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VORTICES INDUCED BY ELECTRIC AND MAGNETIC FIELD AND TOPOLOGICAL
TRANSITIONS IN OUT OF EQUILIBRIUM SYSTEMS

Electrically driven nematic liquid crystal layers are ideal platform for studying the interac-
tions of local topological defects, called vortices or umbilical defects. This thesis is devoted
to experimentally and theoretically study the behavior of vortices in nematic liquid crystal
cells under the influence of external electric and magnetic field. This dissertation is composed
of six chapters and appendixes that contain articles published and manuscripts submitted
during this work. In the first chapter, we present a theoretical and experimental framework
required to understand the present dissertation.

In second chapter, we investigate the interaction of vortices in an inhomogeneous nematic
liquid crystal cell. Experimentally, we characterize the coarsening dynamics in samples con-
taining glass beads as spacers and show that the inclusion of such imperfections changes the
critical exponent of the coarsening law. Moreover, we demonstrate that slightly deformed
beads attract vortices of both topological charges, thus, presenting a mainly quadrupolar
behavior. Theoretically, based on a model of diluted vortices in a dipolar medium, a 2/3
exponent is inferred, which is consistent with the experimental observations.

In third chapter, we investigate an experiment involving a liquid crystal cell under the
influence of a low frequency oscillatory electric field. Unexpectedly, we observe topological
states of matter in systems with injection and dissipation of energy. An amplitude equation
with oscillatory parameters allows us to characterize the topological transition.

In fourth chapter, we study a nematic liquid crystal cell under the combined effect of
the electric and the magnetic field of a magnetic ring which exhibits a stable vortex triplet.
Theoretically, an amplitude equation with topological forcing allows us to reveal the origin of
the vortex triplet. A lattice of vortices is observed when the frequency of the applied voltage
is decreased. By adding an inertia term to the amplitude equation it is possible to reveal the
origin of this phenomenon.

In fifth chapter, we investigate how the inherent fluctuations affect the vortex nucleation.
Experimentally, the number of vortices was studied as a function of voltage and temperature.
Theoretically, a model was derived to describe the number of vortices as a function of different
parameters. Numerically, the number of vortices was studied as a function of the bifurcation
parameter, anisotropy, and noise, showing a quite fair agreement with the experimental
observations.

Finally, in chapter six, we summarize the conclusions of this thesis and related perspec-
tives.
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VORTICES INDUCIDOS POR CAMPOS ELÉCTRICO Y MAGNÉTICO Y
TRANSICIONES TOPOLÓGICAS EN SISTEMAS FUERA DEL EQUILIBRIO

Películas delgadas de cristal líquido nemático impulsadas eléctricamente son una plataforma
ideal para estudiar las interacciones de los defectos topológicos locales, llamados vórtices o
defectos umbilicales. Esta tesis está dedicada a estudiar de forma experimental y teórica
el comportamiento de los vórtices en celdas de cristal líquido nemático bajo la influencia
de campos eléctricos y magnéticos externos. Esta investigación está compuesta por seis
capítulos y anexos que contienen artículos publicados y manuscritos presentados durante
este trabajo. En el primer capítulo, presentamos un marco teórico y experimental necesario
para comprender la presente tesis.

En el segundo capítulo, investigamos la interacción de vórtices en una celda de cristal
líquido nemático no homogénea. Experimentalmente, caracterizamos la dinámica de en-
grosamiento (distancia promedio entre vórtices) en muestras que contienen perlas de vidrio
como espaciadores y mostramos que la inclusión de tales imperfecciones cambia el exponente
crítico de la ley de engrosamiento. Además, demostramos que las perlas ligeramente de-
formadas atraen vórtices de ambas cargas topológicas, presentando así un comportamiento
principalmente cuadrupolar. Teóricamente, basado en un modelo de vórtices diluidos en un
medio dipolar, se infiere un exponente de 2/3, lo cual es consistente con las observaciones
experimentales.

En el tercer capítulo, investigamos un experimento que involucra una celda de cristal
líquido bajo la influencia de un campo eléctrico oscilatorio de baja frecuencia. Inesperada-
mente, observamos estados topológicos de la materia en sistemas con inyección y disipación
de energía. Una ecuación de amplitud con parámetros oscilatorios nos permite caracterizar
la transición topológica.

En el cuarto capítulo, estudiamos una celda nemática de cristal líquido bajo el efecto
combinado del campo eléctrico y magnético de un anillo magnético que exhibe un triplete
de vórtice estable. Teóricamente, una ecuación de amplitud con forzamiento topológico nos
permite revelar el origen del triplete de vórtices. Se observa una red de vórtices cuando
disminuye la frecuencia del voltaje aplicado. Añadiendo un término de inercia a la ecuación
de amplitud es posible revelar el origen de este fenómeno.

En el quinto capítulo, investigamos cómo las fluctuaciones inherentes afectan la nucleación
de vórtices. Experimentalmente, se estudió el número de vórtices en función del voltaje y
la temperatura. Teóricamente, se derivó un modelo para describir el número de vórtices en
función de diferentes parámetros. Numéricamente, se estudió el número de vórtices en función
del parámetro de bifurcación, anisotropía y ruido, mostrando una concordancia bastante justa
con las observaciones experimentales.
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Finalmente, en el capítulo seis, resumimos las conclusiones de esta tesis y las perspectivas
relacionadas.
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Introduction

Robust phenomena correspond to dynamical behaviors that occurs in different physical sys-
tems. Vortices are a robust phenomenon. In a simple way, we can say that a vortex is a kind
of whirlpool that has a singularity at its center and we can see it in different contexts such as
in a spiral galaxy, in hurricanes, in the eddies that form in our heads, eddies in the sea, among
others (see Fig.1). In the last decades, the study of vortices in different areas of physics and
mathematics such as condensed matter, superconductors, topology, liquid crystals and optics
have acquired great interest and contributed to the development in different areas. In 2016
J. Michael Kosterlitz and David J. Thouless received the Nobel Prize in Physics for their
discoveries of topological transitions and topological phases of matter.

a) b) c) d)

Figure 1: Vortices in different physical systems. a)Spiral galaxy. b) Eddies in heads.
c)Vortices in liquid crystal. d)Hurricane.

The study of vortices is still very relevant to understand different physical phenomena
and for the development of future technologies, such as photonics, optical communications
systems, optical storage and interconnect, biomedical imaging. In this dissertation, in the
context of liquid crystals, the behavior of vortices in nematic liquid crystal was studied
under the influence of electric and magnetic fields, both experimentally and theoretically.
All experiments were performed in the Laboratory of Robust Phenomena in Optics LAFER
https://www.cec.uchile.cl/~lafer/.
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0.1 Objectives
To investigate the behavior of vortices in out-of-equilibrium nematic liquid crystals layers by
applying external electric and magnetic field.

Specific objectives:

• Develop the ability to design and perform optical experimental setups in microscopes
to study liquid crystals.
• Characterize and analyze the experimental results obtained.
• Build a theoretical model and establish the mechanisms that describe the observed

Topological transitions.
• Implement numerical simulations that validate the proposed model.

0.2 Figure notation and abbreviations
In this thesis, the notation used to refer to a figure is the following:

see figure Chapter.Number,

where Chapter correspond to the chapter where the figure is located in the document and
Number is the figure numeration in that chapter.
Some of the most commonly used abbreviations in the thesis are:

• LC: Liquid Crystal.
• NLC: Nematic Liquid Crystal.
• QWP: Quarter Wave Plate.
• ITO: Indium, Tin and Oxide.
• MR: Magnetic Ring.
• CMOS: Complementary Metal Oxide Semiconductor.
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Chapter 1

Framework

In this chapter the necessary elements will be provided to understand the following chapters
of this thesis.

1.1 Liquid crystals
Liquid crystals are a state of aggregation of matter that have properties of both crystalline
solids and isotropic liquids [1,2]. From the crystalline solid they inherit anisotropy and from
the liquid they inherit fluidity. Calamitic liquid crystals are characterized by being elongated
aromatic molecules assuming rod like geometry (see Figure 1.1) that have local orientation
order but not at long distances. The liquid crystals have the property of interacting strongly
with light, electric and magnetic field, and temperature [2].

Figure 1.1: Liquid crystal molecules.

Discovery

Liquid crystals were discovered by the Austrian botanist Friedrich Reinitzer in 1888 when
he discovered that cholesterol Benzoate had two melting points, at 145.5 ◦C it became an
opaque and dense liquid and at 178.5◦C it became a transparent liquid and light (Figure
1.2). A year later, Otto Lehman discovered that cholesteryl benzoate, in the opaque phase,
had areas of crystalline molecular structure and called it liquid crystal.
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b) a) 

Figure 1.2: Cholesterol benzoate subjected to an increase in temperature. b) At 145.5◦C it
melts into an opaque and dense liquid, b) At 178.5◦C it melts into a light and transparent
liquid.

Mesophases

Liquid crystal molecules present an orientational order that is characterized by a director
vector ~n, since the molecules are quadrupolar this vector has the symetry ~n = −~n. As the
temperature varies, the liquid crystal molecules change their orientation structure, forming
different mesophases as shown in Figure 1.3.
The Smectic phase is characterized in that the molecules are located in parallel layers with
about 2 ángstrom of distance between them and the molecular orientation is constant.. In
the Nematic phase, the position of the molecules are completely disordered, but point in
the same direction. The only regularity is the constancy of orientation. In the Cholesteric
phase, the molecular axis changes direction sequentially as it passes from one layer to another,
describing a helix-shaped trajectory [2, 3].

Figure 1.3: Mesophases of liquid crystals.

The nematic liquid crystals have strong coupling with electric and magnetic field, which is
why they are the most widely used in the industry and therefore have been the most widely
studied. This thesis concentrates its efforts on studying the behavior of vortices in nematic
liquid crystal in the presence of external fields, therefore in this section we will focus on
describing this mesophase in following lines.
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1.2 Free Energy
The nematic liquid crystals undergoes different deformations upon applying an external field.
These deformations affect the rotation of the molecules in the direction in which the torsion
is being applied and do not modify the center of gravity of the molecules. The main defor-
mations suffered by a nematic liquid crystal are splay, twist and bend [4].
Figure 1.4 shows the respective deformations.

Figure 1.4: Elastic deformations in nematic liquid crystal.

The energy densities for each of these deformations are [1]

splay : f1 =
1

2
K1 (∇ · n̂)2 ,

twist : f2 =
1

2
K2 (n̂ · ∇ × n̂)2 ,

bend : f3 =
1

2
K3(n̂×∇× n̂)2,

K1, K2 and K3 are the elastic constants correspond to splay, twist and bend deformation
respectly. Then, the Frank-Ossen Free energy density corresponds to

Fd =
1

2
K1 (∇ · n̂)2 +

1

2
K2 (n̂ · ∇ × n̂)2 +

1

2
K3(n̂×∇× n̂)2. (1.1)

Note that if we want to fully describe the energy density in a liquid crystal, it will be
necessary to add a corresponding energy term from the treatment that the molecules have
on the surface and a term for each external fields applied.

Surface anchoring

The surface on which a liquid crystal is located can be chemically treated to anchor in a
strong or weak way the molecules that are at borders. A strong anchoring means that the
molecules are strongly attached to the boundary with the surface and they do not respond to
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the action of external fields, therefore the surface energy can be considered constant and does
not affect equation (1.1). When the molecules are strongly anchored perpendicular (parallel)
to the surface it is called homeotropic (planar) anchoring as shown in Figure 1.5. A weak
anchoring means that molecules that are at the boundary with the surface respond to the
presence of external fields, and here a surface energy term should be considered, but for the
purposes of this thesis we will not delve into it.

a) b)

c) d)

E=0

E=0

E
on

E
on

Figure 1.5: Strong anchonring in a nematic liquid crystal cell. a) Homeotropic anchoring
liquid crystal cell without external field. b) Homeotropic anchoring liquid crystal cell with
vertical external field. c) Planar anchoring liquid crystal cell without external field. d) Planar
anchoring liquid crystal cell with a vertical external field.

External fields

If we consider an external electric field applied ~E to a nematic liquid crystal, the displacement
of electric field is

~D = ¯̄ε · ~E,
where ¯̄ε is the dielectric constant tensor. For a uniaxial nematic, ¯̄ε has two main components,
one in a direction parallel to the director vector ε‖ and the other in any direction perpendicular
to the director vector ε⊥, that is.

¯̄ε =



ε⊥ 0 0
0 ε⊥ 0
0 0 ε‖




For dielectric tensor ε, from [1], we have

εαβ = ε⊥δαβ + (ε‖ − ε⊥)nαnβ.
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Then, ~D can be written as follows

~D = −ε⊥ ~E +
(
ε‖ − ε⊥

) (
n̂ · ~E

)
n̂,

Note that
(
ε‖ − ε⊥

)
= ∆ε corresponds to the dielectric anisotropy. Then, the electrical

interaction energy density is

µe =

∫ E

0

~D · d ~E,

= −1

2
ε⊥
(
~E · ~E

)
− ∆ε

2

(
n̂ · ~E

)2

,

(1.2)

note that in (1.2), the first term is independent of the molecular orientation, so it can be
neglected for the director dynamics, obtaining that the density of free electric energy is

Fe = −∆ε

2

(
n̂ · ~E

)2

. (1.3)

Analogously, in the presence of an external magnetic field, the magnetization satisfies the
relation

M = ¯̄χm ~H,

for a uniaxial nematic, the magnetic supectibility takes the form

¯̄χm =



χm⊥ 0 0
0 χm⊥ 0
0 0 χm‖


 .

Thereby, the magnetization es

~M = −χ⊥ ~H +
(
χ‖ − χ⊥

) (
n̂ · ~H

)
n̂,

Note that
(
χ‖ − χ⊥

)
= ∆χa corresponds to the magnetic anisotropy. Then, the magnetic

interaction energy density is

µm =

∫ H

0

~M · d ~H,

= −1

2
χ⊥
(
~H · ~H

)
− ∆χa

2

(
n̂ · ~H

)2

,

Notice that the first term is independent of the molecular orientation, so it can be neglected,
obtaining that the density of free magnetic energy is

Fm = −χa
2

(
n̂ · ~H

)2

. (1.4)

Therefore, the total free energy density of the deformation of a nematic liquid crystal with
strong anchorage and in the presence of electric and magnetic field is

F = Fd + Fe + Fm

then,

F =
1

2
K1 (∇ · n̂)2 +

1

2
K2 (n̂ · ∇ × n̂)2 +

1

2
K3(n̂×∇× n̂)2−∆ε

2

(
n̂ · ~E

)2

− χa
2

(
n̂ · ~H

)2

(1.5)
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1.3 Fréedericksz Voltage
Consider a nematic liquid crystal cell of thickness d, with homeotropic anchoring and negative
dielectric anisotropy ∆ε < 0 subjected to an electric field ~E in the ẑ direction. The molecular
reorientation energy will be

F =
1

2
K1 (∇ · n̂)2 +

1

2
K2 (n̂ · ∇ × n̂)2 +

1

2
K3(n̂×∇× n̂)2 − ∆ε

2

(
n̂ · ~E

)2

, (1.6)

we minimize this energy using (the inertial term is negligible due to strong relation viscosity
γ [1])

γ
~n

dt
= −δF

δ~n
,

considering that |n| = 1, then,

γ
~n

dt
= −δF

δ~n
+ ~n

(
~n · δF

δ~n

)
,

we obtain [5]

γ
d~n

dt
= K3[∇2~n− ~n

(
~n · ∇2~n

)
] + (K3 −K1)[~n (~n · ∇) (∇ · ~n)−∇ (∇ · ~n)]

+(K2 −K3) [2 (~n · ∇ × ~n) (~n (~n · ∇ × ~n)−∇×) + ~n×∇ (~n · ∇ × ~n)]

−∆ε (~n · E)
(
~n
(
~n · ~E

)
− ~E

)
.

To find when the nematic molecules are reoriented due to the action of the electric field and
the competition with elastic force, for this we consider ~n ≈ (u, v, 1− u2+v2

2
) with u and v are

small perturbations, and negllecting high order terms

γ
du

dt
= K3∂zzu−∆εE2u,

γ
dv

dt
= K3∂zzv∆εE2v.

(1.7)

Using the ansatz that satisfies hometropic boundary conditions, that is u = v = 0 at z = 0
and z = d, then the ansatz which we choose to study the stability is

u = v = sin(kz)eσt,

with k = nπ/d. Using this ansatz in (1.7), and straight forward calculations

γσ = −K3k
2 −∆εE2.

We look for the critical value of E necessary to generate the molecular reorientation of the
nematic, then, for n=1 and σ = 0,

E =

√
−K3k2

∆εd2
=

√
−K3π2

∆εd2
.

Thus, the critical voltage is

VF =

√
−K3π2

∆ε
(1.8)

This critical voltage is called Fréedericksz Voltage [6] and corresponds to the minimum voltage
necessary for the electrical force to be greater than the elastic force generating the molecular
reorientation.
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1.4 Vortices in liquid crystal
In a nematic phase liquid crystal cell with negative dielectric constant and homeotropic
anchoring, the molecules tend to align perpendicular to an applied electric field when the
electric field has a voltage higher than Fréedericksz Voltage by minimizing the Frank-Ossen
energy. On the other hand, due to the elasticity and boundary conditions of the material,
the molecules tend to be parallel to the electric field. Hence, the balance between electric
and elastic force, causes the molecules to have different orientations throughout the sam-
ple. This effect promotes formation of topological defects called vortices, umbilical defects or
disclination line [7], that can be observed under linear crossed polarization [8]. These defects
interact with each other and annihilate by pairs.

Figure 1.6: Vortices in nematic liquid crystal.

Theoretically, the vortex dynamics in liquid crystals has been described near the reorienta-
tional instability of the molecules (Fréedericksz transition) [9,10] by the anisotropic Ginzburg
Landau equation with real coefficients [9]

∂tA = µA− |A|2A+∇2A+ δ∂ηηĀ, (1.9)

where A accounts for the amplitude of the critical mode, µ is the bifurcation parameter which
describes the diference between the applied voltage V0 and the critical Fréedericksz voltage
VF , µ ∝ Vo−VF . δ is de the anisotropy of the material defined by δ = (K1−K2)/(K1 +K2),
with K1 and K2 are elastic deformation constants splay and twist of the liquid crystal,
respectively. The spatial coupling is described by the symbol ∂η = ∂x+i∂y and the Laplacian
∇2 = ∂η∂η̄.
A vortex is characterized by having a phase singularity at the point where the amplitude A
is 0, this singularity is characterized through the topological charge, defined as [8]

m =
1

2π

∮

C

∇θ(~r)~dl =
1

2π

∮
dθ (1.10)
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where C is any curve that encloses a vortex (see Figure 1.6) and m is an integer. Once
vortices are created, they interact and annihilate with the vortex of opposite topological
charge. Figure 1.7 shows the vortex solutions of equation (1.9). For a vortex of topological
charge +1, the module of A has a circular core and a phase jump of + 2π. For a negative
vortex −1, the module of A has a square core and a phase jump of −2π [9].

Figure 1.7: Positive and negative vortex solutions of equation (1.9). a) and c) correspond
to the plot of the module |A| for a positive and negative vortex, respectively. b) and c)
correspond to the plot of the phase of A, and ψ = arctan (Im(A)/Re(A)), for a positive and
negative vortex respectively.

Different research groups [8, 11] studied the behavior of vortices in nematic liquid crys-
tal and have demonstrated that, for long-distance, the interaction between two vortices of
opposite charge is proportional to the inverse of the distance between them [8], and that
the density of vortices, in a homogeneous liquid crystal cell, is proportional to the inverse of
time [11].

1.5 Topological transitions
There are different phases of matter, such as solid, liquid, gaseous, plasma, Bose-Einstein
condensate, among others [12]. By changing a macroscopic parameter such a temperature,
pressure, etc. a system undergoes a phase transition and changes from one state to another,
changing its properties. In the 20th century, Landau showed that different phases have dif-
ferent symmetries and in a phase transition, a higher symmetry group is divided into a lower
symmetry subgroup, thus, a phase transition implies a symmetry break [13]. For example,
the cooling of a fluid in a crystalline solid breaks the symmetry continuous of translation
since each point in the fluid has the same properties but when it becomes a crystal, each
point does not have the same properties. Another example is the phase transition a magnet
undergoes as the temperature rises beyond a critical value to move from a ferromagnetic
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state to a paramagnetic state. The ferromagnetic state has a magnetization that breaks the
rotational symmetry, and then it is restored to the paramagnetic state [14].
However, at beginnings of 70’s, Berezinskii, Kosterlitz and Thouless discovered that there is
a new type of phase transition called topological phase transition [15,16]. The main charac-
teristic of this type of phase transition is that the transition occurs without any symmetry
breaking. Thus, the distinction between topological phases is not in their symmetry but in
their topology. Note that the topology is the study of invariant properties under continuous
deformation. This new understanding of the phase transitions of matter that they achieved
made them winners of the 2016 Nobel Prize in Physics. In the following lines we will explain
the Kosterlitz-Thouless transition.

θi)

Figure 1.8: Square lattice of spins that can rotate freely.

Consider an infinite square lattice made of spins that can rotate freely.
The energy of the system will correspond to the interaction of the spins with their closest
neighbors,

H = −J
∑

<i,j

~Si · ~Sj = −J
∑

<i,j>

cos(θi − θj), (1.11)

where the sum is for the closest neighbors and θ the angle that the spin forms with respect to
the x axis (see Fig.1.8). Assuming that the direction of the spin varies slowly when moving
through the network, that is, θ(~r) ≈ θ.
For close neighbors, the angles will have similar values, then, θi− θj will have values close to
0, hence, if we expand cos(θi − θj) as a series of powers, the equation (1.11) becomes

H = −2JN +
J

2

∑

<i,j>

(θi − θj)2, (1.12)

where N is the total number of spins. Let a be the separation distance between two neigh-
boring spins of the square lattice, then

θi,j − θi,j+a ≈ −
∂θ

∂x

(
x(i,j) − x(i,j+a)

)
≈ −a∂θ

∂x
. (1.13)
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In the square lattice, according to Figure 1.8, we can see that a spin will have to 4 neighbors,
then, applying (1.13) to the 4 neighbors and replacing it in (1.12), we obtain

H = H0 +
J

4

∑

i

4∑

k

(θi − θk)2

H = H0 +
J

4

∑

i

a2

((
∂θ

∂x

)2

i

+ 2

(
∂θ

∂y

)2

i

)
,

with H0 = −2JN . The previous expression, we can write it continuously as

H = H0 +
J

2

∫
d~r (~∇θ)2. (1.14)

Kosterlitz and Thouless propose that thermal fluctuations generate vortices in the system of
the square lattice of spines [16]. Using (1.14) we have that the energy for a vortex is

Evor = E0 +
J

2
a2

∫
d~r(~∇θ)2.

Note that a vortex has rotational symmetry, therefore, for a vortex of charge ±1, |~∇θ(~r)| = 1
r
,

then,

Evor = E0 + Jπa2n2

∫ L

a

rdr

r2
,

Evor = E0 + Jπa2n2 ln(L/a), (1.15)

where a is the size of the vortex core and L is the length of the system. Since L >> a,
therefore, the vortex energy diverges, that is, infinite energy is needed to create a vortex.
The energy of a pair of vortices of opposite topological charges is

E2v = 2E0 +
J

2

∫
d~r(~∇θ1 +∇~θ2)2,

E2v = 2E0 +
J

2

∫
d~r(~∇θ1)2 +

J

2

∫
d~r(~∇θ2)2 + J

∫
d~r~∇θ2

~∇θ1,

E2v = 2E0 − 2πJn2ln(r/a). (1.16)

With r the distance between the centers of the vortices.
In (1.16) we can see that the energy for a pair of vortices is finite, therefore, creating and
destroying them is possible. Therefore, it is easier for the system to create pairs of vortices
of opposite topological charges than individual vortices.
The entropy of an individual vortice is

S = kB ln

(
L2

a2

)
. (1.17)

The expression L2/a2 are the possible positions for a vortex of area a2.
The free energy is F = E−TS, then, using (1.15) and (1.17), the free energy for an individual
vortex is

F = E0 + Jn2π ln

(
L

a

)
− TkB

(
L2

a2

)
,

F = E0 + (Jπn2 − 2TkB) ln

(
L

a

)
.
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Since L tends to infinity, we have the following cases

T <
Jπ

2kb
→ F ∼ ∞,

T >
Jπ

2kb
→ F ∼ −∞.

For F ∼ ∞ the system is unstable and prefers not to have individual vortices, for F ∼ −∞
the system is stable and prefer to have individual vortices [16, 17] (see Figure 1.9). Briefly,
it can be stated that there is a critical temperature, TKT , below which the existance of indi-
vidual vortices is not possible and it is possible above it. However, the fact that under the
temperature TKT it is not possible to have individual vortices, does not remove the fact that
it is possible to have pairs of vortices of opposite topological charge, since as we saw in (1.16)
the energy of having these pairs of vortices in finite.

T < T
KT

T > T
KT

F[L]

L

Figure 1.9: Free energy for an individual vortice. The blue curve corresponds to T < TKT
and is unstable. The red curve corresponds to T > TKT and is stable.

Thus, the Kosterlitz-Thouless Transition consists of passing from a phase of lower tem-
perature in which there are pairs of vortices (of opposite topological charges) to a phase
of higher temperature in which there are individual vortices (see Figure 1.10). The critical
temperature at which this transition occurs is TKT = Jπ

2KB
.

Note that if we calculate the order parameter for this system, which corresponds to the ex-
pected value of the x projection of the spin 〈Sx〉, through a series of calculations, we obtain

〈Sx〉 = 〈cos(θ(~r))〉 = 〈cos(θ(0))〉,

〈Sx〉 =

∫
d~r cos(θ(0))e−βH∫

d~re−βH
= 0.

This result indicates that the order parameter is null for any temperature, hence, at all times
there will be a disordered phase and both phases (pairs of vortices and individual vortices)
are always disordered, that is, there is never a break of symmetry under this transition,
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thus contradicting Landau’s Phase Transitions theory. The latter is because the Kosterlitz-
Thouless Transition is a topological phase transition [15,16,18].

Figure 1.10: Kosterlitz-Thouless transition.
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Chapter 2

Umbilical defect dynamics in an
inhomogeneous nematic liquid crystal
layer

In the context of dilute gases of n-vortices in a homogeneous medium, the interaction between
defects is governed by

M ṙi =
n∑

j 6=i

qij

rij

r̂ij, i = {1, 2, . . . , n}, (2.1)

where rij ≡ ||ri− rj|| is the distance between the ith and jth-vortex, r̂ij in the unitary vector
directed from jth to ith-vortex, and qij is the, respective, product of the topological charges
of vortices. Hence, the dynamics of a gas of n-vortices corresponds to an overdamped n-
body problem. Note that the above set of equations is invariant under the self-similarity
transformation

ri → λri,

t → λ2t. (2.2)

Thererfore, if one dilates or expands time and space, using the above scaling, then, the set
of Eqs. (2.1) are invariant. We can introduce N(t), the number of vortices at time t, which
can be estimated as

N(t) =
A

〈r〉2 , (2.3)

where A is the area of the sample under study, and 〈r〉 is the average distance between
vortices. Because the set of Eqs. (2.1) governs the vortices dynamics, the average distance
〈r〉 and N(t) are determined by the vortices evolution. Then, 〈r〉 and N(t) should also be self-
similar with transformation (2.2). Hence, N(λ2t) = A/λ2〈r〉2. From the previous equality,
one infers that the only possibility is that the number of vortices scales as

N(t) =
β

t
, (2.4)
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with β a dimensional constant. Indeed, the number of defects decreases inversely propor-
tional to time, so-called coarsening law. Experimentally, this law was, indeed, observed and
validated in nematic liquid crystal samples, [11,19,20].
We are interested in studying how the coarsening law changes when vortices are induced in
an inhomogeneous medium.

2.1 Experimental Setup

To understand the vortex dynamics in an inhomogeneous medium, we have considered a cell
of liquid crystal with thickness of 15µm that contains inside glass beads with a random dis-
tribution. The LC cell is composed by two Indium Tin Oxide (ITO transparent conductor)
coated glass slabs, which are chemically treated to have homeotropic anchoring. Namely, the
molecules are anchored to be orthogonal to walls. The glass beads have a diameter of 15µm
and usually, the manufacturer incorporates it to keep the thickness of the cell and avoid
buckling. Thus, these glass beads come for default in the most of LC cell. However, the
glass beads are not completely monodisperse and perfectly spherical, this will be essential to
understand the dynamics of vortices in these media.
The cell described above is filled with MLC-6608 nematic liquid crystal (from Merck) that
has a negative dielectric anisotropy. Afterwards, this sample is placed under the microscope
(Olympus Bx51) between circular crossed polarizers or linear cross polarizers, and collimated
white light from a microscope condenser is sent onto the liquid crystal cell. A sinusoidal volt-
age 13.5V pp, with high-frequency 100Hz produced by a function generator (Agilent 33521A)
attached to a high voltage amplifier (Tabor Electronics 9200), is applied to the sample. The
texture of the liquid crystal generated is captured by a CMOS camera (Thorlabs DCC1645C)
which is connected to the microscope. See Figure 2.1.

Figure 2.1: Schematic representation of the experimental setup. A nematic liquid cell, with
glass beads inside with a random distribution, is inserted between circular cross polarizers
in a microscope. A sinusoidal voltage is applied to the sample. Images are captured by a
CMOS camera.
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analyzer

LC cell

function generator

high voltage amplifier
polarizer

LC cell

QWP

QWP

CMOS camera

Figure 2.2: Experimental setup. a) Components of the experimental setup. Microscope
(Olympus Bx51), polarizer, quarter wave plates QWP (532 nm), nematic liquid crystal cell,
objective, analyzer, function generator (Agilent 33521A), high voltage amplifier (Tabor Elec-
tronics 9200) and CMOS camera (Thorlabs DCC1645C). Zoom of figure a). Nematic liquid
crystal cell on the stage of the microscope.

2.2 Results

When the applied voltage is higher than the Freederickz voltage, the emergence of umbilical
defects is observed. These defects appear as a result of inherent fluctuations (thermal and
electronics) and then are annihilated with the vortex of opposite topological charge in order to
establish the new uniform equilibrium on the sample, this process takes around 20 seconds.
Figure 2.3 corresponds to a temporal sequence of snapshots. Figure 2.3 a) the voltage is
turned off, Figure 2.3 b) voltage is on and the creation of vortices begins, Figure 2.3 c)
formation of vortices, these are given by the interception of four black brushes, Figure 2.3 d)
and e) annihilation of vortices with vortices of opposite topological charge, Figure 2.3 f) all
vortices have been annihilated.

In order to verified our findings we carried out the experiments under the same conditios
with a thicker liquid crystal cells. We observed the same phenomenon with slower dynamics,
for instance, under 26 ◦C, 15 Vpp, and 100 Hz, for a 15 µm thick cell, the coarsening process
takes ∼20 s and for a 75 µm thick cell, it takes ∼ 90 s.
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Figure 2.3: Temporal sequence of snapshots depicts umbilical defects dynamics in a non
uniform liquid crystal cell. The temporal increment of each frame corresponds to 0.33 s.

To examine the influence of the presence of glass beads on the coarsening process we
studied six different regions of the sample with a different random distribution of glass beads
in an area 1.43 mm2. In each one of these regions, a voltage was applied to observe the
emergence and annihilation of vortices.
We analyze the images with a particle tracking process, wich allow us to determine the number
of vortices an their respective positions. Figure 2.4 c-f) depicts the number of vortices as
a function of time for each region of the liquid crystal sample. These results, correspond
to the average of 10 realizations. We can observe that the number of vortices decays as a
function of time with a power law. Indeed, the coarsening process is persistent under the
presence of random glass beads. To determine the exponent of this coarsening process we
have considered the following fitting

Nf (t) = βt−α +N∞, (2.5)

where Nf corresponds to number of vortices as a function of time, {β, α,N∞} are fitting
parameters, which account for the features of the liquid crystal and the cell under study. N∞
describes the imperfections of the system, which causes the vortices to become trapped in
given positions, and the inaccuracy of the recognition method.
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Figure 2.4: Summary of different zones. For each respective region: left panels Voronoi
tessellation, center panels distribution of the mutual distance between beads, right panels
graphs of the number of vortices as a function of time.

To characterize the clustering and distribution of glass beads, we have computed the
Voronoi tessellation [21] of glass beads in different observed zones (see left panels in the
Figure 2.4). Center panels in Figure 2.4 correspond to respective histogram of the bead
mutual distance on each observation zone, the red solid line is a fitting curve using a Raleigh
distribution. Right panels in Figure 2.4 show the temporal evolution of number of vortices
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in the studied region.
To quantify the disorder of the distribution of glass beads in each region, we use the Shannon
Entropy [22]

S = −
Nt∑

i=1

Pi log(Pi), (2.6)

Where Pi is given by

Pi =
fi

N2
t

, (2.7)

Where fi is the number of times that the distance between two spheres has a value ix+ ∆x,
and Nt corresponds to the total number of distances between glass beads.

Zone Density [mm2] α β N∞ Entropy
I 13.630 0.60 604.2 12.85 0.0210
II 17.217 0.88 1782.0 20.33 0.0136
III 20.803 0.25 246.4 22.44 0.00767
IV 21.521 0.71 1285.0 17.87 0.0091
V 23.673 0.70 1404.0 25.74 0.00772
VI 27.977 0.82 162.7 18.09 0.0057

Table 2.1: Results of the measured beads density, computed fitting exponents, and entropy
over an area of approximately 1.394 mm2 on different observation zones.

Table 2.1 summarizes our results for different zones of observation in the liquid crystal
cell. Different coarsening laws are obtained over different zones. Unfortunatelly it is not
possible to establish a correlation between the density of spheres, coarsening exponents α,
and entropy. This is due to our experimental observation that there are spheres that attract
vortices which affects the coarsening process. Also, glass spheres do not all behave the same,
and even between the attractive ones, they do not behave completely the same. Therefore,
the coarsening process is more complexed, influenced by both the distribution of spheres and
the interaction between spheres and vortices.

2.3 Defects dynamics in presence of a glass beads

The presence of the glass spheres generates a deformation of the nematic director on the
contour of the sphere. Depending on the shape of the beads they can act as localized
potentials on the generated defects. Then, we have found attractive and non-attractive
glass beads. Figure 2.5 a) shows a temporal sequence of snapshots of the behavior of vortices
in presence of an attractive glass bead. Unexpectedly, we can observe that positive and
negative vortices are attracted by the glass bead. Each topological charge is attracted by
a certain region of the bead and then it disappears. In Fig. 2.5 b) red dashed points
depict the trajectory of positive and negative vortices respectively in presence of an attractive
glass bead. Here, initially, we can see vortices move close to the white straight line that
joins vortices. Then, at the initial time, vortex interaction is stronger than vortex-beads
interaction. However, later time, when the umbilical defects are close to the glass bead, their
trajectories are deflected and reoriented towards the center of the bead.
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Figure 2.5: Evolution of a vortex pair in presence of an attractive glass bead. (a) Sequences
of temporal snapshots. The bottom numbers in each panel account for the respective frame.
The temporal increment of each frame corresponds to 0.07 s. Umbilical defects of a positive
(circular shape) and negative (square shape) charge under circular crossed polarizers are rec-
ognized and monitored. The dashed circles account for the umbilical defects. (b) Trajectory
of the vortices: the dashed points (red) indicate the trajectory of defects, the dashed straight
line accounts for the initial distance between defects.

An attractive bead was chosen to be studied. When the voltage is applied, the vortices
that are attracted by the bead were tracked its position where they collide with the glass
bead. To distinguish the topological charge of vortices, circular linear cross polarizers were
used. This procedure was repeated 50 times. Figure 2.6 shows the regions of the glass sphere
where attract positive and negative vortices. Red and blue points correspond to positive and
negative vortices. We can infer that the attractive sphere has a quadrupolar behavior, that
is, the glass bead is characterized by having four poles. Therefore, the vortices of a given
charge prefer to collide in certain regions of the bead. Note, that the observed poles are not
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symmetric, which is a manifestation that dipolar terms are also relevant in the interactions.

Positive

Negativex

y

5 μm

Figure 2.6: Behavior of an attractive bead. Each point represent the position where a vortex
collides with the bead. Red points correspond to positive vortices and blue points correspond
to negative vortices.

It is known that glass beads without surface treatment, generate homeotropic anchoring
at their boundaries, that is, the liquid crystal molecules tend to be oriented normal to the
surface of the glass bead [23,24]. In addition, since the glass bead is in contact with the glass
plates of the sample, a Saturn ring like defect loop appears around each glass inclusion [23,24].
Figure 2.7 shows a schematic representation of the director field lines induced by a perfect
spherical glass bead and a slightly deformed bead. When the glass bead is perfectly spherical,
it generates a defect at its center which has a skyrmion type structure, which is canceled
with the equivalent charge caused by the Saturn ring. In Figure 2.7, the induced charge is
represented by a central point (blue) and the Saturn ring by a closed curve (green). Therefore,
perfectly spherical glass beads cause a net charge to cancel out, that is, the equivalent charge
of the Saturn ring is equal to the charge induced at the center. Then, these glass beads do
not attracting vortices, therefore, we name them passive beads. In contrast, deformed glass
beads generate equivalent multipolar charges (dipoles, quadrupole, and so forth), which are
overall neutral but affect the local dynamics of their surroundings. These glass beads with
multipolar charges are characterized by attracting and annihilating vortices and we name
them active beads.
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Figure 2.7: Schematic representation of the director field lines induced by a perfect spherical
bead (left panel) and a slightly deformed bead (right panel). Upper and lower panels show
a side and top view of the correspondingly induced defects.

We can identify experimentally these glass beads with multipolar charges. Without the
applied voltage to the sample under cross-polarization, the perfect and imperfect glass beads
generate either perfect rings or deformed curves of light, respectively as a consequence of
the Saturn ring deformation. Figure 2.8 shows three glass beads with and without voltage,
where one can identify the deformed glass bead (central). Only this central glass bead attracts
vortices.

15 μm

Attractive

a) V=0.0 Vpp

b) V=9.0 Vpp

Figure 2.8: Glass beads in nematic liquid crystal cell.The central sphere corresponds to an
attractive beads. a) voltage is turned off b) Voltage is turned on.
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In summary, in the liquid crystal cell, we found perfect and non-perfect spherical beads.
Perfect spherical glass beads, which are the majority in the sample, do not attract or repel
umbilical defects. In non- perfect spherical glass beads, where its equivalent charge and the
Saturn ring charge do not coincide, a multipolar charge that interacts with the topological
defects is generated.

Theoretical description of attractive beads

The interaction between an imperfect glass beads and a vortex can be modeled by

M ṙ = q

[
~d

‖r‖2
−
~d · r
‖r‖4

r

]
+ q

[
~l2

‖r‖4
r +

2~l(~l · r)
‖r‖4

]
, (2.8)

Where r(t) is the vector between the glass bead and the vortex positions, ‖r‖ is the
magnitude of the vector ~r, ~d is a vector that characterizes the dipolar interaction, q is the
topological charge of the interacting vortex, ~l is a vector that characterizes the quadrupolar
interaction, and M stands for the vortex mobility, which depends on the size of the system,
the properties of the liquid crystal and the applied voltage. Note that the vectors ~l and ~d
are not necessary parallel. On the right-hand-side of equation (2.8), the first and second
parenthesis terms account, respectively, for the dipolar and quadrupolar interaction. Note
that the dipolar and quadrupole interaction decay proportional to the square inverse and the
cubic inverse of the distance between the vortices and the beads, respectively.
Experimentally, from Figure 2.6, it is possible to deduce that the quadrupole interaction is
more dominant in the interaction, that means ‖~d‖ � ‖~l‖.

Let us consider a vortex gas in the presence of randomly distributed beads, for simplicity,
we consider that glas beads are dominantly dipolar. The interaction is described by

M ṙi =
N−1∑

j

qij

‖ri − rj‖2
(ri − rj) +

N ′∑

k=1

[
Qik

~dk
‖ri − lk‖2

− Qik[(ri − lk) · ~dk]
‖ri − lk‖4

(ri − lk)

]
(2.9)

where ri stands for the position of i-th vortex (cf. Fig. 2.9), M is the vortex mobility, qij is
the product of the topological charges of the i-th and j-th vortex, Qik is the intensity of the
interaction between the vortices, N and N ′ account for the number of vortices and beads and
the k-th bead, lk and ~dk are the vector position and the dipolar vector of k-th glass bead,
respectively.
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Figure 2.9: Schematic representation of a vortex pair in presence glass beads. ri and rj
correspond to positions of i-th and j-th vortices respectively. lk is the position of k-th glass
beads.

Let us consider the limit of diluted vortices, that is, the distance between vortices r ≈
||ri − rj|| is much greater than the distance between a vortex and glass beads surrounding it
(||ri − rj| � ||ri − lk||). Hence, the nearby glass beads dominate the dynamics of vortices,
that is,

M ṙi ≈
N ′∑

k=1

Qik

||ri − lk||2
~dk +

N ′∑

k=1

Qik(ri − lk) · ~dk
||ri − lk||4

(ri − lk). (2.10)

In this limit, the dynamics of the vortices is not self-similar, however when performing the
transformation of spatial and temporal dilation

ri → λri,

t → λ3t. (2.11)

equation (2.10) takes the form

M ṙi ≈
N ′∑

k=1

Qik
~dk

||ri − lk
λ
||2

+
N ′∑

k=1

Qik(ri − lk
λ

) · ~dk
||ri − lk

λ
||4

(
ri −

lk
λ

)
. (2.12)

The coarsening process is governed for large times and distances; therefore one can consider
λ to be large (λ� 1). Then, the above equation is rewritten

M ṙi ≈
N ′∑

k=1

Qik
~dk

||ri||2
+

N ′∑

k=1

Qik
ri · ~dk
||ri||4

ri +O

(
1

λ

)
, (2.13)
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so that, if one dilates space and time on large scales, the equivalent set of Eqs. (2.1) are
invariant at the dominant order. Furthermore, the vortex gas in such a disordered medium
satisfies an effective dynamics governed by the previous interaction law.

As we mentioned before, the number of vortices at time t has the form N(t) = A/〈r〉2,
where A is the area of the sample under study and 〈r〉 is the average distance between
vortices. Then, 〈r〉 and N(t) should also be self-similar with the transformation (2.11).
Hence, N(λ3t) = A/λ2〈r〉2. Thus, we obtain

N(t) =
β0

t2/3
, (2.14)

where β0 is a constant. In this case, the number of defects decreases following a −2/3
power law. Experimentally, several zones show exponents close to −2/3 (see Table I). Note
that all the investigated zones, with the exception zone III, show an exponent within 20
% error from the theoretical prediction. However, the dynamics of submerged vortices in
an environment full of spacers with various imperfections is much more complicated, as
illustrated by the experimental results, and a full agreement over all the investigated zones
could not be reached.

In conclusionNematic liquid crystals layer with negative dielectric constant and homeotropic
anchoring under the influence of a voltage are the ideal context for studying the interaction
of gas of topological vortices with opposite topological charges. One expects the dynamics
of the vortices being characterized by a decreasing number in time, which follows a power
law with critical exponent α = 1 because the dominant interaction between the vortices is
self-similar. Unexpectedly, we observe that this dynamics is persistent in thin cells of nematic
liquid crystals that contain glass beads as spacers. However, the laws of the exponential decay
in the number of vortices depend strongly on the distribution of the glass beads and their
imperfections. Experimentally, we have characterized such a dynamics and demonstrated
that the deformed glass beads attract vortices of opposite topological charges, presenting
mainly a quadrupolar behavior. Theoretically, we have derived the modified power law for
inhomogeneous samples, leading to α = 2/3 exponent of the power law. The agreement with
the exponents derived from the experimental observations is satisfactory over several zones
of the analyzed samples. However, a complete agreement could not be reached because of
the diversity of the beads and the consequent complexity of the induced vortex dynamics.
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Chapter 3

Topological transitions at room
temperature in nematic liquid crystal cell
out of equilibrium

Matter in thermodynamic equilibrium can exhibit exotic states of matter corresponding to
topological transitions, which are associated with the emergence of pairs of vortices called
Berezinskii-Kosterlitz-Thouless transitions [15, 16]. This phenomenon has been observed in
various contexts such as Josephson junctions [25], superconducting films [26], among others.
Unlike the usual states of matter such as solid, liquid, gas, and plasma, these exotic phases
correspond to the permanent emergence and self-organization of topological states.

The topological transitions of matter were discovered at the beginning of the 70s by
Berezinskii [18], Kosterlitz and Thouless [16], who showed that a low dimensional system
described by a physical vector order parameter in thermodynamic equilibrium undergoes a
transition from a homogeneous state without vorticity, to a state in which vorticity pairs
persist. Then, vortices creation and annihilation processes are, respectively, due to thermal
fluctuations and free energy minimization [27], hence at the critical temperature at which
they are balanced, the systems undergoes a topological transition [16,18].
Topological equilibrium transitions usually occur at temperatures below ambient tempera-
ture, for example, helium becomes superconducting at 4 K and some ceramics achieve this
transition at approximately 200 K [3].

All these physical systems under study share the property of having a parameter of com-
plex or tensor order. An ideal physical system that contains the qualities to be described
by a complex order parameter and that can be studied in almost two dimensions are thin
films in liquid crystals [2]. Thus, we are interested in the study of topological transitions in
nematic liquid crystal in a system out of equilibrium, that is, in a system with injection and
dissipation of energy.
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3.1 Experimental Setup
To investigate topological states of matter in an out of equillibrium system, let us consider
experimentally a nematic liquid crystal cell, which consists of a cell 5B100A150UT180, manu-
factured by Instec with 15 µm of thickness that contain glass beads as spacers. The cell is filled
by capillarity with MLC-6608 (Merck) nematic liquid crystal that has negative anisotropy
dielectric constant (εa = −4.2 at room temperature), and the molecules of liquid crystal are
orthogonally aligned to the cell plates (homeotropic conditions). An external electric field is
applied in the vertical direction (z-axis) using sinusoidal, square, and sawtooth voltages with
amplitude 15 Vpp, and with low frequency (fraction of Hertz). This voltage is produced by a
function generator (Agilent 33521A) together with a high voltage amplifier (Tabor Electron-
ics 9200). The imaging system used is an Olympus BX51 microscope equipped with linear
cross polarizers. The light from the microscope condenser illuminates the cell mounted on
the microscope stage, and a CMOS camera (Thorlabs DCC1645C) is used to capture and
monitor images. Figure 3.1a shows a schematic representation of the experimental setup un-
der consideration. For studying thermal effects, we have used a microscope (Leica DM2700
P) equipped with a thermal control microscope stage (Linkam LTS420).

Figure 3.1: Nematic liquid crystal cell under a temporarily modulated potential exhibits cre-
ation and self-organisation of vortices. a) Schematic representation of the experimental setup.
Nematic liquid crystal cell (NLC) is illuminated by white light between two crossed polariz-
ers (P1 and P2). The horizontal snapshot shows a pair of vortices with opposite topological
charges. b) The temporal sequence of snapshots in the region of self-organized vortices, using
a pure tone voltage signal at frequency 0.335 Hz and voltage amplitude 13.5 Vpp.

3.2 Results
It has been demonstrated that applying a high frequency voltage to the sample leads to the
generation of vortices with random positions and their subsequent annihilation which finally
results in a homogeneous non-vortex state system [1, 2]. Therefore, the presence of vortices
in liquid crystals is only a transient phenomenon.
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Surprisingly, when the frequency of the applied voltage to the sample decreases to a fraction
of Hertz, we observe a creation of a substantial amount of vortices that do not annihilate,
and as the final state they form a vortices lattice with fixed positions, as shown in 3.1 b).
Also, when a voltage with low frequency is applied with other signal shape, like for examples
sawtooth and square, appears persistent vortices with random positions.

In brief, we have found that there is a critical frequency fc at which the system exhibits
a topological transitions from non-vortex state to persistent vortex state.

Figure 3.2 a) shows the average number of vortices as a function of frequency counted
stroboscopically in each oscillation cycle with the standard deviation determined along the
way, it is obtained when a sawtooth voltage is applied to the sample. From this graph it
is possible to deduce that this transitions corresponds to a supercritical bifurcation. For
frequencies lower than a critical frequency fc, the number of vortices becomes permanent
over time and we note that as the frequency decreases the number of vortices increases up to
a particular critical value, and subsequently decreases monotonically until it vanishes at low
frequencies, which is a manifestation of a sort of resonance at fr for the process of creation
and annihilation of topological defects.
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Figure 3.2: Bifurcation diagram of topological transition out of equilibrium a) experimental,
and b) numerical using model Eq. (1). The experimental bifurcation diagram is obtained with
a sawtooth forcing with an amplitude of 15 Vpp. c) Critical frequency fc(T ) as a function
of temperature. This curve was acquired thanks to a thermal controller microscope stage.
The insets account for the respective snapshots at different temperatures. d) Evolution of
the temporal bifurcation parameter µ(t) and characterization of the regimes of creation (red
curve) and interaction (blue curve) of vortices.
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Through the use of a thermal control microscope, the temperature of the nematic liquid
crystal cell was changed and adequately controlled in a range between −10◦C and 80◦C. Our
temperature dependant measurements show that the critical frequency fc monotonically in-
creases upon rising of temperature, as illustrated in Figure3.2 c). Therefore, the topological
transition induced by temporal voltage modulation is observed throughout the mesophase
stability range of the nematic liquid crystal under study.

Theoretical description

To understand the origin of this topological transition out of equilibrium, we have considered
modeling the Ginzburg-Landau equation with real coefficients since as it is known, this
amplitude equation describes vortex solutions in nematic liquid crystal layers with external
electric or magnetic forcing and homeotropic boundary conditions [9], allowing to explain
the process of interaction and annihilation of vortices subject to a constant electric field and
temperature [27]. For this reason, this equation is the ideal to be modeled in order to describe
the topological transition found.
To account for the additional ingredients of the observed topological transition, we must in-
corporate the oscillatory nature of the electrical voltage applied to the liquid crystal sample,
and include the inherent fluctuations due to temperature. This leads to the stochastic real
Ginzburg-Landau equation with oscillatory coefficients, that is,

∂tA = [µ0 + γ cos(2πft)]A− |A|2A+∇2A+
√
Tζ(~r, t), (3.1)

where A(~r, t) is a complex order parameter, t and ~r describe time and the coordinate vector
that characterizes the thin film, µo is the uniform bifurcation parameter, which accounts
for the balance between the elastic and electric force, γ and f are the amplitude and the
frequency of the forcing, respectively. The function µ(t) = µ0 + γ cos(2πft) is the temporal
modulated bifurcation parameter. ∇2 denotes the usual Laplace operator. The constant T
accounts for the thermal and electronics fluctuations intensity level and ζ(~r, t) is a white
noise of zero mean value, 〈ζ(~r, t)〉 = 0, and no spatial or temporal memory. Namely, the
stochastic term has the spatiotemporal correlation 〈ζ(~r, t)ζ(~r′, t′)〉 = δ(~r − ~r′)δ(t− t′).
We note that in the high-frequency regime, this model becomes the real Ginzburg-Landau
equation with real coefficients, where the vortices do not persist and the annihilation of de-
fects of opposite charges dominates their the creation.
Numerical simulations of this model (3.1) were implemented using a finite differences code
with Runge-Kutta order-4 algorithm, with a 200×200 points grid, spacing dx = 0.5, and
temporal increment dt = 0.02. The stochastic noise ζ(~r, t) is generated through the Box-
Muller transform of a uniform random number generator.

Figure 3.2b) shows this happening for frequency values up to order one. In this regimen,
the number of vortices on average is zero. By decreasing the frequency further to a criti-
cal value fc, the average number of vortices stabilizes over time. The topological transition
obtained numerically using Eq. (3.1) has a qualitative behavior similar to that observed ex-
perimentally, see top panels in Figure 3.2. Notice that as the frequency decreases (f < fc)
the number of vortices increases up to a particular critical value and subsequently decreases
monotonically until it vanishes at low frequencies, which manifests an excellent qualitative
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agreement with the experimental observations. Hence, experimentally and numerically a sort
of resonance is observed for the process of creation and destruction of topological defects.

These numerical simulations also allow us to identify the location of the vortices through
±2π jumps of the phase of the amplitude. When comparing the evolution of the system
and the profile of the bifurcation parameter function µ(t) two characteristic regions are
identified. Creation of vortices happens in the intervals of time where µ(t) is small and
growing (red curve in Figure 3.2d)), these vortices later interact even when µ(t) < 0 (blue
curve in Figure 3.2d). The vortex creation time interval decreases as the forcing frequency
increases and for high frequencies the creation process is inefficient. The persistence of
vortices is a consequence of the balance between the processes of creation (stochastic) and
their interaction (deterministic) as it is illustrated in Figure 3.2 d).

Topological transition with harmonic driven forcing

Figure 3.3: Experimental bifurcation diagram of topological transition out of equilibrium
under harmonic forcing. The liquid crystal cell exhibits three states: no-vortex (NV), vortex
lattice (VL) and glassy vortex (GV) states. The arrows indicate the direction of increase or
decrease of the voltage. The insets show snapshots in the respective parameter ranges.

When we studied this topological transition with a harmonic signal of voltage, we found sur-
prisingly, that there are different topological transitions with a rich morphology of structures
of vortices, we have detected a discontinuous transition from non-vortex state to lattice vortex
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state. Figure 3.3 shows a square vortex lattice, with persistent positions, and its respective
bifurcation diagram corresponding to the out of equilibrium counterpart of Abrikosov lat-
tice [28]. We note that the vortex lattice in not hexagonal like the one of Abrikosov, as
a consequence of the asymmetry between the opposite charges [9]. When we decrease the
frequency, the square lattice undergoes a subcritical bifurcation leading to a square lattice of
higher wavelength (see Fig. 3.3). Similar lattice is observed by means of thermal gradient [29]
or by doping with ionic impurity [30], which induces charge motions.

Increasing the frequency further the square lattice transitions to a glassy state (cf. Fig.3.3),
in which the vortex structure has parametric positions in each period of the signal. For even
higher frequencies the system returns to the no-vortex state.

Therefore, Figure 3.3 summarizes the complexity of the topological transitions in the liquid
crystal cell maintained out of equilibrium at room temperature. We speculate that the origin
of the periodic structures we have discovered may be associated with the interaction between
the vortices, the excitation of stationary waves [31] and charge movements. The latter is
because The application of a low-frequency electric field induces charge movements due to
the weak anisotropic conductivity of the liquid crystal [1]. The accumulation of charges can
induce a molecular reorientation, Carr-Helfrich mechanism [1,32,33], which in turn modifies
the interaction between umbilical defects and can even generate a lattice arrangement of
them [29]. However, precise understanding of this phenomena is yet an open problem.

The origin of the square vortex lattice is probably associated with the coupling of elastic
deformations, fluid modes and charge dynamics. To describe qualitatively of this coupling,
we include in the model Eq. (3.1) inertia and anisotropic effects, that is, a second temporal
derivative of amplitude A.

∂ttA+ λ∂tA = [µ0 + γ cos(2πft)]A− |A|2A+∇2A+ δ∂η,ηĀ+
√
Tζ(~r, t), (3.2)

where λ accounts for the rotational viscosity, δ stands for the difference of elastic constants
[5, 9, 34, 35], the operator ∂η,η = ∂xx − ∂yy + 2i∂xy describes the asymmetric coupling, and Ā
is the complex conjugate of A. Simulations of this model show the emergence of a square
lattice, as seen in Figure 3.4.
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Figure 3.4: Numerical square vortex lattice. Temporal sequence (t1 < t2 < t3) of the
amplitude module |A|, phase φ = arctan[Im(A)/Re(A)], and polarization field Re(A) Im(A)
of model Eq. (2) with inertia and anisotropic coupling over a period, given by µ0 = 0.6,
T = 0.03, λ = 1.4, δ = 0.3, γ = 3, and f = 0.1.
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Homogeneous cell

These topological transitions were found in the first instance using a nematic liquid crystal
cell, with 15 µm of thickness, that by default had randomly distributed glass spheres (the
same cell from Chapter 2). To confirm that the presence of the spheres does not influence the
formation of these topological transitions, we have performed the experiments in a homoge-
neous cell, with 75 µm of thickness, filled with the same liquid crystal used in the previous
experiment.
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Figure 3.5: Number of votex in function of frequency for a homogeneous nematic liquid
crystal cell with 75 µm of thickness.

Figure 3.5 shows the number of vortices that appear as a function of frequency for a
homogeneous liquid crystal cell with a thickness of 75 µm. In this graph, it is observed
that when the frequency is 0.01 Hz there is a topological transition from a non-vortex state
to a lattice vortex state, as seen in Figure 3.6. Note that the conditions under which this
topological transition occurs are different from the conditions under which occurs in the cell
15 µm thick. This is because as the cell is thicker, there are more molecules and since only
the border molecules are anchored, for the rest of them it is easier to move and couple, so,
less voltage and frequency are required to observe this topological transition.
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Figure 3.6: Vortex lattice observed in a 75 µm thick homogeneous cell when a sinusoidal
voltage of 9 Vpp with a frequency of 0.01 Hz is applied to the sample.

In conclusion, we observed out of equillibrium topological transitions in a nematic liquid
crystal cell, under suitable experimental contidions. Depending on the frequency and type
of forcing, harmonic, sawtooth, or square profiles, the vortices self-organize forming square
lattices, glassy states and disordered vortex structures. An stocastic real Ginzburg Landau
equation can described qualitatively well this phenomenon and could be a start point for
undestanding and controlling the exotic states of matter. Because vortex lattices emerge
spontaneously in single cells subjected to alternative low-frequency voltages, it opens up the
possibility of new and fresh applications of the generation of optical vortices.
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Chapter 4

Magnetic ring induced vortex triplet in a
liquid crystal layer

Vortices are particle-type solutions with topological charge that can steer the dynamics in var-
ious physical systems. A paradigmatic model that presents vortices is the Ginzburg-Landau
Equation [8,36]. This amplitude equation has been used to describe fluids, superfluids, super-
conductors, liquid crystals, granular matter, magnetic media, and optical dielectrics, among
others [8, 36–38].
As mentioned in previous chapters, the generation of vortices in liquid crystals is obtained
when a sinusoidal voltage is applied to a nematic liquid crystal cell with negative dielec-
tric anisotropy susceptibility and homeotropic anchoring on the walls. Depending on the
frequency of the applied voltage, a disordered vortices gas or self-organized structures of vor-
tices is obtained. A relevant interest that has emerged in recent years, is the development
of mechanisms that allow inducing and manipulating vortices that can be a source of opti-
cal vortices or optical tweezers. These mechanisms are established through optical vortices
beam [39–42]. Also, one can induce umbilical defects employing intense light beams [43],
photo-sensitive walls [10, 41], or by means of external magnetic and electric fields [44, 45].
Recently, the combined action of a distant magnetic ring with a uniform electric field into
the nematic cell enables the self-engineering of macroscopic q-plate [45]. With the aim of
figuring out the mechanism of the induction of stable localized vortices in nematic liquid
crystals by electric and magnetic fields, we have conducted an experimental and theoretical
study that is detailed below.

4.1 Experimental Setup

To study vortices induced by electric and magnetic fields, we consider a cell composed by
two thin glass layers separated by a thickness of d = 75 µm, which is chemically treated
on its interior walls to have a homogeneous homeotropic anchoring and with transparent
electrodes included (indium oxide and tin, ITO). This cell has been filled by capillarity
with a nematic liquid crystal LC-BYVA-01-5G (Instec) with negative dielectric anisotropy
susceptibility εa = −4.89, birefringence ∆n = ne − no = 0.1, rotation viscosity γ = 204
mPas, splay and bend elastic constant, respectively, K1 = 17.65 pN and K3 = 21.39 pN, and
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negative magnetic anisotropy χa (not yet measured).

A neodymium magnetic ring of 3200 G with a rectangular transversal section, outer radio
Rout = 7 mm, internal Rin = 2 mm, and thickness of h = 5 mm is placed onto the top of the
nematic liquid crystal cell (cf. Fig. 4.1). The sample with the magnetic ring is introduced in
an Olympus Bx51 microscope and it is positioned between two linear crossed polarizers. A
sinusoidal voltage of intensity V0 = 7.95 Vpp, near to the reorientation transition, Fréederickz
voltage VFT = 6.57 Vpp, with a frequency of ω = 100Hz is applied to the sample. The system
is illuminated by a white light (Halogen lamp). The temporal evolution of the liquid crystal
cell under the simultaneous effects of the electric and magnetic field is monitored by a CMOS
camera (Thorlabs DCC1645C), which allows us to observe the central zone of the magnetic
ring. All experiments were performed at room temperature of 21◦C.
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Figure 4.1: Schematic representation of the experimental setup. (a) Vertical description of
the experimental setup. NLC accounts for the nematic liquid crystal cell, d is the thickness
of the cell, ITO accounts for the transparent electrode (indium oxide and tin), Vω(t) is a
harmonic voltage applied to the liquid crystal layer, where ω is the voltage frequency, MR is
the magnetic ring of thickness h and internal and outer radius Rin and Rout, WLS is the white
light source, P and A stand for polarizers, which are crossed, O accounts for the objective
and CMOS is the complementary metal-oxide-semiconductor camera. The rods represent the
average direction of molecules, directors. (b) Three-dimensional schematic representation of
the liquid crystal cell under the influence of the electric and magnetic fields.
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4.2 Results

Molecular Reorientation

When the voltage is off, the liquid crystal sample is only subject to the influence of the
magnetic field and we observed that there is no transmission of light. This is because the
torque generated by the magnetic field is very weak, so it is not capable of overcoming the
elastic resistance of the material. Therefore, the magnetic ring is not capable of generating
molecular reorientation by itself. Namely, the configuration of molecules can not exhibit bire-
fringence effect. To generate the molecular reorientation in the liquid crystal (see Fig. 4.3))
it is necessary to include the application a sinusoidal voltage to the sample.
We observe that when the liquid crystal cell without an applied magnetic field, the molecular
reorientation voltage is 6.28 Vpp, when the magnet is placed above the cell, the molecular
reorientation occurs at 4.09 Vpp. Therefore, this reorientation is observed at voltages lower
than Freederickz voltage (critical voltage for instability of reorientation purely induced by
an electric field), it is due to negative electrical anisotropy and the presence of electric and
magnetic field. We observed that as the magnetic field intensity increases the molecular
reorientation occurs at lower voltages as shown in Figure 4.2.

Vf [mVpp]
200 250 300 350 400 450

H
 [G

]

0

2000

4000

6000

8000

10000

12000

x15

Molecular reorientation

Figure 4.2: Curve of molecular reorientation transition, magnetic intensity H v/s molecular
reorientation voltage Vf.
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Figure 4.3: Beginning of molecular reorientation in nematic liquid crystal cell.

Appearance of the vortex triplet

After the magnet is placed above the nematic liquid crystal cell, the voltage is applied and
the molecular reorientation is observed at 4.08 Vpp, the voltage begins to increase, observing
what is shown in Figure 4.3. That is, in the external region the light is transmitted, which
is a manifestation of molecular reorientation.
When the voltage begins to increase, at 5.25 Vpp, a black circle is observed as shown in Figure
4.4, as the voltage increases more, the molecules continue to change their orientation, and we
observed a black cross with the fairly wide center and the appearence of a surrounding black
ring, this structure corresponds to a vortex with a thick core. Further increase of voltage
above 6.30 Vpp, results in thining out of the ring. Two vortices of opposite charges begin to
appear in the antipodes of the ring. Notice that, this type of vortex corresponds to Rayleigh
vortex recently predicted [46]. Continuing, at 6.90 Vpp, a triplet of vortices is observed. This
structure is composed of a vortex of positive topological charge at the center, and two vortices
of opposite charges on the ring. It is observed that together with increasing the voltage the
core of the vortices become smaller. At 7.95 Vpp, it is observed that the arms of the center
vortex begin to swirl and their cores undergo a small rotation (see Figure 4.4). We note that
this induced vortex triplet is observed to remain stable and its total topological charge is +1.
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Figure 4.4: Topological transition induced by the combination of magnetic and electric field.
Snapshots of nematic liquid crystal under the influence of electric and magnetic field for
different voltage values. It is observed that when the voltage increases, a stable vortex triplet
is created.

When the voltage is turned off and then is turned on to 7.95 Vpp with a frequency of 100
Hz, the creation of the vortex triplet is also observed and this structure remains stable as
shown in Figure 4.5. When the voltage is off and then is turned on at 15 Vpp with a frequency
of 100 Hz, the creation of a vortex at the center with a surrounding ring with several vortices
(on the order of 10) is initially observed. After a time, vortices that are on the ring begin to
annihilate themselves with their opposite topological charges, finally leaving two vortices of
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opposite topological charge located on the antipodes of the ring. Thereby, the stable vortex
triplet is obtained again as is shown in Figure 4.6.

1mm

Figure 4.5: Snapshot of the vortex triplet observed above the orientational transition V0 =
7.95 Vpp.
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Figure 4.6: Temporal sequence of snapshots of the emergence of vortex triplet formation
t0 < t1 < t2, far from the orientational transition V0 = 15.0 Vpp.

Likewise, for low voltage, Figure 4.7 shows a temporal sequence of formation of a vortex
triplet from the state voltage is off at t=0 s the voltage is turned on to 6.9 Vpp. Here, we can
see the immediate appearance of a black cross with a surrounding black ring, as in Figure
4.4, and as time evolves this structure converges in a vortex triplet.
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Figure 4.7: Temporal sequence of snapshots of the emergence of vortex triplet formation for
6.9 Vpp.
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Using Fiji, an image analysis software (https://imagej.net/Fiji), profiles of the vor-
tices corresponding to the vortex triplet were extracted as shown in Figure 4.8.
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Figure 4.8: Profiles of a vortex triplet.

4.3 Intuitive description
The induced vortex triplet is determined by the structure of the magnetic field generated
by the magnetic ring. Since the magnet has a north and south pole parallel to the liquid
crystal sample and a rectangular cross-section, then a magnetic protuberance is observed at
the center of the ring [47]. Figure 4.9 shows the magnetic structure of a ring with a rect-
angular cross-section schematically. Dashed curves account for the magnetic protuberance.
This magnetic protuberance is a consequence of the boundary condition imposed by the inner
wall of the ring on the magnetic field. Liquid crystal molecules tend to orient orthogonal
respect to the magnetic field as a consequence of the negative anisotropic magnetic suscepti-
bility [1,2]. When considering the liquid crystal sample inside the magnetic protuberance, it
naturally induces a positive vortex at the center and also a circular defect line that circum-
scribes the vortex (cf. Fig. 4.9b). However, for homeotropic anchoring conditions, a defect
line is unstable and always stabilizes in a set of vortices with alternating charges along the
line [1, 2]. Indeed, one expects this line to stabilize in vortices and, ultimately, only a few
vortices to survive along the line. Observe that when the sample stands outside the magnetic
protuberance, one only observes a single vortex, and there is no ring to circumscribe it [45].
Indeed, this can be accomplished by moving the liquid crystal sample away from the magnet.
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Figure 4.9: Schematic representation of the magnetic field structure of a magnetic ring with
a rectangular cross-section. a) Three-dimensional representation of the magnetic field. The
curves account for the lines of the magnetic field. Dashed lines account for the structure of
the magnetic field within the magnetic protuberance. b) Two-dimensional representation of
the magnetic field of the ring onto the nematic liquid crystal layer. The rods stand for the
average direction of molecules.

4.4 Theoretical description

To develop a theoretical description The structure of the magnetic protuberance can be
modeled in a first approximation by the magnetic field of a cylindrical magnet of the form

~B(ρ, θ, z) =
m

4π

[
(3z2 − σ)ẑ

(ρ2 + z2)5/2
− ẑ − 3zρρ̂

(ρ2 + z2)3/2

]
, (4.1)

where σ > 0 is a phenomenological parameter that accounts for geometric features of the mag-
net ring, σ(Rin, Rout, h), m is a constant that has a dimension of permeability per magnetic
moment, and {z, ρ} are the cylindrical coordinates. Note that the origin of the coordinate is
fixed at the center of the magnetic ring. Note that, due to azimuth anisotropy of the ring,
the magnetic field does not depend on the θ coordinate.

To describe the mechanism of creation and pinning of vortices, we derive a model in the
vicinity of the reorientational transition, a limit where analytical results are accessible, as
nematic liquid crystal molecules are weakly tilted from the longitudinal axis ẑ and backflow
effects can be neglected [1, 10, 41]. The molecular reorientation of the liquid crystal is de-
scribed by the director vector ~n when the temperature is constant [1,2]. The dynamic of the
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director ~n is characterized by minimizing the Frank-Ossen free energy, which corresponds to

F =

∫
dV

{
K1

2
(∇ · ~n)2 +

K2

2
(~n · (∇× ~n))2 +

K3

2
(~n× (∇× ~n))2 − εa

2
( ~E · ~n)2 − χa

2
( ~B · ~n)2

}
, (4.2)

where {K1, K2, K3} are the liquid crystal elastic constants, ~E, and ~B are the electric and
magnetic field, respectively [1, 2]. We consider a uniform vertical electric field ~E = Ez ẑ =

Vω(t)/d ẑ and a magnetic field ~B = Bz ẑ +Bρρ̂ given by formula (4.1). Applying The Euler-
Lagrange equations

δR
δ~̇n

= −δF
δ~n

= γ∂t~n (4.3)

with the restriction ~n · ~n = 1 and R = γ
2
|~n|2, where γ is the LC rotational viscosity. Then,

we obtain

γ∂t~n = K3[∇2~n− ~n(~n · ∇2~n)]

+(K3 −K1)[~n(~n · ∇)(∇ · ~n−∇(~n · ∇))]

+ 2(K2 −K3){(~n · ∇ × ~n)[~n(~n · ∇ × ~n)−∇× ~n]

+ ~n×∇(~n · ∇ × ~n)} − εa(~n · ~E[ ~E − ~n(~n · ~E)])

− χa(~n · ~B[ ~B − ~n(~n · ~B)]). (4.4)

To study the dynamics of the director, we consider, close to the reorientational instability,
the following ansatz

~n =




X sin
(
π
d
(z + h

2
)
)

Y sin
(
π
d
(z + h

2
)
)

1− (X2 + Y 2) sin2
(
π
d
(z + h

2
)
)


+ h.o.t., (4.5)

Using this ansatz in (4.4) with the help of the complex parameter A = X + iY , defining
∂η = ∂x + i∂y and after several straightforward calculations [48], and using zo = h/2, we
obtain

γ∂tA =

[
λ0 + εa

(
V0

d

)2

+ χaB
2
z (z0)

]

︸ ︷︷ ︸
µ

A− a|A|2A+
K1 +K2

2
∇2A+

K1 −K2

2
∂ηηĀ

−4χa
π
Bz(z0)Bρ(z0)eiθ − 8χa

3π
Bz(z0)Bρ(z0)

(
2ARe(Ae−iθ) +

|A|2eiθ

2

)
,

with λo = −K3

(
π
d

)2, a = 1
4

[
(K1 −K3)

(
π
d

)2 − 3εaE
2
z − 3χaB

2
z

]
. Dropping the smaller cor-

rection and rescaling the parameter A as A(~ρ, t)→ 1√
a
A
(√

2
K1+K2

~r, t
γ

)
, we get the Topolog-

ically Driven Ginzburg-Landau equation

∂tA = µ(ρ)A− |A|2A+∇2A+ δ∂ηηĀ+ f(ρ)eiθ, (4.6)
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where µ(ρ) = µ0 + µ1(ρ) is the inhomogeneous bifurcation parameter, µ0 ≡ −K3(π/d)2 −
εaE

2
z is the bifurcation parameter related to the electrical Fréedericksz transition, µ1(ρ) ≡

χaB
2
z (ρ, z0) is the inhomogeneous modification of the reorientational transition, δ = (K1 −

K2)/(K1 + K2) accounts for the elastic anisotropy of the liquid crystal, ∂η ≡ ∂x + i∂y is a
differential operator in the complex plane, note that the laplacian satisfies ∇2 = ∂η,η̄, and
f(ρ) = 4χaa

1/2Bρ(ρ, z0)Bz(ρ, z0)/(γπ) accounts for the strength of the topological forcing.
Figures 4.10 and 4.11 show the bifurcation parameter and the forcing as a function of the
radial coordinate respectively. Notice that the vortices are placed at the zeros of the forcing
and f(ρ) is annulled at the origin and in the circumference of radius ρ∗.

0
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0 10ρ

μ(ρ)

Figure 4.10: Profile of the inhomogeneous bifurcation parameter µ(ρ) as a function of the
radial coordinate. Courtesy of Enrique Calisto.

1

f(ρ)

ρ∗
0

ρ 100

Figure 4.11: Profile of topological forcing strength f(ρ) as a function of the radial coordinate.
Courtesy of Enrique Calisto.

We renormalize ρ =
√
x2 + y2/z0. Due to the dynamics are slow, we can apply the Fermi

limit when zo � 1 and neglect the spatial derivatives in the equation (4.6). Along with this,
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we also neglect nonlinear terms and considering the regime below the electrical Freèdericksz
transition µo . 0, we obtain the following stationary solution (vortex Fermi approximation),

A(ρ) =
−bB(ρ, zo)Bρ(ρ, zo)

µ
. (4.7)

Then, the system exhibits an analytical solution of the form A ≈ f(r)eiθ/µo [46]. Indeed,
this solution is characterizing by exhibiting a vortex at the center and also a circular defect
line that circumscribes it.
Using a triangular finite element code with adaptive spatial and temporal steps, and a sim-
ulation box of dimensions 300 x 300 with Neumann boundary condition we did numerical
simulations of model (4.6) with diferent conditions as shown in Figure 4.12, top panel corre-
sponds to the polarized field ψ(x, y) ≡ Re(A) Im(A) [10], bottom panel corresponds to the
phase field Φ = arctan [Im(A)/Re(A)]. For µo < 0 we only detect the central vortex with a
cross shape Figure 4.12c) and the ring that circumscribes the central vortex is only detected
in the phase field. This ring has two singularities of opposite charges in its antipodes. This
numerical observation is consistent with the experimental one observed for low frequency
(see top panels in Fig.4.4). Increasing the bifurcation parameter, the central vortex swirls
and the ring that encloses the amplitude notoriously show two vortices of opposite charges
at the antipodes (see Figure 4.12d) which coincide with that we observe in the experiments
Figures 4.5 and 4.7. Considering a larger bifurcation parameter and starting from A = 0, we
see the vortex emerge at the center with a circular defect line that destabilizes into a set of
vortices that begin to interact and annihilate in pairs Figure 4.12e). We note that a similar
phenomenon we observe in the experiments Figure 4.6. Thus, the model Eq. (4.6) describes
the emergence of a vortex triplet induced by the combined action of a close magnetic ring
and electric field into a nematic liquid crystal layer.
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Figure 4.12: Numerical simulation of vortex triplex obtained from the topologically Driven
Giznburg-Landau Eq. (4.6) with z0 = 28, σ = 28, m = 13000, and δ = 0.1. Contour
plot of the polarized field ψ(x, y) = Re(A)Im(A) (top panel) and phase field Φ(x, y) =
arctan[Im(A)/Re(A)] (bottom panel) of the complex amplitude A, below µ0 < 0 (µ0 = −1)
(c) and above µ0 > 0 [µ0 = 0.2 (d) and µ0 = 3.0 (e)] the Fréedericksz voltage. Inserted circles
highlight phase singularities. Courtesy of Enrique Calisto.

4.5 A new phenomenon

Unexpectedly, when we decrease the frequency to a fraction of a hertz, experimentally, the
vortex triplet is destabilized from both the central vortex and the ring that circumscribes
it by the induction of vortices, resulting in a front of vortices invading the system (see Fig.
4.13). A stationary oscillatory vortex lattice characterizes the equilibrium state of the system.
When the oscillatory behavior of the electric field is included in model Eq. (4.12), it does
not describe the phenomenon observed experimentally. However, we expect that this state
corresponds to an exotic state similar to exotic states we found in chapter 3 but now it
is generated by electric and magnetic field, following this thought it would be interesting
considering inertia to model Eq. (4.12).
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Figure 4.13: Vortex lattices. A temporal sequence of snapshots of the emergence of vortex
lattice from a vortex triplet t0 < t1 < t2, with V0 = 9.0 Vpp and ω = 10 mHz.

To describe qualitatively this phenomenon, analogously to what was done in chapter 3, we
include in the model Eq. (4.6) a term of inertia, i.e. a second temporal derivate of amplitude
A, and a temporally modulated bifurcation parameter term,

∂ttA+ λ∂tA = [µ(ρ) + γ cos(2πft)]A− |A|2A+∇2A+ δ∂ηηĀ+ f(ρ)eiθ, (4.8)

where λ accounts for rotational viscosity, γ and f are the amplitude and the frequency of the
forcing, respectively.
Numerical simulations of this model Eq.(4.8) were implement using a finite differences code
with Runge-Kutta order-4 algorithm, with 200x200 points grid, spacing dx = 0.05, and
temporal increment dt = 0.02.
Figure 4.14 shows numerical simulations of Eq.(4.8) left panel corresponds to |A|, center
panel corresponds to Re(A) Im(A) and right panel corresponds to Phase(A). Notice that
Re(A) Im(A) corresponds experimentally to use linear crossed polarizer. In the Figure 4.14
we can see a central vortice and vortices that surround it in a circular way, similar to that
observed in Figures 4.13 a) and b). However, we still need to work on improving the model
in order to better describe the phenomenon observed.
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Figure 4.14: Numerical simulation of model Eq.(4.8). a) |A|, b) Re(A) Im(A), and c)
Phase(A).

In conclusion, We induce a stable vortex triplet in a homeotropic nematic liquid crystal
cell by the combined application of the magnetic field of a magnetic ring and the uniform
electric field. An amplitude equation with topological forcing valid close to the Fréederickzs
transition allow us to reveal the origin of the vortex triplet. Theoretical findings show a
quite fair agreement with experimental observations. When the frequency decreases the
vortex triplet is destabilized and a vortex network is formed. This phenomenon is described
qualitatively by the equation (4.8). However, a more detailed study is necessary to modify
this model in order to better describe the observed phenomenon.
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Chapter 5

Vortex nucleation by inherent
fluctuations in nematic liquid crystal
layers

In the last decades different studies have allowed to know more about the behavior of vortices
in nematic liquid crystal. Pismen [8] showed that the interaction between two vortices of
opposite topological charge at long-distance is proportional to the inverse of the distance
between them. Besides, the interaction has a correction in mobility that, although slight,
can be verified experimentally [27]. Later, Dierkieng [11] and Nagaya [49] showed that the
density of vortices in a homogeneous liquid crystal cell as a function of time decreases as
the inverse of time. Our recent work [50] has shown that the number of vortices in an
inhomogeneous nematic liquid crystal cell decays as a function of time with a power law.
Thus, the process of interaction and annihilation of vortices is well known, however the
process of nucleation of vortices in liquid crystal is still a mystery. Hence, we are interested
in studying what parameters influence in the nucleation of vortices and how important is the
presence of fluctuations in this process.

5.1 Experimental Setup

To study vortex creation, we have consider a 15 µm thick cell,(SB100A150uT180 manufac-
tured by instec) was filled with nematic liquid crystal LC BYVA- 01-5G (Instec) with negative
dielectric anisotropy εa = −4.89, birefringence ∆n = ne−no = 0.1, rotation viscosity γ = 204
mPas, splay and bend elastic constant, respectively, K1 = 17.65 pN and K3 = 21.39 pN. This
sample is placed inside a thermal stage (Linkam LTS420), which in turn is inserted inside a
Leica microscope, in between the crossed linear polarizers. To capture the images a CMOS
camera is connected to the microscope. A sinusoidal voltage with a frequency of 100 Hz is
applied to the sample. Maintaining the temperature at 26 oC, the voltage is turned on, the
dynamics of vortex creation and annihilation are recorded. The same procedure is carried
out for a voltage sweep between 9.0 Vpp and 30.0 Vpp. Subsequently, the voltage is switched
on at 15 Vpp and the dynamics of vortex creation and annihilation are recorded. The above
procedure is repeated for a temperature scan between 25oC and 80oC.
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Figure 5.1: Schematic representation of experimental setup. Nematic liquid crystal cell
is inserted in a thermal stage and iluminated by white light between two linear crossed
polarizers. A a sinusoidal voltage is applied to the sample.

Figure 5.2: Emergence of vortices in nematic liquid crystal when the voltage in the experi-
mental setup is turned on.
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5.2 Theoretical description
To study vortex creation, we have incorporated non correleated white noise to Ginzburg
Landau equation

∂tA = µA+∇2A+ δ∂ηηĀ− |A|2A+ ξ(x, y, t)
√
η, (5.1)

where A = u + iv, ∂η = ∂x + i∂y, and ξ(x, y, t) is a complex white noise ξ = ξu + iξv with
〈ξ〉 = 0 and 〈ξ|ξ∗〉 = δ(t− t′)δ(r − r′). Then, neglecting nonlinear terms, we obtain

∂tu = µu+ (∂xx + ∂yy)u+ δ(∂xx − ∂yy)u− 2δ∂x∂yv + ξu(x, y, t)
√
η

∂tv = µv + (∂xx + ∂yy)v + δ(∂xx − ∂yy)v + 2δ∂x∂yu+ ξv(x, y, t)
√
η

thus the deterministic part(
u̇
v̇

)
=

(
µ+ (∂xx + ∂yy) + δ(∂xx − ∂yy) −2δ∂x∂y

2δ∂x∂y µ+ (∂xx + ∂yy) + δ(∂xx − ∂yy)

)(
u
v

)
. (5.2)

Using the following ansatz (
u
v

)
=

(
uo
vo

)
ei(kxx+kyy)eσt (5.3)

then,

σ

(
uo
vo

)
=

(
(µ− k2

x(1 + d)− k2
y(1− d)) +2δkxky

−2δkxky (µ− k2
x(1 + d)− k2

y(1− d))

)(
uo
v0

)
(5.4)

defyning α = µ− k2
x(1 + d)− k2

y(1− d), we calculate the Determinante

0 = Det

(
α− σ +2δkxky
−2δkxky α− σ

)
, (5.5)

we obtain

0 = (α− σ)2 + 4δ2k2
xk

2
y, (5.6)

Therefore, we have the following σ

σ = α± 2iδkxky.

Considering only the real part

Re (σ) = µ− k2
x(1 + d)− k2

y(1− d), (5.7)

μ
c

σ(k)

kunstable

stable modes

Figure 5.3: Curve of σ(k). The red dots correspond to its modes, the green dots correspond to
the critical modes µc, the latter are the modes that generate the greatest amount of vortices.
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we looking for the critical values (see Figure 5.3, this shows the case for one dimension)

µc = k2
x(1 + d) + k2

y(1− d) (5.8)

defyning kx = π
L
nx and ky = π

L
ny we calculate how many zeros we have in x cordinate

µ =
π2

L2
n2
x(1 + δ), (5.9)

nx =

√
L2µ

π2(1 + δ)
. (5.10)

Likewise, we calculate how many zero are created in y coordinate

µ =
π2

L2
n2
y(1− δ), (5.11)

ny =
L

π

√
µ

(1− δ) , (5.12)

Therefore, usign (5.10) and (5.12), the maximun number of zeros that we have in total is

N = nxny =
L2µ

π2
√

(1− δ2)

The noise excites all modes equally, it is flat in Fourier space [51], then stable modes are
damped and unstable modes grow and generate vortices. The critical mode is the one that
generates more zeros that originate vortices Thus, we can say that the typical number of
vortex No, created due to the fluctuations in a nematic liquid crystal has the form

No =
Aµ√

(1− δ2)
(5.13)

5.3 Numerical Simulations
Numerical simulations of equation (5.1) were implemented using an Euler method algorithm,
with a 100*100 points grid, spacing dx = 0.5, and temporal increment dt = 0.0025. This
simulations have an initial condition A(x, t) = 0, Neumann boundary condition ∂ηA = 0 and
the noise is modeled as Weiner process, i.e, as a normal distribution with standard deviation.
To locate the vortices, the argument of A(x, t) is integrated around a small closed path. If
this integral is equal to 0 there are no vortices, if it is equal to ±1 there is a vortex.
Numerical simulations were made by modifying different parameters of Ginzburg Landau
with noise, equation (5.1), as described in the following paragraphs.

Numerical simulations were made leaving anisotropy δ and noise intensity level constant
and modifying the value of the bifurcation parameter µ for 120 different values between 0
and 10. For each value of the bifurcation parameter, 30 repetitions were performed and for
each repetition a different seed of random numbers was used for noise.
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Analogously, numerical simulations were carried out leaving the bifurcation parameter µ and
the noise intensity level constant, modifying the anisotropy value δ between 0 and 1, taking
20 repetitions for each value. Also, other simulations were performed leaving the bifurcation
parameter µ and the anisotropy δ constant, modifying the noise intensity value between 10−3

and 103, taking 10 repetitions for each value.
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Figure 5.4: Numerical simulations of equation (5.1). Left, central and right panels correspond
to |A|, Re(A) ∗ Im(A) and Phase(A) = arctan(Im(A)/Re(A)) respectively. Courtesy of
Esteban Aguilera.

5.4 Results

5.4.1 Number of vortices as a function of bifurcation parameter

The number of vortices created for different values of the bifurcation parameter µ was mea-
sured both experimentally and numerically. Figures 5.5 a) and b) shows the creation of
vortices in a liquid crystal cell of 15 µm thickness for a voltage of 15 Vpp and 30 Vpp re-
spectively. Figures 5.6 and 5.7 show the vortex number as a function of µ both experimental
and numerical for different measurement times. Figure 5.6b) is for t = 0.1 s and Figure 5.7b)
is for t = 1.0 s. In both figures we can see that in general the number of vortices created
increases with increasing the voltage.

15 [Vpp] 30 [Vpp]

a) b) 

60 μm 

Figure 5.5: Vortices created in area 1.39 mm2 in a 15 µm thickness nematic liquid crystal
cell. a)15 [Vpp] sinusoidal voltage es applied with a frequency 100 [Hz], b) 30 [Vpp] sinusoidal
voltage es applied with a frequency 100 [Hz].
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Figure 5.6: Number of vortices for different values of µ. a) Numerical results of equation (5.1)
for time t = 12, orange dot correspond to δ = 0.1 and ξ = 0.01, and blue dots correspond
to δ = 0.3 and ξ = 0.01, courtesy of Esteban Aguilera. b) Experimental result for a nematic
liquid crystal cell with 15 µm of thickness at 26◦C and frequency of voltage applied 100 Hz.
This results are for a time t = 0.1 s.
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Figure 5.7: Number of vortices for different values of µ. a) Numerical results of equation
(5.1) for time t = 60. Blue dots correspond to δ = 0.1 and ξ = 0.01, orange dots correspond
to δ = 0.3 and ξ = 0.01, and green dots correspond to δ = 0.7 and ξ = 0.01. Courtesy
of Esteban Aguilera b)Experimental result for a nematic liquid crystal cell with 15 µm of
thickness at 26◦C and frequency of voltage applied 100 Hz. This results are for a time t = 1.0
s.

5.4.2 Number of vortices as a function of anisotropy

Figure 5.8 shows the number of vortices created for different values of anisotropy. This
result is only numerical since experimentally it could not be measured due to the lack of
control over the changes in anisotropy in a liquid crystal. To these results, we apply the fit
N = A/(1− δ2)b +C. We can observe in Figure 5.8a) that for short times, when the vortices
are newly created, the exponent b is close to 0.5 for both µ = 1.0 and µ = 10.0, Then, we
corroborate that our theory (5.13) is correct. For long time we can observe in figure 5.8b)
that b is arround 1 and it differs substantionaly from our theoretical value (5.13), the reason
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is that for long times, the processes of interaction and annihilation of vortices are present
and non-linear terms also play a role in the dynamics of liquid crystals.
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Figure 5.8: Number of vortices for different values of δ. a) Numerical results of equation
(5.1) for time t = 12. Blue dots correspond to µ = 1.0 and ξ = 0.01, orange dots correspond
to µ = 10.0 and ξ = 0.01. b) Numerical results of equation (5.1) for time t = 60. Blue dots
correspond to µ = 1.0 and ξ = 0.01, orange dots correspond to µ = 10.0 and ξ = 0.01.

5.4.3 Number of vortices as a function of noise

Numerically, Figure 5.9 shows the number of vortices as a function of noise for different times.
We can observe that in Figure 5.9a) the number of vortices created scales as a power law
with the intensity of the noise. Therefore, the number of votices created increases with the
intensity of noise. For a long time (t=60) after the creation of vortices, we can see that until
xi = 10 the number of these remains constant, and from xi = 101 onwards it is observed that
the vortex number grows as a power law such as shown in figure 5.9b) we note that, when
the intesity of noise is ξ = 12 numerical simulations lost the physical sense.
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Figure 5.9: Number of vortices for different values of noise ξ. a) Numerical results of equation
(5.1) for time t = 12, µ = 1.0 and δ = 0.1. b)Numerical results of equation (5.1) for time
t = 60, µ = 1.0 and δ = 0.1. Courtesy of Esteban Aguilera.
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5.4.4 Number of vortices as a function of temperature

The inherent fluctuations of the liquid crystal cells are dependent on temperature. Experi-
mentally, the number of vortices was measured as a function of the temperature for different
times since the votices are created (t = 0). Figure 5.12a) shows the creation of vortices for
t = 0.1. The number of vortices increase when the temperature increases until it saturates at
70◦C. Therefore, when the thermal fluctuations increase, the nucleation of vortices increases.

After 1 second, we can see in Figure 5.12b) that the number of vortices increases linearly
with the temperature. Note that the vortex interaction and annihilation come into play in
this regime. For a longer time (5 s), we can see in Figure 5.12c) that the number of vortices as
a function of temperature decreases. This is due to the fact that increasing temperature, the
number of vortices increases, and that the dynamics of vortices becomes faster. Therefore,
the vortices are annihilated much quicker, as shown in Figures 5.10 and 5.11.

0 s 1 s 2 s 

4 s 7 s 16 s 

60 μm 

Figure 5.10: Temporal sequence of snapshots depicts umbilical defects dynamics in a nematic
liquid crystal cell with 15 µm of thickness at 20◦C. The sinusoidal voltage applied is 15 Vpp
with a frequency of 100 Hz.
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Figure 5.11: Temporal sequence of snapshots depicts umbilical defects dynamics in a nematic
liquid crystal cell with 15 µm of thickness at 80◦C. The sinusoidal voltage applied is 15 Vpp
with a frequency of 100 Hz.
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Figure 5.12: Number of vortices for different values of temperature T for a nematic liquid
crystal cell with 15 µm of thickness with a sinusoidal voltage of 15 Vpp with frequency 100
Hz. a) For a initial time t = 0.1 s. b) For a time t = 1.0 s. c) For a time t = 1.0 s.

5.4.5 Number of vortices as a function of time

The number of vortices as a function of time was measured for different values of voltage,
anisotropy, temperature, and thickness of the nematic liquid crystal cell. In Figure 5.13, we
can see that both experimentally and numerically, the number of vortices as a function of
time scale as a power law. Therefore, our numerical simulations describe the experiment
results quite well.
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Figure 5.13: Number of vortices as a function of time t. a) Numerical results of equation
(5.1) for µ = 1.5 and δ = 0.1, Courtesy of Esteban Aguilera. b)Experimental result for a
nematic liquid crystal cell with 15 µm of thickness at 26◦C and voltage applied of 15 Vpp
with frequency of 100 Hz.

To study the number of vortices as a function of time, the fitting (2.5) from Chapter 2
was used,

N(t) = A(t)−b + c, (5.14)

where N corresponds to number of vortices, A, b, and c are constants parameters. Figure
5.14 corresponds to the graphs of the parameter A of the equation (5.14) for different values
of the bifucation parameter. Panel a) corresponds to a nematic liquid crystal cell with 15 µm
of thickness, panel b) corresponds to a nematic liquid crystal cell with 75 µm of thickness.
panel c) corresponds to numerical simulations where the blue points are for δ = 0.10 and
ξ = 0.01 and orange points for δ = 0.30 and ξ = 0.01.
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Figure 5.14: A for different values of µ. a)Experimental result for a nematic liquid crystal cell
with 15 µm of thickness at 26◦C and frequency of voltage applied 100 Hz. b) Experimental
result for a nematic liquid crystal cell with 75 µm of thickness at 26◦C and frequency of
voltage applied 100 Hz. c) Numerical results of equation (5.1) where blue dots correspond to
δ = 0.1 and ξ = 0.01, orange dots correspond to δ = 0.3 and ξ = 0.01.

Figure 5.15 corresponds to graphs of the parameter b of the 5.14 equation for different
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values of the bifucation parameter µ. Panel a) corresponds to a 15 µm thick nematic liquid
crystal cell, panel b) corresponds to a 75 µm thick nematic liquid crystal cell. Panel c)
corresponds to numerical simulations where the blue points are for δ = 0.10 and ξ = 0.01
and orange points for δ = 0.30 and ξ = 0.01.
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Figure 5.15: b for different values of µ. a)Experimental result for a nematic liquid crystal cell
with 15 µm of thickness at 26◦C and frequency of voltage applied 100 Hz. b) Experimental
result for a nematic liquid crystal cell with 75 µm of thickness at 26◦C and frequency of
voltage applied 100 Hz. c) Numerical results of equation (5.1) where blue dots correspond to
δ = 0.1 and ξ = 0.01, orange dots correspond to δ = 0.3 and ξ = 0.01.

Figure 5.16 corresponds to numerical results graphs of parameters A and b of the equation
5.14 for different values of anisotropy δ. Blue points are for δ = 0.10 and ξ = 0.01 and orange
points for δ = 0.30 and ξ = 0.01.
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Figure 5.16: Numerical results of fit parameters for different values of anisotropy δ where
blue dots correspond to µ = 1.0 and ξ = 0.01 and orange dots correspond to µ = 10.0 and
ξ = 0.01. a)Plot of A v/s δ. b)Plot of b v/s δ. Courtesy of Esteban Aguilera.

Figure 5.17 corresponds to graphs of parameters A and b of the 5.14 equation for different
values of temperature. This experimental results belong to a nematic liquid crystal cell with
15 µm thickness.

61



T [ºC]

20 30 40 50 60 70 80 90

N

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

T [ºC]

20 30 40 50 60 70 80 90

N

400

500

600

700

800

900

1000

400
20 30 80

A

0.35

500

600

700

1000

20 30 50 80

0.45

0.55

0.65

0.75

T [ºC]

40 50 60 70

800

900

40 60 70

T [ºC]

b

a) b) 

Figure 5.17: Experimental results of fit parameters for different values of temperature T for
a nematic liquid crystal cell with 15 µm of thickness and a sinusoidal voltage applied of 15
Vpp with a frequency of 100 Hz. a) Plot of A v/s δ. b)Plot of b v/s δ.

In conclusion, we have shown that the thermal fluctuations are responsible for vortices
nucleation in a nematic liquid crystal cell and the number of nucleated vortices is described
by N = Aµ√

(1−δ2)
+C. Therefore, the number of vortices created when the voltage, noise, and

temperature increase and scales with anisotropy as ∼ 1/
√

(1− δ2). The number of vortices
as a function of time scales as a power law whose exponent varies with the bifurcation,
anisotropy, and temperature.
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Chapter 6

Conclusions

In this dissertation, an experimental and theoretical study of the behavior of vortices in a
nematic liquid crystal layer under the influence of electric and magnetic field was carried out.

Nematic liquid crystals layer with negative dielectric constant and homeotropic anchoring
under the influence of a voltage are the ideal platform for studying the interaction of gas of
topological vortices with opposite topological charges. One would expect that the dynamics
of the vortices is characterized by a decreasing number in time, which follows a power law
with critical exponent α = 1, because the dominant interaction between the vortices is self-
similar. Unexpectedly, we observe that this dynamics is persistent in thin cells of nematic
liquid crystals that contain glass beads as spacers. However, the laws of the exponential decay
in the number of vortices depend strongly on the distribution of the glass beads and their
imperfections. Experimentally, we have characterized such a dynamics and demonstrated
that the deformed glass beads attract vortices of opposite topological charges, presenting
mainly a quadrupolar behavior. Theoretically, we have derived the modified power law for
inhomogeneous samples, leading to α = 2/3 exponent of the power law. The agreement with
the exponents derived from the experimental observations is satisfactory over several zones
of the analyzed samples. However, a complete agreement could not be reached because of
the diversity of the beads and the consequent complexity of the induced vortex dynamics.
Liquid crystal cells with spacers are fundamental in the development of displays of various
electronic devices. The influence that the disperse beads, often used as spacers in the cell,
can exert on the molecular reorientation is usually ignored. Our observations show that the
inhomogeneities induced by the beads can play a relevant role in the dynamics of defects.
Therefore, the study of the interaction between spacers and the surrounding liquid crystal
can reveal important features of molecular behavior and should be taken into account for
further improvements of liquid crystal devices.

Exotic states of matter have been found in a system with injection and dissipation of
energy. In a nematic liquid crystal cell under the influence of a low frequency oscillatory
electric field, topological transitions from no vortex state to vortex state in which vortices
persist have been observed. Depending on the frequency and type of the forcing (harmonic,
sawtooth, or square profiles), there is a critical frequency in which the vortices self-organize
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forming square lattices, glassy states, and disordered vortex structures. To describe these
topological transitions, the Ginzburg Landau equation with real coefficients was modified by
adding terms of inertia, oscillating bifurcation parameter, and white noise. Numerical sim-
ulations of this model described qualitatively well the topological transitions observed and
could be a start point for understanding and controlling the exotic states of matter. We con-
tinue to work on improving the model to fully describe the observed topological transitions.
Because the phenomenon reported here is qualitative well described by a universal model
Eq. (3.1), we expect that any temporally modulated vectorial field system of low dimension-
ality can exhibit topological transitions out of equilibrium. Furthermore, these findings could
be a starting point for understanding and controlling the exotic states of matter. Because
vortex lattices emerge spontaneously in single cells subjected to alternative low-frequency
voltages, it opens up the possibility of new and novel applications of the generation of optical
vortices.

The combined effect of the magnetic field of a magnetic ring and the uniform electric
field onto a homeotropic nematic liquid crystal cell induces a stable vortex triplet. Based
on a Ginzburg Landau equation with real coefficients and topological forcing close to the
Fréedericksz transition, it was possible to reveal the origin of this vortex triplet. Numerical
simulations of this model show a quite fair agreement between the proposed theory and the
experimental observations. Unexpectedly, when the frequency of the applied voltage decrease,
the vortex triplet destabilizes and form a stable vortex lattice. To describe the latter, a term
of inertia is added to the Ginzburg Landau equation with real coefficients and topological
forcing. Numerical simulations show that the proposed model describes qualitatively the
experimental observations. This is a recent finding, future studies could improve this model
to fully describe the phenomenon. This mechanism of manipulating and controlling vortices
may be relevant to the development of optical tweezers and could enable the development of
new q-plate technologies.

Thermal fluctuations are responsible for vortices nucleation in a nematic liquid crystal
cell. The number of nucleated vortices is described by N = Aµ√

(1−δ2)
+ C. Therefore, the

number of vortices created when the voltage, noise, and temperature increase and scales
with anisotropy as ∼ 1/

√
(1− δ2). The amplitude equation allows us to characterize the

number of vortices as a function of time scales as a power law whose exponent varies when
the bifurcation, anisotropy, and temperature.
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Coarsening Dynamics of Umbilical Defects
in Inhomogeneous Medium

Raouf Barboza, Umberto Bortolozzo, Marcel G. Clerc, Stefania Residori
and Valeska Zambra

Abstract Non-equilibrium systems with coexistence of equilibria exhibit a rich and
complex defects dynamics in order to reach a more stable configuration. Nematic
liquid crystals layer with negative dielectric constant and homeotropic anchoring
under the influence of a voltage are the ideal context for studying the interaction of gas
of topological vortices. The number of vortices decreases with time. Experimentally,
we show that the presence of imperfections drastically changes this coarsening law.
Imperfections are achieved by considering glass beads inside the nematic liquid
crystal sample. Depending on the disorder of these imperfections, the system exhibits
different statistical evolution of the number of umbilical defects. The coarsening
dynamics is persistent and is characterized by power laws with different exponents.

1 Introduction

Macroscopic systems under the influence of injection and dissipation of energy and
momenta exhibit instabilities leading to spontaneous symmetry breaking and pattern
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formation [1]. Due to the inherent fluctuations of these macroscopic systems, differ-
ent organizations may emerge in distinct regions of the same sample; hence, these
spatial structures are usually characterized by domains, separated by interfaces, as
grain boundaries, and defects or dislocations [2, 3]. Among others, defects in rota-
tionally invariant two dimensional systems, i.e. vortices, attract a great deal of atten-
tion because of their universal character and intriguing topological properties. These
defects have been observed in different systems such as fluids, superfluids, supercon-
ductors, liquid crystals, fluidized anisotropic granular matter, magnetic media, and
optical dielectrics, to mention a few [4]. Vortices occur in complex fields and can be
identified as topological defects, that is, point-like singularities which locally break
rotational symmetry. They exhibit a zero intensity at the singular point with a phase
spiraling around it. The topological charge is assigned by counting the number of
spiral arms in the phase distribution, while the sign is given by the sense of the spiral
rotation.

Nematic liquid crystals with negative anisotropic dielectric constant and
homeotropic anchoring are a natural physical context where dissipative vortices can
be observed and analyzed [5, 6]. In this context, the dissipative vortices are usually
called umbilical defects. These defects in nematic liquid crystals have long been
reported in the literature (see textbooks [5–7] and reference therein). Two types of
stable vortices with opposite charges are observed, which are characterized by being
attracted to (repelled by) the opposite (identical) topological charge. The nematic
liquid crystal phase is characterized by rod-shaped molecules that have no posi-
tional order but tend to point in the same direction [5–7]. Then, the description of
the nematic liquid crystal is given by a vector—the director n—which accounts for
the molecular orientational order. The direction of this vector is irrelevant, only the
orientation of n has a physical meaning. Note that the defects observed in this con-
text are similar to those observed in magnetic systems, superfluids, superconductors,
and Bose-Einstein condensates. However, these vortices exhibit a entirely different
dynamic evolution due to the strongly dissipative nature of liquid crystals.

The vortex-like defects have accompanied liquid crystals since their discovery in
1889 by Lehmann [8], who called these structures kernel. Later, they were observed
in a similar experimental setup by Friedel, who called them noyaux [9]. Moreover,
he also resolved their detailed topological structure. From the theory of elasticity of
nematic liquid crystals, Frank calculated the detailed structure of these defects [10].
Due to the fact that these defects break the orientational order and by analogy with
dislocations in crystals of condensed matter, Frank called these defects disclinations.
Despite the different names given to the observed vortices in this context, none of
them were adopted by the community of liquid crystals. There the most widely used
name for these defects is nematic umbilical defects. The term umbilics was coined
by Rapini [11] and refers to the topological structure of the defect which corresponds
to a string-like object in three dimensions. Because of the complex elasticity theory
associated with nematic liquid crystals, characterized by three types of deformation
(bend, twist and splay), the theoretical dynamic study of defects is a thorny task
[5–7].
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Based onweak nonlinear analysis, valid close to the orientational instability of the
molecules (Fréedericksz transition [5, 6]), the dynamics of the director canbe reduced
at main order to the Ginzburg-Landau equation with real coefficients [12–14]. This
amplitude equation allows to understand the emergence of different orientational
domains, two types of stable vortices and their respective dynamics. Since the vortices
have a±2π azimuthal phase jump (winding number), usually they are referred to as
vortex “+” and “−”, respectively. In this approach, both defects are indistinguishable
in their amplitude and, as a result of the phase invariance of the Ginzburg-Landau
equation, they account for a continuous family of solutions, characterized by a phase
parameter [4]. From this model one can characterize the interaction of vortex pairs
[4], which shows a good agreement with experimental observations [15]. From the
interaction of defect pairs and through the use of self similarity statements, one
can infer the law of number of defects as a function of time [16, 17]. This type of
self-similar behavior is well-known as coarsening process, which is equivalent to
the growth process of domains in phase separations transitions observed in metallic
alloys [18].Using the lawof vortices interaction, one shows that the number of defects
decreases inversely proportional to time, which it has been experimentally observed
in nematic liquid crystal samples [19, 20]. Similarly, using XY phase model, one
obtains the same decay law for the vortices number [19].

The aim of this manuscript is to investigate experimentally the persistence and
coarsening law when inhomogeneities are considered in a liquid crystal sample. The
inhomogeneities are achieved by considering glass beads inside a nematic liquid crys-
tals sample with negative dielectric constant and homeotropic anchoring. Depending
on the disorder of these glass beads, the system exhibits different statistical temporal
evolution of number of umbilical defects. This evolution is found to exhibit power
laws with different exponents.

2 Experimental Setup

Let us consider an interaction geometry in which, a uniform thin layer of nematic
liquid crystal has the molecular director constrained to be normal to the two parallel
bounding plates, direction which we later denote by z. Due to inherent elastic forces
between the molecules, the alignment in the bulk will be uniform and parallel to z,
this in order to minimize the elastic energy. When a low frequency (≈100 kHz in our
case) electric field is applied in the z direction, if the dielectric anisotropy of the liquid
crystal is negative, the resulting electric torque will try to rotate the molecules away
from the z-axis. Only over a critical threshold voltage, called Fréedericksz transition
voltage [6], the molecules effectively tilt away from their equilibrium position. Due
to the 2π degeneracy in the possible direction of orientation, defects called umbilics
will be generated in the nematic layer [6, 11].

The observation of these umbilical defects and their dynamics was done by using
two different types of liquid crystal cells about the same thickness. The first cell,
uniform, is made of two ITO (Indium Tin Oxide, transparent conductor) coated glass
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Fig. 1 Sketch of the
experimental setup of a
nematic liquid crystal layer
with negative dielectric
constant anisotropy and
homeotropic anchoring
under the influence of a
voltage. The essential parts
of the setup are emphasized.
Crossed polarizers, either
linear or circular are used to
analyze the texture of the
liquid crystal

slabs. The glass slabs are treated on the ITO side in order to promote orthogonal
alignment of the liquid crystal molecules. This alignment is termed as homeotropic
alignment or homeotropic anchoring [5–7]. The glass slabs are held togetherwith thin
sheet of polymer spacers such that, the treated faces form a gap in which the liquid
crystal will be infiltrated later. The spacers, which fix the thickness of the gap are
about 15 µm thick. The second cell, non uniform, from Instec Inc. (SB100A150uT180
liquid crystal cell), has the same homeotropic alignment. The spacing gap of the cell
is achieved by sputtering spacer beads made of clear/transparent ceramics or glass
onto the substrate of glass slab before assembly [21]. The diameter of these glass
micro-spheres fixes the cell gap, and, for the chosen cell, it is about 15 µm. The
two cells were filled by capillarity with the MLC-6608 nematic liquid crystal (from
Merck) which has a negative dielectric anisotropy. Both cells are biased with low
frequency sinusoidal voltage. The experimental setup is sketched in the figure Fig. 1.
To achieve maximum resolution, a collimated white light (Köhler illumination) from
a microscope condenser is sent onto the liquid crystal cell, the latter mounted on
a translation stage. The texture of the liquid crystal is imaged on a CCD camera
through a microscope objective and relay lenses.

As the cells contain liquid crystallinematerials, which are an intrinsically birefrin-
gent in the nematic phase, two crossed polarizers, the first to polarize the illumination
source and the second to analyze the polarization of the light coming from the cell,
are used in order to recover averaged two dimensional texture of the liquid crystal
layer. For simplicity the cell will be considered as a uniform, along the longitudinal
z coordinate, uniaxial birefringent material with optical axis aligned in the xy plane
at angle θ with the x axis, with retardation δ = 2πL(ñe − no)/λ; L represents the
thickness of the cell, λ the operating wavelength, no and ñe respectively the ordinary
refractive index and the average extraordinary refractive index over the longitudinal
coordinate. The optical axis can be viewed as the averaged azimuthal direction of
molecules in the xy plane, equivalently their projection onto the xy plane. The aver-
aged extraordinary index ñe is related to the tilt ψ of the molecules with respect the
z axis by the expression
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ñe =
∫ L

0

neno√
n2e cos2 ψ + n2o sin

2 ψ
dz. (1)

The texture of the liquid crystal layer will vary accordingly with the spatial vari-
ation in the xy optical axis at angle θ representing the director orientation in the xy
plane and δ the retardation which depends on the average tiltψ of the molecules with
respect to the z axis. Using Jones matrix formalism we can show that the intensity
recorded using crossed linear polarizers, the polarizers axis are perpendicular to each
other, is given by

I (x, y) = I0 sin2
δ(x, y)

2
sin2 2θ(x, y). (2)

Likewise, the crossed circular polarizer configuration is achieved when two quarter
wave plate (QWP) are inserted in the previous configuration, with the first waveplate
at±45◦ with respect to the axis of the input polarizer, and the fast axis of the second
wave-plate is orthogonal to the first one. In this case the recorded intensity writes as
follow

I (x, y) = I0 sin2
δ(x, y)

2
(3)

We used both polarizing microscope imaging, depending on the feature we want
to enhance of the umbilical defects dynamics.

3 Results and Discussions

To understand the coarsening dynamics of the vortices in homogeneous cell, wemust
first establish the vortex pair interaction law and then, by means of self-similarity
properties, we can deduce a coarsening law of vortices.

3.1 Vortex-Pair Interaction Law

Aswe havemention before, close to the orientational instability of the molecules, the
dynamics of the director can be reduced at main order to the Ginzburg-Landau equa-
tion with real coefficients. This amplitude equation admits stable vortex solutions
with topological charge ±1. The analysis of the vortex interaction law is complex
because the energy associated with each vortex diverges logarithmically with the size
of the system [5]. Thereby, the interaction between distant vortices has an infinite
mobility [4]. However, in the case of considering that the system has a finite size, the
mobility is finite and the vortex-pair interaction law can be approximated for long
distances by the expression [4]
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Mṙ = q
r
, (4)

where r(t) is the vortex separation, q is the product of the topological charges of
vortices (q = ±1), then it is positive (negative) when both vortex has the same
(different) charge, and M stands for the vortex mobility which depends of the size
of the system, the properties of the liquid crystal and the applied voltage. Thus the
interaction between vortices is equivalent to overdamped particles with Keplerian
type interaction potential.When the distances between the vortices is small enough—
the order of the size of the vortex core—the previous dynamics is not valid. But in
this case, vortices of opposite charge merge and disappear. In brief, the dynamics
of interaction between vortices tries to homogenize the deformations of molecular
orientation.

3.2 Vortex Coarsening Law

Considering a gas of n-vortices, the position of the i th-vortex is given by ri . Hence,
the interaction between them is given by

M ṙi =
∑

i $= j

qi j
r2i j

(ri − r j ), (5)

where ri j ≡ ||ri − r j || is the distance between the i th and j th-vortex, and qi j is
the product of the topological charges of vortices. Hence, the dynamics of a gas of
n-vortices corresponds to overdamped n-body problem. It is worthy to note the above
set of equations is invariant under the self-similarity transformation

ri → λri ,

t → λ2t. (6)

Therefore, if one dilates or expands the space and time then the set of (5) are invariant.
Let us introduce N (t), the number of vortices at time t . This number of vortices

can be estimated as
N (t) = A

〈r〉2 , (7)

where A is the area of the sample under study and 〈r〉 is the average distance between
vortices. Because the dynamics of vortices is given by the set of (5), also the average
distance 〈r〉 and N (t) is determined by this dynamics. Then, 〈r〉 and N (t) should
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also be self similar with transformation (6). Hence, N (λ2t) = A/λ〈r〉2. From the
previous equality, one infers that the only possibility is that

N (t) = β

t
, (8)

with β a constant. Therefore, the number of defects decreases inversely proportional
to time, coarsening law.

3.3 Experimental Observation of Coarsening
Law in Uniform Cell

To verify the previous law, we have conducted several experimental analysis of
the dynamics of vortex gas. This by applying a large enough voltage to the liquid
crystal layer between two cross polarizers, which spontaneously generates hundreds
umbilical defects in different positions as a result of thermal fluctuations and inho-
mogeneities in the system. The position of the umbilical defects are recognized by
the intersection of four black curves [5]. Subsequently, the defects have a dynamic
of attraction and repulsion following the interaction law (5). Figure 2 shows a tem-
poral sequence of snapshots, which emphasizes the characteristic evolution of a
gas of umbilical defects. From the temporal sequences and through an appropriate
recognition software we can determine the number of vortices and their respective
positions. Thus, we acquire the evolution of the number of vortices as a function of
time. Figure 3 shows this evolution. From this plot, one concludes that the number of

Fig. 2 Annihilation dynamics of umbilical defects in a uniform liquid crystal layer between two
crossed linear polarizers. Temporal sequence of snapshots from the left to right and the top to
bottom (a–e). The position of the umbilical defects are given by the intersection of four black
brushes. Texture of the sample after the anihilation of all the defects (f)
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Fig. 3 Coarsening dynamics
in a uniform cell. Number of
umbilical defects as a
function of time. The solid
black and dashed curve,
respectively, are the
experimental evolution of
N (t) and the fitting curve
N f (t) = βt−α + N∞ with
α = 0.9134± 0.00124,
β = 4.448 × 103 ± 10 and
N∞ = 17± 0.22

vortices decays as a function of time with a power law. To determine the exponent,
we have considered the following fit

N f (t) = βt−α + N∞, (9)

where {β,α, N∞} are fitting parameters, which accounts for the features of the liq-
uid crystal and cell under study. N∞ stands for the number of imperfections of the
system—which trap the vortices in given positions—and the inaccuracy of recogni-
tion method. Experimentally we found that in our samples, the exponent α = 0.9134
is in reasonable agreement with the simplified description (5).

3.4 Experimental Observation of Coarsening
Law in Inhomogeneous Cell

To investigate of the interaction of vortices in inhomogeneous media, we have con-
ducted several experimental analysis of the dynamic of vortex gas in a liquid crystal
layer with glass beads between two cross polarizers and applying a large enough
voltage. Figure 4 shows a temporal sequence of snapshots with the characteristic
evolution of a gas of umbilical defects in an inhomogeneous medium. The glass
beads are emphasized by dashed circumferences. Again, the position of the umbilical
defects are recognized by the intersection of four black curves. As we have observed
in the temporal sequence of snapshots, when one applies a sufficiently large voltage
in the liquid crystal layer a large number of vortices appear in different spatial posi-
tions, which are determined by the inherent fluctuations and imperfections in the cell.
Following the emergence of these umbilical defects, they begin to repel or attract,
causing the annihilation process of these defects. This process is characterized by the
fact that initially close defects annihilate quickly, and then the more distant umbil-
ical defects annihilate one another, but each time in a slower process, coarsening
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t=12.04s t=15.20s t=18.35s

t=5.73s t=8.89s

Fig. 4 Umbilical defects annihilation dynamics in a liquid crystal layer with glass beads between
two linear crossed polarizers. Temporal sequence of snapshots from the left to right. The position
of the umbilical defects are given by the intersection of four black curves

dynamics. The glass beads, as seen in the snapshots, remain motionless. However,
the dynamics of vortices is strongly affected by the presence of glass beads. Figure 5
shows a glass bead attracting radially an umbilical defect . Both appear as dark spots
as the cell is observed with circular crossed polarizers. In this experimental setup
umbilical defects are recognized as small gray circles. Experimentally, this interac-
tion is weaker than the interaction between umbilical defects. It is known that glass
beads without surface treatment, generate homeotropic anchoring at their bound-
aries, that the liquid crystal molecules tend to be oriented normal to the glass beads
[21, 22]. In addition, due to the fact that the glass beads are in contact with the glass
plates of the sample, one expects a saturn ring like defect loop around each glass
inclusion [21, 22]. The trajectory as consequence of the interaction between this
defect and the umbilical one is depicted in Fig. 5. Likewise, the interactions between
vortices are affected by the presence of the glass beads. Figure 6 illustrates the vortex
interaction in presence of a close glass bead in a liquid crystal layer observed with
circular crossed polarizers. Clearly from this trajectory, we note that the interaction
of the umbilical defects is not a central force as those obtained by (4). Therefore, the
interaction of vortices is modified and it is not clear if the process of coarsening is
persistent.

Using an appropriate recognition software, based on particle tracking, we can
determine the number of vortices and their respective positions. Figures 7c and 8c
show the evolution of the number of umbilical defects as a function of time. In both
graphs, we observe that the system exhibits coarsening process with power laws.
These power laws are obtained by realizing several experiments. Hence, the coars-
ening dynamics is a persistent phenomenon, though depending on the distribution
of the glass beads, we observe different power laws. To characterize the clustering
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(a)

0ms 20ms

40ms 60ms 50µm 50µm

(b) (e)

(c) (d)

Fig. 5 Interaction between a glass bead and an umbilical defect in a liquid crystal layer with circular
crossed polarizers. Temporal sequence of snapshots from (a) to (e). Dashed circle accounts for the
glass bead. The small gray circle stands for the umbilical defect. In the right panel, the dashed line
sums up the trajectory of the umbilical defect and points are the position of the defect

(a)

0ms 43ms

87ms 130ms 50µm 50µm

(b) (e)

(c) (d)

Fig. 6 Vortex interaction in presence of a glass bead in a liquid crystal layer with circular crossed
polarizers. Temporal sequence of snapshots from (a) to (e).Dashed circle accounts for a glass bead.
The small gray circle stands for the umbilical defects. In the right panel, the color points account
for the trajectories of the umbilical defects, different colors account for the different defects, and
the dashed line joints initially the defects

and distribution of the glass beads, we have computed the Voronoi diagram of glass
beads in the different observed zones (cf. Figs. 7a and 8a) and their histogram of the
mutual distance of the glass beads (cf. Figs. 7b and 8b). From these diagrams, we
can measure the density of glass beads and we obtain for zone I and III, respectively,
13.630 and 20.803 glass beads per mm2. Zone III is more ordered than zone I, since
its histogram of the mutual distance is closer to a Rayleigh distribution around a
length (cf. Fig. 7b) and the other is closer to a uniform distribution without a feature
length. Analogously, from this distribution we can compute the Shannon entropy
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Fig. 7 Coarsening process of umbilical defects in an inhomogeneous medium, zone III. a Voronoi
diagram of glass beads in the observed zone. bHistogram of the mutual distance of the glass beads.
The solid curve is a fitting curve using a Rayleigh distribution. c Corresponding scaling curve of
the number of defects vs normalized time. Black points stand for experimental observations and the
dashed line corresponds to a fitting curve of the form N (t) = β/tα with α = 0.29

Fig. 8 Coarsening process of umbilical defects in an inhomogeneous medium, zone I. a Voronoi
diagram of glass beads in the observed zone. bHistogram of the mutual distance of the glass beads.
The solid curve is a fitting curve using a Rayleigh distribution. c Corresponding scaling curve of
the number of defects vs normalized time. Black points stand for experimental observations and the
dashed line corresponds to a fitting curve of the form N (t) = β/tα with α = 0.63

Se and obtain for each zone, respectively Se(I I I ) = 0.00767 and Se(I ) = 0.021.
Therefore, depending on the different configurations of the glass beads, the evolution
of the number of defects as a function of time changes.

Tomeasure the exponent of the coarsening laws, we have considered the following
fitting curve N (t) = βt−α . Table 1 summarizes our results for different zones of our
liquid crystal layer. Different zones of the sample exhibit different coarsening laws.
However, from this table we are not able to establish a correlation between the

Table 1 Results over an observed area about 1.394 mm2

Zone Density (mm2) α β Entropy

I 13.630 0.63 597.0 0.0210

II 17.217 0.85 1800.0 0.0136

III 20.803 0.29 228.1 0.00767

IV 21.521 0.75 1286.0 0.0091

V 23.673 0.758 1286.0 0.00772

VI 27.977 0.73 187.0 0.0057
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density of vortices, Shannon entropy, and spatial distributions with their coarsening
exponents found experimentally.

4 Conclusions and Remarks

Far from equilibrium systems with coexistence of equilibria exhibit a rich and com-
plex defects dynamics in order to reach a more stable configuration. This dynamic of
defects can generate a rich variety of spatial textures. Defects in rotationally invariant
two dimensional systems, attract a great deal of attention because of their universal
character and intriguing topological properties. Nematic liquid crystals layer with
negative dielectric constant and homeotropic anchoring under the influence of a volt-
age are the ideal context for studying the interaction of gas of topological vortices
with opposite charges.

By considering a uniform sample of nematic liquid crystal layer under the influ-
ence of electrical voltage with high frequency, we observe that the number of vor-
tices decrease inversely proportional to time. This coarsening dynamics results when
vortices are more close, the interaction between them increases in a self-similarity
manner. Experimentally, we show that the presence of imperfections in the liquid
crystal layer drastically changes this coarsening process. Imperfections are achieved
by considering glass beads inside the nematic liquid crystal sample.We observed that
the coarsening process is persistent under the presence of spatial inhomogeneities.
Depending on the disorder of these imperfections, the system exhibits different sta-
tistical evolution of number of umbilical defects. This evolution is characterized by
power laws with different exponents.

From the theoretical point of view, one can model the effect of the glass beads as
a screening effect, that is, the law of interaction of pairs of vortices, (4), is modified
by considering an effective exponent, which is a function of the properties and dis-
tributions of the glass beads. This kind of effective dynamic is self-similar, then this
could explain the observed coarsening dynamics.

Acknowledgments M.G.C. acknowledges the support of FONDECYTN 1150507. R.B. acknowl-
edges the support of FONDECYT POSTDOCTORADO N. 3140577.
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E-mail: valeska.zambra@ug.uchile.cl

Abstract. An homeotropically aligned liquid crystal layer driven by external electric or
magnetic fields exhibit an intricate network of defects called umbilics or vortexes. Here, we
report an experimental characterization of vortexes-glass bead interaction in nematic liquid
crystal layer. The glass spheres, embedded in the liquid crystal, are found to be of two type:
some of them attractive, with different strength of attraction; and most of them non-attractive.
The attractive glass spheres pull the vortexes so that the distance decays approximately with
the square root of time. The glass bead sphere induces an anisotropic force on the vortex. This
force can be well approximate by an inverse power law of the distance between vortex and glass
bead with exponent 3/4. The vortexes are attracted to a polar region of the attractive glass
bead.

1. Introduction
Nematic liquid crystal layers with negative anisotropy and homeotropic anchoring under the
influence of an external voltage can exhibit complex spatiotemporal dynamics textures [1]. The
critical voltage from which one observes this intriguing dynamics is usually denominated as the
Fréedericksz voltage [1, 2, 3]. Above the Fréederickz voltage the liquid crystal molecules change
their orientation. This phenomenon is a result of the imbalance between the intrinsic elastic
torque and electric torque resulting from the applied field. Indeed, the electric field forces the
molecules to reorient in orthogonal directions. In opposition, the elastic coupling tends to restore
the molecules in the electric field direction. Hence, the molecules can be oriented with different
direction with the similar angle with respect to the electric field, generating an overall highly
nonuniform texture.

To monitor this texture, one can consider crossed linear polarizers. Figure 1 shows the typical
Schlieren-like texture, where the dark brushes account for directions where the optical axis, to
be precise the averaged direction of the molecule in the plane of the cell, parallel or orthogonal to
either the polarizer or the analyzer. The dark brushes meet at the defects, umbilical defects [1, 2].
Around this defect, when one circles clockwise, the molecules rotate clockwise or anti-clockwise.
From the mathematical point of view, these defects correspond to topological singularities of
the averaged 2-D projection of the molecules onto the plane of the cell, which usually are
named vortexes [4, 5]. Defects with molecules rotating in clockwise (anti-clockwise) sense are
termed positive (negative) charge vortexes. Figure 1 depicts the umbilical defects with different
topological charge. Indeed, the the spatiotemporal dynamics of the texture is governed by the
dynamics of the vortexes. In the last decades the vortex dynamics have been study theoretical
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and experimentally in details [4, 5, 6, 7]. The vortex dynamics are characterized by attraction
(repulsion) between opposite (equal) charged vortexes. When the vortexes with opposite charge
collide, they are annihilate and disappear [4, 6, 8]. An unified theory of these defects is based on
the Ginzburg-Landau equation with real coefficients [4, 5, 9]. Based on this description, one can
show that the pair interaction law of vortex is governed by a force, inversely proportional to the
distance between the vortexes at a dominant order. A thorough study of the vortex interaction
is performed in Ref. [8].

150μm

Figure 1. Gas of defects obtained from a biased uniform homeotropically aligned
nematic liquid crystal layer. The dashed circumferences account for opposite topological
charges. The optical micrograph is obtained using an Olympus BX51 microscope with
crossed linear polarizers.

To study experimentally the umbilical defects dynamics, one can consider a nematic liquid
crystal layer with negative anisotropy dielectric constant and homeotropic anchoring. To keep
the thickness of the cell and avoid cell plates buckling, often one can use randomly distributed
glass spheres between cell plates. These spheres are mono-disperse and have approximately the
same diameter as the thickness of cell. It could be expected that the presence of glass beads
does not affect the vortex dynamics. However, recently it has been shown that these glass beads
change the average defects dynamics [10].

In this manuscript, the vortex-glass bead interaction is experimentally characterized. The
glass bead have been found to be attractive or non-attractive. We observed that not all glass
beads are attractive, at least for the sample and the regions of the sample so far observed, there
are more non-attractive beads than attractive ones. The attractive glass bead approximatively
pull the vortexes so that the distance decays with the square root of time. Hence, the glass
bead induces a force on the vortex proportional to an inverse power law of the distance between
them with exponent 3/4. This dynamics is not isotropic, that is, the vortexes are attracted and
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annihilated to a polar region of the sphere.

2. Experimental Setup
We have considered a cell, 5B100A150UT180, manufactured by Instec. The cell is filled by
capillarity with MLC− 6608 nematic liquid crystal that has negative anisotropy. The inner walls
of this cell are chemically treated so that the molecules of liquid crystal are orthogonally aligned
to the cell plates. This configuration is usually named homeotropic anchoring [1]. The glass
plates of the cell have 15 μm of separation between them. To keep the thickness of the inner gap
between the glass plates fixed, the cell is filled with monodisperse glass beads (clear/transparent
ceramics) which are randomly distributed in the sample. The sample of liquid crystal is subjected
to an external electric field in the vertical direction (z-axis), using a low frequency (100kHz)
sinusoidal voltage (9V) produced by function generator (Agilent 33521A) with a high voltage
amplifier (Tabor Electronics 9200).

Polarizer

QWP

Polarizer
QWP

Microscope 
Objective

CCD Camera

Glass Bead
Liquid Crystal

Glass
V

z

x
y

Glass Bead

Light

Figure 2. Sketch of the setup. The microscope, here represented by the objective, and
accommodates a circular polarizer, bottom quarter-wave plate (QWP) and polarizer,
and a circular analyzer, top polarizer and quarter-wave plate. The image of the cell is
recorded via a CCD camera. The inset sketches the glass bead and a configuration of
liquid crystal directors.

The imaging system used, see Figure 2, is a modified Motic 310 microscope equipped with a
circular polarizer (bottom linear polarizer and quarter-wave plate) and a circular analyzer (top
quarter-wave plate and polarizer). The light from the microscope condenser, that illuminate
the cell mounted on the microscope stage, is filtered with a band-pass filter since the QWPs are
designed to operate at λ = 532nm. Then, the texture of the sample is captured by a charge-
coupled device (CCD camera). The images obtained by the CCD camera are recorded and then
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analyzed with an image processing and analysis software Fiji (ImageJ)[12]. The position of the
glass beads and the vortexes are extracted for further analysis.

3. Results

Figure 3. Vortexes dynamics in inhomogeneous medium. Sequence of
temporal snapshots. Top left panel accounts for the liquid crystal layer
without voltage. The gray and green-marked gray spheres correspond to
glass beads. The green-marked spheres stand for attractive glass beads.
Once the electric voltage is applied, a large number of vortexes are observed.
Each vortex is identified as a black spot, which has a typical size of 5 μm,
as illustrated in the top right panel. Subsequently, the vortexes of opposite
charge are attracted to each other and annihilated, decreasing the density
of vortexes (cf. bottom left panel). In this regime of dilute gas of vortexes,
some of them are attracted by some glass beads. Finally, for a sufficiently
long time all the vortexes disappear, see bottom right panel.

When a low frequency voltage with a sufficiently large amplitude greater than the Freédericksz
voltage is applied to the nematic liquid crystal layer—which was previously described—the
creation of vortexes is observed. Due to the presence of the glass beads in the sample, this
process occurs in an inhomogeneous medium. The dynamics of vortexes is strongly affected by
the glass beads [10]. We observe that there are attractive glass beads. Indeed, the attractive
spheres pull the near vortexes. Figure 3 shows a typical observed vortex dynamics.

In the monitored region, there are 39 glass beads, only five of them are attractive. The
density of glass non-attractive beads and attractive ones are 27 beads/mm2 and 4 beads/mm2,
respectively. Hence, the proportion of attractive glass beads is 15%. Initially, a large number of
vortexes are created, then the vortexes with opposite topological charges are attracted to each
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Figure 4. Vortex glass bead interaction. From the left to the right is
presented a temporal sequence of snapshots. Initially, an attractive glass
bead pulls a vortex. When a vortex collides with the attractive glass bead,
it disappears (cf. right panel).

other and eventually annihilate and those with same charges are repel each other. As result
of the vortex interaction, the density of vortex decreases with time. In this regime of dilute
gas of vortexes, some of the defects are attracted by some glass beads. When a vortex collides
with the attractive glass bead, it disappears. Figure 4 illustrates the vortex and glass bead
interaction, showing a sequence of snapshots. To characterize this process we have considered
a region around an attractive bead embedded in the nematic liquid crystal layer, region that
is magnified 20 times. Notice that the vortex trajectory is not radial. In addition, the typical
time of collision between vortexes is of the order 2.33 s. On the other hand, the typical time of
collision between a vortex and glass bead is of the order of 13.0 s.

To illustrate the non attractive glass beads, we have identified a pair of glass beads, one
attractive and one unattractive (see Fig. 5). In this figure is illustrated how a sphere attracts
three vortexes. Note that also this attractive glass bead modifies the dynamics between vortexes.
The non attractive glass bead presumably weakly repels the vortexes, however experimentally we
have not been able to verify this property. The above assertion is based on the fact that vortexes
motion close to this glass bead have never been observed in our case. Even, the vortexes that
are observed close to this sphere move away. A detailed study of this repulsive phenomenon is in
progress. In the next section, we will present a detailed study of the vortex attraction towards
a glass bead.

Figure 5. Attractive and non-attractive glass beads. From the left to the
right is presented a temporal sequence of snapshots. The attractive sphere
pulls three vortex. The vortexes that which are pulled by the attractive
glass bead are highlighted with blue circular lines.
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3.1. Experimental analysis of vortex and glass bead interaction

a)

b)

c)

   0                            100                          200                         300

   0                         200                       400                       600

   0                         20                        40                        60

t [frames]

t [frames]

t [frames]

160

120

  80

  40

300

200

100

    0

    75

    65

   55

    45

    35

   
r(

t) 
[p

ix
el

s]
   

r(
t) 

[p
ix

el
s]

   
r(

t) 
[p

ix
el

s]

             40                     80                   120                   160
   r [pixels] 

 

  -0.4

 -0.6

   -0.8

      -1

             50                           150                           250                  

  
 -0.35

 

 -0.45

 
  

 -0.55

 

 -0.65

   r [pixels]

             35               45               55               65               75                    
   r [pixels]

-0.45

 -0.55

-0.65

-0.75

-0.85

   
r

   
r

   
r

A=2.1
b=678.8
c=0.76
R²=0.99

A=307.3
b=5.8
c=0.59
R²=0.99

A=1.8
b=109.7
c=0.81
R²=0.98

fit
exp

fit
exp

exp
fit

 p
ixe

ls
  f

ra
m

es

 [       
      ]

 p
ixe

ls
  f

ra
m

es

 [       
      ]

 p
ixe

ls
  f

ra
m

es

 [       
      ]

exp

exp

exp

Figure 6. Interaction dynamics of vortex and glass bead. Points
and continuous curves in the left panels, respectively, account for the
experimental evolution of the distance between vortex and the glass bead
as function of time for three experimental realizations and fitted curves
using formula (2) with their respective adjustment R-square. Points
and continuous curves in the right panels, respectively, stand for the
experimental evolution and fit curves using formula (1) of the force as
function of the vortex radial position (r) with respect to the attractive glass
bead, where 1 pixel =0.254 μm and 1 frame= 0.06 s.
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To characterize the interaction dynamics of vortex and glass bead, we have measured and
monitored the distance between them. This distance was obtained by processing the glass beads
and the vortexes positions, the latter determined from the analysis of a sequence of frames in
the acquired video (fixed frame rate) using Fiji (ImageJ).

To carry on with this process, first an attractive spheres was identified via testing.
Subsequently, an electric voltage is applied to the liquid crystal sample and the evolution of
the vortexes attracted by the glass bead is studied. Later on, the external electrical voltage is
turned off and the system is allowed to relax at equilibrium for a period of about 10 s. All this
procedure is repeated several times to achieve an adequate statistical description. Left panels
of figure 6 shows the experimental evolution of the distance between vortex and the glass bead
as function of time for different experimental realizations.

The measurements are represented by the points cloud. Clearly from these measurements,
one observes that the distance as a function of time has a well define evolution law. It is well-
known that the vortex-pair interaction is characterized by an over-damped force that goes as
the inverse of the distance between the vortexes [7]. Namely, the distance between opposite
vortexes, d(t), decreases as the square root of time, d(t) = κ

√
to − t where to accounts for

collision time and κ is an appropriated dimensional parameter. It is worthy to note that vortexes
are characterized by the induced molecular distortion around vortex position [1]. Likewise,
glass beads can generate molecular distortion in their own surrounding [11]. This molecular
distortion generates interaction with the vortexes. Therefore, one would expect the attractive
glass bead and the umbilical vortex interaction to be an over-damped force, f(r), which is
inversely proportional to a power of the distance, r(t), between vortex and glass bead, that is,

ṙ = f(r) = − γ

rn
, (1)

where γ is a dimension parameter and n is a real positive number. After straightforward
calculations, one gets

r(t) = A(b− t)c, (2)

where b accounts for collision time, A ≡ ((1 + n)γ)1/(1+n) is a dimensional parameter, and
c ≡ 1/(1 + n).

In order to determine A, b and c from the experimental data, we will use formula (2) as a fit
law. The continuous curves in left panels of figure 6 are the best fits of the experimental data
for different realization. Note that there is a quite fair agreement between the experimental
data and the fit law, formula (2). Note that the main source of fluctuations in the data is the
detection algorithm of the vortexes.

Table 1 summarizes the fit parameters, using formula (2), of the vortex-glass bead interaction
for 14 experimental realizations. We note that there is a trend between A and c. Indeed, when
the c coefficient increases the A coefficient decreases. The b coefficient is related with the collision
time of the vortex and the glass bead. The collision time is of the order of 13 seconds.

The above analyzes assume that the interaction is of a central nature. However, the
trajectories of the vortexes to the glass bead are not radial.

Figure 7 shows the trajectories of different vortexes that move towards to glass bead, and
the vortex glass bead interaction appears to be anisotropic. Experimentally, we observe that
the vortexes collide with the glass bead in certain well define region which we termed as south
pole. Probably, this anisotropic behavior is due to the fact that the deformation around the
glass bead is not cylindrically symmetric, which could generate a deformation equivalent to a
dipole. However, we have not detected vortexes that collide with the bead at its north pole. The
detailed structure of the interaction is an open problem, and its understanding is in progress.
Likewise, when the liquid crystal samples are not subjected to an external voltage and between
to circular crossed polarizers, we observe that attractive and non-attractive glass beads exhibit
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Table 1. Fit values, using formula (2), of the vortex-glass bead interaction for 14 experimental
realizations.

cases A b c R2

I 30.6 1027.0 0.26 0.98
II 22.2 29.2 0.29 0.99
III 16.5 74.1 0.35 0.99
IV 8.8 64.8 0.49 0.99
V 8.5 79.1 0.53 0.99
VI 7.4 127.8 0.54 0.99
VII 8.0 71.3 0.57 0.99
VIII 6.5 124.6 0.58 0.99
IX 5.8 307.3 0.59 0.99
X 5.0 108.7 0.63 0.99
XI 5.1 82.5 0.67 0.99
XII 2.1 678.8 0.76 0.99
XIII 1.8 109.7 0.81 0.99
XIV 0.4 369.6 0.91 0.99

Average 9.19 232.46 0.57 0.99

an asymmetrical and symmetric halo of light, respectively. The inset of Fig. 7 depicts the typical
observed halo of light.

15μm

attractive
    bead

Figure 7. Anisotropic interaction between vortex and glass bead. Different
colors account for different vortex trajectories. Inset accounts for the liquid
crystal sample without external voltage and between to circular crossed
polarizers. The attractive (glass bead in the middle) and non-attractive
glass beads (glass beads outside) exhibit an asymmetrical and symmetric
halo of light, respectively.
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3.2. Vortex-glass bead force
Although the interaction is not isotropic, as a first approximation it will be considered isotropic.
From the experimental data on the evolution of the distance between the vortex and the glass
bead, one can deduce an evolution law using formula (2), see left panels of Fig. 6. Similarly,
from the experimental data and fit curve one can reconstruct the interaction force between the
vortex and the glass bead.

The points and the continuous curves in right panels of figure (6) show, respectively, the
vortex speed (ṙ) as function of the distance (r) obtained from experimental data and theoretical
fit, formula (1) for different experimental realization. From figure 6, one can infer that as the
distance (r) increases, the interaction force is more abrupt. From this figure we can conclude
that the force of interaction as function of the distance between the vortex and the glass bead
is an inverse power law in good approximation.

To understand how the force changes as a function of time, from the fit expression of the
temporal evolution of the distance between vortex and glass bead, formula (2), we can rebuild
the interaction force as function of time,

f(t) = ṙ = −Ac (b− t)c−1 . (3)

Rewriting this expression f(t) = −C1 (b− t)(c−1), where C1 = cA. Considering the average
value c from table 1, 〈c〉 = 0.57, we obtain the average force of vortex-glass bead

〈f(t)〉 = − C1

(b− t)0.43
. (4)

Hence, the attractive glass bead spheres pull the vortexes so that the distance decays
approximately as the inverse of the square root of the time to collision. On the other hand,
the interaction force as a function of distance has the form given by formula (1), where average
exponent is 〈n〉 = 0.75. Therefore from these results, we conclude that when the distance
between vortex pair and the distance between vortex and glass sphere are the same, the
interaction between vortex and glass bead (≈ 1/r3/4) is greater than the vortex pair interaction
(≈ 1/r). However, we note that after the vortexes are created, the distance between vortex pair
is less than distance between vortex and glass bead, hence, the main interaction is between vortex
pair. Subsequently, when the remaining number of vortexes is reduced (diluted gas), they begin
to interact with the attractive glass beads. This scenario is the one observed experimentally (cf.
Fig. 3).

4. Conclusions and Remarks
Liquid crystal driven by external electric and magnetic fields exhibit an intricate network
topological defects. These types of defects have attracted the attention of physicists,
mathematicians, and engineers for their fundamental properties as macroscopic topological
particles and for their potential applications in particular in communications, image processing
and quantum computation [4, 5]. Here, we have reported an experimental characterization of
vortex-glass bead interaction in nematic liquid crystal layer. The glass bead spheres can be
classified in two type from the interaction point of view: attractive and non-attractive.

The attractive glass bead spheres pull the vortexes so that the distance decays as the square
root of the time to collision. The glass bead sphere induces an anisotropic force on the vortex.
This force can be well approximate by an inverse power law of the distance between vortex and
glass bead with exponent 3/4. The vortexes are attracted to a polar region of the attractive glass
bead. After the vortexes are created the main interaction is mediated by vortex pair interaction.
Subsequently, when a reduced number of vortexes is left (diluted limit), they begin to interact
with the attractive glass beads. This scenario is the one observed experimentally.
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Still unknown the origin of these attractive force between vortex and glass bead. Certainly,
the presence of glass bead generate deformation around itself. This deformation is responsible
of vortex-glass bead interaction, and its characterization is in progress. Likewise, in the present
study we have neglected the effect of distant vortexes (vortex pair interaction). In addition,
mean field theory is not valid as consequence of long range interaction between vortexes. Hence,
the presence of distant vortex can play a role. A systematic study of this issue is in progress.
The role of non-attractive glass beads has not been performed, they are probably of repulsive
type.
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Electrically driven nematic liquid crystals layers are ideal contexts for studying the interactions of local
topological defects, umbilical defects. In homogeneous samples the number of defects is expected to decrease
inversely proportional to time as a result of defect-pair interaction law, so-called coarsening process. Experi-
mentally, we characterize the coarsening dynamics in samples containing glass beads as spacers and show that
the inclusion of such imperfections changes the exponent of the coarsening law. Moreover, we demonstrate
that beads that are slightly deformed alter the surrounding molecular distribution and attract vortices of both
topological charges, thus, presenting a mainly quadrupolar behavior. Theoretically, based on a model of vortices
diluted in a dipolar medium, a 2

3 exponent is inferred, which is consistent with the experimental observations.

DOI: 10.1103/PhysRevE.101.062704

I. INTRODUCTION

Irregularities in nature are one of the primary resources of
the diversity of forms [1–6]. A paradigmatic example of these
are fingerprints, which allow us to uniquely identify human
beings. From a physical point of view, these correspond to
the local or global loss of translation or rotation symmetry.
Irregularities are commonly denominated defects. Depending
on the geometrical shape of these irregularities they can be
classified as localized or extended. Classical examples of
localized and extended defects in condensed matter are dis-
locations and grain boundaries [7]. Defects are a consequence
of the fact that systems out of equilibrium present the coexis-
tence of spatially extended states [2–6]. Hence, irregularities
connect different states. Among others, defects in rotationally
invariant two-dimensional systems, i.e., vortices, attract a
great deal of attention of the scientific community because
of their universal character and intriguing topological prop-
erties [8]. These defects correspond to the local confluence of
different orientational domains. Vortices have been observed
in different physical contexts such as fluids, superfluids, su-
perconductors, liquid crystals, fluidized anisotropic granular
matter, magnetic media, optical dielectrics, and cosmology, to
mention a few [8]. Mathematically, these solutions occur in
complex fields and can be identified as pointlike singularities
which locally break rotational symmetry. At a singular point,
the amplitude of the order parameter is zero due to its single
valuedness, and its phase changes continuously by an integer
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†marcel@dfi.uchile.cl
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multiple of 2π around the singularity. The winding number,
topological charge, is assigned by counting the number of
phase jump around the phase singularity [8]. While the sign
of the winding number is given by the sense of increment
(positive) or decrement (negative) of phase jump [8]. As a
convention, it is attributed to the positive (negative) value of
the topological charge for the clockwise (anticlockwise) of
the phase distribution. Indeed, vortices are topological defects
since these solutions are created or destroyed by pairs with
their respective opposite charge. Also, vortices can be induced
by an external topological forcing [9–11].

Nematic liquid crystals are a soft matter material made of
anisotropic rodlike shaped organic molecules [12–14], which
results in strongly anisotropy media. In the nematic phase,
the configuration of lowest energy is reached when all the
rodlike molecules are on average aligned along one privileged
direction. This privileged direction is usually imposed by the
anchoring conditions of the recipient containing the liquid
crystal [12–14]. Under the effect of sufficiently large external
electric or magnetic fields, the molecules can be reoriented
along or orthogonal to the direction of the applied field in
order to minimize the free energy [15]. This reorientation
generates the emergence of different domains and defects
that separate them. In particular, nematic liquid crystal cells
with negative anisotropic dielectric constant and homeotropic
anchoring are a natural physical context where dissipative vor-
tices and line defects can be observed and analyzed [12–14].
In this physical configuration, the dissipative vortices are
usually called umbilical defects [16]. Due to the fact that
these defects break the orientational order and by analogy
with disclinations in crystals of condensed matter, Frank
called these defects disclination lines [13,19]. These defects
have accompanied liquid crystals since their discovery in
1889 by Lehmann [17] who called these intriguing local-
ized structures as kernels. Likewise, they were observed in

2470-0045/2020/101(6)/062704(11) 062704-1 ©2020 American Physical Society
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5 μm

-

+

FIG. 1. Snapshot of umbilical defects of opposite charges ob-
served in a nematic liquid crystal layer within circular crossed
polarizers (CCP). Umbilical defect of positive (negative) charge has
circular (square) shape.

a similar experimental setup by Friedel, who denominated
these defects as noyaux [18]. Frank calculated the detailed
structure of these defects based on the elasticity of nematic
liquid crystals [19]. Despite the different designations given
to the observed vortices in this physical framework, none of
them were adopted by the liquid crystals community. There,
the most widely used names are nematic umbilical defects and
disclination lines. Henceforth, we will use the term umbilical
defects, even though it is intended that these two names can
be used indifferently.

The term umbilic defects was coined by Rapini [16] and
refers to the structure of the defect which corresponds to a
stringlike object in three dimensions. Umbilical defects in
nematic liquid crystal layers have long been studied (see
textbooks [12–14] and reference therein). Two types of sta-
ble defects with opposite charges are observed, which are
characterized by being attracted to (repelled by) the oppo-
site (identical) charge. Figure 1 shows the typical umbilical
defects observed in the microscope using circular crossed
polarizers. Note that such defects observed in liquid crystals
are structurally similar to those found in magnetic systems,
superfluids, superconductors, and Bose-Einstein condensates.
However, umbilical defects are dissipative states, that is, they
exhibit an entirely different dynamical evolution due to the
strongly dissipative nature of liquid crystals.

Due to the complexity of the elastic theory of liquid
crystals, the analytical study of the umbilical defects is in-
accessible [12,13]. Weak nonlinear analysis, valid close to
the orientational instability of the molecules, allows describ-
ing the dynamics of a nematic liquid crystal layer by the
Ginzburg-Landau equation with real coefficients [10,11,20–
23]. This amplitude equation has gathered a great interest
by describing several physical systems such as fluids, super-
fluids, superconductors, liquid crystals, magnetic media, and
optical cavities, to mention a few (see the textbook [8] and
reference therein). Indeed, this amplitude equation describes
the onset of a degenerate stationary instability with rotational
invariance [4] or a stripe pattern instability in anisotropic

systems [5,24]. Hence, the dynamics described by this model
is common to a wide class of physical systems. The Ginzburg-
Landau equation with real coefficients allows understanding
the emergence of different orientational domains, two types
of stable vortices with a positive and negative charge and their
respective dynamics. In this approach, both local defects are
indistinguishable in their amplitude magnitude. As a result of
the phase invariance of this amplitude equation, they account
for a continuous family of solutions, characterized by a phase
parameter [8]. Besides, one can characterize analytically the
vortex-pair interaction [8], which is in agreement with exper-
imental evidence [22].

In a first approximation, the vortex-pair interaction is de-
scribed by an overdamping system with force proportional
to the inverse of their distance [12,25]. Experimental ob-
servations provide asymptotically agreement with this ap-
proach [26–29]. In general, the law of the number of defects
as a function of time can be derived based on defect-pair
interaction law and self-similarity statements [30,31]. The
resulting self-similar behavior is well known as a coarsening
process, in analogy with domain growth in metallic alloy
phase separations [32] and in foam drainage [33]. Using the
vortices’ interaction law, one can show that the number of
defects in homogeneous nematic samples decreases inversely
proportional to time, which has been previously observed
[26,29,34]. Likewise, using phase XY model, one obtains the
same decay law for the vortices’ number [29].

To study the coarsening dynamics in inhomogeneous ne-
matic samples, we use cells in which the thickness of the
liquid crystal layer is fixed by monodispersed glass micro-
spheres spread randomly inside the sample. By characterizing
the creation and interaction process of umbilical defects, we
show that the presence of the beads alters the coarsening law.
Indeed, even though most of the glass beads do not affect
the vortices’ dynamics, those that are more geometrically de-
formed attract vortices of both topological charges, presenting
mainly a quadrupolar behavior, an interaction weaker than
the usual interaction between dipolar vortices. This effect
actively modifies the collective behavior of the vortex system
and alters the scaling law [35]. Depending on the different
disordered configurations of beads, the system exhibits dif-
ferent statistical temporal evolutions of the number of defects,
exhibiting power laws with different exponents. Theoretically,
based on a model of vortices diluted in a dipolar medium and
self-similarity, a coarsening law with exponent 2

3 is inferred.
This critical exponent shows a good agreement with the
experimental observations.

II. EXPERIMENTAL SETUP

To study the dynamics of umbilical defects, we consider
two different types of liquid crystal cells with approximately
the same thickness. The first cell, homogeneous sample, is
made of two indium tin oxide (ITO, transparent conductor)
coated glass slabs. The glass slabs are treated on the ITO
side to promote orthogonal alignment of the liquid crys-
tal molecules; this alignment is termed as homeotropic an-
choring [12–14]. The glass slabs are held together with a
thin sheet of polymer spacers such that, the treated faces
form a gap in which the liquid crystal is, then, infiltrated.
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FIG. 2. Schematic representation of the experimental setup of
a nematic liquid crystal layer with negative dielectric constant and
homeotropic anchoring under the influence of a vertical voltage.
The essential parts of the setup are emphasized. Crossed polarizers,
either linear or circular, are used in order to analyze the liquid
crystal texture. Two types of liquid crystal cells have been studied:
(i) homogeneous and (ii) inhomogeneous (with glass beads) sample.

The spacers fix the thickness of the gap, which is about
15 μm thin. The second cell, inhomogeneous sample, from
Instec Inc. (SB100A150uT180 liquid crystal cell), also has a
homeotropic alignment. The spacing gap is achieved by sput-
tering spacer beads made of microsphere clear and transparent
ceramics or glass onto the cell substrate before assembly [36].
The diameter of the microspheres fixes the cell gap, which
is about 15 μm for the chosen cell. Both cells were filled
by capillarity with MLC-6608 nematic liquid crystal (from
Merck), characterized by a negative dielectric anisotropy.
Figure 2 depicts the experimental setup. To achieve maximum
contrast, resolution, a collimated white light (Köhler type
illumination) from a microscope condenser is sent onto the
liquid crystal cell, the latter mounted on a translation stage.
The texture of the liquid crystal is imaged on a CCD camera
through a microscope objective and relay lenses.

From here on, we will denote by ẑ the normal to the glass
plates. Due to inherent elastic forces between the molecules,
in a certain temperature range, the absence of external stimu-
lus, to minimize the elastic free energy, the alignment in the
bulk of the liquid crystal layer will be uniform, thus parallel to
the ẑ direction in order to accommodate that of the boundaries.
Both cells are biased with a low-frequency sinusoidal voltage
(≈100 Hz) and are operated at room temperature where the
liquid crystal is in the nematic phase. The resulting electric
torque will tend to rotate the molecules away from the z
axis. Over a critical threshold voltage, called Fréedericksz
transition voltage [12–15], the molecules tilt away from their
vertical position. Due to the 2π azimuthal degeneracy in
possible directions of orientation, different domains, and um-
bilical defects will be generated in the nematic liquid crystal
layer where the orientation can not be topologically smoothed
out [12–14,16–19].

The cells contain liquid crystals that are intrinsically bire-
fringent in the nematic phase. Two crossed polarizers, the first
to polarize the illumination source and the second to analyze
the polarization of the light exiting the cell, are used to recover
the averaged two-dimensional texture of the liquid crystal
layer, where the average is along ẑ. Indeed, with a good ap-
proximation, the cell can be considered as a two-dimensional

(2D) uniaxial birefringent material with varying optical axis
aligned in the xy plane at an angle θ (x, y) with the x axis
and providing a phase retardation δ(x, y) = 2πL(ñe − no)/λ.
Here, L represents the thickness of the liquid crystal layer,
λ the operating wavelength of the illumination source, and
{no, ñe} the ordinary and, respectively, extraordinary refractive
index averaged over the longitudinal coordinate. The optical
axis can be viewed as the averaged azimuthal direction of
the molecules in the xy plane or, equivalently, their projec-
tion onto the xy plane. The averaged extraordinary index
ñe is related to n0, ne (the extraordinary refractive index of
fields polarized along the optical axis) and the tilt ψ of the
molecules with respect to the z axis by [12,14]

ñe =
∫ L

0

neno√
n2

e cos2 ψ + n2
o sin2 ψ

dz. (1)

To probe the evolution of the texture of the liquid crys-
talline layer, hence, the dynamics of the defects, we rely on
polarizing optical microscopy techniques based on crossed
linear polarizers (CLP). By using Jones matrix formalism
[37], the intensity is given by [37]

ICLP(x, y) = I0 sin2 δ(x, y)

2
sin2 2θ (x, y), (2)

where I0 is the maximum input intensity. Likewise, the crossed
circular polarizer (CCP) configuration is achieved when two
quarter wave plates are inserted in the previous configuration,
with the first wave plate at ±45◦ with respect to the axis of
the input polarizer, and the fast axis of the second wave plate
orthogonal to the first one. In this case, the intensity after the
cell depends as follow on the phase retardation [37]

ICCP(x, y) = I0 sin2 δ(x, y)

2
. (3)

In the experiment both imaging configurations, either CLP or
CCP, are used with the polarizing microscope, depending on
the defect features that we want to emphasize, either position
or charge.

In the Ginzburg-Landau theoretical framework, positive
and negative defects are indistinguishable, that is, they are
supposed to look the same for CLP and CCP. However, due to
the anisotropy of the elastic constants of liquid crystals, they
can be distinguished under appropriate conditions. Figure 1
shows two umbilics, one with positive and the other with
negative charge. The micrograph is taken with crossed circular
polarizers. Note that the defect with positive charge has a
circular shape, while the negatively charged umbilic has a
square shape [38]. These geometrical features allow us to
distinguish the sign of the topological charges. Note that these
geometric features persist under linear crossed polarizers [38].

III. RESULTS AND DISCUSSIONS

First, in order to figure out the coarsening dynamics of
the vortices in a homogeneous cell, we proceed as follows:
we start with establishing the vortex-pair interaction law and,
then, by using its self-similarity properties, we deduce the
coarsening law.

062704-3



VALESKA ZAMBRA et al. PHYSICAL REVIEW E 101, 062704 (2020)

A. Vortex-pair interaction law

Based on the Ginzburg-Landau equation with real coeffi-
cients that describes liquid crystal dissipative dynamics, the
fine analysis of the vortex interaction law is a daunting task
due to the logarithmic divergence of the energy associated
with each vortex and the vortex-pair interaction with the
size of the system [8,12]. In the case of finite size systems,
the vortex-pair interaction law can be approximated for long
distances by [8]

M ṙ = q

||r|| r̂, (4)

where r(t) is the vector that joins the positions between
vortices, ||r|| is the magnitude of the vector r, r̂ ≡ r/||r|| is
a unitary vector, q is the product of the topological charges
of interacting vortices (q = ±1), then it is positive (negative)
when both vortices have the same (different) charge, and M
stands for the vortex mobility which depends on the size of
the system, the properties of the liquid crystal, and the applied
voltage. When one considers the effect of the phase of one
vortex on the other, mobility depends logarithmically in ṙ [5].
However, this correction is weak [22] and can be neglected
when fine interaction between defects is not of concern and
only collective effects are of interest. Thus, the constant
mobility approximation is appropriate in the interpretation of
the experimental results [39]. Hence, the interaction between
vortices is equivalent to overdamped particles with a force
inversely proportional to their distance. Note that when the
vortex distance is small, of the order of the vortex core, the
previous model for dynamics is no longer valid. In this case,
vortices of opposite charge merge and disappear together.

In brief, the dynamics of interaction between vortices tend
to homogenize the deformations of molecular orientation in
order to minimize the free energy of the system. As we have
mentioned, experimental characterization of the vortex-pair
interaction provides a fair agreement with the previous results
[22,26,28,29].

B. Theoretical derivation of the coarsening law for a diluted gas
of vortices

In the context of dilute gases of n vortices in a homoge-
neous medium, the interaction between defects is governed
by

M ṙi =
n∑

j �=i

qi j

ri j
r̂i j, i = {1, 2, . . . , n} (5)

where ri j ≡ ||ri − r j || is the distance between the ith and
jth vortex, r̂i j in the unitary vector directed from jth to ith
vortex, and qi j is the, respective, product of the topological
charges of vortices. Hence, the dynamics of a gas of n vortices
corresponds to an overdamped n-body problem. Note that the
above set of equations is invariant under the self-similarity
transformation

ri → λri,

t → λ2t . (6)

If one dilates or expands time and space, using the above scal-
ing, then, the set of Eqs. (5) are invariant. We can introduce

N (t ), the number of vortices at time t , which can be estimated
as

N (t ) = A

〈r〉2
, (7)

where A is the area of the sample under study, and 〈r〉 is the
average distance between vortices. Because the set of Eqs. (5)
governs the vortices dynamics, the average distance 〈r〉 and
N (t ) are determined by the vortices’ evolution. Then, 〈r〉
and N (t ) should also be self-similar with transformation (6).
Hence, N (λ2t ) = A/λ2〈r〉2. From the previous equality, one
infers that the only possibility is that the number of vortices
scales as

N (t ) = β

t
, (8)

with β a dimensional constant. Indeed, the number of defects
decreases inversely proportional to time, so-called coarsening
law. Experimentally, this law was, indeed, observed and vali-
dated in nematic liquid crystal samples [29,34].

C. Vortex creation and annihilation in a homogeneous liquid
crystal cell: Experimental observations

To investigate the creation and annihilation process of
vortices, we have conducted several experimental analyses on
the vortex gas dynamics. We apply a large enough voltage to
the liquid crystal layer in-between crossed polarizers, which
spontaneously generates hundreds of umbilical defects in
random positions as a result of thermal fluctuations and in-
herent inhomogeneities in the system. Initially, the emergence
of vortices is preceded by the appearance of domain walls
[cf. Fig. 3(b)], which are created by thermal fluctuations.
These domain walls are unstable, generating the emergence
of topological defects of charges ± 1

2 , which move along the
domain walls. These topological defects are characterized by
the joint of two black brushes [39]. Figure 3(c) illustrates
the different observed local and global defects. These defects
with half topological charge are characterized by the joint of
two arms and a domain wall. Collisions of these defects with
the same topological charge generate umbilical defects and
with different charges cancel each other out. After this rapid
transient, a dilute vortex gas is established in the system [cf.
Fig. 3(d)]. Thanks to the crossed linear polarizers, the position
of the umbilical defects is recognized by the interception of
four black curves [12]. Subsequently, the defects exhibit a dy-
namic of attraction and repulsion following the interaction law
(5). Figure 3 shows a temporal sequence of snapshots, which
emphasize the natural evolution of the defect gas. From the
temporal sequences and through an appropriate recognition
software (open source Java image processing program Fiji),
we can determine the number of vortices and their respective
positions. Thus, we acquire the evolution of the number of
vortices N (t ) as a function of time. Figure 3(f) summarizes
the temporal evolution of N (t ) starting from the switch-on
of the driving voltage V0. From this temporal evolution, one
can separate the process in two stages: one associated with
the creation of vortices, growth stage, and, later, a second
regime characterized by the process of decay of the number
of vortices, coarsening stage.
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FIG. 3. Creation and annihilation dynamics of umbilical defects
in a homogeneous nematic liquid crystal layer under two crossed lin-
ear polarizers. The temporal sequence of snapshots from left to right
and top to bottom (a)–(e) corresponds to driving the cell from zero
voltage to a voltage V0 beyond the Fréedericksz transition threshold.
The bottom numbers in each panel account for the respective frame.
The temporal increment of each frame corresponds to 400 μs. The
interception of four black brushes gives the position of umbilical
defects with topological charge ±1. (a) Liquid crystal cell without
applied voltage, showing the orientation, respectively, of the polar-
izer (P) and analyzer (A). (b) Emergence of orientational domains
after 800 μs the voltage is switched to V0 = 15 Vrms. (c) Creation
of vortices through reorganization of domains; circumferences and
respective numbers account for the different topological charge of
the defects. The interception of two black brushes gives the position
of the defects with topological charge ± 1

2 . (d) Diluted gas of vortices.
(e) Vortex pair and (f) temporal evolution of the number of vortices
N (t ).

D. Experimental determination of the coarsenin lawg
in homogeneous cells

Based on the Ginzburg-Landau model, one expects the
number of defects to decay with a power law. Figure 4 depicts
the typical evolution of the number of umbilical defects as
a function of time for a nematic liquid crystal layer driven
to V0 = 70 V with a frequency of 100 Hz. To compute and
monitor the number of vortices in given time we have used an
image processing package. From this plot, one infers that the

FIG. 4. Coarsening dynamics in a homogeneous cell. Number
of umbilical defects as a function of time. The solid black and
dashed curves are, respectively, the experimental evolution of N (t )
and the fitting curve Nf (t ) = βt−α + N∞ with α = 0.981 ± 0.001,
β = 5.7 × 103 ± 2 × 102, and N∞ = 70 ± 2.
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FIG. 5. Number of umbilical defects as a function of time.
Coarsening process of umbilical defects in a homogeneous cell with
different driven voltages (a) V0 = 60 V, (b) V0 = 80 V, (d) V0 =
100 V, using the same frequency 100 Hz. The black and red curves
account for the experimental data and fitting curve formula (9),
respectively. Critical fitting exponent α (d), asymptotic number of
vortices N∞ (d), and β (e) as function of applied voltage.

number of vortices decays as a function of time with a power
law. To determine the exponent of this coarsening process, we
have considered the following fitting function:

Nf (t ) = βt−α + N∞, (9)

where {β, α, N∞} are fitting parameters, which account for
the features of the liquid crystal and the cell under study.
N∞ stands for the imperfections of the system, which causes
the vortices to become trapped in given positions, and the
inaccuracy of the recognition method. Experimentally, we
found that in the homogeneous samples under study the
exponent α = 0.981 provides a quite good agreement with the
simplified description (5). Hence, this type of particle-type
approach to the vortex dynamics in a homogeneous liquid
crystal layer, ignoring the process of collision and nonlinear
effect of mobility, gives a fair description of the average
evolution of the vortices.

To study carefully the coarsening process, we have con-
ducted a series of experiments with different voltages and the
same frequency (100 Hz). Similar behaviors for the evolution
of the vortex number are observed. Figure 5 summarizes the
coarsening process for different voltages. From this analysis,
we conclude that for different voltages the system exhibits
a coarsening behavior. In particular, the critical exponent
is close to α ∼ 1, which is consistent with the theory of
the Ginzburg-Landau amplitude equation with real coeffi-
cients. Hence, this simplified theory of liquid crystal dynamics
[21,23] appropriately accounts for the process of coarsening
in a homogeneous nematic liquid crystal sample. In the next
section, we will analyze the effect of inhomogeneities in the
coarsening dynamics by using the inclusion of glass beads in
the sample.

E. Experimental determination of the coarsening law
in inhomogeneous liquid crystal cells

To investigate the interaction of the umbilics in the pres-
ence of randomly distributed inclusions in disordered liq-
uid crystal media, we have conducted several experimental
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FIG. 6. Umbilical defect annihilation dynamics in an inhomoge-
neous liquid crystal cell with glass beads and in-between two linear
crossed polarizers. Temporal sequence of snapshots from left to right
and top to bottom depicts the vortex evolution starting from the
switch-on of the driving voltage. The temporal increment of each
frame corresponds to 0.33 s. The position of the umbilical defects
is given by the interception of four black brushes. The white dashed
circumference accounts for the position of a glass bead.

analyses of the vortex gas dynamics in a liquid crystal sam-
ple with glass beads. The inhomogeneous cell is observed
in-between two crossed polarizers and by applying a large
enough, beyond the Fréedericksz threshold, voltage. The glass
beads are microspheres with a monodisperse distribution and
a size of 15 μm. Figure 6(a) shows the liquid crystal cell
without having an applied voltage. Because the anchoring is
of the homeotropic type, under crossed polarizers the sample
should appear as completely dark. However, the presence
of glass beads distorts the configuration of the molecules in
their surroundings. Hence, glass beads are detected by this
molecular deformation reorientation, which changes the light
polarization locally around each glass bead [see Fig. 6(a)].
As we mentioned earlier, the beads are randomly distributed.
When a voltage is applied, initially, the emergence of domains
is observed [see Fig. 6(b)], but now the process is affected
by the presence of glass beads [35]. Later, the system is
accompanied by the emergence of a gas of umbilical de-
fects, as it is depicted in Fig. 6(c). Subsequently, the defect
interaction dominates the dynamics, which is characterized
by the constant decrease in the number of defects. Figure 6
shows a temporal sequence of snapshots depicting the vortex
interaction in the cell. The natural question that emerges is,
therefore, whether the coarsening dynamics is persistent under
the inclusion of inhomogeneities in random positions.

To answer this question, we analyze the images with the
particle tracking process, which allows us to determine the

TABLE I. Results of the measured bead density, computed fitting
exponents, and entropy over an area of approximately 1.394 mm2 on
different observation zones.

Zone Density (mm2) α β N∞ Entropy

I 13.630 0.60 604.2 12.85 0.0210
II 17.217 0.88 1782.0 20.33 0.0136
III 20.803 0.25 246.4 22.44 0.00767
IV 21.521 0.71 1285.0 17.87 0.0091
V 23.673 0.70 1404.0 25.74 0.00772
VI 27.977 0.82 162.7 18.09 0.0057

number of vortices and their respective positions. Figures 7(c)
and 7(f) show the temporal evolution of the number of um-
bilical defects as a function of time for different zones of the
liquid crystal sample. Each zone has an area of 1.43 mm2 (cf.
Fig. 7). In both graphs, we observe that the system exhibits a
coarsening process with a power law, however, with different
exponents. These power laws are obtained by realizing several
experimental realizations (10 repetitions were performed for
each parameter to obtain the characteristic exponents). Hence,
the observed coarsening dynamics can be considered as a
persistent phenomenon [35]. Nevertheless, depending on the
distribution of the glass beads, we observe different power
laws (cf. Fig. 7). Notice that the exponent deviates from
the exponent determined by the law derived from the theory
of the Ginzburg-Landau model for a homogeneous medium.
Therefore, we can conclude that the presence, density, and
distribution of glass beads affect the coarsening dynamics.
The main effect, as we will see later, is produced by a small
amount of deformed beads that interact and attract vortices.

To characterize the clustering and distribution of the glass
beads, we have computed the Voronoi tessellation [40] of the
glass beads in different observed zones [cf. Figs. 7(a) and
7(d)]. The respective histogram of the bead mutual distance
is also computed on each observation zone [cf. Figs. 7(b)
and 7(e)]. From these diagrams, we can measure the density
of the beads and we obtain for zones I and III, respectively,
13.630 and 20.803 beads per mm2. However, the number of
attractive beads in each zone was not characterized. Zone III
is more ordered than zone I since its histogram of the mutual
distance is closer to a Rayleigh distribution around a length
[cf. Fig. 7(b)] while the other is closer to a flat distribution
without a feature length [see Fig. 7(e)]. Analogously, from
this distribution we can compute the Shannon or information
entropy Se and obtain for each zone, respectively, Se(III) =
0.00767 and Se(I) = 0.021. Therefore, the evolution of the
number of defects as a function of time changes depending
on the different configurations of the glass beads.

To measure the exponents of the coarsening laws, we have
considered the following fitting curve N (t ) = βt−α + N∞.
Table I summarizes our results for different observation zones
of the liquid crystal layer under study. Different coarsening
laws are obtained over different zones of the sample. However,
from this table, we are not able to establish a correlation
between the density of vortices, Shannon entropy, and spatial
distributions with their coarsening exponents found experi-
mentally. This is because of not only the spatial distribution of
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FIG. 7. Coarsening process of umbilical defects in an inhomogeneous sample analyzed over different observation zones, I and III. (a),
(d) Voronoi diagram of glass beads in the observed zone, I and III, respectively. (b), (e) Histogram of the mutual distance of the glass beads.
The solid curve is a fitting curve using a Rayleigh distribution. (c), (f) Corresponding scaling curves of the number of defects vs normalized
time. Black points stand for the experimental data, dashed lines correspond to fitting curves of the form N (t ) = β/tα + N∞ with α = 0.60 and
0.25, respectively.

the glass beads matters but also how many of the glass beads
are attractive or not. The effects due to the shape of the glass
beads, and consequent vortex attraction, will be highlighted in
the next section.

F. Defect dynamics in presence of a glass bead

The presence of the spherical spacers causes local defor-
mation of the nematic director. Depending on their structure,
the spacers can behave as localized potentials on the generated
defects. Figure 8(a) shows a temporal sequence of snapshots
of the vortex dynamics in the presence of a glass bead. Here,
it is depicted the evolution of the umbilical defects under the
influence of the bead. Figure 8(b) depicts the trajectories of
the vortices. The dashed points (red) emphasize the positions
of the vortices in different moments. In the temporal sequence,
it is observed the temporal evolution of a pair of vortices
with a positive and negative charge [cf. Fig. 8(b)]. Unex-
pectedly, both defects are attracted by the glass bead. From
the trajectories, it appears clear that the vortex interaction is
stronger than the vortex-bead interaction. Indeed, the vortices
move close to the straight line that joins both vortices (see
the dashed line in Fig. 8). However, close to the glass bead
the trajectories are deflected and reoriented toward the center
of the spacer. Finally, both vortices collide with the spacer
and disappear. Hence, the observations show that the presence
of inhomogeneities strongly affects the vortex dynamics and
interactions.

To figure out the interaction between the vortices and the
glass bead, we have repeated the experiment many times
(∼50 experimental realizations) and monitored the collision
of vortices, both with positive and negative charges, with the
glass bead. This analysis is achieved by using circular crossed
polarizers, which allows us distinguishing both topological

charges with more precision. Figure 9 summarizes the differ-
ent collision points between the vortices and the bead. The
red (blue) points account for the collision points of positive

15 μm

(a)

(b)

5 20 60

100 130 160

FIG. 8. Interaction between a glass bead and umbilical defects
observed under linear crossed polarizers. (a) Sequences of temporal
snapshots. The bottom numbers in each panel account for the respec-
tive frame. The temporal increment of each frame corresponds to
0.07 s. Umbilical defects of a positive (circular shape) and negative
(square shape) charge under circular crossed polarizers are recog-
nized and monitored. The dashed circles account for the umbilical
defects. (b) Trajectory of the vortices: the dashed points (red) indicate
the trajectory of defects, the dashed straight line accounts for the
initial distance between defects.
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FIG. 9. Quadrupolar structure generated by a glass bead in the
liquid crystal medium. Experimental characterization of the collision
points of the umbilical defects for different experimental realizations.
In most of the realizations only one defect collides with the bead. The
dark (blue) and light (red) points account for the collision points of
positive, respectively, negative vortices. The color areas highlight the
different collision regions of the bead.

(negative) vortices. From this figure, it is possible to infer
that the glass bead has a quadrupolar structure. Namely, the
vortices of a given charge prefer to collide in certain parts
of the bead. Note that the observed poles are not symmetric,
which is a manifestation that dipolar terms are also relevant in
the interactions. Experimentally, the vortex-bead interaction
is weaker than the interaction between the umbilical defects.
It is well known that glass beads without surface treatment
generate homeotropic anchoring at their boundaries, that is,
the liquid crystal molecules tend to be oriented normal to
the surface of the glass bead [36,41]. In addition, due to the
fact that the glass bead is in contact with the glass plates
of the sample, one expects a Saturn-ring-like defect loop to
appear around each glass inclusion [36,41]. Figure 10 shows
a schematic representation of the director field lines induced
by a perfect spherical glass bead and a slightly deformed
bead. When the glass bead is perfectly spherical, it generates
a defect in the center, which is canceled with the equivalent
charge caused by the Saturn ring. In Fig. 10, the induced
charge is represented by a central point (blue) and the Saturn
ring by a closed curve (green). Therefore, perfectly spherical
glass beads cause the net charge to cancel out, that is, the

x
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y

Perfect glass bead

x

z

x

y

Imperfect glass bead

Saturn Ring Glass beadEquivalent charge

FIG. 10. Schematic representation of the director field lines in-
duced by a perfect spherical bead (left panel) and a slightly deformed
bead (right panel). Upper and lower panels show a side and top view
of the correspondingly induced defects.

15 μm

Attractive

(a) V=0.0 Vpp

(b) V=9.0 Vpp

FIG. 11. Optical micrograph of active and passive glass beads.
Snapshots of a liquid crystal sample within linear crossed polarizers
without (top panel) and with (bottom panel) voltage. The lateral
beads are passive, while the central bead is active.

equivalent charge of the Saturn ring coincides with the charge
induced in the center. These glass beads are characterized
by not attracting vortices so that we name them as passive
beads. In contrast, deformed glass beads generate equivalent
multipolar charges (dipoles, quadrupole, and so forth), which
are neutral but affect the dynamics of their surroundings.
In particular, these glass beads with multipolar charges are
characterized by attracting and annihilating vortices and we
name them active beads. Experimentally, these glass beads
with multipolar charges can be detected since when no voltage
is applied to the sample under cross polarizers, the perfect
and imperfect glass beads generate perfect rings or deformed
curves of light, respectively. Figure 11 shows three glass
beads with and without voltage, in which one can identify the
deformed glass bead (central). Only this central glass bead
attracts vortices.

In brief, spherical glass beads do not attract or repel umbil-
ical defects. On the other hand, when the glass beads are not
perfect, the equivalent charge of the glass bead and that of the
Saturn ring do not coincide, creating a multipolar charge for
the interaction with the defects. Hence, the interaction of an
imperfect glass bead and umbilical defect can be modeled by

M ṙ = q

[ �d
||r||2 − �d · r

||r||4 r

]
+ q

[ �l2

||r||4 r + 2�l (�l · r)

||r||4
]
, (10)

where r(t) is the vector that joins the position between the
glass bead and the vortex, ||r|| is the magnitude of the vector
r, �d is a vector that characterizes the dipolar interaction, q is
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FIG. 12. Schematic representation of the vortex-pair interaction
in the presence of glass beads. The index k accounts for the kth glass
bead. ri is the vector position of ith vortex. lk is the vector position
of the kth glass bead. The inset is an experimental snapshot obtained
with the sample in-between crossed linear polarizers.

the topological charge of the interacting vortex, �l is a vector
that characterizes the quadrupolar interaction, and M stands
for the vortex mobility. Note that the vectors �l and �d are not
necessary parallels. On the right-hand side of Eq. (10), the
first and second parentheses terms account, respectively, for
the dipolar and quadrupolar interactions. Note that the dipolar
and quadrupole interactions decay with the square and the
cubic inverse of the distance between the vortices and the
beads, respectively. From the experimental observations, we
deduce that the quadrupole interaction is more dominant in
the interaction ( �d  �l , see Fig. 9). It is important to note that
most of the glass beads do not attract vortices. However, the
strength and direction parameters change each bead. Then, a
detailed characterization of the vortex dynamics in a medium
with spacers is a complex problem.

IV. SCREENING EFFECT AND COARSENING

The experimental observations show that some glass beads
exert a force, either attractive or repulsive, on the vortices.
Such a force is a power of the inverse of the distance be-
tween the bead and the vortices and has a different strength
depending on the particular active bead considered. In order
to shed light on the statistical vortex dynamics, let us consider
two vortices in the presence of N ′ glass beads, as depicted
in Fig. 12. For the sake of simplicity, we consider that glass
beads are dominantly dipolar, dipolar medium.

Furthermore, we will use a similar strategy to derive third
Kepler’s law in the solar system, which is based on the fact
that the n-body interaction (not self-similar) is approximated
by the two-body interaction (self-similar), from which the
third Kepler’s law is inferred [42]. Let us consider a vortex
gas in the presence of randomly distributed beads, which is
described by

M ṙi =
N−1∑

j

qi j

||ri − rj||2 (ri − rj)

+
N ′∑

k=1

[
Qik �dk

||ri− lk||2 − Qik[(ri− lk ) · �dk]

||ri− lk||4 (ri− lk )

]
, (11)

where ri stands for the position vector of ith vortex (cf.
Fig. 12), M is the vortex mobility, qi j is the product of the
topological charges of the ith and jth vortices, Qik is the
intensity of the interaction between the vortex, N and N ′
account for the number of vortices and beads and the kth bead,
lk and �dk are the vector position and the dipolar vector of kth
glass bead, respectively.

Let us consider the limit of diluted vortices, that is, the
distance between vortices r ≈ ||ri − rj|| is much greater than
the distance between a vortex and glass beads surrounding
it (||ri − rj| � ||ri − lk||). Hence, the nearby glass beads
dominate the dynamics of vortices, that is,

M ṙi ≈
N ′∑

k=1

Qik

||ri − lk||2
�dk +

N ′∑
k=1

Qik (ri − lk ) · �dk

||ri − lk||4 (ri − lk ).

(12)
In this limit, the dynamics of the vortices is not self-similar,
however, when performing the transformation of spatial and
temporal dilation

ri → λri,

t → λ3t . (13)

Eq. (15) takes the form

M ṙi ≈
N ′∑

k=1

Qik �dk

||ri − lk
λ
||2 +

N ′∑
k=1

Qik (ri − lk
λ

) · �dk

||ri − lk
λ
||4

(
ri − lk

λ

)
.

(14)
The coarsening process is governed for large times and dis-
tances; therefore, one can consider λ to be large (λ � 1).
Then, the above equation is rewritten

M ṙi ≈
N ′∑

k=1

Qik �dk

||ri||2 +
N ′∑

k=1

Qik
ri · �dk

||ri||4 ri + O

(
1

λ

)
, (15)

so that, if one dilates space and time on large scales, the
equivalent set of Eqs. (5) are invariant at the dominant order.
Furthermore, the vortex gas in such a disordered medium
satisfies an effective dynamics governed by the previous in-
teraction law. As we have mentioned before, the number of
vortices at time t can be expressed as N (t ) = A/〈r〉2, where
A is the area of the sample under study and 〈r〉 is the average
distance between vortices. Then, 〈r〉 and N (t ) should also be
self-similar with the transformation (13). Hence, N (λ3t ) =
A/λ2〈r〉2, and we obtain

N (t ) = β0

t2/3
, (16)

where β0 is constant. From this scaling law we obtain that
the number of defects decreases with a α = − 2

3 power. Ex-
perimentally, several zones show exponents close to − 2

3 (see
Table I). Note that all the investigated zones, except zone III,
show an exponent within 20% error from the − 2

3 theoretical
prediction. However, the dynamics of submerged vortices in
an environment full of beads with various imperfections is
much more complicated, as illustrated by the experimental
results, and a full agreement over all the investigated zones
could not be reached.
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V. CONCLUSIONS AND REMARKS

Far from equilibrium systems with the coexistence of
equilibria exhibit rich and complex defect dynamics in order
to reach a more stable configuration. This dynamics of defects
generates a rich variety of spatial textures. Defects in rotation-
ally invariant two-dimensional systems attract a great deal of
attention because of their universal character and intriguing
topological properties. Nematic liquid crystals layer with
negative dielectric constant and homeotropic anchoring under
the influence of a voltage are the ideal context for studying
the interaction of gas of topological vortices with opposite
topological charges. One expects the dynamics of the vortices
being characterized by a decreasing number in time, which
follows a power law with critical exponent α = 1 because
the dominant interaction between the vortices is self-similar.
Unexpectedly, we observe that this dynamics is persistent in
thin cells of nematic liquid crystals that contain glass beads
as spacers. However, the laws of the exponential decay in
the number of vortices depend strongly on the distribution
of the glass beads and their imperfections. Experimentally,
we have characterized such a dynamics and demonstrated
that the deformed glass beads attract vortices of opposite
topological charges, presenting mainly a quadrupolar behav-
ior. Theoretically, we have derived the modified power law

for inhomogeneous samples, leading to α = 2
3 exponent of

the power law. The agreement with the exponents derived
from the experimental observations is satisfactory over several
zones of the analyzed samples. However, a complete agree-
ment could not be reached because of the diversity of the
beads and the consequent complexity of the induced vortex
dynamics.

Liquid crystal cells with spacers are fundamental in the de-
velopment of displays of various electronic devices. The influ-
ence that the disperse beads, often used as spacers in the cell,
can exert on the molecular reorientation is usually ignored.
Our observations show that the inhomogeneities induced by
the beads can play a relevant role in the dynamics of defects.
Therefore, the study of the interaction between spacers and
the surrounding liquid crystal can reveal important features of
molecular behavior and could be taken into account for further
improvements of liquid crystal devices.
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Abstract. Matter under different equilibrium conditions of pressure and temperature exhibits
different states such as solid, liquid, gas, and plasma. Exotic states of matter, such as Bose-
Einstein condensates, superfluidity, chiral magnets, superconductivity, and liquid crystalline blue
phases are observed in thermodynamic equilibrium. Rather than being a result of an aggregation of
matter, their emergence is due to a change of a topological state of the system. Here we investigate
topological states of matter in a system with injection and dissipation of energy. In an experiment
involving a liquid crystal cell under the influence of a low-frequency oscillatory electric field, we
observe a transition from non-vortex state to a state in which vortices persist. Depending on the
period and the type of the forcing, the vortices self-organise forming square lattices, glassy states,
and disordered vortex structures. Based on a stochastic amplitude equation, we recognise the
origin of the transition as the balance between stochastic creation and deterministic annihilation of
vortices. Our results show that the matter maintained out of equilibrium by means of the temporal
modulation of parameters can exhibit exotic states.
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Figure 1. Liquid crystal cell under a temporarily modulated potential exhibits creation and self-organisation of vortices. (a)
Schematic representation of the experimental setup. Liquid crystal cell (NLC) with homeotropic anchoring is illuminated by
white light between two crossed polarisers (P1 and P2). The horizontal snapshot shows a pair of vortices with opposite charges.
(b) The temporal sequence of snapshots in the region of self-organised vortices, at frequency 0.335 Hz and voltage amplitude
13.5 Vpp. From experimental snapshots, both figures were created using Inkscape 1.0.

I. INTRODUCTION7

Solid, liquid, gas, and plasma are different states of the matter[1] distinguished from each other by mechanical,8

optical, and other properties. Other examples of states of aggregation of matter include glassy and liquid crystal9

states. Still different are exotic states such as Bose-Einstein condensates [2], superfluidity [3], superconductivity [6],10

chiral magnets [4], and liquid crystalline blue phases [5] that are a topological state rather than an aggregation of11

matter. The topological transitions of the matter were discovered at the beginning of the 70s by Berezinskii [7] and12

Kosterlitz and Thouless [8], who showed that a low dimensional system described by a physical vector order parameter13

in thermodynamic equilibrium undergoes a transition from a homogeneous state without vorticity to a state in which14

vorticity persists. In the homogeneous state all vectors are unidirectionally ordered but under suitable conditions15

they realign forming regions where both their orientations and magnitudes vary. Because of topological constraints at16

some isolated points called vortices [9] the vector field vanishes and the vector phase becomes undefined. The winding17

number (topological charge) is introduced to characterise the physical vector field around a vortex [9]. This number is18

an integer representing the total number of times that the vector field winds around the origin while varying along a19

closed, counterclockwise oriented curve around the singular point. Topological stability of the system implies that the20

total winding number of the system must be preserved which means that the vortices are created or annihilated by21

pairs of opposite topological charges. Vortices creations and and annihilation process are, respectively, due to thermal22

fluctuations and free energy minimisation [10, 11], hence at a critical temperature at which they are balanced the23

systems undergoes a topological transition [7, 8]. Exotic states of matter such as Bose-Einstein, superconductivity,24

chiral magnets, and superfluidity are usually observed at low temperatures, however liquid crystalline blue phases25

have been observed at room temperature [12].26

An ideal material to investigate vortex dynamics are liquid crystals in thin films [5, 13]. One of the most stud-27

ied vortices are the so-called umbilical defects or disclination lines [5, 13, 14]. In thermodynamic equilibrium and28

homogeneous media, the vortices tend to annihilate by pairs to minimise the free energy of the system. The above29

dynamics can be modified by means of incorporation of inhomogeneities, which can attract and trap umbilical de-30

fects [15, 16]. Properly distributed inhomogeneities may permit the formation of topology lattice [15]. Likewise,31

considering inhomogeneous anchoring allows attracting and trapping umbilical defects and creating vortex lattices32

[17, 18]. A similar effect can be achieved by the introduction of inhomogeneous electrodes [19–22]. The combined33

use of magnets and uniform electric field can induce umbilical defects and lattices [23]. The vortex lattices describe34

above are induced by the combination of the forcing and inhomogeneities. However, the emergence of spontaneous35
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topological lattices has also been achieved by means of thermal gradients [24] or by doping with ionic impurity [20],36

which induces charge motions. This is known as the Carr-Helfrichh mechanism [5]. This article aims to study exotic37

states of matter with injection and dissipation of energy. This type of physical context usually is denominated as out38

of equilibrium systems [25, 26]. Based on an experiment involving a nematic liquid crystal cell under the influence39

of a low-frequency oscillatory electric field, we observe a transition from non-vortex state to a state in which vortices40

persist. Depending on the frequency and the type of the forcing, the vortices self-organise forming square lattices,41

glassy states, and disordered vortex structures. Theoretically, a stochastic amplitude equation allows us to reveal the42

origin of the transition in terms of the balance between stochastic creation and deterministic annihilation of vortices.43

II. RESULTS44

Experimental observations of a topological transition in a driven liquid crystal cell. Liquid crystals45

are composed of rod-like organic molecules [5, 13, 14] which, as a result of intermolecular interaction, for specific46

temperature ranges are arranged to have a similar molecular orientation. This results in a strong anisotropy of all47

their physical properties, especially optical characteristics [27]. The configuration of lowest energy is reached when48

all rod-like molecules are aligned along one averaged direction, orientational order without a positional one, denoted49

by the director vector n [5, 13, 27]. This state is usually called the nematic phase. In the case of a thin film with50

negative dielectric anisotropy and molecular anchoring perpendicular to the walls of the sample, application of an51

electric field in the vertical direction leads to the appearance of vortices, umbilic defects or disclination lines [5, 13, 14].52

Figure 1b shows the spatiotemporal evolution of vortex arrangements experimentally observed by applying a voltage53

V (t) = V sin(2πft) with a given frequency f , i.e, harmonic voltage signal. To avoid charges accumulation effects in the54

thin film (capacity effects), a high frequency oscillatory electric field (kHz) is usually used. Under these conditions in a55

homogeneous liquid crystal cell the emergence of gas of disordered vortices is followed by the subsequent annihilation56

by pairs, and terminates in a homogenous, non-vortex state [10, 11, 13]. Thus the vortices are a transient phenomenon.57

Surprisingly, when the frequency of the electric field that we applied to the homogeneous liquid crystal cell decreases to58

fractions of Hz starting from a critical value of the frequency, the system exhibits a topological transition after which59

the annihilation and creation are balanced, and the vortices persist (see video 1 in supplementary materials). Hence,60

the bifurcation parameter of this transition is the frequency f of the drive voltage. Figure 2 shows the average number61

of vortices as a function of frequency counted stroboscopically in each oscillation cycle with the standard deviation62

determined along the way. This transition is obtained by considering a sawtooth signal for the voltage applied to63

the sample. From this chart, one deduces that the transition is of continuous nature (supercritical bifurcation) and64

that there is a critical frequency fc from which the number of vortices in average becomes permanent over time65

(frequency < fc). We note that as the frequency decreases the number of vortices increases to a particular critical66

value and subsequently decreases monotonically until it vanishes at low frequencies, which is a manifestation of a sort67

of resonance for the process of creation and destruction of topological defects. Notice that periodically driven voltage68

only induces umbilical defects, no other defects are observed. The application of a low-frequency electric field induces69

charge movements due to the weak anisotropic conductivity of the liquid crystal [5]. The accumulation of charges70

can induce a molecular reorientation, Carr-Helfrich mechanism [5], which in turn modifies the interaction between71

umbilical defects and can even generate a lattice arrangement of them [24].72

Using a thermal control microscope stage, the temperature of the liquid crystal sample can be changed and controlled73

adequately. When the temperature at which the experiments are made is varied, we observe that critical frequency74

transition fc grows monotonically with it as illustrated in Figure 2c. The tendency to increase the transition frequency75

at higher temperatures is due to the increasing the rate of vortex creation (fluctuations), while the process of vortices76

annihilation remains unchanged (deterministic). Therefore, the topological transition induced by temporal voltage77

modulation is observed throughout the mesophase stability range of the nematic liquid crystal under study.78

Theoretical description of the topological transition. To understand the origin of this topological transition79

out of equilibrium, we consider a prototype model, the Ginzburg-Landau equation [28], that describes the emergence80

of topological defects in fluids, superfluids, superconductors, liquid crystals, chiral magnets, fluidised anisotropic81

granular matter, and magnetic media [9, 28]. The real Ginzburg-Landau equation describe the pattern formation in82

anisotropic media [29]. Likewise, this model describes vortex solutions in nematic liquid crystal layers with external83

electric or magnetic forcing and homeotropic boundary conditions [30–33], and the formation of spiral waves in a84

nematic liquid crystal subjected to a rotating magnetic [30, 32] or electric field [31]. Note that this Ginzburg-Landau85

equation with real coefficients is derived from the elastic theory of liquid crystals [30–34]. The order parameter86

accounts for the balance between the elastic and electric force. Besides, this model describes the process of interaction87

and annihilation of vortices at constant electric field and temperature [11]. To account for the additional ingredients88
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Figure 2. Bifurcation diagram of topological transition out of equilibrium (a) experimental and (b) numerical using model
Eq. (1). The experimental bifurcation diagram is obtained with a sawtooth forcing with a fixed amplitude voltage 15 Vpp.
(c) Critical frequency fc(T ) as a function of temperature with a fixed amplitude voltage 15 Vpp. The insets account for the
respective snapshots in the different regions. (d) Evolution of the temporal bifurcation parameter µ(t) and characterisation of
the regimes of creation (red curve) and interaction (blue curve) of vortices. Inserts show the phase obtained numerically in the
different creation and interaction regimes. From experimental snapshots, both figures were created using Inkscape 1.0.

of the observed topological transition (cf. Fig. 2), we must incorporate the oscillatory nature of the electrical voltage89

applied to the liquid crystal sample and include the inherent fluctuations due to temperature. This leads to the90

stochastic Ginzburg-Landau equation with oscillatory coefficients, that is,91

∂tA = [µ0 + γ cos(2πft)]A− |A|2A+∇2A+
√
Tζ(~r, t), (1)

where A(~r, t) is a complex order parameter, t and ~r describe time and the transversal coordinate vector that char-92

acterises the thin film, µo is the uniform bifurcation parameter, γ and f are the amplitude and the frequency of93

the forcing, respectively, which account for the oscillatory electric field. The function µ(t) = µ0 + γ cos(2πft) is the94

temporal modulated bifurcation parameter. By ∇2 we denote the Laplace operator. The constant T accounts for95

the thermal intensity and ζ(~r, t) is a spatiotemporal white noise of zero mean value, 〈ζ(~r, t)〉 = 0, and no spatial or96

temporal memory. Namely, the stochastic term has the spatiotemporal correlation 〈ζ(~r, t)ζ(~r′, t′)〉 = δ(~r−~r′)δ(t− t′)97

where δ are Dirac delta functions.98

In the high-frequency regime, f → ∞, this model becomes the Ginzburg-Landau equation with real coefficients.99

This equation is characterised by a constant effective bifurcation parameter µ0 + 3γ2/2(2πf)2 obtained through the100

rapid oscillation method [35]. In this limit the vortices do not persist and the annihilation of the defects of opposite101

charges dominates their creation [9, 11], since the system tries to optimise the effective free energy. Figure 2b shows102

this happening for frequency values up to order one. In this regimen, for large enough temporary evolution, the103

number of vortices on average is zero. By decreasing the frequency further to a critical value fc, the average number104

of vortices stabilises over time. The topological transition obtained numerically using Eq. (1) has a qualitative105

behaviour similar to that observed experimentally, see top panels in Fig. 2. Notice that as the frequency decreases106

(f < fc) the number of vortices increases to a particular critical value and subsequently decreases monotonically until107

it vanishes at low frequencies, which manifests an excellent qualitative agreement with the experimental observations.108
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Hence, experimentally and numerically a sort of resonance is observed for the process of creation and destruction of109

topological defects.110

The simulation allows us to identify the location of the vortices through ±2π jumps of the phase of the amplitude.111

Comparing the evolution of the system and the profile of the bifurcation parameter function µ(t) two characteristic112

regions are identified. Namely, a creation and annihilation region. Creation of vortices occurs in the intervals of time113

where µ(t) is small and growing (red curve in Fig. 2d), these vortices later interact even when µ(t) < 0 (blue curve in114

Fig. 2d). The region of creation and annihilation are govern by stochastic fluctuations and deterministic evolution,115

respectively. The vortex creation time interval decreases as the forcing frequency increases and for high frequencies116

the creation process is inefficient. Hence, the persistence of vortices is a consequence of the balance between the117

processes of creation (stochastic) and their interaction (deterministic).118

Topological transition with harmonic driven forcing. In experiments we have implemented various types119

of periodic forcing among them harmonic, sawtooth, or square profiles and we have found, somewhat unexpectedly,120

different types of responses resulting in diverse transitions. As we have mentioned, low-frequency voltages can induce121

charge movements that, in turn, induce molecular reorientation, Carr-Helfrich mechanism [5]. Hence, different types122

of driven voltages can induce different charge motions. In the case of a square profile signal, we have observed a123

continuous or supercritical topological transition (see Fig. 1a). Changing to a harmonic signal, we have detected a124

discontinuous transition with the non-vortex state being replaced by a vortex lattice with a square crystalline structure.125

Figure 3 shows a square vortex lattice and its respective bifurcation diagram corresponding to the out of equilibrium126

counterpart of Abrikosov lattice [36, 37]. The vortex lattice in not hexagonal like the one of Abrikosov as a consequence127

of the asymmetry between the opposite charges [33]. The model Eq. (1) only accounts for the topological transition128

from disordered vortices to non-vortex state. The origin of these square vortex lattices is probably associated with the129

coupling of elastic deformations and fluid modes. To account qualitatively of this coupling, we include in the model130

Eq. (1) inertia and anisotropic effects, that is, a second temporal derivative of amplitude A. Simulations of this model131

show the emergence of a square lattice, as seen in Fig. 4. The Ginzburg-Landau Eq. (1) is a model infer close to the132

reorientational transition [32, 34]. Its derivation is based on the assumption of slowly varying amplitude; however,133
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when the system is periodically forced, the first and second temporal variations can be of the same order. The inertia134

term phenomenologically accounts for the effects of movements of charges and liquid crystal inside the cell.135

When decreasing the frequency, the square lattice undergoes a subcritical bifurcation leading to a square lattice136

of higher wavelength (see Fig. 3 and supplementary video 2). Increasing the frequency further the square lattice137

transitions to a glassy state (cf. Fig. 3 and supplementary video 3), in which the vortex structure does not have a138

precise unit cell. For even higher frequencies the system returns to the non-vortex state. Figure 3 summarises the139

complexity of the topological transitions in the liquid crystal cell maintained out of equilibrium at room temperature.140

We speculate that the origin of the periodic structures we have discovered may be associated with the interaction141

between the vortices or the excitation of stationary waves [49], however, precise understanding of this is an open142

problem.143

III. DISCUSSION144

Topological defects in liquid crystals are natural elements used for the generation of optical vortices [17, 21, 38–40].145

As a matter of fact, optical vortices have attracted attention for their diverse photonic applications ranging from optical146

tweezers [41, 42], quantum computation [43], enhancement of astronomical images [44]. In all these applications,147

optical vortex lattices are always involved and required [45–48]. These vortex lattices require sophisticated and complex148

experimental setup. Instead, he vortex lattice that we observe emerge spontaneously in simple liquid crystal cells149

that do not require a complex structure of electrodes, inhomogeneities, applications of thermal gradients, combined150

forcing of electric and magnetic fields, or photosensitive walls.151

In conclusion, we have shown that exotic states of matter with injection and dissipation of energy. In a nematic152

liquid crystal cell under the influence of a low frequency oscillatory electric field, we have observe transitions from153

non-vortex state to a state in which vortices persist. Depending on the frequency and type of the forcing (harmonic,154

sawtooth, or square profiles), the vortices self-organise forming square lattices, glassy states, and disordered vortex155

structures. Because the phenomenon reported here is qualitativelly well described by a universal model Eq. (1), we156
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expect that any temporally modulated vectorial field system of low dimensionality can exhibit topological transitions157

out of equilibrium. The characterisation of the critical frequency and voltage as a function of liquid crystal features158

and cell configuration is an open question. Work in this direction is in progress. Furthermore, these findings could159

be a starting point for understanding and controlling the exotic states of matter out of equilibrium by means of160

the temporal modulation of parameters. Because vortex lattices emerge spontaneously in single cells subjected to161

alternative low-frequency voltages, it opens up the possibility of new and fresh applications of the generation of optical162

vortices.163

Methods: Experimental description of the setup. Figure 1a shows a schematic representation of the experi-164

mental setup. It consists of a liquid crystal cell composed of two glass slabs with 600 mm2 of cross-section separated165

by a distance of 15 µm, a thin film of a transparent conductor, indium tin oxide (ITO), and a thin film of transpar-166

ent polyimide that has been deposited on each of the interior walls. Transparent conductors are used as electrodes.167

By rubbing process, microscopic grooves are generated in the polyimide layer, allowing the liquid crystal molecules168

anchoring orthogonally to the surfaces, homeotropic anchoring. This cell 5B100A150UT180 manufactured by Instec,169

contains glass beads as spacers. It is filled by capillarity with BYVA-01-5G (Instec) nematic liquid crystal that has170

negative anisotropy, εa = −4.89 at room temperature. An external electric field is applied in the vertical direction171

(z-axis) using a sinusoidal sawtooth, or square voltage with amplitude 15 Vpp with low frequency. This voltage is pro-172

duced by a function generator (Agilent 33521A) with a high voltage amplifier (Tabor Electronics 9200). The imaging173

system used is an Olympus BX51 microscope equipped with linear cross polarisers. The light from the microscope174

condenser illuminates the cell mounted on the microscope stage, and a CMOS camera (Thorlabs DCC1645C) is used175

to capture images. For studying thermal effects we used Leica DM2700 P microscope equipped with LTS420 hot176

stage.177

Numerical Simulations. Numerical simulations of model Eq. (1) were implemented using a finite differences178

code with Runge-Kutta order-4 algorithm, with a 200×200 points grid, spacing dx = 0.5, and temporal increment179

dt = 0.02. Numerical simulations are performed with periodic boundary conditions and with an initial condition180

A = 0. The stochastic noise ζ(~r, t) is generated through the Box-Muller transform of a uniform random number181

generator. Equation (1) with inertia and anisotropic effects reads182

∂ttA+ λ∂tA = [µ0 + γ cos(2πft)]A− |A|2A+∇2A+ δ∂η,ηĀ+
√
Tζ(~r, t), (2)

where λ accounts for the rotational viscosity, δ stands for the difference of elastic constants [30–33], the operator183

∂η,η = ∂xx − ∂yy + 2i∂xy describes the asymmetric coupling, and Ā is the complex conjugate of A. The results184

presented in figure 4 consider the same algorithm, boundary and initial conditions used in equation (1).185
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Vortices are particle-type solutions with topological charges that can steer the dynamics in various
physical systems. By the application of electromagnetic fields onto a homeotropic nematic liquid
crystal cell, we are able to induce a vortex triplet that remains stable and trapped at a given location.
For a low frequency of the driven voltage, we observe that the vortex triplet is unstable and gives
rise to the appearance of a topological lattice. Based on an amplitude allow us to reveal the origin
of the vortex triplet and lattice. Numerical simulations show a quite fair agreement with theoretical
findings and experimental observations.

Continuous media are characterized by exhibiting dif-
ferent robust phenomena such as waves, fronts, patterns,
and dissipative structures [1–4]. One of the most at-
tractive dynamic behaviors is particle-type solutions or
localized structures, where solitons are the paradigmatic
example [5, 6]. These dynamic behaviors are extended
spatially; however, they exhibit characteristics associ-
ated with particles such as a position, amplitude, charge,
width, among others. The localized structures are un-
derstood as patterns appearing in a restricted region
of space [7–10]. Dissipative particle-type solutions have
been theoretically predicted and experimentally observed
in many fields of nonlinear science, such as laser physics,
hydrodynamics, fluidized granular media, gas discharge
systems, chemical reactions, magnetic media, and biol-
ogy (see reviews [7–10] and references therein). Local-
ized structures can be created or destroyed by localized
disturbances [7–11]. All these features change radically
when one considers particles-type solutions with topo-
logical charges, vortices [12]. Vortices are pointlike sin-
gularities that take place in complex fields, which locally
break the rotation symmetry. They present zero inten-
sity at the singular point with a phase spiraling around it.
The topological charge is allocated by counting the num-
ber of phase jumps, while the sign is given by the direc-
tion of the spiral rotation. Conventionally, it is positive
(negative) when the rotation is counterclockwise (clock-
wise). As a consequence of the conservation of topolog-
ical charge, vortices are created and annihilate by pairs
between opposite charges [12]. In addition, this conserva-
tion precludes that a local disturbance would destroy vor-
tices. Indeed, the possession of a topological charge pro-
vides vortices with a topological stability, as occurs with
fundamental particles [12]. A paradigmatic field model
that presents vortices is the Ginzburg-Landau equation
[12, 13]. This amplitude equation have been used to de-
scribe fluids, superfluids, superconductors, liquid crys-
tals, granular matter, magnetic media, and optical di-
electrics, to mention a few [12–15].

A natural physical context where dissipative vortices
are observed is in liquid crystals [16, 17]. Vortices in

this context are usually called umbilical defects or discli-
nation lines. Considering a thin film of nematic liq-
uid crystal with negative anisotropic dielectric constant
and homeotropic anchoring, applying a sufficiently large
transverse electric field generates a molecular reorienta-
tion, known as the Fréedericksz transition [18]. This tran-
sition is characterized by the spontaneously emergence of
a vortex gas. Due to the attraction and annihilation of
vortices pairs, the system ultimately finds its homoge-
neous equilibrium state, characterized by the fact that
the molecules in the bulk are misaligned from the ap-
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FIG. 1. Schematic representation of the experimental setup.
(a) Vertical description of the experimental setup. NLC ac-
counts for the nematic liquid crystal cell, d is the thickness
of the cell, ITO accounts for the transparent electrode (in-
dium oxide and tin), Vω(t) is a harmonic voltage applied to
the liquid crystal layer, where ω is the voltage frequency, MR
is the magnetic ring of thickness h and internal and outer ra-
dius Rin and Rout, WLS is the while light source, P and
A stand for polarizers, which are crossed, O accounts for
the objective and CMOS is the complementary metal-oxide-
semiconductor camera. The rods represent the average direc-
tion of molecules, directors. (b) Three-dimensional schematic
representation of the liquid crystal cell under the influence of
the electric and magnetic fields.
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plied electric field [16, 17]. These topological defects are
of great relevance because when interacting with the light
they can be a source of optical vortex beams [19–22]. Al-
ternatively, one can induce umbilical defects by means of
intense light beams [23], photo-sensitive walls [21, 24], or
by means of external magnetic and electric fields [25, 26].
The combined action of a distant magnetic ring with a
uniform electric field into the nematic cell enables the
self-engineering of macroscopic q-plate [26]. The pos-
sibility of manipulating vortices allows creating optical
vortex lattices, which are useful for quantum computa-
tion [27], image analysis [28], and generation and data
transmission [29].

This letter aims to show that a vortex triplet is induced
by the combined action of a close magnetic ring and os-
cillatory electric field into a nematic liquid crystal layer.
The vortex triplet is characterized by a positively charged
vortex in the center and two vortices on its flanks of op-
posite charges. Namely, the triplet has a positive total
topological charge consistent with that enforced by the
magnetic ring. The vortex triplet is a consequence of the
structure of the magnetic protuberance at the ring cen-
ter, vertical electric field, and inherent anisotropy of the
liquid crystal. For a low frequency of the driven voltage,
we observe that the vortex triplet is unstable and gives
rise to the appearance of a topological lattice. An am-
plitude equation allows us to explain the emergence of a
vortex triplet and vortex lattice. Numerical simulations
show a good agreement with experimental observations.

Experimental setup.– Figure 1 shows a schematic rep-
resentation of the experimental setup. To study vortex
dynamics, we consider a cell composed by two thin glass
layers separated by a thickness of d = 75 µm, which
is chemically treated on its interior walls to have a ho-
mogeneous homeotropic anchoring and with transparent
electrodes included (indium oxide and tin, ITO with a
thickness of 0.08 µm). This cell has been filled by cap-
illarity with a nematic liquid cristal LC-BYVA-01-5G
(Instec) with negative dielectric anisotropy εa = −4.89,
birefringence ∆n = ne − no = 0.1, rotation viscosity
γ = 204 mPas, splay and bend elastic constant, respec-
tively, K1 = 17.65 pN and K3 = 21.39 pN, and negative
magnetic anisotropy χa (yet not measured). All experi-
ments were conducted at room temperature of 21◦C. A
neodymium magnetic ring of 3200 G with a rectangular
transversal section, outer radio Rout = 7 mm, internal
Rin = 2 mm, and thickness of h = 5 mm is put onto
the top of the nematic liquid crystal cell (cf. Fig. 1).
The sample with the magnetic ring is introduced in an
Olympus Bx51 microscope and it is sandwiched with two
linear cross polarizers. A sinusoidal voltage of intensity
V0 = 7.95 Vpp, near to the reorientational transition,
Fréedericksz voltage VFT = 6.57 Vpp, with a frequency
of ω = 100Hz is applied to the sample. The system is illu-
minated by a white light (Halogen lamp). The temporal
evolution of the liquid crystal cell under the simultaneous
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FIG. 2. Magnetic ring induced vortex triplet in a nematic
liquid crystal layer. a) Snapshot of vortex observed close to
the Fréedericksz transition V0 = 6.3 Vpp. b) Snapshot of
the vortex triplet observed above the orientational transition
V0 = 7.95 Vpp. c) A temporal sequence of snapshots of the
emergence of vortex triplet formation t0 < t1 < t2, far from
the orientational transition V0 = 15.0 Vpp.

effects of the electric and magnetic field is monitored by
a CMOS camera (Thorlabs DCC1645C), which allows us
to observe the central zone of the magnetic ring.

Experimental observations of the vortex triplet.– When
the liquid crystal sample is only under the influence of
the magnetic field, there is no light transmission. Hence,
the torque generated by the magnetic field is not capable
of overcoming the elastic resistance; namely, the consid-
ering magnetic ring is not capable to induce the molec-
ular reorientation. In order to generate this reorienta-
tion, a voltage drop is included orthogonal to the sample
of the form Vω(t) = V0 cos(ωt). Due to negative elec-
trical anisotropy and the simultaneous presence of the
electric and magnetic field, we observe the reorientation
transition for voltages less than the Fréedericksz voltage
(critical voltage for the reorientation instability purely
induced by an electric field). By increasing the magnetic
intensity by using magnets of different thicknesses, we
observe a transition of molecular reorientation for lower
voltages. Unexpectedly, close to the reorientation insta-
bility, the emergence of a vortex with a thick core in the
center with a ring near to the inner radius of the mag-
net is observed. Figure 2 shows the typically observed
vortices. By increasing the voltage, we have a better res-
olution to observe the emergent structure that is made
up of a positive vortex in the center and two vortices on
its lateral flanks of opposite charges, a vortex triplet (cf.
Fig. 2b). By turning off the voltage and then consider-
ing a higher voltage, the vortex structure emerges with
a ring characterized by exhibiting multiple vortices with
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alternating topological charges. Subsequently, these vor-
tices are annihilated by pairs, and only two survive in
the antipodes (see bottom panels in Fig. 2). The vortex
triplet is the equilibrium state of the system.

An intuitive explanation of the appearance of a vortex
triplet.– The induced vortex triplet is determined by the
structure of the magnetic field generated by the mag-
netic ring. Since the magnet has a north and south pole
parallel to the liquid crystal sample and a rectangular
cross-section, then a magnetic protuberance is observed
at the center of the ring [30]. Figure 3 shows the mag-
netic structure of a ring with a rectangular cross-section
schematically. Dashed curves account for the magnetic
protuberance. This magnetic protuberance is a conse-
quence of the boundary condition imposed by the ring
inner wall on the magnetic field. Liquid crystal molecules
tend to orient ortogonal with the magnetic field as a con-
sequence of the negative anisotropic magnetic susceptibil-
ity [16, 17]. When considering the liquid crystal sample
inside the magnetic protuberance, it naturally induces a
positive vortex at the center and also a circular defect
line that circumscribes the vortex (cf. Fig. 3b). How-
ever, for homeotropic anchoring conditions, a defect line
is unstable and always stabilizes in a set of vortices with
alternating charges along the line [16, 17, 31]. Indeed, one
expects this line to stabilize in vortices and, ultimately,
only a few vortices to survive along the line. Observe
that when the sample stands outside the magnetic pro-
tuberance, one only observes a single vortex, and there
is no ring to circumscribe it [26]. Indeed, this can be
accomplished by moving the liquid crystal sample away
from the magnet.

Theoretical description of a vortex triplet.– The struc-
ture of the magnetic protuberance can be modeled in a
first approximation by the magnetic field of a cylindrical
magnet of the form

~B(ρ, z) =m

[
(3z2 − σ)ẑ

(ρ2 + z2)5/2
− ẑ − 3zρρ̂

(ρ2 + z2)3/2

]
+ b0ẑ, (1)

where σ > 0 and b0 are phenomenological dimensional
parameters (meters2 and tesla, respectively) that account
for geometric features of the magnet ring, m is a constant
that has a dimension of permeability per magnetic mo-
ment, and {z, ρ, θ} are the cylindrical coordinates. The
origin of the coordinate is fixed at the center of the mag-
netic ring. Note that as a result of the azimuthal sym-
metry of the ring, the magnetic field does not depend on
the θ coordinate.

To shed light on the mechanism of creation and pinning
of vortices, we derive a model in the vicinity of the reori-
entational transition. As nematic liquid crystal molecules
are weakly tilted from the axis ẑthe backflow effects can
be neglected [17, 21, 24]. The molecular reorientation
of the liquid crystal is described by the director vector
~n when the temperature is constant [16, 17]. The dy-
namic of the director is characterized by minimizing the

N

S

a) B b)

NLC ~

N
S

FIG. 3. Schematic representation of the magnetic field struc-
ture of a magnetic ring with a rectangular cross-section. a)
Three-dimensional representation of the magnetic field. The
curves account for the lines of the magnetic field. Dashed
lines account for the structure of the magnetic field within
the magnetic protuberance. b) Two-dimensional representa-
tion of the magnetic field of the ring onto the nematic liquid
crystal layer. The rods stand for the average direction of
molecules.

Frank-Ossen free energy

F=

∫
dV

{
K1

2
(∇ · ~n)2 +

K2

2
(~n · (∇× ~n))2 +

K3

2
(~n× (∇× ~n))2 − εa

2
( ~E · ~n)2 − χa

2
( ~B · ~n)2

}
, (2)

where {K1,K2,K3} are the liquid crystal elastic con-

stants, ~E, and ~B are the electric and magnetic field, re-
spectively [16, 17]. We consider a uniform vertical elec-

tric field ~E = Ez ẑ = Vω(t)/d ẑ and a magnetic field
~B = Bz ẑ +Bρρ̂ given by formula (1).

To study the dynamics of the director, we will use the
strategy, amplitud equation, presented in review [24] and
references therein. Close to reorientational instability we
use the ansatz

~n =




γ Re(A)
a sin

(
π
d (z + h

2 )
)

γ Im(A)
a sin

(
π
d (z + h

2 )
)

1− γ2|A|2
2a2 sin2

(
π
d (z + h

2 )
)


+ h.o.t., (3)

where A accounts for the amplitud of the critical mode,

a2 ≡
[
(K1 −K3) (π/d)

2 − 3εaE
2
z − 3χaB

2
z

]
/4 is a nor-

malization constant, and h.o.t. stands for high order
terms in the critical amplitude. Using the above ansatz,
Eq. (3), on the Frank free energy (2) and minimizing
after straightforward calculations, one gets the ampli-
tude equation (the dimensionless topologically driven
Giznburg-Landau equation)

γ0∂tA = µ(ρ)A− |A|2A+∇2A+ δ∂ηηĀ+ f(ρ)eiθ, (4)

where the spatial coordinates have been scaled by ~r →
~r
√

2/(K1 +K2), µ(ρ) = µ0+µ1(ρ) is the inhomogeneous
bifurcation parameter, µ0 ≡ −K3(π/d)2−εaE2

z is the bi-
furcation parameter related to the electrical Fréedericksz
transition, µ1(ρ) ≡ χaB

2
z (ρ, z0) is the inhomogeneous

modification of the reorientational transition, z0 height
of the liquid crystal sample, δ = (K1 − K2)/(K1 + K2)
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FIG. 4. Numerical simulation of vortex triplex obtained
from the topologically Driven Giznburg-Landau Eq. (4) with
z0 = 28, σ = 28, m = 13000, b0 = 0, γ0 = 1, and
δ = 0.1. Profile of the inhomogeneous bifurcation parame-
ter µ(ρ) (a) and topological forcing strength f(ρ) (b) as a
function of the radial coordinate. Contour plot of the polar-
ized field ψ(x, y) = Re(A)Im(A) (top panel) and phase field
Φ(x, y) = arctan[Im(A)/Re(A)] (bottom panel) of the com-
plex amplitude A, below µ0 < 0 (µ0 = −1) (c) and above
µ0 > 0 [µ0 = 0.2 (d) and µ0 = 3.0 (e)] the Fréedericksz volt-
age. Inserted circles highlight phase singularities.

accounts for the elastic anisotropy of the liquid crystal,
∂η ≡ ∂x + i∂y is a differential operator in the com-
plex plane, note that the laplacian satisfies ∇2 = ∂η,η̄,
and f(ρ) = 4χaa

1/4Bρ(ρ, z0)Bz(ρ, z0)/(γπ) accounts for
the strength of the topological forcing. Notice a similar
equation has been derived for liquid crystals with pho-
tosensitive walls but with a Gaussian forcing [21, 24], in
which vortex induction has been demonstrated through
the light-matter interaction. Figure 4 shows in left panels
the bifurcation parameter and the forcing as a function of
the radial coordinate. Notice that the vortices are placed
at the zeros of the forcing. f(ρ) is annulled at the ori-
gin and in the circumference of radius ρ∗. In the regime
below the electrical Fréedericksz transition, µ0 . 0, the
system exhibits an analytical approximation of the form
A ≈ f(r)eiθ/µ0 [32]. Indeed, this solution is characteriz-
ing by exhibits a vortex at the center and also a circular
defect line that circumscribes the vortex. Figure 4c shows
numerical simulations of Eq. (4) for µ0 < 0. From the po-
larized field ψ(x, y) ≡ Re(A)Im(A) (top panel) [24], we
only detect the central vortex with a cross shape. The
ring that circumscribes the central vortex is not detected
because it has a small amplitude. This ring is only de-
tected in the phase field Φ(x, y) = arctan[Im(A)/Re(A)]
(bottom panel), this ring has two singularities of opposite
charges in its antipodes. Numerical simulations of model
Eq. (4) were conducted considering a triangular finite ele-
ment code with adaptive spatial and temporal steps, and
a simulation box of dimensions 300× 300 with Neumann
boundary condition was considered. Increasing the bifur-
cation parameter, the central vortex swirls and the ring
that encloses the amplitude notoriously show two vor-
tices of opposite charges at the antipodes (see Fig. 4d),
which is what we observe in experiments (cf. Fig. 2).

t1 t2 3

1

 

mm

t

-2 2ψ(x,y)

a) b) c)

d) e)τ0 τ1

FIG. 5. Vortex lattices. a)-c) A temporal sequence of snap-
shots of the emergence of vortex lattice from a vortex triplet
t1 < t1 < t3, with V0 = 9.0 Vpp and ω = 10 mHz. d)-e)
Numerical temporal sequence of vortex lattice, τ0 < τ1, ob-
tained from the amplitude Eq. (5) with z0 = 15, σ = 2000,
m = 1000, b0 = 0.55, γ0 = 0.5, δ = 0.8, Γ = 1, and ω = 1.

Starting from A = 0 and considering a larger bifurcation
parameter, we see the vortex emerge at the center with
a circular defect line that destabilizes into a set of vor-
tices that begin to interact and annihilate in pairs (see
Fig. 4e). Note that a similar phenomenon is observed in
the experiment (cf. Fig. 2c). Hence, model Eq. (4) de-
scribes the emergence of a vortex triplet induced by the
combined action of a magnetic ring and electric field into
a nematic liquid crystal layer (see Figs. 2 and 4).

Unexpectedly, when we decrease the frequency to a
fraction of hertz, experimentally, the vortex triplet is
destabilized from both the central vortex and the ring
that circumscribes it by the induction of vortices, result-
ing in a front of vortices invading the system (see Fig. 5).
A stationary oscillatory vortex lattice characterizes the
equilibrium state of the system. When the low-frequency
oscillatory behavior of the electric field Ez(t) is included
one cannot neglect the inertia in the dynamics of the
director. Then the amplitude equation takes the form

∂ttA+γ0∂tA = µA−|A|2A+∇2A+δ∂ηηĀ+f(ρ)eiθ, (5)

where µ = µ0 + µ1(ρ) + Γ sin(2ωt). For large γ0 and
high frequencies, this model equation is approximated
by Eq. (4). Namely, this model presents a triplet vortex
solution. However, when the frequency is decreased, the
amplitude A begins to oscillate. For a critical frequency,
the ring around the vortex becomes unstable. This insta-
bility generates the emergence of vortex pairs. Figure 5
shows the typically observed vortex lattice structure and
the triplet that becomes unstable.

In summary, the combined effect of the magnetic field
of a magnetic ring and the uniform electric field onto a
homeotropic nematic liquid crystal cell induces a stable
vortex triplet and vortex lattice. An amplitude equation
allow us to reveal the origin of the vortex triplet and the
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emergence of vortex lattice. Theoretical findings show
a quite fair agreement with experimental observations.
The generated vortex lattices are obtained in a simple
configuration that does not require a complex structure
of electrodes, inhomogeneities, applications of thermal
gradients, or photosensitive walls.
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Appendix F
Wings of vortexes pairs

Honorable mention in Micro-imaging category from the
2018 Royal Society Publishing Photography Competition
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