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Recently, deep learning models have had an outstanding performance in tasks such as im-
age classification, anomaly detection and natural language processing. These models thrive
when the amount of data is large, which is common nowadays. Coupled with the increasing
computing power of GPU, it is possible to solve many of otherwise intractable problems.
Nevertheless, the deep learning approach has been mainly used in computer vision while
other fields have not adopted it as much. Hence, there is an opportunity to use these models
to outperform previous results in the welding field.

In the following work the aim is to use deep learning segmentation models to solve the
problem of obtaining relevant features of a Gas Metal Arc Welding (GMAW) process. This
is done by segmenting video footage to isolate droplets and then calculating features that are
relevant to characterize the process. This problem has been addressed before with computer
vision techniques, but the methods used lack automation, and processing large volumes of
data becomes unfeasible. Therefore, this thesis’ approach allows to achieve results in the
segmentation problem itself and the automation process, since results can be obtained faster.

The proposed model is a Fully Convolutional Network approach. Several architectures are
considered and compared to then use the best one for further calculations, which by means
of supervised training can take a large amount of images and return segmentation masks for
each one, isolating the droplets from the background. Furthermore, segmentation masks are
used to compute geometric and physical properties. This can be helpful to understand and
design the welding process, since it would be possible to map the inputs like current, voltage
and shielding gas to a measurable output such as position, area, frequency and velocity of
droplets.

A literature review is carried out to understand the problem, how it has been addressed so far
and to study the approaches for segmentation using deep learning. Then, data is acquired,
consisting of videos of GMAW processes depicting globular and spray transfer which are
manually labeled and augmented. Later, Fully Convolutional Network based architectures
are trained with the labeled data, namely U-Net, DeconvUnet and MultiResUnet. Finally, the
resulting segmentation masks are processed to compute geometric and physical properties.

The main conclusion of this work is that the U-Net based approach can reliably segment
droplets within a frame, achieving similar results to previous attempts, but with the benefit
of being able to process thousands of images in seconds or minutes. Furthermore, relevant
properties were obtained, namely position, velocity, acceleration, perimeter, area, volume
and surface tension among others, with values mostly in agreement with literature. Hence
this work is a successful step towards automation and a better understanding of GMAW.
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Recientemente, los modelos de aprendizaje profundo han obtenido excelentes resultados en
tareas como clasificación de imágenes, detección de anomalías y procesamiento de lenguaje.
Estos modelos mejoran cuando hay una gran cantidad de datos, lo que es común hoy en día.
Sumado al aumento en poder de cómputo de las GPU, es posible resolver problemas que de
otro modo serían intratables. No obstante, el enfoque de aprendizaje profundo se ha aplicado
principalmente en visión computacional, mientras que en otros campos de la ciencia no se
ha aplicado al mismo nivel. De este modo, existe una oportunidad de usar estos modelos y
mejorar resultados en el campo de la soldadura.

En el siguiente trabajo el propósito es utilizar modelos de aprendizaje profundo para obtener
características relevantes de un proceso de soldadura a gas y arco metálico (GMAW). Lo
anterior consiste en segmentar imágenes para separar a las gotas del fondo y luego calcular
parámetros. Este problema ha sido abordado con el uso de técnicas de visión computacional,
sin embargo las técnicas usadas carecen de automatización, por lo que procesar una gran
cantidad de datos se hace inviable. El enfoque de esta tesis permite resolver el problema de
segmentación en sí, y el problema de automatización, pues los resultados se pueden obtener
rápidamente.

El modelo propuesto se basa en Fully Convolutional Networks, las cuales mediante entre-
namiento supervisado reciben imágenes y entregan una máscara de segmentación. Luego,
las máscaras se usan para calcular propiedades geométricas y físicas, lo cual es de ayuda
para comprender y diseñar el proceso de soldadura, ya que permite establecer una relación
entre input como voltaje, corriente o gas protector y output como posición, área, frecuencia
o velocidad de las gotas.

Se realiza una revisión de literatura para comprender el problema y cómo se ha abordado
hasta ahora, y para estudiar propuestas de segmentación con aprendizaje profundo. Luego, se
recopilan datos para un caso de estudio, los datos consisten en videos de modos de transferen-
cia globular y spray que luego son manualmente etiquetados y aumentados. Posteriormente se
entrenan modelos Fully Convolutional con los datos etiquetados, en particular se prueban las
arquitecturas U-Net, DeconvNet y MultiResUnet. Finalmente, las máscaras de segmentación
se utilizan para calcular características importantes.

La conclusión de este trabajo es que la propuesta de un modelo tipo U-Net es capaz de
segmentar correctamente los videos, consiguiendo máscaras similares a propuestas anteriores,
pero con la ventaja de poder procesar miles de imágenes en segundos o minutos. Además,
se obtiene la posición, velocidad, aceleración, perímetro, área, volumen y tensión superficial
entre otros, mayormente en concordancia con la literatura. Por lor tanto, este trabajo supone
un exitoso paso hacia la automatización y la mejor comprensión de GMAW.
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“Stately, plump Buck Mulligan
came from the stairhead,
bearing a bowl of lather

on which a mirror
and a razor
lay crossed.”

Ullyses, James Joyce.
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Chapter 1

Introduction

1.1 Introduction

The optimization of arc welding processes in general has always been an important task since
it is necessary to get better results both in the quality of the joints as well as the efficiency of
the process in terms of time and materials to produce durable and reliable results. There are
constant efforts in improving the welding machines, using better quality materials, physical
modeling of the process and increasing the automation of both the welding itself as well as
the design in order to achieve an optimized welding process.

A widely used arc welding technique is Gas Metal Arc Welding (GMAW) in which a bare
metal wire electrode is consumed while a shielding gas floods the area to avoid external
contamination [1]. The study of this process is a complex task, since there are many fields
involved such as fluid dynamics, heat transfer and solid mechanics. Also, from a technical
standpoint there are several parameters that affect the process as a whole, such as voltage
and current waveform, material and diameter of the electrode and shielding gas.

One way to approach the study of GMAW in order to help understand and optimize the
process is by using data-driven models. These models have thrived in recent years because
no analytical model of the phenomena is required and the high volume of data that can be
collected using a wide range of sensor information such as image, acoustic signal, temperature,
pressure, among many others.

Specifically, deep learning models have been able to solve problems which would otherwise
be difficult or intractable. Deep learning models have reached state of the art results in tasks
such as image classification, image segmentation, natural language processing and optimal
control taking advantage of the large datasets available [2] and advances in hardware. Also,
different scientific fields outside of the typical computer vision applications have successfully
adopted this approach, such is the case in bio-medicine, prognostics and health management
and the mining industry to name a few [3, 4, 5].

Furthermore, a data-driven approach for the GMAW study poses the challenge of which
parameters to measure and how to do it, since the process itself occurs at very high temper-
atures, it is difficult to use a measuring device directly, because it would need to resist these
conditions while functioning optimally as well as not disturbing the process.

Therefore, a suitable approach would be to use image data, since the camera can stay away
from the process while capturing important information, namely the movement of the welding
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droplets from the wire to the weld pool. For this, the experimental setup would need a high
speed video camera to properly record the process and the necessary filters to overcome the
plasma glow and other visual effects.

Although deep learning models have been used to address problems like welding machine
control, defect detection and weld bead geometry prediction [6, 7, 8], the GMAW segmen-
tation problem has only been tackled using standard computer vision techniques [9, 10] in
which the process is recorded and the video is processed to segment each frame and isolate
the droplet from the background. Later, several geometric and kinematic properties can be
computed. While suitable for the problem, hitherto used methods cannot handle the amount
of data that can be retrieved from the process when using high speed video cameras.

Consequently, a data-driven approach using deep learning models would be suitable to solve
a task such as droplet segmentation in a GMAW process while also being able to process
thousands of images in seconds or minutes after the training is done.

The segmentation problem is not unique to the arc welding study, and has been addressed in
other contexts using different techniques, including deep learning, to solve problems such as
localizing medical abnormalities [11] like aneurysms, tumors or cancerous elements [12, 13,
14]. Surveillance is also a common application for pedestrian detection and traffic surveillance
[15, 16]. Other fields in which segmentation is applied are image detection in forensics
[17, 18, 19] and satellite imagery [20].

The main idea in the segmentation task is to have an input image that is then separated
into two or more regions. Image segmentation can refer to several related problems, the
classic version of the problem is semantic segmentation in which each pixel of an image is
labeled from a predefined set of possible classes so that the resulting regions have some kind
of visual or semantic relationship. Another kind of segmentation is instance segmentation, in
which subjects are not only separated semantically, but also instance-wise, that is multiple
occurrences of the same subject are labeled differently [21]. Applied to the GMAW droplet
segmentation problem, semantic segmentation would consist in assigning each pixel either a
droplet label or a background label. Furthermore, instance segmentation would also assign
separate labels to each droplet.

In the deep learning framework, a common family of models used for segmentation tasks are
the Fully Convolutional Networks (FCN). These networks consist only of convolutional layers
and therefore can output an image from an image input which is not possible when using
fully connected layers since they flatten the input [21].

Particularly, the U-Net model, which has had great success in tasks using biomedicine image
data, like alveolar segmentation and mitochondria detection [22, 23] is an architecture of in-
terest for this thesis. These datasets have rather simple subjects compared to other tasks in
traffic segmentation or face recognition and the problem is mainly subject-background sepa-
ration, which is the same scenario as in the GMAW segmentation problem. Additionally, the
U-Net model also has variants that have been used in similar problems like the DeconvUnet
and MultiResUnet [24, 25].

For these reasons, this thesis aims to use Deep Learning models to be able to segment a large
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number of images and calculate geometric and physical features of droplets from a GMAW
process in an automated and reliable manner to then calculate kinematic and geometric
properties that characterize the process.

1.2 Motivation
The purpose of this work is to further develop the automated analysis of a welding process,
specifically a GMAW setup with globular and spray transfer modes, by using deep learning
techniques. As stated before, there is an ever increasing use of deep learning techniques in
diverse fields of study because of the large amounts of data available, as well as the outstand-
ing results they can achieve, specially in computer vision with the use of convolutional neural
networks. This coupled with necessity of a better understanding of the welding process makes
it an interesting project, since segmentation problems have not been addressed for a large
volume of high speed video images.

1.3 Aim of the work

1.3.1 General objective

Develop and test a framework for the analysis of GMAW videos using a supervised deep
learning segmentation model and posterior parameter computation through image and signal
processing.

1.3.2 Specific objectives

• Investigate the literature and find previous work on the subject to have as a baseline
for comparison.

• Construct a working dataset from GMAW video by manually labeling segmentation
maps and artificially augment them.

• Implement deep learning fully convolutional network models for semantic segmentation
in Tensorflow.

• Validate and compare models to choose the best performing one.
• Test the model by generating segmentation maps on an entire video.
• Calculate relevant properties of the process using image and signal processing on the

segmentation maps. Properties include position, velocity, acceleration, perimeter, area,
volume, detachment frequency and surface tension.

• Compare the results with the literature and assess the effectiveness of the proposed
framework.

1.3.3 Scope

The welding videos are provided by the Canadian Centre for Welding and Joining (CCWJ),
so the video files are the starting point for this thesis. Therefore, no experimental setup is
studied because this has been previously addressed at the CCWJ laboratories when shooting
the videos. The GMAW metal transfer modes considered are globular and spray.
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The processing of the videos in this research intends to use the files as separate frames
to get a label for each one separating the background from the droplet boundaries using
Fully Convolutional Neural Networks (FCN) for which a small sample of the dataset is
labeled manually using the LabelBox platform. A couple of models are to be compared:
U-Net, DeconvNet and MultiResUnet. Then, the best performing model will be used to get
the definitive predictions. The different transfer modes are trained separately, so there is
one model for globular and another for spray. Although it is possible to train one model
with all the data, this would trade accuracy for generality which is not convenient when
measuring the droplet properties considering that building two models is inexpensive in
terms of computation time. Furthermore, the generated labels are used to calculate relevant
features of the process which can then be used by an expert to better understand the process.

The code is written in python using existing libraries for reading video files, computer vision,
data science and deep learning (pycine, numpy, scipy, cv, tensorflow, etc).

1.4 Structure of the work
In Chapter 2 the methodology of the work is presented. Subsequently, in Chapter 3 back-
ground is shown. This includes the problem of welding optimization in general and the
attempts made to solve the problem of droplet segmentation specifically. Also, a background
of deep learning techniques is given, particularly the approach for segmentation tasks. After,
in Chapter 4 the proposed deep learning models are explained in detail. Then, in Chapter
5 study cases are shown, the datasets are explained and the differences and nuances of each
GMAW transfer mode are discussed. Also, preprocessing techniques are explained. In Chap-
ter 6 results are shown and analyzed, its implications and relevance are discussed. Finally,
in chapter 7 conclusions are made regarding the proposed model and how it can provide im-
portant information of the welding process, and the potential of deep learning in the welding
field.
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Chapter 2

Methodology

This work explores the use of supervised deep learning segmentation models to process
GMAW high speed videos for further postprocessing. The process to achieve this is as
follows:

1. Literature review: The first step consists in broadly studying the GMAW welding
process and why it would be important to optimize and understand it better. Further-
more, the specific approach of image segmentation is studied within the field, to know
what has been done until now.

In parallel, a study of the deep learning segmentation models and applications is carried
out to know the tools available to solve the task and which kinds of problems have been
tackled so far.

2. Gathering and preprocessing the data: The dataset used was kindly provided by
the Canadian Centre for Welding and Joining (CCWJ). These are high speed videos
of GMAW processes for globular and spray transfer modes. The videos are .cine files
which are read in python with the use of the pycine library. In this way, each video is
stored as a 4D array (time, width, height, channels) into a .npz file.

Additionally, since the proposed model is supervised, a small sample of images is taken
to be labeled using LabelBox. The samples are carefully selected so that the whole
process is depicted. Also, each transfer mode has its own set of sampled data.

Finally, the dataset is artificially augmented because the amount labeled images is
rather small. Multiple transformations are performed such that each image yields five
augmented images.

3. Develop semantic segmentation models: A handful of models are used to be
compared, these are the U-Net, DeconvUnet and MultiResUnet, they are built in
tensorflow 2.3.1. The models are trained with image files from the sampled ones
that have labels, then the rest of the images without labels are tested. Since there are
two different transfer modes considered, globular and spray, they are trained separately,
so for each network there are two trained models. Moreover, several validation methods
are used to ensure the best results such as k-fold cross validation and grid searching,
all of which are described in chapter 3.
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4. Postprocess segmentation masks: The outputs of the segmentation network are
then processed using opencv and scipy to calculate several relevant characteristics
such as position, velocity, acceleration, area, volume and surface tension among others.

5. Analysis and conclusion: The proposed models are compared to discuss about which
one would be better for the task. Additionally, the postprocessed features are discussed
in terms of their usefulness when optimizing or designing a GMAW process. Finally,
future prospects of deep learning techniques in the welding industry are presented.

2.1 Resources available for this Thesis
The computational requirements for this thesis were met by a desktop computer provided by
the Smart Reliability and Maintenance Integration (SRMI) Laboratory of the University of
Chile with the following specifications:

• Ubuntu 16.04.06 LTS.
• Intel Core i5-7600K CPU @ 3.80GHz x 4.
• 32GB RAM.
• NVIDIA TITAN Xp/PCIe/SSE2.

Additionally, the software and libraries needed include:

• Phantom Camera Control software to view .cine files and inspect metadata.
• LabelBox tools for manual segmentation of images.
• Python 3.8 as programming language.
• Pycine library to read .cine files in python1.
• Imgaug for augmenting images.
• TensorFlow 2.3.1 as a deep learning framework.
• Numpy, pillow, scikit-learn, opencv, scipy for preprocessing and post-processing

of data.
• Matplotlib and seaborn for data visualization.
• Dependencies required for the above to work properly.

Regarding the dataset, it was provided by the Canadian Centre for Welding and Joining
(CCWJ) at the University of Alberta, this collaboration was carried out through the Emerg-
ing Leaders in the Americas Program (ELAP) which awarded the author a scholarship to
undergo an investigation internship at the University of Alberta for a period of six months.

Finally, version control of the project is carried out using Git. All of the code, results and
related documents can be found in GitHub2.

1https://github.com/OTTOMATIC-IO/pycine
2https://github.com/igonzalezperez/Welding-droplet-analysis-using-fully-convolutional-networks.
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Chapter 3

Background

In this chapter the welding aspects of the problem are explained and previous work is shown
regarding the segmentation problem within welding research as well as the use of machine
learning algorithms in the field.

Additionally, theoretical background of the deep learning techniques used is shown. For
this, an overview of machine learning is given, detailing the problems it tackles and how this
approach works in general. Furthermore, different types of Artificial Neural Networks (ANN)
are described, namely fully connected networks, convolutional neural networks (CNN) and
fully convolutional networks (FCN).

3.1 Welding

In this thesis the focus is in Gas Metal Arc Welding (GMAW), a welding process in which a
consumable electrode is melted by an electric arc. The zone has a shielding gas to prevent
external effects in the joint. Figure 3.1 shows a typical GMAW diagram.

The quality of an arc welding operation is highly influenced by the transfer mode. Previous
work in GMAW indicates that transfer mode affects weld penetration, weld width, recovery
of alloying elements, fume emission, spatter and wetting among others [26, 27]. Furthermore,
stable and repeatable transfer modes are achieved by using the correct welding parameters
[28], hence it is important to gain knowledge about the welding dynamics to improve auto-
matic welding systems.

In this thesis, globular and spray transfer modes are considered. Globular transfer consists of
large droplets that build up in the end of the consumable electrode untildetachment occurs
due to the size. This transfer mode is usually not desirable since it produces high heat, poor
welding surfaces and spatter. Nonetheless, it is a cost effective mode because carbon dioxide
is used as shielding gas which is cheaper than other gases such as argon. On the other hand,
spray transfer uses higher voltage and current, producing a fast melting of the electrode,
resulting in small droplets. This increases the quality of the weld and spatter is minimized.

The analysis of welding image data can be useful to understand and design the process.
Specifically, it is possible to measure geometric and physical properties which can provide
useful information when designing and optimizing a GMAW process as well as characterizing
it. Furthermore, this can help to study mathematical descriptions of droplet flight and better
development of automatic welding systems.

7



Figure 3.1: GMAW process illustration. Source: https://www.americantorchtip.com/
blog/mig-vs-tig.

3.1.1 Previous work

The use of high speed video welding data has been explored before, using computer vision
techniques that can detect the contour of objects within an image, with the aim of obtaining
characteristic features of the metal droplets.

In Ray et al. [9] an active contour model, also known as snakes, was used and was able to
accurately outline the border of a droplet. This is a method for outlining an image object and
it is widely used in object tracking, shape recognition and edge detection. It is an analytic
method in which a set of seeded splines are moved in the image by minimizing an energy
function which depends on features of the image, namely lines, edges and terminations; the
energy minimum is reached when the points of the spline are able to outline the shapes in
the image [29] as shown in figure 3.2.

Another case of GMAW droplet segmentation is in Zhai [10] in which the problem is solved
by using standard techniques of computer vision. Several image enhancement filters were
applied to the image in a pipeline, such as grayscaling, thresholding, edge operators (Sobel
operator, Laplacian of Gaussian operator, Canny operator among others) and histogram
equalization in order to separate the droplet from the background. This approach has a
different process for attached and detached droplets.

Furthermore, in the work of Wang [30], a similar approach to Zhai [10] was used, that is
applying successive filters to the images to get a proper segmentation. Then, location and
size of the droplet were measured accurately.
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(a) Snake seed (b) Evolution of snake from the seed

(c) Final evolved snake

Figure 3.2: Snake methodology used in Ray et al. [9]

While the droplets were properly segmented in the examples mentioned above, this was done
in a per image fashion, this means that to analyze thousands of images one would have to run
the model thousands of times which is time consuming1. Also, in Zhai [10], different models
are needed for attached and detached droplets. Therefore it is necessary not only to properly
segment, but to be able to process a large amount of images in a more general approach.

Although deep learning techniques have been used in welding imaging problems, it has been
mainly in a reinforcement learning approach to control the welding machine in situ [6].
Similarly, neural networks have been used for defect detection using several sensors, this was
achieved with the use of Convolutional Neural Networks to classify the input into one of
different degrees of quality of the result, that is to say modes of failure [7]. Recently, deep
learning has also been used for weld bead geometry prediction [8].

Nonetheless, to the best of the author’s knowledge, segmentation problems have not been
addressed with the use of deep learning techniques in the study of welding video data, which
makes this thesis a novel approach to help solving a relevant problem in the field.

3.2 Machine Learning
Machine Learning is a field within Artificial Intelligence which aims to solve tasks auto-
matically by learning patterns from data as opposed to hard-coding specific instructions or
employing analytical models. In an abstract way, the learning characteristic can be defined
as follows [31]: “A computer program is said to learn from experience E with respect to some

1In the work of Wang [30] it is stated that the speed could be greatly improved by migrating from Matlab
based code to C, but this is not done in the paper.
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class of tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E”.

The task (T) is what the computer has to do, and it gets better at it by processing examples
of said task, in other words, gaining experience (E) in the task. The examples are the input
of the model, and usually come in the form of a vector x ∈ Rn. For example, if the input
data are RGB images, then x ∈ R3 and has dimensions (width, height, channels) and each
data point in x is a pixel value. Another example is when each column of x represents a
specific feature relevant to the task.

Typical machine learning tasks are the following:

• Classification: The task is to assign the input to a specific set of outputs by tuning
the parameters of a function such that: f : Rn −→ {1, . . . , k} where k is the number of
possible classes. An example of this is the handwritten digits problem [32], in which
an image of a handwritten digit is given and the output is which class ({0, . . . , 9}) the
model is assigning to it.

• Regression: In this case, the model’s task is to learn a function f : Rn −→ R. The
output is not a finite set of values, but a continuous value. Examples of this are when
the task is to predict some physical measurement in the future with historical data like
predicting tomorrow’s temperature (continuous output) based on recent climate data
trends.

• Anomaly detection: This case is similar to classification, since the task is to flag
abnormal data from the rest.The difference lies in the fact that there is one class that
is larger than the rest and sometimes the large class is the only class present in the
training phase. This can be used to prevent fraudulent use of credit cards (abnormal
data).

• Denoising: For this case the model learns to represent normal or baseline data, so that
when a corrupted example is given, the model can reduce the noise in the corrupted
example.

The performance measure (P) is important since it is the metric that the model will use to
effectively learn from the given examples. In classification tasks, P can be the accuracy, that
is how many correct predictions were made out of the total examples. In the case of regression
it makes more sense to use a distance metric to measure how far away the predicted value
is from the real value. In anomaly detection, since one class is way larger than the other,
accuracy can be deceiving and other metrics are used such as the F1-score. However, choosing
an appropriate metric is not always straightforward and it is important to understand the
task and the nature of the data to decide which metric would be more effective [33].

Another important aspect is that the performance measure that matters is the one computed
in new data, since training data has already been seen, it is expected that the error is going
to be small when measured using that data, or at least smaller than in the unseen data.
Because of that, datasets are usually split into training and testing sets.

Finally, the experience (E) will also determine how to approach the problem. The type of
data (experience) can be categorized as follows:
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• Supervised learning: The data consists of pairs (x, y) in which x is the input and y
is the correct output for x. In the handwritten digits examples, a data point would be
x, an image with a hand drawn digit n ∈ {0, . . . , 9}, and y, the integer number n.

• Unsupervised learning: In this case, no ground truth data is given, only the input x.
This can be useful to explore the structure of the data itself by learning representations
of it. Also it is used when one does not know how to categorize the data and lets the
model cluster similar examples which can be useful, for example, when categorizing
customer preferences or categorizing texts.

• Reinforcement learning: In this case the data is constantly being fed to an agent
that makes decisions based on the stream of data. This is used for optimal control
purposes, in which the agent must react to different scenarios by changing its behavior
such as in self-driving cars.

It is important to note that supervised learning is more “expensive” compared to unsuper-
vised, since labels are not always available, and it is often the case that manual labels need
to be made in order to train in a supervised approach, which can be slow when the data is
large. Nonetheless, supervised learning allows to have more accurate results, since the exact2
result is given to the model, hence it is possible for the network to reach a high performance.

3.3 Artificial Neural Networks
An Artificial Neural Network (ANN) is a mathematical model that learns a function y =
f(x;w) where y is an output (prediction), x is an input and w are the parameters (or
weights) of f . The network learns parameters w such that f ≈ f ∗ where f ∗ is the function
that correctly maps input to output.

These kinds of models are said to be layered since the function f(x;w) is usually a composition
of several non-linear transformations and each composition is thought of as a layer of the
model. Then f can be represented as

f(x;w) = f (n)(f (n−1)(. . . f (2)(f (1)(x;w))) (3.1)

Thus, the data flows in a feedforward fashion from the first layer or input layer f (1) through
the hidden layers of the network until the last layer f (n) which is the output layer. The use
of deeper composition chains is known as deep learning.

In a supervised context, the model looks for a function f(x) ≈ f ∗(x) where the training data
is a noisy approximation of f ∗(x). The data consists in pairs (x, y) where y ≈ f ∗(x), so the
input and output layers are determined, and the model tunes the parameters in the hidden
layers in order to get an accurate output.

The “neural” characteristic comes from a loose analogy to how biological neurons work, in
which a sensory input is given, then a feedforward chain of neurons fire to propagate the
information to the brain so that it can perceive and make sense of the input. Also, neurons

2This will depend on the task at hand. Especially when manually labeling data, the ground truth can have
bias of the scientist that is labeling. For example in image segmentation, in which the boundaries between
subjects are not a clear pixel-wise separation.
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Figure 3.3: A two layer neural network diagram is shown in (a). Nodes represent input
(green), hidden (blue) and output (red) variables while links represent the weights between
nodes in which a bias (gray) weight is added. In (b), the feed forward calculation is shown
from a given layer l to a neuron in the following layer. First computing the linear combination
of inputs and then applying an activation function.

have a trigger, namely an action potential which works by differences in voltage in order to
be activated. In ANN these triggers are the activation functions which originally resembled
this action potential behavior by using logistic functions in which extreme values tend to
“collapse” to specific values, emulating the not triggered/triggered states.

In figure 3.3a is a simple ANN of two layers3 is shown. This kind of network is called a
dense or fully connected network, since every node in one layer is connected to every node in
the next layer. In a given layer, each neuron will output an activation value to each of the
neurons in the next layer through a linear combination of the inputs xi and the respective
weights wl

ji. Once the activations are calculated, these are fed to a non-linear activation
function producing the new values to be received by the next layer4. Then, in the first layer
with D neurons, the activations of the second layer are given by

aj =
D∑
i=1

w
(1)
ji xi + w

(1)
j0 , j ∈ {1, . . . ,M}

where M is the number of neurons in the second layer and D is the number of neurons in the
input layer. Also, the superscript (1) indicates that the parameters are from the first layer.
The parameters wji are the weights connecting the neuron j from the second layer and the

3The way of counting layers can be somewhat arbitrary, since one could include everything and consider a
three layer network, or only include hidden layers, in which case the network has one layer. The convention
here is to count the number of layer connections, since this reflects the parameters that the network will
optimize. Hence, it is considered a two layer network.

4In figure 3.3b, h(·) is shown as single function, but in principle there could be many different functions.
The indices h(l)

n (·) that indicate layer (l) and neuron (n) are omitted for simplicity.
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neuron i from the first layer. The parameters wj0 are biases which serve as an offset to the
activation. Later, the activations are transformed using an activation function

zj = h(aj)

where h(·) is a nonlinear function such as the sigmoid or hyperbolic tangent.

Conversely, the output layer can be computed from the previous layer as

ak =
M∑
j=1

w
(2)
kj zj + w

(2)
k0 , k ∈ {1, . . . , K}

where K is the number of outputs and zj are the results of the previous layer. Finally, the
output activations must be transformed to map the type of the output data. In a regression
problem no transformation is needed, so the identity function is used and yk = ak. In the case
of classification it is necessary to use a function to cast the activations into specific classes

yk = σ(ak)

σ(ak) =
eai∑K
j=1 eaj

where σ(·) is the softmax function, a generalization of the sigmoid for the multiple class case,
and it measures the probability p(Ci|x), the probability that the output belongs to class Ci,
where i = 1, . . . , K, given the input x.

Then, the final output of the network can be expressed as

yk(x,W) = σk


M∑
j=1

w
(2)
kj h

(
D∑
i=1

w
(1)
ji xi + w

(1)
j0

)
︸ ︷︷ ︸

f (1)(x)

+w
(2)
k0


︸ ︷︷ ︸

f (2)(f (1)(x))

, k ∈ {1, . . . , K} (3.2)

and by using matrix notation we get the more compact version

z(1) = h(1)
(
W(1)Tx + b(1)

)
y(x,W) = σ

(
W(2)Tz(1) + b(2)

)
In equation (3.2) it can be seen more explicitly the relationship with the abstract form
of expression (3.1) in which the composition of functions represents the layered structure.
Furthermore, deeper architectures can be made simply by adding further compositions of the
functions representing each layer. In general, a fully connected neural network of L layers
can be expressed as

z(1) = h(1)
(
W(1)Tx + b(1)

)
z(l) = h(l)

(
W(l)Tz(l−1) + b(l)

)
, l ∈ {2, . . . , L− 1}

y(x,W) = σ
(
W(L)Tz(L−1) + b(L)

)
where each equation represents input layer, hidden layers and output layer respectively.
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3.3.1 Activation functions

An important aspect of the neural network’s architecture is that it needs to have a non-linear
transformation to be able to approximate functions that can be extremely complex [34, 35].
The most commonly used activation functions are the rectified linear unit (ReLU), leaky
ReLU, sigmoid and hyperbolic tangent. These functions are shown in figure 3.4. In practice,
the most used are the ReLU and leaky ReLU because the derivative of the sigmoid and
hyperbolic tangent tends to zero on the edges, which means that the deeper the network, the
closer the gradients are to zero and then it is not possible to update the weights since gradient
computation is a fundamental step to optimize the weights. This is known as the vanishing
gradients problem and is especially present when using deep learning models [36, 37].

These functions are defined as

sigmoid(x) = σ(x) =
1

1 + e−x

tanh(x) =
ex − e−x

ex + e−x

ReLU(x) = max(0, x)

LeakyReLU(x) = max(αx, x), 0 < α < 1

3.3.2 Training

In the previous sections the way in which the network computes an output from a given input
has been shown. However, for the network to be useful it is necessary to tune the weights
so that the model can accurately make predictions. This process of tweaking parameters is
called the training phase. A dataset is usually split into at least two groups: training set and
testing set. So that the model can optimize parameters by receiving the training data and
then using the testing data to measure some performance metric, thus measuring how good
the model is at generalization.
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In the training phase, it is necessary to optimize the weights such that some error function5

is the smallest possible. That is solving the problem

W∗ = arg min
W

E(W;X)

Although it is possible in theory to solve the minimization problem by calculating the gradient
of E(·) analytically and then solving for ∇E(W;X) = 0, it is often too computationally
expensive, and iterative methods are preferred.

In order to achieve this iterative minimization, the backpropagation algorithm is used which
efficiently computes the gradient of an error function with respect to the weights of the
network for an input-output example. Since the error is calculated in the last layer, after the
feedforward pass, the gradient is calculated backwards, from the output layer to the input
layer, propagating the error using the chain rule at each layer. A more detailed discussion of
the backpropagation algorithm can be found in Goodfellow and Bishop [38, 39].

After backpropagation, it is possible to use optimization methods to find weights that min-
imize the error E(·). One way to solve this problem is to use gradient descent methods.
Specifically, the Stochastic Gradient Descent (SGD) method is a common approach. In
SGD, weights are initialized randomly, then each iteration tunes the weights such that the
value of the error is updated in the opposite direction of the gradient, thus reducing its value.

If the weight matrix is W ∈ RP , then the partial derivatives of E(·) are

∂E

∂W
=

[
∂E

∂w1

, . . . ,
∂E

∂wP

]T
subsequently, the weights are updated as follows

wi −→ wi − α
∂E

∂wi

, ∀i ∈ {1, . . . , P} (3.3)

where α is the learning rate, which determines how large the steps are between iterations.
A smaller value will produce a slower but more accurate algorithm. Conversely, a larger
learning rate will increase speed, but minima are harder to find. The weights are updated
until the error is close to zero by using some tolerance measure.

Equation (3.3) implies that a single pair (x, y) is processed by the network, this is often not
optimal because datasets can have a large number of data points, so a variant of SGD is used
called mini-batch gradient descent in which the data is split into many small bacthes and
the gradient descent is done over the average of the gradients within the batch. Finally, the
updating rule for a batch is

wi −→ wi −
α

N

N∑
j=0

∂Ej

∂wi

, ∀i ∈ {1, . . . , P}

where the sum is done over all the examples in the batch. Furthermore, there are many
optimizers aside from SGD which incorporate more levels of sophistication such as using

5Also called loss or cost function.
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Figure 3.5: Illustration of the underfitting/overfitting phenomena. On the left, the linear
model is underfitting the non linear data, the model is too simple. In the middle, a good
model is able to capture the overall trend of the data while not fitting specific data points.
On the right, an overly complex model is overfitting the data, passing through most of the
data points.

momentum or decaying learning rate. Some of them are AdaGrad, Adadelta and Adam, the
latter being particularly common.

Then, to optimize the network this process needs to be repeated for a number of epochs that
yields good results. An epoch is defined as the number of times the model has processed the
training data, since it is usually necessary to process the training data many times before
achieving acceptable results.

3.3.3 Regularization

An important trade-off when training neural network is underfitting-overfitting. Briefly, these
concepts convey the idea of how much does the network learn specifically the training data as
opposed to generalizing to unseen data. Underfitting means that the network lacks the ability
to perform well in the task, but has similar results both in training data as well as testing
data. On the other hand, overfitting occurs when the model is too complex and it is able to
have really good results in training data but at the cost of not being able to generalize, thus
yielding bad results when testing. In figure 3.5 an illustration of the underfitting-overfitting
phenomena is shown.

In general, overfitting is more common in deep learning because the models are usually large
and contain millions of parameters. The techniques used to address these problems are
referred to as regularization techniques.

A widely used technique to prevent overfitting when dealing with complex models is to use
dropout, which at every step gives each neuron a probability of being “turned off”. Then,
the network can be complex enough but it cannot “memorize” the training examples because
the weights needed to produce each output are not the same. Figure 3.6 shows how dropout
works.

Furthermore, the hyperparameters of the network need to be optimized too. Hyperparameters
are any parameters that are not the network’s weights such as learning rate, number of epochs,
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Figure 3.6: Illustration of the dropout technique with p = 0.5. At every forward pass of
the network, neurons have a probability p = 0.5 of being “turned off” and no values are
propagated through them.

number of layers, among many others. These are not optimized when training the network
and therefore they must be set by the scientist, usually through some heuristic. A common
approach to do this is to use a grid search in which different values for each hyperparameter are
set and then the network is trained using all of the possible hyperparameters’ combinations.
Then, results between each point in the grid are compared and the best one is chosen.

As stated earlier, the data used is split into training and testing where the testing portion
should not be used to tune any parameter because that can cause the model to overfit the
testing data instead of being able to generalize previous information to unseen examples.
Since the hyperparameters need to be tuned as well as the network’s weights, the training
set is subdivided into training and validation, where training is to tune the network’s weights
while the validation set can be used to optimize hyperparameters.

Moreover, a common practice to ensure a robust model is to use k-fold cross validation. This
is to subdivide the training set into k subsamples where one is for validation and the rest
k−1 subsamples are for actual training. Then, the model is run over all the splits every time
taking a different one for validation to finally take an average of each run. These averages
can then be used to compare other models in a statistically validated way. In figure 3.7 a
diagram of the k-fold cross validation process is shown.

Finally, an additional measure to prevent overfitting is the use of early stopping. Since the
model has to run a number of epochs to be determined, it is possible that up to a certain
number of epochs the model stops improving. Notice that a halt in improvement does not
necessarily mean that the training loss does not improve, rather, it could be the case that the
training set is performing better at each epoch but the validation gets worse which is a clear
sign of overfitting. Hence, early stopping consists of setting a maximum number of epochs
M as well as a patience parameter P , which is the number of consecutive epochs that the
model will check for improvement, stopping the process if validation loss does not improve
in P consecutive epochs.
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Figure 3.7: k-fold cross validation diagram for k = 5 folds.

3.4 Convolutional Neural Networks
Convolutional Neural Networks (CNN) are a type of ANN that has been used widely when
dealing with grid-like data. These kinds of networks work just as a regular ANN in the sense
that they receive an input, perform a matrix operation with learnable weights and biases
and then apply a non-linear activation. The difference lies in that CNN make use of the
spatial relationships of the input which would be lost if the input were flattened to use a
fully connected layer.

In figure 3.8 a typical CNN architecture is shown. Three distinctive parts can be identified:

• Convolutional layer: This layer performs a convolution operation between the input
and a kernel6 with weights that the network can learn, these kernels have a width and
height that define the window of the convolution and depth which defines the number of
different outputs of the operation. The transformed data from the convolution process
is called a feature map. Specifically, figure 3.10 shows that a number of kernels is
defined, as one would define the number of neurons in a fully connected layer. These
kernels have a fixed size and slide through the input image or feature map and perform
a convolution operation. After the convolution is done, an activation function is applied
such as a ReLU, as in a regular ANN.
The one dimensional convolution is defined as

s(t) = (x ∗ w)(t) =

∫
x(τ)w(t− τ)dτ

In the context of CNN, s(t) is the resulting feature map, the input is x and the kernel
6Also called filter.
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Figure 3.8: Diagram of a CNN. The input is expected to have a grid-like struc-
ture. The architecture consists of two convolutional blocks which include a convo-
lutional and pooling layer. After the subsequent convolutional blocks, a fully con-
nected layer is used to finally produce the output. Source: https://davidstutz.de/
illustrating-convolutional-neural-networks-in-latex-with-tikz/ [40].

is w. In practice, the input is a multidimensional array of data points, so a discrete
convolution is used

s(t) = (x ∗ w)(t) =
∞∑

a=−∞

x(a)w(t− a)

It is assumed that these functions are zero in all their domain except for the actual
values of the data, so the infinite sum can be computed. Furthermore, it is common to
process image-like data and kernels, so a 2D version is defined as

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i +m, j + n)K(m,n)

This is called cross-correlation and is equivalent to the convolution operation except
that it is non-commutative, S(i, j) = (I ∗ K)(i, j) 6= (K ∗ I)(i, j), but this is not an
issue when implementing the network as long as the application is consistent. Figure
3.9 shows how this works in practice for a 2D input and a 3× 3 kernel.

In practice, it is necessary to define some parameters to apply a convolutional layer,
namely the kernel size, strides and padding. The strides are the amount of pixels
the kernel moves at each step while the padding defines the behavior in the borders,
when part of the kernel lies outside of the input. In figures 3.11 and 3.12 examples
with specific input, kernel, strides and padding are shown. Notice that all of these
parameters will affect the shape of the output.
Furthermore, it is useful to define the input size (ij), kernel size (kj), stride size (sj) and
padding size (pj) where each parameter is considered along axis j7. Then, a general
expression [41] for the output shape is

oj =

⌊
ij + 2pj − kj

sj
,

⌋
+ 1 ∀i, k, s, p ∈ N

7In the case of square input, strides and padding this distinction is not necessary.
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Figure 3.9: Two dimensional discrete convolution example where I is the input, K the
kernel and I ∗ K is the convolution that yields the resulting feature map. Source: https:
//github.com/PetarV-/TikZ.

input image
or feature map output feature maps

Figure 3.10: Illustration of a convolutional layer. A number of filters with learnable pa-
rameters are applied to the input or previous feature map by using the filters as a sliding
window and computing the dot product at each step. Source: https://davidstutz.de/
illustrating-convolutional-neural-networks-in-latex-with-tikz/ [40].

Figure 3.11: Convolving a 3× 3 kernel over a 4× 4 input using unit strides and no padding.
Source: https://github.com/vdumoulin/conv_arithmetic [41].
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Figure 3.12: Convolving a 4× 4 kernel over a 5× 5 input padded with a 2× 2 border of zeros
using unit strides. Source: https://github.com/vdumoulin/conv_arithmetic [41].

feature maps
layer (l − 1)

feature maps
layer l

Figure 3.13: Illustration of a pooling layer. Layer l summarizes the information in layer l− 1
through some statistical feature (maximum, average, etc). This is accomplished by defining
a fixed size window and then scanning the previous layer, applying the pooling operation at
each step. The number of feature maps remains the same. Source: https://davidstutz.
de/illustrating-convolutional-neural-networks-in-latex-with-tikz/ [40].

• Pooling layer: The pooling layer downsamples the previously convolved input, i.e.
feature maps, thus reducing the dimension of the data. A commonly used type of pool-
ing layer is the max pooling, in which a window slides through the data and takes the
maximum value within the window. The way it works is very similar to a convolution
in the sense that a kernel size is defined, and this kernel scans the input and applies a
transformation at each step. The difference is that the transformation is not a convolu-
tion, but a downsample through the use of some statistical feature within the window
(average, maximum, etc). A diagram of a pooling layer is shown in 3.13. Similar to
the convolution, the kernel size and strides affect the size of the downsampled output.
An expression for the output size is8

o =

⌊
i− k
s

+ 1,

⌋
+ 1 ∀i, k, s ∈ N

• Fully connected layer: A feed forward network is used to produce the final output.
Since the convolutional and pooling layers already have done the work of extracting

8Axis subindex is omitted for simplicity.
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relevant spatial features, the fully connected layers can then receive the transformed
data.

Furthermore, CNN have properties that benefit their application [42]:

• Sparse interactions: The number of parameters is reduced compared to fully con-
nected layers since kernels are usually much smaller than the input and this is more
efficient in terms of memory usage.

• Shared weights: Weights are used multiple times in the model because kernels slide
through the input while dense layers have each weight associated with only one feature.

• Equivariance to translation: The representation of the input’s features is equivari-
ant to the location of features, that is, if the input is translated, the feature maps in
each layer will be translated in the same way [38].

3.5 Segmentation models
An important problem in computer vision is the analysis of images or videos for segmentation
and it has been addressed using different techniques, including deep learning models which
are discussed in this section.

First, the segmentation task encompasses several different but related problems. The most
common are:

• Object localization: An image with different subjects is processed and the model
is expected to localize them, this is usually done using bounding boxes around every
subject.

• Semantic segmentation: In this case, each pixel of the image is labeled as a subject,
so the specific geometry is recognized as opposed to the bounding box localization.

• Instance segmentation: This expands the semantic segmentation by assigning labels
to each instance of a subject within an image. This allows to separate subjects that
would have the same label in semantic segmentation.

In figure 3.14 the different types of segmentation are depicted. This thesis is concerned with
the application of supervised semantic segmentation models, so the models studied aim to
solve that task.

3.5.1 Fully convolutional networks

Fully Convolutional Networks (FCN) are ANN that only make use of convolutional and
pooling layers. This type of architecture is suitable for semantic segmentation because it is
possible to have a grid-like output, as opposed to a single value or array of values when fully
connected layers are used in the output layer. As stated before, in semantic segmentation it
is necessary to assign a label to each pixel in an image to generate groups of pixels that have
some semantic or spatial relationship.

A generic FCN architecture is shown in figure 3.15. The structure is composed of a contracting
convolutional path in which subsequent convolutional and pooling layers are applied so the
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(a) Input image (b) Localization

(c) Semantic segmentation (d) Instance segmentation

Figure 3.14: Typical segmentation tasks. Source: A survey on deep learning techniques for
image and video semantic segmentation [43].
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Input

pool conv transposed
conv

conv

Output

Figure 3.15: Illustration of a FCN. First, subsequent convolution and pooling layers are
applied. In the convolutions the feature maps are added (more length in the figure) while
maintaining height and width, then the pooling layer reduces the size while keeping the same
number of feature maps. In the expanding path, a transposed convolution is applied which
upsamples the feature maps, then a normal convolution is applied reducing the number of
feature maps. Source: Adapted from https://github.com/jettan/tikz_cnn.

number of feature maps increases (depth) and the size of the input decreases (width and
height). Then there is an expanding path in which transposed convolutions9 are applied
and followed by regular convolutions that reduce the number of feature maps. The purpose
of transposed convolutions is to upsample the feature maps so the original input shape is
recovered. The output is the segmentation map which is an image of the same shape as the
input and each pixel has a specific label. In a supervised approach, these labels come from
whatever labels have been assigned to the training examples.

The main feature of a FCN is the upsampling layer in which the transposed convolution is
applied, because without such an operation, it would no be possible to recover the shape
of the input. This could be solved by not using pooling layers and maintaining the shape
throughout the network, but this would be computationally expensive because the number of
parameters would be really large, and one of the benefits of CNN is the possibility to reduce
the number of parameters by using small filters compared to the input size.

3.5.2 Transposed convolution

The transposed convolution operation functions in the opposite way of a pooling layer, thus
upsampling the input. For this, a kernel with trainable parameters is used. Note that since
this is not the inverse of a convolution, the result is just a new collection of feature maps
that recovers the shape of the previous layer, but does not have the same parameter values.

As an example, let us consider the convolution shown in figure 3.11. If we write the convo-
lution as a vector-matrix multiplication, the kernel can be written as

C =


w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2 0 0 0 0 0

0 w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2 0 0 0 0
0 0 0 0 w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2 0
0 0 0 0 0 w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2


where wij is the weight of the kernel located in row i and column j. Then, the convolution can
be computed by flattening the input so that it becomes a 16−dimensional vector. The result

9The term “deconvolution” is sometimes used, but this is discouraged because a deconvolution is defined
as the inverse of a convolution, which is different from a transposed convolution [41].
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Figure 3.16: Transposed convolution of a 2× 2 input with a 3× 3 kernel to produce a 4× 4
output. This is equivalent to a regular convolution of a 6×6 input with a 2×2 padding with
the same kernel. Source: https://github.com/vdumoulin/conv_arithmetic [41].

is going to be a 4−dimensional vector which can be reshaped to 2×2 to get the matrix form.
With this in mind, notice that in the forward pass, the convolution consists in multiplying
by C while in the backward pass to propagate the error it is necessary to multiply by CT .
Hence, the weight matrix defines both the forward and backward pass of the network.

Now consider the idea behind transposed convolution which is to take a small matrix, applying
a transformation and obtaining a larger matrix maintaining the number of feature maps. This
is precisely what happens when in the backward pass CT is applied. Then, multiplying by
CT is a transposed convolution by definition if CT is applied in the forward pass instead of
the backward pass.

In general, the process can be thought of as having an input matrix in which every data
point is multiplied by the kernel and then summed over the corresponding values. This is
equivalent10 to a regular convolution over a fully padded input11 as shown in figure 3.16 which
is a 2× 2 input in which a transposed convolution is applied with a 3× 3 kernel to produce
a 4× 4 output or equivalently, a 6× 6 (padded) input convolved with a 3× 3 kernel.

3.5.3 Residual connections

As of now, the networks discussed have all been connected using adjacent layers which means
every node in one layer is connected with every node in the next layer, no connections are
missing and no connections with other layers are added. Nonetheless, a trick that has proven
to be very effective when training ANN is the use of residual connections, allowing to achieve
state of the art results in a wide range of tasks. These connections consist in having a
connection with deeper layers of the network, so a neuron n in layer l can be connected with
layer l + 1 as usual and with other layers l + r, r ≥ 1.

Before residual connections were developed, some deep networks performed worse than shal-
low ones despite the fact that in theory neural networks are universal approximators [34, 35],
which means that it is possible to approximate any function in a compact domain with an

10This is useful as a concept, but is not used when programming because many of the operations are useless
zero multiplications.

11This means the input is padded such that the kernel can overlap its last value (bottom-right) with the
first of the input (top-left).
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Figure 3.17: Residual connection diagram. Source: Adapted from Deep residual learning for
image recognition [44].

arbitrary small error given enough neural units. Particularly, there was a saturation in ac-
curacy, that is the accuracy improved with depth up to a certain point at which accuracy
began to decrease. This is called the degradation problem [44].

Specifically when a shallow network performs better than a deep one, an intuitive approach
would be to allow the deep network to skip some layers so that it can mimic the behavior
of a shallow network if needed. Then, if a layer activation is small, an identity mapping can
be added so that the gradient does not vanish and the network can make use of that layer’s
level of abstraction. In figure 3.17 a residual connection is shown.

In the context of FCN, these residual connections are called skip layers, which also skip
connections to further layers in the network, but do so by concatenating layers as opposed
to the sum shown in 3.17. On a semantic level, what the network does when convolving and
pooling is extracting more high-level representations of the input. Then, what the skip layers
do is recover the layers’ low-level information which is the context needed to reconstruct
when upsampling [3].
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Chapter 4

Proposed approach using Fully
Convolutional Networks

In this chapter the proposed models are described. These consist in FCN based deep learning
architectures which are compared in the same datasets to ensure validated results and also to
choose the best performing model for further analysis. The architectures are described using
baseline parameters that will then be optimized using a grid search. In figure 4.1 a flowchart
of the proposed framework is shown.

4.1 Segmentation architectures
The architectures used are FCN based, so they share they building blocks shown in figure
3.15. There is a contracting path of successive convolution and pooling layers and then
an expanding path that mirrors the shape of the contracting one by applying transposed
convolutions (upsampling) instead of pooling. Also, in the contracting path the number of
feature maps increases while in the expanding path it decreases until reaching the output’s
number of channels. The segmentation architectures used are:

• DeconvNet: This network is an FCN which uses a VGGNet [45] as a backbone for
the contracting path. The expanding path mirrors the VGGNet architecture. Since it
is based in a network that has already proven to have good results with image data it
is appropriate to extend its application [45, 24]. In figure 4.2 the contracting path is
shown.

• U-Net: The U-Net is an FCN that was first implemented in the biomedical field for
microscopy images. The architecture is shown in figure 4.3 and makes use of skip layers
which are taken from the contracting path and then concatenated in the expanding path
layers. This allows the network to localize specific data by reducing dimensionality and
also have the context of the general image through the skip layers [3].

• MultiResUnet: This is an improvement of the U-Net, than can process subjects which
have large differences in scale within an image. This is done with several convolutions
with different kernels so that the features are learned at different resolutions, this is
borrowed from Inception architectures such as GoogLeNet [46]. The structure is the
same as in figure 4.3 but the convolution blocks are changed with residual blocks that
apply different convolutions which are then summed. Also, skip connections have a
residual residual path in between. Figure 4.4 shows the residual block used and figure
4.5 depicts the residual connections used in the skip layers.
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Figure 4.1: Proposed framework flowchart.

28



6464
I

3 × 3

2
×

2

128 128 I/2

3 × 3

2
×

2

256 256 256 I/4

3 × 3

2
×

2

512 512 512 I/8

3 × 3

2
×

2

512 512 512 I/1
6

3 × 3

7
×

7

4096 4096 I/3
2

Figure 4.2: Illustration of a DeconvNet contracting path. A VGGNet architecture is used
and then mirrored in the expanding path. At the top of each block the kernel shape is
shown, below are depicted the number of feature maps per convolution. Finally, I is the
input size which is halved after each pooling layer. Source: Adapted from https://github.
com/HarisIqbal88/PlotNeuralNet.
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Figure 4.3: Illustration of a U-Net architecture. The architecture is divided in a contracting
path and an expanding path. The contracting path has conv (yellow)/conv/pool (red) blocks.
The expanding path has transposed-conv (blue)/conv/conv blocks. Dimensions in the ex-
panding path mirror the contracting path. Each convolution before pooling is used as a skip
layer and concatenated with the corresponding shape in the expanding path. The final layer
reduces the feature maps to one and applies a softmax function for pixel-wise classification.
Convolution kernels are 3 × 3 while pooling kernels are 2 × 2 so the size is halved at each
block. Source: Adapted from https://github.com/HarisIqbal88/PlotNeuralNet.
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3 × 3 3 × 3 3 × 3

Concatenation

1 × 1

+Input

Figure 4.4: Illustration of a Multi Resolution block. The block consists of successive convo-
lutions which are then stacked via skip layers and then summed using a residual connection.
The second and third convolutional blocks are stacked convolutions of 3×3 kernels which are
factorized operations of 5×5 and 7×7 convolutions respectively [47]. This approach is more
computationally efficient than using parallel higher resolution kernels. Source: Adapted from
https://github.com/HarisIqbal88/PlotNeuralNet.

3 × 3

1 × 1

+Input

Figure 4.5: Illustration of a residual path. This type of block is used in series in the Mul-
tiResUnet in between skip layers, so the skipped features are processed before being concate-
nated to the expanding path. Source: Adapted from https://github.com/HarisIqbal88/
PlotNeuralNet.
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4.2 Segmentation loss function
As stated earlier, to train a supervised neural network it is necessary to have some measure
of error so that it can be minimized with respect to the weights. This measure is the loss
function which depends on the task. In the case of semantic segmentation, it is necessary
to use a loss function that can capture pixel-wise comparisons. Specifically, for supervised
segmentation, the input is an image, the output is a 2D mapping of each pixel of the image
to a certain class (e.g. pixel= 0 if background and pixel= 1 if foreground) and the output
is compared through the loss function with a previously labeled image with the same kind
of segmentation mapping corresponding to the input image. A widely used loss metric for
supervised semantic segmentation is the intersection over union metric, also known as Jaccard
index. This metric is given by

J(A,B) =
|A ∩B|
|A ∪B|

where |·| is the cardinality of the set. Hence, if the overlap is perfect |A∩B| = |A∪B| −→ J = 1.
Conversely, if there is no overlap |A ∩B| = 0 −→ J = 0. In a segmentation mapping, |A ∩B|
can be computed as the element-wise multiplication of A and B, and then sum the result.
Furthermore, | · | is computed as the sum of the matrix’ elements. The score is computed
over all classes and then averaged.

In order to minimize a loss function using the Jaccard index, the Jaccard distance is defined
and is given by

dj(A,B) = 1− J(A,B)

4.3 Validation
The proposed architectures have to be validated to ensure that the best results are obtained.
Then, every model is subject to a grid search. The parameters used for grid search are
shown in table 4.1. Also, each model (i.e. each point in the grid) is run using k-fold cross
validation with k = 4. That is, each model is run four times with a different and disjoint
25% of validation data each time. The average loss in the validation set is used to compare
the models’ performances and choose the best one. The parameters are considered for each
proposed architecture. Also, separate models are trained for globular and spray datasets.
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Table 4.1: Hyperparameters used for grid search. Every parameter is used for each proposed
architecture (DeconvNet, U-Net and MultiResUnet) and each dataset (globular and spray)
is trained separately.

Batch size 8, 16, 32 Epochs Max: 200
Patience: 20

Filters 8, 16, 32 Loss function Jaccard
distance

Learning
rate .01, .005, .001 Optimizer Adam
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Chapter 5

Dataset

In the following chapter the case studies considered in this thesis are detailed, specifically
the datasets used and the preprocessing that later leads to the input of the proposed model.

5.1 Video files
The study case consists in analyzing high speed video data from GMAW processes, namely
globular and spray transfer. The videos are raw .cine files which can be inspected using the
Phantom Camera Control (PCC) software. Since the processes are characterized by their
transfer mode, one video for each is used. In tables 5.1 and 5.2 the parameters of each video
are shown.

After inspecting the metadata of the videos in PCC, they are read in python using the pycine
library1. Then, each video is stored into an .npz file. In figures 5.1 and 5.2 frames of each
transfer mode can be seen, particularly the main characteristic of larger droplets in globular
and smaller droplets in spray2.

Notice that later, to calculate physical properties of the process, there has to be a relationship
between the pixels and real distance. This can be done using the wire’s diameter, since that
is a fixed length that is always visible in the image. Using that relationship, the pixel to
distance conversion is

Wire’s diameter = 0.045 in = 1.143 mm = 26 px

−→ 1 px = 0.0439615 mm = 4.39615 · 10−5 m (5.1)

5.2 Labeling
In order to train a supervised deep learning model, manual labels are made using the images
as input. This is done using the LabelBox platform which allows to make such segmentation
and then download the pairs of input image and corresponding mask. A number of 150
images were segmented for each transfer mode. Examples are shown in figures 5.3 and 5.4
for globular and transfer respectively.

1https://github.com/OTTOMATIC-IO/pycine
2Similar videos found at https://sites.ualberta.ca/~ccwj/videos/pages/Intro%20High%20Speed/

33

https://github.com/OTTOMATIC-IO/pycine
https://sites.ualberta.ca/~ccwj/videos/pages/Intro%20High%20Speed/


Table 5.1: Globular transfer video parameters.

Electrode ER70S − 6 Shielding gas 85% Ar, 15% CO2

Size 0.045′′ (1.2 mm) Number of frames 9947
Wire feed speed 175 ipm (4.4 m/min) Resolution 352× 296
Voltage 33 V Frame rate 3000 Hz
Travel speed 20 ipm (0.5 m/min) Period 333.3 µs
CTWD 0.7′′ (18 mm) File size 2.01 Gb

Table 5.2: Spray transfer video parameters.

Electrode ER70S − 6 Shielding gas 85% Ar, 15% CO2

Size 0.045′′ (1.2 mm) Number of frames 6691
Wire feed speed 400 ipm (10 m/min) Resolution 352× 352
Voltage 35 V Frame rate 3000 Hz
Travel speed 20 ipm (0.5 m/min) Period 333.3 µs
CTWD 0.7′′ (18 mm) File size 1.61 Gb

(a) (b) (c)

Figure 5.1: Globular transfer mode frames.

(a) (b) (c)

Figure 5.2: Spray transfer mode frames.
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(a) Original frame (b) Manual segmentation mask

Figure 5.3: Examples of manually segmented frames using LabelBox for globular transfer.

(a) Original frame (b) Manual segmentation mask

Figure 5.4: Examples of manually segmented frames using LabelBox for spray transfer.
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The selection of the training images is not random, frames are chosen to have as much of
the variety of the process as possible, that is the droplet formation, growth and release as
well as some deviations such as irregular droplet shape (see figure 5.1b), horizontal droplet
movement (as opposed to vertical), among others. Since most of the frames are from the
growth process because it takes more time, it would be counterproductive to choose random
frames because one would run into the risk of choosing most, if not all, images from the
growth process, inadvertently ignoring the rest.

Notice that although the images have color, it is mostly a gradient from white to black
through different intensities of magenta so the images are used as grayscale because the same
information can be captured with a third of file size.

5.3 Data augmentation
A total of 150 images were labeled for each transfer mode. Since the number of images is
low, data augmentation is used applying several alterations to the original images and labels.
Each example is augmented such that it produces 5 different training examples. Therefore,
the augmented dataset has 750 images for each transfer mode. In figure 5.53 an example
of an augmented input is shown and in table 5.3 a summary of the dataset information is
shown.

Augmentations are made in python using the library imgaug and are listed as follows:

• Pixel dropout between 0% and 5%, which means a probability is sampled uniformly
such that p ∈ [0, 0.05] for each augmented image so that every pixel has a probability
p of being turned to zero. In practice, every image will lose random pixels up to a
maximum of 5% of the whole image.

• Rotations between −45◦ and 45◦.
• Elastic transformations with α ∈ [20, 50] and σ ∈ [4, 5] sampled uniformly from their

respective intervals for each augmented image, where α is the strength of the distortion
field. Higher values mean that pixels are moved further with respect to the distortion
field’s direction. σ is the standard deviation of the Gaussian kernel used to smooth the
distortion fields. This gives the images a ripple effect.

• Additive Gaussian noise with mean µ = 0 and standard deviation σ ∈ [0, 15] sampled
uniformly for each augmented image.

Notice in figure 5.5 that the sampling of parameters within intervals for each image makes
it so that some images are slightly changed while others are more heavily augmented. Also,
the labels are only affected by the transformations that do not affect pixel intensity, such as
elastic transformations and flips, and they are not affected by pixel dropping or Gaussian
noise.

3Image 5.5 has different colors compared to images in previous figures, this is due to the color map used
when plotting the grayscale image in matplotlib. Nonetheless, pixel values are the same.
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Original image
(Frame 68) Original mask

Figure 5.5: Sample of an augmented image and respective mask (top left) using pixel dropout,
rotation, elastic transformation and additive Gaussian noise. All the effects are applied
simultaneously.

Table 5.3: Dataset summary per transfer mode.

Complete
dataset

9947 (globular)
6691 (spray)

Manually
segmented 150

Augmented 750

Shape 352× 296 (globular)
352× 352 (spray)

Channels| 1 (grayscale)
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Chapter 6

Results and analysis

In this chapter, results are shown and discussed covering the model selection process, training,
testing and post processing. It is worth mentioning that since this thesis is focused on
analyzing videos, there is a great value in having video results as well but because of the
format, only sampled images can be shown. Nevertheless, in the GitHub project1 are available
all of the video results which generate the images shown in this chapter. These are specially
useful for analyzing some of the post processing results.

6.1 Grid search
The three proposed architectures’ hyperparameters are optimized through grid search (see
table 4.1). Also, 4-fold cross validation is performed so that every model is run over four
different and disjoint combinations of training and validation set. Therefore, every model
yields four training and validation loss values which can then be averaged and used to compare
between models.

In tables 6.1 and 6.2 the three best models for each proposed architecture are shown for
globular and spray transfer respectively2. The results show that the best model is the U-
Net in every case, while the MultiResUnet has the worst performance and the DeconvNet
is between the other two, closer to the MultiResUnet. Hence the U-Net architecture seems
suitable to solve the task at hand.

The low performance of the MultiResUnet can be explained by the fact that it is more complex
than the alternatives, and the problem of droplet detection is relatively simple if compared
with other tasks such as traffic image segmentation in which a wide variety of subjects can be
found (in terms of geometry, color, scale, etc.). Specifically, the improvements over the U-Net
are not too present in the considered datasets, that is, there is no considerable variation in
scale between images. Moreover, in table 6.1 the first two MultiResUnet models have a low
number of epochs, specially considering that the patience is of 20 epochs. Then, a higher
patience could improve those results but this is not clear since the third best model does have
a higher number of epochs and performs similarly. Furthermore, the better performance of U-
Net over DeconvNet is to be expected as the U-Net incorporates skip layers while DeconvNet
is a regular FCN. Lastly, the standard deviations are one order of magnitude below the
average, which implies the individual results do not differ significantly. Hence, the models
are robust since they perform similarly across different sets of validation data.

1https://github.com/igonzalezperez/Welding-droplet-analysis-using-fully-convolutional-networks.
2All of the results of the grid search are shown in Appendix A
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Table 6.1: Grid search results for globular dataset. The best three models for each architec-
ture are shown based on the average validation loss over 4-fold cross validation.

Last
epoch

Train
loss

Val.
loss

Architecture Batch
size Filters Learning

rate 1 2 3 4 Mean Std.
dev. Mean Std.

dev.
U-Net 16 32 0.001 95 82 118 67 0.1 0.015 0.19 0.028
U-Net 32 8 0.01 155 95 83 68 0.13 0.025 0.2 0.006
U-Net 32 8 0.001 93 106 82 85 0.12 0.007 0.2 0.02
DeconvNet 32 8 0.001 151 52 75 89 0.21 0.065 0.35 0.029
DeconvNet 8 16 0.001 68 90 89 105 0.2 0.025 0.37 0.013
DeconvNet 8 8 0.001 154 74 94 74 0.2 0.03 0.37 0.038
MultiRes 8 8 0.01 24 41 46 63 0.5 0.008 0.52 0.117
MultiRes 16 16 0.01 49 34 41 39 0.5 0.009 0.52 0.018
MultiRes 8 32 0.001 111 106 94 116 0.48 0.006 0.55 0.025

Table 6.2: Grid search results for spray dataset. The best three models for each architecture
are shown based on the average validation loss over 4-fold cross validation.

Last
epoch

Train
loss

Val.
loss

Architecture Batch
size Filters Learning

rate 1 2 3 4 Mean Std.
dev. Mean Std.

dev.
U-Net 8 8 0.005 74 91 105 122 0.23 0.017 0.28 0.008
U-Net 8 8 0.001 113 97 74 114 0.2 0.019 0.28 0.006
U-Net 8 16 0.005 144 119 93 111 0.19 0.01 0.28 0.009
DeconvNet 16 16 0.001 85 101 80 69 0.27 0.013 0.45 0.008
DeconvNet 8 8 0.001 63 90 76 80 0.32 0.021 0.47 0.016
DeconvNet 16 8 0.001 76 94 86 105 0.27 0.024 0.47 0.018
MultiRes 8 16 0.005 94 43 64 47 0.35 0.013 0.43 0.021
MultiRes 8 32 0.005 76 68 61 75 0.32 0.007 0.43 0.038
MultiRes 16 8 0.005 53 107 78 100 0.34 0.017 0.45 0.049
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6.2 Training

After grid search, the best models are selected based on the average validation loss and then
these models are saved to make predictions. In figures 6.1a and 6.1b the learning curves for
the globular and spray models are shown respectively. These graphs show that the training
is indeed successful, steadily reaching a low loss value both in training and validation. The
gap between the two is to be expected and the fact that the two curves show similar behavior
as opposed to having the validation go up while training loss goes down suggests that there
is no significant overfitting in neither of both cases.

Additionally, validation loss is monitored through the training process so that only parameters
in which that metric improves are saved. Then, the best model is saved rather than the model
at the end of training. In practical terms, since the early stopping has a patience of 20, when
the training is done, the last model saved is 20 epochs prior to the last one which corresponds
to the model with the smallest validation loss in the whole curve as seen in the dashed vertical
lines in figures 6.1a and 6.1b.

6.3 Testing

The best models obtained via grid search are trained and then used to make predictions over
all of the image data, that is new masks are generated by the model. Notice that since the
test data is not labeled, it is not possible to measure the error metric. Nonetheless, it is
expected that the test set should perform just as well or even better for a couple of reasons
explained as follows

First, when training, dropout is applied to prevent overfitting but, when testing, dropout is
not necessary since the network has already been trained and the weights are fixed. Therefore,
the network is more powerful when testing which can yield better results in comparison.
Second, the training examples where chosen to have a high variance in them so the network
can learn the more complex patterns which can appear in the process. Furthermore, training
examples were augmented, hence the examples that were already diverse in geometry, get
more complex by dropping pixels, adding elastic transformations and noise. Then, the testing
set has a majority of examples that are rather simple compared to training examples which
consequently enhances performance.

Examples of input and segmentation map are chosen to discuss some special cases, shown in
figures 6.2 and 6.3. In the globular case, most of the images are similar to figure 6.2a having a
noticeably accurate segmentation (at least qualitatively). In the other examples, the network
does not output a segmentation mapping and predicts zero for most of the pixels. This is
because of the nature of the process of globular transfer, since all of those frames occur when
a droplet has been released and submerged in the welding pool, and a new droplet is being
formed. At this point when the droplet is just beginning to form, the network does not
recognize a droplet in the frame, which can be useful since the droplet detachment frequency
can be inferred from this behavior.

On the other hand, spray examples are mostly accurate, although separate droplets can be
segmented together if they are too close. Figure 6.3d is from the worse performing examples
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Figure 6.1: (a) Globular learning curve using the best model according to table 6.1. U-Net
model with 16 batch size, 32 filters, 0.001 learning rate, Adam optimizer, Jaccard distance
loss and early stopping of 200 epochs with patience 20 stopping at 53 epochs. Training
loss: 0.12, validation loss: 0.17. (b) Spray learning curve using the best model according
to table 6.2. U-Net model with 8 batch size, 8 filters, 0.005 learning rate, Adam optimizer,
Jaccard distance loss and early stopping of 200 epochs with patience 20 stopping at 49 epochs.
Training loss: 0.25, validation loss: 0.27.
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Frame 1283

(a)

Frame 7393

(b)

Frame 1878

(c)

Frame 5057

(d)

Figure 6.2: Prediction samples for globular transfer mode.

and clearly the mapping is not accurate, this may occur because the geometry is significantly
different from the other examples, making it harder to predict. The fact that most of the
examples in spray transfer have a similar performance while in globular transfer there are
several examples with no segmentation happens due to the fact that the droplet’s process in
spray transfer is not separated by frames, that is, in most frames there are multiple droplets
in the image, so the process of formation, detachment and landing of the droplet into the
welding pool cannot be separated in a frame by frame basis, so spray transfer frames look
more alike.

The previous results are to show some of the outliers with bad or unexpected results. However,
the majority of segmentation mappings are accurate. In figures 6.4 and 6.5 some randomly
sampled predictions are shown.

Moreover, an important aspect of this work is that the labels were manually generated, so the
results are subject to a human bias, specifically the selection of the boundary of the droplet
because at a pixel level there is not an exact distinction between droplet and background
and a gradient is seen between the brighter pixels of the droplet and the darker pixels of the
background.

Hence, to make more evident where the network decides to make the droplet-background
division which is influenced by the labeling, figures 6.6 and 6.7 show the pixel values of
a single horizontal strip, specifically the one that goes through the centroid of the droplet
segmentation. There, one can see that there is a transition between droplet and background,
and vertical lines show where the model cuts and makes the segmentation. The figures show
that in the image there there is a steep transition between background and droplet, and the
segmentation cuts around the middle of that transition. This results are also useful to assess
the models’ performance quantitatively since it is not possible to compute the loss function.
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Frame 6114

(a)

Frame 1824

(b)

Frame 3329

(c)

Frame 627

(d)

Figure 6.3: Prediction samples for spray transfer mode.

(a) (b)

(c)

Figure 6.4: Globular transfer mode predictions.
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(a) (b)

(c)

Figure 6.5: Spray transfer mode predictions.
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Figure 6.6: Predicted droplet boundary compared to original globular image. A horizontal
strip is taken along the droplet’s centroid (dashed yellow line in (a) and (b)) and the pixel
values along that line are shown in (c). In (b) the predicted mask which generates the red
curve in (c) is shown.
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Figure 6.7: Predicted droplet boundary compared to original spray image.
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6.4 Post processing

In this section the results after generating the segmentation maps are shown. These results
consist in geometric and physical properties of the processes that help to understand them
better. In Appendix B there is a summary of the techniques used to obtain properties from
the segmentation maps and signal processing in general.

6.4.1 Centroids, velocity and acceleration

The centroids of each frame are obtained using opencv which can identify contours in the
segmented images and then compute the moments of each contour (see Appendix B.1). In
images 6.8 and 6.9 some of the examples are shown. The results show that the centroids are
accurately found in the segmentation maps and correspond to those in the original image.
Moreover, it is possible to detect multiple contours within an image, so frames with more
than one droplet have a separate centroid for each droplet.

In globular transfer, the growth process usually has only one droplet and when the droplet
detaches, more droplets appear in the frame. This can be due to the main droplet splitting
into two or more, or the network identifying the tip of the wire as another droplet or some
portion of the weld pool which is too bright. The tip of the wire being identified as a droplet
occurs because the melting of the wire is a continuous process, so when the droplet detaches,
another droplet begins to form. Nevertheless, most of the time the initial state of the growth
process does not have any segmented droplets, as shown in figure 6.8c.

On the other hand, spray transfer has a faster growth and detachment of droplets since
these are smaller than globular. This means that in most frames multiple droplets can be
identified. The droplet forming in the wire is always segmented as a droplet and usually
has an elongated shape because it is from where the droplets fall to the welding pool. The
droplets that are falling have a more round shape compared to the one in the wire.

Furthermore, given the x and y coordinates at each point in time, it is possible to compute
velocity and acceleration. Specifically, free flight centroid data is used to compute velocity
and acceleration, that is the periods of time in which the droplet is detached from the wire
and has not yet reached the weld pool. Calculations are not made throughout the whole
video since the focus should be in each single droplet, as opposed to the stream of droplets
which would cause discontinuities in velocity or area, obfuscating the analysis. Since position
measurements can be noisy, x and y positions are interpolated using a polynomial. A cubic
function is used for globular and a quadratic for spray. The difference in functions is because
in spray, free flight trajectory consists in around 5-10 frames which is quite low. Then,
velocity and acceleration can be obtained analytically by differentiating the position function
in each coordinate.

The identification of the droplet in the frame is a problem that has to be addressed since
multiple centroids can appear in one image. In order to track a specific droplet through time,
a continuity criterion is used. An initial droplet is selected. Then, at each frame the next
centroids are compared to the current centroid and the one with the minimum euclidean
distance is chosen since it is expected that a droplet can only move within its vicinity from
frame to frame.
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(a)
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(b)

Frame 2360

(c)

Figure 6.8: Globular transfer mode centroid predictions. Black dots are used for single
droplet and red crosses when multiple droplets are in the frame.
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(b)

Frame 656

(c)

Figure 6.9: Spray transfer mode centroid predictions.
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Figure 6.10: Trajectory, velocity (black arrows) and acceleration (red arrows) of a free flight
globular droplet for multiple time windows. Trajectory is interpolated using a third degree
polynomial in the x and y coordinates.
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Figure 6.10 (cont.): Trajectory, velocity and acceleration of a free flight globular droplet for
multiple time windows.
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Figure 6.11: Trajectory, velocity (black arrows) and acceleration (red arrows) of a free flight
spray droplet for multiple time windows. Trajectory is interpolated using a second degree
polynomial in the x and y coordinates.
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Figure 6.11 (cont.): Trajectory, velocity and acceleration of a free flight spray droplet for
multiple time windows.
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Table 6.3: Globular statistical features of velocity in each component for multiple free flight
time windows.

Frames
Min

[cm/s]
Max

[cm/s]
Mean ± Std. dev.

[cm/s]
vx vy vx vy vx vy

34− 72 −34.0 13.8 −19.1 31.5 −23.2± 3.9 23.6± 5.1
289− 342 −25.7 6.1 −21.0 32.3 −23.2± 1.3 21.1± 7.6

1429− 1502 −11.2 14.6 −7.4 37.7 −8.5± 1.0 25.6± 6.7
2279− 2341 −17.4 16.3 −12.3 43.9 −14.0± 1.5 30.9± 7.9

Table 6.4: Globular statistical features of the norm of the velocity for multiple free flight
time windows.

Frames ||~v||
Min

[cm/s]
Max

[cm/s]
Mean ± Std. dev.

[cm/s]
34− 72 28.3 46.4 33.4± 5.2

289− 342 21.8 41.3 31.7± 5.9
1429− 1502 17.8 39.4 27.1± 6.4
2279− 2341 13.2 18.3 14.6± 1.4

Table 6.5: Globular statistical features of acceleration for each component for multiple free
flight time windows.

Frames
Min

[m/s2]
Max

[m/s2]
Mean ± Std. dev.

[m/s2]
ax ay ax ay ax ay

34− 72 −42.8 9.5 32.8 19.2 −4.9± 22.07 14.3± 2.8
289− 342 −3.3 8.5 −2.1 21.6 −2.7± 0.3 15.0± 3.7

1429− 1502 −6.7 9.5 5.7 12.9 −0.4± 3.6 11.2± 0.9
2279− 2341 −10.1 11.6 10.1 15.2 0± 5.9 13.4± 1.0

Table 6.6: Globular statistical features of the norm of the acceleration for multiple free flight
time windows.

Frames ||~a||
Min

[m/s2]
Max

[m/s2]
Mean ± Std. dev.

[m/s2]
34− 72 14.8 43.8 25.6± 8.4

289− 342 9.2 21.7 15.3± 3.6
1429− 1502 10.6 14.5 11.7± 1.1
2279− 2341 13.2 18.3 14.6± 1.4
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Table 6.7: Spray statistical features of velocity in each component for multiple free flight
time windows.

Frames
Min

[cm/s]
Max

[cm/s]
Mean ± Std. dev.

[cm/s]
vx vy vx vy vx vy

6− 15 −20.8 73.8 −18.6 81.5 −19.7± 0.6 77.6± 2.2
26− 32 −23.7 94.0 −22.4 100.2 −23.1± 0.3 97.1± 1.7
49− 56 2.2 102.3 9.51 111.5 5.8± 2.1 106.9± 2.6
59− 67 −11.3 123.5 −5.3 128.4 −8.3± 1.7 126.0± 1.4

Table 6.8: Spray statistical features of the norm of the velocity for multiple free flight time
windows.

Frames ||~v||
Min

[cm/s]
Max

[cm/s]
Mean ± Std. dev.

[cm/s]
6− 15 76.7 83.6 80.1± 2.0
26− 32 97.0 102.6 99.8± 1.6
49− 56 102.4 111.9 107.1± 2.7
59− 67 124.1 128.5 126.3± 1.2

Table 6.9: Spray features of acceleration for multiple free flight time windows (acceleration
is constant since trajectory is assumed to be a second degree polynomial).

Frames ax ay ||~a||
6− 15 8.3 29.0 30.2
26− 32 −7.9 −36.7 37.6
49− 56 −36.4 −45.8 58.5
59− 67 −25.9 −20.8 33.2
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The trajectory, velocity and acceleration of different free flight droplet motion can be seen in
figures 6.10 and 6.11 for globular and spray respectively. Also, statistical features for velocity
and acceleration are shown in tables 6.3 through 6.9. Notice that the axes correspond to the
x and y position of the centroid in the image converted to distance and the origin is on the
top left.

Displacement in y is more or less fixed since the droplet will always land at about the
same height while x displacement ranges from 1 mm up to 4 mm in globular and less than
1 mm in spray. A smaller x displacement is also seen in the velocity having a larger y
component, hence landing faster as seen in spray trajectories (fig. 6.11). Furthermore,
velocity is around 30 cm/s in globular while spray is much more, reaching around 100 cm/s.
Also, acceleration is around 15 m/s2 for globular and 40 m/s2 in spray. As expected, spray
transfer tends to be faster than globular since cycles are much shorter. It is worth noting
that the spray acceleration does have a less intuitive pattern pointing upwards in general
which may be due to the small sample of the trajectory points because interpolating values
and then differentiating can induce more error.

In comparison, in the work of Weglowski [48], accelerations between 90 − 140 m/s2 are
obtained for varying experimental setups. Moreover, in the work ofHu [49] acceleration
ranges within 20 − 50 m/s2. Similar values are found in Ray [9]. Acceleration values found
here are within the order of magnitude of previous work, specially when compared to Hu and
Ray [49, 9]. Differences may be due to different experimental setups, but also because of the
inherent error when interpolating and differentiating twice for acceleration. In the case of
velocity, ranges of 50− 100 cm/s and 20− 50 cm/s are found [48, 49] which mostly coincide
with those calculated in this work.

Although these computations should be accurate based on the segmentation accuracy and
subsequent centroid position, it is worth noting that higher resolution in time (sampling
frequency) would get better results because centroid displacements can be too fast and rough
trajectories are seen, this phenomenon can be observed in the graphs of figures 6.10 and
specially 6.11 in which the scarcity of data points for trajectory is evident.

6.4.2 Area and detachment rate

The contours found in each image can also be used to compute the area of a droplet3. Since
the segmentation maps are binary, this can be done simply by summing all of the pixel
intensities inside a given contour. Then, using the relationship in (5.1), it is possible to
estimate the area in mm2 as shown in figures 6.12a and 6.12b4.

The globular case shows a pattern where there is a growing phase in which only one droplet
is detected (black dots), then the area drops suddenly and the number of droplets detected is
more than one (red crosses). Later, the network detects no droplets in the frame for a brief
time (blue dots) and then the cycle is repeated.

Since the value of the area is an indicator of when the droplet detaches from the wire, it
3Perimeter and volume are also computed and show similar trends.
4Not all the frames are displayed so the plot does not get cluttered. The full graph can be seen in video

format in the GitHub project.
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would be useful to detect when this is happening. This is done by smoothing the signal
using a hanning window and convolving it with the original signal which effectively works as
a weighted average. Notice that since the area can have multiple values for a given frame,
the sum of these values is used instead. In this way, the smoothed signal is easier to process
simply by finding its peaks, which is carried out using scipy’s find_peaks function which
allows to set a variety of parameters such as height, prominence and width of peaks5. As seen
in figure 6.12a, the smoothed curve’s (green curve) minimum peaks (vertical dashed lines)
coincide with the detachment of droplets accurately. In this way it is possible to count the
number of droplets over time as well as the point in time when that occurs. Specifically, the
number of globular droplet detachments observed is 25 while the detected is 24.

The droplet detachment is found accurately across almost all of the globular video, detecting
only one detachment fewer than the original if one counts by eye the number of droplets
detached from the original video. Nonetheless, due to the method used for finding peaks,
this means that the detachment was not found because the area did not diminish significantly
(hence, no peak was found). This part of the signal is shown in figure 6.13 in which it can
be seen that it breaks the pattern because there is no portion with no droplets present (blue
dots) and multiple droplets are detected instead.

This behavior occurs due to a shortcoming of the neural network. In some occasions the weld
pool is too bright, this can happen simply because of the movement of material in the weld
pool or because the droplet, when it is reaching the weld pool, is reflected by it and therefore
the image effectively shows two droplets. Examples of this are depicted in figure 6.14. These
examples are found throughout the whole video, but only in the time window shown in figure
6.13 they affect the results. Although this could be solved with a more robust deep learning
architecture, it is probably more effective to have more labeled images of those specific cases,
i.e. droplet reflection and overall brightness of the weld pool.

In the spray transfer case, the pattern of the area is different from globular, a much shorter
cycle is seen, around 10 times faster than in globular. Almost all of the time more than one
droplet is detected in the image, and the process consists in that one of the droplets grows
in size until reaching a limit where it suddenly decays while the other droplet remains with a
similar area usually oscillating around similar values. The reason for this is that the tip of the
wire is always forming droplets and therefore is detected in every frame and it corresponds
to the droplet with increasing area in figure 6.12b. Then, when the area is large enough, a
droplet is released which corresponds to the smaller area in the graph and the oscillation is
due to the droplets movement during its free flight to the weld pool.

Additionally, some occurrences of single droplet detection can be seen, notably when the area
is higher. This occurs when the forming droplet accumulates more material and therefore
takes longer to detach, which allows for the current flying droplet (smaller area) to submerge
in the weld pool before the new droplet releases from the wire.

Although the graphs are different in spray and globular, the same approach can be used to
detect spray droplet detachment6, that is finding peaks in the area. The difference in the

5Notice that scipy finds maximum peaks and in this case the opposite is needed, so in practice the
negative value of the signal is used.

6Parameters must be tweaked accordingly, e.g. a much smaller hanning window is needed.
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Figure 6.12: Area over time computed from segmentation maps. Black dots represent one
droplet, red crosses are two or more droplets in a frame and blue dots appear when no droplet
is present in the image. The smoothed signal (green curve) is used to find peaks (vertical
dashed lines) which correspond with droplet detachment.
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Figure 6.13: Globular area curve where no detachment is found.

spray case is that the indicator is always the largest droplet, so the maximum area value is
taken (as opposed to the sum in globular) and then the peaks are found in the same fashion
as in globular. The number of detachments found is of 673 while the actual detachments are
676. Furthermore, the shortcomings of the segmentation maps are still present as in globular
but to a lesser extent, specially droplet reflection is not a big problem since the droplets are
smaller.

Also, it is worth mentioning that although the method of finding peaks is similar, in the
globular case the prominence is found in the minima while in spray are the maximum values.
Therefore, the time of the detachment is delayed in globular transfer but not in spray, in
which the time of detachment obtained should match the actual detachment. Nonetheless,
this does not affect the number of detachments overall nor the time spacing between them.

Finally, a summary of the detachment data is shown in table 6.10 where it can be seen that, in
general, the detachment times can vary considerably given the maximum and minimum values
as well as the mean to deviation ratio. As expected, the detachment rate in spray transfer
is much faster than in globular. Moreover, the time at which droplets detach is somewhat
determined by area in the sense that it could happen anywhere between the ranges shown in
the table. Also, almost all of the detachments were found both in terms of number as well
as moment in time.

6.5 Surface tension

Rayleigh’s formula [50] is used to calculate the surface tension (see Appendix B.1.2, eq.
(B.1)). Approximations of density, volume and oscillation period are used. Density is ob-
tained from literature and a value of 6500 kg ·m−3 is used [51], volume is calculated by fitting
an ellipse to the segmentation using opencv and assuming the 3D droplet is an ellipsoid with
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Figure 6.14: Examples of over segmentation.

Table 6.10: Statistical features of droplet detachment.

Transfer
mode

Time between droplet detachments [ms] Detachment
area [mm2]Min Max Mean ± Std. dev.

Globular 51.3 239.6 131.7± 47.1 [10− 15]
Spray 1.0 8.6 3.3± 1.1 [2− 4]

Transfer
mode

Total
predicted

detachments

Total
detachments

Predicted
detachment

frequency [Hz]
Globular 24 25 7.2
Spray 673 676 301.9
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Table 6.11: Volume correction data. Total volume for a given time window is calculated using
wire feed speed and wire diameter data. Then, this is compared with the volume estimation
using an axisymmetrical ellipsoid. This volume is then corrected by the error factor between
the expected (wire feed speed) and estimated (ellipsoid) volume. Corrected volume is not
the same as the expected due to decimal approximation. Also, correction is not used in spray
transfer since volume estimation is already close to the expected value.

Transfer
mode

Time
window [s]

Wire feed
speed [mm/s]

Wire
diameter [mm]

Volume detachment
rate [mm3/s]

Globular 1.589 73.3 1.143 75.2
Spray 0.113 166.6 1.143 171.0

Transfer
mode

Total
volume [mm3]

Total estimated
volume [mm3]

Total corrected
volume [mm3]

Average droplet
volume [mm3]

Globular 119.6 186.25 118.46 10.43
Spray 20.8 19.0 − 0.56

axial symmetry along its minor axis, so formula (B.2) can be applied. Additionally, the vol-
ume during free flight should remain constant since it is a liquid droplet and no mass is added
or removed. However, because the volume is calculated from the area, it will have inherent
variations since the area is not constant, so the mean of the volume is taken to calculate the
surface tension. Furthermore, the oscillation period can be obtained from Fourier analysis.

In figure 6.15 the perimeter signal as well as Fourier spectrum is shown for different free
flight time windows. From the graphs, the main frequencies are between 50− 230 Hz which
indicates that those frequencies are indeed the ones associated to the main oscillation in the
perimeter plot since the scale of the grid is 0.003 s (i.e. 333 Hz) which is around the same
order of magnitude. Hence, it is unlikely that the frequency of interest is higher than the
sampling theorem would allow and aliasing is not a concern. Thus, these frequencies can be
converted to a period by taking the inverse and then used to compute the surface tension.

The estimation of volume is corrected since approximating the droplet as an axisymmetrical
ellipsoid may not always be accurate. This can be done comparing the volume deposition
rate which can be obtained knowing the wire’s diameter as well as the wire feed speed.
Then, the total volume for a given time window can be compared by summing the calculated
volume for each droplet. Since calculating volume from wire feed speed and wire diameter
should be accurate, the discrepancy in volume is corrected in the volume calculation from
the ellipsoid simply by the difference in factor (ratio) from both values. Table 6.11 shows the
expected volume over a time window,the predicted volume when approximating and the final
corrected value. Notice that spray transfer is not corrected since the approximated value
is close to the expected. It makes sense that spray has a better approximation because by
simple inspection it can be seen that spray droplets tend to be more circular-like or ellipse-
like, hence the assumption is less extreme, as opposed to globular transfer in which droplets
may differ from an ellipsoid considerably, which is reflected in the calculated volume being
notably higher than the expected.

Table 6.12 shows the calculated surface tension for different time windows, including those
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Figure 6.15: Perimeter signal and corresponding Fourier spectrum for different free flight
time windows.
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Figure 6.15 (cont.): Perimeter signal and corresponding Fourier spectrum for different free
flight time windows.
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Table 6.12: Volume and surface tension calculated values for multiple time windows.

Frames Volume
[mm3]

Surface
tension [Nm−1]

Frames Volume
[mm3]

Surface
tension [Nm−1]

34− 72 18.5± 1.5 0.88± 0.007 4761− 4853 6.9± 0.8 2.79± 0.35
289− 342 7.6± 0.7 3.02± 0.31 4983− 5031 5.6± 0.7 1.51± 0.19

1439− 1502 17.9± 2.0 1.24± 0.14 5732− 5816 15.1± 1.3 1.33± 0.11
4553− 4577 12.6± 3.7 1.51± 0.44 6111− 6146 14.8± 1.9 3.34± 0.43

in figure 6.15. If we compare to other literature results, the values are within the order of
magnitude, ranging from7 0.8 Nm−1 up to 3.3 Nm−1 while in the work of Subramanian [51]
values between 0.9 and 1.8 are found. Moreover, in Ray [9] values range between 1.25 Nm−1

and 3.2 Nm−1 which are closer to those shown here. Nonetheless, the specific values depend
on the experimental setup, that is gas composition, wire material, current, among others.
Also, values get as low as 0.88 Nm−1 which is lower than in Subramanian, so here the values
have a higher variance in general. This is because the globular process in the analyzed video
is erratic, and the droplet release and landing can occur in a variety of ways.

An important remark is that these results only apply for globular transfer. This is because
the fast pace of the droplets in spray transfer do not allow to have enough data points during
free flight motion. The number of points that can be gathered are between 5−10 consecutive
frames, so the Fourier analysis becomes unfeasible and it is not possible to reliably estimate
the oscillation period.

7Although the whole video has more instances of droplet detachment those shown here, all lie within the
same range.
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Chapter 7

Concluding remarks and future work

7.1 Conclusions

In this work the aim is to be able to implement a novel approach to GMAW video analysis
using deep learning to gain further understanding of the process.

First, a small dataset was manually labeled in order to train in a supervised fashion. Addi-
tionally, manual labels were augmented using image augmentation. Then, despite having a
large, unlabeled dataset, it is possible to generate a working dataset with relative ease and,
more importantly, results can be improved simply by generating more labels.

The proposed deep learning architectures based on Fully Convolutional Networks prove to
be good candidates to approach the segmentation problem after validating results using grid
search and comparing the DeconvNet, U-Net and MultiResUnet architectures. Specifically
the U-Net architecture is able to reach a small loss in training and generates accurate map-
pings for most of the images while not being an excessively complex model. This approach
is able to generate segmentation mappings of thousands of images in seconds/minutes as
opposed to previous work which was more centered in analyzing a handful of images.

Nevertheless, the network has some drawbacks when predicting segmentation maps, partic-
ularly over-segmentation due to the brightness and reflection of the welding pool. This can
be solved by adding more data to the model, since the labels were made with a diversity in
geometry as a priority and not the mentioned problems, which is why the shape of the actual
droplets is mostly correctly segmented.

Later, the calculation of relevant parameters that characterize the process is carried out,
namely for droplet location (centroid), velocity, acceleration, perimeter, area, detachment
frequency, volume and surface tension. The perimeter, area and volume are calculated
throughout the whole video and the rest of the parameters are obtained in specific time
windows during the free flight movement of droplets since these parameters only make sense
when analyzing a specific droplet, as opposed to the constant stream of droplets. Specific
droplets can be tracked simply by using a continuity criterion for their location.

The obtained parameters are compared with literature values and most of them lie within
expected ranges, although there is discrepancy, mainly due to different experimental setups
and focus of the analysis of different papers. Nonetheless, these parameters can help gain
a better understanding of the process by measuring droplet detachment rate which can be
further used for deposition rate using density and volume calculations. Also, kinematic
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properties are relevant since acceleration and mass (given volume and density) can be related
to the forces affecting the droplet. Furthermore, velocity can be related to kinematic energy
of the droplet. Nevertheless, the parameters calculated here are rather exploratory, and more
information could be gained depending on the context and necessity of the experiment.

In conclusion, the U-Net is able to successfully generate segmentation mappings of globu-
lar and spray GMAW metal transfer. Then, several geometric and physical parameters are
obtained, mostly in agreement with the literature. Then, these can be used to better un-
derstand the process which in turn can help to analyze and optimize the process. The main
drawbacks can be solved by gathering more data and increasing its resolution. Consequently,
this opens many possibilities to apply deep learning in the welding field for many applications
given that deep learning techniques have not been widely adopted in the field yet.

7.2 Further work
A number of possibilities arise given that the proposed model is successful. First, more
experiments can be carried out to have a better comparison ground against the available
literature. A common approach is to get results for different current intensities and mea-
suring more parameters (e.g. temperature). Moreover, a use of gear with more spatial and
time resolution would be helpful when computing some parameters that come from higher
frequencies. Also, as with all data driven models, results can improve greatly if more data
is available. Specifically, investing efforts in generating proper labels and augmenting them
can help overcome the drawbacks mentioned before.

The architectures used are mainly for image data, but in this case, since videos are used,
it could be beneficial to couple the used models with recurrent networks which make use of
the temporal dependence of the data. Also, there are segmentation models that are used in
videos (as opposed to separate images) such as Fast-RCNN and Mask-RCNN which could
also be used. Another improvement would be using transfer learning, to take advantage of
previously trained strong models. Additionally, instance segmentation would be a natural
next step to improve semantic segmentation

Finally, since this work is mainly an offline tool, that is, it is intended to analyze the process
after it has been carried out, it would be interesting to apply the same procedure in an online
fashion, retrieving data in real time which would be helpful in the welding in-situ operation.
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Appendix A

Grid search results

In this appendix the results obtained via grid search are shown. The hyperparameters
changed are batch size (8, 16, 32), number of filters (8, 16, 32) and learning rate (0.01,
0.005, 0.001). The rest of the parameters are fixed, namely, the loss function is the Jaccard
distance, the optimizer is Adam and a maximum of 200 epochs is used with early stopping
of patience 20. Furthermore, each model is validated with k-fold cross validation,therefore
each model is run over 4 different and disjoint sets of training and validation.

The results are shown in the following tables, where each is for one specific pair of dataset
(globular, spray) and architecture (U-Net, DeconvNet, MultiResUnet). A total of 134 dif-
ferent models were run. Notice that the number of models is less than all of the possible
combinations of parameters, this is due to memory constraints with larger models.
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Appendix B

Post processing

In this appendix are described the postprocessing techniques used after the segmentation of
images to compute kinematic and geometric properties. These techniques are mainly from
computer vision and signal processing.

B.1 Calculation of properties

B.1.1 Geometry

A useful concept in computer vision is the moment, which is a specific weighted average
computed based on pixel intensity values of an image. Although a moment is a purely
mathematical device, some moments have useful interpretations that can describe the image.

The nth moment of a function f around point c is defined as

µn =

∫ ∞
−∞

(x− c)nf(x)dx

which can be extended to the 2D case as follows

µmn =

∫ ∫ ∞
−∞

(x− cx)m(y − cy)nf(x, y)dydx

Then, a discrete version is defined in order to work with pixels. Also, notice that cx and cy
are arbitrary constants which can be set to 0 to simplify the expression.

µmn =
∑
x

∑
y

xmynf(x, y)

In this case, the function f(x, y) yields the pixel intensity values evaluated at coordinates
(x, y) of an image.

There are two properties that will be obtained using moment calcualtions: area and centroid.
Notice that for a binary image of size (w, h) the zeroth moment is given by

µ00 =
h∑

x=0

w∑
y=0

x0y0f(x, y) =
h∑

x=0

w∑
y=0

f(x, y)
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which is just the sum of every pixel intensity across the image, i.e., its area. In a similar
fashion, it can be proven1 that the centroid is given by

{~x, ~y} =

{
µ10

µ00

,
µ01

µ00

}

Finally, it is also possible to measure the outline of a contour by counting its bordering pixels,
that is perimeter which can be done using the opencv library.

B.1.2 Physical properties

A relevant property that can be obtained is the surface tension of the droplet using Rayleigh’s
formula [50] which is valid for sphere-like droplets

σ =
3πρV

8τ 2
(B.1)

where ρ is the droplet’s density, V is the volume and τ is the oscillation period during free
flight. Values for ρ can be found in literature [51], the volume can be approximated assuming
a free flight droplet is a prolate ellipsoid, that is the 2D droplet is an ellipse and the depth is
equal to the semi-minor axis of the ellipse in the 2D plane. Then, the volume can be obtained
by

V =
4

3
πa2b (B.2)

where a is the semi-minor axis and b is the semi-major axis. The ellipse’s parameters are
obtained with opencv which can fit an ellipse to a contour through a least squares approx-
imation returning the center coordinates, axes lengths (major and minor) and angle with
respect to the horizontal axis.

The remaining parameter needed for the surface tension is the period of oscillation and it
can be approximated with Fourier analysis. Specifically, free flight time windows are taken
from the perimeter curve, that is the time between the droplet detachment and landing on
the weld pool. Then, the signal can be processed using the Fast Fourier Transform (FFT) to
extract its principal frequencies. Furthermore, the period can be calculated simply by taking
the inverse of the frequency. In order to be able to apply this method of analysis the sampling
must satisfy the Nyquist-Shanon sampling theorem which states that the frequencies that
can be reconstructed are, at most, half the sampling frequency [53]

f ∗ <
fs
2

where fs is the sampling frequency and f ∗ are the frequencies for which perfect reconstruction
is guaranteed. In this case, the sampling frequency is known and has a value of 3 kHz, so
any frequency below 1.5 [kHz] can be accurately detected by Fourier analysis2.

1An in depth analysis of moments and their applications in images can be found in Mukundan [52].
2Higher frequencies could appear in the spectrum due to aliasing if they are multiples of the ones found

through Fourier analysis.
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Figure B.1: Examples of a hanning window of size 51 (a) and signal smoothing of a noisy sine
signal (b). The hanning window is moved across the signal and at each step one-dimensional
convolution is computed.

B.2 Signal smoothing
The properties obtained are usually noisy, so a smoother signal is useful to proceed with
some calculations. This is done by convolving the 1D signal (e.g. area of a droplet in each
frame) with a window function. Specifically, the Hanning window is used which is defined as

w(n) = 0.5− 0.5 cos

(
2πn

M − 1

)
, 0 ≤ n ≤M − 1

where M is the size of the window and n are the points along the window.

In figure B.1 the hanning window is shown as well as the result when smoothing a noisy
sine wave. It can be seen that signal smoothing is useful to highlight the major peaks in the
original signal and attenuating noise. The window is effectively computing a weighted average
at each step, a flat window would be a moving average smoothing. The implementation is
done as documented by scipy3. It is worth mentioning that the window size should be chosen
in relation to the pattern of interest. A window that is too wide might obfuscate relevant
information of short cycle variations while a short window may not reduce the noise enough.
Notice that in the context of this thesis, the variations are not noise and rather are just the
inherent variation of calculated parameters. Regardless, the smoothing of the signal is useful
for specific purposes.

3https://scipy-cookbook.readthedocs.io/items/SignalSmooth.html
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