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Abstract: The transient receptor potential melastatin (TRPM) subfamily belongs to the TRP cation
channels family. Since the first cloning of TRPM1 in 1989, tremendous progress has been made
in identifying novel members of the TRPM subfamily and their functions. The TRPM subfamily
is composed of eight members consisting of four six-transmembrane domain subunits, resulting
in homomeric or heteromeric channels. From a structural point of view, based on the homology
sequence of the coiled-coil in the C-terminus, the eight TRPM members are clustered into four groups:
TRPM1/M3, M2/M8, M4/M5 and M6/M7. TRPM subfamily members have been involved in several
physiological functions. However, they are also linked to diverse pathophysiological human processes.
Alterations in the expression and function of TRPM subfamily ion channels might generate several
human diseases including cardiovascular and neurodegenerative alterations, organ dysfunction,
cancer and many other channelopathies. These effects position them as remarkable putative targets
for novel diagnostic strategies, drug design and therapeutic approaches. Here, we review the current
knowledge about the main characteristics of all members of the TRPM family, focusing on their
actions in human diseases.

Keywords: TRPM channels; human diseases; ion channels

1. Introduction

Ion channels are proteins composed of a pore that allows for passive and regulated ion flux
through biological membranes as determined by an electrochemical gradient [1,2]. Currently, more than
400 ion channels belonging to several families are known [3] and their participation has been identified
in a wide range of physiological processes [4,5]. At the same time, abnormalities in the expression
and function of ion channels have been associated with tissue and systemic alterations that directly
contribute to the development of diseases such as cardiovascular alteration [6], organ dysfunction [7],
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cancer [8], neurodegenerative disorder [9] and many others channelopathies [10], which position them
as interesting therapeutic targets [11].

Transient receptor potential (TRP) ion channels participate in heterogeneous physiological and
pathological processes, including the regulation of vascular and immune cells [12–15], exocytosis
in neuroendocrine cells [16], the differentiation of hippocampal neurons [17], the proliferation and
differentiation of keratinocytes [18], hearing [19], thermosensation [20], visceral nociception [21],
muscle reflex activation [22], lung function [23,24], proinflammatory cytokines production [25],
dopaminergic neurons death [26], neurological development abnormalities [27], vascular permeability [28],
neurogenic inflammation [29], glomerulosclerosis [30,31], hypertension [32] and cancer [33],
among several others.

The first research into ion channels belonging to the TRP superfamily was carried out in
1989 by Montell and Rubin, who cloned and characterized the molecular structure of the protein
encoded by Drosophila’s trp gene and hypothesized its possible involvement in Ca2+ transport
during phototransduction [34]. In 1992 the first homologue, Trpl, was identified [35]. In 1993,
TRP was recognized as a new ion channel superfamily and its role in Ca2+ permeability was
determined [36]. In 1995, the first human homologue, the transient receptor potential channel-related
protein 1 (TRPC1), was identified [37]. Subsequent identification and characterization of HTrp1, 2 and
3 homologues confirmed the presence of the new TRP ion channel superfamily in humans [38].

TRP channels are composed of four subunits resulting in homomeric or heteromeric channels [39].
The general structure of each subunit consists of six transmembrane helix topologies (S1–S6) where
the S4 corresponds to a voltage-sensor-like domain, capable of sensing changes in intracellular ion
concentration [40–42]. The pores of the channel are formed by a α-helix loop between the S5 and S6
subunits. Nevertheless, TRP differs from other voltage-gated channels by the aminoacidic sequence
of their subunits, which confers on them differential biophysical characteristics like differences in
gating probability [43], pore orientation [44] and response to different exogenous and endogenous
modulators [44].

The TRP channel family is subdivided into six subfamilies based on their sequence similarity—The
TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin) and
TRPA (ankyrin) groups [45]. The difference between TRP subfamilies is due to the high variability
in length and contained domains in the N- and C-terminus (both cytosolic). The N-terminus in the
TRPA, TRPC and TRPV subfamilies contains ankyrin repeats and the C-terminus in the TRPC and
TRPM subfamilies contains a high conserved TRP domain [46]. Furthermore, it is well known that TRP
channels activation or inhibition and the responsiveness to different modulators is strongly influenced
by their large intracellular domains [44,47].

TRPM channels have a ubiquitous expression in tissues, which is associated with participation
in health and diseases [48]. These ion channels are composed of three main regions: the N-terminus,
the channel domain and the C-terminus. The N-terminus is composed of 4 melastatin homology
regions and one homology region or pre-S1 domain (Figure 1a, red boxes). These regions form a
pocket which has been suggested to play an important role in external stimuli sensing and channel
assembly [49]. The channel domain and the P-loop (Figure 1a, S1–S6 and P, respectively) are located at
the transmembrane space. Mainly the S4 (but also all the S1–S4 participates, Figure 1a, yellow cylinder),
is a voltage-sensing-like domain related to the activation of TRPM subfamily members. The P-loop
located between S5 and S6 subunits (Figure 1a, blue loop between green cylinders) forms the
ion-conducting pore [40–42]. Also, the C-terminus is composed of the TRP box with a highly conserved
aminoacidic sequence, which is thought to play an important role in channel stability in the plasmatic
membrane. Additionally, the coiled-coil domain (cc) allows for interactions between channel subunits
for tetrameric complex assembling and contains specific motifs that modulate pore gating (Figure 1a,
blue boxes) [50]. Three members of this family, TRPM2, TRPM6 and TRPM7, present enzymatic
activity in their C-terminus. TRPM2 contains an additional nucleoside diphosphate pyrophosphatase
domain which has high homology with the NUDT9-H domain [51] and TRPM6-TRPM7 contain two
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additional domains in the C-terminus: the serine/threonine (S/T) rich and α-kinase domain (KD)
homologous with the cytosolic kinase, PLIK [52]. Based on the homology sequence of the coiled-coil in
the C-terminus, the TRPM subfamily is divided into four groups: TRPM1/TRPM3, TRPM2/TRPM8,
TRPM4/TRPM5 and TRPM6/TRPM7 (Figure 1b) [53]. These similarities are related to ion permeability
properties, with TRPM3/TRPM6/TRPM7 being highly permeable to Ca2+, TRPM2/TRPM8 nonselective
for monovalent and divalent cations and TRPM4/TRPM5 permeable only to monovalent cations [54].

The TRPM subfamily has gained major attention in the last years because it has been involved in
several physiological and pathological processes, including cellular proliferation [55], temperature
sensing [56], vascular development [57], cancer progression [58,59], neurological diseases [60],
endothelial dysfunction [61] and many others. This has made the TRPM subfamily a fascinating group
of ion channels with high biomedical projections. Thus, this review aims to cover an updated revision
of the contribution of the TRPM ion channel subfamily in physiology and physiopathology focusing
on human diseases.
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Figure 1. Channel structure and family tree of the transient receptor potential melastatin (TRPM)
subfamily. (a) The N-terminus is composed of four melastatin homology regions and homology region
pre-S1 (melastatin homology regions (MHR) and homology regions (HR), red boxes). The channel
domain contains six transmembrane segments (S1–S6), S1–S4 (yellow cylinder) corresponding to a
voltage-sensor-like domain; the pore is formed by the loop between the S5 and S6 segments (purple
box and green cylinder). The C-terminus is composed of TRP and the coiled-coil (CC) (blue boxes).
(b) Phylogeny of human TRPM channels. Created with BioRender.com.
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2. TRPM1/TRPM3

2.1. General Properties and Distribution

Inside the TRPM subfamily, TRPM1 and TRPM3 are grouped together due to their structural
similarities, sharing 75% aminoacidic identity [62]. Also, like most TRPM family members, TRPM1 and
TRPM3 are non-selective Ca2+ channels [63]; indeed, TRPM1 is also permeable to Mn2+ and Mg2+ while
TRPM3 has tissue-specific permeability to mono- and bi-valent cations associated with alternative
splicing [64]. TRPM1 has a conductance of 76.70 pS [65], while TRPM3 has a conductance range
between 65 to 130 pS [66,67].

TRPM1 was described for the first time by Duncan et al. (1998) in a search of loci associated with
melanoma [68]. Its gene maps in chromosome 15q13.3 and is composed of 29 exons that alternatively
splice to originate five isoforms that differ in the use of the 5′ exons and start codons [69,70]. The final
proteins contain between 1516 and 1643 amino acids presenting a molecular weight of ~182 kDa.
The TRPM1 gene encodes a microRNA (miR-211) located between exons 6 and 7 that is co-expressed
with TRPM1 and is associated with diseases in the eye and skin [71]. TRPM1 was initially named
melastatin. It is expressed in retina center-ON bipolar neurons and melanocytes play important roles
in the melanin metabolism and signal transduction of the optic pathway [72,73].

TRPM3 was first identified in a genome library by Lee et al. (2003) [62]. Its gene, located in
9q21.12-13, is the largest in chromosome 9. It spans 870 kb including 30 exons [74]. TRPM3 has a
molecular weight of between 160 and 170 kDa and contains between 1325 and 1555 amino acids.
Some variants (e.g., TRPM3α1) are selective to monovalent cations, while others (e.g., TRPM3α2) are
highly selective for divalent cations [75]. The trpm3 gene contains large intronic sequences between
exons 1–2 and 2–3 that contain recognition sites for transcription factors [76]. Related to this, it has
been shown that the trpm3 gene encodes an intronic microRNA (miR-204) that is transcribed with
TRPM3 [77]. The encoded protein has been proposed to have at least 23 splice variants [78] but only a
few of them have been found in tissues. TRPM3 is expressed mostly in nociceptive neurons, pancreatic
beta cells, the kidney and the vasculature muscular layer but has also been described in various parts
of the brain, the ovary, the prostate, odontoblasts, adipocytes, the oral mucosa, the ciliary body and the
retinal pigmented epithelium [66,79–83]

2.2. Activation and Inhibition: Endogenous Modulators

Both channels are not voltage-gated and respond to a variety of physical and chemical stimuli.
TRPM1 is activated in bipolar retinal neurons by glutamate decrease [65]. Although its activation
outside of the retina remains mostly enigmatic, factors such as UVB light enhance TRPM1 expression
in skin, inducing melanocyte migration and pigmentation [84]. TRPM3 is activated by physical events
such as heat or osmolarity, as well as sphingolipids [66,85].

Also, several transcription factors enhance TRPM1 and TRPM3 expression. Microphthalmia-
associated transcription factor (MITF) has been reported as a transcription factor that regulates TRPM1
and TRPM3 expression in the eye [86–88]. In the retina, the basic helix-loop-helix transcription factor
b4 (Bhlhb4) has been suggested as a transcription factor for TRPM1, as the bHLHb4 mutant presents
downregulation of TRPM1 [89]. TRPM3 expression is promoted by Pax6 during lens development in
fish and humans and is inhibited by transcription factor STAT3 [78,90].

TRPM1 activity has been well described in the retina, where it participates in On-center
bipolar cell transduction. In mammals, photoreceptors hyperpolarize in response to light [91].
They release glutamate as a neurotransmitter in direct proportion to their depolarization status.
Thus, under light, they release less glutamate, while in the dark they release higher levels of
glutamate [92]. On-center bipolar cells (post-synaptic) express the metabotropic receptor mGluR6
(G-protein coupled), which hyperpolarizes the cell in the presence of glutamate, as happens in the
dark [92]. In the light, with lower levels of glutamate, the mGluR6 receptors do not hyperpolarize
the On-center bipolar cells. Consequently, TRPM1 channels open in the synaptic cleft, allowing the
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entry of Ca2+ to the postsynaptic cell and the subsequent continuation of the electrochemical wave [65].
This mechanism is critical in rod transmission and thus to light sensitivity in mammals (Figure 2a).
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Figure 2. TRPM1 role in visual pathways. In the retina, the photoreceptors are in synaptic contact
with bipolar neurons. (a), which in turn contact ganglion neurons, in which axons merge to form the
optic nerve. In the dark, the rods secrete glutamate into the synaptic cleft, which activates the mGluR6,
a G-protein coupled receptor. In its activated state, mGluR6 hyperpolarizes the neuron. In that status,
G-protein Goα-GTP is bound to TRPM1, resulting in inactivation of the channel. In the presence of
light, rods release low glutamate, which inactivates mGluR6. As a consequence, the dephosphorylation
of GTP into GDP allows Go to bind and subunits and the complex binds mGluR6, inactivating it and
avoiding hyperpolarization. The release of Go activates TRPM1, which opens, allowing calcium entry
and depolarizing the bipolar neuron triggering the electrochemical signaling. (b) TRPM3 and autophagy
in clear cell carcinoma. TRPM3 activity increases cytosolic calcium, which binds Calmodulin (CaM).
Ca-CaM binds CaMKK2 and this activated complex phosphorylates AMPK. Active AMPK through
phosphorylation, in turn, phosphorylates ULK, which, in its phosphorylated form, can bind ATG13
and RB1CC1. This ULK-ATG13-RB1CC1 complex allows for the formation of autophagosomes and the
binding of the autophagosomes with lysosomes. ULK is normally inactive through the phosphatase
activity of MTOR. Thus, in normal conditions, this pathway is inactive. Created with BioRender.com.
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A particular characteristic of TRPM3 is its constitutively basal activity, which could be increased or
decreased by a variety of substances [66]. Unlike other TRPMs are activated by sphingosine-1 sulphate,
a signaling sphingolipid that modulates vascular and immune systems [93]. Pregnenolone sulphate
is an excitatory neurosteroid that activates TRPM3 channels. TRPM3 activation increases cytosolic
calcium, which activates Ca/calmodulin, which in turn triggers signaling through mitogen-activated
protein kinases (MAPKs) [78]. This influx of Ca2+ also activates c-Jun N-terminus protein kinases 1
and 2 (JNK1/2) [94]. The final result of the activations of these pathways is the targeting of specific
transcription factors that would modulate gene expression. It has been demonstrated that AP-1 and
ERG-1 are transcription factors that are the target of TRPM3 activation by pregnenolone sulphate;
however, nifedipine and D-erytro-sphingosine (and TRPM3 activators) do not generate such an
effect [95]. In pancreatic cells, the activation of the MAPKs pathways transcription factor ERK is
enhanced by the TRPM3-dependent activation of ERG-1. Activated ERG-1 binds to regulatory regions
of Pdx-1, a major regulator of insulin expression [96]. TRPM3 is also activated by hypotonicity
(200 mOsm/L), which, together with its expression in the kidney, suggests that TRPM3 plays a
role in Ca2+ homeostasis [66]. Steroids such as cholesterol and steroidal hormones partially block
TRPM3; however, the mechanisms and physiologic impact of this inhibition are unclear [97]. Recently,
the inhibition of TRPM3 by G protein βγ subunits released from Gi/o, Gs or Gq coupled receptors has
been demonstrated [98,99]. In mouse dorsal root ganglion (DRG) neurons], the inhibition of TRPM3 by
the Gi-coupled GABA-B receptors mediated by G protein βγ subunits is thought to be a regulatory
mechanism of nociceptive response [100] and it is suggested to be a main mechanism of action of
opioids in analgesic treatment [101].

Both TRPM1 and TRPM3 are inhibited by intracellular bivalent cations, while Zn2+ effectively
inhibits TRPM1 activity and Mg2+ inhibits TRPM3 [102]. The activation of TRPM1 and TRPM3 has a
dual effect. On the one hand, the entry of cations depolarizes the cells or changes their chemical-electric
status. On the other hand, through second messengers, they activate transcription factors, affecting
gene expression.

2.3. Physiological Function and Role in Diseases

Importantly, both are associated with several human diseases by either their increased or decreased
expression or activity. Together with the previously described role in the retina, TRPM1 expression is
associated with melanocyte activity and differentiation. Reduced expression of TRPM1 is associated
with lower melanin synthesis [103] and its loss of expression is a prognosis marker of primary
melanoma [68,73,104]. The similarities in expression of TRPM1 in melanocytes and neurons are not
surprising because melanocytes are derived from the neural crest. Indeed melanocytes, similar to
bipolar ganglionic cells, express mGluR6, which in melanocytes enhances the activity of TRPM1 [103].
The expression of TRPM1 in the retina and skin is perhaps best observed in miniature horses with
congenital stationary blindness. The visual disease in this specie is accompanied by a leopard complex
of the skin (dark dotted pattern), caused by mutations in trpm1 [105]. Although retinal and melanocyte
pathologies are the best-known diseases in which TRPM1 is involved, recently through SNP analysis,
trpm1 was defined as a locus that confers susceptibility to coronary artery disease, although the
pathogenic mechanisms have not been described [106].

The best-described function of TRPM3 is its role in noxious heat detection and consequent
heat-associated inflammation [107]. Increased temperature increases cytosolic Ca2+ by TRPM3
activation [108] in what is thought to be a heat-sensing system in nociceptive neurons in conjunction
with other ionic channels, such as TRPV1 and TRPA1 [109]. However, triple-negative mice (TRPV1–/–,
TRPA1–/– and TRPM3–/–) can still respond to temperature changes, suggesting that other channels
and proteins are involved in thermo perception [110]. Recent studies have demonstrated that
TRPM3 activation triggers the secretion of Interleukin 8 via the activation of c-Jun and activating
transcription factor 2 (ATF2), which helps to explain the inflammatory changes associated with TRPM3
activation [111]. In arteries, the activity of TRPM3 was first described to contract a mouse aorta through
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its effects on smooth muscle [97]. Conversely, in mesenteric arteries, TRPM3 is restricted to sensory
nerve endings and its activation dilates mesenteric arteries [112]. Also, mutations in trpm3 have
been associated with different modalities of glaucoma and cataract [113,114]. Pediatric cataract with
autosomic dominant transmission was the first disease to be associated with trpm3, and TRPM3/miR-204
has been proposed as an important complex in eye development [78,114]. In the endocrine pancreas,
the activation of TRPM3 channels increases insulin secretion mediated by an increase of cytosolic
Ca2+ and cell depolarization [108,115]. However, the effect of this activation is controversial because
trpm3−/− mutant mice have normal values of glucose with no signs of metabolic disorders [116]. More
recently, two mutations in trpm3 that generate an overreactive channel were associated with epilepsy
and intellectual disability as a result of increased intracellular Ca2+ in the brain [117–119].

Recent studies have demonstrated the implication of TRPM3 and miR-204 in the pathogenesis of
clear cell renal cell carcinoma (ccRCC) by affecting autophagy, which is a critical event in ccRCC [120,121].
Specifically, TRPM3 plays a major role in the progression of ccRCC with von Hippel-Lindau (VHL)
loss mutation and has an increased expression in human ccRCC with inactivated or deleted vhl [122].
VHL is a ubiquitin ligase that inactivates hypoxia-inducible factor (HIF) activity. When VHL is
lost, the cytoplasmic levels of HIF increase and cells undergo a state of pseudohypoxia triggering
autophagy [123].

Autophagy is a process by which cells remove dysfunctional components allowing for the
degradation and recycling of components, enabling cell survival in hypoxia, stress or nutrient
deficiency [124]. In cancer, autophagy is a double sword mechanism. On the one hand, autophagy is
associated with a reduction of metastatic potential but on the other hand, it promotes cell survival in
hypoxic areas of the tumor [121]. In clear cell carcinoma, an “autophagic-switch” promotes autophagy
enhancing cell survival, being a target in cancer therapy [125]. Autophagy starts with the formation
of an autophagosome. This process is controlled by ULK1, a protein that allows for the formation
of the phagosome and its fusion with the lysosomes that contain the enzymes for degradation [126].
ULK1 is part of a complex with ATG13 and RB1CC1 and is usually inactivated by mTOR. On the
opposite side, AMPK is an activator of ULK1 and its activity results in increased autophagy [127].
Simultaneously, the activation of AMPK inhibits mTOR. Here, TRPM3 activity increases cytosolic
Ca2+ that binds to Calmodulin, subsequently activating the Ca/Calmodulin Dependent Protein Kinase
Kinase-2 (CAMKK2), which phosphorylates and activates AMPK [128] (Figure 2b). This effect of
TRPM3 and autophagy in ccRCC has been confirmed by the effects of mefenamic acid, a non-steroidal
anti-inflammatory that was described as a specific blocker of TRPM3 [129]. After daily doses of
mefenamic acid, mouse xenografts of ccRCC stop growing or even experience tumor regression [130].
The role of miR-204 is antagonic to TRPM3, as miR-204 directly inhibits TRPM3 translation by binding
the 3′ UTR region of the mRNA and has an indirect effect by inhibiting the translation of caveolin1,
a structural component of membrane caveoli, which is necessary for TRPM3 expression [131].

Main TRPM1/TRPM3 endogenous and exogenous modulators, participation in diseases and
physiological functions are listed in Table 1.
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Table 1. Molecules modulating the activity of TRPM1 and TRPM3, participation in physiological processes and pathologies.

Channel Modulator Inhibition or
Activation 1 Function Disease, Affection or

Objective of Study 2 Model of Study Ref.

TRPM1

Hexamethylene bisacetamide
(HMBA) +

Melanocyte
differentiation Melanoma Pigmented melanoma cells [132]

Pregnolone sulphate + Ca2+ currents Insulin secretion HEK-293 cells, Pancreatic [102]

Capsaicin + Field potential Retinal synaptic plasticity Mouse model [133]

Extracellular Zn2+ - Ca2+ currents Insulin secretion HEK-293 cells, Pancreatic Islets [102]

Voriconazole - ON-bipolar cells in
mouse retina

congenital stationary night
blindness ON-bipolar cells of mouse retina [134]

NED-180 - Ca2+ currents Melanocyte HEK-293 cells [135]

TRPM3

Low intracellular Ca2+ + Ca2+ entry PC HEK-293 cells [62]

Heat (40 ◦C) + Ca2+ currents PC HEK-293 Neurons (DRG, TGN) [116]

Hypotonicity + Channel activation Kidney function HEK-293 cells [66]

Derythro-sphingosine,
N,N-dimethyl-d-

erythro-sphingosine
+ Ca2+ currents Channel activation HEK-293 cells [85]

Pregonolone sulphate + Mg2+ currents
Neuro endotoxin- induces

loss of neuron cells HEK-293 Pancreatic β-cells [136]

Pregnolone + Ca2+ currents Nociception HEK-293 Neurons (DRG, TGN),
mouse models. [137]

Dehydroepiandrosterone
(DHEA) + Ca2+ currents Nociception HEK-293 Neurons (DRG, TGN),

mouse models. [137]

Epiallopregnanolone sulfate + Ca2+ currents Insulin secretion HEK-293, Pancreatic islets [102]

Intracellular Mg2+ - Ca2+ currents Insulin secretion Pancreatic β-cells [64]

La3+ - Ca2+ currents PC HEK-293 Neurons (DRG, TGN) [108]

Gd3+ - Partial inhibition of
Ca2+ entry Channel activation/inhibition HEK-293 cells [107]
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Table 1. Cont.

Channel Modulator Inhibition or
Activation 1 Function Disease, Affection or

Objective of Study 2 Model of Study Ref.

TRPM3

Clotrimazole + Ca2+ currents Anoxic neural damage HEK-293 Neurons (DRG, TGN),
pancreatic islet. [108]

Nifedipine - Ca2+, Mg2+ currents
and mortality

PC HEK-293 Pancreatic b-cells [136]

CIM0216 + Ca2+ Pain and insulin secretion HEK-293 Neurons (DRG, TGN),
pancreatic islet. [108]

Progesterone - Ca2+ current Cardiovascular function HEK-293 and Vascular smooth
muscle cells [138]

Cholesterol - Ca2+ current Cardiovascular function Vascular smooth muscle cells [97]

Fenamates - Ca2+ current and
insulin secretion

Pancreatic function HEK-293, Insulin secreting cells [139]

Fenamates - Ca2+ current and
insulin secretion

Pancreatic function HEK-293, Insulin secreting cells [139]

Citrus fruit flavonoids - Intracellular Ca2+ Nociception HEK293, Neurons (DRG) [140]
1: activation (+) and inhibition (-); 2: physiological conditions (PC).



Cells 2020, 9, 2604 10 of 52

3. TRPM2/TRPM8

3.1. General Properties and Distribution

TRPM2, also named TRPC7 or LTRPC2 and TRPM8 [141,142] are Ca2+ permeable cation channels
with rather low Ca2+ selectivity [143,144]. Specifically, TRPM2 is permeable to Na+, K+, Ba2+, Ca2+

and Mg2+, with relative permeability to these ions described as PK/PNa—1.1, PCa/PNa—0.9 and
PMg/PNa—0.5 and similar ratios for Ca2+, Mg2+ and Ba2 [145,146]. On the other hand, TRPM8 has
relative permeability to Ca2+, which varies between 0.97 and 3.2, to monovalent ions. The permeability
order is Cs+ > K+ > Na+, while for divalent cations it is Ba2+ > Ca2+ > Mg2+ [145].

Under physiological conditions, TRPM2 single-channel conductance range is between 52 to
80 pS with unusually long open times in the range of several seconds [67]. On the other hand,
TRPM8 single-channel conductance depends on the temperature, being 60 pS at 10 ◦C and 75 pS at
30 ◦C [51,147,148]. Moreover, it was shown that when sensors are fully activated by voltage, the absolute
open probability value is less than one and that this value decreases when the temperature rises,
suggesting that TRPM8 is also partially activated by voltage in a temperature-dependent manner [149].
TRPM2 is highly expressed in the brain, heart, spleen, liver and lung, as well as in different cell types,
such as immune cells (including monocytes, neutrophils and macrophages) [150,151], whereas TRPM8
is mainly expressed in the prostate and liver [48,80,141,152–154].

Complete structures of TRPM2 and TRPM8 have been determined by cryo-electron microscopy,
providing information related to their channel assembly, gating mechanisms and structural
pharmacology [63,155]. TRPM2 is known as a channel/enzyme protein, meaning that it is an ion
channel that possesses an enzymatic region, based on its C-terminus Nudix domain (NUDT9-H)
homologous to the NUDT9 adenosine diphosphate ribose (ADPR) pyrophosphatase. This enzyme
converts ADPR to adenosine monophosphate and ribose 5-phosphate [51,156].

Despite the lack of enzymatic regions in TRPM8, the study of its structure has shown the
importance of the classical protein domains for channel function. For instance, studies by Phelps
and colleagues through electrophysiology and microscopy analysis show that amino acids 40 to 86
within the melastatin homology region 1 (MHR1) (N-terminus) are essential for TRPM8 localization in
the plasmatic membrane [157]. The coiled-coil domain (C-terminus) of TRPM8 modulates channel
maturation and trafficking to the plasmatic membrane and is required for TRPM8 subunit interaction
for tetramer pore assembly [158].

3.2. Activation and Inhibition: Endogenous Modulators

The NUDT9-H domain of TRPM2 mediates ADPR binding to the channel and is required for
ADP-ribose-dependent channel activation [159,160]. Likewise, intracellular Ca2+ and arachidonic
acid potentiate channel activation by ADPR, where the Ca2+ influx through the channel provides
positive feedback that enhances TRPM2 activation [161,162]. Moreover, this channel is also known as a
redox-sensitive cation channel, as it promotes Ca2+ influx after activation by reactive oxygen species
(ROS) through poly(ADP-ribose) polymerase-ADPR-dependent (PARP) and also responds to reactive
nitrogen species (RNS), releasing ADPR from mitochondria and the overproduction of TNF-α [60,162].
It also inhibits ROS production in phagocytic cells and endotoxin-induced lung inflammation in
mice [163].

Furthermore, it has been shown that TRPM2 is also activated by ADPR structural analogues,
like cADPR, nicotinic acid adenine dinucleotide phosphate (NAADP) and 2′-O-acetyl-ADP-ribose
(OAADPr), a product of the sirtuin family of deacetylases proteins [164]. Furthermore, intracellular
Ca2+ and ADPR likely act co-operatively to induce TRPM2 channel activation (ADP-ribose acts as
a second messenger through its ability to gate TRPM2, leading to Ca2+ entry). Such co-operativity
between ADPR and Ca2+ likely has important functional implications. In neutrophils, endogenous
ADPR levels are sufficient to allow TRPM2 to respond to varying intracellular levels of Ca2+ released
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from intracellular stores [165]. These results indicate that TRPM2 integrates intracellular signaling
events, modulating changes in ADPR and Ca2+ intracellular concentrations [60,166] (Figure 3).Cells 2020, 9, x FOR PEER REVIEW 10 of 49 
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Figure 3. Signaling mechanisms for TRPM2 and TRPM8 activation. (a) NAD+ and reactive oxygen
species (ROS), including H2O2, accumulate during inflammation and tissue damage may trigger
TRPM2. NAD+ may be converted to ADPR and cADPR. ROS can also cross the plasma membrane and
mobilize ADPR from mitochondria and both ROS and cADPR can synergize with ADPR to activate
TRPM2. Additionally, ADPR is generated from NAD+ via poly-ADPR during ROS-induced damage
through the activation of PARP (poly(ADP-ribose) polymerase)-ADPR-dependent mechanisms in
inflammatory cells. Free cytosolic ADPR can act on the NUDT9-H of TRPM2 channels, enabling Ca2+

influx across the plasma membrane and/or release of intracellular Ca2+, raising the Ca2+ concentration
in the cytosol. On the other hand, ROS induces cytokine production (pro-inflammatory response),
which may alter intracellular calcium levels. A Ca2+ increase will activate different physiological
processes including gene expression through Ca2+-dependent signaling pathways such as apoptosis,
cell migration and cytoskeleton remodeling. Moreover, TRPM2 may detect increased temperatures to
prevent overheating, limiting the fever response. (b) Cold temperature, menthol or icilin can stimulate
the activity of the TRPM8 ion channels. Upon activation, the TRPM8 channel changes conformation
and permits extracellular Ca2+ to flow through it across membranes. This results in the activation of
Ca2+-sensitive PLC and the hydrolysis of PIP2, which produces inositol 1,4,5-triphosphate (IP3) that
causes the release of Ca2+ from the intracellular stores and generates diacylglycerol (DAG). The elevated
Ca2+ level or DAG can activate protein kinase C (PKC), which, in turn, activates RAF in the ERK
pathway. Therefore, transcriptional activation of genes stimulates cellular proliferation, survival and
invasion, which contribute to cancer growth and metastasis. Created with BioRender.com.
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Then, Ca2+, cADPR, H2O2 and NAADP positively modulate TRPM2, whereas AMP and acidic
pH negatively regulate it [167]. Moreover, there are several known TRPM2 inhibitors, including
N-(p-amycinnamoyl) anthranilic acid (N-ACA), econazole, flufenamic acid, clotrimazole, 2-aminoethyl
diphenylborinate (2-APB), anthranilic acid and curcumin [168–174]. However, most compounds
lack either specificity and/or potency. Nevertheless, another inhibitor has been characterized in a
Cacospongia extract, which efficiently inhibits TRPM2-mediated currents in a concentration and
time-dependent manner. Starkus and colleagues described that the sesterterpenes scalaradial and
12-deacetylscalaradial molecules contained in this extract might act as potent TRPM2 inhibitors [175].
Also, inhibitors of poly (ADP-ribose) polymerase, a potential enzymatic source of ADPR, prevent
TRPM2 activation but do not directly block the channel [176].

For TRPM8 activation, the prominent voltage-dependent gating properties are activated by cold
temperature [141,154] and by natural and synthetic “cooling” agents such as menthol (a cyclic terpene
alcohol extracted from peppermint leaves, Mentha piperita), eucalyptol (a natural organic compound
derived from the Eucalyptus tree) and icilin (a synthetic cooling compound) [177–179]. Furthermore,
it has been established that the most selective TRPM8 ligands are menthol derivates (CPS-368, CPS-369,
CPS-125, WS-5 and WS-12). The selectivity and improved activity seem to be due to the hexacyclic ring
structure present in all these compounds. Conversely, agents such as WS-23 that lack this functional
group, weakly activate TRPM8 and substances with a pentacyclic ring structure maintain TRPM8
inactivity [180].

Like other TRPM channel family members, TRPM8 requires PIP2 for its activation, with specific R
and K residues in the TRP domain being essential for PIP2-dependent channel gating [181,182].

Concerning TRPM8 inhibitor effects, it has been shown that they remarkably reduced cold and
mechanical allodynia in acute and chronic pain models [183]. Specifically, IGM-18 administration
reduces body temperature in a dose-dependent manner, suggesting that the reduction of pain
is due to the modulation of pain pathways, without any alteration of body temperature [184].
Furthermore, another approach to TRPM8 antagonism has been developed through compounds that
inhibit channel-induced gene transcription, analyzing whether a particular compound interrupted the
signaling cascade connecting TRPM8 channel activation (by either icilin or menthol) with the activation
of the transcription factor AP-1. Then, it was demonstrated that the compounds RQ-00203078,
BCTC, TC-1 2014, 2-APB and clotrimazole inhibited TRPM8-induced activation of AP-1 but also
attenuated transcriptional induction mediated by stimulation of either TRPM3 and/or TRPV1 channels.
Nevertheless, while most compounds function as broad-spectrum Ca2+ channel inhibitors, only the
RQ-00203078 compound showed specificity for TRPM8 [183,185,186].

3.3. Physiological Function and Role in Diseases

TRPM2 is implicated in different cellular and physiological processes, including cytokine
production, cell death, oxidative stress response and fibrosis. Moreover, TRPM2 is an essential
factor in cell death induced by oxidative stress through the activation of caspase cleavage [187,188].

As an identified nonselective Ca2+-permeable cation channel and the sensor of ROS (causing cell
damage by elevating intracellular calcium content under oxidative stress), TRPM2 has been recently
demonstrated as being involved in the unilateral ureteral obstruction (UUO)-triggered renal fibrosis.
Related to this, it was shown that TRPM2 activity is involved in renal fibrosis through JNK pathway
activation [189]. Also, the absence of TRPM2 triggered less production of inflammatory mediators
and decreased apoptosis-related protein expressions in response to lipopolysaccharide (LPS)-induced
sepsis [166]. Moreover, other studies in hippocampal neurons indicate that TRPM2 deletion might
regulate inflammatory response [163,166,190]. These findings were confirmed in an Alzheimer’s mouse
model showing that TRPM2 plays an important role in β-amyloid-mediated neuronal toxicity and
memory impairment [191].
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The TRPM2 channel is also found in glial cells (microglia and astrocytes) and plays an
essential role in pathophysiological disorders [192]. Furthermore, recent studies have suggested
that TRPM2 inhibition is effective for preventing ischemic acute kidney injury by relieving oxidative
stress, inflammation and apoptosis [193]. Hence, the TRPM2 channel is an essential regulator of
plasticity [194,195]. In addition, it has recently been described that this ion channel might also behave as
a temperature sensor in a subpopulation of hypothalamic neurons. Then, TRPM2 can detect increased
body temperature to prevent overheating, thereby restricting the fever response [196].

On the other hand, the TRPM8 channel plays a critical role in cold perception [179]. This
channel is, then, the principal molecular transducer of cold somatosensation, in a range between
8–25 ◦C [197]. In terms of pain, it is reported that inhibition of TRPM8 correlates with a decrease
in acute and chronic symptoms; there are also results of analgesia (especially in inflammatory and
neuropathic conditions) in the activation of TRPM8 [184].

In some pain-related disorders, such as osteoarthritis, the activation of peripheral receptors
that express TRPM8 has analgesic characteristics [198,199]. Cooling the skin can produce a calming
sensation on the inflammatory pain. Also, natural TRPM8 agonists, such as menthol, have been used
for centuries due to their analgesic, antipruritic and counterirritant effects [200,201]. Accordingly, it has
been demonstrated that cold chemical agonists have analgesic properties. Therefore, the participation of
this channel in pain modulation has been largely investigated [177,184]. Then, inflammation and nerve
injury might end in cold hypersensitivity, mediated by TRPM8 activation. Thus, cold hypersensitivity
treatment may use compounds that inhibit activation of the TRPM8 channel. Then, apart from its
role in cold perception, this channel contributes to cold allodynia after inflammation or nerve injury,
which makes it is essential for cooling/menthol-based analgesia [202].

Furthermore, the TRPM8 channel is one of the most promising clinical targets for the metastatic
transition of prostate cancer (PC). This fact is based on several studies proposing that this channel plays
a key role in the regulation of PC cell migration [152,203]. Its expression increases during the initial
stages of PC but is reduced after anti-androgen therapy [204]. Consequently, it has been described that
TRPM8 gene regulation would be androgen-dependent [205].

Interestingly, several groups have reported the role of TRPM8 in prostate cancer progression.
Yang and colleagues observed that the overexpression of TRPM8 inhibits migration and proliferation
of the androgen-independent prostate cancer cell line PC-3, also facilitating starvation-induced
apoptosis [206]. In the context of migration, it was reported that TRPM8 is capable of inhibiting
endothelial cell migration via Rap1 GTPase, by direct intracellular interaction between both
proteins [207]. Furthermore, nanoparticles loaded with the TRPM8 agonist W12 inhibit the proliferation
and migration of PC-3 cells through the activation of the TRPM8 channel, in both in vitro and in vivo
models [208]. More recently, it was demonstrated that androgen-dependent inactivation of TRPM8
enhances migration of prostate cancer cells, demonstrating the existence of a non-genomic mechanisms
involved in the regulation of the TRPM8 channel by androgens and the role of TRPM8 in the inhibition
of cancer cell migration [205].

Investigations performed on mice deficient in thermosensitive transient receptors exposed that
temperature-dependent screening was impaired in these two mice models (Trpm2- and Trpm8-null
mice) [196]. Moreover, a TRPM2-genetically deficient mouse has been developed in different
inflammatory models, revealing the involvement of TRPM2 in various innate immunity properties [209].
Consequently, the absence of the TRPM2 channel-mediated function resulted in increased inflammation
under L. monocytogenes infection as compared to WT mice [210]. Also, it has been shown that this mice
model is largely protected from dextran sulfate sodium (DSS)-mediated colitis [211].

The analysis of TRPM8-deficient mice confirmed that TRPM8 channels play a fundamental
role in thermosensation [212]. Then, TRPM8-deficient mice were not able to detect innocuous cold
temperatures and display a partially defective phenotype in responding to noxious cold [213,214].
Moreover, through this model, the role of TRPM8 in regulating pain perception has been extensively
investigated [214,215].
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Therapeutically, the TRPM2 inhibitors described above have revealed a lack of specificity resulting
in a significant limitation. However, in the last five years, research has developed some innovative
TRPM2 inhibitors. These compounds showed an effect in experimental data, with some of them
promising in terms of development into novel therapeutics [166]. For instance, it has been shown
that in mouse neutrophils and dendritic cells, the use of an ADPR modified analog (8Br-ADPR)
could inhibit calcium influx triggered by ADPR [216]. After this positive experience, many other
compounds were designed and their TRPM2 antagonism capacity was assessed, that is, the antagonist
8-Ph-2′-deoxy-ADPR [166]. Moreover, a novel ADPR analog has been synthesized which, at low
concentrations, inhibits currents produced by TRPM2 activation in a specific manner without disturbing
other TRPM channels in an in vitro model [217]. Additionally, experiments based on tat-M2NX,
a cell-permeable peptide (a TRPM2 peptide inhibitor), which has been recently synthesized to interact
with the C-terminus NUDT9-H domain, showed a calcium influx decrease providing protection
from ischemic stroke in young adult and aged male animals with a clinically relevant therapeutic
window [60,218]. On the other hand, other studies have found that TRPM2 suppression (which reduces
inflammation and renal fibrosis by blocking TGF-β1-regulated JNK activation) might be a possible
therapeutic target in renal fibrosis and chronic kidney disease prevention [189].

Far beyond its function as a thermoreceptor, since its cloning almost 20 years ago, diverse research
on TRPM8 pathological and neurophysiological roles has been developed, with TRPM8 identified as a
potential target to reduce symptoms or cure many disorders. Supported by the scientific literature,
Axalbion’s in vivo and ex vivo proof of concept experiments suggests that its lead candidates, AX-8
and AX-10, could be used to treat diseases such as chronic cough and dry eyes (© 2020 Axalbion).

Main TRPM2/TRPM8 endogenous and exogenous modulators, participation in diseases and
physiological functions are listed in Table 2.
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Table 2. Molecules modulating the activity of TRPM2 and TRPM8, participation in physiological processes and pathologies.

Channel Modulator Inhibition or
Activation 1 Function Disease, Affection or

Objective of Study 2 Model of Study Ref.

TRPM2

ADPR + Ca2+ currents PC HEK293 cells and Jurkat T
lymphocytes [160,219]

ROS + Cell death PC HEK293 cells [187,220]

pH - Ca2+ currents PC HEK293 cells [221,222]

Curcumin - Production of ROS Hepatic damage Hooded Wistar rat [168]

2-APB - Ca2+ currents PC HEK293 cells [169]

Flufenamic acid - Ca2+ currents PC HEK293 cells [170]

Imidazoles clotrim-
azole and econazole - Ca2+ currents PC HEK293 and CRI-G1 [171]

Cacospongiasp.
OrganicExtract - Ca2+ currents PC HEK293 cells [175]

PJ34 and DPQ Inhibition of poly
(ADP-ribose) polymerase PC HEK293 cells [176]

TRPM2-knockou and siRNA - Ca2+ currents and JNK
pathway activation

Renal fibrosis C57BL/6J mice and HK-2 [189]

shRNA -

Production of inflammatory
mediators and decreased
apoptosis-related protein

expressions

Sepsis Human primary monocytes [223]

siRNA and Trpm2-
deficient mice - CXCL2 expression,

neutrophil infiltration Inflammation Mouse monocytes [224]

TRPM2-KO - Neuronal toxicity and
memory impairment

β-amyloid-mediated
neuronal toxicity APP/PS1 mice [191]

8-Br-cADPR -
Inhibition of renal

ischemia–reperfusion
injury

renal
ischemia–reperfusion

injury
Wistar rat [193]
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Table 2. Cont.

Channel Modulator Inhibition or
Activation 1 Function Disease, Affection or

Objective of Study 2 Model of Study Ref.

TRPM8

Cold and Menthol + Ca2+ currents PC CHO-K1/FRT cells [141,177]

Icilin + Ca2+ currents PC
Trigeminal ganglia from

newborn Sprague-
Dawley rats

[154,177]

Menthol derivates CPS-368,
CPS-369, CPS-125, WS-5 and

WS-12
+ Ca2+ currents PC Xenopus oocyte system and

channel activity assayed [180]

2-(1H-Indol-3-yl)-N-
(4-phenoxybenzyl)

ethanamine
+ Ca2+ currents PC HEK293 [182]

PIP2 + Ca2+ currents PC HEK293 and
Xenopusoocytes [225]

N,N-Dibenzyl-2-
(1H-indol-3-yl) ethanamine - Ca2+ currents PC HEK293 [182]

DFL23693 and DFL23448 - Ca2+ currents
Induction of orofacial
and neuropathic pain

HEK293, Sprague-
Dawley rats [183]

IGM-18 - Ca2+ currents and pain
reduction

Induction of orofacial
and neuropathic pain Sprague-Dawley rats [184,226]

IGM-5 +
Increase in body

temperature
Induction of orofacial
and neuropathic pain Sprague-Dawley rats [184,226]

TRPM8-KO - Sensing temperature Thermosensation C57BL/6 mice [212,214]
1: activation (+) and inhibition (-); 2: physiological conditions (PC).
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4. TRPM4/TRPM5

4.1. General Properties and Distribution

TRPM4 and TRPM5 are channels permeable to monovalent cations and, under physiological
conditions, their single-channel conductance range between 23 to 25 and 16 to 25 pS,
respectively [67,227–231]. In particular, TRPM4 has a conductance preference for Na+ > K+ > Cs+ >

Li+ >> Ca2+, Cl− and TRPM5 for Na+
≥ K+

≥ Cs+ > Li+ [232].
The TRPM4 gene is encoded on chromosome 19 and its protein product contains 1213 amino

acids, whereas TRPM5 is an 1165 amino acid protein encoded on chromosome 11 [233]. These channels
present a transmembrane domain (TMD) composed of 6 α-helix motif (S1 to S6) [231], between S5 and
S6 is the pore region, which includes the residues R964-R965 and S970 highly conserved in the TRP
family (except for TRPM2), which is important for channel regulation [231,234]. At the intracellular
N-terminus are four domains (MHR1 to MHR4), highly conserved in the TRP family [231]. Both the
MHR3 and MHR4 domains interact with the TMD through MHR4. In this region, MHR1 also interacts
with the MHR3 domain, forming a complex incapable of interacting with the central coiled-coil (CH3).
Finally, at the intracellular C-terminus are the coiled-coil domain (CH1-CH3), composed of three
alpha-helix domains and which interacts with a large number of phospholipids on the inside of the
plasma membrane. This interaction gives rigidity to the pore structure [231]. Unfortunately, no detailed
studies describe the TRPM5 structure [229].

It has been shown that TRPM4 is expressed in different tissues, with predominance in the
intestine and prostate [48,80]. Also, this channel is expressed in cells from innate and adaptive immune
response [41,230,235]. The TRPM5 expression is more specific than TRPM4 and is restricted to intestine,
pancreas, prostate and taste cells [48,80,233].

4.2. Activation and Inhibition: Endogenous Modulators

Like many members of the TRP family, TRPM4 and TRPM5 are regulated by phosphatidylinositol
(4,5)-bisphosphate (PIP2) [41,230,236]. In recent years, it has been demonstrated that amino acids
R755 and R767 in the N-terminus of TRPM4 are important for direct interaction with PIP2 and
phosphatidylinositol (3,4,5)-trisphosphate (PIP3) ligands [237]. Unlike other melastatine subfamily
members, these channels are activated by a rise in [Ca2+]i and it has been shown that TRPM5 is
5–10 times more sensitive than TRPM4 [232]. TRPM4 and TRPM5 also respond to external stimulation
by ATP [41,228,230]. Related to this, Nilius and colleagues demonstrated that TRPM4 is sensitive to
different adenine nucleotides in the order ADP > ATP > AMP >> adenosine and could be inhibited
by 1 µM ATP, while TRPM5 remained insensitive (Figure 4) [232,238]. Another important regulatory
difference between TRPM4 and TRPM5 was exposed using U73122, a PKC inhibitor [239]. U73122 was
able to modulate the activity of TRPM3 and TRPM4 but not of TRPM5, in which the activation of
TRPM4 by U73122 was independent of PIP2 and Ca2+ [240]. These differences in endogenous regulation
between TRPM4 and TRPM5 are explained by their structural differences, as most of these cellular
processes occur due to the physical interaction of channel domains with regulatory molecules and
subsequent conformational change in the channel structure. Interestingly, calmodulin (CaM) was
shown to regulate the sensitivity of TRPM4 to Ca2+, as, using CaM negative mutants, TRPM4 decreases
its activation. In addition, mutations in the C-terminus binding site of CaM result in a reduction in the
amplitude of the current and promote faster decay [235].

TRPM4 and TRPM5 activity is also regulated by heat, which has been observed to change the
voltage-dependent activation curve [241]. However, none of these channels are considered real
thermal receptors.
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On the other hand, it has been shown that TRPM5 presents an [IC50] at a pH of 6.2 and a total
block at pH 5.9. This was demonstrated by studying a double TRPM5 mutant for E830 (S3-S4 linker)
and H934 residues (S5-S6 linker), which turned out to be extremely insensitive to extracellular pH.
Interestingly, these residues are not conserved in TRPM4 (Figure 4) [242].

The first exogenous inhibitors identified were flufenamic acid and spermine, both non-specific
inhibitors which also inhibit TRPM4 and TRPM5 [232,238,243]. Another TRPM4 inhibitor is
9-phenanthrol, which has been reported to exhibit a certain specificity for TRPM4, producing a decrease
in its activity [244,245]. Also, glibenclamide has been reported as a TRPM4 inhibitor, which blocks
TRPM4 current in the sinoatrial node cell at a concentration of 100 µM In recent years, the compound
2-chloro-2-(2-chlorophenoxy) acetamido benzoic acid (CBA) has been reported as a powerful TRPM4
inhibitor [246,247].
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Figure 4. Endogenous regulation of TRPM4 and TRPM5. Both TRPM4 and TRPM5 are activated by
[Ca2+]i and regulated by PIP2. TRPM4 also is activated by CaM and PKC by phosphorylation of the
TRP region. PLC is fundamental for the regulation of both channels due to the activation of PKC via
DAG and also mediates the release of calcium from ER via IP3. Finally, these channels are inhibited
very differently. In the case of TRPM4, it is inhibited by AMP, ADP and ATP, while TRPM5 is inhibited
by a high pH or heat. Created with BioRender.com.

4.3. Physiological Function and Role in Diseases

The first indications of a pathophysiological role for TRPM4 were provided by Earley and
colleagues, reporting that its downregulated expression attenuated smooth muscle cell depolarization.
Also, it was observed that the myogenic vasoconstriction of cerebral arteries decreased, demonstrating
that the decrease in TRPM4 activity affects blood flow in the brain [248]. Later, using an ex vivo
study model, it was observed that TRPM4 is an important link between the activation of the P2Y
mechanoreceptor and the myogenic constriction of cerebral parenchymal arterioles (PAs) isolated from
the brains of rats. TRPM4 inhibition by 9-phenanthrol provoked a strong decrease of the myogenic tone
of isolated PAs. Congruently, the downregulation of TRPM4 using antisense oligodeoxynucleotide
(AO) decreases the vasoconstriction induced by the specific ligands UTPγS and UDP [249].
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Afterwards, Gerzanich and collaborators, using rodent models of spinal cord injury (SCI),
demonstrated the importance of TRPM4 in the progressive expansion of the second hemorrhage
associated with vascular fragility. Suppression of TRPM4 by AO in rats after SCI maintains the integrity
of the capillary structure and generates an increase in neurological function [250], supporting its
pathological role in the vasculature. Also, evidence has emerged supporting the notion that TRPM4
participates in modifying endothelial structure and function, due to its inhibition using drugs and
short interfering RNA and promotes TGF-β-mediated fibrotic conversion of endothelium cells (EC),
demonstrating its role in endothelial transformation under inflammation and suggesting that TRPM4
could participate in the Ca2+ signaling required for endothelial fibrosis [251]. Interestingly, it has been
shown that the LPS-induced endothelial transformation process can also be mediated by TRPM7,
suggesting potential crosstalk between TRPM4 and TRPM7 [251,252].

Inhibition of TRPM4 in mouse embryonic fibroblasts (MEFs) results in reduced cellular spreading,
migration and contractile behavior and impacts the turnover of focal adhesions, serum-induced
Ca2+ influx, FAK and Rac activities. This effect was also observed in an in vivo model of skin
wound healing [253]. Interestingly, TRPM4 was shown to be crucial in LPS-induced endothelial cell
death. It was observed that in EC, the pharmacological inhibition of TRPM4 with 9-phenanthrol or
glibenclamide protects the endothelium from Na+-dependent cell death [254].

LPS and ROS-induced cellular death was mediated by TRPM4. Also, using specific inhibitors
such as 9-phenanthrol and glibenclamide, the H2O2-enhanced endothelial cell migration is diminished.
Similar results were found using siRNA-TRPM4 [255]. Thus, it has been shown that TRPM4
overexpression eliminated H2O2 desensitization of TRPM4 in a dose-dependent manner and, at the
same time, independently of PIP2. It was also determined by site-directed mutagenesis experiments
that the C1093 residue was crucial for the loss of H2O2-mediated desensitization [256].

In the immune system, it has been described that TRPM4 regulates the migration of bone
marrow-derived mast cells (BMMCs). BMMCs from knockout mice for TRPM4 (trpm4−/−) were not
able to migrate after stimulation with dinitrophenylated human serum albumin or stem cell factor [257].
Thus, it has been reported that activated trpm4−/− BMMCs produce a greater degranulation and release
more histamine, leukotrienes and tumor necrosis factor-α (TNF-α) [258]. Furthermore, TRPM4 is
crucial to the mobility of dendritic cells (DCs) but not to the maturation process [259]. On the other
hand, the deletion of the trpm4 gene has been reported to increase the mortality of mice in a model
of sepsis induced by cecal ligation and puncture, also generating a systematic increase in LysC+

monocytes and the production of proinflammatory cytokines.
In T-lymphocytes, TRPM4-dependent depolarization modulates Ca2+ oscillations have been

reported to increase the production of interleukin 2 (IL-2) [260]. Also, it has been described that TRPM4
regulates the function of Th1 and Th2 lymphocytes by the differential regulation of Ca2+ signaling
and the location of the nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) [261]. Furthermore,
the alteration in Ca2+ homeostasis in trpm4−/− macrophages downregulates the AKT signaling pathway,
causing a decrease in the phagocytic activity of these cells. Conversely, no alteration in the function,
distribution or mobilization of Ca2+ was found in trpm4−/− neutrophils [262].

In recent years, evidence has emerged about the interaction of sulfonylurea receptor 1
(Sur1)-NCCa-ATP and TRPM4. The first to demonstrate a possible direct interaction between these
proteins was Sala-Rabanal and collaborators, who, through electrophysiological and Förster resonance
energy transfer (FRET) studies, determined that in COSm6 cells the interaction between SUR1 and
TRPM4 was unlikely [263]. However, Woo and colleagues, using immunoprecipitation and FRET
studies, determined that the de novo appearance of Sur1-Trpm4 heteromers existed after spinal cord
injury in rats [264]. Subsequently, upregulation of the SUR1-TRPM4 heteromers was reported in human
and rat brains with subarachnoid hemorrhage (SAH). Similar results were found by postmortem
analysis of TRPM4 expression in infarcted human brains [265].
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The role of TRPM4 in cardiac hypertrophy has also been reported by Guinamard and collaborators,
who observed an increase in TRPM4 expression in spontaneously hypertensive rats, while no expression
was detected in control rats [266]. This was corroborated by Demion and colleagues through
morpho-functional analysis of the heart from trpm4−/− mice, showing an increase in the wall thickness,
the size of the left ventricular chamber and hypertrophy compared to trpm4+/+ mice [267]. Furthermore,
elimination of TRPM4 in mice cardiac muscle cells has been shown to result in hypertrophic growth after
treatment with Angiotensin-II (AngII). At the same time, this was ratified by the increased expression of
Regulator of Calcineurin1, atrial natriuretic peptide and α-actin [268]. In addition, pre-treatment with
9-phenanthrol in mouse hearts considerably decreased the area affected by infarction and restored the
contractile function compared to control [269]. Following this, it has been shown that in trpm4/trpm5(−/−)

mice under β-adrenergic stimulation (Isoprenaline), there is no difference in the positive ionotropic
response of papillary muscles as compared to the trpm4−/− mouse. In a monocrotaline (MCT)-induced
pressure load rat model, trpm4−/− rats showed a significant increase in hypertrophy as compared to
trpm4+/+. Also, a drastic decrease in TRPM4 protein levels in the right ventricle was determined in
MCT-treated rats, while no changes in the left ventricle were observed in control animals [270].

The first reports of TRPM4 in the context of cancer showed that the inhibition of this channel
in HeLa cells generated a decrease in cell proliferation [271]. In prostate cancer patient samples,
it was reported that prostatic intraepithelial neoplasia and prostate cancer tissue present high TRPM4
levels compared to healthy tissue [272]. Furthermore, it has been observed that the knockdown
of TRPM4 was able to decrease the migration of androgen-insensitive prostate cancer cell lines
DU145 and PC3 but not its proliferation. Interestingly, a SOCE increase occurred after inhibition of
TRPM4 by siRNA [272]. However, Sagredo and colleagues reported that the inhibition of TRPM4
leads to a decrease in proliferation in PC3 [271,273]. The same group evaluated the migration and
invasion ability of PC3 cells inhibiting TRPM4 by short hairpin RNA and observed a decrease in
the migration/invasion capacity [274]. On the other hand, overexpressing TRPM4 in LnCap cells
increases Snail1 expression and the migration/invasion capacity [274]. Moreover, it was recently
reported that the expression of TRPM4 is upregulated in breast cancer and associated with worse
clinical-demographic parameters [275,276]. Indeed, it was reported that in prostate cancer, TRPM4 is
regulated by microRNA-150 [277]. The same was also reported in colorectal and pancreatic cancer,
opening a door to future anti-cancer therapies based on the inhibition of TRPM4 in signaling pathways
associated with EMT [278,279]. Also, the inhibition of End Binding (EB) proteins-dependent anterograde
trafficking of TRPM4 inhibits cell invasion in B16-F10 melanoma model [280]. As such, future anti-cancer
therapies based on the inhibition of TRPM4 in signaling pathways seem promising.

In silico analysis of clinical samples has shown that the high expression of TRPM5 mRNA was
correlated with a poor overall survival rate in patients with melanoma and gastric cancer but not in
patients with ovarian, lung, breast or rectal cancer [281]. However, the same group noted that treating
mouse tumors with triphenylphosphine oxide, a potent and selective TRPM5 inhibitor, showed a
significant reduction in lung cancer metastasis [281,282]. On other hand, a hospital-based control case
study of single nucleotide polymorphisms in gene regions related to immune responses associated
polymorphisms in TRPM5 with altered susceptibility to developing childhood leukemia [283].

In 2010, Ketterer and collaborators, through a genome-wide association study, determined
that there was a relationship between TRPM5 and the development of prediabetic phenotypes,
including pancreatic β-cell dysfunction [284]. It has been reported that trpm5–/– mice that underwent
glucose tolerance tests maintained elevated glucose levels in the blood for over 1 h compared
to WT mice. Furthermore, in pancreatic islets isolated from trpm5–/– mice, arginine-induced
hyperglycemia and insulin secretion were significantly reduced [285]. Trpm5−/− mice are more
resistant to carbohydrate-induced obesity and these mice had significantly lower increases in weight
and fat mass when exposed to a high-fat diet and even developed less insulin resistance than control
mice [286]. Interestingly, the trpm5–/– mice were found to consume the same amount of calories
when fed the high-fat diet and the high-fat diet plus a tasty chocolate ball-much the opposite of
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what happened with the WT mice, which considerably increased their caloric intake in the combined
diet [287]. On the other hand, it has been shown in pancreatic islets isolated from a mouse model of
type II diabetes that increased plasma insulin levels negatively regulate TRPM5 expression [288].

Recently, TRPM5 was reported to be involved in the response to high salt ingestion. Inhibition
of TRPM5 results in a repulsive response to high salt, with reduced taste perception in the cortical
field of the mice. Remarkably, this altered perception of bitter taste caused by high salt intake also
existed in hypertensive patients with high salt intake [289]. Lastly, the same group demonstrated that
by increasing the expression of TRPM5 in mice through the injection of bitter melon extract (BME)
and cucurbitacin E (CuE), a major compound in BME, high salt-induced hypertension was reduced.
Even long-term BME intake significantly improved aversion to high salt concentrations by upregulating
TRPM5 expression and function, ultimately decreased excessive salt intake in mice and improved
cardiovascular dysfunction induced by high salt and hypertension angiotensin II-induced [290].
These findings suggest that TRPM5 functions as a possible target to counteract the pathological effects
of high-salt diets and hypertension.

Main TRPM4/TRPM5 endogenous and exogenous modulators, participation in diseases and
physiological functions are listed in Table 3.
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Table 3. Molecules modulating the activity of TRPM4 and TRPM5, participation in physiological processes and pathologies.

Channel Modulator Inhibition or
Activation 1 Function Disease, Affection or

Objective of Study 2 Model of Study Ref.

TRPM4

PLC > PIP2 > IP3 > Ca2+ rise + Channel activation PC 293T, HEK 293 and
rosetta cells [41,228,230,232,237]

ATP
PKC

-
+

Ca2+ sensitivity PC HEK 293 cells [228]

ADP, ATP, AMP and adenosine - Channel activation PC HEK 293 cells [232,238]

CAM -
Ca2+ sensitivity, activation

and shift the voltage
dependence of activation

PC HEK293 cells [235]

Heat +
Temperature- dependent

activation curve
Thermal sensitivity of

sweet taste HEK293 cells [241]

Flufenamic acid and spermine - Channel activation PC HEK 293 cells [232,243]

9-phenanthrol - Channel activity PC HEK293 cells [244,245]

Glibenclamide - Channel current PC HEK293 cells [246]

CBA - Channel current PC HEK293 cells [246,247]

TRPM5

PLC > PIP2 > Ca2+ rise
+
-

Channel activation,
desensitization and

sensibilization
PC CHO-K1 or HEK-293 M1,

293T cells [41,230,232,236]

ATP + Channel activation PC 293T cells [41,230]

Heat +
Temperature- dependent

activation curve
Thermal sensitivity of

sweet taste HEK293 cells [241]

pH 6.2–5.9 - Channel activation Taste transduction HEK293 cells [242]

Flufenamic acid and spermine - Channel activation PC HEK 293 cells [232,243]
1: activation (+) and inhibition (-); 2: physiological conditions (PC).
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5. TRPM6-TRPM7

5.1. General Properties and Distribution

Transient Receptor Potential Melastatin 6 (TRPM6) and Transient Receptor Potential Melastatin 7
(TRPM7) are bifunctional proteins composed of an ion channel permeable to divalent cations, bound to
the kinase domain [291]. The expression of these channels in human organs for TRPM6 is tissue-specific,
mainly in the kidney, small intestine and colon, whereas TRPM7 has a ubiquitous expression [48,80].

Experiments using HEK-293 cells and the heterologous expression of human TRPM6 in CHOK1
cells have shown that TRPM6 and TRPM7 are non-selective channels permeable predominantly to Mg2+

and Ca2+. However, they are also permeable to a wide range of divalent cations including Ba2+, Mn2+,
Sr2+, Cd2+, Ni2+ and Zn2+. In TRPM6, inward currents induced by Ca2+ and Mg2+ blocked monovalent
inward currents with an affinity of 5.4 µM for Ca2+ and 3.4 µM for Mg2+ at −120 mV [292]. In HEK293
cells, TRPM6 selectivity and permeation to Mg2+ are regulated for the 1028GEIDVC1033 aminoacidic
sequence from the pore region [293]. However, some authors suggest that the TRPM6 and TRPM7
selectivity pattern is modified depending on the tissue, physiological environment and diseases and
becoming exclusively permeable to one of ion [292,294].

The TRPM6 and TRPM7 structures are composed of the same three regions of the TRPM subfamily
with MHR in the N-terminus, the channels between S1 to S6, the TRP domain for stabilization,
CC for tetramerization and the S/T rich domain and α-kinase domain (KD) in the C-terminus
(Figure 5a) [50,52,295–297]. Due to their structural similarities, TRPM6 and TRPM7 are closely related
and can assemble heterotetrameric complexes after TRPM7 transphosphorylation by TRPM6 in a
tissue-dependent manner (Figure 5b) [298,299]. The tetrameric channels assembled are composed
of four homomeric subunits or two subunits of each protein and these arrangements modulate the
pathophysiological role of TRPM6 and TRPM7 [292,300]. However, TRPM6/7 complex differs in
some properties with respect to the TRPM6 and TRPM7 homomeric channels, including different
permeability to Ni2+, differences in pore structure, specifically the number of negatively charged
residues, 8 for TRPM6 and 7 for TRPM7, which produce variations in sensitivity to low pH in the three
types of channels, and, finally, the conductance, which range between 82 to 84 pS for TRPM6, 40 to
105 pS for TRPM7 and 56.6 pS for TRPM6/7 heteromeric [67,292,296,301,302].

The kinase domain of these channels is a member of an atypical protein kinase family called
α-kinase. These kinases have the particular substrate specificity in which they predominantly
phosphorylate residues present inα-helices [303]. The kinase activity is related to its autophosphorylation
activity in the S/T rich domain, which enables them to interact and phosphorylate other
proteins [304]. In relation to this, it has been shown that autophosphorylation of the S/T rich domain
plays an essential role in the control of the protein kinase activity of TRPM6 and TRPM7 by providing
the access of the catalytic domain to the substrate [305].
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Figure 5. TRPM6 and TRPM7 structure and tetramer representation. (a) The N-terminus region is
composed of four melastatin homology regions (MHR) and the pre-S1 (TRPM6) or homology region
(HR, TRPM7) domain. The channel domain contains six transmembrane segments (S1–S6) and the
pore-forming loop between the S5 and S6 segments. The C-terminus region is composed of TRP,
coiled-coil (CC), Serine—Threonine (S/T) and kinase domains. aa: amino acid. (b) These channels form
tetramers with four subunits in homomeric or heteromeric form forming a pore in the membrane and
allows divalent cations to permeate. 1–6: transmembrane subunits, NT: N-terminus, CT: C-terminus.
Created with BioRender.com.

5.2. Activation and Inhibition: Endogenous Modulators

The homomeric form of TRPM6 and TRPM7 but not the heteromeric from, remains inactive
under physiological Mg2+ levels and has high responsiveness to cytosolic Mg2+ changes [306,307].
Nevertheless, the heteromeric form is active under basal conditions by the TRPM6 kinase domain
activity and lacks sensibility to Mg2+ and Mg-ATP [308,309]. In particular, a bifunctional effect of
adenosine triphosphate (ATP) has been demonstrated in TRPM7 activity, where initially it was reported
that ATP activates TRPM7 by the chelation of Mg2+ [296]. However, other studies demonstrate that
Mg-ATP, at millimolar concentrations, inhibits TRPM7 activity in a Mg2+-concentration-dependent
manner [294].

TRPM6 and TRPM7 are endogenously inhibited by the loss of the interactions between the TRP
domain and phosphatidylinositol bisphosphate (PIP2) due to its hydrolysis as a result of phospholipase
C (PLC) activation. Xie and colleagues demonstrated that the interaction of TRPM6 and PIP2 is by the
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R1088 residue in the TRP domain but in TRPM7 the interaction its due to the histidine, arginine and
lysine residues in the TRP domain with no specific residue identified yet [310].

Epidermal growth factor (EGF) increases the activity and expression of TRPM6 through
ERK/AP-1 signaling, which is prevented by mutations performed in EGF [311–313]. It has also
been shown that EGF-mediated TRPM6 activation is inhibited by anti-epidermal growth factor receptor
drugs [314]. Similar effects occur with insulin, which increases the activity and recruitment of TRPM6,
being abolished by diabetes treatment drugs [315,316]. Uromodulin modulates endocytosis and the
abundance of TRPM6 in the plasmatic membrane of epithelial cells from the distal convoluted tubule,
increasing TRPM6 activity during Mg2+ deficiency periods [317]. Other endogenous inhibitors of
TRPM6 activity include ATP through its receptor P2X4 and hydrogen peroxide, which oxides M1755 in
the TRPM6 kinase domain, inhibiting Mg2+ currents and being abolished by methionine sulfoxide
reductase B1 [318,319].

Some studies have shown that TRPM6 expression and activity are modulated by different
exogenous molecules. Metformin, a drug widely used to control sugar-blood concentration,
inhibits TRPM6 expression in colon and kidney cells, which cause downregulated Mg2+

homeostasis [316]. Anti-epidermal growth factor receptor (EGFR) drugs used during cancer treatment
cause TRPM6 upregulation and consequent hypomagnesemia in renal tubular epithelial NRK-52E cells.
Nevertheless, GW-9662 and LE135 drugs can revert the reduction of Mg2+ reabsorption caused by
anti-EGFR drugs [320]. Also, the activity of TRPM6 and heteromeric TRPM6/7 channel is modulated
using a specific inhibitor, NS8593, which reduces the Mg2+ influx in kidney cells [299].

In HEK-293 cells, it has been shown that TRPM7 channel activity is sensitive to intracellular pH
and Mg2+ and that this relation is biphasic in both cases. This means that the inhibition involves
two separate sites of high and low Mg2+ affinity, when the intracellular solution contains a relative
weak Mg2+ concentration [321]. In addition, in 2019, Inoue and colleagues demonstrate that reduced
Mg2+ intracellular concentration in adipocytes and pre-adipocytes activates TRPM7-mediated Ca2+

influx [322].
In 2004, Takezawa and colleagues showed, in HEK293 cells, that the activation of muscarinic

and β-adrenergic receptors modulates cyclic adenosine monophosphate (cAMP), which activates
protein kinase A (PKA) and that this process is crucial for TRPM7 activation. Also, they showed
that the TRPM7 endogenous kinase domain is not essential for channel gating. It remains unclear
whether the relation between cAMP, PKA and TRPM7 is due to an interaction between these proteins
or the phosphorylation of the S/T rich domain [323]. Nevertheless, in 2018, Broertjes and colleagues
showed that TRPM7 Ca2+ currents in mouse neuroblastoma cells decreased when cAMP concentration
increased and when the PKA catalytic domain was inhibited. This is due to the phosphorylation of
S1269 residue near the CC domain of TRPM7 by PKA, inhibiting the gating of the channel and the
Ca2+ influx stimulated by bradykinin [324]. Interestingly, it is known that bradykinins signal via
two G-protein coupled receptors, B1 (BDKRB1) and B2 (BDKRB1). The activation of these receptors
activates the PLC pathway and intracellular Ca2+ mobilization [325]. Thus, it is important to elucidate
the mechanism by which bradykinin activates TRPM7 activity, taking into account that PLC protein,
as we discussed before, inhibits the TRPM7 activity. Finally, in 2020, Sun and colleagues demonstrated
TRPM7 activation by a β-adrenergic receptor agonist like isoproterenol and its activation regulates
Mg2+ homeostasis in neuroblastoma cells [326]. The differences showed in these studies could be
caused by differences in the methodology and different cell types used.

The oxidative stress is also related to the TRPM7 activation, in which an increased reactive oxygen
species (ROS) extracellular concentration inhibits the TRPM7-dependent current in an Mg2+ but not
ATP-dependent manner [327]. In contrast to these results, it has been shown that the ROS intracellular
concentrations also modulate the activity of this channel, such that when the concentration of ROS is
increased, TRPM7 expression and activity are also increased [328].

On the other hand, it has been shown that antipsychotic drugs, like aripiprazole, inhibit microglia
inflammation by inhibiting the Ca2+ influx mediated by TRPM7 activity [329]. Also, 2-aminoethyl
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diphenyl borinate (2-APB) is widely used for the inhibition of TRPM7 activity, which exerts it activity
by intracellular acidification [321]. Other drugs used are Sphingosine, fingolimod (FTY-720) and
Carvacrol, which are immunosuppressants and anti-inflammatory drugs that prevent TRPM7 gating
and ion influx [330,331]. Finally, under physiological conditions, it has been shown that TRPM7
activity is modulated by small molecules (i.e., Naltriben, Mibefradil, Sertraline, etc.), which activate
this channel even under conditions of low PIP2 or decreased intracellular Mg2+ levels [332].

5.3. Physiological Function and Role in Diseases

It has been shown that both channels TRPM6 and TRPM7 are closely related to the maintaining
of Mg2+ and Ca2+ homeostasis, which, in turn, is related to physiological process and disease
development [333].

TRPM6’s contribution to Mg2+ homeostasis is essential in the kidney and small intestine [299],
however, it has also been observed in mammary epithelial cells [334] and colon cells [335].
Further studies performed using TRPM6 heterologous expression in HEK923 cells and Xenopus
laevis oocytes show that mutations in TRPM6 affect TRPM6/7 complex formation, inhibiting TRPM6
expression. It is hypothesized that these events strongly affect intestinal transport and renal Mg2+

reabsorption [336,337].
Likewise, TRPM6 participates in other relevant physiological processes, including early embryo

development, where TRPM6 is essential for survival and its study using murine models shows that its
lack is lethal [338,339]. Further study of TRPM6’s role in Xenopus laevis embryogenesis has shown that
TRPM6 expression begins in gastrulation and its higher expression levels occur in the neurulation stage.
Abnormalities in TRPM6 function caused by microinjection of an antisense morpholino oligonucleotide
targeting TRPM6 induced defects in gastrulation and neural tube closure and some embryos exhibited
alterations in head, eye and brain size. Finally, experiments using TRPM6 depletion showed that a
lack of TRPM6 specifically affects pole cell radial intercalation, leading to defects in blastopore closure
during the neural tube closure process [340].

Deletion of TRPM7 channel was lethal in DT-40 B lymphocyte cells [294]. Also, in this cell
type, it has been shown that this channel regulates the Ca2+ homeostasis through the regulation of
Store-Operated Calcium Entry (SOCE) by its kinase activity, where blocking this channel results in a
significant downregulation of the refill Ca2+ stores process [341].

In the membrane of acetylcholine-secreting synaptic vesicles from sympathetic neurons, TRPM7
channel activity is crucial for spontaneous vesicle fusion [342]. In adipocytes, during physiological
conditions, TRPM7 mediates the influx of Ca2+ depending on intracellular Mg2+ concentration and the
actions of different inhibitors like 2-aminethoxydiphenyl borate (2-APB), hydrogen peroxide (H2O2)
and other drugs, which inhibit the TRPM7-mediated Ca2+ current [322]. In endothelial cells (EC), it has
been demonstrated that TRPM7 is related to the growth and proliferation process by the extracellular
signal-regulated kinase (ERK) signaling pathway, where the inhibition of TRPM7 activity using 2-APB,
Mg-ATP, Gd3+ or specific small interference RNA (siRNA) decreases these processes by the reduction
of the expression and amplitude of the TRPM7-like current [343].

In a recent study, Mittermeier and colleagues (2019) using genetic and biophysical approaches
explored the role of TRPM7 beyond its known role in Ca2+ balance, establishing a key role of TRPM7
channel activity in maintaining Zn2+, Mg2+ and Ca2+. The authors demonstrated TRPM7 importance
in organismal mineral homeostasis, demonstrating that intestinal and renal TRPM7 regulation of these
minerals is necessary for postnatal growing and survival [344].

In animal models, Ryazanova and colleagues showed that kinase domain deletion in homozygous
mice generates embryonic lethality but the heterozygous mice are viable and show hypomagnesemia
with reduced intestinal Mg2+ absorption due to reduced TRPM7 currents provoking decreased levels
of Mg2+ in plasma, bones, erythrocytes and urine in adult mice. These results indicate that this channel
has a fundamental and importantly nonredundant role in cellular physiology and development [345].
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Mg2+ participates in several enzymatic reactions. Therefore, metabolic abnormalities that affect its
transport through TRPM6 generate systemic alterations and pathologies with considerable gravity [346,
347]. Hypomagnesemia with secondary hypocalcemia (HSH) is an autosomal recessive condition
deeply studied, characterized by neuromuscular disorders due to Mg2+ deficiency [348] and genetic
studies carried out in patients have identified several mutations in TRPM6 causing the disease [349,350].

Genetic studies carried out on infant patients associate two genetic variations of TRPM6 with
embryo development defects. First is the TRPM6 reference SNP (single nucleotide polymorphism)
rs3750425 (G>A; V1393I), associated with meningomyelocele, a tube neural disorder that affects
osteogenesis and causes a spina bifida-like phenotype and reduced Mg2+ levels in serum [351] and the
homozygous mutation in exon 19 of TRPM6 gene (Chr9: 77407598; C>T; c. 2480G>A) that results in a
stop codon and premature truncation of the TRPM6 protein, causing reversible epileptic childhood
encephalopathy [352]. Moreover, the TRPM6 rs2274924 in Chinese patients confers susceptibility to
post-stroke epilepsy development, also affecting Mg2+ serum levels [353].

TRPM6 disorders have also been associated with clinical complications derived from chronic
diseases such as diabetes [354,355], where TRPM6 V1393I and TRPM6 K1584E polymorphisms present
in pregnant women with insulin resistance generate high susceptibility to developing gestational
diabetes mellitus or diabetes mellitus type 2, possibly by the underlying defects in Mg2+ transport
that affect insulin receptor sensitivity [315]. In a hypertension murine model, aldosterone infusion
affected TRPM6 expression in the plasmatic membrane, triggering hypomagnesemia and worsening
hypertension-induced renal injury. Correction in Mg2+ levels through supplementation diminished
aldosterone-induced blood pressure increase, renal fibrosis and oxidative stress due to increased
TRPM6 expression and activity, suggesting a close interaction between TRPM6 activity and aldosterone
effects on cardiovascular and renal function [356]. Finally, genetic profile analysis in cancer samples
targeted TRPM6 gene into 10 hub genes for colorectal cancer development and the regulation of its
expression by the miRNA Hsa-let-7f-1 is key for patient survival [357].

The TRPM7 function and dysfunction are closely related to the pathogenesis of multiple cancers.
Several studies of prostate cancer cells have shown that the Ca2+/Mg2+ ratio has an important role in
the initiation and progression of this type of cancer, added to the importance of hypoxia in TRPM7
activity and its role in the epithelial-mesenchymal transition and cell migration of cancer cells due to
TRPM7-HIF-1α-Anexin-1 signaling axis activation [358,359]. TRPM7 but no TRPM6 expression, it is
also important in the predisposition of patients with inflammatory bowel disease to colorectal cancer
(CRC) and the progression of CRC, where it has been shown that TRPM7 expression is related to tumor
infiltration, lymph node metastasis, distant metastasis and advanced clinical stage in patients [360,361].

Related to this, lymphocytes of a mice model with inactive TRPM7 kinase showed
decreased pro-inflammatory cytokine secretion, less intraepithelial infiltration and retention, reduced
differentiation to Th17 lymphocytes and a protective effect to acute graft-versus-host disease [362].

TRPM7 activity has also been related to delayed neuronal death (DND) after ischemic injury,
where the suppression of this channel in vitro and in vivo in the CA1 neuron of adult rats using
siRNA packaged in an adeno-associated virus inhibits ischemic DND, improves recovery in surviving
TRPM7-deficient neurons and prevents the loss of memory functions [363].

Our group previously demonstrated that during an endotoxic condition, a model of study of
sepsis in vitro, EC suffers a transition to fibroblast by the activation of toll-like receptor 4 (TLR4)
and increased ROS production through NAD(P)H activation [364]. TRPM7 plays an important role
in this endotoxin-induced extracellular fibrosis increase by means of the Ca2+ influx, expression
of extracellular matrix (ECM) protein like type III collagen and fibronectin, fibrotic markers like
a-smooth muscle actin and fibroblast-specific protein 1 and decreased EC markers like platelet
endothelial cell adhesion molecule and vascular endothelial cadherin, which is a classic phenotype of
an endothelial-to-mesenchymal transition mechanism in which EC turns into activated fibroblast [365].
Furthermore, it has been shown that TRPM7 is also involved in the cell migration pattern of EC during
endotoxic conditions, in which both the expression inhibition by siRNA and pharmacological blocking
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of TRPM7 activation, inhibit EC migration [366]. We recently demonstrated that the role of TRPM7
in the progression of endotoxemia is that the channel expression and activity increase the secretion
of pro-inflammatory cytokines like tumor necrosis factor-a (TNF-α), IL-1β, IL-6 and IL-12 without
changing the anti-inflammatory cytokine production. Here, we also showed that TRPM7 is related
to metabolic dysfunction, pancreatitis, cardiac muscle damage and muscle mass wasted in rats [367].
Additionally, we demonstrated that TRPM7 expression and activity are related to renal vascular
hyperpermeability, kidney dysfunction and increased mortality in rats with endotoxemia [61,368].
TRPM7 expression and levels of TNF-α, IL-6 and IL-1β are increased in the serum of patients with sepsis
diagnosis and those patients with sepsis and a high expression of TRPM7 have a decreased survival
rate in comparison to patients with a low expression of TRPM7 [369]. These findings support the
hypothesis that TRPM7 is closely related to systemic symptoms, organ dysfunction and mortality during
endotoxemia, suggesting that this channel could be a good target for the treatment of endotoxemia,
sepsis and other inflammatory diseases.

In TRPM7-deficient mice, Schappe and colleagues demonstrated that TRPM7 is necessary for
endotoxin-induced macrophage activation. In addition, they showed that TRPM7 participates in
endotoxin signaling modulating the Ca2+ influx necessary for TRL4 endocytosis and transcriptional
activity in LPS-induced peritonitis [370].

It is also demonstrated that ROS production during endotoxic conditions increases intracellular
Ca2+ and cell death in primary hippocampal and differentiated PC12 neurons. However, TRPM7
expression inhibition by siRNA shows a protective effect in these cell types against an endotoxic
stimulus, suggesting a pivotal role of TRPM7 in neuronal cell death during endotoxic conditions [371]

Also, it has been shown that TRPM6 and TRPM7 modulation at the same time modulate the
response to diseases like sepsis. Specifically, a study of septic Wistar rats showed a protective effect
of salvianolic acid B (SA-B) on acute lung injury (ALI), decreasing TRPM6 and TRPM7 expression,
which provokes a consequent downregulation of pro-inflammatory cytokines in lung tissues and
reduced mortality [359].

TRPM7 plays a pivotal role in the progression of nephropathy with kidney fibrosis, where it
was shown that TRPM7 is upregulated during renal damage in a unilateral ureteral obstruction
mouse model [372]. Also, it has been demonstrated that TRPM7 mediates neuronal cell death during
neonatal hypoxic-ischemic brain injury, a model of hypoxic-ischemic encephalopathy, by the regulation
of calcium/calmodulin-dependent protein kinase II, calcineurin p38 and cofilin cascade, where the
inhibition of TRPM7 using waixenicin A reduces brain injury and improves the short- and long-term
functional outcomes [373].

Finally, Genetic variation in trpm7 gen is related to channel disfunction in an unexplained stillbirth
population improving a fatal arrhythmia process in utero. Related to this, the most important TRPM7
variants were pG179V and pT860M, which led to a marked reduction in the ion channel expression [374].

Main TRPM6/TRPM7 endogenous and exogenous modulators, participation in diseases and
physiological functions are listed in Table 4.
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Table 4. Molecules modulating the activity of TRPM6 and TRPM7, participation in physiological processes and pathologies.

Channel Modulator Inhibition or
Activation 1 Function Disease, Affection or

Objective of Study 2 Model of Study Ref.

TRPM6

PIP2 and PLC activity + Mg2+ currents and homeostasis HSH HEK-293 cells [310]

Cytosolic Mg2+ levels - Mg2+ currents Hypomagnesemia Murine models [306]

EGF/ERK/AP-1 signaling + Mg2+ transport and homeostasis PC HEK-293 cells [311,312]

Insulin + Mg2+ homeostasis
Glucose tolerance
during pregnancy Murine model [315]

Metformin - Mg2+ homeostasis and TRPM6
expression

Type 2 Diabetes HEK-293 and
hCaco-2 colon cells [316]

Uromodulin + Renal Mg2+ homeostasis Low-magnesium diet Murine model [317]

P2X4 receptor activity - Mg2+ transport and homeostasis PC Murine model [318]

MsrB1 + Renal Mg2+ homeostasis Oxidative Stress HEK-293 cells [319]

Pharmacological activity - Intestinal and renal Mg2+

absorption
PC HEK-293 cells [299]

Cytosolic Mg2+ levels + Mg2+ currents Low-magnesium diet Mammary
epithelial cells [334]

Pharmacological activity - Mg2+ currents PC Human colon cells [335]

TRPM6 depletion - Neural tube closure Embryogenesis Xenopus laevis [340]

Homozygous deletion - Mg2+ homeostasis
Embryonic

development Murine models [336,338]

TRPM6 mutation - Intestinal and kidney Mg2+

homeostasis
HSH Human DNA [349]

TRPM6 mutation - Mg2+ homeostasis Hypomagnesemia Baby human [350]

TRPM6 polymorphisms - Mg2+ and Ca2+ serological
concentration

Meningomyelocele Human serum [351]

TRPM6 polymorphisms - Mg2+ serological concentration Post-stroke Epilepsy Human serum [353]

Colorectal cancer - TRPM6 expression Colorectal cancer Colon cancer tissue [357]
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Table 4. Cont.

Channel Modulator Inhibition or
Activation 1 Function Disease, Affection or

Objective of Study 2 Model of Study Ref.

TRPM6

Anti-EGFR drugs;
GW-9662 and LE135 +/- TRPM6 expression and kidney

reabsorption Cancer treatment NRK-52E cells [320]

SA-B -
TRPM6 expression and

pro-inflammatory cytokines
secretion

ALI during sepsis Rat model [375]

TRPM7

Intracellular pH and
Mg2+ - Ca2+ currents PC HEK-293 and Jurkat

T cells [321]

cAMP/PKA signaling + Ca2+ currents PC HEK-293 cells [323]

Isoproterenol + Mg2+ currents
Neuro

endotoxin-induces loss
of neuron cells

Neuroblastoma
SHSY-5Y cells [326]

ROS + Ca2+ currents Anoxic neural damage HEK-293 and
Cortical neurons [328]

ATP + Ca2+ currents PC CHO-K1 cells [296]

Mg-ATP and Mg-GTP - Ca2+, Mg2+ currents and
mortality

PC HEK-293 and DT-40
B lymphocytes [294]

S1296 residue from
TRPM7 TRP domain by

PKA
- Ca2+ currents PC Neuroblastoma cells [324]

Reduced Mg2+

intracellular, H2O2 and
pharmacological activity

+ Ca2+ and Mg2+ currents Function in adipocytes Adipocytes [322]

Kinase domain mutation
and H2O2 response - Intracellular levels and Mg2+

currents
Oxidative stress HEK-293 cells and

murine models [327]

Pharmacological activity +
Ca2+ currents by SOCE and

Proliferation
PC DT-40 B

lymphocytes [341]

Mg-ATP, Gd3+ and
pharmacological activity

- Growth and Proliferation Low Mg2+ and Ca2+

environment
EC [343]
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Table 4. Cont.

Channel Modulator Inhibition or
Activation 1 Function Disease, Affection or

Objective of Study 2 Model of Study Ref.

TRPM7

Kinase domain deficient
TRPM7 channel - Mg2+ homeostasis

Embryonic
development Murine model [345]

Bradykinin +
Upregulation of

proinflammatory proteins and
Mg2+ currents

Proinflammatory
signaling Smooth muscle cells [356,376]

PIP2 hydrolysis and PLC
activity - Ca2+ and Mg2+ currents PC HEK-293T and

CHO-K1 cells [377]

LPS +
Ca2+ current and endothelial

fibrosis
Endotoxic Condition EC [364,365]

LPS + Endothelial migration Endotoxic condition EC [366]

LPS in plasma +
Secretion of pro-inflammatory

cytokines, metabolic dysfunction
and organ failure

Endotoxemia Rat model [367]

LPS in plasma +
Vascular permeability, kidney

damage and increased mortality Endotoxemia Rat model [61]

TRPM7 polymorphisms - Mg2+ currents
Arrhythmia associated
to unexplained stillbirth

HEK-293, CHO-K1
and hiPSC-derived

cardiomyocytes
cells

[374]

Aripiprazole - Ca2+ current Inflammation
Microglia primary
culture from mice

models
[329]

Carvacrol, FTY720,
Sphingosine, 2-APB - Ca2+, Mg2+ currents PC HEK-293 and Jurkat

T lymphocytes
[321,330,

331]

Small drug-like
compounds + Ca2+ current PC HEK-293 cells and

murine models [332]

LPS in plasma +
TLR4 endocytosis, Ca2+ current,

NF-κB and IRF3 transcription
and translocation

Endotoxemia Mouse model [370]
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Table 4. Cont.

Channel Modulator Inhibition or
Activation 1 Function Disease, Affection or

Objective of Study 2 Model of Study Ref.

TRPM7

LPS + Neuronal cell death Endotoxic conditions
Primary

hippocampal and
PC12 neurons

[371]

Inactive TRPM7-kinase -
Proinflammatory cytokines

secretion, lymphocytes
differentiation to Th17

PC and acute
graft-versus-host

disease
Mouse model [362]

siRNA - Membrane voltage and vesicle
fusion PC PC12 cells [342]

siRNA - Neuron survival and memory
retention

DND after ischemic
injury

CA1 neurons and
rat model [363]

Ca2+/Mg2+ external ratio
and hypoxia

+
Ca2+ current, cell proliferation,

HIF-1α accumulation and
RACK1 phosphorylation

Prostate cancer Prostate cancer cells [358,359]

TRPM7 expression +
Tumor development,

morphology and proliferation
Inflammatory bowel

disease and CRC

Tumor tissue and
colorectal cancer

cells
[360,361]

Fibrosis stimulus +
Kidney atrophy, tubular

formation and cell proliferation Nephropathy
Unilateral ureteral
obstruction mouse

model
[372]

Hypoxic and ischemic
physiopathology +

Protein expression, brain injury
and outcome score

Hypoxic-ischemic
encephalopathy

Hypoxic-ischemic
brain cell death

model
[373]

SA-B -
TRPM7 expression and

pro-inflammatory cytokines
secretion

ALI during sepsis Rat model [375]

1: activation (+) and inhibition (-); 2: physiological conditions (PC).
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6. Conclusions

TRPM ion channels have emerged as a group of proteins with huge biomedical potential because
of their participation in several physiological functions, as well as in several human pathologies.
The latest findings have shown us the molecular basis of channelopathies induced by TRPM ion
channel malfunction. For that reason, medical practice and the pharmaceutical industry have focused
on them as novel targets for diagnostic, treatment and drug design and therapeutic approaches.
However, significant basic and clinical research must be performed to respond to questions regarding
channelopathies induced by TRPM ion channels that still remain to be resolved.
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