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Abstract: The medium effect of the optical and catalytic degradation of methylene blue was studied in
the NiO/SiO2, NiO/TiO2, NiO/Al2O3, and NiO/Na4.2Ca2.8(Si6O18) composites, which were prepared
by a solid-state method. The new composites were characterized by XRD (X-ray diffraction of powder),
SEM/EDS, TEM, and HR-TEM. The size of the NiO nanoparticles obtained from the PSP-4-PVP
(polyvinylpyrrolidone) precursors inside the different matrices follow the order of SiO2 > TiO2

> Al2O3. However, NiO nanoparticles obtained from the chitosan precursor does not present an
effect on the particle size. It was found that the medium effect of the matrices (SiO2, TiO2, Al2O3,
and Na4.2Ca2.8(Si6O18)) on the photocatalytic methylene blue degradation, can be described as a
specific interaction of the NiO material acting as a semiconductor with the MxOy materials through
a possible p-n junction. The highest catalytic activity was found for the TiO2 and glass composites
where a favorable p-n junction was formed. The isolating character of Al2O3 and SiO2 and their
non-semiconductor behavior preclude this interaction to form a p-n junction, and thus a lower catalytic
activity. NiO/SiO2 and NiO/Na4.2Ca2.8(Si6O18) showed a similar photocatalytic behavior. On the
other hand, the effect of the matrix on the optical properties for the NiO/SiO2, NiO/TiO2, NiO/Al2O3,
and NiO/Na4.2Ca2.8(Si6O18) composites can be described by the different dielectric constants of the
SiO2, TiO2, Al2O3, Na4.2Ca2.8(Si6O18) matrices. The maxima absorption of the composites (λmax)
exhibit a direct relationship with the dielectric constants, while their semiconductor bandgap (Eg)
present an inverse relationship with the dielectric constants. A direct relationship between λmax

and Eg was found from these correlations. The effect of the polymer precursor on the particle size
can explain some deviations from this relationship, as the correlation between the particle size and
absorption is well known. Finally, the NiO/Na4.2Ca2.8(Si6O18) composite was reported in this work
for the first time.
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1. Introduction

Metal oxide nanoparticles are widely used in many applications such as coatings, catalysis,
electrode materials, or sensors [1]. It is important to remark that their physical and chemical properties
are strongly influenced by their agglomeration [2]. In this sense, it is well known that the incorporation
of metal oxides onto inert support materials with high surface areas could help prevent particle
agglomeration and also improve their reactivity and stability [3,4].

NiO is a p-type semiconductor with EG = 3.5 eV presenting multiple practical applications [4–6].
However, their band gap can be modified by doping with other metal oxide semiconductors, and thus
changing their photocatalytic properties [5,6]. NiO has been widely used in catalysis, battery cathodes,
fuel cell electrodes, electrochromic films, electrochemical supercapacitors, or magnetic materials [4–6].
In this sense, Bonomo et al. [7] recently reported on the electrochemical and opto-electrochemical
properties of nanostructured NiO for photoconversion applications. Although these applications are
determined by their band-gap, which depend on the environment [8,9], no systematic studies have
been reported regarding the effect of the medium on the band-gap behavior [10–12]. In this sense, it is
well known that the dielectric medium affects the optical properties of nanoparticles, as previously
observed for Au and Ag systems [10]. The optical properties of Au nanoparticles embedded into
TiO2, ZrO2, and Al2O3 have been also studied qualitatively [10]. In addition, the effect of SiO2, TiO2,
and ZrO2 supports was recently analyzed showing that MoO3/SiO2 is the most efficient epoxidation
catalyst [12].

The Na4.2Ca2.8(Si6O18) compound (combeite) is a crystalline phase normally obtained from the
fusion of precursor Na2O·CaO·SiO2 glasses [13–15]. In this sense, there are no reported metal oxides
using Na4.2Ca2.8(Si6O18) as a solid matrix.

In previous works, we have reported a method to prepare metal and metal oxide nanostructured
materials from a thermal treatment of the Chitosan (MLn)x and PS-co-4-PVP (MLn)x macromolecular
complexes [16–18]. The method consists of two steps: (1) Formation of both macromolecular complexes
by a solvent assisted reaction between the respective polymer and the metallic salt; and (2) a thermal
process of the solid under air atmosphere.

The M◦ and MxOy nanostructures can be easily incorporated into SiO2 matrices using a similar
approach by different thermal treatments of the solid-state precursors: Chitosan (MLn)x//SiO2 and
PS-co-4-PVP (MLn)x//SiO2 affording MxOY//SiO2 composites [19,20]. This method can be also used to
prepare NiO//MxOy composites using SiO2, TiO2, Al2O3, or Na4.2Ca2.8(Si6O18) matrices. Although a
few methods were proposed to prepare NiO/SiO2 [4,21,22], NiO/TiO2 [6,23–25], NiO/Al2O3 [26–29]
composites, none of them is as general and simple as the one described here. As for the Na4.2Ca2.8(Si6O18)
case, although this particular composition has not been reported, similar nickel oxide doped with silica
matrices have been successfully synthesized via a sol–gel process [30]. Furthermore, this solid state
method has been used for other systems [31]. A summary of the proposed fabrication route is shown
in Figure 1 [13].
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In addition, the effect of the different matrices on the optical properties will also be studied
and discussed.

2. Materials and Methods

NiCl2·6H2O, tetraethyl orthosilicate (TEOS), chitosan, poly(styrene-co-4-vinilpyridine) PS-co-4-PVP,
ethyl alcohol, acetic acid, and dichloromethane were supplied from Sigma-Aldrich and were used
as received.

2.1. Preparation of the NiO/SiO2, NiO/TiO2, NiO/Al2O3 Composites

SiO2 was prepared according to the literature procedures [19,20]. Briefly, tetraethoxysilane (TEOS),
ethanol, and acetic acid were mixed in a molar ratio of 1:4:4 with water (nanopure milli-Q), and added
over the dichloromethane solution of the previously prepared chitosan (NiCl2·6H2O)x and PS-co-4-PVP
(NiCl2·6H2O)x. The mixture was stirred for 3 days. The obtained gel was dried at 100 ◦C under a
vacuum. The chitosan (NiCl2·6H2O)x//SiO2 and PS-co-4-PVP (NiCl2·6H2O)x//SiO2 precursors were
finally calcined at 800 ◦C for 2 h under air.

2.2. Preparation of the Chitosan (NiCl2·6H2O)x//TiO2 and PS-co-4-PVP (NiCl2)x//TiO2 Precursors

TiO2 was prepared according to the literature procedures [19,20]. Briefly, titanium tetra-isopropoxide
(Ti(OC3H7)4, TTIP) ethanol and acetic acid were mixed in a molar ratio of 1:4:4 with water
(nanopure milli-Q), and added over the dichloromethane solution of the previously prepared chitosan
(NiCl2·6H2O)x and PS-co-4-PVP (NiCl2·6H2O)x. The mixture was stirred for 3 days. The obtained
gel was dried at 100 ◦C under a vacuum. The solid chitosan (NiCl2·6H2O)x//TiO2 and PS-co-4-PVP
(NiCl2·6H2O)x//TiO2 precursors were calcined at 800 ◦C for 2 h under air.

2.3. Preparation of the Chitosan (NiCl2·6H2O)x//Al2O3 and PS-co-4-PVP (NiCl2)x//Al2O3 Precursors

Al2O3 was prepared according to the literature procedures [27–30]. Briefly, AlCl3, ethanol,
and acetic acid were mixed in a molar ratio of 1:4:4 with water (nanopure milli-Q), and added over
the dichloromethane solution of the previously prepared chitosan (NiCl2·6H2O)x and PS-co-4-PVP
(NiCl2·6H2O)x. The mixture was stirred for 3 days. The obtained gel was dried at 100 ◦C under a
vacuum. The solid chitosan (NiCl2·6H2O)x//Al2O3 and PS-co-4-PVP (NiCl2·6H2O)x//Al2O3 precursors
were calcined at 800 ◦C for 2 h under air.

2.4. Preparation of the Precursors: Chitosan (NiCl2·6H2O)x//NiO/Na4.2Ca2.8(Si6O18) and PS-co-4-PVP
(NiCl2)x//NiO/Na4.2Ca2.8(Si6O18)

The compounds were prepared according to the literature procedures [28]. Briefly, tetraethoxysilane
(TEOS), ethanol, and acetic acid were mixed in a molar ratio of 1:4:4 with water (nanopure milli-Q),
then Na2O, CaO, and SiO2 solids (in mol% of 14:1.5:73) were added over the dichloromethane solution
of the previously prepared chitosan (NiCl2·6H2O)x and PS-co-4-PVP (NiCl2·6H2O)x. The mixture
was stirred for 3 days. The obtained gel was dried at 100 ◦C under a vacuum. The solid chitosan
(NiCl2·6H2O)x//Na2O CaO SiO2 and PS-co-4-PVP (NiCl2·6H2O)x//Na2O CaO SiO2 precursors were
calcined at 800 ◦C for 2 h under air.

The coordination of the polymer was confirmed by IR analysis, as the broad ν(OH)+ ν(NH)
band observed at 3448 cm−1 for free chitosan becomes unfolded upon coordination, shifting in the
range of 3345–3393 cm−1. On the other hand, the ν(py) band is shifting to high frequencies upon
coordination [16–18].

Finally, polymer-metal complexes were placed into a box furnace (lab tech) using a pyrolysis
temperature of 180 ◦C for the precursor complexes and 800 ◦C for the polymer complexes. Additional
experimental conditions are summarized in Table 1.
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Table 1. Composition of the pyrolytic products from the respective precursors.

Precursor Precursor Formula Matrix Composite Composite
Number

(1) Chitosan·NiCl2 (chitosan) - NiO C1

(2) PSP-4-PVP·NiCl2 (PVP) - NiO C2

(3) Chitosan·NiCl2 SiO2 NiO/SiO2 C3

(4) PSP-4-PVP·NiCl2 SiO2 NiO/SiO2 C4

(5) Chitosan·NiCl2 TiO2 NiO/TiO2 C5

(6) PSP-4-PVP·NiCl2 TiO2 NiO/TiO2 C6

(7) Chitosan·NiCl2 Al2O3 NiO/Al2O3 C7

(8) Chitosan·NiCl2 Na4.2Ca2.8(Si6O18) NiO/Na4.2Ca2.8(Si6O18) C8

2.5. Characterization

IR spectra were recorded with a FT-IR Jasco 4600 spectrophotometer (Jasco Inc., Easton, MD, USA).
Scanning electron microscopy (SEM) was performed on a JEOL 5410 scanning electron microscope
(JEOL Ltd., Tokyo, Japan). Elemental microanalysis was performed by energy dispersive X-ray (EDS)
analysis using a NORAN Instrument micro-probe attached to the SEM (Thermo Scientific, Waltham,
MA, USA). High-resolution transmission electron microscopy (HR-TEM) was performed using a
JEOL 2000FX TEM microscope (JEOL Ltd., Tokyo, Japan)at 200 kV to characterize the average particle
size, distribution, and elemental and crystal composition. EDS analysis was performed in individual
particles in order to discriminate NiO from the matrix. Average particle sizes were calculated using the
Digital Micrograph software (Gatan, Inc., Pleasanton, CA, US). Methylene blue (MB) was used as a
model compound to test the photocatalytic properties at 655 nm under UV-Vis illumination (Shimadzu
UV-2600 spectrophotometer, Shimadzu Coorporation, Kyoto, Japan) using a xenon lamp (150 W)
positioned 20 cm away from the photoreactor in a 330–680 nm range at room temperature, to avoid the
self-degradation and thermal catalytic effects of cationic dye. Suspensions were stirred in the dark for
60 min to establish an adsorption/desorption equilibrium, after which the photocatalytic discoloration
of MB was initiated.

3. Results and Discussion

3.1. Composite NiO/SiO2

The X-ray diffraction pattern of the as-synthesized NiO/SiO2 composite for the material from the
chitosan precursor is shown in Figure 2a. All the reflection peaks of the XRD pattern can be indexed to
NiO and SiO2 phases [19] (JPDS no. 03-065-2901 for NiO and JPDS no. 01-088-1535 for SiO2). The broad
feature appearing at 22◦ corresponds to amorphous silica [19]. Similar X-ray diffraction patterns for
NiO from the PVP precursor were obtained.

The SEM analysis (Figure 2b) shows irregular particle agglomerates, as typically observed from
the preparation of nanoparticles using the solid-state thermal route [30]. From the TEM analysis,
the agglomeration of NiO nanoparticles embedded into a mesh of SiO2 can be observed in Figure 2c,
where these agglomerates are composed of fused NiO nanoparticles. The size of these nanoparticles
are in the range of 14 nm with a mean size of 25 nm (Figure 2c). Detailed HR-TEM images in Figure 2e,f
show a homogeneous dispersion of NiO over the silica network. However, it was not possible to
acquire high resolution images in order to study the interfaces between NiO and the different matrices.
In any case, as also confirmed by SEM-EDS mapping (Figure 2g), there is a uniform distribution of
NiO and SiO2 particles. Similar results were observed for NiO obtained from the PVP precursor
(see Supplementary Materials, Figure S1). The only difference is that NiO particles are bigger in size ca.
100 nm.
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3.2. NiO/TiO2

Figure 3 shows the XRD pattern of the NiO/TiO2 nanocomposite from the chitosan precursor,
where the anatase phase and NiO are observed as single phases. Using this method, the pure TiO2

anatase phase was obtained, in contrast with other solution methods, where a mixture of anatase
and rutile in the NiO/TiO2 composite was obtained [22]. The NiO/TiO2 composite shows a “cotton”
type morphology from the chitosan precursor (Figure 3b), whereas the morphology from the PVP
precursor presents a more densified structure, as shown in Figure 3c. The SEM-EDS mapping, shown in
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Figure 2g, indicates an homogeneous distribution of NiO and TiO2. Similar results were obtained for
the NiO/TiO2 from the PVP precursor (see Supplementary Materials, Figure S2).
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The TEM analysis (Figure 3d,e) presents a “spider web” TiO2 network where the NiO nucleates
forming agglomerated nanoparticles. They present a mean particle size of 25 nm (Figure 2f).
A similar TEM analysis was observed for NiO/TiO2 obtained from the PVP precursor (Figure 3b and
Supplementary Materials, Figure S2).

3.3. NiO/Al2O3

Figure 4a shows the XRD pattern of the NiO/Al2O3 composite from the chitosan precursor where
the corresponding peaks of γ-Al2O3 and NiO can be observed.
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The effect of the polymer template on the morphology can be observed in Figure 4b,c. The chitosan
precursor induces a “cotton” type morphology, while the PVP precursor also combines dense and
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irregular zones. Figure 4f shows an elemental mapping image demonstrating that NiO is well dispersed
inside Al2O3. A complete characterization is shown in Supplementary Materials, Figure S3.

As observed for the NiO/TiO2 system, the TEM analysis (Figure 4e) shows a “spider web” network
of Al2O3 where the NiO nucleates form agglomerates. The histogram (Supplementary Materials,
Figure S3) shows a particle mean size of 17 nm. The HRTEM image of the NiO/Al2O3 from the PVP
precursor is shown in Supplementary Materials, Figure 3c, where it can be observed that the medium
particle size is 32 nm.

3.4. NiO/Na4.2Ca2.8(Si6O18)

The XRD pattern of the NiO/Na4.2Ca2.8(Si6O18) composite prepared from the chitosan precursor
indicates the formation of NiO inside the glass Na4.2Ca2.8(Si6O18) (see Figure 5a). The XRD pattern
is in agreement with those reported in the literature [13–15]. The observed morphology is similar to
the one previously reported [13–15] (see Figure 5b,c), also presenting a uniform distribution of NiO
inside the Na4.2Ca2.8(Si6O18) (Figure 5d). Similar conclusions can be deduced for the PVP precursor
(see Supplementary Materials, Figure S4).
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A summary of the medium particle sizes for NiO included into the different matrices is presented
in Table 2, where the effect of the matrix and that of the polymer precursors on the final particle sizes
can be observed.

Table 2. Nanoparticle size for the composites.

Composite Precursor Formula Particle Size (nm) Reference

NiO Chitosan·NiCl2 >50 [17]

NiO PSP-4-PVP·NiCl2 >50 [17]

NiO/SiO2 Chitosan·NiCl2 25 This work

NiO/SiO2 PSP-4-PVP·NiCl2 100 This work

NiO/TiO2 Chitosan·NiCl2 25 This work

NiO/TiO2 PSP-4-PVP·NiCl2 63 This work

NiO/Al2O3 Chitosan·NiCl2 30 This work

NiO/Al2O3 Chitosan·NiCl2 17 This work

NiO/Na4.2Ca2.8(Si6O18) Chitosan·NiCl2 Not measured This work

The nanoparticle size of NiO obtained from the PVP precursor inside the matrices follow the
order of SiO2 > TiO2 > Al2O3, while that for the NiO from the chitosan precursor does not present a
significant effect on the nanoparticle size.

3.5. Photocatalytic Behavior

Although the main applied property of NiO is in the field of electrochemistry as Li-ion batteries [32]
and supercapacitors applications, [33] its application as a photocatalytic activity toward organic dyes
have also been suggested [34]. In any case, reports on the photocatalytic activity toward organic dyes
using NiO/matrices are scarce. Yu et al. [6] found a higher photocatalytic activity for NiO/TiO2 than for
pure NiO, towards the photodegradation of p-chlorophenol. Regarding the photocatalytic efficiency
when using composites, important parameters to be considered include the formation of hierarchical
porous structures, the dispersion of the catalytic semiconductor on the matrix surface, and the p-n
junction in a NiO/MxOy composite, where a new band gap will be formed with a most favorable value
for the photodegradation chemical processes.

3.6. NiO

Methylene blue (MB) is extensively used as an organic dye in coloring paper, temporary hair
colorant, dyeing cottons, and coating for paper stock [35]. The removal of this hazardous dye is
considered as one of the growing requirements in recent years. The photocatalytic experiments were
carried on the sample with definite dye concentration under dark conditions and UV irradiation.
The band-gap of the NiO is 5.0 and 5.2 eV, when it is prepared from chitosan and PVP precursors,
respectively. For the semiconductor metal oxides, their band gap value dictates their photocatalytic
activity [35,36]. For this reason, the band gap of the C3–C8 composites was determined. These values are:
5.0, 5.2, and 5.4 eV for the NiO/SiO2, NiO/TiO2, NiO/Al2O3 composites, respectively, all obtained from
the chitosan precursors. The values for the PVP precursor are: 5.5 eV, 5.2 eV for the NiO/SiO2, NiO/TiO2

composites, respectively. Those values do not change significantly, and are slightly higher than those
reported previously, which can be due to their bigger particle sizes [34] (see Supplementary Materials,
Figure S5).

The changes in the absorption spectra of the MB aqueous solution exposed to UV light for
various times in the presence of NiO are shown in Supplementary Materials, Figure S6. The peak at
655 nm is characteristic of methylene blue and decreases with the irradiation time. Figure 6 shows
the plot of time vs. concentration of methylene blue measured as C/Co for NiO arising from both
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precursors, obtaining a catalytic efficiency of ~68% and ~71% of degradation in 5 h (see Figure 6c).
Both degradation processes follow a zero order, as shown in Figure 6b,d. As previously mentioned,
only a few photodegradation studies for NiO have been reported. For example, using 3 nm NiO
nanoparticles [34] and NiO nanofibers [5], a moderated catalytic activity towards Rhodamine B
was observed. In both cases, the degradation kinetic was zero order, which means that the rate of
degradation does not depend on the MB concentration. This type of model is normally observed
when the surface of the photocatalyst is saturated with the dye, so that the degradation rate remains
relatively constant, depending only on the generation of photo-induced charges in the catalyst.
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3.7. NiO in Matrices

The photocatalytic activity towards MB degradation for the NiO composite using different matrices
is shown in Figure 7. The degradation rate of the NiO/TiO2 composite is shown for comparison. In any
case, the photocatalytic activity of these NiO compounds is still far from the pure TiO2 standard
phase [37]. For example, we have recently reported a 98% discoloration rate in only 25 min for TiO2

nanostructures using similar synthetic routes, and the degradation of commercial TiO2 (Degussa P25)
is about 75% of MB under the same experimental conditions [38]. A representative plot of MB
absorption at 655 nm vs. time is given in Supplementary Materials, Figure S6. A summary of the
kinetic degradation data is also displayed in Table 3.
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Table 3. Kinetic data for the photodegradation process of MB with NiO and NiO/SiO2, NiO/TiO2,
NiO/Al2O3, and NiO/Na4.2Ca2.8(Si6O18) composites.

Photocatalyst Apparent
Photodegradation * Discoloration Rate (%) R2 Linear Fit (%)

NiO-CHITOSAN 2.4 71% 0.998

NiO-PS-4-PVP 2.2 68% 0.991

NiO/SiO2-CHITOSAN 2.3 69% 0.999

NiO/SiO2-PS-4-PVP 1.6 48% 0.996

NiO/TiO2 -CHITOSAN 2.9 91% 0.992

NiO/TiO2-PS-4-PVP 2.6 81% 0.980

NiO/Al2O3-CHITOSAN 1.5 45% 0.990

NiO/Na4.2Ca2.8(Si6O18) 2.6 75% 0.990

* Rate constant k (10−3 M·min−1).

As seen in Figure 6, the NiO from the chitosan precursor produces a higher activity than that arising
from the PVP precursor. These results also apply for both SiO2 and TiO2 matrices. Interestingly, the most
efficient photocatalytic activity was observed for the NiO/TiO2 composite with a 91% degradation of
methylene blue in 5 h. This can be probably related with a matrix effect of SiO2, TiO2, and Al2O3.

Our results of catalytic degradation for the NiO//TiO2 composite (about 91%) are similar or slightly
higher than those reported in the literature. Ahmed claimed 90% of catalytic degradation efficiency on
the NiO//TiO2 composite prepared from titanium chloride and nickel acetylacetonate [39]. Faisal et al.
obtained a similar catalytic degradation efficiency using an ultrasonication method [40]. Sim et al.
reported 86% of the degradation efficiency using plasma enhanced chemical vapor deposition (PECVD)
with hydro-oxygenated amorphous titanium dioxide obtained from titanium tetra-isopropoxide
[Ti(OC3H7)4, TTIP] liquid as a precursor [41]. Finally, Chen et al. reported 86% catalytic degradation
of MB using a method that involves incipient wet impregnation of the nickel oxide (NiO) nanoparticles
over previously prepared TiO2 nanotubes [24].

It is suggested that for the most catalytically active TiO2 as the matrix, a p-n junction can be
formed acting NiO as p-NiO and TiO2 as n-TiO2, see Supplementary Materials, Figure S7, leading to
a reduction of the recombination rate of photogenerated electron-hole pairs, which is known to
enhance the photocatalytic activity of TiO2. A detailed description of the mechanism can be found on
Supplementary Materials, Figure S8. Therefore, it seems that the matrix is playing a crucial role for the
NiO/TiO2 composite and in this case, the NiO acts as the matrix rather than an active semiconductor.
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On the other hand, the less efficient photocatalyst toward MB degradation arises probably from an
insulating Al2O3 effect [28,42], which preclude the p-NiO behavior. This is in agreement with the
observed photocatalytic decrease for the TiO2/SiO2 composite in comparison with pure TiO2. In the
case of the NiO/SiO2 composite, the lower photocatalytic activity is probably a consequence of the
high porous morphology which is induced by the SiO2 matrix. All the photodegradation processes of
MB with NiO/SiO2, NiO/TiO2, NiO/Al2O3, and NiO/Na4.2Ca2.8(Si6O18) composites exhibited a zero
order kinetic law, as shown in Supplementary Materials, Figure S9.

3.8. Photocatalytic Activity of the NiO/Na4.2Ca2.8(Si6O18) Composite

The photocatalytic activity of the NiO/Na4.2Ca2.8(Si6O18) composite obtained from the chitosan
precursor is shown in Figure 7 and the kinetic data is also shown in Table 2. It is observed that
the photocatalytic activity is higher than that of NiO, NiO/SiO2, and NiO/Al2O3 but lower than of
NiO/TiO2. It is concluded that the Na4.2Ca2.8(Si6O18) sample presents a similar behavior to those of the
SiO2 sample.

3.9. Effect of the Matrices on λmax and Eg

Figure 8 shows the variation of both Eg and λmax for the different matrices. The respective
UV-Vis absorption spectra of the composites are shown in Supplementary Materials, Figure S9.
The band-gap values were estimated from these spectra using the Tauc procedure (Supplementary
Materials, Figure S9). Considering that the static dielectric constants (K) for the matrices are: SiO2 3.9;
TiO2 80, and Al2O3 8.8 [43], both Eg and λmax could be related to the dielectric constant of the matrix.
Unfortunately, there is no available data for Na4.2Ca2.8(Si6O18). The dependence of Eg with the
dielectric constant ε is not totally understood, where several relationships have been previously
found [43–45]. The shape of the experimental or theoretical expression depends, among others, on the
type of materials. On the other hand, the relationship of λmax with ε and the refractive index n is
known for metallic nanoparticles [8]:

λmax α λp
√

2ε+ 1 �
√

2 λp n (1)
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However, the analogue relationship for metal oxides is not completely understood. The plot of
λmax for the NiO vs. the refractive index [46,47] for the SiO2, TiO2, and Al2O3 matrices shows an
inverse and irregular relationship (see Supplementary Materials, Figure S10). Then, according to
Figure 8, the variations of Eg and λmax can be explained by a physical effect of the medium reflected in
their dielectric constant of the different matrices. A close inspection of Figure 8 suggests the presence
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of three linear trends. In Figure 8, it can be observed that λmax varied inversely with the properties
of the matrices (i.e., dielectric constant for instance) for the NiO obtained from both polymers in an
approximate linear behavior. The composite C8 having a “silica like” matrix does not follow this trend
due to an unknown effect. Although the dependence of λmax with the dielectric or refractive index
given by Equation (1) indicates a direct linear dependence, our results show an inverse linear trend.
Then, the Equation (1) may not be valid for metallic oxides. A new equation is proposed (Equation (2),
curve a in Figure 8), which could arise from the general trends for nanostructured metallic oxides.
This is consistent with the fact observed in Supplementary Materials, Figure S9, where an inverse
relationship of λmax with n is shown.

In addition, Eg values vary in a direct or inverse way depending on the NiO polymer precursor
(direct behavior for the chitosan; curve b, Equation (3) or inverse for the PVP precursor; curve c,
Equation (4)). As previously mentioned, the dependence of Eg with the dielectric constant ε is not
totally understood, and this is a matter of controversy in the literature. The inverse relationship
(curve c) is in agreement with the results reported by Hervé and Vandamme [48], while the direct
relationship (curve b) shows a similar trend to that shown by Kumar and Singh [49]. In any case,
we do not have any clear explanation of the different dependencies of Eg with n and ε when using the
different polymer precursors.

From the plot shown in Figure 8, the following equations can be established:

λmax = a/(ε,n); valid for NiO from chitosan and PVP (2)

Eg = b/(ε,n); valid for NiO from chitosan (3)

Eg = c/(ε,n); valid for NiO from PVP (4)

The following equations are then obtained by combining both expressions:

Eg = ab/λmax; valid for NiO from chitosan (5)

Eg = cλmax/a; valid for NiO from PVP (6)

In agreement with these new expressions, we can explain the effect of the physical properties of
the matrices on the band gap with the refraction index or the dielectric constant. The experimental data
fits into these equations, as seen in Figure 9 plots d (Equation (5)) and e (Equation (6)). These equations
describing the effect of the medium modulated by various solid matrices on the band gap and the
maximum absorption could be valid for other nanostructured metal oxides included in solid matrices.
In order to validate this, additional experiments with other systems are being carried out.Nanomaterials 2020, 10, x FOR PEER REVIEW 14 of 17 
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Experiments linking the band gap with the size and the maxima absorption of nanoparticles have
been performed for other metal oxides such as ZnO [50,51], as well as for noble metal nanoparticles
such as Au [52], Ag [32], and Pt [53]. However, there are no studies in the literature about the medium
expressed by solid matrices on nanostructured metallic oxides.

4. Conclusions

NiO/SiO2, NiO/TiO2, NiO/Al2O3, and NiO/glass composites were satisfactorily prepared by a
solid-state synthesis from the chitosan and PVP precursors. XRD, SEM/EDS, and HR-TEM were used
to characterize the new formed composites. It was concluded that the nature of the precursor polymer
influences the morphology, as well as the size of the obtained nanoparticles. The chitosan precursor
induces the smallest NiO nanoparticles and also their respective nanocomposites. In addition, the nature
of the matrix influences the NiO nanoparticle size, following the order of SiO2 > TiO2 > Al2O3 for the
PVP precursor. However, no relationship on the particle size was observed for the NiO obtained from
the chitosan precursor.

The efficiency on the photocatalytic activity depends on the formation of a p-n junction between
NiO acting as p-NiO and the metal oxide matrix acting as n-metal oxide. TiO2 presents the most
effective p-NiO//n-TiO2 junction. On the other hand, the optical parameters Eg and λmax depends on
the dielectric constant and the refractive index of the matrix medium in a manner which depends on the
preparation procedure. The “silica like” Na4.2Ca2.8(Si6O18) matrix does not follow these correlations.
New equations describing the effect of the physical properties (dielectric constant and the refractive
index) are proposed, which could be used for other metal oxides included in solid matrices.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/12/2470/s1,
Figure S1: (a) SEM-EDS mapping by element and (b) TEM images and (c) HRTEM image of NiO
from the PS-co-4-PVP (NiCl2)x //SiO2 precursor, Figure S2: (a) SEM-EDS mapping by element from the
PS-co-4-PVP·(NiCl2)n)x//TiO2 precursor and (b) TEM images and its histogram of the pyrolytic product from
the PS-co-4-PVP·( NiCl2)n)x//TiO2 precursor, Figure S3: (a) SEM-EDS mapping by element and (b) TEM images,
Histogram and electron diffractions, of the pyrolytic product from the precursor PS-co-4-PVP·(NiCl2)n)x //Al2O3
and (c) Histogram of TEM image of NiO from Chitosan·(NiCl2)n)x //Al2O3 precursor, Figure S4: SEM image and
EDS mapping analysis for the composite NiO/Na4.2 Ca2.8 (Si6O18) from the PS-co-4-PVP·(NiCl2)n)//SiO2·CaO·Na2O
precursor, Figure S5: Tauc determination of Eg values for NiO from Chitosan·(NiCl2)n. and PS-co-4-PVP·(NiCl2)n
and for NiO/SiO2, NiO/TiO2, NiO/Al2O3 and NiO/Na4.2 Ca2.8(Si6O18) composites, Figure S6: Absorbance vs
time for the blue methylene degradation for NiO (a) and for the composites NiO/SiO2, NiO/TiO2, NiO/Al2O3;
(b) NiO/SiO2 from Chitosan·(NiCl2)x//TiO2; (c) NiO/SiO2 from PS-co-4-PVP·(NiCl2)x//TiO2; (d) NiO/TiO2 from
Chitosan·(NiCl2)x //TiO2; (e) NiO/TiO2 from PS-co-4-PVP·(NiCl2)x //TiO2; (f) NiO/Al2O3 from Chitosan·(NiCl2)x
//Al2O3; (g) NiO/ Na4.2 Ca2.8 (Si6O18) from Chitosan·(NiCl2)x // Na2O·CaO·SiO2, Figure S7: Schematic diagrams
for (a) energy bands of p-NiO and TiO2 before contact, (b) formation of p-n junction and its energy diagram at
equilibrium and (c) transfer of holes from n-TiO2 to p-NiO under UV irradiation, Figure S8: The photodegradation
mechanism of NiO/TiO2 composites, Figure S9: Kinetic plot of the blue methylene degradation with the
composites NiO/SiO2, NiO/TiO2, NiO/Al2O3 and NiO/Na4.2Ca2.8(Si6O18), Figure S10: UV-Vis absorption spectra of
the composites, Figure S11: Plot of λmax for the NiO vs the refractive index for the matrices SiO2, TiO2 and Al2O3.
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