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QUANTITATIVE ERROR TERM IN THE COUNTING PROBLEM

ON VEECH WIND-TREE MODELS

ANGEL PARDO

Abstract. We study periodic wind-tree models, billiards in the plane en-

dowed with Z2-periodically located identical connected symmetric right-angled
obstacles. We exhibit effective asymptotic formulas for the number of periodic

billiard trajectories (up to isotopy and Z2-translations) on Veech wind-tree

billiards, that is, wind-tree billiards whose underlying compact translation sur-
faces are Veech surfaces. This is the case, for example, when the side-lengths

of the obstacles are rational. We show that the error term depends on spectral

properties of the Veech group and give explicit estimates in the case when
obstacles are squares of side length 1/2.

1. Introduction

The classical wind-tree model corresponds to a billiard in the plane endowed with
Z2-periodic obstacles of rectangular shape aligned along the lattice, as in Figure 1.

Figure 1. Original wind-tree model.

The wind-tree model (in a slightly different version) was introduced by P. Ehren-
fest and T. Ehrenfest [EE] in 1912. J. Hardy and J. Weber [HaWeb] studied the
periodic version. All these studies had physical motivations.

Several advances on the dynamical properties of the billiard flow in the wind-tree
model were obtained recently using geometric and dynamical properties on moduli
space of (compact) flat surfaces; billiard trajectories can be described by the linear
flow on a flat surface.

A. Avila and P. Hubert [AH] showed that for all parameters of the obstacle
and for almost all directions, the trajectories are recurrent. There are examples
of divergent trajectories constructed by V. Delecroix [De]. The non-ergodicity was
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2 ANGEL PARDO

proved by K. Fra̧cek and C. Ulcigrai [FU]. It was proved by V. Delecroix, P. Hubert
and S. Lelièvre [DHL] that the diffusion rate is independent either on the concrete
values of parameters of the obstacle or on almost any direction and almost any
starting point and is equals to 2/3. A generalization of this last result was shown
by V. Delecroix and A. Zorich [DZ] for more complicated obstacles. In the present
work we study this last variant, corresponding to a billiard in the plane endowed
with Z2-periodic obstacles of right-angled polygonal shape, aligned along the lattice
and horizontally and vertically symmetric. See Figure 2 for an example.

Figure 2. Delecroix–Zorich variant.

We are concerned with asymptotic formulas for the number of (isotopy classes
of) periodic trajectories on the wind-tree model. This question has been widely
studied in the context of (finite area) rational billiards and compact flat surfaces,
and it is related to many other questions such as the calculation of the volume
of normalized strata [EMZ] or the sum of Lyapunov exponents of the geodesic
Teichmüller flow [EKZ] on strata of flat surfaces (Abelian or quadratic differentials).

H. Masur [Ma88, Ma90] proved that for every flat surface (resp. rational billiard)
X, there exist positive constants c(X) and C(X) such that the number N(X,L) of
maximal cylinders of closed geodesics (resp. isotopy classes of periodic trajectories)
of length at most L satisfies

c(X)L2 ≤ N(X,L) ≤ C(X)L2

for L large enough. W. Veech, in his seminal work [Ve89], proved that for Veech
surfaces (resp. billiards) there are in fact exact quadratic asymptotics:

N(X,L) = c(X)L2 + o(L2).

Veech surfaces are translation surfaces with a rich group of affine symmetries.
They form a dense family on strata, including billiards in regular polygons and
square-tiled surfaces.

In this work we study the error term in this kind of asymptotic formulas. In the
compact case, the methods used by W. Veech [Ve89] give the following result (see
[Ve92, Remark 1.12]).

Theorem (Veech). Let X be a Veech surface. Then, there exists c(X) > 0 and
δ(X) ∈ [1/2, 1) such that

N(X,L) = c(X)L2 +O(L2δ(X)) +O(L4/3)

as L→∞.
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Furthermore, the number δ(X) has a specific interpretation in terms of spectral
properties of the Veech group, the group of derivatives of affine symmetries.

1.1. Asymptotic formulas for wind-tree models. In [Pa], we proved asymp-
totic formulas for generic wind-tree models with respect to a natural Lebesgue-type
measure on the parameters of the wind-tree billiards, that is, the side lengths of
the obstacles (cf. [AEZ, DZ]) and gave the exact value of the quadratic coefficient,
which depends only in the number of corners of the obstacle (see [Pa] for more
details on the counting problem on wind-tree models). Asymptotic formulas were
also given in the case of Veech wind-tree billiards, that is, wind-tree billiards such
that the underlying compact translation surface is a Veech surface1 (see §2.3 for
precise definitions). A concrete set of exemples is when all parameters (the side
lengths of the obstacles) are rational. In particular, Veech wind-tree billiards form
a dense family.

In the present work, we present an effective version of this result, that is, the
analogue of Veech’s Theorem, for Veech wind-tree billiards.

Theorem 1.1. Let Π be a Veech wind-tree billiard. Then, there exists c(Π) > 0
and δ(Π) ∈ (1/2, 1) such that

N(Π, L) = c(Π)L2 +O(L2δ(Π)) +O(L4/3)

as L→∞.

This result relies, on one hand, in the adaptation of Veech methods to our
context, which allows to keep track one well behaved part of periodic trajectories
on wind-tree billiards (good cylinders, see §2.4). On the other hand, there is a
family of badly behaved trajectories (bad cylinders, see §2.4) which we attack using
tools from hyperbolic geometry. Thanks to ideas of F. Dal’Bo [Da], we are able
to relate the error term for this family with the Poincaré critical exponent of an
associated subgroup of the Veech group. We prove then that this critical exponents
is strictly less than 1 using results of R. Brooks [Br] (see also [RT]).

1.2. Explicit estimates. In the simplest case, when Π is the wind-tree billiard
with square obstacles of side length 1/2, the Veech group of Π can be easily de-
scribed and most of the involved objects can be explicitly computed, such as the
contribution on the error term of the well behaved part of the periodic trajectories.
Using results of T. Roblin and S. Tapie [RT], we explicitly estimate the contribution
of the badly behaved family of periodic trajectories. More precisely, we prove the
following.

Theorem 1.2. Let Π be the Veech wind-tree billiard with square obstacles of side
length 1/2, and let δ = δ(Π) ∈ (1/2, 1) be as in the conclusion of Theorem 1.1.
Then,

δ < 0.9885.

1.3. Strategy of the proof. W. Veech [Ve89] proved that for Veech surfaces there
are exact quadratic asymptotics by relating the Dirichlet series of their length
spectrum to Eisenstein series associated to the cusps of their (lattice) Veech group.
An application of Ikehara’s tauberian theorem allows then him to conclude. An

1We stress that this notion of “Veech wind-tree billiard” is not standard.
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effective version of this last tool allows to quantify the error term in terms of
spectral properties of the Veech group (see [Ve92, Remark 1.12]).

In [Pa], we showed that the counting problem on wind-tree models can be reduced
to the study of two families of cylinders in the associated translation surface, these
are called good and bad cylinders (see §2.4.1, for the precise definition). The notion
of good cylinders was first introduced by A. Avila and P. Hubert [AH] in order to
give a geometric criterion for recurrence of Zd-periodic translation surfaces.

Applying Veech’s method to the counting problem on Veech wind-tree models,
we are able to prove the analogous result in the case of good cylinders, that is, to
give the order of the error term in terms of ad-hoc spectral properties of the Veech
group of the underlying surface. This is possible because the collection of good
cylinders is SL(2,R)-equivariant and then, there is a simple description of good
cylinders in terms of some particular cusps of the Veech group, which allows to
connect the counting problem to the corresponding Eisenstein series as Veech did.

In the case of bad cylinders, this approach does not work anymore since this
family is not SL(2,R)-equivariant and there is no simple description of bad cylinders
in terms of (cusps of) the Veech group of the underlying surface. However, bad
cylinders can be described in terms of some intricate but well described subgroup
Γbad of the Veech group. Using tools from hyperbolic geometry, thanks to ideas of
F. Dal’Bo [Da], we prove that the leading term on the counting of bad cylinders is
related to the critical exponent of this subgroup Γbad.

Using results of R. Brooks [Br], we prove that this critical exponent is strictly
less than 1. For this, we use the representation of the Veech group given by the re-
striction of the Kontsevich–Zorich cocycle to a corresponding equivariant subbundle
of the real Hodge bundle. The kernel of this representation is a subgroup of Γbad.
One first application of Brooks results allows us to show that the critical exponents
of these two groups coincide. A second application shows that the critical exponent
of the kernel is strictly less than that of the Veech group, which equals 1.

The number δ(Π) in the statement of Theorem 1.1, giving the order of the er-
ror term, is completely defined by spectral properties of the involved groups. More
precisely, it is the maximum between the critical exponent of the group Γbad, associ-
ated to bad cylinders, and the second largest pole of the meromorphic continuation
of (linear combination of) Eisenstein series, associated to good cylinders. The 4/3
in the conclusion of Theorem 1.1 appears because of technicalities in the effective
version of the tauberian theorem for Eisenstein series ([Ve92, Remark 1.12]).

In the case when Π is the wind-tree billiard with square obstacles of side length
1/2, the Veech group of Π is a congruence subgroup of level 2. Thanks to a result of
M. Huxley [Hux], we know that low level congruence groups satisfies the Selberg’s
1/4 conjecture. To our proposes, this means that the Eisenstein series has no poles
in (1/2, 1). The critical exponent of Γbad requires much more attention and we are
not able to give the exact value. Using results of T. Roblin and S. Tapie [RT], we
estimate the critical exponent of Γbad. These estimates are far away from being
optimal, but up to our knowledge, this is the only existing tool.

In order to apply this method to estimate the critical exponent of Γbad, we have
first to give energy estimates on a Dirichlet fundamental domain of the Veech group
and to estimate the bottom of the spectrum of the combinatorial Laplace operator
associated to the quotient of the Veech group by the above-mentioned kernel.
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1.4. Structure of the paper. In §2 we briefly recall all the background necessary
to formulate and prove the results. In §3 we study the counting problem on Veech
surfaces associated to collections of cylinders described by a subgroup of the Veech
group. We restate Veech’s theorem in the case when the subgroup is a lattice and
we relate the growth rate to the critical exponent for general subgroups of the
Veech group. In §4 we apply this results to the counting problem on Veech wind-
tree billiards. Veech’s theorem is applied to good cylinders, giving the quadratic
asymptotic growth rate with the error term depending in the spectrum of the
Veech group. We show that bad cylinders are described by an infinitely generated
Fuchsian group of the first kind and prove that its critical exponent is strictly less
than one, showing thus the subquadratic asymptotic growth rate of bad cylinders
in an effective way.

Finally, in §5 we study the case of the wind-tree billiard with square obstacles of
side length 1/2. We estimate the critical exponent of the group associated to bad
cylinders. In order to perform this, we give energy estimates in Appendix A and we
estimate the combinatorial specrum of PSL(2,Z) in Appendix B. Both appendices
are self contained and can be read independently of the rest of the paper.

Acknowledgements. The author is greatly indebted to Pascal Hubert for his
guide, constant encouragement, kind explanations and useful discussions. For his
invaluable help at every stage of this work. The author is grateful to Vincent
Delecroix who, independently to P. Hubert, take an interest in a quantitative version
of the counting problem on wind-tree billiards, their interest being to some extent
a first motivation for this work. The author is thankful to Françoise Dal’Bo for
her ideas on how to relate the critical exponent with the asymptotic behavior of
the counting function, which are fundamental to this work. The author is grateful
to Samuel Tapie for his kind explanation of his work with T. Roblin, based on his
thesis, on estimates for the critical exponent of a normal subgroup of a lattice group.
The author would like to thank Sebastien Gouëzel for the reference to the work of
T. Nagnibeda, where one finds ideas to estimate the bottom of the spectrum of
the combinatorial Laplace operator on a Cayley graph. The author is grateful to
Erwan Lanneau for pointing out an error on a computation in a previous version
of this work.

2. Background

2.1. Rational billiards and translation surfaces. For an introduction and
general references to this subject, we refer the reader to the surveys of Masur–
Tabachnikov [MT], Zorich [Zo], Forni–Matheus [FM], Wright [Wr].

2.1.1. Rational billiards. Given a polygon whose angles are rational multiples of π,
consider the trajectories of an ideal point mass, that moves at a constant speed
without friction in the interior of the polygon and enjoys elastic collisions with the
boundary (angles of incidence and reflection are equal). Such an object is called a
rational billiard. There is a classical construction of a translation surface from a
rational billiard (see [FK, KZ]).

2.1.2. Translation surfaces. Let g ≥ 1, n = {n1, . . . , nk} be a partition of 2g − 2
and H(n) denote a stratum of Abelian differentials, that is, holomorphic 1-forms on
Riemann surfaces of genus g, with zeros of degrees n1, . . . , nk ∈ N. There is a one to
one correspondence between Abelian differentials and translation surfaces, surfaces
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which can be obtained by edge-to-edge gluing of polygons in R2 using translations
only. Thus, we refer to elements of H(n) as translation surfaces.

A translation surface has a canonical flat metric, the one obtained form R2,
with conical singularities of angle 2π(n + 1) at zeros of degree n of the Abelian
differential.

Remark 2.1. A stratum of Abelian differentials H(n) has a natural structure of
an orbifold. However, using a marking (of horizontal separatrices) we can avoid
symmetries which create the orbifold singularities, ensuring a manifold structure
on H(n). For technical reasons, in this work we consider H(n) as a manifold,
pointing when the orbifold structure could cause problems.

2.1.3. SL(2,R)-action. There is a natural action of SL(2,R) on strata of translation
surfaces, coming from the linear action of SL(2,R) on R2, which generalizes the

action of SL(2,R) on the space GL(2,R)
/

SL(2,Z) of flat tori. Let gt =
(
et 0
0 e−t

)
;

the action of (gt)t∈R is called the Teichmüller geodesic flow.

2.1.4. Hodge bundle and the Kontsevich–Zorich cocycle. The (real) Hodge bundle
H1 is the real vector bundle of dimension 2g over an affine invariant manifold
M (see [EMi, EMM] for the precise definition), where the fiber over X is the
real cohomology H1

X = H1(X,R). Each fiber H1
X has a natural lattice H1

X(Z) =
H1(X,Z) which allows identification of nearby fibers and definition of the Gauss–
Manin (flat) connection. The monodromy of the Gauss–Manin connection restricted
to SL(2,R)-orbits provides a cocycle called the Kontsevich–Zorich cocycle, which
we denote by KZ(A,X), for A ∈ SL(2,R) and X ∈ M. The Kontsevich–Zorich
cocycle is a symplectic cocycle preserving the symplectic intersection form 〈f1, f2〉 =∫
S
f1 ∧ f2 on H1(X,R).

2.1.5. Lyapunov exponents. Given any affine invariant manifoldM, we know from
Oseledets theorem that there are real numbers λ1(M) ≥ · · · ≥ λ2g(M), the Lya-
punov exponents of the Kontsevich–Zorich cocycle over the Teichmüller flow on
M and a measurable gt-equivariant filtration of the Hodge bundle H1(X,R) =
V1(X) ⊃ · · · ⊃ V2g(X) = {0} at νM-almost every X ∈M such that

lim
t→∞

1

t
log ‖KZ(gt, X)f‖gtω = λi

for every f ∈ Vi \ Vi+1.
The fact that the Kontsevich–Zorich cocycle is symplectic implies that the Lya-

punov spectrum is symmetric, λj = −λ2g−j , j = 0, . . . , g.

2.1.6. Equivariant subbundles of the Hodge bundle. Let M be an affine invariant
submanifold and F a subbundle of the Hodge bundle over M. We say that F
is equivariant if it is invariant under the Kontsevich–Zorich cocycle. Since M is
SL(2,R)-invariant, by the definition of the Kontsevich–Zorich cocycle, a flat (locally
constant) subbundle is always equivariant.

We say that F admit an almost invariant splitting, if there exists n ≥ 1 and
for νM-almost every X ∈ M there exist proper subspaces W1(X), . . . ,Wn(X) ⊂
FX such that Wi(X) ∩ Wj(X) = {0} for 1 ≤ i < j ≤ n, such that, for every
i ∈ {1, . . . , n} and almost every A ∈ SL(2,R), KZ(A,X)Wi(X) = Wj(AX) for
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some j ∈ {1, . . . , n}, and such that the map X 7→ {W1(X), . . . ,Wn(X)} is νM-
measurable. We say that F is strongly irreducible if is does not admit an almost
invariant splitting.

Remark 2.2. Without avoiding symmetries which causes orbifold points on H(n)
(see Remark 2.1), the Hodge bundle would not be an actual vector bundle (we would
have to consider the cohomology group up to symmetries) and the Kontsevich–
Zorich cocycle would not be an actual linear cocycle. In this work we consider
some invariant splittings of the Hodge bundle which would not be invariant by the
whole action of SL(2,R) if we do not consider the marking.

Previous discussion about Lyapunov exponents applies in this context as well
and we have that, as before, for almost every X ∈ M, there is a measurable gt-
equivariant filtration FX = U1(X) ⊃ · · · ⊃ Ur(X) = {0}, where r = rankF =
dimFX and, for every f ∈ Ui \ Ui+1,

lim
t→∞

1

t
log ‖KZ(gt, X)f‖gtrθω = λi(M, F ).

We denote by FX(Z) = FX∩H1
X(Z) the set of integer cocycles in FX . We say that

F is defined over Z if it is generated by integer cocycles, that is, if FX = 〈FX(Z)〉R.
When F is defined over Z, FX(Z) is a lattice in FX .

2.1.7. Veech group and Veech surfaces. We denote the stabilizer of a translation
surface X under the action of SL(2,R) by SL(X). The group SL(X) is also the
group of derivatives of affine orientation-preserving diffeomorphisms of X.

Recall that SL(2,R) does not act faithfully on the upper half-plane H; it is the
projective group PSL(2,R) that does so. If G is a subgroup of SL(2,R), we denote
by PG its image in PSL(2,R). In a slight abuse of notation we sometimes shall omit
P whenever it is clear from the context that we see G as a subgroup of SL(2,R) or
PSL(2,R). We define the Veech Group of X to be PSL(X), that is, the image of
SL(X) in PSL(2,R).

A translation surface X is called Veech surface if its Veech group PSL(X) is a
lattice, that is, if H

/
PSL(X) has finite volume. Veech surfaces correspond to closed

SL(2,R)-orbits. Such a closed orbits is called a Teichmüller curve. In this work we
are devoted to Veech surfaces. For an introduction and general references to Veech
surfaces, we refer the reader to the survey of Hubert–Shcmidt [HS].

Remark 2.3. Since we are considering markings on translation surfaces in order to
avoid orbifold points on strata (see Remark 2.1), elliptic elements (that is, finite
order elements) are never in PSL(X).

2.1.8. Veech group representation. When A ∈ SL(X), the Kontsevich–Zorich cocy-
cle defines a symplectic map KZ(A,X) : H1

X → H1
X which preserves H1

X(Z). This
defines thus a representation ρH1 of SL(X) on the symplectic group Sp(H1

X ,Z),

ρH1 : SL(X) → Sp(H1
X ,Z),

A 7→ KZ(A,X).

If F is an equivariant subbundle, then the restriction of the Kontsevich–Zorich
cocycle to F gives another representation which, in general, is not faithful and we
denote it by ρF : SL(X) → SL(FX). Note that, in general, this representation is
neither symplectic nor defined over Z. However, if the subbundle is symplectic or
defined over Z, so is the representation.
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Since, by our convention, finite order elements are not allowed in SL(X), in par-
ticular−id /∈ SL(X) and hence every representation ρF descends to a representation
of PSL(X) on PSL(FX).

2.2. Counting problem. We are interested in the counting of closed geodesics of
bounded length on translation surfaces.

2.2.1. Cylinders. Together with every closed regular geodesic in a translation sur-
face X we have a bunch of parallel closed regular geodesics. A cylinder on a
translation surface is a maximal open annulus filled by isotopic simple closed reg-
ular geodesics. A cylinder C is isometric to the product of an open interval and a
circle, and its core curve γC is the geodesic projecting to the middle of the interval.

2.2.2. Holonomy. Integrating the corresponding Abelian differential along the core
curve of a cylinder or, more generally, any homology class γ ∈ H1(X,Z), we get a
complex number. Considered as a planar vector, it represents the affine holonomy
along γ and we denote this holonomy vector by hol(γ). In particular, the euclidean
length of a cylinder corresponds to the modulus of its holonomy vector.

A relevant equivariant subbundle is given by ker hol which in turn is the sym-
plectic complement of the so called tautological (sub)bundle.

2.2.3. Counting problem. Consider the collection of all cylinders on a translation
surface X and consider its image V (X) ⊂ R2 under the holonomy map, V (X) =
{hol γC : C is a cylinder in X}. This is a discrete set of R2. We are concerned with
the asymptotic behavior of the number N(X,L) = #V (X) ∩ B(L) of cylinders in
X of length at most L, when L→∞.

More generally, we can consider any collection of cylinders C ⊂ A, and study
the asymptotic behavior of the number of cylinders in C of length at most L,
NC(X,L) = #VC(X) ∩B(L), as L→∞, where VC(X) = {hol γC : C ∈ C}.

2.3. Wind-tree model. The wind-tree model corresponds to a billiard Π in the
plane endowed with Z2-periodic horizontally and vertically symmetric right-angled
obstacles, where the sides of the obstacles are aligned along the lattice as in Figure 1
and Figure 2.

Recall that in the classical case of a billiard in a rectangle we can glue a flat
torus out of four copies of the billiard table and unfold billiard trajectories to flat
geodesics of the same length on the resulting flat torus. In the case of the wind-tree
model we also start from gluing a translation surface out of four copies of the infinite
billiard table Π. The resulting surface X∞ = X∞(Π) is Z2-periodic with respect
to translations by vectors of the original lattice. Passing to the Z2-quotient we get
a compact translation surface X = X(Π). For the case of the original wind-tree
billiard, with rectangular obstacles, the resulting translation surface is represented
at Figure 3 (see [DHL, § 3] for more details).

Similarly, when the obstacle has 4m corners with the angle π/2 (and therefore,
4m−4 with angle 3π/2), the same construction gives a translation surface consisting
in four flat tori with holes —four copies of a Z2-fundamental domain of Π, the
holes corresponding to the obstacles— with corresponding identifications, as in the
classical setting (m = 1, see Figure 3).
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Figure 3. The translation surface X obtained as quotient over
Z2 of an unfolded wind-tree billiard table ([DZ, Figure 5]).

2.3.1. Description of the Z2-covering and relevant subbundles. There are two coho-
mology classes h, v ∈ H1(X,Z) defining the Z2-covering X∞ of X. Let M be the
SL(2,R)-orbit closure of X. Then, thanks to the symmetries of X, there are two
equivariant subbundles F (h) and F (v) of H1 defined overM, such that h ∈ F (h) and
v ∈ F (v) (see [Pa] for more details). Furthermore, we have the following (see [Pa,
Corollary 5]).

Theorem 2.4. Let Π be a wind-tree billiard, X = X(Π). Then, the subbundles
F (h) and F (v) defined over the SL(2,R)-orbit closure of X are 2-dimensional flat
subbundles defined over Z and have non-zero Lyapunov exponents.

As consequence, these subbundles are strongly irreducible and symplectic. In-
deed, by [AEM, Theorem 1.4] and [EMi, Theorem A.9], any measurable equivariant
subbundle with at least one non-zero Lyapunov exponent is symplectic and, in par-
ticular, even dimensional. Thus, a two-dimensional subbundle is automatically
strongly irreducible provided it has non-zero Lyapunov exponents. Furthermore,
these subbundles are subbundles of ker hol.

2.3.2. The (1/2, 1/2) wind-tree model. We give a little more details in the case of
the wind-tree billiard with square obstacles of side length 1/2, Π = Π(1/2, 1/2).

The surface X = X(Π) is a covering of a genus 2 surface L which is a so called
L-shaped surface that belongs to the stratum H(2) (see for example [DHL]). In
particular, SL(X) is a finite index subgroup of SL(L). In this particular case, L is
a square-tiled surface, tiled by 3 squares, as in Figure 5.

It is elementary to see that the stabilizer of L is generated by r =
(

0 1
−1 0

)
and

u2 = ( 1 2
0 1 ) (see for example [Zo, §9.5]). However, with our convention on markings,

elliptic elements are forbidden (see Remark 2.3) and thus, SL(L) = 〈u2, tu2〉, where
tg is the transpose of g. Moreover, it is not difficult to verify that SL(X) = SL(L).
In particular, PSL(X) is a level two congruence group.

For i, j ∈ {0, 1}, let hij , vij and cj be as in Figure 4. Let E+− be the subspace
of H1(X,R) with symplectic integer basis {h+−, v+−}, where h+− is the Poincaré
dual of the cycle h00 + h01 − h10 − h11 and v+−, of v00 + v01 − v10 − v11. Similarly,
define E−+, with basis {h−+, v−+}, where h−+ = (h00 − h01 + h10 − h11)∗ and
v−+ = (v00 − v01 + v10 − v11)∗.

In our notation, we have that F
(h)
X = E+−, h = h+−, F

(v)
X = E−+ and v = v−+.
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c0

h00

v00

h01

v01

c1

h10

v10

h11

v11

Figure 4. The surface X = X(Π(1/2, 1/2)) and the cycles hij ,
vij and cj , i, j ∈ {0, 1} (cf. [DHL, Figure 4]).

Figure 5. The surface X = X(Π(1/2, 1/2)) seen as a cover of the
square-tiled L-shaped surface L.

The action of u2 ∈ SL(X) on the hij , vij , i, j ∈ {0, 1} is shown in Figure 6 and
is described by

ρH1(u2) : h∗ij 7→ h∗ij
v∗ij 7→ v∗ij + h∗ij + c∗j .

Denoting c+− := 2c0 − 2c1 we have that c+− = 2h+−. Letting c−+ := 0 we obtain
that, for σ ∈ {+−,−+},

ρEσ (u2) : hσ 7→ hσ

vσ 7→ vσ + hσ + cσ.

Thus, with the choice of basis as above, we get ρE+−(u2) = u3 and ρE−+(u2) = u.
Similarly, we can see that ρE+−(tu2) = tu and ρE−+(tu2) = tu3. In particular, the
two representations are isomorphic ρF (h)(SL(X)) ∼= ρF (v)(SL(X)).



QUANTITATIVE ERROR TERM ON VEECH WIND-TREE MODELS 11

u2

Figure 6. The action of u2 on hij , vij , i, j ∈ {0, 1}.

2.4. Counting problem on wind-tree models. In this work, we are concerned
with counting periodic trajectories in the wind-tree billiard. Obviously, any periodic
trajectory can be translated by an element in Z2 to obtain a new (non-isotopic)
periodic trajectory. Then, we shall count (isotopy classes of) periodic trajectories
of bounded length in the wind-tree billiard, up to Z2-translations.

There is a one to one correspondence between billiard trajectories in Π and
geodesics in X∞. But X∞ is the Z2-covering of X given by h, v ∈ H1(X,Z),
which means that closed curves γ in X lift to closed curves in X∞ if and only if
h(γC) = v(γC) = 0. In fact, by definition of the covering, the monodromy of a
closed curve γ in X is the translation by (h(γ), v(γ)) ∈ Z2. The cylinders in the
cover X∞ are exactly the lift of those cylinders C in X whose core curve γC has
trivial monodromy. In particular, cylinders in X∞ are always isometric to their
projection on X. When a cylinder C does not satisfy this condition, it lifts to X∞
as a strip, isometric to the product of an open interval and a straight line.

2.4.1. Good and bad cylinders. Let f = h or v, and F = F (f). Note that cylinders
C in X such that f(γC) = 0, split naturally into two families: (a) the family of

cylinders such that f̂(γC) = 0 for all f̂ ∈ FX , that is, γC ∈ Ann(FX), which we
call F -good cylinders, and (b) the family of cylinders that are not F -good, but
f(γC) = 0. These later are called (F, f)-bad cylinders. The notion of F -good
cylinders was first introduced by Avila–Hubert [AH] in order to give a geometric
criterion for recurrence of Zd-periodic flat surfaces. Good cylinders are favorable to
our purposes. In fact, since the Kontsevich–Zorich cocycle preserves the intersection
form and F is equivariant, they define an SL(2,R)-equivariant family of cylinders,
which is much more tractable than arbitrary collections of cylinders.

For a wind-tree billiard Π, we denote by N(Π, L), the number of (isotopy classes
of) periodic trajectories (up to Z2-translations) of length at most L, by Ngood(X,L)

the number of F (h) ⊕ F (v)-good cylinders in X = X(Π) of length at most L and
Nf−bad(X,L), of (F, f)-bad cylinders in X of length at most L, for f = h or v and

F = F (f).
Note that

Ngood(X,L) ≤ N(Π, L) ≤ Ngood(X,L) +Nh−bad(X,L) +Nv−bad(X,L).

Therefore, it is enough to understand the asymptotic behavior of Ngood(X,L),
Nh−bad(X,L) and Nv−bad(X,L) separately.

The author [Pa] used this to reduce the counting problem on wind-tree models
to the counting of good cylinders. In fact, we have the following (see [Pa, Theo-
rem 1.3]).
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Theorem. Let Π be a wind-tree billiard, X = X(Π) the associated compact flat
surface, let f = h or v and F = F (f) be one of the associated subbundles F (h) or
F (v). Then, the number Nf−bad(X,L), of (F, f)-bad cylinders in X of length at
most L, has subquadratic asymptotic growth rate, that is, Nf−bad(X,L) = o(L2).

Thus, the counting problem on wind-tree models may be reduced to count F (h)⊕
F (v)-good cylinders, which has quadratic asymptotic growth rate thanks to a result
of Eskin–Masur [EMa]. However, in this work, we are interested in an effective
version and therefore, bad cylinders have to be taken into account.

Remark 2.5. An useful characterization of bad cylinders in our case is the following.
A cylinder C is (F, f)-bad if and only if prFXγC = ±f . In fact, since F is sym-
plectic and two dimensional, C is an (F, f)-bad cylinder if and only if prFXγC 6= 0
is colinear to f (see [Pa, Remark 3.1]). Moreover, the action of SL(2,R) on ho-
mology (that is, the Kontsevich–Zorich cocycle) is by integer matrices, then, this
is equivalent to say that prFXγC = ±f .

2.4.2. Veech wind-tree billiards. Let Π be a wind-tree billiard. We define the Veech
group of Π to be PSL(Π) = PSL(X(Π)) and we say that Π is a Veech wind-tree
billiard if PSL(Π) is a lattice. We stress that these definitions are not standard
as it does not correspond to the (projection to PSL(2,R) of the) derivatives of
affine orientation-preserving diffeomorphisms of the unfolded billiard X∞(Π), but
to those of X(Π), the Z2-quotient of the unfolded billiard.

In the classical case, of rectangular obstacles, we denote Π(a, b) the wind-tree
billiard with rectangular obstacles of side lengths a, b ∈ ]0, 1[. Thank to results of
Calta [Ca] and McMullen [McM03, McM05], it is possible to classify completely
Veech wind-tree models in the classical case (see [DHL, Theorem 3]).

Theorem (Calta, McMullen). The wind-tree model Π(a, b) is a Veech wind-tree
billiard if and only if either a, b ∈ Q or there exist x, y ∈ Q and a square-free
integer D > 1 such that 1/(1− a) = x+ y

√
D and 1/(1− b) = (1− x) + y

√
D.

In this work we are concerned only with Veech wind-tree billiards. Most of
the tools we use to deal with bad cylinders comes from geometric considerations
of the action (on the upper half-plane H) of the lattice Veech group PSL(Π) and,
more precisely, of some particular subgroups of PSL(Π). These groups are Fuchsian
groups. In the following, we present a brief recall of the objects we need and some
of their properties.

2.5. Fuchsian groups. A Fuchsian group is a discrete subgroup of PSL(2,R). A
Fuchsian group Γ acts properly discontinuously on H. In particular, the orbit Γz
of any point z ∈ H under the action of Γ has no accumulation points in H. There
may, however, be limit points on the real axis. Let Λ(Γ) be the limit set of Γ, that
is, the set of limits points for the action of Γ on H, Λ(Γ) ⊂ R. The limit set may
be empty, or may contain one or two points, or may contain an infinite number. A
Fuchsian group is of the first type if its limit set is the closed real line R = R∪{∞}.
This happens in the case of lattices, but there are Fuchsian groups of the first kind
of infinite covolume. These latter are always infinitely generated.

When the limit set is finite, we say that Γ is elementary. In such case, Γ is cyclic.
In this work we shall mainly handle two type of Fuchsian groups. The first are

Veech groups of Veech surfaces, which are lattices by definition and the other are
the subgroups of the Veech group given by Pker ρF , for equivariant subbundles
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F ⊂ H1. Recall that ρF : SL(X)→ SL(FX). Thus, ker ρF is a subgroup of SL(X),
Pker ρF is the image of ker ρF in PSL(X).

The following result allows us to better understand these groups when F is a
2-dimensional subbundle of ker hol.

Theorem 2.6 ([HoWei, Theorem 5.6]). Let X be a Veech surface and F an integer
(defined over Z) 2-dimensional subbundle of ker hol over the SL(2,R)-orbit of X.
Then, Pker ρF is a Fuchsian group of the first kind.

In particular, in the case of Veech wind-tree billiards, the hypothesis are satisfied
by the subbundles F (h) and F (v) and therefore, Pker ρF is a Fuchsian group of the
first kind for F = F (h), F (v).

2.5.1. Critical exponent. Another concept which is of major relevance in this work
is that of the critical exponent of a Fuchsian group. For an introduction to the
subject, we refer the reader to Peigné [Pe].

Let Γ be a Fuchsian group. The orbital function nΓ : R+ → N is defined by
nΓ(R) = #{g ∈ Γ : dH(i, gi) ≤ R}. The exponent

δ(Γ) := lim sup
R→∞

1

R
lnnΓ(R)

is the critical exponent of Γ. It corresponds to the critical exponent (the abscissa
of convergence in R+) of the Poincaré series defined by

PΓ(s) :=
∑
g∈Γ

e−sdH(i,gi).

That is, PΓ(s) diverges for s < δ(Γ) and converges for s > δ(Γ).
Note that in the definition of the critical exponent δ(Γ) it is innocuous if we

change dH(i, gi) for dH(x, gy), for some x, y ∈ H or, in particular, if we change Γ
for some conjugate of Γ, either in the definition of the orbital function nΓ or in the
Poincaré series PΓ.

A result of Roblin [Ro99, Ro02] relates in a sharper way the asymptotic behavior
of the orbital function and the critical exponent.

Theorem 2.7 (Roblin). Let Γ be a non-elementary Fuchsian group. Then

nΓ(r) = O(eδr),

as L→∞.

Consider now the following sungroups of PSL(2,R):

• K =

{(
cos θ sin θ
− sin θ cos θ

)
: θ ∈ [0, π)

}
,

• A =

{(
et 0
0 e−t

)
: t ∈ R

}
, and

• N =

{(
1 t
0 1

)
: t ∈ R

}
.

Every element g ∈ PSL(2,R) \ {id} is conjugated to some element in K, A or N .
In fact, we have the following:

• | tr(g)| < 2 if and only if g is conjugated to some element of K. In this case
g is called elliptic and it fixes exactly one point in H, which belongs to H;
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• | tr(g)| > 2 if and only if g is conjugated to some element of A. In this case
g is called hyperbolic and it fixes exactly two point in H, which belongs to
∂H = R; and
• | tr(g)| = 2 if and only if g is conjugated to some (and therefore, to every)

element of N . In this case g is called parabolic and it fixes exactly one
point in H, which belongs to ∂H.

If Γ is a non-elementary Fuchsian group, it has positive critical exponent δ(Γ) > 0
and if it contains a parabolic element, then δ(Γ) > 1/2.

One of the main ingredients we use to prove our results is the following result of
Brooks [Br] (see also [RT]).

Theorem 2.8 (Brooks). Let Γ0 be a Fuchsian group and Γ be a non-elementary
normal subgroup of Γ0 such that δ(Γ) > 1/2.

(1) If Γ0

/
Γ is amenable, then δ(Γ) = δ(Γ0).

(2) If Γ0 is a lattice and Γ0

/
Γ is non-amenable, then δ(Γ) < δ(Γ0) = 1.

This last result is based on the fact that the critical exponent δ(Γ) is related to
λ0(Γ), the bottom of the spectrum of the Laplace operator on H

/
Γ. In fact, when

δ(Γ) ≥ 1/2, we have that λ0(Γ) = δ(Γ)(1− δ(Γ)) (see for example [RT]).

3. Counting problems on Veech surfaces

Let X be a Veech surface, that is, X is a translation surface whose Veech group
PSL(X) is a (non-uniform) lattice. In particular, H

/
PSL(X) has a finite number

of cusps. It is well known (since Veech [Ve89]) that, for Veech surfaces, cylinders
correspond to the cusps of the Veech group and, in particular, the family of all
cylinders can be written as the union of a finite number of SL(X)-orbit of cylinders.
That is, there are finitely many cylinders A1, . . . , An in X such that

A := {all cylinders in X} = SL(X) · {Aj}nj=1.

In particular, any collection C ⊂ A of cylinders is contained in a finite union of
cusps, in the sense that it satisfies C ⊂ SL(X) ·C, for some finite collection C ⊂ C.
3.1. Finitely saturated collections of cylinders. Let Γ be a subgroup of SL(X).
A collection C of cylinders in X is said to be finitely saturated by Γ (or Γ-finitely
saturated) if it can be expressed as a finite union of Γ-orbits of cylinders and Γ
contains every cusp. More precisely, C is finitely saturated by Γ if C = Γ · C, for
some finite collection C ⊂ C and stabSL(X)(C) ⊂ Γ for every C ∈ C. Equivalently,
we can ask stabSL(X)(C) ⊂ Γ only for C ∈ C.

Thus, as already said in different terms, the collection A of all cylinders in X is
SL(X)-finitely saturated.

Remark 3.1. In the definition of finitely saturated collections of cylinders, the finite
part is fundamental. Consider, for example, the group Γ generated by all parabolics
in SL(X). Then, when the Teichmüller curve defined by X has positive genus2, A
is saturated by Γ, but it is not Γ-finitely saturated.

In general, any SL(2,R)-equivariant collection of cylinders (defined in the SL(2,R)-
orbit of X) is SL(X)-finitely saturated. In particular, configurations of cylinders, in
the sense of Eskin–Masur–Zorich [EMZ], define SL(X)-finitely saturated collections

2See [HL] for examples of Teichmüller curves with arbitrary large genus in a fixed stratum.
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of cylinders. However, in this work, we have to deal with collections of cylinders
which are finitely saturated by groups which are not lattices as SL(X) is. In fact,
we have to deal with groups which are not even finitely generated.

Remark 3.2. If Γ is a Fuchsian group such that a (non-empty) collection of cylinders
C is finitely saturated by Γ, then, by definition, stabSL(X)(C) ⊂ Γ for every C ∈ C.
But PstabSL(X)(C) is cyclic parabolic. Thus, Γ contains parabolics and therefore
δ(Γ) ≥ 1/2, with equality if and only if Γ is elementary (and C is a finite collection
of parallel cylinders).

3.2. Counting problem. We are interested in counting cylinders in some partic-
ular collections. Let C be a collection of cylinders in X and let NC(X,L) be the
number of cylinders in C of length at most L. We are able to study the asymptotic
behavior in the case of finitely saturated collections.

In the case of A, the collection of all cylinders in X, Veech proved the qua-
dratic asymptotic behavior in [Ve89] and gave then an effective version in [Ve92,
Remark 1.12]. In the case of collections of cylinders saturated by lattice groups,
Veech’s approach can be applied exactly the same. In fact, we have the following.

Theorem 3.3 (Veech). Let X be a Veech surface and let C be a Γ-finitely saturated
collection of cylinders on X with Γ being a lattice. Then

NC(X,L) = c(C)L2 +

k∑
j=1

cj(C)L2δj +O(L4/3),

as L→∞, for some c(C), c1(C), . . . , ck(C) > 0, where {δj(1−δj)}kj=1 is the discrete

spectrum of the Laplace operator on H
/

Γ on (0, 1/4). In particular, δj ∈ (1/2, 1),
for j = 1, . . . , k. Possibly k = 0.

Proof. For C = A, the collection of all cylinders in X (which is finitely saturated
by Γ = SL(X)), Veech proved in [Ve89] the principal term c(C)L2. The remainder
was observed in [Ve92, Remark 1.12], by an application of [Go, Theorem 4]. The
proof relies only in the fact that A is finitely saturated by a lattice group, namely
SL(X). Thus, in the case of collections finitely saturated by a lattice group, the
proof follows exactly the same. �

In the case of infinite covolume groups this method cannot be adapted properly.
However, following ideas of Dal’Bo [Da], we are able to prove the following.

Theorem 3.4. Let X be a Veech surface and C, a Γ-finitely saturated collection of
cylinders on X with Γ non-elementary. Let δ = δ(Γ) be the critical exponent of Γ.
In particular, δ > 1/2. Then,

NC(X,L) = O(L2δ),

as L→∞.

Proof. Without loss of generality, we can assume that C = Γ ·C, for some cylinder
C in X. Let p = ( 1 1

0 1 ), P = 〈p〉 and x = ( 0
1 ). Up to conjugation, we can suppose

that hol(γC) = x and stabSL(X)(C) = P . Note that δ is invariant by conjugation,
so there is no loss of generality. Denote NΓ(L) := NΓ·C(X,L). The idea is to relate
NΓ to nΓ in order to apply Theorem 2.7.
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It is clear that

NΓ(L) = #{gx : |gx| ≤ L, g ∈ Γ}
= #{gP ∈ Γ

/
P : |gx| ≤ L}

= #{Pg ∈ P
∖

Γ : |g−1x| ≤ L}.

A simple computation shows that |g−1x| = Im(gi)−1/2. In addition, for each coset
in P

∖
Γ, there is exactly one representative g ∈ Γ such that Re(gi) ∈ [0, 1). Thus,

NΓ(L) = #{Pg ∈ P
∖

Γ : |g−1x| ≤ L}
= #{g ∈ Γ : Re(gi) ∈ [0, 1) , Im(gi)−1/2 ≤ L}.

Moreover, there exists c(Γ) > 0 such that if g ∈ Γ satisfies Re(gi) ∈ [0, 1), then
dH(i, gi) ≤ − ln Im(gi) + c(Γ). In fact, let g ∈ Γ. Note first that Im(gi) is bounded
above, since P is a subgroup of Γ (we have a cusp at infinity). In addition, we have
that

dH(i, gi) = acosh

(
1 +

Re(gi)2 + (1− Im(gi))2

2 Im(gi)

)
and therefore, if g ∈ Γ and Re(gi) ∈ [0, 1), then

dH(i, gi) ≤ acosh

(
1 +

c̃(Γ)

Im(gi)

)
,

for some c̃(Γ) > 0. Once again, since Im(gi) is bounded above, we get that

dH(i, gi) ≤ ln

(
1

Im(gi)

)
+ c(Γ),

for some c(Γ) > 0.
It follows that

NΓ(L) = #{g ∈ Γ : Re(gi) ∈ [0, 1) , Im(gi)−1/2 ≤ L}
≤ #{g ∈ Γ : dH(i, gi) ≤ 2 lnL+ c(Γ)}
= nΓ(2 lnL+ c(Γ)).

Finally, by Theorem 2.7, nΓ(r) = O(eδ(Γ)r) and thus

NΓ(L) ≤ nΓ(2 lnL+ c(Γ)) = O(eδ(Γ)(2 lnL+c(Γ))) = O(L2δ(Γ)). �

4. Veech wind-tree billiards

In [Pa], we proved asymptotic formulas for generic wind-tree models. To prove
such result, we had to split the associated collection of cylinders into two. The
collection of good cylinders and the collection of bad cylinders (see §2.4.1). We
proved then that good cylinders have quadratic asymptotic growth rate (and gave
the associated coefficient in the generic case) and that bad cylinders have sub-
quadratic asymptotic growth rate.

In this work we exhibit a quantitative version of these results in the case of Veech
wind-tree billiards.
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4.1. Good cylinders. Being a good cylinder is a SL(2,R)-invariant condition,
then, in particular, for Veech wind-tree billiards Π, with Veech group PSL(Π) (see
§2.4.2), the collection of good cylinders is SL(Π)-finitely saturated (see §3.1) and
thus, as a corollary of Veech’s theorem (Theorem 3.3), we obtain the following.

Corollary 4.1. Let Π be a Veech wind-tree billiard. Then, there exists c(Π) > 0
and δgood(Π) ∈ [1/2, 1) such that

Ngood(Π, L) = c(Π) · πL2

Area (Π/Z2)
+O(L2δgood(Π)) +O(L4/3)

as L→∞, where δ = δgood(Π) is such that δ(1−δ) is the second smallest eigenvalue
of the Laplace operator on H

/
PSL(Π), δ(1− δ) ∈ (0, 1/4].

4.2. Bad cylinders. In the case of bad cylinders, Veech’s approach is no longer
possible since collection of bad cylinders is not SL(2,R)-equivariant and, in particu-
lar, bad cylinders are not SL(Π)-finitely saturated. However, it is finitely saturated
by a subgroup Γbad of SL(Π), so we can use the approach on Theorem 3.4.

Remark 4.2. We shall see that Γbad is quite intricate. It is a not normal subgroup
of SL(Π) and it is an infinitely generated Fuchsian group of the first kind.

By this means, we prove that bad cylinders have sub-quadratic asymptotic
growth rate in an effective way. More precisely, we prove the following.

Theorem 4.3. Let Π be a Veech wind-tree billiard. Then, there exists δbad(Π) ∈
(1/2, 1) such that

Nbad(Π, L) = O(L2δbad(Π))

as L→∞.

Proof. Let f = h, v and F = F (f). Henceforth, by bad cylinder we mean (F, f)-bad
cylinder. Recall that a cylinder C in X = X(Π) is a bad cylinder if and only if
prF γC = ±f (see Remark 2.5).

Let B be the collection of all bad cylinders in X. Then, since the collection of all
cylinders can be written as a finite union of SL(X)-orbits of cylinders, then there
is a finite collection of bad cylinders B such that B ⊂ SL(X) · B.

Now, given a bad cylinder B in X, define

Γbad(B) := {g ∈ SL(X) : g ·B is a bad cylinder},
so that

B =
⋃
B∈B

Γbad(B) ·B.

Since B is a bad cylinder if and only if prF γC = ±f , then g ∈ Γbad(B) if and
only if prF γg·B = ±f . But prF γg·B = prF ρH1(g)γB = ρF (g)prF γB = ρF (g)(±f),
where ρF denotes the representation of SL(X) on Sp(FX ,Z) (see §2.1.8 and §2.3.1).
It follows then that

Γbad(B) = Γbad := {g ∈ SL(X) : ρF (g)f = ±f},
which is a group and does not depend on B ∈ B. Thus, B = Γbad · B. Moreover, if
B ∈ B and p ∈ stabSL(X)(B), then p · B = B, which is a bad cylinder. Therefore,
p ∈ Γbad(B) = Γbad and B is finitely saturated by Γbad (see §3.1).

We can apply then Theorem 3.4 to obtain δbad(Π) = δ(Γbad). To conclude, we
have to prove that δ(Γbad) < 1. In fact, we have the following result, whose proof
is postponed to §4.2.1.
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Proposition 4.4. The critical exponent of Γbad is strictly less than one.

Thus, by Proposition 4.4 and Theorem 3.4, Nbad(Π, L) = O(L2δbad(Π)) as L →
∞, where δbad(Π) = δ(Γbad) ∈ (1/2, 1). This proves Theorem 4.3. �

To conclude, we have to prove now Proposition 4.4.

4.2.1. Proof of Proposition 4.4. Consider the normal subgroup of SL(X) given by
ker ρF and note that it is also a subgroup of Γbad.

Since the action on homology is via (symplectic) integer matrices, then

ρF (Γbad) ⊂ stab(±f) := {ĝ ∈ Sp(FX ,Z) : ĝf = ±f}.
Since FX is two-dimensional, Sp(FX ,Z) ∼= SL(2,Z) and stab(±f) ∼= stabSL(2,Z)(±( 0

1 )),

which is virtually cyclic parabolic. Thus, the quotient group Γbad
/

ker ρF ∼= ρF (Γbad)
is amenable (as it is isomorphic to a subgroup of an amenable group).

In a slight abuse of notation we will refer in the following to (discrete) subgroups
of SL(2,R) as if they were Fuchsian groups (discrete subgroups of PSL(2,R)).

By Theorem 2.6, ker ρF is of the first kind and, in particular, non-elementary.
Thus, we can apply Theorem 2.8 to obtain that δ(Γbad) = δ(ker ρF ).

Consider now the quotient group SL(X)
/

ker ρF ∼= ρF (SL(X)). The aim is to
prove that ρF (SL(X)) is not amenable. We first note that, since F has positive
Lyapunov exponents (Theorem 2.4), ρF (SL(X)) has at least one hyperbolic ele-
ment and then, a maximal cyclic hyperbolic subgroup H. Suppose ρF (SL(X)) is
elementary and, in particular, virtually H. But then, F would admit an almost
invariant splitting (see §2.1.6). But F is two dimensional and has no zero Lyapunov
exponents, in particular, it is strongly irreducible and do not admit almost invariant
splittings. Thus ρF (SL(X)) is non-elementary and it contains a Schottky group as
subgroup.

Since Schottky groups are free and, in particular, non-amenable, it follows that
ρF (SL(X)) is not amenable. That is, SL(X)

/
ker ρF is not amenable, and then, by

Theorem 2.8, we have that δ(ker ρF ) < δ(SL(X)). Thus, we conclude that

δ(Γbad) = δ(ker ρF ) < δ(SL(X)) = 1. �

Proof of Remark 4.2. We have to show that Γbad is an infinitely generated group
of the first kind. Since ker ρF is of the first kind and ker ρF ⊂ Γbad, so is Γbad.
Moreover, δ(Γbad) < 1, so it cannot be a lattice and therefore, it has to be infinitely
generated, since finitely generated groups of the first kind are always lattices. �

5. Explicit estimates for the (1/2, 1/2) wind-tree model

In the case of the wind-tree billiard with square obstacles of side length 1/2,
Π = Π(1/2, 1/2), the Veech group can be easily computed (see §2.3.2). Indeed,
SL(Π) = 〈u2, tu2〉, where u = ( 1 1

0 1 ). In particular, PSL(Π) is a congruence subgroup
of level 2.

5.1. Good cylinders. A result of Huxley [Hux] shows that congruence groups Γ
of low level satisfies the Selberg’s 1/4 conjecture, that is, that the spectral gap of
the Laplace operator on H

/
Γ equals 1/4. That means (see §5.2.1) that we have

δgood(Π) = 1/2 in Corollary 4.1.
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5.2. Bad cylinders. We have now to estimate δbad(Π) from Theorem 4.3. For
this, we use a version of Brook’s theorem (Theorem 2.8) by Roblin–Tapie [RT],
formulated in a much more general context, which we adapt to ours.

Theorem 5.1 (Roblin–Tapie). Let Γ0 be a lattice and Γ be a non-elementary
normal subgroup of Γ0 such that δ(Γ) > 1/2. Let D be a Dirichlet domain for
Γ0 and S0 the associated symmetric system of generators (see §5.2.2). Consider
G = Γ0

/
Γ and S = S0

/
Γ the corresponding systems of generators of G. Then,

λ0(Γ) ≥ η(Γ0)EDµ0(G,S)

η(Γ0) + EDµ0(G,S)
,

where η(Γ0) is the spectral gap associated to Γ0 (see §5.2.1), ED is any lower bound
for the energy on D (see §5.2.3) and µ0(G,S) is the bottom of the combinatorial
spectrum of G associated to S (see §5.2.4), as defined below.

5.2.1. Critical exponent and spectrum of the Laplace operator. Let Γ be a non-
elementary Fuchsian group with critical exponent δ(Γ) > 1/2. Then, the critical
exponent δ(Γ) is related to λ0(Γ), the bottom of the spectrum of the Laplace
operator on H

/
Γ, by λ0(Γ) = δ(Γ)(1− δ(Γ)) ∈ (0, 1/4).

If moreover Γ is finitely generated, then the bottom of the spectrum λ0(Γ) is an
isolated eigenvalue. We consider then the spectral gap of the Laplace operator on
H
/

Γ, η(Γ) := λ1(Γ) − λ0(Γ) > 0, where λ1(Γ) is the second smallest eigenvalue of

the Laplace operator on H
/

Γ.

5.2.2. Dirichlet domains and transition zones. Let Γ be a finitely generated Fuch-
sian group and consider a Dirichlet domain D ⊂ H for the action of Γ. Its boundary
∂D is piecewise geodesic, with finitely many pieces. To D, we can associate a finite
symmetric system of generators S of Γ. Each such generator s ∈ S is associated to
one geodesic piece of ∂D. Namely, βs = D ∩ sD. And every geodesic piece of ∂D
has an associated generator in this way.

We say that L,R > 0 are admisible (for D) if for each s ∈ S, there exists a
geodesic segment αs ⊂ βs of length L such that αs = sαs−1 and such that αs admits
a tubular neighborhood of radius R which are pairwise disjoint (see Appendix A
for more details). These tubular neighborhoods are transition zones of length L
and radius R (cf. [RT, p. 72]).

5.2.3. Energy on transition zones. Roblin–Tapie [RT] introduced the volume and
capacity of transition zones (in a much more general context). In our context, for a
transition zone of length L and radius R, its area is A(L,R) := L · sinh(R) and its
capacity is C(L,R) := L/ arctan(sinh(R)). We say that ED ∈ R+ is a lower bound
for the energy on D if there are admissible L,R > 0 such that

ED =
1

2 Area(D)
· η(Γ) ·A(L,R) · C(L,R)(√

η(Γ) ·A(L,R) +
√

C(L,R)
)2 .

In Appendix A we estimate ED in the case of the Dirichlet domain of the Veech
group of Π, D = {z ∈ H : |z ± 1/2| ≥ 1/2, |Re(z)| ≤ 1}, with associated system of
generators S0 = {u2, tu2}.
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5.2.4. Combinatorial spectrum. Let G be a finitely generated group and S ⊂ G be
a symmetric finite system of generators of G.

Let `2(G) be the space of square-summable sequences on G with the inner prod-
uct

〈h, h′〉 :=
∑
g∈G

hgh
′
g,

for h, h′ ∈ `2(G), and define ∆S : `2(G) → `2(G), the combinatorial Laplace
operator associated to S on `2(G), by

(∆Sh)g :=
∑
s∈S

(hg − hgs).

Then, we define µ0(G,S), the bottom of the combinatorial spectrum of G associ-
ated to S to be the bottom of the spectrum of ∆S , that is,

µ0(G,S) := inf

{ 〈∆Sh, h〉
〈h, h〉 , h ∈ `2(G)

}
.

We estimate µ0(G,S) in the case of G < PSL(2,Z) generated by {u, tu3} in
Appendix B.

Estimates for δbad(Π). An application of Theorem 5.1 allows us to estimate
δbad(Π) in the present case. More precisely, we have the following.

Theorem 5.2. Let Π be the Veech wind-tree billiard with square obstacles of side
length 1/2, and let δ = δbad(Π) ∈ (1/2, 1) be as in the conclusion of Theorem 4.3.
Then,

δ < 0.9885.

Proof. Following §4.2, we have that δ = δbad(Π) corresponds to the critical exponent
of the group Γbad

3. Moreover, δ(Γbad) = δ(ker ρF ). Let then δ = δ(ker ρF ). As we
have already seen, δ(1− δ) = λ0(ker ρF ).

The idea is to apply Theorem 5.1 to Γ0 = PSL(Π) and Γ = Pker ρF . Thus, it is
enough to estimate

η(Γ0)EDµ0(G,S)

η(Γ0) + EDµ0(G,S)

from below.
Note that the function x/(1+x) is an increasing function in (0,∞) and therefore,

the problem can be reduced to find lower bounds for η(Γ0), ED and µ0(G,S).

• Γ0 = 〈u2, tu2〉 is a level two congruence group and, as already seen in §5.1,
its spectral gap is

η(Γ0) = 1/4.

• We consider D = {z ∈ H : |z ± 1/2| ≥ 1/2, |Re(z)| ≤ 1}, the Dirichlet do-
main for Γ0. We estimate ED in Appendix A. By Theorem A.1, we have
that

ED > 0.02575.

3Here, in a slight abuse of notation, we are referring to (discrete) subgroups of SL(2,R) as if
they were Fuchsian groups (discrete subgroups of PSL(2,R)).
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• Recall that SL(Π) = 〈u2, tu2〉 and that, ρF (h)(SL(Π)), ρF (v)(SL(Π)) are
conjugated to 〈u, tu3〉 (see §2.3.2).

Moreover since F = F (h) or F (v) is a 2-dimensional symplectic equi-
variant subbundle defined over Z, ρF descends to a representation ρ̃F of
PSL(X) on PSL(FX ,Z) (see §2.1.8), where X = X(Π). Furthermore, by
definition, the kernel of this latter representation coincides with Pker ρF ,
the image of ker ρF in PSL(2,R). Analogously, for the image of the repre-
sentation we have ρ̃F (PSL(X)) = PρF (SL(X)). In summary, we have

– Γ0 = PSL(Π) = 〈u2, tu2〉,
– Γ = Pker ρF = ker ρ̃F ,
– Γ0

/
Γ = PSL(Π)

/
ker ρ̃F ∼= ρ̃F (PSL(X)) = PρF (SL(X)), and

– ρF (SL(X)) ∼= 〈u, tu3〉 =: H3.
The combinatorial spectrum is invariant under isomorphisms of groups

(with generators). But Γ0

/
Γ is isomorphic to PρF (SL(X)) which in turn

is isomorphic to PH3. In addition, the system of generators associated to
the Dirichlet domain D is S0 = {u±2, tu±2}, and the corresponding image
into G = PH3 is S = {u±1, tu±3}.

We estimate µ0(G,S) in Appendix B. By Theorem B.1, we have that

µ0(G,S) > 0.4647.

Putting all together, we get that

λ0(Γ) ≥ η(Γ0)EDµ0(G,S)

η(Γ0) + EDµ0(G,S)
> 0.01141,

and we conclude that

δ(Γ) =
1 +

√
1− 4λ0(Γ)

2
< 0.9885. �

Appendix A. Energy estimates

In this appendix we give lower bounds for the energy (see §A.2 for precise defi-
nition) on the Dirichlet domain D = {z ∈ H : |z ± 1/2| ≥ 1/2, |Re(z)| ≤ 1} of the
Fuchsian group Γ = 〈u2, tu2〉, where u = ( 1 1

0 1 ) and tu, its transpose. More precisely,
we prove the following.

Theorem A.1. Let D = {z ∈ H : |z ± 1/2| ≥ 1/2, |Re(z)| ≤ 1} be the Dirichlet
domain of Γ = 〈u2, tu2〉. Then, there is a lower bound for the energy on D which
satisfies

ED > 0.02575.

In the following we recall the definition of the involved objects (see [RT] for a
much more general and detailed discussion).

A.1. Dirichlet domains and transition zones. Let Γ be a finitely generated
Fuchsian group and consider a Dirichlet domain D ⊂ H for the action of Γ. Its
boundary ∂D is piecewise geodesic, with finitely many pieces. To D, we can as-
sociate a finite symmetric system of generators S of Γ. To each such generator
s ∈ S we can associate one geodesic piece of ∂D. Namely, βs = D ∩ sD. And
every such piece has an associated generator in this way. Moreover, it is clear from
the definition that βs = sβs−1 . In Figure A.1, we show the case of the elementary
group 〈u〉.
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∞

Du−1D uD

−1 0

βu−1

1

βu

2

Figure A.1. Dirichlet domain for the elementary (cyclic para-
bolic) group 〈u〉, D = {0 ≤ Re z ≤ 1}. The associated symmetric
systems of generators is S = {u, u−1} and the corresponding geo-
desic boundaries βu = {Re z = 1}, βu−1 = {Re z = 0}.

Let z ∈ β̊s, for some s ∈ S, and let ρ > 0 sufficiently small such that there is
a point bs(z, ρ) ∈ D satisfying dH(bs(z, ρ), βs) = dH(bs(z, ρ), z) = ρ. In particular,
such point bs(z, ρ) is unique. See Figure A.2 for an example of bs(z, ρ), in the case
of 〈u〉, for s = u−1.

∞

0

βu−1

1

hi
•

bu−1(hi, ρ)

h

ρ

Figure A.2. The point bs(z, ρ). It corresponds to the point in
D which lie on the geodesic passing through hi perpendicularly to
βu−1 , in the case of the elementary group 〈u〉, for s = u−1, z = hi

We say that L,R > 0 are admisible (for D) if for each s ∈ S, there exists a
geodesic segment αs ⊂ βs of length L such that αs = sαs−1 , bs(z,R) is well defined
and the sets

As := {bs(z, ρ) ∈ D : z ∈ αs, 0 ≤ ρ < R}
are pairwise disjoint. (see Figure A.3). We call these sets, transition zones of length
L and radius R (cf. [RT, p. 72]).
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∞

0

βu−1

1

βu

αu−1

Au−1

h0i

h1i

αu

Au

1 + h0i

1 + h1i

Figure A.3. Transition zones, in the case of the elementary group 〈u〉.

A.2. Energy on transition zones. Roblin–Tapie [RT] introduced the volume
and capacity of transition zones (in a much more general context). In our context,
for a transition zone of length L and radius R, its area is A(L,R) := L · sinh(R)
and its capacity is C(L,R) := L/ arctan(sinh(R)).

We say that ED ∈ R+ is a lower bound for the energy on D if there are admissible
L,R > 0 such that

ED =
1

2 Area(D)
· η(Γ) ·A(L,R) · C(L,R)(√

η(Γ) ·A(L,R) +
√

C(L,R)
)2 ,

where η(Γ) is the spectral gap of the Laplace operator on H
/

Γ, which is well defined
and positive, since Γ is finitely generated.

We can now start the discussion in our particular case, that is, the Dirichlet
domain of Γ = 〈u2, tu2〉, D = {z ∈ H : |z ± 1/2| ≥ 1/2, |Re(z)| ≤ 1}.
A.3. Proof of Theorem A.1. The following result, whose proof is postponed to
§A.4, provides a sufficient condition for L,R > 0 to be admissible (see §A.1).

Proposition A.2. Let L,R > 0. If 2eL tanh3(R) ≤ 1, then L,R are admissible.

We want now to estimate ED (see §A.2).
We first note that Γ = 〈u2, tu2〉 is a congruence group of level two and therefore,

by a result of Huxley [Hux], we have that η(Γ) = 1/2. Moreover, the Dirichlet
domain D is an ideal quadrilateral, with vertices 1, −1, 0 and ∞ (see Figure A.4).
In particular, Area(D) = 2π.

By Proposition A.2, L,R > 0 are admissible if 2eL tanh3(R) ≤ 1. It suffices
then to find the largest possible lower bound for the energy in this region. That
is, we want to find E∗ = max{ED(L,R) : 2eL tanh3R ≤ 1}. This can be done
numerically: we get L∗ ≈ 3.8903, R∗ ≈ 0.2205 and

E∗ = ED(L∗, R∗) ≈ 0.0257532 > 0.02575. �

A.4. Proof of Proposition A.2. In this section we prove Proposition A.2, thus
providing a sufficient condition for L,R > 0 to be admissible.

For a, b ∈ R, let γ(a, b) denote the (bi-infinite) geodesic in H which goes from a to
b. And for x, y, z ∈ H, let T (x, y, z) denote the geodesic triangle with vertices x, y, z.
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∞

D

−1

βu−2

1

βu2

βtu−2 βtu2

0

Figure A.4. Dirichlet domain for Γ = 〈u2, tu2〉. The associated
symmetric systems of generators is S = {u2, u−2, tu2, tu−2} and
the corresponding geodesic boundaries are βu±2 = {Re z = ±1},
βtu±2 = {|z ± 1/2| = 1/2}.

Thus, the Dirichlet domain D = {z ∈ H : |z ± 1/2| ≥ 1/2, |Re(z)| ≤ 1} coincides
with T (−1, 1,∞) ∪ T (−1, 1, 0) and ∂D = γ(−1, 0) ∪ γ(0, 1) ∪ γ(1,∞) ∪ γ(∞,−1)
(see Figure A.4). Note that the symmetric system of generators associated to D is
S = {u±2, tu±2} and, following the notation on §A.1, we have

βu±2 = {z ∈ H : Re(z) = ±1} = γ(±1,∞),

βtu±2 = {|z ± 1/2| = 1/2} = γ(±1, 0).

It follows that, in particular, any geodesic segment αu±2 ⊂ βu±2 (see §A.1) is of
the form {z ∈ H : Re(z) = ±1, h0 < Im(z) < h1}, for some h1 > h0 > 0, with
the same h1 and h0 for both αu2 and αu−2 since αu2 = u2αu−2 . In such case, the
length of the geodesic segment αu±2 is equals to L = log(h1/h0).

For simplicity, we shall consider a “symmetric” partition of D as in Figure A.5,
given by a homography g, defined by the elliptic element g =

(
0 −1
1 0

)
, which is

an isometry of order 2 fixing i and such that permutes −1 with 1 and 0 with ∞.
In particular, divides D in four isometric triangular regions. Namely, T (−1, i, 0),
T (0, i, 1), T (1, i,∞) and T (∞, i,−1). Moreover, it is clear that

g : T (−1, i, 0)↔ T (1, i,∞),

T (∞, i,−1)↔ T (0, i, 1).

In particular, if we consider the transition zones to be contained in these trian-
gular regions, it is direct that they are pairwise disjoint. And since these regions
are isometric, we can consider the transition zones to be isometric and interchanged
by the isometry g. That is, we impose

g : αu−2 ↔ αtu2 ,

αtu−2 ↔ αu2 = u2αu−2 .

We have now to study the points bs(z,R), s ∈ S, z ∈ αs, in order to give con-
ditions to L,R to be admissible (see §A.1). Moreover, by the imposed symmetries,
it is enough to find conditions for b0(h,R) := bu2(1 + hi,R), to be contained in
T0 := T (1, i,∞), for h > 0.
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∞

−1 10

Figure A.5. Symmetric partition of D

Now, by definition, b0(h,R) is the only point in D such that

dH(b0(h,R), βu2) = dH(b0(h,R), 1 + hi) = R,

for R > 0 small enough. By the leftmost equality, such points correspond to points
in D which lie on the geodesic passing through 1 + hi perpendicularly to βu2 (see
Figure A.6, cf. Figure A.2). That is, b0(h,R) = 1 + heiθ(R)i, for some θ(R) > 0.
Moreover,

dH(1 + heiθi, 1 + hi) = dH(eiθi, i) = acosh(sec(θ)).

Thus, cos(θ(R)) = sech(R) and therefore, sin(θ(R)) = tanh(R). It follows that

bu2(1 + hi,R) = b0(h,R) = 1 + heiθ(R)i = 1− h tanh(R) + ih sech(R).

∞

−1 10

1 + h0i

Au2

•
b0(h1, R)

1 + h1i

αu2

Figure A.6. Transition zone Au2 and b0(h1, R) ∈ T0.

Then, the condition b0(h,R) ∈ T0 is equivalent to 2 tanh2(R) ≤ h ≤ coth(R).
Thus, L = log(h1/h0) and R are admissible if 2 tanh2(R) ≤ h0 < h1 ≤ coth(R).
That is, if eL ≤ coth(R)/2 tanh2(R) or, equivalently, if

2eL tanh3(R) ≤ 1. �
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Appendix B. Estimates for the combinatorial spectrum

In this appendix we estimate from below the bottom of the combinatorial spec-
trum µ0(G,S), for the group G < PSL(2,R) associated to the system of generators
S = {u, tu3}, where u = ( 1 1

0 1 ) and tu is its transpose. By combinatorial spectrum,
we refer to the spectrum of the combinatorial Laplace operator on the Cayley graph.

We estimate µ0(G,S) from below following ideas of Nagnibeda [Na] and prove
the following.

Theorem B.1. Let G be the subgroup of PSL(2,R) generated by S = {u, tu3}.
Then, the bottom of the combinatorial spectrum of G associated to S satisfies

µ0(G,S) > 0.4647.

Remark B.2. It can be proved that the bottom of the combinatorial spectrum
associated to a symmetric finite system of k > 1 generators, is bounded from above
by k − 2

√
k − 1 (which corresponds to the bottom of the combinatorial spectrum

of a regular tree of degree k). In our case, this means that µ0(G,S) < 4 − 2
√

3
or, numerically, µ0(G,S) < 0.5359. In particular, this shows that the error in our
estimate is less than 16%.

In the following, we recall some aspects of combinatorial group theory we need
and, in particular, we recall the definition of the bottom of the combinatorial spec-
trum µ0(G,S). The following discussion is completely general.

B.1. Combinatorial group theory. Let G be any group, and let S be a subset
of G. A word in S is any expression of the form

w = sσ1
1 sσ2

2 · · · sσnn
where s1, . . . , sn ∈ S and σi ∈ {+1,−1}, i = 1, . . . , n. The number l(w) = n is the
length of the word.

Each word in S represents an element of G, namely the product of the expression.
The identity element can be represented by the empty word, which is the unique
word of length zero.

Notation. We use an overline to denote inverses, thus s̄ stands for s−1.
In these terms, a subset S of a group G is a system of generators if and only if

every element of G can be represented by a word in S. Henceforth, let S be a fixed
system of generators of G and a word is assumed to be a word in S. A relator is a
non-empty word that represent the identity element of G.

Any word in which a generator appears next to its own inverse (ss̄ or s̄s) can
be simplified by omitting the redundant pair. We say that a word is reduced if it
contains no such redundant pairs.

Let v, w be two words. We say that v is a subword of w if w = v′vv′′, for some
words v′, v′′. If v′ is the empty word we say that v is a prefix of w. If v′′ is the
empty word we say that v is a suffix of w.

We say that a word is reduced in G if it has no non-empty relators as subword.
In particular, if a word is reduced in G, any of its subwords is also reduced in G.

For an element g ∈ G, we consider the word norm |g| to be the least length of a
word which is equals to g when considered as a product in G, and every such word is
called a path, that is, if its length coincides with its word norm when considered as
a product in G. In particular, a path is always reduced in G. Moreover, a subword
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of a path is also a path. We say that two words are equivalent if they represent the
same element in G.

For a relator, we call a subword that is a relator, a subrelator. We say that a
relator is primitive if every proper subword is reduced in G, that is, if it does not
contain proper subrelators. In particular, a word is reduced in G if and only if it
contains no primitive relators as subword. Note that, if P is the set of all primitive
relators, then 〈S | P 〉 is a presentation of G.

The following elementary results (see Figure B.1) will be useful in §B.3.

Lemma B.3. Let v, w be two different equivalent paths. Then, there are paths
v0, v1, w0, w1 and x such that v = v0v1x and w = w0w1x, and v1w̄1 is a primitive
relator (of even length).

w0

w1

xx

v0

v1

Figure B.1. Decomposition of two equivalent paths

Proof. Let x be the largest common suffix of v and w (possibly x is empty). Write
v = v′x and w = w′x. Let w1 and v1 be the smallest non-empty suffixes of w′

and v′ respectively such that v1 and w1 are equivalent. Such v1 and w1 exist since
v and w are different words. Moreover, they have the same length since they are
equivalent, that is, they are paths that evaluate to the same element in G. Write
v′ = v0v1 and w′ = w0w1 (possibly v0 and w0 are empty). In particular v0 and w0

are equivalent, since the same holds for v′, w′ and v1, w1.
It remains to prove that v1w̄1 is primitive. Suppose z is a subrelator of v1w̄1.

Since v1 and w1 are paths, they are in particular reduced in G and also their
subwords. Then z = v2w̄2 for some non-empty suffixes v2 and w2 of v1 and w1

respectively. In particular, v2 and w2 are non-empty suffixes of w′ and v′ respec-
tively and v2, w2 are equivalent. But, by definition, v1 and w1 are the smallest such
suffixes and therefore v2 = v1 and w2 = w1. Thus, v1w̄1 has no proper subrelators
and therefore, v1w̄1 is primitive. �

As a direct consequence of the previous lemma, we have the following.

Corollary B.4. Let v = v′yx and w = w′zx be two equivalent paths such that yz̄
is reduced in G. Then, yz̄ is a subword of some primitive relator (of even length).



28 ANGEL PARDO

Proof. Consider the decomposition given by the previous lemma. It is clear that
y is a subword of v1 and z, of w1. Then yz̄ is a subword of the primitive relator
v1w̄1. �

B.2. Combinatorial spectrum. Let G be a finitely generated group and S ⊂ G
be a finite system of generators of G. Let `2(G) be the space of square-summable
sequences on G with the inner product

〈h, h′〉 :=
∑
g∈G

hgh
′
g,

for h, h′ ∈ `2(G), and define ∆S : `2(G) → `2(G), the combinatorial Laplace
operator on G associated to S, by

(∆Sh)g :=
∑

s∈S∪S̄
(hg − hgs),

for h ∈ `2(G). Then, we define µ0(G,S), the bottom of the combinatorial spectrum
of G associated to S to be the bottom of the spectrum of ∆S , that is,

µ0(G,S) := inf

{ 〈∆Sh, h〉
〈h, h〉 , h ∈ `2(G)

}
.

Remark B.5. The subjacent object in this discussion is the Laplace operator on the
Cayley graph of G associated to S. However we do not explain this here.

B.2.1. Nagnibeda’s ideas. In order to give estimates from below to the combinato-
rial spectrum we follow ideas of Nagnibeda [Na], which are based in the following
result, whose proof is elementary (see, for example, [Co, §7.1]).

Proposition B.6 (Gabber–Galil’s lemma). Let G be a finitely generated group and
S a finite symmetric system of generators of G. Suppose there exists a function
L : G× S → R+ such that, for every g ∈ G and s ∈ S,

L(g, s) =
1

L(gs, s−1)
and

∑
s∈S

L(g, s) ≤ k,

for some k > 0. Then,

µ0(G,S) ≥ #S − k.

Let S be a symmetric finite system of generators of G. For g ∈ G, denote by |g|
the word norm with respect to S and define S±(g) := {s ∈ S : |gs| = |g| ± 1}. For
g ∈ G and s ∈ S, we say that gs is a successor of g if s ∈ S+(g) and that gs is a
predecessor of g if s ∈ S−(g). Henceforth we assume S+(g) ∪ S−(g) = S, for every
g ∈ G. Note that this is equivalent to say that every relator has even length.

A function t : G→ N is called a type function on G and its value t(g) at g ∈ G is
called the type of g. We say that a type function t is compatible with S, or simply
that t is a compatible type function, if the following two conditions are equivalent:

(1) t(g) = t(g′);
(2) #{s ∈ S+(g) : t(gs) = k} = #{s′ ∈ S+(g′) : t(g′s′) = k}, for every k ∈ N.

Equivalently, t is a compatible type function if the (multiset of) types of successors
of an element g ∈ G (is/)are completely defined by its type t(g).
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For any type function t : G → N and positive valuation c : N → R+, we can
consider a function Lc : G× S → R+ defined by

Lc(g, s) =

{
ck, if s ∈ S+(g), k = t(gs),

1/ck, if s ∈ S−(g), k = t(g).

It is clear then, by the definition, that any Lc : G × S → R+ defined as above
satisfies Lc(g, s) = 1/Lc(gs, s

−1), since s ∈ S+(g) if and only if s−1 ∈ S−(gs), and
S = S+(g) ∪ S−(g), for every g ∈ G.

Moreover, for a compatible type function t, we define for k = t(g) ∈ N, g ∈ G,

fk(c) :=
∑
s∈S

Lc(g, s) =
∑

s∈S+(g)

ct(gs) +
#S−(g)

ck
.

Note that this is well defined since t is compatible with S and therefore the sum
depends only on k, the type of g.

As a direct consequence of Gabber–Galil’s lemma (Proposition B.6), we get the
following.

Corollary B.7. Let t : G→ {0, . . . ,K} be a compatible type function. Then,

µ0(G,S) ≥ #S − max
k=0,...,K

fk(c),

for every c : {0, . . . ,K} → R+, where fk is defined as above.

Then, every compatible (finite) type function gives lower bounds for the combi-
natorial spectrum.

B.3. Compatible type functions in our particular case. Until now, the dis-
cussion is completely general. We now specialize to the case of G < PSL(2,Z) with
generators u = ( 1 1

0 1 ) and v = tu3. The aim in the following is to give a compatible
finite type function in this case, in order to give estimates for the bottom of the
combinatorial spectrum with the aid of Corollary B.7. For this, we define a suffix
type function and prove that it is compatible with S = {u, v}.

It is not difficult to see that 〈u, v | (uv̄)3〉 is a presentation of G and the set of
primitive relators is given by

{(uv̄)3, (ūv)3, (vū)3, (v̄u)3}.
In particular, every relator has even length and we can apply previous discussion.

Let S(g) be the set of all suffixes of paths for g ∈ G. Then, by the description
of the primitive relators, as a direct consequence of Corollary B.4, we have the
following.

Corollary B.8. Let s ∈ S and r ∈ S \ {s, s̄}. The following cases cannot happen:

• s, s̄ ∈ S(g);
• sr, s̄r ∈ S(g);
• s, r2 ∈ S(g);
• sr, s ∈ S(g);
• u, v̄ ∈ S(g);
• ū, v ∈ S(g);

Proof. Neither s2, srs̄, uv nor vu are subwords of a primitive relator. �
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Let Sn(g) be the set of all suffixes of length n ∈ N of paths for g ∈ G and define,
by recurrence, S∗1(g) = S1(g) and

S∗n+1(g) =

{
Sn+1(g) if Sn+1(g) 6= ∅,
S∗n(g) if Sn+1(g) = ∅.

Note that any injective function j : S∗n(G) → N defines a (finite) type function
t = j ◦ S∗n : G→ N, which we call suffix type function of level n.

Lemma B.9. Let t : G → N be a suffix type function of level 2. Then, it is
compatible with S.

Proof. Being compatible with S means that the type t(g) of g ∈ G completely
defines the types of its successors. Then, it is enough to show that S∗2(g) defines
completely the multiset {S∗2(gs) : s ∈ S+(g)}.

From the previous corollary, we can deduce that S∗1(g) = ∅, {u}, {ū}, {v}, {v̄}, {u, v}
or {ū, v̄}, and that

S∗2(g) ∈ {∅} ∪ {{s}, {s2}, {sr}}s∈S,r∈S\{s,s̄} ∪ {{āb, b̄a}, {a2, ba}}{a,b}∈{{u,v},{ū,v̄}}.
Moreover, it is clear that s ∈ S+(g) if and only if s̄ /∈ S1(g).

Let s ∈ S, r ∈ S \ {s, s̄} and {a, b} ∈ {{u, v}, {ū, v̄}}.
• If S∗2(g) = ∅, g = id and evidently S∗2(ge) = {e}, for e ∈ S = S+(g).
• If S∗2(g) = {s} or {s2}, then S∗2(ge) = {se} for e ∈ S \ {s̄} = S+(g).
• If S∗2(g) = {ab}, then S∗2(ge) = {be}, for e ∈ S \ {b} = S+(g).
• If S∗2(g) = {ab̄}, then S+(g) = S\{b̄}, S∗2(ga) = {b̄a, āb} and S∗2(gq) = {bq},

for q ∈ {ā, b} = S+(g) \ {a}.
• If S∗2(g) = {āb, b̄a}, then S∗2(ge) = {ae, be}, for e ∈ {a, b} = S+(g).
• If S∗2(g) = {a2, ba}, then S∗2(ge) = {ae}, for e ∈ S \ {ā} = S+(g).

Thus, given only the value of S∗2(g) we can tell the corresponding value of S∗2(gs)
for each s ∈ S+(g) and therefore, suffix type functions are compatible with S. �

We summarize the proof of the previous lemma by the following diagram which
shows each possible S∗2(g), g ∈ G with its respective multiset of S∗2(ge), e ∈ S+(g):

S∗2(g)→ S∗2(ge), e ∈ S+(g)

∅ → {u}, {ū}, {v}, {v̄}
{s} → {s2}, {sr}, {sr̄}
{s2} → {s2}, {sr}, {sr̄}
{ab} → {b2}, {ba}, {bā}
{ab̄} → {b̄2}, {b̄a, āb}, {b̄ā}

{b̄a, āb} → {a2, ba}, {ab, b2}
{a2, ba} → {a2}, {ab}, {ab̄},

where s ∈ S, r ∈ S \ {s, s̄} and {a, b} ∈ {{u, v}, {ū, v̄}}.
It is not difficult to see in the previous diagram that there are different suffix types

which share the types of the successors. Namely {a}, {a2}, {ba} and {ba, a2}. This
allows us to reduce the number of types. Furthermore, it is clear that distinguishing
a and ā or a and b in the previous description has no major benefit. This motivates
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the definition of the following type function. Let T : G → {0, . . . , 3} be the type
function defined as follows:

T (g) =


0 if S∗2(g) = ∅,
1 if S∗2(g) = {a}, {a2}, {ba} or {ba, a2},
2 if S∗2(g) = {b̄a},
3 if S∗2(g) = {āb, b̄a},

for {a, b} ∈ {{u, v}, {ū, v̄}}.
From the previous discussion, we deduce the following.

Theorem B.10. The type function T : G → {0, . . . , 3} is compatible with S.
Moreover,

• Type 0 elements have four type 1 successors;
• Type 1 elements have two type 1 and one type 2 successors;
• Type 2 elements have two type 1 and one type 3 successor; and
• Type 3 elements have two type 1 successor.

Thus, we have a compatible type function with a full description of the types of
the successors for each type. We can then finally apply Nagnibeda’s ideas (Corol-
lary B.7) to give estimates for the bottom of the combinatorial spectrum.

B.4. Estimates for the bottom of the combinatorial spectrum. By Theo-
rem B.10, the fk of Corollary B.7 are given by:

• f0(c) = 4c1;
• f1(c) = 2c1 + c2 + 1/c1;
• f2(c) = 2c1 + c3 + 1/c2; and
• f3(c) = 2c1 + 1/c3.

It follows that µ0(G,S) ≥ #S −maxk fk(c), for every c = (c1, c2, c3) ∈ R3
+. Thus,

the problem can be reduced to find the optimal such bound. This can be solved
numerically: we get that c̄ ∈ R3

+ with

c̄1 = 0.5680; c̄2 ≈ 0.6387; c̄3 ≈ 0.8336,

is a (local) minimun for maxk fk(c), and maxk fk(c̄) ≈ 3.5353.
Finally, since #S = 4, it follows that

µ0(G,S) > 0.4647.

This concludes the proof of Theorem B.1 �
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Institut Fourier, Université Grenoble Alpes, CS 40700, 38058 Grenoble cedex 09,

France
E-mail address: angel.pardo@univ-grenoble-alpes.fr

View publication statsView publication stats

https://www.researchgate.net/publication/316471162

	1. Introduction
	1.1. Asymptotic formulas for wind-tree models
	1.2. Explicit estimates
	1.3. Strategy of the proof
	1.4. Structure of the paper
	Acknowledgements

	2. Background
	2.1. Rational billiards and translation surfaces
	2.2. Counting problem
	2.3. Wind-tree model
	2.4. Counting problem on wind-tree models
	2.5. Fuchsian groups

	3. Counting problems on Veech surfaces
	3.1. Finitely saturated collections of cylinders
	3.2. Counting problem

	4. Veech wind-tree billiards
	4.1. Good cylinders
	4.2. Bad cylinders

	5. Explicit estimates for the (1/2,1/2) wind-tree model
	5.1. Good cylinders
	5.2. Bad cylinders
	Estimates for bad()

	Appendix A. Energy estimates
	A.1. Dirichlet domains and transition zones
	A.2. Energy on transition zones
	A.3. Proof of Theorem A.1
	A.4. Proof of Proposition A.2

	Appendix B. Estimates for the combinatorial spectrum
	B.1. Combinatorial group theory
	B.2. Combinatorial spectrum
	B.3. Compatible type functions in our particular case
	B.4. Estimates for the bottom of the combinatorial spectrum

	References

