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Abstract: Several phytohormones modulate ripening in non-climacteric fruits, which is triggered
by abscisic acid (ABA). Gibberellins (GAs) are present during the onset of ripening in sweet
cherry fruits, and exogenous gibberellic acid (GA3) application delays ripening, though this effect is
variety-dependent. Although an ABA accumulation delay has been reported following GA3 treatment,
the mechanism by which GA modulates this process has not been investigated at the molecular level
in sweet cherry. Therefore, the aim of this work is to analyze the effect of GA3 on the fruit ripening
process and the transcript levels of ABA pathway orthologs in two varieties having different maturity
time phenotypes. The early-season variety had a rapid transition from yellow to pink fruit color,
whereas pink color initiation took longer in the mid-season variety. GA3 increased the proportion
of lighter colored fruits at ripeness in both varieties, but it produced a delay in IAD—a ripening
index—only in the mid-season variety. This delay was accompanied by an increased transcript
abundance of PavPP2Cs, which are putative negative regulators of the ABA pathway. On the other
hand, the early-season variety had increased expression of PavCYP707A2—a putative ABA catabolic
gene–, and reduced transcript levels of PavPP2Cs and SnRK2s after the GA3 treatment. Together these
results show that GA modulates fruit ripening, exerting its action in part by interacting with the ABA
pathway in sweet cherry.

Keywords: abscisic acid; GA3; gibberellin; IAD; fruit tree management; non-climacteric; ripening;
sweet cherry

1. Introduction

The ripening process of fleshy fruits is the sum of events, including softening, color change,
decreased acidity, and sweetening that lead to maturity or ripeness when the fruit is suitable to
be eaten [1]. In this regard, ripening is different from senescence processes in which the senescent
tissues do not recover metabolites; instead, different sugars accumulate to high levels in the fruits [2].
Ripening is preceded by fruit degreening and reactivation of growth occurring at the onset of Stage III [1].
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Other changes occurring during the ripening process include chloroplasts conversion into pigment
accumulating chromoplasts, cell wall modification leading to a decline in firmness, and anthocyanin
production, especially in the fruit skin [3].

Molecular, cellular, and physiological changes occurring during ripening are controlled by plant
hormones that regulate this process [4–6]. In non-climacteric fruits, whose maturation occurs exclusively
on the tree without dependence on ethylene production, several phytohormones are involved in
the control of ripening [7–9]. Abscisic acid (ABA) plays a central role as it triggers color change
in red and purple fruits, increases anthocyanin and sugar content, and reduces fruit firmness and
acidity [10–14]. Ethylene may have a promoting effect, though it is minor compared with climacteric
fruits, possibly through interaction with the ABA pathway [13,15]. Other phytohormones, including
auxins, gibberellins, cytokinins, and brassinosteroids, are also able to modify ripening parameters
when they are exogenously applied [16–20]. These phytohormones show content variations during
ripening [19–23], and some of them act by modifying ABA levels [17,20,24] and producing a fruit
ripening delay [24–26]. In this regard, a negative correlation has been reported between the gibberellin
GA4 and some ripening parameters at harvest [23].

Gibberellins (GAs) are acidic diterpenoids involved in regulating several developmental
processes [27,28]. Despite the widespread agricultural practice of gibberellic acid (GA3) applications
to modify fruit parameters, the role of GA in the ripening process has not been clearly elucidated in
non-climacteric fruits. GA and ABA transcriptionally antagonize each other during plant development,
and GA negatively regulates ABA biosynthesis, perception, and signal transduction [29,30]. In sweet
cherry (Prunus avium L.) fruits, GA3 treatment delays the ABA accumulation at the onset of ripening [17].

Sweet cherry is a non-climacteric fleshy fruit plant with a typical double-sigmoid growth
pattern characterized by fast growth occurring at Stage I; slow growth of the exocarp and mesocarp,
embryo development and endocarp lignification leading to pit hardening in Stage II; and growth
resumption and ripening initiation at Stage III [31–34]. However, unlike other non-climacteric fruit
species, Prunus avium has a very short fruit ripening period. During the sweet cherry fruit development,
there is a transition from green fruits to yellow, straw-yellow, pink, and red. Sweet cherry pink color
initiation and sugar increase at the onset of ripening correlate with ABA accumulation, which is known
to trigger ripening [10,13,35]. Other phytohormones’ role in the control of sweet cherry fruit ripening
has not been thoroughly investigated; however, there is evidence on the effect of GA3 in agronomic
practices, where the treatment with GA3 at Stage II increases fruit firmness and size [36–38] and
delays ripening by several days [36,39,40]. Usenik et al. [40] reported a delay in color development in
GA3-treated fruits, which was detected as early as one-week posttreatment. A delay in sugar increase
has also been reported [41]. Different effects of GA3 applications have been reported in sweet cherry
varieties depending on whether they are early-season or mid-season maturing, which differ in the
extension of Stage II, where pit hardening occurs [42]. Early-season maturing varieties have been
reported as unaffected in fruit size after GA3 treatment, while mid-season varieties show delayed
fruit size increase [36]. Additionally, polygalacturonase and Cx-cellulase activity are also delayed in
mid-season varieties, whereas early-season varieties presented a trend towards more enzyme activity
at harvest time, though not significant [36]. Regarding fruit color, GA3 treatment produces a delay
in color development in mid-season varieties [40], while in an early-season variety, less—but not
delayed—anthocyanin accumulation is observed upon GA3 application [17].

GAs are present at the onset of sweet cherry fruit ripening. At the beginning of Stage III, there is
a peak in GA activity in the seed, while the maximum GA activity in the pericarp is observed a few
days later [43]. Teribia et al. [23] found that gibberellin A4 (GA4) and GA3 were high at the onset
of sweet cherry color initiation but then decreased as the fruits became darker, while gibberellin
A7 (GA7) and gibberellin A1 (GA1) were constant during ripening. The molecular mechanisms by
which GA controls fruit ripening are poorly understood. In grapevine (Vitis vinifera L.), PP2Cs and
SnRK2s ABA pathway orthologs express during fruit ripening [44], and GA3 treatment modifies the
expression of PP2Cs [45], which code for putative negative regulators of ABA pathway. In sweet



Plants 2020, 9, 1796 3 of 15

cherry, orthologs of ABA signaling pathway, PP2Cs and SnRKs, express during fruit ripening [20,46],
though their modulation by gibberellin at the onset of fruit ripening had not been evaluated in
sweet cherry fruits. Therefore, this work aims to determine if the physiological effects produced by
GA3 are associated with changes in transcript accumulation of ABA pathway-related genes. For this,
we analyzed the effect of GA3 on transcript abundance of putative ABA homeostasis genes, PavNCED1
and PavCYP707A2, previously involved in the regulation of ABA levels in sweet cherry [47,48], and on
the transcript accumulation of the putative ABA signaling pathway genes, subfamily 2 of SNF1-related
kinases (PavSnRK2s) and type 2C protein phosphatases (PavPP2Cs), expressed during sweet cherry
fruit development [20,46]. The use of early- and mid-season varieties provides insight into how GA3

acts at the physiological and molecular level and sheds light on the role of GA during sweet cherry
fruit ripening.

2. Results

2.1. Effect of GA3 on the Growth Curve of Early- and Mid-Season Sweet Cherry Varieties

To better appraise the physiological effects of GA3, we first characterized fruit growth dynamics
along with phenology. Fruit growth, as width variations, was described by a double sigmoidal
curve in both varieties (Figure 1), though a more extended slow growth period and a longer light
green-to-yellow transition was observed in the mid-season variety, together with an additional growth
peak a few days before harvest (Figure 1B). From the onset of color initiation to harvest, a similar
time frame was observed in both varieties (Figure 1). The transition from yellow to pink fruit color
coincided with the maximum growth rate in the early-maturing variety, whereas in the mid-season
variety, color change started several days after the fast growth initiation (Tables S1 and S2).
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Figure 1. Fruit growth and growth rate curves of early-season variety, Glenred (A) and mid-season
variety, Lapins (B). A color scale is included based on fruit phenology (Tables S1 and S2).
Growth resumption prior to fruit color change is indicated with a dotted blue line, 20 fruits from Lapins
and Glenred were randomly selected for measurements. Data as ± SEM. DAFB, days after full bloom.
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To describe different effects of GA3 prior to the onset of ripening, we performed exogenous GA3

treatment in early- and mid-season varieties at the light green-to-straw yellow transition stage of
each genotype. The effect of the treatment on fruit growth was monitored during Phase III (Figure 2).
GA3 treatment generated a significantly larger fruit width (Figure 2A) and weight (Table 1) at the end
of the growing period in the early-season variety. This effect was observed a few days after GA3 was
applied. In contrast, GA3 did not significantly change fruit width in the mid-season variety at harvest
(Figure 2B), but did significantly change fruit weight (Table 1).
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Figure 2. Effect of exogenous gibberellic acid (GA3) on fruit growth of early-season variety, Glenred (A)
and mid-season variety, Lapins (B) 20 fruits from control and GA3 trees of Lapins and Glenred were
randomly selected for measurements. Data as ± SEM ANOVA with Tukey’s post hoc test at p < 0.05 was
conducted; “*” denotes statistical differences between GA3-treated and control fruits. DAFB, days after
full bloom.

Table 1. Ripening parameters at harvest of mid- and early-season varieties in the 2017–2018
season. Mid-season variety harvest, 4 December 2017 (69 DAFB). Early-season variety harvest,
10 November 2017 (59 DAFB).

Variety Treatment Weight (g) Firmness (du) SSC (ºBrix) Acidity (MA%)

Mid-season
variety Lapins

Control 7.70b ** 66.73a 14.64a 1.53a
GA3 * 7.29a 68.09b 14.04a 1.43a

Early-season
variety Glenred

Control 7.60a 73.29a 14.15a 1.43a
GA3 8.29b 77.97b 14.60a 1.60a

* GA3 was applied as the commercial product Activol® 4%—Bayer Crop Science, Chile to whole trees at the light
green-to-straw yellow transition of fruits. ** The significance of variation between control- and GA3-treated fruits
of each parameter was tested by one-way ANOVA analysis with Tukey’s post hoc test. Different letters denote
significantly different means (p < 0.05). Lapins and Glenred were analyzed separately. SSC, soluble solid content;
du, durometer units; MA malic acid.

2.2. Effect of GA3 on Fruit Parameters and IAD Variations during Ripening

At harvest, both varieties had less color (Figure S1) and a lower proportion of fruits in the darker
‘3’ and ‘4’ color categories in the GA3-treated plants (Figure 3A,C). Additionally, GA3 application
significantly increased fruit firmness in both varieties at harvest (Table 1).

We aimed to detect the moment that GA3 starts to exert its action in early- and mid-season
varieties; therefore, we measured the index of absorbance difference (IAD), which is a maturity index
used for nondestructive assessment of the progression of the ripening process [49]. IAD indicates the
presence of phenolic compounds that filter the chlorophyll absorbance and significantly correlates
with anthocyanin content in sweet cherry ripened fruits [50]. GA3 affected the IAD of both varieties
in the two seasons analyzed (Figure 3B; Figure S2). In the early-season variety, GA3 significantly
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decreased IAD at the end of the ripening process (Figure 3B). In the mid-season variety, GA3 delayed
IAD evolution since control fruits increased their IAD values before GA3-treated fruits (Figure 3D).
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Figure 3. Effect of GA3 on color distribution and index of absorbance difference (IAD) at harvest
of early-season variety, Glenred (A,B) and mid-season variety, Lapins (C,D). 20 fruits from control
and GA3 trees of Lapins and Glenred were randomly selected for nondestructive IAD measurements
in the field and 25 fruits for color distribution assessment at harvest. Data as ± SEM ANOVA with
Tukey’s post hoc test at p < 0.05 was conducted; “*” denotes statistical differences between GA3-treated
and control fruits CTIFL (Centre Technique Interprofessionnel des Fruits et Légumes) color chart
was used in (B,D), where 1 is the lightest color, and 4 is the darkest color, respectively (Figure S3).
DAFB, days after full bloom.

2.3. Transcript Variations of ABA Pathway Orthologs upon GA3 Treatment in Early- and Mid-Season Varieties

We investigated if the physiological effects of GA3 observed were accompanied by changes in the
transcript abundance of ABA pathway orthologs that are expressed during sweet cherry fruit ripening.
The variations in the transcript abundance of ABA homeostasis putative orthologs, PavNCED1 and
PavCYP707A2, were analyzed in response to GA3 treatment. These genes participate in regulating ABA
content during sweet cherry fruit ripening [47,48]. PavNCED1 codes for a putative 9-cis epoxycarotenoid
dioxygenase, a key enzyme of the ABA biosynthetic route. PavCYP707A2 codes for a putative ABA
8′-hydroxylase, whose ortholog in Arabidopsis is involved in ABA catabolism [51]. PavNCED1 transcript
accumulation closely reflects the sharp increase in ABA levels during the initiation of ripening in sweet
cherry fruits, whereas PavCYP707A2 decreases during this process [47,48,52].

Samples collected just before (T0) or five days after the GA3 treatment (T5) were analyzed.
PavNCED1 did not change significantly between GA3-treated and control fruits nor between T0 and
T5 in both varieties (Figure 4). On the other hand, in the early-season variety, a five-fold increase in
PavCYP707A2 occurred five days after the GA3 treatment in relation to control fruits (Figure 4A).
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Figure 4. Effect of GA3 on transcript abundance relative to PavCAC of PavNCED1 and PavCYP707A2
sweet cherry orthologs, 5 days after the treatment (T5). Fruits from control and GA3 trees of
(A) early-season variety Glenred and (B) mid-season variety Lapins, were randomly selected and
pooled for the RT–qPCR analyses. Data as +SEM. Relative transcript abundance was set to 1.0 at T0,
where T0 is the sampling performed immediately before GA3 application ANOVA with Tukey’s post
hoc test at p < 0.05 was conducted; “*” denotes statistical differences between GA3-treated and control
fruits for a gene.

We also investigated changes in the transcript accumulation of putative ABA signaling pathway
genes, subfamily 2 of SNF1-related kinases (PavSnRK2s) and type 2C protein phosphatases (PavPP2Cs)
upon GA3 treatment. These genes show variations during sweet cherry fruit development and are
highly expressed during ripening [20,46], possibly participating in ABA signal transduction.

PavSnRK2s and PavPP2Cs transcripts accumulated from T0 to T5 and decreased upon GA3

treatment in the early-season variety, except for PavSnRK2.1 (Figure 5A). In contrast, no significant
differences in PavSnRK2s were observed from T0 to T5 in the mid-season variety, and PavPP2Cs
transcripts upregulated after GA3 treatment (Figure 5B).
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Figure 5. Effect of GA3 on transcript abundance relative to PavCAC of PavPP2C and PavSnRK2 sweet
cherry orthologs, 5 days after the treatment (T5). Fruits from control and GA3 trees of (A) early-season
variety Glenred and (B) mid-season variety Lapins were randomly selected and pooled for the RT–qPCR
analyses. Data as +SEM. Relative transcript abundance was set to 1.0 at T0, where T0 is the sampling
performed immediately before GA3 application ANOVA with Tukey’s post hoc test at p < 0.05 was
conducted; “*” denotes statistical differences between GA3-treated and control fruits for a gene.

3. Discussion

3.1. Early- and Mid-Season Varieties Are Responsive to GA3

Stage II, which is characterized by slow growth, endocarp lignification, and embryo development,
precedes the onset of ripening in sweet cherry fruits. Additionally, the most marked effect of GA3 on
ripening delay occurs when applied at the end of Stage II [39], suggesting that this is a key moment
for ripening initiation timing. Differences between early- and mid-varieties were related to this stage
since the early-season variety had a shorter slow growth period than the mid-season variety (Figure 1).
Variations in the duration of Stage II between varieties have been previously reported in fleshy fruits
with double sigmoid growth patterns, such as grapevine and sweet cherry [1,36]. Possibly events that
occur at the end of Stage II take more time to occur in mid- or late-varieties. In line with this idea, in
the mid-season variety, we found that pink color initiation was delayed several days from growth
resumption, whereas in the early-season variety, both events occurred simultaneously (Figure 1).
A growth increase occurs at the onset of Stage III in many fleshy fruits due to variations in sink-source
relations, cell wall modifications, and water inflow into the cell [1]. GA modifies cell wall composition
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during sweet cherry fruit ripening [17]. In line with this idea, Peréz et al. [53] proposed that increased
cell wall invertase activity and hexose content could explain the berry-sizing effect of GA3 in grapevine.
In agreement with this, we found that GA3 significantly increased the fruit width (Figure 2) and weight
(Table 1) in the early-season variety at harvest, while the application of GA3 on the mid-season variety
only caused a delay in fruit growth (Figure 2, Table 1). The delayed growth caused by GA3 may explain
the fruit size reduction of GA3 in the mid-season variety. In this regard, we observed a slight delaying
effect of GA3 on the size of this mid-season variety, whereby control fruits increased in size from 67
to 69, whereas GA3-treated fruits did not. Choi et al. [36] reported an increased size in Lapins fruit
after GA3 treatment, but this is because they allowed the GA3-delated fruits to reach full maturity.
Additionally, GA3 increased firmness at harvest in both varieties (Table 1). Choi et al. [36] found
delayed Cx-cellulase and polygalacturonase activity upon GA3 treatment in mid-season variety and
more—but not delayed—activity in an early-season variety.

Color initiation due to anthocyanin accumulation is controlled by ABA [14,52,54] but can be
modulated by GAs, auxin, and cytokinins in non-climacteric species [16–19]. We found decreased
but not delayed IAD values after GA3 treatment in the early-season variety at harvest (Figure 3B).
In the mid-season variety, GA3 produced a significant delay in IAD evolution (Figure 3D). In both
varieties, the effect on IAD was accompanied by an increased proportion of lighter fruits at the end of
ripening (Figure 3A,C), showing a negative effect of GA3 on color development. In accordance with
our results, color development was delayed by GA3 in mid-varieties [40]. An early-season variety
showed decreased but not delayed anthocyanin accumulation [17].

The role of GAs has been poorly investigated in the context of non-climacteric fruit ripening.
In grapevine, GA3 is not commonly used at veraison or ripening. Instead, it is applied before bloom to
produce a thinning effect or after fruit set in seedless varieties for promoting cell enlargement [55].
GA3 delays ripening and produces cluster rigidity and pedicel thickening [56]. Therefore, in this model
species, our understanding of the role of GAs during ripening is relatively poor as its agronomic use is
not common. In the non-climacteric strawberry (Fragaria × ananassa Duch.), GA3 treatment during
ripening delays anthocyanin accumulation and chlorophyll degradation [57]. GA3 and GA4 increase
from green to red stages in strawberry fruits [58]. GAs distribution over time is quite similar to that
found in sweet cherry [23]. Interestingly, GA3 and GA4 increases in strawberries are concomitant with
increased FaGID1c expression from green to red stages, a putative receptor that immunolocalized in
red fruits [58]. These results show that in this non-climacteric species, GA signaling is active during
ripening. However, little is known about GA’s role in other non-climacteric fruit species, such as
sweet cherry.

3.2. GA3 Treatment Affects the Transcript Abundance of ABA Pathway Orthologs in Early- and Mid-Season Varieties

ABA is the principal regulator of the fruit ripening process in the non-climacteric sweet
cherry [10,35]. Recently, molecular and functional analyses of genes relevant for ABA homeostasis have
been performed and found that PavNCED1, encoding a putative 9-cis-epoxycarotenoid dioxygenase,
and PavCYP707A2, which codes for a putative ABA 8′-hydroxylase, regulate ABA levels during sweet
cherry fruit ripening [13,47,48,52]. Here we investigated if PavNCED1 and PavCYP707A2 transcript
abundance was modified upon GA3 treatment. GA3 significantly increased PavCYP707A2 only in
the early-season variety (Figure 4A), suggesting that GA could influence ABA degradation. In sweet
cherry fruits, PavCYP707A2 decreases as ABA increases [52], suggesting that less ABA degradation is
necessary for its accumulation. RNAi lines with decreased expression of PavCYP707A2 show altered
expression of anthocyanin related genes involved in color initiation [47]. Previous reports found
that this gene was upregulated by ABA in sweet cherry [48], but its regulation by other hormones
has not been investigated to date. Here we show that GA could regulate PavCYP707A2 transcript
accumulation. This could eventually lead to decreased ABA levels, explaining less color observed
in the early-season variety. In agreement with this, Kondo and Danjo [17] found that GA3 treatment
delayed ABA accumulation in the fruits of the early-season variety Satonishiki.
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PavPP2Cs and PavSnRK2s are putative negative and positive ABA signaling genes, respectively.
In Arabidopsis, dephosphorylation of SnRKs by PP2Cs leads to repression of the ABA response, which is
released when ABA binds to its receptor, which in turn interacts with PP2C, thus inhibiting its
activity [59]. In sweet cherry, PavPP2Cs and PavSnRK2s transcript accumulation varies during fruit
development and in response to ABA [20,46], with some being upregulated and others downregulated.

Here we studied PavPP2C3, PavPP2C4, PavSnRK2.1, and PavSnRK2.3, reported as highly expressed
during sweet cherry fruit ripening [20], and found their transcript abundance was modulated by
GA3. Regarding the hormonal regulation of these genes, the transcript abundance of PavPP2C3,
PavSnRK2.1 and PavSnRK2.2 was decreased upon IAA treatment, while PavPP2C4 was not affected [20].
In grapevine, downregulation of an ABA putative negative regulator, PP2Cs, was produced by GA3

treatment at fruit color change [45]. Therefore, it seems plausible that these genes are modulated by
GA3 in sweet cherry.

In the early-season variety, GA3 inhibited the upregulation of ABA pathway-related genes from
T0 to T5 (Figure 5A), showing that GA controls positive as well as negative ABA signaling genes.
In contrast, in the mid-season variety, only the negative regulators, PavPP2Cs, increased upon the
GA3 treatment (Figure 5B). We hypothesize that more negative regulator expression could cause a
reduced ABA sensitivity, possibly leading to more ABA to be accumulated for obtaining the same ABA
response, which could produce a delay in the occurrence of ripening related events. This hypothesis is
consistent with our observation of IAD delay in mid-season variety upon GA3 treatment (Figure 3D).
It also agrees with delayed Cx-cellulase activity reported by Choi et al. [36] and the delayed color
development in other mid-season varieties [40].

In non-climacteric species, some forms of GA are present at the onset of fruit ripening [23,58].
GA perception and signaling components are expressed when strawberry fruits are red [58].
In grapevine, GA3 applied at veraison modifies ripening parameters and the expression of several genes
involved in hormone biosynthesis and signaling, including PP2Cs [45]. In sweet cherry, GA3 treatment
modifies the ABA accumulation pattern [17]. Finally, we show that GA modulates the transcript levels
of some putative ABA homeostasis and signaling genes, therefore possibly crosstalk between GA and
ABA exists at the onset of ripening in non-climacteric fruits. The possible role of GA in this process is
discussed below.

3.3. Possible Role of GA3 during Fruit Ripening

The regulation of the ripening process in non-climacteric fruits has not been completely elucidated.
Sweet cherry fruits are characterized as having a typical non-climacteric respiration pattern with little
or null ethylene production [13,32,60]. In contrast, ABA is the phytohormone with the strongest effects
on ripening triggering [10,13,35,48], and ethylene seems to play a minor role by influencing the effect of
ABA [10]. Ethephon treatment induces PavNCED1 expression and slightly increases ABA content [13].

Regarding the role of other hormones, our understanding is scarce. Wang et al. [20] reported a
peak in the IAA content at the same time as ABA, and IAA treatment increased ABA content, though it
did not affect anthocyanin concentration. Additionally, some components of the ABA signaling
pathway were downregulated upon IAA treatment [20]. With respect to cytokinins, Teribia et al. [23]
found a gradual increase in isopentenyladenosine (IPA) to reach high levels at the end of ripening
and treatment with synthetic cytokinin affects color and increases the size and firmness of sweet
cherry fruits [61]. Regarding GAs, GA4 and GA3 are high at the onset of color initiation [23] and
GA3 treatment delays ripening [36,39,40], which also occurs in other non-climacteric species such
as strawberries [57]. GA3 applications also reduce anthocyanin accumulation and modify cell wall
composition in sweet cherry fruits [17].

GAs are present during sweet cherry fruit ripening [23,43]; however, GA3 applications
are performed in the transition from light green to yellow [36,39]. On the other hand, usually,
spatial separation of ABA and GA responses is controlled by hormone movement [62]. In light of
this, it is possible to hypothesize that GAs biosynthesis occurs primarily in the seed, and then GAs
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are transported to the pericarp before endocarp lignification. This idea is supported by the fact that
later applications of GA3, when the endocarp is fully lignified, do not produce a delaying effect [39].
Once in the mesocarp, GA may modulate the ABA pathway. This idea is consistent with studies in
other species showing that GA and ABA are often spatially separated, as they play antagonistic roles
in plant responses [30]. Therefore, such antagonism at the onset of fruit ripening between GA and
ABA cannot be ruled out in sweet cherry fruit ripening.

The aim of this work was to determine if GA3 modulates fruit ripening in two sweet cherry
varieties having contrasting maturity time phenotypes and if this was related to changes in the
transcript abundance of ABA pathway-related genes. We found that both varieties were responsive to
GA3, and this was accompanied by changes in the transcript abundance of ABA homeostasis and signal
transduction related genes. Further investigation is necessary to elucidate the different GA modes of
action as well as the molecular features involved in the control of non-climacteric fruit ripening in
order to optimize the timing of the application and use of this growth regulator in the field

4. Materials and Methods

4.1. Plant Material and GA3 Treatment

Fruits of Prunus avium L. varieties, Lapins and Glenred (Sequoia®), from five-year-old trees grafted
on Cab-6P rootstocks growing in a commercial orchard located at Rengo, Chile (Long: O70◦43′6.78”
Lat: S34◦27′16.92”) were used in 2017–2018 and 2018–2019 seasons. Lapins is an early-flowering
and mid-season maturing variety, whereas Glenred is an early-flowering and early-season maturing
variety. Trees used in all the measurements were randomly selected from different rows of the orchard,
and those plants from the beginning or the end of the row, less vigor or a visible difference in growth,
were excluded from the analyses. Both varieties were characterized in their phenology throughout
fruit development (Tables S1 and S2), according to Wenden et al. [63].

For the GA3 treatment, eight and ten trees of the Lapins and Glenred varieties, respectively,
were randomly selected in the 2017–2018 and 2018–2019 seasons, and each tree was considered a
biological replicate. GA3 (Activol® 4%—Bayer Crop Science, Chile) was applied at a rate of 12.5 ppm
to Lapins trees and at a rate of 18.6 ppm to Glenred trees. Untreated trees served as a control in Lapins
and Glenred, respectively. GA3 was applied as a water solution with a hand sprayer until run-off at
the light green-to-straw yellow transition stage of each variety (36 and 29 DAFB in Glenred and Lapins,
respectively, in the 2017–2018 season; 38 and 35 DAFB in Glenred and Lapins, respectively, in the
2018–2019 season). For the RNA extractions, the T0 time point (minutes before the GA3 application)
and T5 time point (5 days after the GA3 treatment) were utilized during the 2017–2018 season. All the
fruit samples were collected in the field from three control and three GA3-treated plants. Samples were
immediately frozen in liquid nitrogen.

4.2. Fruit Parameters

Fruit growth and IAD were measured in 20 fruits per tree every 2–5 days. A rank of 0 DAFB was
assigned when 50% of the flowers were open. For fruit growth, the equatorial diameter was measured
using a caliper.

Growth rate curves were generated using a slope calculation:

(w2 − w1)/(t2 − t1),

where w is fruit width, and t is time as DAFB. IAD (Cherry Meter (vis/NIR) device, T.R. ® Turoni,
Bologna, Italy) was measured in both cheeks of the fruits, and the average value was obtained during
the 2017–2018 and 2018–2019 seasons. The values obtained from both cheeks of the fruits were
averaged. For evaluations performed at harvest in the 2017–2018 season, fruits were collected at 59
and 69 DAFB in Glenred and Lapins, respectively. This date was determined according to sugar
(14◦–15◦Bx) and firmness (min. 65 d.u.) agronomic maturity requirements. For color distribution of the
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fruits, soluble solids content, acidity, fruit firmness and weight, 25 fruits were randomly selected [64]
from each of the control and GA3-treated trees. For color distribution, a CTIFL (Centre Technique
Interprofessionnel des Fruits et Légumes) color chart from 1 to 4 was utilized (Figure S3). Weight was
quantified in a portable mini scale. For firmness, the durometer (Durofel T.R. ® Turoni, Forlì, Italy) was
pressed on both sides of the fruits, giving a 1–100 value that was averaged. For soluble solids content
and acidity determination (as malic acid%), five similar fruits among the 25 fruits were selected [64]
and measured with a PAL-BX|ACID Pocket Sugar and Acidity Meter (ATAGO CO. LTD., Tokyo, Japan).

4.3. RNA Extraction and RT–qPCR Analysis

For RNA extractions, 0.5 g of fruit tissue (exocarp and mesocarp enriched) of each variety were
ground using liquid nitrogen. Total RNA was isolated using the CTAB method with some modifications,
as described in Meisel et al. [65]. Samples were treated with TURBOTM DNase (Thermo Fisher Scientific,
San Diego, CA, USA) according to the manufacturer’s instructions. Reverse transcription was performed
using 1 µg RNA and the First-Strand cDNA synthesis system kit (Thermo Fisher Scientific, San Diego,
CA, USA), following the manufacturer’s specifications. A260/230 and A260/A280 values were around
2.0 for all the samples. RNA electrophoresis of ribosomal bands using MOPS buffer was used to check
RNA integrity (Figure S4).

Quantitative transcript abundance of sweet cherry was analyzed using real-time quantitative PCR
(RT–qPCR) with two technical replicates and three biological replicates. Primers were selected from the
literature [20,47,66,67] and tested for specificity (a single amplicon) by performing a dissociation curve
(melting curve) analysis. When more than one amplicon was detected, primer sets were redesigned
using the reported template sequence [20] and Primer-BLAST [68]. A single amplicon from these new
primer sets was confirmed on a dissociation curve. The efficiency of these primers was determined by
the LinRegPCR program [69]. Primer sequences are listed in Table S3.

The RT–qPCR reaction was conducted on the QIAGEN Rotor-Gene Q system, using the Rotor-Gene
Q Series software version 2.1.0. Fast Plus system. EvaGreen® qPCR Master Mix (Biotium, Fremont,
CA, USA) was used as an RNA intercalating agent, according to the manufacturer’s indications.
RT–qPCR analyses were performed using MIQE guidelines for qRT-PCR [70] and the “golden rules of
quantitative PCR” [71]. The primer efficiency was used for relative transcript abundance calculations,
according to Pfaffi [72]. PavCAC, PavTEF2, PavACT1 were used as reference genes. PavCAC was
selected for the relative abundance calculations since it had less variation between samples (<1.5 Cq).
All the genes analyzed had average Cq values higher than 28 cycles. Transcript abundance during
development was set to 1.0 at T0. All the graphs were made with the GraphPad software Prism
version 6.0e.

4.4. Statistical Analysis

The significance of variation between control and GA3-treated fruits at specific time points was
tested by one-way ANOVA combined with Tukey’s post hoc analysis at p < 0.05.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/12/1796/s1,
Table S1: Fruit color phenology of Glenred obtained during 2017–2018 season, Table S2: Fruit color phenology of
Lapins during 2017–2018 season, Table S3: Primers used for RT–qPCR gene expression analyses in sweet cherry
fruits F: Forward primer; R: reverse primer; Tm: melting temperature, Figure S1: Effect of GA3 on fruit color in the
2017–2018 season Representative picture of control and GA3-treated fruits at harvest (59 DAFB 10th November,
2017, in Glenred; 69 DAFB 29th November 2017, in Lapins), Figure S2: Effect of GA3 on IAD of early-season
variety, Glenred (A) and mid-season variety, Lapins (B) in the 2018–2019 season 20 fruits from control and GA3
trees of Lapins and Glenred, were randomly selected for nondestructive IAD measurements in the field m Data as
± SEM ANOVA with Tukey’s post hoc test at p < 0.05 was conducted; “*” denotes statistical differences between
GA3-treated and control fruits at the different dates DAFB, Figure S3: CTIFL color chart from 1 to 4, Figure S4:
Denaturing agarose-formaldehyde-MOPS gel electrophoresis for isolated RNA fruit samples utilized in the qPCR
analysis. C, control fruit samples; G, GA3-treated fruit samples; T0, fruit samples collected minutes prior to
the treatment. 18S (lower band) and 28S (upper band) ribosomal RNA bands are observed in the intact RNA
fruit samples.

http://www.mdpi.com/2223-7747/9/12/1796/s1
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Christen, D.; Magein, H.; et al. A collection of European sweet cherry phenology data for assessing climate
change. Sci. Data 2016, 3, 160108. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.scienta.2012.10.007
http://dx.doi.org/10.17660/ActaHortic.2000.514.8
http://dx.doi.org/10.1007/s00425-010-1165-2
http://dx.doi.org/10.2503/hortj.UTD-046
http://dx.doi.org/10.1016/j.plaphy.2017.08.025
http://www.ncbi.nlm.nih.gov/pubmed/28926798
http://dx.doi.org/10.1093/jxb/erv169
http://www.ncbi.nlm.nih.gov/pubmed/25956880
http://dx.doi.org/10.1016/j.jplph.2010.05.027
http://www.ncbi.nlm.nih.gov/pubmed/20728961
http://dx.doi.org/10.17660/ActaHortic.2016.1119.45
http://dx.doi.org/10.17660/ActaHortic.2017.1161.78
http://dx.doi.org/10.1038/sj.emboj.7600121
http://dx.doi.org/10.1007/s00344-013-9388-7
http://dx.doi.org/10.1023/A:1006318306115
http://dx.doi.org/10.1104/pp.111.177311
http://dx.doi.org/10.5424/sjar/2009074-1105
http://dx.doi.org/10.1016/j.postharvbio.2008.06.013
http://dx.doi.org/10.1007/BF00210952
http://dx.doi.org/10.1111/j.1469-8137.2011.03700.x
http://www.ncbi.nlm.nih.gov/pubmed/21443649
http://dx.doi.org/10.1073/pnas.0907095106
http://dx.doi.org/10.1080/00015128809437993
http://dx.doi.org/10.1016/j.scienta.2010.11.006
http://dx.doi.org/10.1016/j.tplants.2018.02.005
http://dx.doi.org/10.1038/sdata.2016.108
http://www.ncbi.nlm.nih.gov/pubmed/27922629


Plants 2020, 9, 1796 15 of 15

64. Chavoshi, M.; Watkins, C.; Oraguzie, B.; Zhao, Y.; Iezzoni, A.; Oraguzie, N. Phenotyping protocol for
sweet cherry (Prunus avium L.) to facilitate an understanding of trait inheritance. J. Am. Pomol. Soc. 2014,
68, 125–134.

65. Meisel, L.; Fonseca, B.; Gonzalez, S.; Baeza-Yates, R.; Cambiazo, V.; Campos, R.; Gonzales, M.; Orellana, A.;
Retamales, J.; Silva, H. A rapid and efficient method for high quality total RNA from peaches (Prunus persica)
for functional genomics analyses. Biol. Res. 2005, 38, 83–88. [CrossRef]

66. Alkio, M.; Jonas, U.; Declercq, M.; Van Nocker, S.; Knoche, M. Transcriptional dynamics of the developing
sweet cherry (Prunus avium L.) fruit: Sequencing annotation and expression profiling of exocarp-associated
genes. Hortic. Res. 2014, 1, 11. [CrossRef] [PubMed]

67. Tong, Z.; Gao, Z.; Wang, F.; Zhou, J.; Zhang, Z. Selection of reliable reference genes for gene expression
studies in peach using real-time PCR. BMC Mol. Biol. 2009, 10, 71. [CrossRef]

68. Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design
target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [CrossRef] [PubMed]

69. Ruijter, J.M.; Ramakers, C.; Hoogaars, W.M.H.; Karlen, Y.; Bakker, O.; Van den Hoff, M.J.B.; Moorman, A.F.M.
Amplification efficiency: Linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res.
2009, 37, e45. [CrossRef]

70. Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mulluer, R.; Nolan, T.; Pfaffl, M.;
Shipley, G.L.; et al. The MIQE Guidelines: Minimum information for publication of quantitative Real-Time
PCR experiments. Clin. Chem. 2009, 55, 611–622. [CrossRef]

71. Udvardi, M.K.; Czechowski, T.; Scheible, W.R. Eleven golden rules of quantitative RT-PCR. Plant Cell 2008,
20, 1736–1737. [CrossRef]

72. Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res.
2001, 29, 2002–2007. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.4067/S0716-97602005000100010
http://dx.doi.org/10.1038/hortres.2014.11
http://www.ncbi.nlm.nih.gov/pubmed/26504533
http://dx.doi.org/10.1186/1471-2199-10-71
http://dx.doi.org/10.1186/1471-2105-13-134
http://www.ncbi.nlm.nih.gov/pubmed/22708584
http://dx.doi.org/10.1093/nar/gkp045
http://dx.doi.org/10.1373/clinchem.2008.112797
http://dx.doi.org/10.1105/tpc.108.061143
http://dx.doi.org/10.1093/nar/29.9.e45
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Effect of GA3 on the Growth Curve of Early- and Mid-Season Sweet Cherry Varieties 
	Effect of GA3 on Fruit Parameters and IAD Variations during Ripening 
	Transcript Variations of ABA Pathway Orthologs upon GA3 Treatment in Early- and Mid-Season Varieties 

	Discussion 
	Early- and Mid-Season Varieties Are Responsive to GA3 
	GA3 Treatment Affects the Transcript Abundance of ABA Pathway Orthologs in Early- and Mid-Season Varieties 
	Possible Role of GA3 during Fruit Ripening 

	Materials and Methods 
	Plant Material and GA3 Treatment 
	Fruit Parameters 
	RNA Extraction and RT–qPCR Analysis 
	Statistical Analysis 

	References

