most natural problems. Consider, for example, that
the alphabet Σ = {∃,∀, x, y, z, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,+, ·,=, ^, /} is powerful enough to encode most arithmetic
problems.

2The equivalence between this and the previous de�nition is a trivial theorem.

10

Note that we trivially have that NP ⊆ Σp
2, and this inclusion is widely believed to be proper

[5]. In other words, it is widely believed that Σp
2 contains harder problems than those in NP.

We say a function f : Σ∗ → Σ∗ is a polynomial time reduction3 from problem A to problem
B if for any string w ∈ Σ∗ it holds that w ∈ A if and only if f(w) ∈ B, and f can be computed
in polynomial time by a DTM4. We say A ≤p B if there is a polynomial time reduction from A
to B, as the fact that we can solve an instance w of A by �rst computing f(w) and then solve an
instance of B means intuitively that problem B is harder to solve than problem A.

De�nition 1.6 (Closed under≤p) We say a class C is closed under polynomial time reductions if
for any problem B ∈ C and any problem A it holds that A ≤p B implies A ∈ C.

Proposition 1.7 The classes PTIME,NP, co-NP,DP and Σp
2 are all closed under polynomial time

reductions.

For each class C, we say a problemB is C-hard if for every problemA ∈ C it holds thatA ≤p B.
When a problem is C-hard, and also belongs to C, we say it is C-complete.

We now focus on function problems, that is the computational problem of computing a func-
tion f : Σ∗ → N. In order to de�ne the most relevant class, #P, we de�ne �rst, for an NTM M ,
the function acceptM : Σ∗ → N that describes the number of accepting paths when machine
M is run with the string w. We say a function f : Σ∗ → N belongs to #P if there is an NTM M
such that for every string w ∈ Σ∗ it holds that f(w) = acceptM(w). As opposed to the other
classes de�ned so far, #P is closed under a di�erent kind of polynomial time reductions, usually
called Turing reductions. We say, for two problems A and B, that A ≤Tp B if and only if A ∈ PB .
Finally, we distinguish a particular kind of reductions for #P, which is that of parsimonious re-
ductions. Given function problems A and B, we say there is a parsimonious reduction from A to
B, denoted as A ≤parp B if there is a function f : Σ∗ → Σ∗ computable in polynomial time such
thatA(w) = B(f(w)) for every stringw ∈ Σ∗. Note immediately that every parsimonious reduc-
tion is a Turing reduction as well. Parsimonious reductions are of particular interest because it is
widely believed [5] that if #SAT, the problem of counting the satisfying assignments of a boolean
formula, can be parsimoniously reduced to a problemA, then there are no e�cient approximation
algorithms for A. The notion of #P-hardness and #P-completeness can be de�ned analogously
as for the previous classes, but by using Turing reductions instead.

We remark that although #P and Σp
2 refer to di�erent kinds of problems (function problems

and decision problems respectively), there is a precise sense in which the class #P is harder than
Σp

2 under complexity assumptions; it is easy to see that if one could solve a #P-complete problem
in polynomial time, then one could solve every Σp

2 problem in polynomial time as well. However,
the opposite direction is believed to fail [5]. Another way to overcome the di�erent nature of the
classes #P and Σp

2 is to consider a di�erent complexity class, PP [5], instead of #P. The class PP
can be thought of as the decision version of #P, and consists of the languages for which there

3As all reductions we will treat are many-to-one (see [5]) we keep this implicit.
4We cannot say exactly that f ∈ P , as f is a function and not a problem or language. The class of these kinds of

functions is called FP.

11

is a polynomial time non deterministic machine such that, for every word in the language, the
majority of the computation paths are accepting. We stick however to the use of #P, as it is used
more often in the literature and allows for a cleaner treatment of problems that are more naturally
understood as function problems than they would be as decision problems.

Finally, we note that all asymptotic complexity results are given assuming a standard RAM
model [5]. While this can a�ect precise runtimes, it makes no di�erence for the complexity classes
de�ned above, as the overhead of simulating the RAM model in Turing Machines is always poly-
nomial.

12

Chapter 2

A framework to measure and compare

model interpretability

Although interpretability has a clear social component [40], and it is usually de�ned in terms
of human understanding (see Section 1.2), many computational techniques aim to enhance inter-
pretability of a given model by computing local post-hoc explanations for its decisions [6]. Recall
that a local post-hoc explanation is one that, given a model and a particular input, aims to eluci-
date the reasonwhy the model took a certain decision on that particular input, without necessarily
o�ering any insight on the model processing or its general behavior (see Section 1.2.2). Experi-
mental evaluation studies with humans have shown that post-hoc explanations do have impact
on their understanding and trust for models [48].

We propose the notion of interpretability in terms of complexity (c-interpretability for short),
to describe the computational complexity of computing post-hoc explanations for a given model.
In a nutshell, a model is c-interpretable if it is easy, computationally speaking, to provide certain
kinds of post-hoc explanations to its user with the assistance of a computer. The precise relation-
ship between the notion of c-interpretability, and the traditional notion of interpretability (as in
Proposed De�nition 1) is discussed in Chapter 6.

We now proceed to describe the di�erent ingredients of the proposed framework.

2.1 Models and instances

We de�ne a modelM as a Boolean functionM : {0, 1}n → {0, 1}, where n is a positive inte-
ger that we call the input size ofM. That is, we focus on binary classi�ers with Boolean input
features. Restricting inputs and outputs to be Booleans makes our setting cleaner while still cover-
ing several relevant practical scenarios. For example, deciding whether a black and white picture
contains a cat or not, as discussed in Section 1.1, falls naturally into our de�nition of a model.
Moreover, if one were to consider colored pictures instead, it would be enough to use 24 Boolean
input features per pixel, representing a 24-bit depth color1.

1Representing a single pixel by 24 Boolean features might not be practical, but illustrates the generality of the
Boolean setting. Such di�erences in representation would not make a di�erence for our theoretical results, as the

13

A class of models is just a way of grouping models together. Models tend to be grouped based
on speci�c algorithms, as we will see in Chapter 3.

An instance is a vector in {0, 1}n and represents a possible input for a model. We say a Boolean
vector x is an instance of a model M if the dimension of x matches the input size of M. An
instance x of a modelM is said to be positive ifM(x) = 1, and negative otherwise. A partial
instance is a vector in {0, 1,⊥}n, with ⊥ intuitively representing “unde�ned” components. A
partial instance x ∈ {0, 1,⊥}n represents, in a compact way, the set of all instances in {0, 1}n
that can be obtained by replacing unde�ned components in x with values in {0, 1}. We call these
the completions of x.

2.2 Explainability Queries

An explainability query is a question that we ask about a modelM and a (possibly partial) in-
stance x, and refers to what the modelM does on instance x. We assume all queries to be stated
either as decision problems (that is, Yes/No queries) or as counting problems (queries that ask, for
example, how many completions of a partial instance satisfy a given property). Thus, for now
we can think of queries simply as functions having models and instances as inputs. We will �rst
introduce some speci�c queries with an example, and then give formal de�nitions.

Example 1 Consider an unethical bank that uses a model to decide whether to accept or
reject loan applications. The bank uses binary features like: does the requester has a stable
job, are they older than 40, etc.

Male
Stable job

> 40yo
Previous loans
Owns a house

Has kids
Married

Criminal Record



1
0
1
1
0
0
1
1


Black Box Model

Application Re-
jected

Figure 2.1: Diagram of a particular loan decision.

As represented in Figure 2.1, one day John Doe asks for a loan at this particular bank,
and his application gets rejected. John asks the bank executive for a reason “Why did I got
rejected?”. One can envision 3 di�erent kinds of answer, representative of the queries we will
de�ne next.

Answer 1 If John did not have a criminal record, his application would have been accepted.

sizes of the corresponding models di�er only by a multiplicative constant.

14

Answer 2 The bank does not make loans for males that are older than 40 and do not own a
house, regardless of other features.

Answer 3 Only 1 out of 20 loan applications by someone who does not own a house get
accepted.

Each of these answers can be thought as the solution to an explainability query. Answer 1
describes theminimum change required in the input to change the model’s prediction. Answer
2 is known as a minimum su�cient reason [55] and it describes a minimum set of features that
su�ce to obtain the current verdict. Finally, Answer 3 describes, given a set of features, the
proportion of the inputs that respect those features and are accepted by the model, this is the
query we will call counting completions.

We proceed to de�ne the main explainability queries we will be dealing with. Several of which
are inspired by the work of Darwiche et al. [14, 53, 55], or can be tracked further down to the
�eld of logic [57]. Given instances x and y, we de�ne d(x,y) :=

∑n
i=1 |xi − yi| as the number

of components in which x and y di�er. We now formalize the minimum-change-required prob-
lem, which checks if the output of the model can be changed by �ipping the value of at most k
components in the input.

Problem: MinimumChangeReqired (MCR)
Input: ModelM, instance x, and k ∈ N

Output: Yes, if there exists an instance y with d(x,y) ≤ k
andM(x) 6=M(y), and No otherwise

The intuitive idea is to explain a decision by making explicit why the result could not have been
di�erent. This kind of explanations is known in the literature as a counterfactual explanation [40],
and interestingly enough, several studies on explanations claim that counterfactuals are the most
e�ective kind of explanations [40].

Notice that in the above de�nition, instead of “�nding” the minimum change we state the
problem as a Yes/No query (a decision problem) by adding an additional input k ∈ N and then
asking for a change of size at most k. This is a standard way of stating a problem to analyze its
complexity [5]. Moreover, in our results, when we are able to solve the problem in PTIME then
we can also output a minimum change, and it is clear that if the decision problem is hard then the
optimization problem is also hard. Hence, we can indeed state our problems as decision problems
without loss of generality.

To introduce our next query, recall that a partial instance is a vector y = (y1, . . . , yn) ∈
{0, 1,⊥}n, and a completion of it is an instance x = (x1, . . . , xn) ∈ {0, 1}n such that for every i
where yi ∈ {0, 1} it holds that xi = yi. That is, x coincides with y on all the components of y
that are not ⊥. Given an instance x and a modelM, a su�cient reason for x with respect toM
is a partial instance y, such that x is a completion of y and every possible completion x′ of y
satis�esM(x′) =M(x). That is, knowing the value of the components that are de�ned in y is
enough to determine the outputM(x). For a partial instance y, let us write ‖y‖ for its number
of components that are not ⊥.

15

Problem: MinimumSufficientReason (MSR)
Input: ModelM, instance x, and k ∈ N

Output: Yes, if there exists a su�cient reason y for x wrt.M with ‖y‖ ≤ k,
and No otherwise

We de�ne two simpli�ed2 variants of this query as well.

Problem: CheckSufficientReason (CSR)
Input: ModelM, instance x, partial instance y

Output: Yes, if y is a su�cient reason for x wrt.M,
and No otherwise

In order to comfortably write the second variant of the MSR query, we say a partial instance
y is contained in another partial instance z if y coincides with z on every component where y
does not have ⊥.

Problem: MinimalSufficientReason (mSR)
Input: ModelM, instance x, partial instance y

Output: Yes, if y is a su�cient reason for x wrt.M that does not contain any other
su�cient reason for x, and No otherwise

The last query refers to counting the number of positive completions for a given partial in-
stance.

Problem: CountCompletions (CC)
Input: ModelM, partial instance y

Output: The number of completions x of y such thatM(x) = 1

Intuitively, this query informs us on the proportion of inputs that are accepted by the model,
given that some particular features have been �xed; or, equivalently, on the probability that
such an instance is accepted, assuming the other features to be uniformly and independently
distributed.

2.3 Interpretability in terms of complexity

Given an explainability query Q and a class C of models, we denote by Q(C) the computational
problem de�ned by Q restricted to models in C. We now de�ne the most important notion for
our framework: that of being more interpretable in terms of complexity (more c-interpretable for
short). We use this notion to compare among classes of models.

De�nition 2.1 Let Q be an explainability query, and C1 and C2 be two classes of models. We
say that C1 is strictly more c-interpretable than C2 with respect to Q, if the query Q(C1) is in the
complexity class K1, the query Q(C2) is hard for complexity class K2, and K1 (K2. .

2It might not be obvious that the next variants are computationally simpler, but this seems to be the case, as
Chapter 3 further explains.

16

For example, in the next chapter it will be shown that one can answer the CheckSufficien-
tReason query in polynomial time for linear based models, while the same query is NP-hard for
neural networks. This implies, under the assumption that PTIME (NP, that linear based models
are strictly more c-interpretable than neural networks with respect to the CheckSufficientRea-
son query.

We note that, amongst the complexity classes presented in Section 1.3, no strict inclusions
are known. This means that only under theoretical assumptions we would be able to establish
that certain classes of models are strictly more c-interpretable than others. Nonetheless, these
assumptions are widely accepted in the research community of computational complexity, and
thus we will often omit the phrase “under theoretical assumptions”. As a consequence, every time
we say that a class of models C1 is strictly more c-interpretable than another class C2, it is under
widely accepted, but so far unproven, complexity-theoretical assumptions.

17

Chapter 3

The computational complexity of

interpreting di�erent models

This chapter presents the details of the models included in our study, and then proceeds with the
presentation and proof of our main results.

3.1 Speci�c models

Free Binary Decision Diagram (FBDD). A binary decision diagram (BDD [58]) is a rooted
directed acyclic graph M with labels on edges and nodes, verifying: (i) each leaf is labeled
with true or with false; (ii) each internal node (a node that is not a leaf) is labeled with an el-
ement of {1, . . . , n}; and (iii) each internal node has an outgoing edge labeled 1 and another one
labeled 0. Every instance x = (x1, . . . , xn) ∈ {0, 1}n de�nes a unique path πx from the root to a
leaf inM, which satis�es the following condition: for every non-leaf node u in πx, if i is the label
of u, then the path πx goes through the edge that is labeled with xi. The instance x is positive,
i.e.,M(x) := 1, if the label of the leaf in the path πx is true, and negative otherwise. The size |M|
ofM is its number of edges. A binary decision diagramM is free (FBDD) if for every path from
the root to a leaf, no two nodes on that path have the same label. A decision tree is an FBDD whose
underlying graph is a tree. An example is presented in Figure 3.1.

Multilayer perceptron (MLP). A multilayer perceptronM with k layers is de�ned by a se-
quence of weight matrices W (1), . . . ,W (k), bias vectors b(1), . . . , b(k), and activation functions
f (1), . . . , f (k). Given an instance x, we inductively de�ne

h(i) := f (i)(h(i−1)W (i) + b(i)) (i ∈ {1, . . . , k}), (3.1)

assuming that h(0) := x. The output of M on x is de�ned as M(x) := h(k). In this thesis
we assume all weights and biases to be rational numbers. That is, we assume that there exists a
sequence of positive integers d0, d1, . . . , dk such that W (i) ∈ Qdi−1×di and b(i) ∈ Qdi . The integer
d0 is called the input size of M, and dk the output size. Given that we are interested in binary
classi�ers, we assume that dk = 1. We say that an MLP as de�ned above has (k−1) hidden layers.
The size of an MLPM, denoted by |M|, is the total size of its weights and biases, in which the
size of a rational number p/q is log2(p) + log2(q) (with the convention that log2(0) = 1).

18

Male
Stable job

> 40yo
Previous loans
Owns a house

Has kids
Married

Criminal Record



1
0
1
1
0
0
1
1



Stable Job

Has kids

false Married

true Owns a house

Previous Loans

false true false

truefalse

Criminal Record

Previous Loans

0

1 0

0 1

0 1

1

01

0

1
10

Figure 3.1: Example of an FBDD for the loan problem described in Example 1. The path followed
by the example input is marked in red, and results in a rejection.

We focus on MLPs in which all internal functions f (1), . . . , f (k−1) are the ReLU function, de-
�ned as relu(x) := max(0, x). Usually, MLP binary classi�ers are trained using the sigmoid as
the output function f (k). Nevertheless, when an MLP classi�es an input (after training), it takes
decisions by simply using the pre activations, also called logits. Based on this and on the fact that
we only consider already trained MLPs, we can assume without loss of generality that the out-
put function f (k) is the binary step function, de�ned as step(x) := 0 if x < 0, and step(x) := 1
if x ≥ 0. An example is presented in Figure 3.2.

Perceptron. A perceptron is an MLP with no hidden layers (i.e., k = 1). That is, a per-
ceptron M is de�ned by a pair (W , b) such that W ∈ Qd×1 and b ∈ Q, and the output
isM(x) = step(xW + b). An example is presented in Figure 3.3.

Because of its particular structure, a perceptron is usually de�ned as a pair (w, b) with w a
rational vector and b a rational number. The output ofM(x) is then 1 if and only if 〈x,w〉+b ≥ 0,
where 〈x,w〉 denotes the dot product between x and w.

3.2 Main interpretability theorems

We can now state our main results. In all these theorems we use CMLP to denote the class of
all models (functions from {0, 1}n to {0, 1}) that are de�ned by MLPs, and similarly for CFBDD
and CPerceptron. The proofs for all these results will follow as corollaries from the detailed complexity
analysis that we present in Section 3.3. We start by stating a strong separation between FBDDs
and MLPs, which holds for all the queries presented above.

Theorem 3.1 CFBDD is strictly more c-interpretable than CMLP with respect to MCR, CSR, mSR,
MSR, and CC

For the comparison between perceptrons and MLPs, we can establish a strict separation for

19

Male
Stable job

> 40yo
Previous loans
Owns a house

Has kids
Married

Criminal Record



1
0
1
1
0
0
1
1

 b = −2

b = −3

b = 1

b = 0

b = −5

W (1) =



2 0.9
0 0.5
−1 2.4
1.5 −3.1
0 −1

3.3 −1
2.7 2
−6 3


W (2) =

(
−1 −1.6
0 −4

)
W (3) =

(
−7
−1.1

)

b(1) b(2) b(3)

Figure 3.2: Example of an MLP for the loan problem described in Example 1. The result is a
rejection.

Male
Stable job

> 40yo
Previous loans
Owns a house

Has kids
Married

Criminal Record



1
0
1
1
0
0
1
1


b = −3

3

−4

−2.2

8

0

2.3

−5.5

−1

Figure 3.3: Example of a perceptron for the loan problem described in Example 1. The result is a
rejection.

20

MLPs

FBDDs Perceptrons

MCR, CSR, mSR,
MSR

MCR, CSR, mSR,
MSR, CC

CC

MSR

Figure 3.4: Illustration of the main interpretability results. Arrows depict that the pointed class of
models is harder with respect to the query that labels the edge.

FBDDs Perceptrons MLPs

MinimumChangeReqired PTIME (3.5) PTIME (3.6) NP-complete (3.8)
CheckSufficientReason PTIME (3.10) PTIME (3.12) coNP-complete (3.13)
MinimalSufficientReason PTIME (3.17) PTIME (3.17) DP-complete (3.18)
MinimumSufficientReason NP-complete (3.20) PTIME (3.21) Σp

2-complete (3.23)
CountCompletions PTIME (3.25) #P-complete (3.28) #P-complete (3.28)

Table 3.1: Summary of our complexity results.

MCR, MSR, CSR and mSR but not for CC. In fact, CC has the same complexity for both classes
of models, which means that none of these classes strictly “dominates” the other in terms of c-
interpretability for CC.

Theorem 3.2 CPerceptron is strictly more c-interpretable than CMLP with respect to MCR, CSR, mSR
and MSR. In turn, the problems CC(CPerceptron) and CC(CMLP) are both complete for the same com-
plexity class.

The next result shows that, in terms of c-interpretability, the relationship between FBDDs and
perceptrons is not clear, as each one of them is strictly more c-interpretable than the other for
some explainability query.

Theorem3.3 CPerceptron is strictly more c-interpretable than CFBDD with respect to MSR. In turn, CFBDD
is strictly more c-interpretable than CPerceptron with respect to CC.

These results can be visualized in Figure 3.4. Proofs are presented in the next section, where
for each query Q and class of models C we pinpoint the exact complexity of the problem Q(C).

3.3 The complexity of interpretability queries

We divide our results in terms of the queries that we consider. We also present a few other com-
plexity results that we �nd interesting on their own. A summary of the results is shown in Ta-
ble 3.1.

21

3.3.1 The complexity of MinimumChangeReqired

Theorem 3.4 The MinimumChangeReqired query is (1) in PTIME for FBDDs, (2) in PTIME
for perceptrons, and (3) NP-complete for MLPs.

We prove each item in a separate lemma.

Lemma 3.5 The MinimumChangeReqired query can be solved in linear time for FBDDs.

Proof. Let (M,x, k) be an instance of MinimumChangeReqired, where M is an FBDD. For
every node u inM we de�neMu to be the FBDD obtained by restrictingM to the nodes that
are (forward-)reachable from u; in other words, Mu is the sub-FBDD rooted at u. Then, we
de�ne mcru(x) to be the minimum change required on x to obtain a classi�cation underMu that
di�ers fromM(x). More formally,

mcru(x) = min{k′ | there exists an instance y such that d(x,y) = k′ andMu(y) 6=M(x)},

with the convention that min∅ = ∞. Let r be the root ofM. Then, by de�nition (M,x, k) is
a positive instance of MinimumChangeReqired if and only if mcrr(x) ≤ k. We now explain
how we can compute all the values mcru(x) for every node u ofM in linear time.

Observe that, (†) for an instance y minimizing k′ in this equality, since the FBDDMu does not
depend on the features associated to any node u′ from the root ofM to u excluded, we have that
for any such node yu′ = xu′ holds (otherwise k′ would not be minimized).1

By de�nition, if u is a leaf labeled with true we have thatMu(y) = 1 for every y, and thus
ifM(x) = 0 we get mcru(x) = 0, while ifM(x) = 1 we get that mcru(x) = ∞. Analogously,
if u is a leaf labeled with false, then mcru(x) is equal to 0 ifM(x) = 1 and to∞ otherwise.

For the recursive case, we consider a non-leaf node u. Let u1 be the node going along the edge
labeled with 1 from u, and u0 analogously. Using the notation [xu = a] to mean 1 if the feature
of x indexed by the label of node u has value a ∈ {0, 1}, and 0 otherwise, and the convention
that∞+ 1 =∞, we claim that:

mcru(x) = min
(

[xu = 1] + mcru0(x), [xu = 0] + mcru1(x)
)

Indeed, consider by inductive hypothesis that mcru0(x) and mcru1(x) have been properly calcu-
lated, and let us show that this equality holds. We prove both inequalities in turn:

• We show that mcru(x) ≤ min
(

[xu = 1] + mcru0(x), [xu = 0] + mcru1(x)
)

. It is enough to
show that both mcru(x) ≤ [xu = 1] + mcru0(x) and mcru(x) ≤ [xu = 0] + mcru1(x) hold.
We only show the �rst inequality, as the other one is similar. If mcru0(x) =∞ then clearly
the inequality holds, hence let us assume that mcru0(x) = k′ ∈ N. This means that there
is an instance y′ such that d(x,y′) = k′ and such thatMu0(y

′) 6= M(x). Furthermore,
by the observation (†) we have that for any node u′ from the root ofM to u (included), we
have yu′ = xu′ . Therefore, the instance y that is equal to y′ but has value yu = 0 di�ers

1We slightly abuse notation and write xu for the value of the feature of x that is indexed by the label of u.

22

from x in exactly k′′ = [xu = 1] + k′, which implies that mcru(x) ≤ [xu = 1] + mcru0(x).
Hence, the �rst inequality is proven.

• We show that mcru(x) ≥ min
(

[xu = 1] + mcru0(x), [xu = 0] + mcru1(x)
)

. First, assume
that both mcru0(x) and mcru1(x) are equal to∞. This means that every path in bothMu0

andMu1 leads to a leaf with the same classi�cation asM(x). Then, as every path from u
goes either through u0 or through u1, it must be that every path from u leads to a leaf
with the same classi�cation asM(x), and thus mcru(x) =∞, and so the inequality holds.
Therefore, we can assume that one of mcru0(x) or mcru1(x) is �nite. Let us assume without
loss of generality that (?) min

(
[xu = 1] + mcru0(x), [xu = 0] + mcru1(x)

)
= [xu = 1] +

mcru0(x) ∈ N (the other case being similar). Let us now assume, by way of contradiction,
that the inequality does not hold, that is, (††) mcru(x) < [xu = 1] + mcru0(x), and let y
be an instance such thatMu(y) 6=Mu(x) and d(x,y) = mcru(x). Thanks to (?), we can
assume wlog that yu = 0. But then we would have that mcru0(x) ≤ mcru(x) − [xu = 1],
which contradicts (††). Hence, the second inequality is proven.

It is clear that the recursive function mcr can be computed bottom-up in linear time, thus
concluding the proof.

Lemma 3.6 The MinimumChangeReqired query can be solved in linear time for perceptrons.

Proof. Let (M = (w, b),x, k) be an instance of the problem, and let us assume without loss of
generality thatM(x) = 1, as the other case is analogous. For each feature i of x we de�ne its
importance s(i) as wi if xi = 1 and−wi otherwise. Intuitively, s represents how good it is to keep
a certain feature in order to maintain the verdict of the model. We now assume (being ready to
pay for it) that x and w have been sorted in decreasing order of score s. For example, if originally
w = (3,−5,−2) and x = (1, 0, 1), then after the sorting procedure we have w = (−5, 3,−2)
and x = (0, 1, 1). This sorting procedure has cost O(|M|) as it is a classical problem of sorting
strings whose total length add up toM and can be carried with a variant of Bucketsort [12]. As
a result, for every pair 1 ≤ i < j ≤ n we have that s(i) ≥ s(j).

Let k′ be the largest integer no greater than k such that s(k′) > 0 and then de�ne x′ as the
instance that di�ers from x exactly on the �rst k′ features. We claim that M(x′) 6= M(x) if
and only if (M,x, k) is a positive instance of MinimumChangeReqired. The forward direction
follows from the fact that k′ ≤ k. For the backward direction, assume that (M,x, k) is a posi-
tive instance of MinimumChangeReqired. This implies that there is an instance y that di�ers
from x in at most k features, and for whichM(y) = 0. If y = x′, then we are immediately done,
so we can safely assume this is not the case.

We then de�ne, for any instance y ofM the function v(y) = 〈w,y〉. Note that an instance y
ofM is positive if and only if v(y) ≥ −b. Then, since we have thatM(y) = 0, it holds that v(y) <
−b. We now claim that v(x′) ≤ v(y):

Claim 3.7 For every instance y such that d(y,x) ≤ k and M(y) 6= M(x), it must hold

23

that v(x′) ≤ v(y).

Proof. For an instance z, let us write Cz for the set of features for which z di�ers from x. We
then have on the one hand

v(x′) =
∑

i∈Cx′\Cy

(1− xi)wi +
∑

i∈Cy∩Cx′

(1− xi)wi +
∑

i 6∈Cx′∪Cy

xiwi +
∑

i∈Cy\Cx′

xiwi

and on the other hand

v(y) =
∑

i∈Cy\Cx′

(1− xi)wi +
∑

i∈Cy∩Cx′

(1− xi)wi +
∑

i 6∈Cx′∪Cy

xiwi +
∑

i∈Cx′\Cy

xiwi

As the two middle terms are shared, we only need to prove that∑
i∈Cx′\Cy

(1− xi)wi +
∑

i∈Cy\Cx′

xiwi ≤
∑

i∈Cy\Cx′

(1− xi)wi +
∑

i∈Cx′\Cy

xiwi

which is equivalent to proving that∑
i∈Cx′\Cy ,xi=0

wi +
∑

i∈Cy\Cx′ ,xi=1

wi ≤
∑

i∈Cy\Cx′ ,xi=0

wi +
∑

i∈Cx′\Cy ,xi=1

wi

and by using the de�nition of importance, equivalent to∑
i∈Cx′\Cy ,xi=0

−s(i) +
∑

i∈Cy\Cx′ ,xi=1

s(i) ≤
∑

i∈Cy\Cx′ ,xi=0

−s(i) +
∑

i∈Cx′\Cy ,xi=1

s(i)

which can be rearranged into ∑
i∈Cy\Cx′

s(i) ≤
∑

i∈Cx′\Cy

s(i)

But this inequality must hold as C ′x is by de�nition the set C of features of size at most k that
maximizes

∑
i∈C s(i).

Because of the previous claim, and the fact that v(y) < −b, we conclude that v(x′) < −b, and
thusM(x′) 6= M(x). This concludes the backward direction, and thus, the fact that checking
whether M(x′) 6= M(x) is enough to solve the entire problem. Since x′ can be constructed
in linear time (including the initial sorting procedure), and the checkM(x′) 6= M(x) can also
be performed in linear time, we achieve the desired runtime. This concludes the proof of the
lemma.

Lemma 3.8 The MinimumChangeReqired query is NP-complete for MLPs.

In order to prove this lemma, we will prove �rst a general result about the ability of MLPs to
simulate arbitrary Boolean formulas. As it is well known that many problems are NP for Boolean
formulas (e.g. satis�ability, tautology, etc.) this simulation lemma will allow us to prove most
hardness result concerning MLPs.

In fact, and this will make the proof cleaner, we will show a slightly more general result:
that MLPs can simulate arbitrary Boolean circuits. Formally, we show:

24

Lemma 3.9 Given as input a Boolean circuit C , we can build in polynomial time an MLPMC

that is equivalent to C as a Boolean function.

Proof. We will proceed in three steps. The �rst step is to build from C another equivalent cir-
cuitC ′ that uses only what we call relu gates. A relu gate is a gate that, on inputx = (x1, . . . , xm) ∈
Rm, outputs relu(〈w,x〉 + b), for some rationals w1, . . . , wm, b. Observe that these gates do not
necessarily output 0 or 1, and so the circuit C ′ might not be Boolean. However, we will en-
sure in the construction that the output of every relu gate in C ′, when given Boolean inputs
(i.e., x ∈ {0, 1}m), is Boolean. This will imply that the circuit C ′ is Boolean as well. To this end, it
is enough to show how to simulate each original type of internal gate (not, or, and) by relu gates:

• not-gate: simulated with a relu gate with only one weight of value −1 and a bias of 1. It is
clear that for x ∈ {0, 1}, we have that

relu(−x+ 1) =

{
1 if x = 0

0 if x = 1

• and-gate of in-degree n: simulated with a relu gate with n weights, each of value 1, and a
bias of value −(n− 1). Indeed, it is clear that for x ∈ {0, 1}n, we have that

relu

(
n∑

i=1

xi − (n− 1)

)
=

{
1 if

∧n
i=1 xi = 1

0 otherwise

• or-gate of in-degree n: we �rst rewrite the or-gate with not- and and-gates using De Mor-
gan’s laws, and then we use the last two items.

The second step is to build a circuit C ′′, again using only relu gates, that is equivalent to C ′
and that is what we call layerized. This means that there exists a leveling function l : C ′′ → N that
assigns to every gate of C ′ a level such that (i) every variable gate is assigned level 0, and (ii) for
any wire g → g′ (meaning that g is an input to g′) in C ′′ we have that l(g′) = l(g)+1. To this end,
let us call a relu gate that has a single input and weight 1 and bias 0 an identity gate, and observe
then that the value of an identity gate is the same as the value of its only input, when this input is
in {0, 1}. We will obtain C ′′ from C ′ by inserting identity gates in between the gates of C ′, which
clearly does not change the Boolean function being computed. We can do so naïvely as follows.
First, we initialize l(g) to 0 for all the variable gates g ofC ′. We then iterate the following process:
select a gate g such that l(g) is unde�ned and such that l(g′) is de�ned for every input g′ of g.
Let g′1, . . . , g′m be the inputs of g, and assume that l(g′1) ≤ . . . ≤ l(g′m). For every 1 ≤ i ≤ m,
we insert a line of l(g′m)− l(g′i) identity gates in between g′i and g, and we set l(g) := l(g′m) + 1,
and we set the levels of the identity gates that we have inserted appropriately. It is clear that this
construction can be done in polynomial time and that the resulting circuit C ′′ is layerized.

Finally, the last step is to transform C ′′ into an MLP MC using only relu for the internal
activation functions and the step function for the output layer (i.e., what we simply call “an MLP”
in the paper), and that respects the structure given by our de�nition in Section 3.1 (i.e., where all
neurons of a given layer are connected to all the neurons of the preceding layer). We �rst deal
with having a step gate instead of a relu gate for the output. To achieve this, we create a fresh

25

identity gate g0, we set the output of C ′′ to be an input of g0, and we set g0 to be the new output
gate of C ′′ (this does not change the Boolean function computed). We then replace g0 by a step
gate (which, on input x ∈ R, outputs 0 if x < 0 and 1 otherwise) with a weight of 2 and bias
of −1, which again does not change the Boolean function computed; indeed, for x ∈ {0, 1}, we

have that step(2x− 1) =

{
1 if x = 1

0 if x = 0
.

The level of g0 is one plus the level of the previous output gate of C ′′. Therefore, to make C ′′
become a valid MLP, it is enough to do the following: for every gate g of level i and gate g′ of
level i + 1, if g and g′ are not connected in C ′′, we make g be an input of g′ and we set the
corresponding weight to 0. This clearly does not change the function computed, and the obtained
circuit can directly be regarded as an equivalent MLPMC . Since the whole construction can be
performed in polynomial time, this concludes the proof.

We can now go back to where we were, and prove Lemma 3.8. We state the Lemma once again
for convenience.

Lemma The MinimumChangeReqired query is NP-complete for MLPs.

Proof. Membership is easy to see, it is enough to non-deterministically guess an instance y and
check that d(x,y) ≤ k andM(x) 6=M(y).

In order to prove hardness, we reduce from Vertex Cover. An instance of Vertex Cover
consists in an undirected graph G and an integer k, and the goal is to decide whether there is a
subset S of at most k vertices such that every edge ofG touches a vertex in S. Let (G = (V,E), k)
be an instance of Vertex Cover, and let n denote |V |. Based onG, we build a formula ϕG, where
propositional variables correspond to vertices of G.

ϕG =
∧

(u,v)∈E

(xu ∨ xv)

It is clear that the satisfying assignments of ϕG correspond to the vertex covers of G, and
furthermore, that a satisfying assignment of Hamming weight k (number of variables assigned
to 1) corresponds to a vertex cover of size k.

Moreover, we can safely assume that there is at least 1 edge in G, as otherwise the instance
would be trivial, and a constant size positive instance of MCR would �nish the reduction. This
implies in turn, that we can assume that assigning every variable to 0 does not satisfy ϕG.

We now build an MLPMϕ from ϕG, using Lemma 3.9. We claim that the instance (Mϕ, 0
n, k)

is a positive instance of MinimumChangeReqired if and only if (G, k) is a positive instance of
Vertex Cover.

Indeed, 0n is a negative instance ofMϕ, as assigning every variable to 0 does not satisfy ϕG.
Moreover a positive instance of weight k for Mϕ corresponds to a satisfying assignment of

26

weight k for ϕG, which in turn corresponds to a vertex cover of size k for G. This is enough to
conclude the proof, recalling that both the construction of ϕG andMϕ take polynomial time.

3.3.2 The complexity of CheckSufficientReason

Theorem 3.10 The query CheckSufficientReason is (1) in PTIME for FBDDs, (2) in PTIME for
perceptrons, and (3) co-NP-complete for MLPs.

We prove each item in a separate lemma.

Lemma 3.11 The query CheckSufficientReason can be solved in linear time for FBDDs.

Proof. Let (M,x,y) be an instance of the problem, withM being an FBDD. We �rst check that x
is a completion of y, which can clearly be done in linear time. We the de�neM′ as the resulting
FBDD from the following procedure: (i) For every internal node in M with label i, delete its
outgoing edge with label 0 if yi = 1 and its outgoing edge with label 1 if yi = 0. We note here
thatM′ is not a well de�ned FBDDs, since some internal nodes may have only one outgoing edge:
more precisely, the valueM(x′) ∈ {0, 1} is well de�ned for every instance x′ that is a completion
of y, and is not de�ned for an instance x′ that is not a completion of y. To check whether y is a
su�cient reason, we can then simply check that every leaf that is reachable from the root inM′

is labeled the same (either true or false). This can be done in linear time with standard graph
algorithms.

Lemma 3.12 The query CheckSufficientReason can be solved in linear time for perceptrons.

Proof. Let (M = (w, b),x,y) be an instance of the problem. We �rst check in linear time that x
is a completion of y. We then get rid of the components that are de�ned by y, as follows. We
de�ne:

• A :=
∑

yi 6=⊥ yiwi;

• w′ := (wi | yi = ⊥); and

• b′ := b+ A;

and letM′ be the perceptron (w′, b′). Notice that the dimension ofM′ is equal to the number of
unde�ned components of y, which we can call m. It is then clear that y is a su�cient reason of x
underM if and only if every instance ofM′ is labeled the same. We can check this as follows.
Let J1 be the minimum possible value of 〈w′,x′〉 (for x′ ∈ {0, 1}m); J1 can clearly be computed
in linear time by setting x′i = 0 if w′i ≥ 0 and x′i = 1 otherwise. Similarly we can compute the
maximal possible value J2 of 〈w′,x′〉. Then, every instance ofM′ is labeled the same if and only
if it is not the case that J1 < −b′ and J2 ≥ −b′, thus concluding the proof.

Lemma 3.13 The query CheckSufficientReason is co-NP-complete for MLPs.

27

Proof. We �rst show membership in co-NP. Let (M,x,y) be an instance of the problem. Then y
is a su�cient reason of x underM if and only if all the completions of y are labeled the same
as x. Thus, a single completion y with a di�erent verdict than x serves as a certi�cate for the
complemented language.

In order to prove hardness we reduce from TAUT, the problem of checking whether an ar-
bitrary boolean formula is a satis�ed by all possible assignments of its variables. This problem
is known to be complete for co-NP. Let F be an arbitrary boolean formula. We use Lemma 3.9
to build an equivalent MLPM in polynomial time (with the features ofM corresponding to the
variables ofF). ThenF is a tautology if and only if all completions of the partial instance y = ⊥n
are positive instances ofM. First, we construct an arbitrary instance x (for instance, the one with
all the features being 0), and we reject ifM(x) = 0. Then, we accept if y is a su�cient reason
of x underM, and we reject otherwise. This concludes the reduction.

3.3.3 The complexity of MinimalSufficientReason

Recall that a partial instance y is said to be a minimal su�cient reason for an instance x under a
modelM if y is a su�cient reason for x underM and no proper subset of y is a su�cient reason
for x wrt.M.

Let us state the main theorem of this subsection.

Theorem 3.14 The query MinimalSufficientReason is (1) in PTIME for FBDDs, (2) in PTIME
for perceptrons, and (3) DP-complete for MLPs.

We start our way towards a proof by stating a folklore lemma that characterizes minimal su�-
cient reasons in a way that is easier to check. In order to do so, we introduce the notation y \{f},
for y a partial instance and f a feature, to mean the partial instance y′ that is equal to y, but for
which y′f = ⊥. If it was already the case that yf = ⊥, then x = x \ {f}.

Lemma 3.15 (Folklore) A partial instance y, that is de�ned for features f1, . . . fk is a minimal
su�cient reason for an instance x under a modelM if and only if y is a su�cient reason for x
underM and y \ {fi} is not a su�cient reason for x wrt.M for any 1 ≤ i ≤ k.

A simple proof of this lemma can be found for example in the work of Goldsmith et al. [26].

This simple lemma is enough to prove that checking minimal su�cient reasons is easy for both
FBDDs and Perceptrons

Lemma 3.16 If for a class of models C, the CheckSufficientReason query can be solved in
PTIME, then the MinimalSufficientReason query can be solved in PTIME as well.

Proof. Given a partial instance y, an instance x and a modelM ∈ C, Lemma 3.15 tells us that is
enough to verify that:

28

• the partial instance y is a su�cient reason for x underM. This can be done in PTIME by
hypothesis.

• for all de�ned features fi in y it happens that y \ {fi} is not a su�cient reason for x under
M. This requires using the hypothesis at most |M| times, which is an upper bound for the
number of de�ned components in y.

As both properties can be checked in polynomial time, we conclude the proof.

Lemma 3.17 The MinimalSufficientReason query can be solved in PTIME for FBDDs and
perceptrons.

Proof. It follows directly from combining Lemma 3.16, Lemma 3.10 and Lemma 3.12.

We now establish the complexity of this query for MLPs.

Lemma 3.18 The MinimalSufficientReason query is DP-complete for MLPs.

Proof. Remember that the class DP is the class of languages that correspond to the intersection
of a language in NP and a language in co-NP. Based on Lemma 3.15, the inputs that belong to
the MinimalSufficientReason language correspond precisely to the intersection between those
that belong to the CheckSufficientReason language, and those inputs such that for all removals
of a feature f from the input partial instance y one obtains a partial instance that is a su�cient
reason for the input instance x.

MinimalSufficientReason = CheckSufficientReason
∩ {(x,y,M) | ∀f ∈ y, (x,y \ {f},M) 6∈ CheckSufficientReason}

While the �rst language of the intersection is in co-NP because of Lemma 3.13, it is not hard to
see that the second one is in NP. Indeed, it is enough to guess one completion for each y \ {f}
that has opposite classi�cation from x. We conclude that the language is in DP.

In order to prove hardness, we use a result by Goldsmith et al. [26] stating that, given a Boolean
formula ϕ and a monomial C , it is DP-hard to decide whether C is a prime implicant2 of ϕ. The
reduction is straightforward: take an instance (ϕ,C), use Lemma 3.9 to build an MLPMϕ, let y
be the partial instance naturally induced by C , and x an arbitrary completion of y.

Claim 3.19 The monomial C is a prime implicant of ϕ if and only if y is a minimal su�cient
reason for x underMϕ.

2A monomial (that is, a conjunction of literals) C is said to be an implicant of a formula ϕ if the formula C =⇒ ϕ
is valid. An implicant C of a formula ϕ is said to be a prime implicant if no proper subset C ′ of C is an implicant.

29

A proof for this claim can be simpli�ed by adopting comfortable notation. In particular, we
want to go back and forth from the world of Boolean formulas and monomials to that of models
and instances. We thus de�ne the notation γ(y) = C as a way to say that y is the uniquely deter-
mined partial instance by monomial C . As this relation is bijective, we write as well γ−1(C) = y.
Let us note an important property that follows from this notation (?): for a monomial C and a
formula ϕ, the formula C is an implicant of ϕ (meaning that ϕ is satis�ed by every assignment of
its variables that satis�es C) if and only ifMϕ(x) = 1 for every instance x that is a completion
of γ−1(C). We introduce as well the notation y ⊆ x to re�ect that instance x contains partial
instance y, and similarly, we say C ′ ⊆ C if the literals in monomial C ′ are a subset of those in C .

Proof of Claim 3.19. For the forward direction, assume C is an implicant of ϕ, and then use (?) to
deduce thatMϕ(x) = 1 for every instance x that is a completion of γ−1(C) = y. As y ⊆ x by
construction, we conclude y is a su�cient reason for x underMϕ. To see minimality we reason
by contradiction. We assume, expecting a contradiction, that z (y is a su�cient reason for
Mϕ, and we denote C ′ = γ(z) (γ(y) = C . Then, because of (?), we have that C ′ must be
an implicant of ϕ, which contradicts the minimality of C as an implicant of ϕ. For the backward
direction, as we know thatM(x) = 1, and by hypothesis y is a su�cient reason for x wrt. M,
then every completion x′ of y = ϕ−1(C) holdsMϕ(x′) = 1, and thus we can use (?) to obtain
thatC is an implicant ofϕ. To see minimality, assume seeking a contradiction thatC is not a prime
implicant, but instead there is a monomial C ′ (C that is an implicant of ϕ. By using (?) again,
we deduce thatM(x) = 1 for every instance x that is a completion of γ−1(C ′) (γ−1(C) = y.
But this means that γ−1(C ′) is a su�cient reason for x wrt.M and strictly contained in y, which
contradicts the minimality of y.

Both membership and hardness being proved, we conclude completeness for the class DP.

3.3.4 The complexity of MinimumSufficientReason

Lemma 3.20 The MinimumSufficientReason query is NP-complete for FBDDs, and hardness
holds already for decision trees.

Proof. Membership in NP is clear, it su�ces to guess the instance y and check both that it has
less than k de�ned components and that is a su�cient reason for x, which can be done thanks
to Lemma 3.10. We will prove that hardness holds already for the particular case of decision
trees, and when the input instance x is positive. Hardness of this particular setting implies of
course the hardness of the general problem. In order to do so, we will reduce from the problem
of determining whether a directed acyclic graph has a dominating set of size at most k, which we
abbreviate as Dom-DAG. Recall that in a directed graph G = (V,E), a subset of vertices D ⊆ V
is said to be dominating if every vertex in V \D has an incoming edge from a vertex in D. The
problem of Dom-DAG is shown to be NP-complete in [36].

An illustration of the reduction is presented in Figure 3.5. Let (G = (V,E), k) be an instance
of Dom-DAG, and let us de�ne n := |V |. We start by computing in polynomial time a topological
ordering ϕ = ϕ1, . . . , ϕn ofG. Next, we will create an instance (T ,x, k) of k-SufficientReason
such that there is a su�cient reason of size at most k for x under the decision tree T if and only

30

12 3

4 5

6

(a) Example of an input
DAG. Nodes 2 and 5, cor-
responding to the mini-
mum dominating set of G
are emphasized.

5

4

2

1

6

3

(b) A topological ordering
ϕ of G.

3
6

1
2

4
5

5
1

6
1

2 5
4

2
4

5
(c) Resulting decision tree T . Edges to the left of a
node are always labeled with 0, and edges to the right
with 1. The leaves are not depicted for clarity, but:
if a node has no right child in the picture, then its
right child is true, and if it has no left child then its
left child is false. Note that in every diagonal there is
an emphasized node, which is either 2 or 5, implying
the partial instance (⊥, 1,⊥,⊥, 1,⊥) is a su�cient
reason for the instance x = (1, 1, 1, 1, 1, 1).

Figure 3.5: Illustration of the reduction from Dom-DAG to k-SufficientReason over decision
trees, for an example graph of 6 nodes.

if G has a dominating set of size at most k. We create the decision tree T , of dimension n, in 2
steps.

1. Create nodes v1, . . . , vn, where node vi is labeled with ϕi The node vn will be the root of T ,
and for 2 ≤ i ≤ n, connect vi to vi−1 with an edge labeled with 1. Node v1 is connected to
a leaf labeled true through an edge labeled with 1. We will denote the path created in this
step as π.

2. For every vertex ϕi create a decision tree Ti equivalent to the boolean formula

Fi =
∨

(ϕj ,ϕi)∈E

ϕj

and create an edge from vi to the root of Ti labeled with 0. If Fi happens to be the empty
formula, Ti is de�ned as false. Note that the nodes introduced by this step are all naturally
associated with vertices of G.

Step 2 takes polynomial time because boolean formulas in 1-DNF can easily be transformed
into a decision tree in linear time.

We now check that T is a decision tree. Since T has a tree structure, it is enough to check
that for every path from the root to a leaf there are no two nodes on the path that have the same
label (i.e., to check that T is a valid FBDD). Note that any path from the root vn to a leaf goes
�rst to a certain node vi in π, from where it either takes an edge labeled with 0, in case i 6= 1
or it simply goes to a leaf otherwise. In case i = 1, the path from the root goes exactly through
vn, vn−1, . . . , v1, which all have di�erent labels. In case i 6= 1, the path includes (i) nodes with
labels ϕn, ϕn−1, . . . , ϕi, and (ii) a subpath inside Ti. It is clear that all the labels in (i) are di�erent.
And as by construction Ti is a decision tree, no two nodes inside (ii) can have the same label. It

31

remains to check that no node in (i) can have the same label of a node in (ii). To see this, consider
that all the vertices ofG associated to the nodes in (ii) have edges to ϕi inG, and thus come before
ϕi in the topological order. But (i) is composed precisely by ϕi and the nodes who come after it in
the topological ordering, so (i) and (ii) have empty intersection.

Letx = 1n be the vector ofn ones. We claim that (T ,x, k) is a yes-instance of k-SufficientReason
if and only if (G, k) is a yes-instance of Dom-DAG.

Forward direction. Consider that there is a su�cient reason y for x under T of size at most
k. As x contains only 1s, y must contain only 1s and ⊥s. Consider the set S of components i
where yi = 1. Recalling that every vertex of G is canonically associated with a feature of T , we
will denote DS to the set of vertices of G that are associated with the features in S. It is clear that
|DS| ≤ k. We now prove that DS is a dominating set of G. First, in case DS = V , we are trivially
done. We know assume DS 6= V . Consider a vertex v ∈ V \ DS , corresponding to ϕi in the
topological ordering, and de�ne z as the completion of y where the features ϕj such that j > i,
are set to 1, and all other features that are unde�ned by y are set to 0. By hypothesis, z must be a
positive instance, and so its path on T must end in a leaf labeled with true. Note that the path of z
in T necessarily takes the path π created in Step 1 of the construction, up to the node vi, and then
enters its subtree Ti. Let t be the node of Ti whose leaf labeled with true ends the path of z in T ,
and ϕk its label and associated vertex in G. As feature t is set to 1, we must have either ϕk ∈ DS

(in case t is 1 because of y) or k > i (in case t is 1 by the construction of completion z). However,
the second case is not actually possible, as if k > i, that means vk comes before vi in path π, and
thus the path of z in T passes through vk, which has label ϕk before passing through vi. But the
path of z in T passes through t before ending, which also has label ϕk. This is contradicts the
already proven fact that T is a decision tree. We can therefore assume that ϕk belongs to DS .
Then, as t is a node of Ti, there must be an edge (ϕk, ϕi) inE because of the way Ti is constructed.
But this means that vertex v ∈ V \DS has an edge coming from ϕk ∈ DS , and so v is e�ectively
dominated by the set DS . As this holds for every v ∈ V \ DS , we conclude that DS is indeed a
dominating set of G.

Backward Direction. Consider that there is a dominating set D ⊆ V of size at most k.
Let SD be the set of features associated with D. We claim that the partial instance y that has 1
in the features that belong to SD, and is unde�ned elsewhere, is a su�cient reason for x, and
by construction its size is at most k. Consider an arbitrary completion z of y, we need to show
that z is a positive instance of T . For z not to be a positive instance, its path on T would have
to reach a leaf labeled with false. This can only happen by either taking the edge labeled wit h 0
from v1 (the last node in path π built in the construction), or inside a subtree Ti, corresponding to
a node vi whose associated feature in z is set to 0. We show that neither can happen. For the �rst
case, every dominating set must include ϕ1, the vertex in G associated with v1, as it is the �rst
element in the topological ordering ofG, and thus it must has in-degree 0, which implies ϕ1 ∈ D.
Therefore, it is not possible to take the edge labeled with 0 from v1. On the other hand, suppose the
path of z in Ti ends in a leaf labeled with false. Then, by construction of Ti, there is no vertex ϕj
such that (ϕj, ϕi) ∈ E whose associated feature is set to 1 in z. But as D is a dominating set,
either there is indeed a ϕj ∈ D such that (ϕj, ϕi) ∈ E or ϕi ∈ D. The �rst case is in direct
contradiction with the previous statement, as ϕj ∈ D implies, by our construction of y that the
feature associated with ϕj is set to 1. The second case also creates a contradiction, as if ϕi ∈ D,
then by construction y would have a 1 in the feature vi associated to ϕi, which contradicts the

32

assumption of the path of z entering Ti.

Lemma 3.21 The MinimumSufficientReason query can be solved in linear time for percep-
trons.

Proof. Let (M = (w, b),x, k) be an instance of the problem, and let d be the dimension of the
perceptron. We will assume without loss of generality thatM(x) = 1. In this proof, what we
call a minimum su�cient reason for x is a su�cient reason for x that has the least number of
components being de�ned. We show a greedy algorithm that computes a minimum su�cient
reason for x under M in time O(|M|). For each feature i of x we de�ne its importance s(i)
as wi if xi = 1 and −wi otherwise (just as we did in the proof of Lemma 3.6), and its penalty p(i)
as min(0, wi). Intuitively, s represents how good it is for a partial instance to be de�ned in a given
feature, and p represents the penalty or cost that a partial instance incurs by not being de�ned in
a given feature. We now assume that x and w have been sorted in decreasing order of score s.
For example, if originally w = (3,−5,−2) and x = (1, 0, 1), then after the sorting procedure
we have w = (−5, 3,−2) and x = (0, 1, 1). We now de�ne a function ψ that takes any partial
instance y as input and outputs the worst possible value for a completion of y:

ψ(y) := min
z:z is a completion of y

〈w, z〉 =
∑
yi 6=⊥

wiyi +
∑
yi=⊥

p(i).

The second equality is easy to see based on the de�nition of the function p, and the de�nition
of ψ implies that ψ(y) ≥ −b exactly when y is a su�cient reason. For 1 ≤ l ≤ d, we de�ne
yl as the partial instance of x such that yli is equal to xi if i ≤ l and to ⊥ otherwise. In simple
terms, yl is the partial instance obtained by taking the �rst l features of x; continuing our example
with x = (0, 1, 1), we have for instance y2 = (0, 1,⊥). Let j be the minimum index such that
ψ(yj) ≥ −b. Such an index always exists, because, since x is a positive instance, taking j = d is
always a valid index. Note that j can be computed in linear time.

We now prove that (†) the partial instanceyj is a minimum su�cient reason forx. By de�nition
we have that ψ(yj) ≥ −b, so yj is indeed a su�cient reason for x. We now need to show that yj
is minimum. Assume, seeking for a contradiction, that there is a su�cient reason y′ of x with
strictly less components de�ned than yj ; clearly we can assume without loss of generality that
y′ has exactly j − 1 components de�ned. We will now show that (?) yj−1 is a also a su�cient
reason for x, which is a contradiction since j was assumed to be the minimal index such that yj
is a su�cient reason of x, hence proving (†). If y′ = yj−1, we have that (?) is trivially true.
Otherwise, and considering that y′ and yj−1 have the same size, and that yj−1 is de�ned exactly
on the �rst j − 1 features, there must be at least a pair of features (m,n), with m ≤ j − 1 < n,
such that yj−1 is de�ned at featurem and y′ is not, and on the other hand y′ is de�ned at feature n
whereas yj−1 is not. In order to �nish the proof of (?), we will prove a simpler claim that will help
us conclude.

Claim 3.22 Assume that there is a pair of features (m,n) with m ≤ j − 1 < n such that
y′m = ⊥, yj−1

m 6= ⊥ and y′n 6= ⊥, yj−1
n = ⊥, and let y∗ be the resulting partial instance that is

equal to y′ except that y∗m := yj−1
m and y∗n := ⊥. Then we have that ψ(y∗) ≥ ψ(y′).

33

Proof of Claim 3.22. By de�nition, ψ(y∗) − ψ(y′) = p(n) − p(m) + wmy
j−1
m − wny

′
n = p(n) −

p(m) + wmxm − wnxn. But because the features in yj−1 are sorted in decreasing order of score,
it must hold that s(m) ≥ s(n). Using this last inequality and reasoning by cases on the values
xm, xn and on the signs of wm, wn, one can tediously check that ψ(y∗) − ψ(y′) ≥ 0 and thus
ψ(y∗) ≥ ψ(y′).

We now continue with the proof of (?). As a result of Claim 3.22, one can iteratively modify
y′ until it becomes equal to yj−1 in such a way that the value of ψ is never decreased along the
process, implying therefore that ψ(yj−1) ≥ ψ(y′). But ψ(y′) ≥ −b, because y′ is assumed to be
a su�cient reason, hence we have that ψ(yj−1) ≥ −b, implying that yj−1 is a su�cient reason
for x, and thus concluding the proof of (?). Therefore, (†) is proven, and since yj can clearly
be computed in polynomial time (in fact, the runtime of the whole procedure is dominated by
the sorting subroutine, which again has cost O(|M|) as it is a classical problem of sorting strings
whose total length add up toM and can be carried with a variant of Bucketsort [12]), this �nishes
the proof of the lemma; indeed, we can output Yes if j ≤ k and No otherwise.

Lemma 3.23 The MinimumSufficientReason query is Σp
2-complete for MLPs.

Proof. Membership in Σp
2 is clear, as one can non-deterministically guess the value of the k fea-

tures that would make for a su�cient reason, and then use an oracle in co-NP to verify that no
completion of that guess has a di�erent classi�cation. To show hardness, we will reduce from the
problem Shortest Implicant Core, de�ned and proven to be Σp

2-hard in [57, Theorem 1]. First,
we need a few de�nitions in order to present this problem. A formula in disjunctive normal form
(DNF) is a Boolean formula of the form ϕ = t1 ∨ t2 ∨ . . . ∨ tn, where each term ti is a conjunc-
tion of literals (a literal being a variable of the negation thereof). An implicant for φ is a partial
assignment of the variables of φ such that any extension to a full assignment makes the formula
evaluate to true; note that we can equivalently see an implicant of φ as what we call a su�cient
reason of φ. For a partial assignment C of the variables and for a set (or conjunction) of literals t,
we write C ⊆ t when for every variable x, if x ∈ t then C(x) = 1 and if ¬x ∈ t then C(x) = 0
and C(x) is unde�ned otherwise. An instance of Shortest Implicant Core then consists of a
DNF formula ϕ = t1 ∨ t2 ∨ . . . ∨ tn, together with an integer k. Such an instance is positive for
Shortest Implicant Core when there is an implicant C for ϕ such that C ⊆ tn.3

A reduction that does not work, and how to �x it on an example. In order to convey
the main intuition, we start by presenting a �rst tentative of a reduction that does not work.
Thanks to Lemma 3.9 we know that it is possible to build an MLPMϕ equivalent to ϕ. However,
doing so directly creates a problem: we would need to �nd a convenient instance x such that
(ϕ, k) ∈ Shortest Implicant Core if and only if (Mϕ,x, k) ∈ k-SufficientReason. A natural
idea is to consider tn as a candidate for x, but the issue is that tn does not necessarily include every
variable. The next natural idea is to try with x being an arbitrary completion of tn (interpreting tn
as the partial instance that is uniquely de�ned by its satisfying assignment). This approach fails
because there could be a su�cient reason of size at most k for such an x that relies on features

3Note that, in order to keep our notation consistent, we use the symbol ⊆ where Umans uses ⊇.

34

(variables) that are not in tn. We illustrate this with an example for n = 4.

ϕ := x1x5 ∨ x2 x6 ∨ x3x6 ∨ x1 x2x4 ∨ x1x3x5︸ ︷︷ ︸
t4

While it can be checked that (ϕ, 2) 6∈ Shortest Implicant Core, we have that the instance
(Mϕ, (1, 0, 1, 0, 1, 1), 2) is in fact a positive instance of k-SufficientReason, as the partial in-
stance that assigns 1 to x3 and x6 and is unde�ned for the rest of the features, is a su�cient reason
of size 2 for x. The issue is that we are allowing x6 to be part of the su�cient reason for x even
though x6 6∈ t4. We can avoid this from happening by splitting each variable that is not in tn, such
as x6, into k+ 1 variables, in such a way that de�ning the value of x6 would force us to de�ne the
value of all the k+ 1 variables, which is of course una�ordable. Continuing with the example, we
build the formula ϕ′ as follows:

ϕ′ :=
3∧

i=1

(
x1x5 ∨ xi

2 x
i
6 ∨ x3x

i
6 ∨ x1 xi

2x
i
4 ∨ x1x3x5

)

Now we can simply take (Mϕ′ ,x, 1) where x is an arbitrary completion of t4 over the new set
of variables, for example, one that assigns 1 to the features 1, 3 and 5, and 0 to all other features
(variables). Note that ϕ′ is not a DNF anymore, but this is not a problem, since we only need
to compute Mϕ′ . It is then easy to check that this instance is equivalent to the original input
instance.

The reduction. We now present the correct reduction and prove that it works. Let (ϕ, k) be an
instance of Shortest Implicant Core. LetXc be the set of variables that are not mentioned in tn.
We split every variable xj ∈ Xc into k + 1 variables x1

j , . . . x
k+1
j and for each i ∈ {1, . . . , k + 1}

we build ϕ(i) by replacing every occurrence of a variable xj , that belongs to Xc, by xi
j . Finally we

de�ne ϕ′ as the conjunction of all the ϕ(i). That is,

ϕ(i) := ϕ[xj → xi
j , for all xj ∈ Xc] (3.2)

ϕ′ :=
k+1∧
i=1

ϕ(i) (3.3)

Observe that any meaningful instance of Shortest Implicant Core has k < |tn|, so we can
safely assume that k is given in unary, making this construction polynomial.

We then use Lemma 3.9 to build an MLPMϕ′ from ϕ′, in polynomial time. The features of this
model correspond naturally to the variables of ϕ′, and thus we refer to both features and variables
without distinction. Let y be the instance that assigns 1 to every variable that appears as a posi-
tive literal in tn, and 0 to all other variables. We claim that (ϕ, k) ∈ Shortest Implicant Core
if and only if (Mϕ′ ,x, k) ∈ k-SufficientReason. For the forward direction, if there is an im-
plicant C ⊆ tn of ϕ, of size at most k, then we claim that C is also an implicant of each ϕ(i).
This follows from the fact that every assignment σ that is consistent with C and satis�es ϕ, has

35

a related assignment σi, that for every variable xj ∈ Xc assigns σi(xi
j) = σ(xj), and that is equal

to σ for every xj 6∈ Xc. It is clear that σi(ϕ(i)) = σ(ϕ), which concludes the claim. As C is an
implicant of each ϕ(i), it must also be an implicant of ϕ′. Then, as Mϕ′ is equivalent to ϕ′ (as
Boolean functions) by construction, and x is consistent with C because it is consistent with tn,
it follows that the partial instance that is induced by C is a su�cient reason for x underMϕ′ .
For the backward direction, assume there is a su�cient reason y for x underMϕ′ , whose size
is at most k, and let C ′ be its associated implicant for ϕ′. We cannot say yet that C ′ is a proper
candidate for being an implicant core of ϕ, as C ′ could contain variables not mentioned by tn.
Let us de�ne X ′c to be the set of variables of ϕ′ that are not present in tn. Intuitively, as there
are k + 1 copies of each variable of X ′c in ϕ′, no valuation of a variable in X ′c, for the formula ϕ,
can be forced by a su�cient reason of size at most k. We will prove this idea in the following
claim, allowing us to build an implicant C for which we can assure C ⊆ tn.

Claim 3.24 Assume that there is an implicant C ′ of size at most k for ϕ′, and let C be the partial
valuation that sets every variable x ∈ tn ∩ C ′ to C ′(x), and that leaves every other variable
unde�ned. Then C ′ is an implicant of size at most k for ϕ.

Proof of Claim 3.24. The set X ′c can be expressed as the union of k + 1 disjoint sets of variables,
namelyX1

c , . . . , X
k+1
c , whereX i

c contains all variables of the form xi
j . SinceC ′ contains at most k

literals, and there are k + 1 disjoint sets X i
c, there must exist an index l such that X l

c ∩ C ′ = ∅.
But then this implies that C is an implicant of ϕ(l). But ϕ(l) is equivalent to ϕ up to renaming of
the variables that are not present in C , therefore, the fact that C is an implicant of ϕ(l) implies
that C must be an implicant of ϕ as well.

By using Claim 3.24 we get that C is an implicant of ϕ. But we have that C ⊆ tn, which is
enough to conclude that (ϕ, k) ∈ Shortest Implicant Core and �nishes the proof of Lemma 3.23.

3.3.5 The complexity of CountCompletions

What follows is our main complexity result regarding the query CountCompletions, which
yields Theorems 3.1, 3.2, and 3.3 for the case of CC.

Theorem 3.25 The query CountCompletions is (1) in PTIME for FBDDs, (2) #P-complete for
perceptrons, and (3) #P-complete for MLPs.

The �rst claim follows almost directly from the de�nition of FBDDs [58]. For the second claim,
we will rely on the #P-hardness of the counting problem #Knapsack, as de�ned next:

De�nition 3.26 (#Knapsack) The #Knapsack problem is a function problem whose input is a
group of natural numbers s1, . . . , sn, k ∈ N, and its output is the number of subsetsS ⊆ {1, . . . , n}
such that

∑
i∈S si ≤ k.

The problem #Knapsack is well known to be #P-complete. Since we were not able to �nd a

36

proper reference for this fact, we prove it here by using the #P-hardness of the problem #Subset-
Sum. An input of the problem #SubsetSum consists of natural numbers s1, . . . , sn, k ∈ N, and the
output is the number of subsets S ⊆ {1, . . . , n} such that

∑
i∈S si = k. The problem #SubsetSum

is shown to be #P-complete in [8, Theorem 4]. From this we can deduce:

Lemma 3.27 (Folklore) The problem #Knapsack is #P-complete.

Proof. Membership in #P is trivial. We prove hardness by polynomial-time reduction from #Sub-
setSum. Let (s1, . . . , sn, k) ∈ Nn+1 be an input to #SubsetSum. It is clear that

#SubsetSum(s1, . . . , sn, 0) = #Knapsack(s1, . . . , sn, 0)

and that for k ≥ 1 we have

#SubsetSum(s1, . . . , sn, k) = #Knapsack(s1, . . . , sn, k)− #Knapsack(s1, . . . , sn, k − 1)

thus establishing the reduction.

We can now show the second claim of Theorem 3.25.

Lemma 3.28 The query CountCompletions is #P-complete for perceptrons.

Proof. Membership in #P is trivial. We show hardness by polynomial-time reduction from #Knap-
sack. Let (s1, . . . , sn, k) be an input of #Knapsack. LetM be the perceptron with weights s1, . . . , sn
and bias−(k+1). Remember that we consider only perceptrons that use the step activation func-
tion, so that an instance x ∈ {0, 1}n is positive forM if and only if

∑n
i=1 xisi − (k + 1) ≥ 0. It

is then clear that #Knapsack(s1, . . . , sn, k) = 2n − CountPositiveCompletions(M,⊥n), thus
establishing the reduction.

Finally, the third claim of Theorem 3.25 simply comes from the fact that MLPs can simulate
arbitrary Boolean formulas (Lemma 3.9), and the fact that counting the number of satisfying as-
signments of a Boolean formula (#SAT) is #P-complete.

Although the query CountCompletions is #P-complete for perceptrons, we can still show
that the complexity goes down to PTIME if we assume the weights and biases to be integers given
in unary; this is commonly called pseudo-polynomial time.

Theorem 3.29 The query CountCompletions can be solved in pseudo-polynomial time for
perceptrons (assuming the weights and biases to be integers given in unary).

The �rst part of the proof is to show how to transform in polynomial time and arbitrary in-
stance of CountPositiveCompletions for perceptrons (with the weights and bias being integers
given in unary) into an instance of #Knapsack that has the same number of solutions.

37

Lemma 3.30 Let M = (w, b) be a perceptron having at least one positive instance, with its
weights and bias being integers given in unary,

and letx be a partial instance. Then, one can build in polynomial time an input (s1, . . . , sm, k) ∈
Nm+1 of #Knapsack such that CountPositiveCompletions(M,x) = #Knapsack(s1, . . . , sm, k),
with s1, . . . , sm, k written in unary (i.e., their value is polynomial in the input size).

Proof. The �rst step is to get rid of the components that are de�ned by x, as follows. We de�ne:

• A :=
∑

xi 6=⊥ xiwi;

• w′ := (wi | xi = ⊥);

• b′ := b+ A;

and letM′ be the perceptron (w′, b′). Notice that the dimension ofM′ equals the number of unde-
�ned components of x, which we callm. We then have that CountPositiveCompletions(M,x)
is equal to the number of positive instances ofM′, that is, of instances x′ ∈ {0, 1}m that satisfy

〈w′,x′〉+ b′ ≥ 0 (3.4)
Now, let J be the maximum possible value of 〈w′,x′〉; J can clearly be computed in linear time
by setting x′i = 1 if w′i ≥ 0 and x′i = 0 otherwise. We then claim that the number of solutions to
Equation 3.4 is equal to the number of solutions of

〈s,x′〉 ≤ k, (3.5)
where si := |w′i| for 1 ≤ i ≤ m and k := J + b′. Indeed, consider the function h : {0, 1}m →
{0, 1}m de�ned componentwise by h(x′i) := x′i ifw′i < 0 and h(x′i) := 1−x′i otherwise. Then h is a
bijection, and we will show that for any x′ ∈ {0, 1}m, we have that x′ satis�es Equation 3.4 if and
only if h(x′) satis�es Equation 3.5, from which our claim follows. In order to see this, consider
that

(3) ⇐⇒
∑

i

w′ix
′
i ≥ −b′ ⇐⇒

∑
wi≥0

w′ix
′
i +
∑
wi<0

w′ix
′
i ≥ −b′ (3.6)

⇐⇒
∑
wi≥0

|w′i|x′i −
∑
wi<0

|w′i|x′i ≥ −b′ (3.7)

⇐⇒
∑
wi<0

|w′i|x′i −
∑
wi≥0

|w′i|x′i ≤ b′ (3.8)

(3.9)

On the other hand, we have
h(x′) satis�es (4) ⇐⇒

∑
i

|w′i|h(x′i) ≤ J + b′ (3.10)

⇐⇒
∑
wi<0

|w′i|x′i +
∑
wi≥0

|w′i|(1− x′i) ≤
∑
wi≥0

|w′i|+ b′ (3.11)

⇐⇒ (7) (3.12)

38

Last, let us observe that we have k ≥ 0, as otherwiseMwould not have any positive instance.
Therefore (s1, . . . , sm, k) is a valid input of #Knapsack, which concludes the proof.

We can now easily combine Lemma 3.30 together with a well-known dynamic programming
algorithm solving #Knaspsack in pseudo-polynomial time.

Proof of Theorem 3.29. Let M = (w, b) be a perceptron, with the weights and bias being inte-
gers given in unary, and let x be a partial instance. First, we check that the maximal value
of 〈x,w〉 is greater than −b, as otherwise M has no positive instance and we can simply re-
turn 0. We then use Lemma 3.30 to build in polynomial time an instance (s1, . . . , sm, k) ∈ Nm+1

of #Knapsack such that CountPositiveCompletions(M,x) = #Knapsack(s1, . . . , sm, k), and
with s1, . . . , sm, k being written in unary (i.e., their value is polynomial in the input size). We can
then compute #Knapsack(s1, . . . , sm, k) by dynamic programming as follows. For i ∈ {1, . . . ,m}
and C ∈ N, de�ne the quantity DP[i][C] := |{S ⊆ {1, .., i}|

∑
j∈S sj ≤ C}|. We wish to com-

pute DP[m][k]. We can do so by computing DP[i][C] for i ∈ {1, . . . ,m} and C ∈ {0, . . . , k},
using the relation DP[i + 1][C] = DP[i][C] + DP[i][C − si+1], and starting with the convention
that DP[0][a] = 0 for all a < 0 and that DP[0][a] = 1 for all a ≥ 0. It is clear that the whole
procedure can be done in polynomial time.

Theorem 3.29 result establishes a di�erence between perceptrons and MLPs in terms of CC, as
this query remains #P-complete for the latter even if weights and biases are given as integers in
unary. Another di�erence is established by the fact that CountCompletions for perceptrons can
be e�ciently approximated, while this is not the case for MLPs. To present this idea, we brie�y
recall the notion of fully polynomial randomized approximation scheme (FPRAS [34]), which is
heavily used to re�ne the analysis of the complexity of #P-hard problems. Intuitively, an FPRAS
is a polynomial time algorithm that computes with high probability a (1 − ε)-multiplicative ap-
proximation of the exact solution, for ε > 0, in polynomial time in the size of the input and in the
parameter 1/ε. We show:

Theorem 3.31 The problem CountCompletions restricted to perceptrons admits an FPRAS
(and the use of randomness is not even needed in this case). This is not the case for MLPs, on the
other hand, at least under standard complexity assumptions.

The fact that the query has no FPRAS for MLPs is because MLPs can e�ciently simulate
Boolean formulas (Lemma 3.9), and it is well known that the problem #SAT (of counting the
number of satisfying assignments of a Boolean formula) has no FPRAS unless NP = RP. Hence
we only need to prove our claim concerning perceptrons.

Proof of Theorem 3.31 for perceptrons. We can assume without loss of generality that the weights
and bias are integers, as we can simply multiply every rational by the lowest common denominator
(note that the bit lenght of the lowest common denominator is polynomial, and that it can be
computed in polynomial time4). We then transform the perceptron and partial instance to an

4We need to compute the least common multiple (lcm) of a set of integers a1, . . . , an. Indeed, it is easy to check
that lcm(a1, . . . , an) = lcm(lcm(a1, . . . , an−1), an), which reduces inductively the problem to computing the lcm
of two numbers in polynomial time. It is also easy to check that lcm(a1, a2) = a1a2

gcd(a1,a2)
, where gcd(a1, a2) is

39

input of #Knapsack with the right number of solutions using Lemma 3.30, by observing that the
construction also takes polynomial time when the input weights are given in binary (and by
considering that the s1, . . . , sm, k are also computed in binary). We can then apply an FPTAS to
this #Knapsack instance, as shown in [28, 49].

the greatest common divisor of a1 and a2. As multiplication can clearly be carried in polynomial time, and Euclid’s
algorithm allows computing the gcd function in polynomial time, we are done.

40

Chapter 4

The parameterized complexity of

interpreting Neural Networks: deeper is

harder than shallow

In Section 3.3.1 we proved that for MLPs the MinimumChangeReqired query is in NP, and
that this holds no matter the number of layers the MLPs have. Moreover, a careful inspection of
our proofs reveals that MCR is already NP-complete for MLPs with only a few layers1. This is
not something speci�c to MCR: in fact, all lower bounds for the queries studied in this work in
terms of MLPs hold for a small, �xed number of layers. Henceforth, we cannot di�erentiate the
interpretability of shallow and deep MLPs with the classical complexity classes that we have used
so far.

In this section, we show how to construct a gap between the (complexity-based) interpretabil-
ity of shallow and deep MLPs by considering re�ned complexity classes in our c-interpretability
framework. In particular, we use parameterized complexity [18, 22], a branch of complexity the-
ory that studies the di�culty of a problem in terms of multiple input parameters. We introduce
its main underlying idea in terms of two classical graph problems: VertexCover and Cliqe.
In both problems the input is a pair (G, k) with G a graph and k an integer. In VertexCover
we verify if there is a set of nodes of size at most k that includes at least one endpoint for every
edge in G. In Cliqe we check if there is a set of nodes of size at most k such that all nodes in
the set are adjacent to each other. Both problems are known to be NP-complete. However, this
analysis treats G and k at the same level, which might not be fair in some practical situations
in which k is much smaller than the size of G. Parameterized complexity then studies how the
complexity of the problems behaves when the input is only G, and k is regarded as a small pa-
rameter. It happens to be the case that VertexCover and Cliqe, while both NP-complete, have
a di�erent status in terms of parameterized complexity. Indeed, VertexCover can be solved in
time O(2k · |G|), which is polynomial in the size of the input G – with the exponent not de-
pending on k – and, thus, it is called �xed-parameter tractable [18]. In turn, it is widely believed
that there is no algorithm for Cliqe with time complexity O(f(k) · poly(G)) – with f being

1The presented proof implies hardness for 3 layers, and it is not hard to see that the anti-monotone formula for
independent set can be implemented with 2 layers.

41

any computable function, that depends only on k – and thus it is �xed-parameter intractable [18].
To study the notion of �xed-parameter intractability, researchers on parameterized complexity
have introduced the W [t] complexity classes (with t ≥ 1), which form the so called W -hierarchy.
For instance Cliqe is W [1]-complete [18]. A central assumption in parameterized complexity is
that W [t] (W [t + 1], for every t ≥ 1. We now proceed to explain the required bits of parame-
terized complexity theory that are needed to prove our results.

4.1 Required background in parameterized complexity

A parameterized problem is a language L ⊆ Σ∗ × N, where Σ is a �nite alphabet. For each
element (x, k) of a parameterized problem, the second component is called the parameter of the
problem. A parameterized problem is said to be �xed parameter tractable (FPT) if the question of
whether (x, k) belongs toL can be decided in time f(k)·|x|O(1), where f is a computable function.

The FPT class, as well as the other classes we will introduce in this work, are closed under
a particular kind of reductions. A mapping φ : Σ∗ × N → Σ∗ × N between instances of a
parameterized problem A to instances of a parameterized problemB is said to be an fpt-reduction
if and only if

• (x, k) is a yes-instance of A ⇐⇒ φ(x, k) is a yes-instance of B;

• φ(x, k) can be computed in time |x|O(1) · f(k), for a computable function f ; and

• there exists a computable function g such that k′ ≤ g(k), where k′ is the parameter of φ(x).

We de�ne the complexity classes that are relevant for this work in terms of circuits. Recall
that a circuit is a rooted directed acyclic graph2 where nodes of in-degree 0 are called input gates,
and that the root of the circuit is called the output gate. Internal gates can be either Or, And, or
Not gates. All Not nodes have in-degree 1. Nodes of types And, Or can either have in-degree
at most 2, in which case they are said to be small gates3, or in-degree bigger than 2, in which
case they are said to be large gates. The depth of a circuit is de�ned as the length (number of
edges) of the longest path from any input node to the output node. The weft of a circuit is de�ned
as the maximum amount of large gates in any path from an input node to the output node. An
assignment of a circuit C is a function from the set of input gates in C to {0, 1}. The weight of an
assignment is de�ned as the number of input gates that are assigned 1. Assignments of a circuit
naturally induce a value for each gate of the circuit, computed according to the label of the gate.
We say an assignment satis�es a circuit if the value of the output gate is 1 under that assignment.

The main classes we deal with are those composing the W-hierarchy and the W(Maj)- hier-
archy, a variant proposed in [20] by Fellows et al. These complexity classes can be de�ned upon
the Weighted Circuit Satisfiability problem, parameterized by speci�c classes C of circuits,
as de�ned below.

2Note that under this de�nition multiple parallel edges are allowed. Although this is not useful for circuits with
(Or,And,Not)-gates, it allows circuits with more complex gates, such as majority gates (that are satis�ed when
more than half its inputs are 1) to receive multiple times a same input.

3The And, Or gates with in-degree 1 compute the unary identity function.

42

Problem: Weighted Circuit Satisfiability(C), abbreviated WCS(C)
Input: A circuit C ∈ C

Parameter: An integer k
Output: Yes, if there is a satisfying assignment of weight exactly k for C ,

and No otherwise.

We consider two restricted classes of circuits. First, Ct,d, the class of circuits using the con-
nectives And, Or, Not that have weft at most t and depth at most d. On the other hand, we
consider Mt,d, the class of circuits that use the majority connective Maj (that is satis�ed exactly
when more than half of its inputs are true), have weft at most t and depth at most d. Note that in
the case of majority gates, a gate is said to be small if its fan-in is at most 3.

We can then de�ne each class W[t] as the set of problems that can be fpt-reduced to WCS(Ct,d)
for some constant d. Similarly, each class W(Maj)[t] corresponds to the set of problems that can
be fpt-reduced to WCS(Mt,d) for some constant d.

Note that fpt-reductions are transitive, and thus the classes W[t] and W(Maj)[t] are closed
under fpt-reductions. Showing that a parameterized problem A is W[t]-hard (resp., W(Maj)[t]-
hard) is usually complicated, as using this de�nition one would have to show that, for every
�xed d ∈ N, there exists an fpt-reduction fd from WCS(Ct,d) (resp., from WCS(Mt,d)) to A.
Instead, it is usually more convenient to prove �rst some form of normalization theorem stating
that a particular class of circuits, for which one knows the value of d, is already hard for W[t]
(or W(Maj)[t]). Useful normalization theorems for the W -hierarchy are proved in the work of
Downey et al. [17, 19], or Buss et al. [11]. We provide a loose normalization theorem for the
W(Maj)-hierarchy in Lemma 4.4, that is used to derive hardness.

4.2 Statement of a parameterized result and sketch of proof

Given an MLP M, with the dimension of the layers being d0, . . . , dk, we de�ne its graph size
as N :=

∑k
i=0 di. We say an MLP with graph size N is restricted (abbreviated as rMLP) if each of

its weights and biases can be represented as a decimal number with at most log(N) digits. More
precisely, represented as

∑K
i=−K ai10i, for integers 0 ≤ ai ≤ 9 and K ∈ O(logN). Note that

all numbers expressible in this way are also expressible by fractions, where the numerator is an
arbitrary integer bounded by a polynomial in N , and the denominator is a power of 10 whose
value is bounded as well by a polynomial in N .

We now explicit the parameterized problem, or more precisely, a family of parameterized prob-
lems indexed by an integer t ≥ 1.

Problem: t-MinimumChangeReqired, abbreviated t-MCR
Input: An rMLPM with at most t layers, an instance x

Parameter: An integer k
Output: Yes, if there exists an instance y with d(x,y) ≤ k

andM(x) 6=M(y), and No otherwise

We now have enough notation to explicit our results.

43

Theorem 4.1 For every t ≥ 1, the (3t + 3)-MCR problem is W(Maj)[t]-hard and is contained
in W(Maj)[3t+ 7].

As the proof of Theorem 4.1 is quite involved, we �rst present a sketch proof that summarizes
the process.

Hardness. We start by showing in Lemma 4.4 that the problem WCS(M3t+2,3t+3) is W(Maj)[t]-
hard; the main di�culty here is to reduce the depth d of the majority circuits, for any �xed d ∈ N,
to a depth of at most 3t + 3. We then show in Lemma 4.2 that rMLPs can simulate majority
circuits, without increasing the depth of the circuit. In Theorem 4.5 we use this construction
to show an fpt-reduction from WCS(M3t+2,3t+3) to (3t + 3)-MCR. This is enough to conclude
hardness for W(Maj)[t].

Membership. Presented in Theorem 4.7, the proof consists of 4 steps. We �rst show in
Lemma 4.3 how to transform a given rMLPM that into an MLPM′ that uses only step activation
functions and that has the same number of layers. Then, as a second step, we build an MLPM′′,
with 3t+4 layers and again using only the step activation function, such thatM′′ has a satisfying
assignment of weight k if and only if (M,x, k) is a positive instance of the t-MCR problem. The
third step is to use a result of circuit complexity [25] stating that circuits with weighted thresholds
gates (which are equivalent to biased step functions), can be transformed into circuits using only
majority gates, increasing the depth by no more than 1. This yields a circuit CM′′ with 3t + 5
layers. However, the circuit CM′′ , resulting from the construction of Goldmann et al. [25], has
both positive variables and negated variables as inputs, as their model needs to be able to repre-
sent non-monotone functions. For the fourth and last step, we build a circuit C∗M′′ based on CM′′ ,
that �ts the description of majority circuits as de�ned by [20, 21] (i.e., the one that we use). This
circuit C∗M′′ has weft 3t+7, and we prove that (C∗M′′ , k+1) is a positive instance of the Weighted
Circuit Satis�ability problem that characterizes the class W(Maj)[t] if and only if (M,x, k) is a
positive instance of the (3t + 3)-MCR problem. The whole construction being an fpt-reduction,
this will be enough to conclude membership in W(Maj)[3t+ 7].

4.2.1 The graph interpretation of (r)MLPs

We remark here that (r)MLPs can be interpreted as well as rooted directed acyclic graphs, with
weighted edges and where each node is associated a layer according to its (unweighted) distance
from the root. Every node in a certain layer ` is connected to every node in layers `− 1 and `+ 1.
This equivalent interpretation turns out to be more handy for some of the proofs in this section.

4.3 Constructions and transformations

In this subsection we present the relevant constructions and transformations between the di�erent
kind of circuits and MLPs that are involved in the proof of Theorem 4.1.

We �rst prove that a circuit containing only majority gates can be simulated by an rMLP.

Lemma 4.2 Given a circuit C containing only majority gates, we can build in polynomial time
an rMLP that is equivalent to C (as a Boolean function) and whose number of layers is equal to

44

the depth of C .

Proof. First, note that we can assume that circuit C does not contain parallel edges by replacing
each gate g having p edges to a gate g′ by p copies g1, . . . , gp with single edges to g′. We then build
a layerized circuit (remember the de�nition of a layerized circuit from Lemma 3.9) C ′ from C , by
applying the same construction that we used in Lemma 3.9 to layerize a circuit, but using unary
majority gates as identity gates instead. Note that the depth of C ′ is the same as that of C .

Next, we show how each non-output majority gate can be simulated by using two relu-gates
(again, remember the de�nition of a relu gate from Lemma 3.9). First, note that (†) for any non-
negative integers x, n ∈ N, the function

fn(x) := relu
(
x−

⌊n
2

⌋)
− relu

(
x−

⌊n
2

⌋
− 1
)

is equal to

Majn(x) =

{
1 if x > n

2

0 otherwise
.

We will use (†) to transform the majority circuit C ′ into a circuit C ′′ that has only relu gates for
the non-output gates, and that is equivalent to C ′ in a sense that we will explain next. For every
non-output majority gate g of C ′, we create two relu gates g′1, g′2 of C ′′. The idea is that (?) for
any valuation of the input gates (we identify the input gates of C ′ with those of C ′′), the Boolean
value of any non-output gate g inC ′ will be equal to the (not necessarily Boolean) value of gate g′1
(in C ′′) minus the value of the gate g′1 (in C ′′). We now explain what are the biases of these new
gates g′1, g′2 for every majority gate g of C ′. Letting n be the in-degree of a majority gate g in C ′,
the bias of g′1 is −bn

2
c, and that of g′2 is −bn

2
c − 1. Next, we explain what the weights of these

new gates g′1, g′2 are, and how we connect them to the other relu gates. We do this by a bottom-up
induction on C ′, that is, on the level of the gates of C ′ (since C ′ is layerized), and we will at the
same time show that (?) is satis�ed. To connect the gates g′1, g′2 to the gates of the preceding layer,
we di�erentiate two cases:

Base case. The inputs of the gate g are variable gates; in other words, the level of g in C ′ is 1
(remember that variable gates have level 0). We then set these variable gates to be an input of
both g′2 and g′2, and set all the weights to 1. It is clear that (?) is satis�ed for the gates g, g′1, g′2,
thanks to (†).

Inductive case. The inputs of the gate g are other majority gates; in other words, the level of g
in C ′ is > 1. Then, let 1g, . . . ,m g be the inputs4 (majority gates) of the gate g in C ′, and
consider their associated pairs of relu gates (1g′1,

1 g′2), . . . , (mg′1,
m g′2) in C ′′. We then set all

the gates 1g′1, . . . ,
m g1 to be input gates of both gates g′1 and g′2, with a weight of 1, and set

all the gates 1g2, . . . ,
m g2 to be input gates of both gates g′1 and g′2, with a weight of −1. By

induction hypothesis, and using again (†), it is clear that (?) is satis�ed.

Finally, based on the output gate r of C ′, we create a step gate r′ in C ′′ in the following way.
Let 1g, . . . ,m g be the inputs of r, and (1g′1,

1 g′2), . . . , (mg′1,
m g′2) their associated pairs in C ′′. Then

wire each gate ig′1 to r′ with weight 1, and also wire each gate ig′2 to r′ with weight −1. Let
−bn

2
c − 1 be the bias of r′.

4Please excuse the use of left superscripts.

45

We have constructed a circuit C ′′ whose output gate is a step gate, and all other gates are
relu gates. Consider now a valuation x of the input gates of C ′, which we identify as well as a
valuation x′ of the input gates of C ′′. We claim that C ′(x) = 1 if and only if C ′′(x′) = 1. But this
simply comes from the fact that for x, n ∈ N, we have x > n

2
⇐⇒ x ≥ bn

2
c + 1, and from the

fact that (?) is satis�ed for the input gates of r and of r′.

The last thing that we have to do is to transform the circuitC ′′, that uses only relu gates except
for its output step gate, into a valid MLP. This can be done easily as in the proof of Lemma 3.9 by
adding dummy connections with weights zero, because C ′′ is layerized. The resulting MLPMC

is then equivalent to C , it is clearly an rMLP, its number of layers is exactly the depth of C , and,
since we have constructed it in polynomial time, this concludes the proof.

We now prove that MLPs using only step activation functions are powerful enough to simulate
MLPs that use relu activation functions in the internal layers (and a step function for the output
neuron), if we assume all weights and biases to be rationals and representable with a bounded
number of bits. The construction is polynomial on the width (maximal number of neurons in a
layer) of the given relu-MLP, but exponential on its depth (number of layers). We show:

Lemma 4.3 Given an rMLPM with relu activation functions, there is an equivalent rMLPM′

that uses only step activation functions. Moreover, if the number of layers ofM is bounded by a
constant, thenM′ can be computed in polynomial time.

Proof. Let (W (1), . . . ,W (`)), (b(1), . . . , b(`)) and (f (1), . . . , f (`)) be the sequences of weights, bi-
ases, and activation functions of the rMLPM. Note that f (i) for 1 ≤ i ≤ `−1 is relu and that f (`)

is the step activation function. The �rst step of the proof is to transform every weight and bias into
an integer. To this end, let L ∈ N, L > 0 be the lowest common denominator of all the weights
and biases, and letM′ be the MLP that is exactly equal toM except that all the weights have
been multiplied by L, and all the biases of layer i have been multiplied by Li. Observe thatM′

has only integer weights and biases. When w (resp., b) is a weight (resp., bias) ofM, we write w′
(resp., b′) the corresponding value inM′. We claim thatM andM′ are equivalent, in the sense
that for every x ∈ {0, 1}n, it holds thatM(x) =M′(x). Indeed, for 0 ≤ i ≤ `, let h(i) and h′(i)

be the vectors of values for the layers ofM andM′, respectively, as de�ned by Equation 3.1. We
will show that (?) for all 1 ≤ i ≤ `− 1 we have h′(i) = Li × h(i). The base case of i = 0 (i.e., the
inputs) is trivially true. For the inductive case, assume that (?) holds up to i and let us show that
it holds for i + 1. We have:

h′(i+1) = relu(h′(i)W ′(i+1) + b′(i+1))

= relu(L× h′(i)W (i+1) + Li+1 × b(i+1)) by the de�nition ofM′

= relu(Li+1 × h(i)W (i+1) + Li+1 × b(i+1)) by inductive hypothesis
= Li+1 × relu(h(i)W (i+1) + b(i+1)) by the linearity of relu

= Li+1 × h(i+1),

46

and (?) is proven. Since the step function (used for the output neuron) satis�es step(cx) =
c step(x) for c > 0, we indeed have thatM(x) =M′(x).

We now show how to build a modelM′′ that uses only step activation functions and that is
equivalent to M′. The �rst step is to prove an upper bound for the values in h′. We start by
bounding the values in h. Let D be width ofM, that is, the maximal dimension of a layer ofM,
and let C be the maximal absolute value of a weight or bias in M; note that the value of C is
asymptotically bounded by |M|O(1) becauseM is an rMLP. For every instance x, we have that

0 ≤ h
(i)
j = relu

(∑
k

h
(i−1)
k W

(i)
k,j + b

(i)
j

)
≤ DC max

k
h

(i−1)
k + C ≤ (D + 1)C max(1,max

k
h

(i−1)
k)

Using this inequality, and the fact that maxk h
(0)
k ≤ 1, we obtain inductively that 0 ≤ h

(i)
j ≤

((D + 1)C)i. By (?), this implies that 0 ≤ h
′(i)
j ≤ ((D + 1)CL)i.

As all values (weights, biases and the h′ vectors) in M′ consist only of integers, and are all
bounded by the integer S := ((D+ 1)CL)`, then each relu inM′ with bias b becomes equivalent
to the following function f ∗:

f ∗(x+ b) := [x+ b ≥ 1] + [x+ b ≥ 2] + . . .+ [x+ b ≥ S] (4.1)

Where [y ≥ j] := 1 if y ≥ j and 0 otherwise. Hence, in order to �nish the proof, it is
enough to show how activation functions of the form f ∗ can be simulated with step activation
functions. Namely, we show how to buildM′′, that uses only step activation functions, fromM′,
in such a way that both models are equivalent. In order to do so, we replace each f (i),W ′(i), b′(i)

for 1 ≤ i ≤ ` in the following way. If i = `, then nothing needs to be done, as f (`) is already
assumed to be a step activation function. When 1 ≤ i < `, we replace the weights, activations and
biases in a way that is better described in terms of the underlying graph of the MLP. We split every
internal node, with bias b into S copies, all of which will have the same incoming and outgoing
edges as the original nodes, with the same weights. The j-th copy will have a bias equal to b− j.
We illustrated this step in Figure 4.1. This construction is an exact simulation of the function f ∗
de�ned in Equation 4.1.

The computationally expensive part of the algorithm is the replacement of each node inM′

by S nodes, which takes time at most S = ((D + 1)CL)` ∈ O(|M|`(CL)`) per node and thus at
most O(|M|`+1(CL)`) in total. Since ` is a constant, and C is bounded by a polynomial onM,
we only need to argue that L is bounded as well. Indeed, as M is an rMLP, each weight and
bias can be assumed to be represented as a fraction whose denominator is a power of 10 of value
polynomial in the graph size N ofM. But the lowest common multiple of a set of powers of 10
is exactly the largest power of 10 in the set. Therefore L ≤ 10p, where p ∈ O(logN), and
thus L ∈ O(N c) ⊆ O(|M|c) for some constant c. We conclude from this that the construction
takes polynomial time.

47

≥ 1 ≥ 2 ≥ 3

Figure 4.1: Illustration of the conversion from a relu activation function to step activation func-
tions, for S = 3. The weights are unchanged, and if the bias of the original neuron was b then the
bias in the j-th copy of that neuron becomes b− j.

4.4 A proof for Theorem 4.1

Based on the de�nitions presented in Section 4.1, the only hard problem for the class W(Maj)[t]
we know of is that of WCS(Mt,d). A priori, the constant d required to get hard instances could be
arbitrarily high, and so we start by proving a modest normalization theorem, that states that d =
3t+ 3 is enough to have hard instances for the class W(Maj)[t].

Lemma 4.4 (Normalization) The problem WCS(M3t+2,3t+3) is W(Maj)[t]-hard.

Proof. A signi�cant part of this proof is based on techniques due to Fellows et al. [20] and to Buss
et al. [11]. Let C be an arbitrary majority circuit of weft at most t and depth at most d ≥ t for
some constant d, and let k be the parameter of the input instance. We de�ne a small sub-circuit as
a maximally connected sub-circuit comprising only small gates. Now, consider a path π from an
arbitrary input node of C to its output gate. We claim that π intersects at most t + 1 small sub-
circuits. Indeed, there must be at least one large gate separating every pair of small sub-circuits
intersected by π, as otherwise the maximality assumption would be broken. But in π, as in any
path, there are at most t large gates, because of the weft restriction, from where we conclude the
claim. Now, for each small sub-circuit S, consider the set IS of its inputs (that may be either large
gates or input nodes of C). As small gates have fan-in at most 3, and the depth of each small
sub-circuit is at most d, we have that |IS| ≤ 3d. We can thus enumerate in constant time all the
satisfying assignments of S. We identify each assignment with the set of variables to which it
assigns the value 1. We keep a set Γ with the satisfying assignments among IS that are minimal
with respect to⊆. Then, because of the fact that majority circuits are monotone, S can be written
in monotone DNF as

S ≡
∨
γ∈Γ

∧
x∈γ

x

Note that the size of Γ is trivially bounded by the constant 23d . We then build a circuit C ′,
based on C , by following these steps:

1. Add 3d(k + 1) extra input nodes. We distinguish the �rst, that we denote as u, from

48

the 3d(k + 1)− 1 remaining, that we refer to by N .

2. Add a new output gate that is a binary majority between the old output gate and the node u.

3. Replace every small sub-circuit S by its equivalent monotone DNF formula, consisting of
one large ∨-gate and many large ∧-gates.

4. Relabel every large ∨-gate, of fan-in ` ≤ 23d created in the previous step to be a majority
gate with the same inputs, but to which one wires as well ` parallel edges from the input
node u.

5. Relabel every large ∧-gate g, of fan-in ` ≤ 3d, to be a majority gate. If g had edges from
gates g1, . . . , g`, then replace each edge coming from a gi by k+1 parallel edges, and �nally,
wire `(k + 1)− 1 nodes in N to g.

An illustration of the transformation ins presented in Figure 4.2. We now check that C ′ is a
(majority) circuit in M3t+2,3t+3. To bound the depth and weft of C ′ we need to account for all the
sub-circuits of depth 2 that we introduced in steps 3–5 to replace each small sub-circuit ofC . Note
that two small sub-circuits that were parallel in C (meaning no input-output path could intersect
both) have corresponding sub-circuits that are parallel in C ′. Consider now an arbitrary path π
from a variable to the root of C , and let π′ be the corresponding path in C ′ (that goes to the new
root ofC ′). The path π contains one variable gate, at most t large gates, and intersects at most t+1
small sub-circuits. The corresponding path π′ in C ′ still contains the variable gate, the (at most t)
large gates that were in π, and for each of the ≤ t + 1 small-subcircuits that π intersected, π′
now contains exactly 2 large gate (and π′ also contains the new output gate of C ′). Therefore, the
length of π′ is at most 1+ t+2(t+1)+1−1 = 3t+3, and it contains at most t+2(t+1) = 3t+2
large gates. Since every path π′ inC ′ from a variable to the root ofC ′ corresponds to such a path π
in C , we obtain that the depth of C ′ is at most 3t + 3 and its weft is at most 3t + 2. Hence, C ′ is
indeed a majority circuit in M3t+2,3t+3.

We now prove that (?) there is a satisfying assignment of weight k+1 forC ′ if and only if there
is a satisfying assignment of weight k for C , which would conclude our fpt-reduction. The proof
for this claim is based on how the constructions in step 4 and 5 actually simulate large ∨-gates
and ∧-gates, respectively.5 We prove each direction in turn.

Forward direction. Let us assume that there exists a satisfying assignment of weight k + 1
for C ′. First, because input node u is directly connected to the output gate through a binary
majority, it must be assigned to 1 in order to satisfy C ′. Let C ′′ be the sub-circuit of C ′ formed by
all the nodes that descend from the old output-gate in C ′. Then C ′′ needs to be satis�ed in order
to satisfy C ′. Since u is not present in C ′′, an assignment of weight k+ 1 that satis�es C ′ is made
by assigning 1 to u and to exactly k other input gates. In order to prove the claim, we will show
that (†) an assignment of weight k for the inputs of C ′′ satis�es C ′′ if and only if its restriction to
the inputs of C satis�es C , assuming u is assigned to 1. As C ′′ only di�ers from C because of the
replacement of each small sub-circuit S by its equivalent DNF, and the additional inputs inN , we
only need to prove that steps 4 and 5 actually compute large ∨ and ∧ gates. Consider a gate g

5Although this technique can already be found in the work of Fellows et al. [20], we include it here for complete-
ness.

49

introduced in step 4, having edges from gates g1, . . . , g` and ` edges from node u. Therefore, g
has fan-in 2`, and as u always contributes with a value of ` to g, we have that g is satis�ed exactly
when at least one of the gates g1, . . . , g` is satis�ed. Consider now a gate g introduced in step 5. By
construction, g has fan-in equal to 2`(k+ 1)− 1, from which we deduce that if all gates g1, . . . , g`
are satis�ed, then g is indeed satis�ed in C ′′. On the other hand, if an assignment of weight k
does not satisfy every gate gi, then g receives at most (`− 1)(k + 1) units from the gates gi, and
as the assignment has weight k, it receives at most k from the nodes in N . Thus, g receives at
most (k + 1)` − 1 units, which is less than half of its fan-in, and thus, g is not satis�ed. Thus,
we have proved (†). However, notice that the restriction of the assignment might have a weight
of strictly less than k in C . But it is clear that, since the circuit is monotone, we can increase the
weight by setting some variables of C to 1, until the weight becomes equal to k. This proves the
forward direction.

Backward direction. Let us now assume an assignment of weight k for C . We then we extend
such an assignment to C ′ by assigning 0 to the inputs in N and 1 to u. Thanks to (†), this is a
satisfying assignment of weight k+ 1 for C ′, which proves the backward direction of (?) and thus
concludes the proof of Lemma 4.4.

We now prove a reduction from the problem WCS(M3t+2,3t+3) to the (3t + 3)-MCR problem,
implying that the latter is W(Maj)[t] hard.

Theorem4.5 (Hardness) There is an fpt-reduction from the problem WCS(M3t+2,3t+3) to the (3t+
3)-MCR problem.

Proof. We will in fact show an fpt-reduction from WCS(Mt,t) to t-MCR, which gives the claim
when applied to 3t + 3, noting of course that WCS(M3t+3,3t+3) is trivially at least as hard as
WCS(M3t+2,3t+3). Let (C, k) be an instance of WCS(Mt,t). We �rst build an MLPMC equivalent
to C (as Boolean functions) by using Lemma 4.2. The MLPMC has t layers. Then, we build an
MLPM′

C , that is based onMC , by following the steps described below:

1. InitializeM′
C to be an exact copy ofMC .

2. Add an extra input, that we call v1, to M′
C . This means that if MC had dimension n,

thenM′
C has dimension n+ 1.

3. Create nodes v2, . . . , vt, all having a bias of 0, and for each 1 ≤ i < t, connect node vi to
node vi+1 with an edge of weight 1.

4. Let r be the root ofM′
C , and let m be its fan-in. We connect node vt to r with an edge of

weight m. Moreover, if the bias of r inMC was b, we set it to be b−m inM′
C .

5. Observe thatM′
C is layerized. To make it a valid MLP (where all the neurons of a layer are

connected to all the neurons of the adjacent layers), we do as in the proof of Lemma 3.9 by
adding dummy null weights.

It is clear that the construction ofM′
C takes polynomial time, and that its number of layers is

50

(a) A majority circuit where small sub-circuits
are represented with blue blobs, and black nodes
correspond to large majority gates. The path de-
termining the weft is colored red. The longest
path, determining the depth of the circuit, is
drawn with a dashed orange line.

(b) The majority circuit where small sub-circuits
have been replaced by depth-2 majority cir-
cuits, corresponding to their equivalent DNF.
The equivalent DNF depth-2 sub-circuits are
represented by rectangles. Once again, the path
determining the weft is colored red. The longest
path, determining the depth of the circuit, is
drawn with a dashed orange line.

Figure 4.2: Illustration of the Normalization Lemma (4.4). In a nutshell, by paying a controlled
increase in weft, the depth of the circuit can be substantially reduced.

51

again t. We now prove a claim describing the behavior ofM′
C .

Claim 4.6 For any instance x′ ofM′
C , expressed as the concatenation of a feature x′1 (for the

extra input node v1) and an instance x ofMC , we have that x′ is a positive instance ofM′
C if

and only if x′1 = 1 and x is a positive instance ofMC

Proof. Consider that, by construction, an instance x′ is positive forM′
C if and only if

n+1∑
i=1

h
′(t−1)
i W

′(t)
i = mh

′(t−1)
1 +

n+1∑
i=2

h
′(t−1)
i W

′(t)
i ≥ −b+m

But by construction h
′(t−1)
1 = x′1, and

∑m+1
i=2 h

′(t−1)
i W

′(t)
i =

∑m
i=1 h

(t−1)
i W

(t)
i . This means

that x′ is a positive instance ofM′
C if and only if

mx′1 +
m∑

i=1

h
(t−1)
i W

(t)
i ≥ −b+m

Note that if x′1 = 1 and x is a positive instance of MC , this inequality is achieved, mak-
ing x′ a positive instance. For the other direction, it is clear that it holds if x′1 = 1. We show
that in fact x′1 = 0 is not possible. Indeed, by the construction of MC , we have that 0 ≤∑m

i=1 h
(t−1)
i W

(t)
i ≤ m, and also that −b ≥ 1, which makes the inequality unfeasible.

This concludes the proof of the claim.

This claim has two important consequences:

1. As satisfying assignments of C correspond to positive instance ofMC , we have that there
is a satisfying assignment of weight exactly k for C if and only if there is a positive instance
of weight exactly k + 1 forM′

C .

2. The instance 0n+1 is negative forM′
C

This consequences will allow us to �nish the reduction. Consider now the instance (M′
C , 0

n+1, k+
1) of t-MCR. We claim that this is a positive instance for the problem if and only if (C, k) is a pos-
itive instance of WCS(Mt).

For the forward direction, consider (M′
C , 0

n+1, k+ 1) to be a positive instance of t-MCR. This
means there is an instance x∗ that has the opposite classi�cation as 0n+1 underM′

C , and di�ers
from it in at most k + 1 features. By the second consequence of the claim, x∗ must be a positive
instance. Also, di�ering in at most k+1 features from 0n+1 means thatx∗ has weight at most k+1.
But as majority gates are monotone connectives, majority circuits are monotones as well, so the
existence of a positive instance x∗ of weight at most k + 1 implies the existence of a positive
instance x′∗ of weight exactly k + 1. Therefore, by the �rst consequence of the claim, there is
a satisfying assignment of weight exactly k for C , which implies (C, k) is a positive instance
of WCS(Mt,t)

52

For the backward direction, consider (C, k) to be a positive instance of WCS(Mt,t). This means,
by the �rst consequence of the claim, that there is a positive instance x∗ of weight exactly k + 1
forM′

C . But based on the second consequence of the claim, 0n+1 is a negative instance forM′
C .

As x∗ di�ers from 0n+1 in no more than k+ 1 features, and they have opposite classi�cations, we
have that (M′

C , 0
n+1, k + 1) is a positive instance of t-MCR.

As the whole construction takes polynomial time, and the reduction changes the parameter in
a computable way, from k to k + 1, it is an fpt-reduction. This concludes the proof.

We now proceed to prove membership in W(Maj)[3t+ 7].

Theorem 4.7 (Membership) There is an fpt-reduction from t-MCR to WCS(Mt+4,t+4), imply-
ing (3t+ 3)-MCR belongs to W(Maj)[3t+ 7].

Proof. Let (M,x, k) be an instance of t-MCR. During this reduction we assume that n > 2k, as
otherwise the result can be achieved trivially; if n ≤ 2k then trying all instances that di�er by at
most k from x takes only O(kk), and thus we can solve the entire problem in fpt-time and return
a constant-size instance of WCS(Mt+2), completing the reduction.

We start by applying Lemma 4.3 to build an equivalent MLPM′ that uses only step activation
functions. As t is constant, this construction takes polynomial time, and its resulting MLPM′ has t
layers as well. If x is a negative instance ofM′ (and thus ofM) we do nothing. This can trivially
be checked in polynomial time, evaluating x inM′. But if x happens to be a positive instance
ofM′, then we change the de�nition ofM′ negating its root perceptron6, and thus making x a
negative instance. As a result, we can safely assume x to be a negative instance ofM′. We can
also, in the same fashion that we assumed n > 2k, discard the case where the instance 0n is a
positive instance ofM′ that di�ers by at most k from x, as in such scenario we could also solve
the problem in fpt-time. The same can be done for 1n.

We now build an MLPM′′, that still uses only step activation functions, such thatM′′ has a
positive instance of weight exactly k if and only if (M,x, k) is a positive instance of t-MCR.

LetM′′ be a copy ofM′ to which we add one extra layer at the bottom. For each 1 ≤ i ≤ n, we
connect the i-th input node ofM′′ to what was the i-th input node ofM′, but is now an internal
node inM′′. If xi = 0 then the node inM′′ corresponding to the i-th input node ofM′ has a
bias of 1, and the weight of the edge coming from the i-th input node ofM′′ is also 1. On the
other hand, if xi = 1, then hen the node inM′′ corresponding to the i-th input node ofM′ has
a bias of 0, and the weight of the connection added to it is −1. After doing this, we add k − 1
more input nodes toM′′, a new node p in the t-th layer and a new root node r′′, that is placed in
the layer t + 1. We connect r′, the previous root node, to r′′ ofM′ with weight 1, and all input
nodes to node p with weights of 1. In case p is more than one layer above the new input nodes,
we connect them through paths of identity gates, as shown in Lemma 3.9. We set the bias of r′′
to −2, and the bias of p to −k. All non-input nodes added in the construction use step activation

6Let P = (w, b) be the perceptron at the root ofM′, which contains only integer values by construction. Then,
the negation of P is simply P̄ = (−w,−b + 1), as −wx ≥ −b + 1 precisely when wx ≤ b− 1, which occurs over
the integers exactly when it is not true that wx ≥ b.

53

functions.

We now prove a claim stating thatM′′ has exactly the intended behavior.

Claim 4.8 The MLPM′′ has a positive instance of weight exactly k if and only if (M,x, k) is a
positive instance of t-MCR.

Proof. For the forward direction, assumeM′′ has a positive instance x′ of weight exactly k. As
the root r′′ has a bias of −2, and two incoming edges with weight 1, and given that the output
of any node is bounded by 1, as only step activation functions are used, we conclude that both p
and r′, the children of r′′, must have a value of 1 on x′. The fact that r′ has a value of 1 on x′

implies that xs, the restriction of x that considers only nodes that descend from r′, must be a
positive instance for the submodelMs induced by considering only nodes that descend from r′.
But one can easily check that by construction, we have thatMs(xs) = M′(xs ⊕ x), where ⊕
represents the bitwise-xor. Thus, xs ⊕ x is a positive instance forM, and consequently forM.
As xs ⊕ x di�ers from x by exactly the weight of xs, as 0 is the neutral element of ⊕, and the
weight of xs is by de�nition no more than the weight of x′, which is in turn no more than k by
hypothesis, we conclude that (M,x, k) is a positive instance of t-MCR.

For the backward direction, assume there is a positive instance x′ ofM that di�ers from x in at
most k positions. This means that x′′ = x⊕x′ has weight at most k. By the same argument used
in the forward direction,Ms(x′′) =M′(x′′ ⊕ x) =M′(x′), as x⊕ x′ ⊕ x = x⊕ x⊕ x′ = x′,
because ⊕ is both commutative and its own inverse. But the fact that x′ is a positive instance
ofM implies that it is also a positive instance forM′. As we are assuming x′| 6= 0n, we have
that k − |x′| ≤ k − 1. Thus, we can create an instance x′′ for M′′ that is equal to x′ on its
corresponding features, and that sets k−|x′| arbitrary extra input nodes to 1, among those created
in the construction of M′′. As the instance x′′ has weight exactly k, it satis�es the submodel
descending from p, and as x′′ its equal to x′ on the submodel descending from r′, and x′ is a
positive instance ofM′, we have that this submodel must be satis�ed as well. Both submodels
being satis�ed, the whole modelM′′ is satis�ed, hence we conclude the proof.

We thus have a modelM′′ with step activation functions, and t + 2 layers, such that if that
model has a satisfying assignment of weight exactly k, then (M,x, k) is a positive instance of t-
MCR.

Note that step activation functions with bias are equivalent to weighted threshold gates. We
then use a result by Goldmann and Karpinski [25, Corollary 12] to build a circuit CM′′ that is
equivalent (as Boolean functions) toM′′ but uses only majority gates. The construction of Gold-
mann et al. can be carried in polynomial time, and guarantees that CM′′ will have at most t + 3
layers.

There is however a caveat to surpass: although not explicitly stated in the work of Goldmann et
al. [25], their de�nition of majority circuit must assume that for representing a Boolean function
from {0, 1}n to {0, 1}, the circuit is granted access to 2n input variables x1, . . . ,xn,x1, . . . ,xn,
as it is usual in the �eld, and described for example in the work of Allender [4]. We thus assume
that the circuit CM′′ resulting from the construction of Goldmann et al. has this structure, which

54

does not match the required structure of the majority circuits de�ning the W (Maj)-hierarchy as
de�ned by Fellows et al [20, 21]. In order to solve this, we adapt a technique from Fellows et al.
[21, p. 17]. We build a circuit C∗M′′ that does �t the required structure. Let n be the dimension
ofM′′ (which exceeds by k−1 that ofM). We now describe the steps one needs to apply to CM′′
in order to obtain C∗M′′ .

1. Add a new layer with n+ 1 input nodes x′1, . . . ,x′n+1, below what previously was the layer
of 2n input nodes x1, . . . ,xn,x1, . . . ,xn.

2. For every 1 ≤ i ≤ n, connect input node x′i with its corresponding node xi in the second
layer, making xi a unary majority, with the same outgoing edges it had as an input node.
This enforces xi = x′i.

3. Create a new root r′ for the circuit, and let r′ be a binary majority between the input
node x′n+1 and the previous root r.

4. Replace each previous input node xi by a majority gates mi that has n + 1− 2k incoming
edges from x′n+1, and one incoming edge from each x′j with j 6∈ {i, n + 1}. The outgoing
edges are preserved.

It is clear that the circuit C∗M′′ is a valid majority circuit in the sense de�ning the W (Maj)-
hierarchy. And it has 2 layers more than CM′′ , yielding a total of t+ 5 layers, where the last one
has a small gate. However, it is not evident what this new circuit does. We now prove a tight
relationship between the circuit C∗M′′ andM′′.

Claim 4.9 The circuit C∗M′′ has a satisfying assignment of weight exactly k+1 if and only ifM′′

has a positive instance of weight exactly k.

Proof. Forward Direction. Assume C∗M′′ has a satisfying assignment of weight k+ 1. By step 3
of the construction, in order to satisfy C∗M′′ , the assignment must set x′n+1 to 1.

As we assume that node x′n+1 is set to 1, the assignment must set to 1 exactly k input nodes
among x′1, . . . ,x

′
n and thus the sum of inputs set to 1 of each majority gatemi constructed in step

4, is exactly equal to

n+ 1− 2k +
∑

j 6∈{i,n+1}

x′j = n+ 1− 2k + (k − x′i) = n+ 1− k − x′i

and its fan-in is exactly equal to 2n− 2k. Therefore mi is activated when n+ 1− k−x′i > n− k,
which happens precisely when x′i = 0. This way, each gate mi corresponds to the negation of x′i.

This way, the subcircuit induced by considering only the nodes that descend from r′ computes
the same Boolean function that CM′′ computes, under the natural mapping of their variables.
Therefore, a satisfying assignment of weight k + 1 for C∗M′′ implies the existence of a satisfying
assignment for CM′′ that chooses exactly k positive variables, and thus a positive instance of
weight k forM′′.

Backward Direction. AssumeM′′ has a positive instance of weight exactly k. That implies

55

that CM′′ has a satisfying assignment σ that sets at most k positive variables to 1. Let us consider
the assignment σ′ forC∗M′′ that sets to 1 the same variables that σ does, and additionally sets xn+1

to 1. The assignment σ′ has weight exactly k + 1. By the same argument used in the forward di-
rection, under assignment σ′ the gatesmi behave like negations. Thus, the assignment σ′ induces
an assignment over the second layer ofC∗M′′ that corresponds precisely to a satisfying assignment
of CM′′ , and thus makes the value of r equal to 1. As both r and xn+1 have value 1 under assign-
ment σ′, it follows that the value of r′, and thus of circuit C∗M′′ , are 1 under σ′ as well. This means
that assignment σ′, which by construction has weight k + 1, is a satisfying assignment for C∗M′′ ,
and thus concludes the proof.

By combining Claim 4.8 and Claim 4.9, and noting again that circuit C∗M′′ is a valid majority
circuit, in the sense that de�nes the W(Maj)-hierarchy, and has weft at most t + 4, we conclude
the reduction of Theorem 4.7.

4.5 Application of the parameterized result

Let us restate the parameterized theorem we proved in Section 4.4.

Theorem For every t ≥ 1 the MinimumChangeReqired query over rMLPs with 3t+ 3 layers
is W(Maj)[t]-hard and is contained in W(Maj)[3t+ 7].

By assuming that the W(Maj)-hierarchy is strict, we can use Theorem 4.1 to provide separa-
tions for rMLPs with di�erent numbers of layers. For instance, instantiating the above result with
t = 1 we obtain that for rMLPs with 6 layers, the MCR problem is in W(Maj)[3t+7] = W(Maj)[10].
Moreover, instantiating it with t = 11 we obtain that for rMLPs with 36 layers, the MCR problem
is W(Maj)[11]-hard. Thus, assuming that W(Maj)[10] (W(Maj)[11] we obtain that rMLPs with 6
layers are strictly more c-interpretable than rMLPs with 36 layers. We generalize this observation
in the following result.

Theorem 4.10 Assume that the W(Maj)-hierarchy is strict. Then for every t ≥ 1 we have that
rMLPs with 3t+3 layers are strictly more c-interpretable than rMLPs with 9t+27 layers wrt. MCR.

Proof. Based on Theorem 4.1, we know that interpreting an rMLP (for the problem MCR) with
9t+ 27 = 3(3t+ 8) + 3 is W(Maj)[3t+ 8]-hard. On the other hand, by using the same theorem,
the problem of interpreting an rMLP with 3t + 3 layers is contained in W(Maj)[3t + 7]. But by
hypothesis, W(Maj)[3t+ 7] (W(Maj)[3t+ 8], which is enough to conclude the proof.

56

Chapter 5

Applications to Fairness and Bias

Detection

The increasing use of AI in sensitive domains has brought increasing attention to its implications
in perpetuating biases, disparity and unfairness. For example, just during June 20201, two sig-
ni�cant examples of the perils of biased systems have made it to the mainstream media. On the
one hand, presented in Figure 5.1, a generative system designed to upscale pixelated images has
been widely critiqued for its racial bias [3], on the other hand, an important image dataset was
discovered to contain racist and misogynistic labels, and consequently taken down [1]. An older
example, but of immense importance, is that of COMPAS, a proprietary system widely used in
the United States Justice system for parole and bail decisions, that predicts recidivism risk based
on +130 factors. COMPAS has been accused of being racially biased [2], but precisely because
of its proprietary nature, it is di�cult to assess whether the model depends directly on race [51],
and even to estimate the dependency on features like age, when its creators claimed a linear de-
pendency [51]. In the words of Rudin et al. “Lack of transparency makes it di�cult to assess
any of the myriads forms of fairness. [...] It can hide bias toward underrepresented groups, or
conversely, it can make fair models seem biased” [51]. In previous work by Rudin [50], we �nd
a positive framing of this same perspective “It can be much easier to detect and debate possible
bias or unfairness with an interpretable model than with a black box. Similarly, it could be easier
to detect and avoid data privacy issues with interpretable models than black boxes”. We take this
perspective to analyze how our previous results have a correlate with the complexity of �nding
bias or unfairness in di�erent classes of bias.

5.1 About the notion of (un)fairness used

The concepts of bias and unfairness are multidimensional, and require multidisciplinary perspec-
tives and a constant dialogue with the social sciences [44]. We take a rather simplistic approach
to fairness, by considering only a particular kind; fairness through unawareness [23, 39]. In this
notion, a certain subset of the features (that is, components of the input) is said to be protected, and
consist of features that intuitively should not be used for decision taking. This usually includes

1That is, in the last 2 weeks from the moment this sentence is being written.

57

Figure 5.1: Pixelated picture of ex-president Barack Obama reconstructed as a white man by the
PULSE algorithm. From Twitter user @Chicken3gg.

features like gender, age, marital status, etc.

De�nition 5.1 (Fairness through unawareness) A model is said to achieve fairness through un-
awareness if protected features are not explicitly used in the prediction process.

As pointed out by Barocas et al. [7], the direct e�ect of protected variables is insu�cient as
a measure of discrimination on its own. It cannot detect any form of proxy discrimination, as
for example, a bank could choose to not ask for the age of loan applicants, but infer it from the
vocabulary used in a written application.

However, the ability to formally establish whether or not certain protected features where
causal for decisions made by models can still be of great impact, as discussed in the case of COM-
PAS [51]. It is also plausible that we will face the need to retroactively analyze this sort of fairness,
as features that are not deemed problematic as of today could be deemed protected in the future.

5.2 De�nitions of bias

We use the formalization of Darwiche et al. [14], merely adapting the terminology to our setting.

De�nition 5.2 (Biased decision) Given a modelM, of input size n and a set of protected features
P ⊆ {1, . . . , n}, an instance x is said to be a biased decision ofM if and only if there exists an
instance y such that x and y di�er only on features in P andM(x) 6=M(y).

This de�nition is then trivially extended to models.

De�nition 5.3 (Biased model) A modelM is said to be biased if and only if there is at least one

58

https://twitter.com/Chicken3gg/status/1274314622447820801

instance x that is a biased decision ofM.

Example 2 (Related to Example 1) Consider that among the features used by a bank to judge
loan applications we �nd both the criminal record and the marital status of applicants. If
the law forbids said considerations, deeming the features Criminal Record and Married to be
protected, then individuals could rebut decisions they received that could have unfairly been
based on such features. Moreover, one would be interesting in analyzing a posteriori, given a
trained model, whether there is actually an individual who could have been classi�ed unfairly.

Male
Stable job

> 40yo
Previous loans
Owns a house

Has kids
Married

Criminal Record



1
1
1
1
0
0
1
0





1
1
1
1
0
0
1
1



x y

Stable Job

Has kids

false Married

true Owns a house

Previous Loans

false true false

truefalse

Criminal Record

Previous Loans

0

1 0

0 1

0 1

1

01

0

1
10

Figure 5.2: Illustration of the bias in an FBDD used for judging loan applications. Instance x
follows the blue path, while instancey follows the red path. Protected features are underlined.

As illustrated in Figure 5.2, this particular FBDD is biased, as it presents a biased decision.
The instance x is a positive instance of the model, while the negative instance y di�ers from
it only on the protected feature corresponding to the criminal record.

5.3 On the complexity of bias detection

Following the same principles of the presented framework, we study the complexity of compu-
tational problems associated with the previous de�nitions of bias over di�erent models (MLPs,
FBDDs and Perceptrons).

Let us de�ne the precise computational problems concerned by our study.

Problem: DecisionBias
Input: A modelM, a set of protected features P and an instance x

Output: Yes, if x is a biased decision ofM and No otherwise

59

FBDDs Perceptrons MLPs

DecisionBias PTIME (5.4) PTIME (5.5) NP-complete (5.7)
ModelBias RP (5.15), PTIME for decision trees (5.8) NP-complete (5.16) NP-complete (5.18)

Table 5.1: Complexity results for bias detection.

Problem: ModelBias
Input: A modelM and a set of features P

Output: Yes, ifM is a biased and No otherwise

As summarized in Table 5.1, we con�rm once again that bias detection is harder over MLPs
than it is over FBDDs and perceptrons, while in this case, FBDDs present a signi�cant advantage
over perceptrons when it comes to judge the fairness of the model as a whole. Even though
the general case of FBDDs remains open, we prove in Theorem 5.8 that in the particular case of
decision trees, there is an algorithm that runs in polynomial time for the ModelBias problem.
We show as well a non-trivial randomized algorithm for the natural parameterized problem.

Theorem 5.4 The DecisionBias problem can be solved in linear time for FBDDs.

A proof is presented in the work of Darwiche et al. [14], however, we present a couple of new
ones based on our previous proofs in Chapter 3, showing their applicability to new problems.

As a �rst example, Theorem 3.25 says that it is possible to count the number of positive com-
pletions of a given partial instance in polynomial time. We can use such a result in the following
way. Given an instance x and protected featuresP , de�ne the partial instance x′ such that x′i = xi

if i 6∈ P and x′i = ⊥ if i ∈ P . Then, if x is a positive instance of the input model, and x′ has
less than 2|P| positive completions, we have that at least one completion x′′ is negative, and as x′′
di�ers from x only on protected features, we conclude that x is a biased decision. Otherwise, all
completions of x′ are positive, and thus no instance di�ering from x only on protected features
is negative, so we conclude x is not a biased decision. If x happened to be a negative instance, it
is enough to check whether x′ has at least 1 positive completion.

For an alternative proof, consider the proof of Lemma 3.5, where we show how to compute the
minimum change required for an FBDD in linear time. We can make a trivial modi�cation to the
recursive formula so only protected features can be changed. Namely

mcrPu (x) =

{
min

(
[xu = 1] + mcrPu0(x), [xu = 0] + mcrPu1(x)

)
if u ∈ P

2mcrPuxu (x) otherwise

It is clear, after the proof of Lemma 3.5, that this recursive formula is correct. Finally, consider-
ing r the root of the given FBDD, it is enough to check whether mcrPr (x) 6=∞ to decide whether

2Hopefully, the reader will excuse the use of such a complicated sub-index. The variable uxu means simply the
child of node u going along the edge with label xu. Note as well that such a notation allows for a sudden appearance
of the emoticon uwu when considering an instance named w.

60

https://www.urbandictionary.com/define.php?term=uwu

x is a biased decision or not.

Theorem 5.5 The DecisionBias problem can be solved in linear time for perceptrons.

Proof. Consider an input instance (M = (w, b),x,P), where we assume x to be a positive in-
stance wlog. We de�ne the instance x′ as

x′i =


xi if i 6∈ P
1 else if wi < 0

0 otherwise

We claim that x′ is a negative instance ofM if and only if (M = (w, b),x,P) is a positive
instance of DecisionBias. The forward direction is trivial, as x′ is an instance that only di�ers
from x on protected features and has opposite classi�cation. For the backward direction, assume
for the sake of a contradiction that we are dealing with a positive instance of DecisionBias and
yet x′ is a positive instance ofM. The fact that we are dealing with a positive instance of Deci-
sionBias implies there is an instance x′′ that di�ers with x only on protected features and such
thatM(x′′) = 0. We will prove in an instant that 〈w,x′′〉 ≥ 〈w,x′〉, which is enough to conclude
that the assumptionM(x′′) = 0 impliesM(x′) = 0, a contradiction with our hypothesis of x′
being a positive instance forM.

Claim 5.6 〈w,x′′〉 ≥ 〈w,x′〉

In order to prove this claim, and �nish the whole proof, it is enough to consider an arbitrary
index i and check that wix

′′
i ≥ wix

′
i. We do so by cases, if i 6∈ P , equality must be achieved as

neither x′ nor x′′ can di�er from x on unprotected features. If wi < 0, then wix
′
i = wi ≥ wix

′′
i , as

x′′i can only be 0 or 1. Finally, if wi ≥ 0, then wix
′
i = 0 ≥ wix

′′
i .

Theorem 5.7 The DecisionBias problem is NP-complete for MLPs.

Proof. Membership is easy; it is enough to guess an instance y that di�ers from the input instance
x only on protected features and then check that they receive opposite classi�cations by the input
modelM. For hardness, consider the particular case when every feature is protected. That is, if
n is the input size ofM, then we establish P = {1, . . . , n}. It follows from De�nition 5.2 that x
is biased if and only ifM is not trivial3, as any instance with di�erent classi�cation than x would
prove that x is a biased decision. We then use Lemma 3.9 to reduce in polynomial time from the
problem of checking whether a Boolean formula in CNF is not trivial, meaning either unsatis�able
or a tautology. As it can be checked in polynomial time whether a CNF formula is a a tautology
or not, the problem of deciding whether a Boolean formula in CNF is trivial must be coNP-hard,
as deciding whether a CNF formula is satis�able is known to be NP-hard. As the problem of

3A trivial model is one that classi�es every input the same.

61

deciding whether a CNF formula is trivial is coNP-hard, and we have shown a reduction from
DecisionBias to its complement, we have that DecisionBias is NP-hard.

Theorem 5.8 The ModelBias problem can be solved in polynomial time for Decision Trees

Proof. Let T be a decision tree, and P the set of protected features. We say a node u is a biased
splitter of T if there are two instances x and y that di�er only on protected features such that
both instances take the same path on T until u, and then their paths split, in such a way that one
of them reaches a true leaf, while the other reaches a false leaf. It naturally follows that u must be
a protected feature, but most importantly, that is a biased splitter in T if and only if T is biased.
The forward direction is trivial. For the forward direction, consider that two instances that di�er
on protected features and have opposite classi�cation must take di�erent paths on T , and thus,
their paths have a common pre�x (even if only the root of T) whose last element is precisely u. It
is thus enough to be able to check whether a given node v of T , labeled with a protected feature,
is a biased splitter ofM. This way, we can iterate over all the possible nodes v, and if any of them
happens to be a biased splitter, we can con�rm model T is biased. If no bias splitter is found, we
conclude that the decision tree T is not biased. As a consequence, let us focus now in the problem
BiasedSplitter(v), that aims to check whether the given node v is a biased splitter or not.

Considere an arbitrary node v and its associated sub-tree Tv. For an arbitrary instance x, we
call πvx its path over Tv. By de�nition, node v is a biased splitter if there are two leaves, `1 and
`2 such that, without loss of generality, `1 is labeled true while `2 is labeled false, and there are
instances x and y, such that πvx ends in `1, πvy ends in `2, and πvx and πvy di�er only on protected
features4. As T is a tree, given a leaf `1, we can get its unique path from node v in linear time.
Thus, in order to check whether v is indeed a biased splitter, we can simply iterate over all the,
at most

(|T |
2

)
, pairs of leaves `1 and `2 (with labels true and false respectively), and check whether

the paths v `1 and v `2 di�er only in protected features.

The total complexity of the algorithm is bounded by O(|T |4), as at most |T | nodes are tested
to be biased splitters, and for each �xed node, we test at most |T |2 pairs of leafs, where each test
takes time |T |.

An important problem studied for many classes of Boolean functions is that of deciding equiv-
alence. To the best of our knowledge, the problem of deciding whether two FBDDs are equivalent
has not be shown to be in PTIME [13]. However, Blum et al. designed an algorithm that runs in
randomized polynomial5 time for this problem [10]. We now show by a trivial reduction that a de-
terministic polynomial time algorithm for ModelBias over FBDDs would imply the equivalence
problem to be in PTIME as well.

Theorem 5.9 If the ModelBias problem can be solved in PTIME for FBDDs, then equivalence
(as boolean functions) of FBDDs can be solved in PTIME as well.

4We can represent paths as n1e1n2 . . . eknk+1, where nieini+1 means the path takes the edge with label ei from
node ni to node ni+1.

5A precise de�nition is out of our current scope, but a motivated reader can refer to Arora and Barak [5].

62

Proof. Consider an input instance of the equivalence problem with FBDDs M1 and M2, over
features {1, . . . , n}.6

LetM be an FBDD over features {1, . . . , n+1} such that its root node r is labeled with feature
n + 1, and it hasM1 as its sub-model along the edge labeled with 0 andM2 as its sub-model
along the edge labeled with 1. Consider n+ 1 to be the only protected feature.

Claim 5.10 The constructed modelM is biased if and only ifM1 is not equivalent toM2.

For the forward direction, asM is biased there exist instances x,y, di�ering only on feature
n + 1, such thatM(x) 6= M(y). Without loss of generality, xn+1 = 0 while yn+1 = 1. AsM1

does not mention the feature n + 1, the instance x′ that is equal to the restriction x to features
{1, . . . , n} holds thatM1(x′) = M(x). Analogously,M2(y′) = M(y). But as x′ = y′, which
impliesM1(x′) = M(x) 6= M(y) = M2(x′). Thus, modelsM1 andM2 are not equivalent,
as they di�er on instance x′. For the backward direction, the existence of an instance x′ such
thatM1(x′) 6= M2(x′) implies that x = x′ � 0, where � represents concatenation, is a biased
decision ofM, asM(x′ � 0) =M1(x′) 6=M2(x′) =M(x′ � 1). Thus, x′ � 0 and x′ � 1 are
instance ofM that di�er only on a protected feature and yet have opposite classi�cation. This
makesM a biased model.

As a result, a polynomial algorithm for the ModelBias problem over FBDDs would be of sig-
ni�cant theoretical importance. Now we will see the opposite direction, namely, that the ran-
domized polynomial time calgorithm of Blum et al. for equivalence of FBDDs allows us to design
a randomized polynomial time algorithm for the ModelBias over them. Moreover, we extend
this result over all classes of models satisfying a simple structural property. First, let us introduce
some notation. given a (partial) instance y and an instance y, we denote by x|y the instance x′

that matches y in every component it is de�ned, and x in every component where y is unde�ned.
This intuitively means that x is being conditioned by the de�ned components of y. Now, we can
introduce the following property of classes of models.

De�nition 5.11 (Conditionable) A class of models C is said to be conditionable if given a model
M ∈ C, and a partial instance y, one can build in polynomial time a modelM|y , such that for
any instance x it happens thatM|y(x) =M(x|y).

Lemma 5.12 Perceptrons, MLPs and FBDDs are conditionable.

Proof. We focus only on the case of FBDDs, as this lemma will only be used for them. The case
of perceptrons is not hard to see, and it trivially generalizes to MLPs.

LetM be an FBDD and y a partial instance. We buildM|y in polynomial time as follows. We
exploreM in a BFS manner, and for every visited node u we that is labeled with a component
i that is de�ned in y, we will delete the edge labeled with (1 − yi) and relabel u with the label

6Note that two FBDDs that mention di�erent features cannot be equivalent in general, which can be easily checked
in polynomial time. Thus, meaningful instances of the problem refer only to models over a common set of features.

63

of the node uyi
, to then compress the edge connecting them. This simply means that, whenever

y dictates a choice, we delete the opposite edge (as it will not be used) and compress the edge
that y dictates to take, so no choice needs to be taken. Both the polynomial time runtime and
correctness can be directly seen.

The following theorem connects the notion of equivalence and bias for conditionable models.

Theorem 5.13 LetM be a model of a conditionable class C, consider a set of protected features
P , and let y be a partial instance such that yi = 0 if i ∈ P and yi = ⊥ otherwise. Then,M is a
biased model if and only ifM is not equivalent toM|y .

Proof. For the forward direction, assumeM is biased, and thusM(x1) 6= M(x2) for instances
x1 and x2 that di�er only on protected features. By de�nition, M|y(x1) = M(x1|x1) and
M|y(x2) =M(x2|y). But as x1 and x2 di�er only on protected features, and y is de�ned for all
protected features, it happens that x1|y = x2|y, which implies then thatM|y(x1) = M|y(x2).
Notice that this is a property of M|y as a boolean function that M does not share, as we are
assumingM(x1) 6=M(x2), and thusM andM|y cannot be equivalent.

For the backward direction, assume thatM is not equivalent toM|y , and consequently there
is an instance x such thatM(x) 6= My(x). By de�nition, this means thatM(x) 6= M(x|y).
But x and x|y can di�er only on protected features, and thus we conclude that the modelM is
biased.

By combining Theorem 5.13 with a known algorithm for equivalence of decision trees [13],
we can get the same result as manually proved in Theorem 5.8. We will now use Theorem 5.13
to establish an upper bound on the complexity of ModelBias for FBDDs. But �rst, let us precise
the statement of the equivalence theorem of Blum et al.

Theorem 5.14 (Blum et al. [10]) Given FBDDsM1 andM2, there is a randomized algorithm
that runs in polynomial time such that ifM1 ≡ M2 the algorithm outputs Yes correctly every
single time, whereas ifM1 6≡ M2, the algorithm outputs No correctly with probability at least
1/2.

We can use this result to prove our next Theorem.

Theorem 5.15 There is a randomized algorithm for the ModelBias problem that runs in poly-
nomial time, such that if the input model is unbiased, the algorithm outputs No correctly, and
if the input model is indeed biased then it answers Yes correctly with probability at least 1/2.
Equivalently, the ModelBias problem is in the complexity class RP [5] for FBDDs.

Proof. LetM be the input FBDD and lety be a partial instance such that yi = 0 if i ∈ P and yi = ⊥
otherwise. Then, using Lemma 5.12, we can build in polynomial time the FBDDM|y . Because of
Theorem 5.13, it is enough to apply the equivalence check of Theorem 5.14 overM andM|y and

64

negate its answer. IfM andM_y are equivalent, then the equivalence check will say so and our
current algorithm will output No correctly. Whereas ifM andM|y are not equivalent, then the
equivalence check will say so with probability at least 1/2 and thus the described algorithm will
say thatM is biased with probability at least 1/2. This concludes the proof.

Notice that a probability of error of 1/2 can be trivially reduced to 1/2t by running the al-
gorithm t times in a row. This is a standard ampli�cation technique used in randomized algo-
rithms [5]. This means that, for all practical purposes, we can have a polynomial time algorithm
for ModelBias over FBDDs, whose probability of failure is smaller than that of the hardware in
which the algorithm is running.

We can now resume our analysis of the complexity of the ModelBias problems for perceptrons
and MLPs.

Theorem 5.16 The ModelBias problem is NP-complete for perceptrons.

Membership is easy; one can guess a biased decision and then use Theorem 5.5 to verify it. In
order to show hardness we will reduce from the subset sum problem, which is well known to be
NP-hard. Recall that the subset sum problem consists on, given natural numbers s1, . . . , sn, k ∈ N,
to decide whether there is a subset S ⊆ {1, . . . , n} such that

∑
i∈S si = k. Let us proceed with the

reduction. Based on a subset sum instance s1, . . . , sn, k, we create a perceptron withn unprotected
features (that we assume to have indices 1 through n) with associated weights s1, . . . , sn and a
single protected feature, with index n + 1 and weight 1. Given the described weights, letM be
the resulting perceptron that has those weights and bias7 −k − 1. The following claim is enough
to establish the reduction.

Claim 5.17 The perceptronM is biased if and only if s1, . . . , sn, k is a positive instance of the
subset sum problem.

For the forward direction, considerM to be biased. That means there are instances x and y
such that M(x) 6= M(y), that di�er only on the n + 1-th feature, as it is the only protected
one. Assume wlog thatM(x) = 1 andM(y) = 0, by swapping the variables if it is not already
the case. This implies 〈w,x〉 ≥ k + 1 and 〈w,y〉 < k + 1. As 〈w,x〉 ≥ 〈w,y〉, and x di�ers
from y only on the n + 1-th feature, it must hold that xn+1 = 1 and yn+1 = 1, as wn+1 = 1.
Let P be the set of unprotected features of x (and thus y) that are set to 1. Then we can write
〈w,x〉 =

(∑
i∈P si

)
+1, as each weightwi was chosen to be equal to si. We thus have, considering

x that
(∑

i∈P si

)
+ 1 ≥ k + 1 and, by considering y, that

(∑
i∈P si

)
< k + 1, from which we

deduce that
∑

i∈P si = k. We have found a subset of {s1, . . . , sn} that adds up to k, which is
enough to conclude the forward direction of the proof. For the backward direction, consider an
arbitrary set P ⊆ {1, . . . , n} such that

∑
i∈P si = k. It is then easy to verify that the instance x

that has a 1 in every feature whose index belongs to P , a 1 in the n + 1-th feature, and 0 on the
rest, is a positive instance ofM. Furthermore, y that di�ers from x only in the n + 1-th feature
can be checked to be a negative instance. As we have found a pair of instances that di�er only on
protected features, and yet have opposite classi�cations, the modelM must be biased.

7Recall that the bias of a perceptron has nothing to do with the notion of bias that relates to fairness.

65

Theorem 5.18 The ModelBias problem is NP-complete for MLPs.

Proof. Hardness is a trivial consequence of Theorem 5.16, as a perceptron is a particular case of
an MLP. Membership comes from the fact that one can guess a pair of instances x,y and then
check in polynomial time both that they di�er only on protected features and that they receive
opposite classi�cations byM.

66

Discussion

This brief chapter aims to put the previously proven results into perspective. First, we synthesize
the work that we have done, and its implications, by contrasting our results with folklore assump-
tions in the �eld of XAI. Then we discuss related work, and how is ours �ts in that context. Finally,
we mention some possible extensions and open problems that remain as future work.

A About our results

We have proposed a theoretical framework that allows to formally compare the interpretability
of di�erent classes of models. Our results show a signi�cant correlation with three common
assumptions in the literature [6, 24, 30, 31, 35, 38, 43, 50, 52, 59]:

1. Tree-based and Rule-based models are more interpretable than MLPs

2. Linear models are more interpretable than MLPs

3. The highly nested and recursive structure of deep MLPs is what makes them di�cult to
interpret.

It is however interesting to recall that, as discussed in Chapter 4, our hardness results for MLPs
apply even to very shallow ones. With hindsight, one can notice that all our basic hardness results
derive from the ability of MLPs to compactly represent arbitrary boolean formulas. The ability of
MLPs to learn a wide variety of functions is often used to argue their potential as general model
for learning, and our results seem to suggest that a lack of interpretability is strictly related with
this capacity for generalization.

The results concerning parameterized complexity in Chapter 4 suggest that, even with the goal
of �nding small explanations, that are of particular interest for practitioners, it is unlikely that we
get to develop practical algorithms for such a task. The deeper the MLP, the more unlikely it will
be to obtain a practical algorithm, according to traditional parameterized complexity assumptions.

On the other hand, our results in the complexity of bias detection, presented in Chapter 5, cou-
pled with our results in the complexity of model interpretability, presented in Chapter 3, suggest
that there is indeed a close relationship between our ability to interpret models and to detect and
prevent bias in them, as proposed by Rudin et al. [50, 51].

Finally, it is relevant to stress once again, as pointed out by Miller [40], Lipton [38] and others,

67

that interpretability is a complex concept, in constant dialogue with social sciences and depending
in human behavior. Our work does not attempt to reduce such complex nature to a mathematical
formalism, but rather to present a mathematical formalism that could serve to back up human
perception, or have a better and more re�ned understanding of it. More precisely, the notion of
c-interpretability proposed in our work does not aim to subsume that of interpretability, but to
support it, and even though our results are not to change, the concept of c-interpretability is to
be revisited as the notion of interpretability dynamically changes.

B Related work

Our work is tightly related to that of Darwiche et al. [14, 53, 54, 55, 56]. Their work presents
de�nitions of di�erent kind of explanations, for example in a recent article [14] they present the
concept of robustness, to which we came independently as minimum change required. Further-
more, the name (minimum/minimal)1 su�cient reason coined2 by Darwiche and Hirth [14], and
used throughout our work, comes to replace what was before called a prime implicant explana-
tion, which relates the classical concept of a prime implicant in logic [57] with explanations for a
model’s decision. The line of work that aims to e�ciently solve problems over complex models by
compiling them into simpler models is called Knowledge Compilation [13]. Throughout many dif-
ferent articles, Darwiche et al. explore how several particular cases of Binary Decision Diagrams
allow for e�cient solutions to certain queries. Moreover, they show how knowledge compilation
allows for transforming Neurons/Neural Networks into equivalent BDDs improving on a naive
approach.3 Interestingly, the result presented in Lemma 3.5 establishes a barrier to knowledge
compilation approaches for explainability that are based on BDDs, as it presents a query that is
hard to answer even over decision trees.

More in general, even though our work is closely related knowledge compilation, its goal is
entirely di�erent. Knowledge compilation aims to give practical results by compiling complex
models into simpler ones, and studies how certain queries can be e�ciently solved over these
simpler models. On the other hand, our work aims to study the theoretical interpretability of
di�erent classes of models by comparing the di�culty of answering interpretability queries over
them.

It is also relevant to acknowledge the work of Ramaswamy [47], which studies the complexity
of di�erent problems associated with understanding the behavior of a particular kind of Neural
Networks, more biologically inspired. The studied networks allow for cycles in their graph struc-
ture, and have a temporal behaviour, which makes them closer to Recurrent Neural Networks. It is
interesting to notice that, while our work is mostly concerned with detecting subset of the input
that are relevant for the decisions a model takes, the work of Ramaswamy considers the relevance
of arbitrary nodes in networks.

1The quali�ers are added in our treatment for clarity. The work of Darwiche and Hirth uses the term su�cient
reason always referring to what we call a minimal su�cient reason.

2To the best of our knowledge.
3Their runtimes are still exponential, but much better than a brute-force solution.

68

C Open problems and future research directions

A reasonable objection against the framework presented in this thesis is to note its dependency on
the chosen queries. That is, it could be that the presented queries (some of which are not original
to this work [14, 53, 55, 57]) allow for the fruitful results obtained in Chapter 3, but a di�erent
choice of queries would have made for a completely di�erent story. A general way to address
this concern is to consider a logic that subsumes not only the presented queries, but an in�nite
number of them. Then, by proving that answering queries in such a logic is harder for MLPs than
it is for FBDDs or perceptrons one could get rid of the dependency on the queries, at the cost of
depending on the components of the chosen logic. This is part of our ongoing work, and aims to
extend the scope and generality of the results presented.

An interesting line of work, considering the widespread use of (deep) MLPs is that of getting
a better characterization of easy and hard instances, that could allow for tractability results, or
approximability results, which could be helpful for practitioners and researchers. For example,
�nding conditions on the weights, activation function, or number of non-zero connections that
make the studied queries tractable could be an interesting step to make our work more applicable.

Another extension of our work would be to distinguish between di�erent modern architectures
for MLPs. For example, the work of Pérez et al. [46] explores the Turing Completeness of certain
architectures assuming arbitrary precision for internal representations. It would be interesting to
study whether in a �xed precision setting, or limited precision setting (as discussed in Chapter 4),
certain interpretability queries could become undecidable.

Yet another direction is to study interpretability queries that aim to understand the impact of
inner perceptrons inside an MLP. The idea of interpreting the internal representation of MLPs has
been explored in the literature [6, 24], and could lead to interesting research directions.

Finally, expanding on broader formal characterizations of bias and fairness could allow for a
more detailed study of the correlation between fairness and interpretability. Generalizing our
results so they encompass more diverse forms and sources of bias is part of our ongoing work as
well, and a promising research direction.

69

Bibliography

[1] MIT takes down 80 Million Tiny Images data set due to racist and o�ensive content,
url = https://venturebeat.com/2020/07/01/mit-takes-down-80-million-tiny-images-data-set-
due-to-racist-and-o�ensive-content/, note = Accessed for the last time on 2020-07-05.

[2] How We Analyzed the COMPAS Recidivism Algorithm, url =
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm,
note = Accessed for the last time on 2020-07-05.

[3] What a machine learning tool that turns Obama white can (and can’t) tell us about AI bias,
url = https://www.theverge.com/21298762/face-depixelizer-ai-machine-learning-tool-pulse-
stylegan-obama-bias, note = Accessed for the last time on 2020-07-05.

[4] E. Allender. A note on the power of threshold circuits. In 30th Annual Symposium on Foun-
dations of Computer Science. IEEE, 1989.

[5] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

[6] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham
Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard Ben-
jamins, Raja Chatila, and Francisco Herrera. Explainable arti�cial intelligence (XAI): Con-
cepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion,
58:82–115, 2020.

[7] Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning. fairml-
book.org, 2019. http://www.fairmlbook.org.

[8] Gerardo Berbeglia and Geňa Hahn. Counting feasible solutions of the traveling sales-
man problem with pickups and deliveries is# P-complete. Discrete Applied Mathematics,
157(11):2541–2547, 2009.

[9] Or Biran and Courtenay V. Cotton. Explanation and Justi�cation in Machine Learning : A
Survey. 2017.

[10] Manuel Blum, Ashok K. Chandra, and Mark N. Wegman. Equivalence of Free Boolean Graphs
can be Decided Probabilistically in Polynomial Time. Inf. Process. Lett., 10:80–82, 1980.

70

https://venturebeat.com/2020/07/01/mit-takes-down-80-million-tiny-images-data-set-due-to-racist-and-offensive-content/
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.theverge.com/21298762/face-depixelizer-ai-machine-learning-tool-pulse-stylegan-obama-bias
https://www.computer.org/csdl/proceedings-article/focs/1989/063538/12OmNxwWouwo
https://theory.cs.princeton.edu/complexity/book.pdf
https://arxiv.org/abs/1910.10045
https://arxiv.org/abs/1910.10045
http://www.fairmlbook.org
https://www.sciencedirect.com/science/article/pii/S0166218X09000857
https://www.sciencedirect.com/science/article/pii/S0166218X09000857
https://pdfs.semanticscholar.org/02e2/e79a77d8aabc1af1900ac80ceebac20abde4.pdf
https://pdfs.semanticscholar.org/02e2/e79a77d8aabc1af1900ac80ceebac20abde4.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0020019080900782
https://www.sciencedirect.com/science/article/abs/pii/S0020019080900782

[11] Jonathan F. Buss and Tarique Islam. Simplifying the Weft hierarchy. Theoretical Computer
Science, 351(3):303–313, 2006.

[12] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[13] A. Darwiche and P. Marquis. A knowledge compilation map. Journal of Arti�cial Intelligence
Research, 17:229–264, September 2002.

[14] Adnan Darwiche and Auguste Hirth. On the reasons behind decisions. arXiv preprint
arXiv:2002.09284, 2020.

[15] Finale Doshi-Velez and Been Kim. A Roadmap for a Rigorous Science of Interpretability.
CoRR, abs/1702.08608, 2017.

[16] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer New York, 1999.

[17] Rod G. Downey and Michael R. Fellows. Fixed-Parameter Tractability and Completeness I:
Basic Results. SIAM Journal on Computing, 24(4):873–921, August 1995.

[18] Rodney G Downey and Michael R Fellows. Fundamentals of parameterized complexity, vol-
ume 4. Springer, 2013.

[19] Rodney G. Downey, Michael R. Fellows, and Kenneth W. Regan. Parameterized circuit com-
plexity and the W hierarchy. Theoretical Computer Science, 191(1-2):97–115, January 1998.

[20] Michael Fellows, Danny Hermelin, Moritz Müller, and Frances Rosamond. A purely demo-
cratic characterization of W[1]. In Parameterized and Exact Computation, pages 103–114.
Springer Berlin Heidelberg.

[21] Michael R. Fellows, Jörg Flum, Danny Hermelin, Moritz Müller, and Frances A. Rosamond.
Combinatorial circuits and the W-hierarchy. 2007.

[22] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, 2006.

[23] Pratik Gajane and Mykola Pechenizkiy. On Formalizing Fairness in Prediction with Machine
Learning, 2017.

[24] Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal.
Explaining explanations: An overview of interpretability of machine learning. In 2018 IEEE
5th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2018.

[25] Mikael Goldmann and Marek Karpinski. Simulating threshold circuits by majority circuits.
SIAM Journal on Computing, 27(1):230–246, 1998.

[26] Judy Goldsmith, Matthias Hagen, and Martin Mundhenk. Complexity of DNF minimization
and isomorphism testing for monotone formulas. Information and Computation, 206(6):760–
775, 2008.

71

https://www.sciencedirect.com/science/article/pii/S0304397505006262?via%3Dihub
https://mitpress.mit.edu/books/introduction-algorithms-third-edition
https://mitpress.mit.edu/books/introduction-algorithms-third-edition
https://arxiv.org/abs/2002.09284
http://arxiv.org/abs/1702.08608
https://doi.org/10.1007/978-1-4612-0515-9
http://www.mrfellows.net/papers/DF95_FPTandCompletenessI.pdf
http://www.mrfellows.net/papers/DF95_FPTandCompletenessI.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.456.2729&rep=rep1&type=pdf
http://www.mrfellows.net/papers/DFR98_CircuitComplexity.pdf
http://www.mrfellows.net/papers/DFR98_CircuitComplexity.pdf
http://www.mrfellows.net/papers/C82-democratic.pdf
http://www.mrfellows.net/papers/C82-democratic.pdf
http://www.mrfellows.net/papers/J74-TOCS-comb-circs-revised.pdf
http://yaroslavvb.com/upload/flum.pdf
https://arxiv.org/pdf/1710.03184.pdf
https://arxiv.org/pdf/1710.03184.pdf
https://arxiv.org/abs/1806.00069
https://epubs.siam.org/doi/abs/10.1137/S0097539794274519
https://www.sciencedirect.com/science/article/pii/S0890540108000138
https://www.sciencedirect.com/science/article/pii/S0890540108000138

[27] Bryce Goodman and Seth Flaxman. European Union Regulations on Algorithmic Decision-
Making and a “Right to Explanation”. AI Magazine, 38(3):50–57, October 2017.

[28] Parikshit Gopalan, Adam Klivans, Raghu Meka, Daniel Štefankovic, Santosh Vempala, and
Eric Vigoda. An FPTAS for #knapsack and related counting problems. In 2011 IEEE 52nd
Annual Symposium on Foundations of Computer Science, pages 817–826. IEEE, 2011.

[29] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and
Dino Pedreschi. A survey of methods for explaining black box models. ACM Comput. Surv.,
51(5).

[30] David Gunning and David Aha. DARPA’s explainable arti�cial intelligence (XAI) program.
AI Magazine, 40(2):44–58, 2019.

[31] Tameru Hailesilassie. Rule Extraction Algorithm for Deep Neural Networks: A Review.
ArXiv, abs/1610.05267, 2016.

[32] Bernease Herman. The Promise and Peril of Human Evaluation for Model Interpretability,
2017.

[33] David Hume. A Treatise of Human Nature. Oxford University Press, Oxford, 1978. revised
P.H. Nidditch.

[34] Mark R Jerrum, Leslie G Valiant, and Vijay V Vazirani. Random generation of combinatorial
structures from a uniform distribution. TCS, 43:169–188, 1986.

[35] Been Kim, Justin Gilmer, Fernanda Viegas, Ulfar Erlingsson, and Martin Wattenberg. TCAV:
Relative concept importance testing with Linear Concept Activation Vectors. 11 2017.

[36] James Alexander King. Approximation algorithms for guarding 1.5 dimensional terrains. PhD
thesis, 2005.

[37] Isaac Lage, Andrew Ross, Samuel J Gershman, Been Kim, and Finale Doshi-Velez. Human-
in-the-Loop Interpretability Prior. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems
31, pages 10159–10168. Curran Associates, Inc., 2018.

[38] Zachary C Lipton. The mythos of model interpretability. Queue, 16(3):31–57, 2018.

[39] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan.
A Survey on Bias and Fairness in Machine Learning, 2019.

[40] Tim Miller. Explanation in arti�cial intelligence: Insights from the social sciences. Arti�cial
Intelligence, 267:1–38, February 2019.

[41] Christoph Molnar. Interpretable Machine Learning. 2019. https://christophm.
github.io/interpretable-ml-book/.

[42] W. James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu. De�nitions,

72

https://www.aaai.org/ojs/index.php/aimagazine/article/view/2741
https://www.aaai.org/ojs/index.php/aimagazine/article/view/2741
https://www.cs.rochester.edu/u/stefanko/Publications/FOCS11.pdf
https://arxiv.org/abs/1802.01933
https://www.aaai.org/ojs/index.php/aimagazine/article/view/2850
https://arxiv.org/abs/1610.05267
https://arxiv.org/abs/1711.07414
http://www2.stat.duke.edu/~scs/Courses/Stat376/Papers/ConvergeRates/RandomizedAlgs/JerrumValiantVaziraniTCS1986.pdf
http://www2.stat.duke.edu/~scs/Courses/Stat376/Papers/ConvergeRates/RandomizedAlgs/JerrumValiantVaziraniTCS1986.pdf
https://openreview.net/pdf?id=S1viikbCW
https://openreview.net/pdf?id=S1viikbCW
https://www.cs.mcgill.ca/~jking/papers/guarding_thesis.pdf
https://papers.nips.cc/paper/8219-human-in-the-loop-interpretability-prior.pdf
https://papers.nips.cc/paper/8219-human-in-the-loop-interpretability-prior.pdf
https://dl.acm.org/doi/pdf/10.1145/3236386.3241340
https://arxiv.org/abs/1908.09635
https://arxiv.org/abs/1706.07269
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://arxiv.org/abs/1901.04592
https://arxiv.org/abs/1901.04592

methods, and applications in interpretable machine learning. Proceedings of the National
Academy of Sciences, 116(44):22071–22080, 2019.

[43] Tung D Nguyen, Kathryn E Kasmarik, and Hussein A Abbass. Towards interpretable deep
neural networks: An exact transformation to multi-class multivariate decision trees. arXiv,
pages arXiv–2003, 2020.

[44] Eirini Ntoutsi, Pavlos Fafalios, Ujwal Gadiraju, Vasileios Iosi�dis, Wolfgang Nejdl, Maria-
Esther Vidal, Salvatore Ruggieri, Franco Turini, Symeon Papadopoulos, Emmanouil
Krasanakis, Ioannis Kompatsiaris, Katharina Kinder-Kurlanda, Claudia Wagner, Fariba
Karimi, Miriam Fernandez, Harith Alani, Bettina Berendt, Tina Kruegel, Christian Heinze,
Klaus Broelemann, Gjergji Kasneci, Thanassis Tiropanis, and Ste�en Staab. Bias in data-
driven arti�cial intelligence systems—An introductory survey. WIREs Data Mining and
Knowledge Discovery, 10(3), February 2020.

[45] Judea Pearl. Causal inference in statistics: An overview. Statistics Surveys, 3(0):96–146, 2009.

[46] Jorge Pérez, Javier Marinković, and Pablo Barceló. On the turing completeness of modern
neural network architectures. arXiv preprint arXiv:1901.03429, 2019.

[47] Venkatakrishnan Ramaswamy. An Algorithmic Barrier to Neural Circuit Understanding.
bioRxiv, 2019.

[48] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why Should I Trust You?”. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 2016.

[49] Romeo Rizzi and Alexandru I Tomescu. Faster FPTASes for counting and random generation
of Knapsack solutions. Information and Computation, 267:135–144, 2019.

[50] Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nature Machine Intelligence, 1(5):206–215, 2019.

[51] Cynthia Rudin, Caroline Wang, and Beau Coker. The Age of Secrecy and Un-
fairness in Recidivism Prediction. Harvard Data Science Review, 2(1), 3 2020.
https://hdsr.mitpress.mit.edu/pub/7z10o269.

[52] Wojciech Samek, Thomas Wiegand, and Klaus-Robert Müller. Explainable Arti�cial Intel-
ligence: Understanding, Visualizing and Interpreting Deep Learning Models. ITU Journal:
ICT Discoveries - Special Issue 1 - The Impact of Arti�cial Intelligence (AI) on Communication
Networks and Services, 1:1–10, 10 2017.

[53] Weijia Shi, Andy Shih, Adnan Darwiche, and Arthur Choi. On tractable representations of
binary neural networks. arXiv preprint arXiv:2004.02082, 2020.

[54] Andy Shih, Arthur Choi, and Adnan Darwiche. Formal veri�cation of Bayesian network
classi�ers. In International Conference on Probabilistic Graphical Models, pages 427–438, 2018.

[55] Andy Shih, Arthur Choi, and Adnan Darwiche. A symbolic approach to explaining Bayesian

73

https://arxiv.org/abs/1901.04592
https://arxiv.org/abs/1901.04592
https://arxiv.org/abs/2003.04675
https://arxiv.org/abs/2003.04675
https://onlinelibrary.wiley.com/doi/epdf/10.1002/widm.1356
https://onlinelibrary.wiley.com/doi/epdf/10.1002/widm.1356
https://doi.org/10.1214/09-ss057
https://arxiv.org/abs/1901.03429
https://arxiv.org/abs/1901.03429
https://www.biorxiv.org/content/early/2019/05/26/639724
https://arxiv.org/abs/1602.04938
https://www.sciencedirect.com/science/article/pii/S0890540119300276
https://www.sciencedirect.com/science/article/pii/S0890540119300276
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://hdsr.mitpress.mit.edu/pub/7z10o269
https://hdsr.mitpress.mit.edu/pub/7z10o269
https://arxiv.org/abs/1708.08296
https://arxiv.org/abs/1708.08296
https://arxiv.org/abs/2004.02082
https://arxiv.org/abs/2004.02082
http://proceedings.mlr.press/v72/shih18a/shih18a.pdf
http://proceedings.mlr.press/v72/shih18a/shih18a.pdf
https://arxiv.org/abs/1805.03364
https://arxiv.org/abs/1805.03364

network classi�ers. arXiv preprint arXiv:1805.03364, 2018.

[56] Andy Shih, Adnan Darwiche, and Arthur Choi. Verifying binarized neural networks by
Angluin-style learning. In International Conference on Theory and Applications of Satis�abil-
ity Testing, pages 354–370. Springer, 2019.

[57] Christopher Umans. The minimum equivalent DNF problem and shortest implicants. Journal
of Computer and System Sciences, 63(4):597–611, 2001.

[58] Ingo Wegener. BDDs—design, analysis, complexity, and applications. Discrete Applied Math-
ematics, 138(1-2):229–251, 2004.

[59] Jan Ruben Zilke, Eneldo Loza Mencía, and Frederik Janssen. DeepRED – Rule Extraction
from Deep Neural Networks. In Discovery Science, pages 457–473. Springer International
Publishing, 2016.

74

https://arxiv.org/abs/1805.03364
https://arxiv.org/abs/1805.03364
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=2ahUKEwjj7eujo_noAhX8SRUIHZJ-BewQFjACegQIBBAB&url=http%3A%2F%2Freasoning.cs.ucla.edu%2Ffetch.php%3Fid%3D193%26type%3Dpdf&usg=AOvVaw3PR_FY0kGzfMBfoGTbqSN8
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=2ahUKEwjj7eujo_noAhX8SRUIHZJ-BewQFjACegQIBBAB&url=http%3A%2F%2Freasoning.cs.ucla.edu%2Ffetch.php%3Fid%3D193%26type%3Dpdf&usg=AOvVaw3PR_FY0kGzfMBfoGTbqSN8
https://pdfs.semanticscholar.org/e46c/b895f66ae8671bab35200b825c1fdbd1f740.pdf
https://www.sciencedirect.com/science/article/pii/S0166218X0300297X
https://doi.org/10.1007/978-3-319-46307-0_29
https://doi.org/10.1007/978-3-319-46307-0_29

	Introduction
	Preliminaries on Interpretablity and Complexity
	Cat Recognition, a bottom-up example to get started
	But what is interpretability after all? A brief literature discussion
	Transparency
	Explanations or Post-hoc interpretability
	Interpretability vs. Explainability
	Desiderata

	Background in Complexity Theory

	A framework to measure and compare model interpretability
	Models and instances
	Explainability Queries
	Interpretability in terms of complexity

	The computational complexity of interpreting different models
	Specific models
	Main interpretability theorems
	The complexity of interpretability queries
	The complexity of MinimumChangeRequired
	The complexity of CheckSufficientReason
	The complexity of MinimalSufficientReason
	The complexity of MinimumSufficientReason
	The complexity of CountCompletions

	The parameterized complexity of interpreting Neural Networks: deeper is harder than shallow
	Required background in parameterized complexity
	Statement of a parameterized result and sketch of proof
	The graph interpretation of (r)MLPs

	Constructions and transformations
	A proof for Theorem 4.1
	Application of the parameterized result

	Applications to Fairness and Bias Detection
	About the notion of (un)fairness used
	Definitions of bias
	On the complexity of bias detection

	Discussion
	About our results
	Related work
	Open problems and future research directions

	Bibliography

