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Resumen

Debido a la gran cantidad de videos generados en Internet, surge la necesidad de codificar
automáticamente su contenido a texto para facilitar, por ejemplo, su búsqueda en indexadores
Web como Google o Bing. Debido a esta necesidad esta investigación propone mejorar un
modelo de aprendizaje automático especializado en una tarea que relaciona el contenido de un
video a una oración textual que lo describa. En este medimos la efectividad de un descriptor
de Trayectorias Densas y el modelo de InferSent en la tarea de TRECVID de relacionar video
a texto, seleccionando un modelo del estado del arte como base y experimentando múltiples
variaciones del mismo utilizando los descriptores mencionados.

La tarea de relacionar video a texto trata en encontrar las frases pre-generadas más ade-
cuadas que describan el contenido de un vídeo y ordenarlas según relevancia utilizando una
función de distancia. Los mejores modelos que resuelven esta tarea se basan en una combi-
nación de descriptores espaciales y temporales para vídeo y texto, para luego transformarlos
a un espacio vectorial en común, donde una función de distancia ordena los vectores de las
oraciones con respecto al vector del video objetivo.

Nuestra hipótesis plantea que los descriptores de Trayectorias Densas pueden codificar
la información temporal de un vídeo, obteniendo un mejor rendimiento que un modelo que
utiliza descriptores de información estática y redes recurrentes para extraer esta informa-
ción temporal. Para el modelo de InferSent, experimentamos si el uso de un codificador
de oraciones supera una combinación de codificadores de palabras que utiliza el modelo
base. También medimos el rendimiento en esta tarea de una arquitectura ResNeXt-101 pre-
entrenada en un conjunto de datos de clasificación de objetos diferente al del modelo base,
con el objetivo de determinar la importancia de la versión entrenada en Shufflenet que el
modelo base utiliza para lograr sus resultados del estado del arte.

Al comparar los resultados del modelo base con los nuestros, se concluye que que las
Trayectorias Densas tienen el potencial de describir la información temporal del video, aunque
las manera en como este trabajo las integra al modelo base es mejorable. Además se con-
cluye que el uso de InferSent en el modelo base seleccionado es innecesario, ya que este
último obtiene los mismos resultados y se comporta de la misma manera. Los resultados
también demuestran que añadir los descriptores de estudio como codificaciones adicionales al
del modelo base obtiene mejores resultados que los escenarios donde estos reemplazan los cod-
ificadores originales. También concluimos que el uso de una ResNeXt-101 pre-entrenada en
Shufflenet es un aspecto clave para lograr resultados del estado del arte, aunque es necesaria
más investigación para entender este comportamiento.
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Abstract

Due to the large amount of videos generated on the Internet, there is a need to automatically
encode their content to text to facilitate, for example, their search in Web indexers such as
Google or Bing. Due to this need, this research proposes to improve a machine learning model
specialized in a task that relates the content of a video to a textual sentence that describes it.
In this work we test the effectiveness of Dense Trajectories and InferSent descriptors in the
Matching & Ranking task of the TRECVID challenge, by selecting a state-of-the-art model
as baseline and testing multiple variations of it where the descriptors under study encode the
video and sentence information, respectively.

The Matching & Ranking task comprises on finding the suitable pre-generated sentences
that describe the content of a video and ranking them using a score system. The best models
that solve this task rely on the combination of spatial and temporal descriptors for video and
words that then are mapped into a common vector space, where a distance function ranks the
sentence vectors to the target video vector. For video they extract spatial information with
the aid of pre-trained convolutional networks, and extract temporal information by using a
sequence encoding model over the set of visual vectors features. For the text they combine
different word embeddings like Bag of Words, word2vec or recurrent networks.

We hypothesize that Dense Trajectories descriptors can encode the temporal information
of a video, leading to better performance of a model that uses static information descriptors
and recurrent networks to extract the temporal information from them. For the InferSent
model, we test if the use of sentence embeddings with high transfer learning capabilities
outperforms a combination of word embeddings of the baseline model. We also test the use
of a ResNeXt-101 architecture pre-trained on an object classification dataset different from
the one used by the base model, to test the importance of the Shufflenet version this model
uses to achieve its state-of-the-art results in the task.

When comparing the results of the base model with our models, we conclude the Dense
Trajectory descriptors have the potential to describe the temporal information of a video
in the target task, although the approach studied in this work can be improved. Also, we
conclude the use of InferSent in the base model is unnecessary since this model behaves the
same with this sentence descriptor. The results also show that adding the descriptors of
study as an extra video or sentence encoding gets better results than using them as the only
embeddings for video and sentence descriptors. We also conclude the use of a ResNeXt-
101 pre-trained on Shufflenet is a key approach to achieve state-of-the-art results, although
further investigation must be done to find the reason of this behavior.
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Chapter 1

Introduction

1.1 Motivation

Over the last years, the need to automatically handle the immeasurable quantity of images,
videos and sounds in the age of Big Data has made novel advances in their storage, extraction
and processing, with machine learning taking a fundamental role in this last aspect [5]. In
many academic areas, like computer vision, many advances are the product of competitions
in several international challenges and tasks, where participants try to get the best solution
for important technical problems, making life easier and more comfortable for thousands or
millions of people. This work aims to give a solution for one of these important tasks: the
video-to-text processing task of finding the best suitable pre-defined sentence for a video
content, which can help to know the content of a video without watching or hearing it at all.

The Video to Text (VTT) matching & ranking task is a digital video retrieval challenge of
the TRECVID (TREC Video Retrieval Evaluation) conference, an international yearly event
sponsored by the National Institute of Standards and Technology (NIST). This task aims to
find the best pre-defined sentences that describe the content of a single video. The solution
chooses sentences from a pre-defined set, concentrating the work only on the matching task
and not on generating the sentences. A well-performed solution for this task can help the
Information Retrieval field, e.g. giving to web search engines a way to represent videos with
text, making easier to index their content; or giving blind users access to videos in social
media, using a pre-defined set of generic sentences that could describe its content.

To solve the VTT matching & ranking task, recent work as Li et al. [1] or Marsden et
al. [6] transform video and sentence into a common vector space to do the matching task
by similarity or document ranking, respectively. Their solutions extract static information
of objects, places or actions from each video using convolutional neural networks [7, 8, 9, 10]
over its frames. However, these techniques try to extract the temporal information using
sequence encodings over the set of spatial information vectors, losing part of the rich temporal
information the raw video frames have.

In this work we focus on testing the effectiveness of Dense Trajectories [4] and InferSent [3]
as feature extractors for the Video-to-Text matching & ranking task, where we hypothesize
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that "the use of Dense Trajectories or InferSent embeddings can improve the performance
of the model of Li et al. [1] for the Video-to-Text Matching & Ranking task in TRECVID
2018". Our approach is to apply different variations to a state-of-the-art architecture and
compare their performance in TRECVID 2018 with the base model results. The base model
we select is the triple level encoder by Dong et al. [11], where we replace existing encodings
or add the feature descriptors of study as additional ones.

1.2 Objectives

1.2.1 Main objective

Compare against the Dual Encoding for Zero-Example Video Retrieval model by Dong et
al. [11] the performance of an architecture based on it that uses Dense Trajectories as
temporal descriptors of a video and InferSent for sentence vectorization, on the Video-To-
Text Matching & Ranking task of TRECVID 2018.

1.2.2 Specific objectives

In this work, the main objective requires the following:

1. Own implementation of the base model Dual Encoding for Zero-Example Video Re-
trieval and our proposed variations.

2. Replication of the reported performance of the base model on the matching & ranking
task of TRECVID 2018 [1] by selecting the exact hyper-parameters used by its authors.

3. Implementations of the base model and its variations trained on the same dataset
selected by Dong et al. , defined as a combination of the video captioning datasets
TGIF [12], MSR-VTT [13] and MSVD [14].

4. Test results using the Mean Inverted Rank metric of the models under study on the
VTT matching & ranking official evaluation dataset of TRECVID 2018, and their
comparison.

5. Participation on the Video-To-Text Matching & Ranking task of TRECVID 2019 using
a model based on the work of Dong et al. for TRECVID 2017 [2].

6. Public source code and instructions of our models to solve Video to Text task.

1.3 Methodology
For the creation and evaluation of our model we perform the following steps:

1. Download and pre-process the MSR-VTT, TGIF and MSVD datasets using the same
methodology of the baseline model. This discards a possible difference in the input
data of our implementation of the baseline model, concentrating the replication efforts
in finding the hyper parameters that give the same reported results of Li et al. in
TRECVID 2018 [1].

2. Implement the video vectorization branch of the base model and its ResNeXt-101 and
Dense Trajectories variations.

2



3. Implement the sentence vectorization branch of the base model and its InferSent vari-
ations.

4. Implement the common vector space mapping to join both sides of the network.
5. Validate our base model implementation by finding the correct hyper parameters con-

figuration that replicates the reported results of the base model in the VTT Matching
& Ranking challenge of TRECVID 2018.

6. Train our model variations using the MSR-VTT, TGIF and MSVD datasets.
7. Test the models by using the TRECVID 2018 Matching and Ranking dataset and

compare their results with the baseline.

1.4 Structure of this Research
This document is organized as follows:

1. Chapter 2 describes the theoretical framework of this work, including different models
for object detection and action recognition; we describe Dense Trajectories descriptors
and the InferSent model.

2. Chapter 3 describes our baseline model and why we choose it.
3. Chapter 4 introduces our proposed model variations with our Dense Trajectories and

InferSent descriptors to test if it can improve the baseline performance.
4. Chapter 5 presents the training, validation and testing dataset, along with the pre-

processing methodologies.
5. Chapter 6 shows the validation of our base model implementation, along with the

training, validation and testing methodology and results for the models under study.
6. Chapter 7 presents our participation in the TRECVID 2019 Matching & Rankign chal-

lenge.
7. Chapter 8 concludes our work and elaborates on future plans.
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Chapter 2

Theoretical background

The Matching and Ranking task our model sets out to solve is a multimodal task that relates
video with sentences, two types of data from different sources and embeddings. In this chapter
we present different representations for these types of data, along with some notorious tasks
in the fields of text, image and video processing. We do not use all these embeddings in our
research, it is important to show the advantages and disadvantages of each one. To introduce
the Matching & Ranking task, we present different approaches for this challenge over the last
years.

2.1 Sentence Vectorization

2.1.1 Bag of Words

A classical sentence vectorization method aim to create a fixed sized representation, no
matter the quantity of words in the phrase. This technique is called Bag of Words (BoW),
which corresponds to a word frequency vector of the sentence with respect to a pre-selected
vocabulary. Formally, for a sentence s and a vocabulary V , the definition of the value of each
position i in the vector BoW (s) is:

BoW (s)i =

{
1 if word Vi in s
0 otherwise

(2.1)

The advantage of this method it is easy to define and debug, but this representation
depends on a correct selection of the vocabulary, because a too large vocabulary can lead to
a sparse representation (too many zero values), possibly loosing fine semantic correlations
between words and hindering the pattern learning of a model.

Huang et al. [15] cope with the sparse problem by applying a hash algorithm that decom-
poses each word into tri-words (words of three letters). For example the word ‘home‘ turns
into the three-words [‘$ho‘, ‘ hom‘, ‘ome‘, ‘me$‘]; therefore, the fixed words used in the BoW
method are tri-words and not complete ones. This reduces the size of the frequency vector in
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BoW because common tri-words shared between different words reduces the number of zeros
in the vector.

2.1.2 Word2Vec

Mikolov et al. [16] published the Word2Vec technique to create a vector embedding for a
word. It considers the context of the target word, i.e. words that commonly appear around
the target one. The objective of this technique is to generate similar vectors for words with
similar contexts. They achieve this by training a recurrent neural network over a big corpus,
feeding it with skip-grams or pairs (w, c) of target words w and context word c. The network
encodes each word into a vector space, and learns to bring closer words w with the same
context word c.

This word embedding can be extended to represent sentences by obtaining the average
Word2Vec vector:

sword2vec(s) =
1

|s|
∑
w∈s

word2vec(w) (2.2)

2.1.3 Recurrent Neural Networks

A valid interpretation of a sentence is seeing it as a sequence of words and, as a sequence,
recurrent neural networks (RNN) can encode its semantic meaning. These architectures are
of a special neural network that connects several nodes with a temporal sequence. There are
two types of recurrent neural networks: finite pulse or infinite pulse. A finite pulse RNN can
be unrolled and replaced with a feed-forward neural network, while an infinite pulse RNN
cannot be unrolled. A RNN has additional internal states that serve as storage or memory
of what the network sees, and the RNN can or cannot have direct control on it to update its
information. Among different RNN, we review the Long-Short Term Memory (LSTM) and
Gated Recurrent Units(GRU), two popular architectures that have shown excellent results in
natural language processing (NLP) tasks like statistical machine translation (SMT) [17, 18],
speech recognition [19, 20] and handwriting recognition [21].

Hochreiter and Schmidhuber [22] created Long-Short Term Memory recurrent networks
along with a back-propagation algorithm with constant gradient, a mechanism that solved the
vanishing or exploding gradient problem these neural networks had when dealing with long-
term sequences. [23, 24]. This new recurrent network uses gates to learn which information to
keep from the input (input gate), which information to forget from the previous state (forget
gate), and which information to pass to the next step (output gate). This sets of gates gives
the LSTM more control on the information flow and allows it to learn long-term dependencies
more easily than simple recurrent networks. The author’s strategy was to combine it with
a constant gradient, using the parametric gates to control what data to keep and what to
forget, but the approach of making the gradient between the previous state to the current
state conditioned on the context proved to be a much better approach [25].
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Cho et al. [17] creates an encode-decoder for statistical machine translation from English
sentences to French. The encoder comprises a RNN that learns to transform an English sen-
tence into an intermediate vector representation. The decoder uses another RNN that reads
the intermediate vector and generates the most likely French translation into the probability
distribution of the training dataset. With this architecture, the encoder and decoder train-
ing aims to maximize the conditional log-likelihood [26] between the related English-French
sentence of the training dataset. Along with this approach, the authors create a new recur-
rent neural unit which they call Gated Recurrent Unit or GRU (see Figure 2.1). This new
unit differs from a LSTM unit in that only a single gate controls the forgetting factor of the
LSTM forget gate and the update factor of the LSTM input gate. This results in a model
with fewer parameters that is easier to understand, simpler to implement and faster to train.
With this design, a GRU only depends on 2 parametric gates: update and reset; instead of
3 gates like a LSTM: input, output and forget. In theory, using GRU instead of LSTM has
the disadvantage of losing accuracy in datasets with long sequences because a GRU has less
internal memory states than a LSTM, however in practice this is not the case [27].

The two gates that define a Gated Recurrent Unit are the reset gate rt and update gate
ut, where t is a specific step in the sequence. The internal state ht corresponds to the output
of the unit and the input of the next unit in the sequence. The reset gate rt learns what to
forget from the previous state h and creates a new internal state h̃t in combination with the
input data xt. The update gate ut decides if the previous state ht−1 needs to be updated
with the new internal state h̃t.

rt = σ(br +Wrxt + Urht1)

ut = σ(bu +Wuxt + Uuht−1)

h̃t = tanh(bh +Whxt + Uh(rt � ht−1))

ht = (1− ut)� ht−1 + ut � h̃t

Figure 2.1: Fully Gated Recurrent Unit design. The sigmoid squares represent the 2 gates of
the unit. The shortcut from the update gate to the internal state h̃t shows how a GRU uses
a single gate to control the update and forget behavior of a LSTM.
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2.1.4 InferSent

Conneauu et al. [3] propose InferSent, an architecture that aims to create sentence embed-
dings that can be highly transferable to other NLP tasks. The study of InferSent showed
that using this embedding for transfer learning, i.e., use the pre-trained InferSent sentence
embeddings as input to train other models, in 12 different NLP tasks, getting better results
than most of the state-of-the-art approaches. Among these tasks are supervised ones like sen-
timent analysis and caption-image retrieval, as well as others, like semantic entailment and
relatedness using the SICK dataset [28]. The research of InferSent focuses on the architecture
to encode a sentence and the task to train it.

The Standford Natural Language Inference (SNLI) dataset [29] provides 570k human-
generated English sentence pairs, labeled with one of three categories: entailment, contradic-
tion, and neutral. Conneau et al. hypothesize the semantic nature of the Natural Language
Inference (NLI) task is a good supervised option for learning universal sentence embeddings.
They use a training scheme that encodes each sentence of the labeled pair with a shared
sentence encoder, generating the vector u for the first sentence and the vector v for the
second sentence of the pair (see Figure 2.2a). They create joint representation by using
three matching methods: concatenation (u, v), elements-wise product u ∗ v and absolute
element-wise difference |u− v|. The joint representation is the concatenation of these meth-
ods [(u, v), u ∗ v, |u − v|]. They then feed this vector into a neural network classifier with
fully-connected layers, assigning one of the three labels (entailment, contradiction, or neutral)
to the sentence pairs. To choose the sentence encoder, Conneau et al. test the transfer learn-
ing performance of 7 different architectures on the 12 mentioned evaluation tasks, selecting a
BiLSTM [30] with max pooling as the best performed architecture among the 7 in study (see
Figure 2.2b). For a sentence of T words wtt = 1...T , the BiLSTM calculates a forward hidden
vector

−→
ht =

−−−−−→
LSTMt(w1, ..., wT ) and a backward hidden vector

←−
ht =

←−−−−−
LSTMt(w1, ..., wT ) with

t = 1...T . Then, they concatenate each hidden state into ht = [
−→
ht ,
←−
ht ].Finally, the model

applies a max pooling [31] over the set of ht to get a single encoding of the sentence.

(a) (b)

Figure 2.2: (a) Training scheme used in Conneau et al. [3]. (b) InferSent encoding model
of Conneau et al. [3]. The training of this architecture uses the Standford Natural Lan-
guage Inference dataset, where it has to detect if two sentence topics are related, neutral, or
contradictory.
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2.2 Video vectorization

A video, because it is a sequence of images and sound across time, is a complex multime-
dia data to process. The temporal variable creates relations between continuous frames and
sounds, making it computationally expensive to process. Besides this problematic, many
approaches to solve specific tasks have appeared over recent years, inheriting methods from
image processing and combining them with aggregated techniques to cope with the informa-
tion complexity of the time dimension. With a vast range of related research, we highlight a
few instances that have a connection with this work.

2.2.1 Optical embeddings

To understand the definition of Dense Trajectories, we first present 3 common optical embed-
dings: Histogram of oriented gradients (HOG), Histogram of Optical Flow Orientation (HOF)
and Motion Boundary Histogram (MBH). HOG [32] is a feature descriptor used mainly for
object detection in images. It uses the difference of color or brightness of the image using a
rectangular or circular mask that weighs the pixel values around a center point, estimating
the border or movement direction of the pixel zone. This value is added to its corresponding
histogram channel, repeating the same process to all pixel zones of the image to complete
the histogram. HOF and MBH are feature descriptors for a sequence of images instead of a
single image. HOF [33] follows the flow of pixels across a fixed number of images, using a
technique similar to HOG to obtain the orientation of the flow: First it adds the weighted
orientation to its corresponding histogram bin, to then calculate the weighted orientation by
getting a histogram over each grid cell that splits the image area. MHB [34] is a family of
motion boundary descriptors, i.e., techniques that describe the perimeter of moving objects
between two frames, that are defined as the derivative of HOF across the x axis and y axis,
separately. The primary advantage of these descriptors is the suppression of the noise the
camera movements add as a shared constant to all pixel flows of a sequence.

Laptev et al. [33] use HOG and HOF to classify human actions from movies. They create
spatio-temporal descriptors of the video, pooling them into a fixed size mid-level representa-
tion using a standard Bag of Words technique. A non-linear Support Vector Machine makes
the classification. This solution was a step forward in human action classification and shows
the general pipeline for video processing of this research.

2.2.2 Dense Trajectory

Dense Trajectories by Wang et al. [4], correspond to the path a group of pixels take across
a set of frames. Figure 2.3 schematize how a Dense trayectory according to Wang et al. is
obtained: it results from tracking a group of W ×W pixels (dense pixel) across a maximum
of L = 15 frames. This method uses the Färneback optical flow algorithm [35] ω = (ut, vt)
with a Gaussian Pyramid of eight levels with a scaling factor of 1/

√
2. In combination with

a median filtering kernel M , the expression of the calculation of consecutive positions of the
dense pixel Pt and Pt+1 is:

Pt+1 = (xt+1, yt+1) = (xt, yt) + (M ∗ w)|x̄t,ȳt (2.3)
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Figure 2.3: Dense trajectories extraction from a video by Wang et al. [4]. The process
involves tracking multiple group of pixels across a fixed number of frames.

with (x̄t, ȳt) the rounded position of (xt, yt) and ∗ the element-wise multiplication of matrices.
Then a displacement vector S = (∆Pt....∆Pt+L−1) encodes these positions, where ∆Pt =
Pt+1−Pt, and normalizing by the sum of lengths of the displacements we get the normalized
displacement vector:

S ′ =
(∆Pt....∆Pt+L−1)∑t+L−1

i=t ||∆Pi||
(2.4)

The authors set the maximum number of frames L = 15 to prevent trajectory drifting,
where the path of the dense pixel could warp to another location when, for example, there
is a scene transition in the video.

2.2.3 Convolutional networks

In the last decade Convolutional Neural Networks have had a substantial contribution in
computer vision, obtaining state of the art results in tasks like Object Recognition [36] and
Segmentation [37], Action Recognition [38], among others. These achievements show the
capabilities of this kind of neural network of learning complex spatial patterns; being the one
presented by Krizhevsky et al. [7], commonly known as AlexNet, who popularized the use of
convolutional networks by obtaining a Top-1 error of 15.3% in the Imagenet Challenge of 2012.
This score was a huge achievement in comparison with the second place of the challenge, who
got a Top-5 error of 26.2% [39], which showed the potential of this architectures for computer
vision in the year 2012 until the present days. Also, pre-trained architectures can be used
to get image embeddings for transfer learning [40, 41, 42], extending its use to video frames
encoding.

Because there is a large number of different novel convolutional networks for a handful of
tasks, we present two important ones that have a direct relation with the current research:
Resnet [10] and ResNeXt [43].

He et al. [10] presented the use of residual connections that skip layers of convolution, ar-
chitecture commonly known as Resnet, solving the gradient vanishing problem many networks
with a high number of layers (deep networks) suffered from [44, 45, 46]. This improvement
leads to deeper networks with better performance in visual pattern recognition tasks like Ob-
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ject Recognition. This architecture, which they called Resnet, outperformed state-of-the-art
convolutional networks.

Xie et al. [43] present a highly modular architecture called ResNeXt, that adapts the
Resnet architecture with the strategy of split, transform and aggregate similar to the In-
ception module [47]. ResNeXt splits the residual block of Resnet into a fixed number of
thinner and identical blocks, quantity represented by the hyper parameter C called Cardi-
nality. They show that the top-1 accuracy on the Imagenet-1k dataset [36] improves by
increasing the Cardinality of the network than using wider blocks like Resnet.

Mettes et al. [48] experiment with two approaches to solve the TRECVID Multimedia
Event Detection task, each one using a pre-trained convolutional network to extract visual
feature vectors from a video. A key aspect of their research is the design of a reorganized and
balanced dataset based on ImageNet called ImagenetShuffle. They propose this re-balance
because several state-of-the-art convolutional networks in computer vision are trained in
the Imagenet-1k dataset [49, 50], a subset of Imagenet with the top 1,000 classes more
important, which represent most of the dataset, but because of the uneven distribution of
images per class, this state-of-the-art network never sees most of the 90% of classes of the
entire Imagenet dataset. They propose to re-balance the Imagenet dataset class hierarchy
tree by merging child nodes to its parent with bottom-to-top operations, using as criteria
the redundancy of the class, or the class not having enough images samples. When the
merge stage finishes, they apply a sub-sample over the classes with too many images. They
prove that using a state-of-the-art convolutional network pre-trained on ImagenetShuffle with
a bottom-to-top re-balance of 4,437 classes showed a better precision on the TRECVID
Multimedia Event Detection task than using the same convolutional network pre-trained of
the standard Imagenet-1k dataset.

Although these architectures had shown excellent results in computer vision, recent re-
searches [51, 52, 53] had shown they are easy to confuse by adding specific noise, unnoticed
by to the human eye, that completely changes the output of a well performed convolutional
network.

2.3 Video-to-Text Matching & Ranking

Since 2016, the National Institute of Standards and Technology (NIST) has hosted the video-
to-text (VTT) challenge in its yearly video processing conference TRECVID. VTT matching
subtask aims to match over 50 thousand video-sentence pairs from the social network Vine
Twitter with predefined sentences. The difficulty remains in the small dataset available for
training, with only two-thousand video-sentence registries.

Marsden et al. [6] extract video features related to objects, behaviors and places. They
use a pre-trained VGG-16 network [54] for objects features. They train an AlexNet network
[7] over the Who What Where dataset [54] to extract behavior features, and train a VGG-16
network over the Places2 dataset [55] to obtain visual features for the place of the video.
They process these features using Okapi BM25 and Word2Vec [16] variants to get the best
sentence that represents the content of the video.
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Dong et al. [2] created a deep learning model for the VTT Matching & Ranking task at
TRECVID 2017 [56], winning this challenge using an assembled of six models that follow
the same architecture with some embedding and pooling variations, getting mean inverted
rank scores (see Section 6.1) of 0.37 for test set 2, 0.5 for set 3, 0.6 for set 4 and 0.75 for set
5. The general architecture of their model generates mid-level representations of videos and
sentences projecting them into a common space called Visual Feature Space. They encode a
video with a pre-trained Resnet-152 network [57] over the ImageNet dataset [58]. They apply
this transformation over a set of frames from the video, getting low-level representation for
the whole video. After this, it passes them into a GRU network to retrieve spatio-temporal
relations between the different object representations of the video [17]. A sentence mid-level
representation results from concatenating 3 sentence vectorization methods: BoW, Word2Vec
and GRU. Finally, a fully connected neuronal network transforms a corresponding video-
sentence pair into a visual feature space, minimizing a rank error between the pair using a
distance function.
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Chapter 3

Baseline system overview

The baseline selected to compare against our proposal in the VTT matching & ranking task
is the model of Li et al. [1], the winner of the VTT Matching & Ranking task of TRECVID
2018 competition. This submission uses the Dual Encoding for Zero-Example Video Retrieval
model introduced by Dong et al. [11]. As schematized in Figure 3.1, this model encodes
video v and sentence s in two multi-level sides. The first level consists of video and sentence
embeddings extracted with pre-trained machine learning models, the second level treats the
input as a sequence of items by using a Recurrent Neural Network, and the third level uses a
Convolutional Neural Network that learns to extract a single vector representation from the
second level. The output of each side corresponds to the video and sentence encoding φ(v)
and φ(s), respectively.

Figure 3.1: Multi-modal video sentence encoding model of Li et al. [1]
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3.1 Video multi-level side
Given a video v, a set of frames n is collected by sampling every 0.5 seconds. Then they
encode each frame using a ResNeXt-101 [43] network, pre-trained on the Shufflenet dataset
[48] 4k, a class balanced variance of the Imagenet dataset [36] (see Section 2.2.3). With this
pre-trained network they get a sequence of deep visual vectors {v1, v2...vn} that will serve as
input of the first two encoding levels of the model. The output of each encoding level i is a
single-dimensional vector f vi , and the last video encoding is the concatenation of the three
encoding levels:

φ(v) = [f v1 , f
v
2 , f

v
3 ] (3.1)

3.1.1 Level 1. Global encoding by Mean Pooling

Dong et al. choose mean pooling, that is the average vector of the set of visual vectors
{v1, v2...vn}, as the first level encoding for a video because its simple and gives better results
than the max pooling method, this is because, by definition, mean pooling considers every
extracted visual feature vector, allowing the information of the complete video to flow in
the forward and back-propagation stages; also, mean pooling is less affected by stochastic
perturbations of the model initialization [59]. Therefore, the definition of the first level
encoding is:

f v1 =
1

n

n∑
i=1

vi (3.2)

3.1.2 Level 2. Temporal-Aware Encoding by biGRU

The effectiveness of a bi-directional recurrent neural network [60] on using past and future
context of a sequence makes it a robust candidate architecture to encode the temporal in-
formation of the video frames. Because of this, the authors had to choose between using
a Bi-directional Gated Recurrent Unit (Bi-GRU) [17] or a Bi-directional Long-Short Term
Memory (Bi-LSTM) [22], choosing the former because it has less parameter, needing less
training data.

A Bi-GRU is composed of two layers of GRUs, a forward
−−−→
GRU and a backward

←−−−
GRU .

Let
−→
h t and

←−
h T be their hidden state in an specific step t = 1...n. The definition of them is:

−→
h t =

−−−→
GRU(vt,

−→
h t−1)

←−
h t =

←−−−
GRU(vt,

←−
h t−1)

(3.3)

where vt is the deep visual vector of frame t, and
−→
h t−1 and

←−
h t−1 are the previous hidden

state of step t. Concatenating the hidden states
−→
h t and

←−
h t we get the bi-GRU hidden state

for the step t = 1...n ht = [
−→
h t,
←−
h t]. The authors use a hidden state size of 512 for

−→
h t and
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←−
h t; therefore, the hidden state size of the bi-GRU is 1024. Finally, the output of the second
level video encoding is the mean pooling over the set of hidden states [h1...ht]:

f v2 =
1

n

n∑
t=1

ht (3.4)

3.1.3 Level 3. Local-Enhanced Encoding by biGRU-CNN

The mean pooling of the second level video encoding treats every ht equally, potentially
combining noise from unimportant video frames with relevant ones for the video encoding.
To enhance local patterns between the set of H = [h1...hn], Dong et al. adapts the 1d-
convolutional network from Yoo Kim [61] and use it on top of the bi-GRU output. Let
Conv1dk,r be a 1-d convolutional block that contains r = 512 filters of size k ≥ 2. Feeding
the set H of n hidden sizes from the bi-GRU, after zero padding, into Conv1dk,r produces a
n × r feature map. Then they apply a ReLU as the non-linearity function of the mapping.
Since n is different for every video, the authors use a max-pooling (a vector with the max
values of each dimension over a set of vectors of equal size) after every convolutional block
Conv1dk,r to generate a vector ck of fixed length r. To ease understanding, a filter of size
k = 2 allows the interactions of two rows of H, with higher k more adjacent rows interact to
get local information between them. Having this, the definition of ck is:

ck = max-pooling(ReLU(Conv1dk,r(H))) (3.5)

For a multi-scale representation, Dong et al. apply multiple convolutional blocks with
k = 2, 3, 4, 5,. The concatenation of their outputs ck produces the third and final level of
video encoding:

f v3 = [c2, c3, c4, c5] (3.6)

As a final step, by using skip-connections, the final video encoding is the concatenation
of the three encoding levels:

φ(v) = [f v1 , f
v
2 , f

v
3 ] (3.7)

3.2 Text multi-level side
This side of the model has a similar architecture to the video encoding, but, in contrast,
it relies on the use of standard word embeddings as input: a Bag of Words vector of the
sentence and pre-trained Word2Vec [62] word embeddings.
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Given a sentence s of length m and words wi ∈ s with i = 1...m, the model generates a
one-hot vector

−−−→
BoW (wi) per word following the standard Bag of Words approach described

in Subsection 2.1.1. Then the first encoding level is equal to the average vector:

f s1 =
1

m

∑
w∈s

−−−→
BoW (w) (3.8)

For the second encoding level using bi-GRU, the architecture uses the one-hot vectors
BoW (wi) from the previous level to get from a fixed dictionary the Word2Vec of each word,
w2v(wi). The origin of this word embedding dictionary is a Word2Vec model made for a
previous multi-modal architecture of Dong et al. [63], pre-trained over a dataset of over 30
million Flickr picture tags. The authors use these vectors on a bi-GRU the same way they
use the deep visual vectors vt in the second video encoding level of Section 3.1.2. The rest
of this encoding level is the same as its video counterpart, so if we define hi = [

−→
h i,
←−
h i] as

the concatenation of the hidden states of each step of the bi-GRU, the second level encoding
definition is:

f s2 =
1

m

m∑
i=1

hi (3.9)

Finally, the third encoding level for a sentence follows the same biGRU-CNN approach
as the video encoding, with the difference that they use only three convolutional blocks
k = 2, 3, 4. With this, the third sentence encoding level is:

f s3 = [c2, c3, c4] (3.10)

and the final sentence encoding is the concatenation of the three levels:

φ(s) = [f s1 , f
s
2 , f

s
3 ] (3.11)

3.3 Common vector space

The video and sentence encoding vectors φ(v) and φ(s) are not directly comparable mainly
because of size miss-match. For this reason, a fully connected architecture is used to map φ(v)
and φ(s) into a common vector space where a distance function compares them. The authors
choose VSE++ [64], a multi-modal architecture that brings image and text to a common
vector space using an affine transformation, i.e., a function with the form f(x) = ax+ b with
x a vector, a a matrix of trainable weights and b a bias vector with trainable values. Let f(v)
and f(s) be the affine transformation of a video and sentence, their definition, shown next,
in the work of Dong et al. adds a batch normalization layer (BN) on top of the definition of
VSE++:
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f(v) = BN(Wvφ(v) + bv)

f(s) = BN(Wsφ(s) + bs)
(3.12)

where Wv and Ws are trainable matrices for the video and sentence mapping, and bv and bs
their corresponding bias vectors. The vector size in the common space chosen by Dong et al.
is 2048. Therefore, the sizes of the matrices and bias must satisfy:

‖Wv‖ = 2, 048× (‖f v1 ‖+ ‖f v2 ‖+ ‖f v3 ‖) = 2, 048× (2, 048 + 1, 024 + 4× 512)

‖Ws‖ = 2, 048× (‖f s1‖+ ‖f s2‖+ ‖f s3‖) = 2, 048× (‖V ocabulary‖+ 1, 024 + 3× 512)

‖bv‖ = ‖bs‖ = 2, 048
(3.13)

For the training process, this work uses an improved Margin Ranking Loss [64], which
penalizes according to the hardest negative examples for video and sentence in a mini-batch.
Let Sθ(v, s) = Sθ(f(v), f(s)) a similarity function between the a video v and sentence s,
according to the parameters θ of the model. The loss function L(v, s; θ) between a corre-
sponding video-sentence pair is:

L(v, s; θ) = max(0, α + Sθ(v, s
−)− Sθ(v, s))

+max(0, α + Sθ(v
−, s)− Sθ(v, s))

(3.14)

where s− and v− are the hardest negative examples in the mini-batch for v and s respectively,
and α is a constant that defines a margin condition for negative and positive examples. For
ease of understanding, the hardest negative example s− of a video vector v is the sentence
vector different from the corresponding s that maximizes the Sθ(v, s−). They train the entire
network to minimize this loss function, except for the pre-trained Resnet-152 used to extract
the deep visual feature from the video frames.
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Chapter 4

Enhanced Video-To-Text model

The Video-to-Text Matching & Ranking task requires a multi-modal architecture that en-
codes video and sentence. For video encoding, many models extract static information using
convolutional models, like Resnet [10] or optical flow histograms [65] pe-trained for object
recognition; but to extract temporal information a common technique relies on the use of
recurrent networks [17, 22] to encode the sequence of extracted visual vectors into a single
vector representation [11]. What if we directly extract the temporal information of the video,
complementing the static information retrieval already done by the state-of-the-art models
in the VTT matching& ranking task? What if we rely on the movement of pixels in the video
across multiple frames to encode the actions portrayed in it? To answer these questions, we
propose the use of Dense Trajectories [4] with a Bag of Words approach used in the same
paper to encode the temporal information of the video into a single vector representation. We
hypothesize that this technique can generate better temporal representation of the video to
improve the performance of the baseline on the VTT matching & ranking task of TRECVID
2018..

For sentence encoding, multi-modal VTT models [6, 2] rely on word embeddings, like
Word2Vec [62], in combination with a recurrent network to learn long-term sequence patterns
[22, 17]. But as Word2Vec is an embedding for words, InferSent [3] is an embedding for
a complete sentence, with high transfer learning capabilities; because of this, besides our
Dense Trajectory research on Video-to-Text, in this work we also study the effectiveness of
the InferSent model in the Video-to-Text Matching & Ranking task.

To prove our hypothesis: “the use of Dense Trajectories or InferSent embeddings improves
the performance of the model of Li et al. [1] for the Video-to-Text Matching & Ranking
task in TRECVID 2018”, we focus on modifying a state-of-the-art model in the video-to-
text matching task, empirically proving if the use of Dense Trajectories and/or InferSent
embeddings increases the performance of the current best-performed model.

The baseline for the models of this research is the approach created by Dong et al. [11]
for the Video Matching & Ranking task of TRECVID 2018 competition (see Chapter 3). We
choose this model for several reasons: the concatenation of different levels of encoding gives
us the modularity needed to test new video and sentence embeddings; the authors are the
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winners of the Video to TextMatching & Ranking task of the TRECVID competition the last
3 years [56, 66, 67] where they won with this model the 2018 competition with state-of-the-art
results; the fact the model has a public source code in Python 2.7 using the machine learning
framework Pytorch1; and its paper [11] has a clear and consistent description.

For the video side we test if the use of Dense Trajectories embeddings increases the perfor-
mance of the model in two different configurations: the first replaces the existing ResNeXt-101
embedding along with the three original levels of encoding with our Dense Trajectories de-
scriptors, while in the second we add the new Dense Trajectory embedding as an additional
encoding to concatenate with the original three levels. Additionally to these proposed con-
figurations, we also test the importance of the specific ResNeXt-101 Dong et al. use in their
work, an architecture pre-trained on the Shufflenet [48] dataset. To do this, we test every
model variation under study that uses a ResNeXt-101 encoding, with the network pre-trained
in Shufflenet and the same architecture pre-trained in the standard Imagenet-1k dataset [36]
and compare their final results.

For the sentence side we want to test if the use of InferSent [3] embeddings outperforms the
baseline model in two different configurations: by replacing with it the complete sentence side
of the base model, or adding it as a fourth sentence encoding by concatenating it to the three
existing ones. We theorize one of these configurations using the InferSent embedding, whose
design generates representations of a complete sentence rather than each word separately,
can outperform the three independent words embeddings of the baseline model in the VTT
task of TRECVID 2018.

In this chapter, we present the model of study, with its proposed changes to video and
sentence encodings, along with the different variations we use in combination with the original
ones.

4.1 Video representation

The three video encoding levels of Dong et al. [11] rely only on the deep visual vectors
extracted using a pre-trained ResNeXt-101 [43, 48] on an object classification task. We hy-
pothesize that this visual task trains the CNN to recognize spatial or static patterns, resulting
in a loss of valuable temporal information when extending it to video frames extraction, an
issue that the second encoding level may not recover by using a recurrent network. To ad-
dress this problem, we propose to encode the temporal information of a video using Dense
Trajectories [4] in combination with a Bag of Words approach.

As another research axis for video representation, we study the effect of using a ResNeXt-
101 architecture pre-trained in a standard object classification dataset like an Imagetnet-1k
[36] instead of Shufflenet [48]. With this, we determine the importance of such specific
architecture on the baseline model performance.

1https://github.com/danieljf24/dual_encoding
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4.1.1 Dense Trajectories embedding

We propose to use the normalized displacement vector S ′ of Eq. 2.4 to encode the temporal
information of the video, combining it with a Bag of Words (BoW) approach to create a sum-
mary vector of the thousand of dense trajectories extracted from a video. The BoW technique
uses a clustering method for axis x and y of a dense trajectory, independently. Finding a set
of codewords or center vectors that can represent the dense trajectories extracted from the
target videos, in this case the videos and GIFs of the training dataset described in Section
5.1.

For the clustering algorithm, we choose an extension of K-means [68] for high volumes
called MinibatchKmeans [69]. This algorithm solves the classical K-means objective using
mini-batch SGD, allowing us to cluster a large number of trajectory descriptors S ′ that would
otherwise not fit in primary memory.

The process of generating the codewords for the dataset comprises four stages:

1. Extraction of the descriptors S ′ from the training dataset videos of MSR-VTT, getting
S′i the normalized displacement vector of video vi ∈ D and i ∈ {1...|D|}.

2. For the x-axis and y-axis coordinates of a dense trajectory: selection of the number of
codewords using the elbow method by looking into the loss of mean quadratic error of
the clustering for each one of the number of codewords of study (see Figure 5.9). For
this step we only use the vector S ′ of the 10% of the training dataset videos of the
complete training dataset (MSVD + MSR-VTT + TGIF).

3. Once we select the number of codewords for each axis, we cluster all the trajectory
descriptors S ′ of the training dataset, separating the x-axis and y-axis coordinates,
creating a final cluster model to assign each displacement vector.

4. Finally, after finishing the complete clustering, we use the cluster model to assign a
codeword or cluster to each S ′ of a video, creating two Bag of Words vectors that
represent the thousands of S ′ with a single vector representation, one vector for the
x-axis coordinates of S ′ and one for the y-axis..

With the Dense Trajectory-Bag of Words (DT-BoW) embeddings created, we propose to
use them in the model of Dong et al. [11], to test if the model with these new embeddings
outperforms the base model using the same training and testing datasets. For this purpose,
we present two variations using DT-BoW embeddings to encode the temporal information of
the video. All these variations keep the sentence side of the base model with no changes.

• DT-ONLY uses the DT-BoW descriptor as the only one to encode a video (see Figure
4.2).

• DT-ALL uses the DT-BoW vector as an additional encoding level for the video, con-
catenating it to the final video representation φ(v) (see Figure 4.1).
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Figure 4.1: DT-ALL variation where the DT-BoW descriptor adds to the video represen-
tation. Figure shows only the video side of the model. We emphasize the ResNeXt-101 is
already pre-trained, thus it has fixed parameter values.

Figure 4.2: DT-ONLY variation where the DT-BoW descriptor replaces the ResNeXt-101
embedding of the base model. Figure shows only the video side of the model.
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Dense Trajectory implementation

The official C++ implementation of Dense Trajectories2 calculates the trajectory descriptors
S ′ using the OpenCV library for the Färneback optical flow algorithm [35], with additional
optical flow descriptors (HOG, HOF and MBH) the authors use in their research. For ease of
use we implement a Python 3 library3 that calls the C++ implementation with the Python
API of C/C++.

The official implementation uses the CPU version of Färneback optical flow algorithm
[35], while the same OpenCV library has a CUDA implementation that can speed up the
process. That is why we also modify the C++ implementation to use this CUDA version,
showing its speed-up in Section 5.5.

4.1.2 ResNeXt-101 embedding

To encode a video or GIF, the authors of the base model [11] extract visual feature vectors
from the video frames using a state-of-the-art convolutional neural network, specifically a
ResNeXt-101 pre-trained on a specific object classification dataset called Shufflenet [48].
Section 2.2 of related literature explain the idea behind the ResNeXt architecture and why
they are important in vision processing tasks.

We test our models of study with two pre-trained ResNeXt-101 architecture variations:
the one pre-trained in Shufflenet [48], and an architecture pre-trained on Imagenet-1k dataset
[36]. With these variations of the model we want to prove the importance of the specific archi-
tecture that the baseline uses to achieve state-of-the-art performance in the VTT matching
& ranking task.

We get the Pytorch implementation of the ResNeXt-101 pre-trained in Shufflenet from the
official repository4, while for the Imagenet-1k variation we get a pre-trained ResNeXt-101-
64x4d using the MXNet5 deep learning framework. We convert this model to Pytorch deep
learning framework by using the MMdnn6 Python library, transforming the MXNet model
into a data structure called Intermediate Representation (IR), and then translating it into
Pytorch source code with the same structure of the original MXNet implementation and the
capacity to load the same parameters. We tag the Shufflenet version with SHU, while the
imagenet-1k with MXN. We emphasize that both models have their parameters trained in
their corresponding dataset and this study does not fine tune them on the VTT Matching &
Ranking task; we use them to extract visual feature vectors from the frames of a video.

2https://lear.inrialpes.fr/people/wang/dense_trajectories
3https://gitlab.com/nbravo/pydensetrajectories-gpu
4https://github.com/danieljf24/dual_encoding/issues/4#issuecomment-497904531
5https://mxnet.apache.org/
6https://github.com/microsoft/MMdnn
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4.2 Sentence representation
The triple sentence encoding in the model of Dong et al. 2018 uses two standard word
embeddings: Bag of Words and Word2Vec [62]. Although these approaches had shown an
excellent performance in many NLP tasks [70, 71] independently, their development focus
on quantifying words instead of sentences. The authors of our base model cope with this
problem by averaging across all one-hot vectors of a sentence or by using a recurrent neural
network to capture the temporal relationship across the entire sentence. However, there are
sentence encoders like InferSent [3] that had shown an excellent transfer-learning performance
in multiple NLP tasks [3].

We propose the use of InferSent as a sentence embedding for the Matching and Ranking
model of Dong et al. [11]. We hypothesize that encoding a text using this sentence-specialized
embedding could improve the training of the base model because of a better context quantifi-
cation and, therefore, an easier mapping to the common vector space. We test two different
variations of it to compare which one performs better: by replacing the complete multi-level
encoding of a sentence, or as an extra encoding level f s4 we concatenate to the original ones.

Figures 4.3 and 4.4 show the sentence side of Dong et al. 2018 model with the different
proposals using InferSent.

• INFERSENT-ONLY corresponds to use the InferSent embedding of a sentence as
its only encoding vector of the model, mapping it into the common vector space using
a fully connected layer. This configuration aims to test if the pre-trained InferSent
embeddings creates a better complete encode that the concatenation of the three lev-
els of Dong et al. 2018, with the hypothesis InferSent encodes static and temporal
information of the sentence at the same time. The advantage of this approach is the
lack of parameters to adjust because of the removed GRU and convolutional network,
speeding up the training process by converging the optimization process quicker. (see
Figure 4.3).

• INFERSENT-ALL uses the three sentence encodings of the original model with the
InferSent vector as an additional encoding level, concatenating it to the final encoding
vector φ(s). The advantage of this approach is that it allows one to avoid the loss
of valuable information when deleting an encoding level, but with the disadvantage of
adding more trainable parameters to the fully connected layer that maps to the common
vector space. (see Figure 4.4).

The InferSent model used in this work is a public version7 trained in the Stanford Natural
Language Inference [29]. The vocabulary size selected for this model is 1,000,000 since it is the
recommended size by the authors. Previous to the training and testing process, we generate
the embeddings for each sentence in the training datasets since the InferSent model is a
pre-trained model whose parameters will not be fine-tunning for the Matching and Ranking
task.

7https://github.com/facebookresearch/InferSent

22

https://github.com/facebookresearch/InferSent


Figure 4.3: INFERSENT-ONLY model where the InferSent descriptor is the only sentence
representation in the base model. This figure only shows the sentence side of the model. The
video side has no changes.

Figure 4.4: INFERSENT-ALL model where the InferSent descriptor adds to the existing
descriptors of the sentence representation in the base model.
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4.3 Distance functions for the common vector space
In all the different models we test, videos and sentences converge in a common vector space
that relates them using a distance function. The selection of this function is a key factor
both in the training process, by the Triplet Ranking Loss we define in section 4.3.1, and the
testing process.

The distance functions we test with are the Euclidean Norm L2 and the Cosine sim-
ilarity between vectors. To define them, let f(v) be the vector representation of a video in
the common vector space, and f(s) the vector of a sentence, both of size N . The definition
of the distance functions in study is:

L2(f(v), f(s)) =

√√√√ N∑
i=1

(f(v)i − f(s)i)2 ∈ [0,∞)

Similarity(f(v), f(s)) =
f(v) · f(s)

||f(v)|| ||f(s)||
=

∑N
i=i f(v)if(s)i√∑N

i=1 f(v)2
i

√∑N
i=1 f(v)2

i

∈ [−1, 1]

(4.1)

The Cosine Similarity represents the cosine of the lowest angle between vectors f(v) and
f(s), therefore this distance function does not consider the length of the vectors, only the
direction of them.

4.3.1 Optimization

The objective of the model in the common vector space is to bring the vectors of related
video-sentence pairs closer while separating the unrelated ones. To achieve goal the model
uses a Margin Ranking Loss or Triplet Ranking Loss function [64] of Eq. 3.14, this function
uses a video vector as a relative position (anchor) and the nearest non-related sentence (hard
negative) to calculate the path its related sentence must do to get closer.

Giving the model parameters θ, and a training dataset of related video-sentence pairs
Dtrain = {(vi, si)} i ∈ [0...|Dtrain|], the optimization process aims to minimize the sum of the
Margin Ranking Loss L of every related pair (vi, si):

min
θ

|Dtrain|∑
i=0

L(vi, si; θ) (4.2)

To achieve this, we use Stochastic Gradient Descent [72] with the Adam optimization
algorithm [73]. For the step size α we use the same approach of Dong et al. : an initial value
of 0.0001, decreasing by 0.99 every epoch; we halve the step size if there is no validation
loss improvement by 3 consecutive epochs. The objective of this practical approach is to
force a finer gradient optimization when no validation score gain is obtained with the current
step size of Adam. To prevent an exploding gradient during each back propagation [74], a
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gradient clipping of 2 is set to the norm of the complete gradient vector. There is no weight
decay regularization.

4.4 Parametric complexity
We select the values of hyper-parameters of the base model when validating our implemen-
tation in Section 6.2. The hyper-parameters for our proposed models are to replicate the
performance results of the baseline, and to do a correct comparison against the models with
the proposed video and sentence embeddings of this study.

The complexity of each model is a factor to consider when dealing with multiple ones that
try to solve the same task. For this reason we present in Table 4.1 the number of parameters
of proposed model, comparing them with the original base model of Dong et al. [11]. Section
6.2 list the hyper parameters of the base model and their selected values.

Model Text side parameters Video side parameters Total Parameters
Dong et al. 2018 52,131,856 46,157,824 98,289,680

DT-ONLY 52,131,856 10,264,144 62,378,000
DT-ALL 52,131,856 56,397,824 108,529,680

INFERSENT-ONLY 8,394,752 46,157,824 54,552,276
INFERSENT-ALL 60,520,464 46,157,824 106,678,288

Table 4.1: Number of trainable parameters of each model of study.
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Chapter 5

Data and pre-processing

The datasets for the Matching & Ranking task comprises multimedia data like videos or
GIF, and sentence annotations that describe the content of these multimedia. To get a
diverse and large amount of data, we combine 3 complete datasets for the training process
(MSVD[14], MSR-VTT [13], TGIF [12]), and for the validation and testing of the models
we use the official VTT matching & ranking evaluation datasets published by TRECVID.
We selected these datasets because they are the data used by the authors of the base model
[11], and therefore we focus on using the same data to make a valid performance comparison
between the models. In these sections, we present each dataset, explaining in detail their
characteristics. We also present the multiple data processes we apply in advance to the
training stage to save computation time among multiple models and runs.

5.1 Training dataset
We train every model under study using the joint of the MSVD, MSR-VTT and TGIF
datasets. This creates a large amount of videos and sentence patterns the models will try to
learn, a necessary aspect considering the unrestricted and unpredictable classes of videos the
models will process during their expected use.

5.1.1 MSVD

This dataset [14], part of the Microsoft Research Video Description Corpus, comprises of
1,970 Youtube videos of 10 to 25 seconds of duration. The complete dataset has about
500K multilingual human annotated sentences describing the content of the videos. For our
experiments we use only the annotations in English with a clean source (parameter set by
the authors of the dataset), filtering a great volume of the dataset, and leaving 97,824 video-
sentence pairs to use for training as shown in Table 5.1. Figure 5.1 shows an example of
a video with its corresponding sentences, where we can see MSVD descriptors have a high
diversity of length, vocabulary and grammatical structure for a single video.
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Figure 5.1: MSVD video example where a its corresponding sentences shows a high diversity
of length, vocabulary and grammatical structure.

Nº of videos 1,912
Nº of frames 541,866

Max sentences by clip 462
Video-Sentence pairs 97,824

Table 5.1: MSVD dataset main features.

5.1.2 MSR-VTT

The Microsoft Research Video-To-Text dataset [13] is a large-scale video and sentence dataset
for video understanding tasks. This dataset has 7,128 videos from YoutubeTM with sound,
distributed in 10,000 clips of short duration. The authors use 257 popular queries from a
commercial engine for the selection of the videos, using the Amazon Mechanical TurkTM

service to annotate 20 sentences for each video. The authors supervised the annotation
process with a quality control protocol, leading to a video dataset of high volume and quality.
Figure 5.2 shows a video example with its corresponding sentences, where this descriptors
also have a high diversity of length, vocabulary and structure, but, unlike the other training
datasets and because this dataset preserves sound of its videos, some descriptions refereed to
the audio of the clip instead of its visual content.

Nº of videos 7,010
Nº of frames 2,846,498

Max sentences by clip 20
Video-Sentence pairs 140,200

Table 5.2: MSR-VTT-train dataset main features.
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Figure 5.2: MSR-VTT video example where a some of its sentences describe the audio of the
clip instead of its visual content, e.g., “A man talking about a baseball player”.

5.1.3 TGIF

The Tumblr GIF Description Dataset [12] comprises human annotated descriptions for a set
of GIFs from the Tumbrl social media. In contrast with other video description datasets,
TGIF has 125,781 GIF-sentence pairs with only a few repeated GIFs, leading to have on
average one sentence per GIF. Also, using GIF media instead of videos does not allow using
audio as a feature, therefore its descriptors only focus on the visual content of a GIF, unlike
MSR-VTT. Figure 5.3 shows 3 different examples of this datasets with their unique sentence,
where we can see these descriptions have a more concise and simple form than some of
the other datasets. Because this dataset has only one sentence per GIF, it has much more
scenes and visual variaty than the other dataset with more than 125 thousand different GIFs;
although, the decision of using GIFs could generate problems because their lack of smoothness
of framerate, aspect we review in next Section 5.1.4 and discuss it in Section 6.6.3.

Nº of GIFs 125,782
Nº of frames 3e19

Max sentences by clip 1
GIF-Sentence pairs 125,782

Table 5.3: TGIF dataset main features. The number of frames of this dataset is massive,
however, since we extract one frame every 0.5 seconds, we use only a fraction for training.
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Figure 5.3: TGIF GIF examples with their corresponding unique sentence.

5.1.4 Framerate analysis

As shown in Table 5.4, the joint of the 3 described datasets generates a large amount of
examples to train the model. On the other hand, this decision of combining videos and
GIFs in the same collection can be worrying if we consider these types of multimedia do not
share the same features, being the lack of audio its main difference between them; however,
no model of this research uses audio as a multimedia descriptor. The feature that must be
analyzed is the difference on framerate, also known as frames per second, between the 3
datasets because, by definition, the extraction of Dense Trajectories is highly affected by the
smoothness of the video. Figure 5.4 shows the different distribution of framerates between
each dataset, where we can see TGIF GIFs tend to have a framerate lower than 20 frames
per second; unlike MSR-VTT and MSVD datasets, where the majority of their videos have
30 or more frames per second. This is a factor to consider in the training of DT-ONLY and
DT-ALL model variants. To verify if TGIF improves or hinders the performance of a model
variant that uses a Dense Trajectory descriptor, in Section 6.4.3 we train and analyze the
DT-ALL variant using only the join of MSR-VTT and MSVD as training dataset, repeating
the same experiment with the DT-ONLY model in Section 6.4.4. Their testing results are
shown in Table 6.3, while Section 6.6.3 discuss these results and concludes if the use of TGIF
has a negative effect the two models under study that rely on Dense Trajectory descriptors.

Nº of Videos and GIFs 134,880
Nº of frames from Videos 3,388,364
Nº of frames from GIFs 3e19

Video/GIF-Sentence pairs 363,806

Table 5.4: Training dataset main video and sentence features.
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Figure 5.4: Framerate range distribution of the training dataset. Each video is counted 1 for
each corresponding sentence. Framerates of 30 or more are combined in the same category
because most video/GIFs in this range only have 30 or 60 frames per second.

5.2 Validation and testing datasets

To validate each iteration of a model during training and test the final model to compare its
performance, we use official datasets for the VTT matching & ranking task of TRECVID,
because they all share the same source for their videos, the Vine social media.

5.2.1 TRECVID 2016 and 2018 VTT official evaluation dataset

The TRECVID competition publishes a testing dataset for every one of their tasks, including
Matching & Ranking. For this task, the staff of TRECVID created a dataset of videos
from Twitter VineTM social media. This dataset comprises about 2,000 videos annotated by
members of the staff, creating different subsets of videos with their respective annotation.
Each year the staff publish the video URLs and sentences in different subsets with no relation
to the videos, and after the competition is over, they publish the ground truth of the subsets,
showing the relation between each video and sentence.

Each year between 2016 and 2018, the videos and sentences used in the evaluation is
different, but because the competitors of 2017 and 2018 know these datasets share the same
source, they use the ones from previous years to test their models and fit them. This same
technique use Li et al. in their submission of 2018 [1], and the same strategy we use in this
research. During the base model tunning, where we train and test the parameters of our
implementation of Dong et al. 2019 [11], we use the set A of the 2016 version to validate
each training iteration and the TRECVID 2018 VTT dataset to test its performance and
validate if our implementation performs similar to the reported by the baseline authors. We
explain this process in Section 6.2. For our model variations, we use the same approach:
VTT 2016 set A for training validation and VTT 2018 for testing.

Table 5.5 compares the video and sentence features between the three different dataset.
2016 and 2018 versions have equal-sized subsets of sentences. Unfortunately Twitter VineTM

removed the access to some videos of the VTT 2016 (151 videos) and 2018 (7 videos) datasets,
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and due to the lack of backup copies in the Web we validate and test the models under study
without these videos. This issue is a factor to consider for the VTT 2016 because its high
number of missing videos (151 of 1,915), but for the testing dataset VTT 2018, this issue
may not have a great impact. However, the correct result reproduction of our baseline
implementation (Section 6.2) validate the use of both datasets with missing videos.

Feature 2016 2018
Nº of videos 1,764 1,897
Nº of frames 308,879 337,181
Nº of subsets 2 5

Nº of sentences by subset 1,915 1,915

Table 5.5: VTT Matching & Ranking validation dataset main video and sentence features.
2017 version has multiple subsets with a different number of sentences.

Although the official 2018 dataset has improved its quantity of videos and sentences over
the years, the quality of it as a benchmark metric is arguable because it has some sentences
that poorly describe their video or do not describe it at all. Figure 5.5 shows some video
examples of this problem in the official evaluation dataset for VTT Matching & Ranking of
TRECVID 2018.

For the validation during the training of a model, we test each iteration over the subset A
of the official VTT matching & ranking evaluation dataset from TRECVID 2016. We decided
to not use the subset B for two reasons: it contains the same videos with different sentences
and this repetition would complicate the interpretation and correctness of the validation
metric described in Section 6.3.1. However, the lack of the subset B did not prevent the
correct reproduction of the reported performance of the baseline, as showed in Table 6.2.

To test a model and calculate its performance metric, we use every subset of the official
evaluation dataset from VTT matching & ranking of TRECVID 2018. The performance
comparison of different models is independently across the five subsets, this is to make a
correct comparison against the reported Mean Inverted Rank (see Section 6.1) of our baseline
in the same challenge [1].
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Figure 5.5: Video examples with poor quality descriptors from the TRECVID 2018 Matching
& Ranking official evaluation dataset. Sentences that do not correctly describe the content
of the video are highlighted in red.

5.3 Testing dataset representation

An important aspect when choosing datasets to train a model is the analysis of their level
of representation of the target dataset where the model performance will be tested, in our
case the VTT official evaluation dataset of TRECVID 2018. Therefore, we must explore
the potential similarities the training dataset (MSVD + MSR-VTT + TGIF) and validation
dataset (TRECVID 2016 official VTT evaluation dataset) could share with the testing dataset
selection. Since VTT matching & ranking task is a multimodal problem, the video-textual
datasets that take place have a high number of characteristics to study, e.g. video and
sentence topic distribution, topic unbalance, vocabulary distribution, and sentence grammar
complexity. Because of this, we focus the study of representation levels based on the similarity
in vocabulary between datasets, where we compare two aspects of a training collection against
the testing dataset: its vocabulary distribution and the its most frequent words.

To compare the vocabulary distributions of the training and validation datasets against
the testing dataset, the histograms of Figures 5.6 and 5.7 are used, respectively. Theses
histograms show the word frequencies of each dataset, using the words of TRECVID 2018
sorted by frequency as a fixed index vocabulary for every histogram. No stop-words where
counted because we consider their high frequency as an outlier. We also normalize the
distributions by the total number of counted words of their corresponding collection, because
the difference in quantity of sentences between different collections. In Figure 5.6 we can see
vocabulary distribution of the training dataset (MSVD + MSR-VTT + TGIF) is slightly
similar to the vocabulary of VTT TRECVID 2018, where they tend to share some of their
most frequent words but not completely. This shows the most significant words of the testing
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dataset have a representative frequency in the distribution of the training dataset. On the
other side, Figure 5.7 shows a similar behavior with the validation dataset VTT TRECVID
2016 set A, where it is also shown that the most important words of the testing dataset have
a high representation in the validation dataset, which supports the selection of the VTT
TRECVID 2016 set A as the data collection to validate each iteration of a model during its
training stage.

Figure 5.6: Word frequency distribution and top 10 words for the training dataset (MSVD
+ MSR-VTT + TGIF) and 2018 evaluation datasets. Only non-stop words with more than
50 repetitions are counted. X axis represents the vocabulary index of the VTT 2018 words
sorted by frequency, the same index is used for the training dataset distribution for an easy
comparison.

The most frequent words of each dataset are listed alongside their vocabulary distribution.
This lists show the top 10 non-stop words of each dataset to give an idea of the most repeated
objects, action or topics present in each collection. Figure 5.6 shows the training dataset
shares some of its top words with the testing dataset, e.g. teeshirt and shirt, caucasian and
white; but its top words focus less in objects and more in actions, e.g causing, bounces and
approaches. In contrast, Figure 5.7 shows many top words of the validation dataset VTT
TRECVID 2016 set A share similar topics with the top words of the testing dataset, e.g.,
asian and oriental, woman and female, or shirt and tshirt, characteristic that suggest a level
of representation of VTT TRECVID 2016.

33



Figure 5.7: Word frequency distribution and top 10 words for the VTT 2016 set A and 2018
evaluation datasets. Only non-stop words with more than 50 repetitions are counted. X axis
represents the vocabulary index of the VTT 2018 words sorted by frequency, the same index
is used for the VTT 2016 set A distribution for an easy comparison.

The characteristics of interest of the training dataset suggest it has a level of representation
of the testing data, especially its vocabulary distribution. The large volume of this dataset
suggests its top 10 words being different to the top words of VTT TRECVID 2018 will not
generate a major negative effect in the training process of the models under study, because
the high quantity of topics, visual patterns, actions and objects it offers is a valuable feature
for the VTT matching & ranking tasks, where no categories or topics are defined.

The characteristics of the validation dataset shows a level of representation of the testing
dataset, where its reason could be its common social media source and the fact the 2018
version is an iteration of the VTT TRECVID 2016. Furthermore, the decision to use the
official evaluation datasets from previous VTT challenges to validate the training of the
models under study is a practice the authors of our baseline had done to win the challenge
of TRECVID 2017 [2] and 2018 [1], therefore this is the validation dataset chosen to do a
correct baseline comparison of the models.

5.4 Data pre-processing

Because of the complexity of the models under study and the high volume of data to train
them, we speed up the training, validation and testing stages by pre-proccesing the video
and sentence data. The importance of this preparation is to save time by generating the em-
beddings only once and reducing the secondary memory access during the mentioned stages.
The first implementation decision takes importance if we consider the different embeddings
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the models use for video and text: visual feature vectors and Dense Trajectories for the for-
mer; and Bag of Words, Word2Vec [62] and sequence vector (GRU input) [17] the later. We
pre-compuute and store every embedding in a solid state drive for fast reading during the
training process.

5.4.1 Video and GIF feature extraction

For a GIF or video v we extract a frame every 0.5 seconds, creating a set of n frames {vi} i ∈
{1...n}. Each frame is a three-dimensional matrix of size Width × Height × Channel where
Channel is the RGB channel of each pixel; this matrix is the input of the pre-trained ResNeXt-
101. Using this model, for each frame we extract the visual feature vectors Mresnext101(vi)
from the last Mean Pooling layer, getting a set of visual feature vectors of size 2,048, which
is the embedding for the video side of our models.

When training each model, every list of visual feature vectors in a batch must have the
same length, we can’t feed the model with variable-sized lists. Because of this problem, we
set a fixed list length as the longest visual feature vector list in the batch, filling with zero
vectors of size 2,048 for shorter video visual vectors lists. It is important to choose this list
length threshold carefully to prevent GPU memory capacity errors. We choose a limit of 64
visual feature vectors because, as we see in Figure 5.8, there is a negligible number of videos,
mainly from MSVD dataset, with more extracted vectors than this limit.

Dense trajectories extraction from a video or GIF use our Python 3 implementation de-
scribed in Section 4.1.1. For a video v, the library’s function generate creates a list dt(v) of
trajectory vectors S ′ from Eq. 2.4. We save dt(v) into secondary memory for the cluster-
ing process. For the clustering we choose MiniBatchKMeans from the scikit-learn Python
library1 because it updates the clusters position by batches of data, while still having a con-
vergence similar to the classical K-means algorithm [69]. We use the elbow method [75] to
decide an optimum number of clusters for the millions of trajectory vectors of the training
dataset. This technique is a heuristic that consists of visually or statistically find a cluster
size from where the clustering evaluation function, e.g. its Davies-Bouldin index [76], does
not have a significant improvement. For this method we randomly select 10% of the training
videos (36,380) and test clusterings with 200 clusters to 8,000 clusters, with a difference of
100 between each cluster. It is important to remember the clustering is done independently
for each axis of a dense trajectory, obtaining two histogram vectors that are concatenated in
the DT-ALL and DT-ONLY models. We measure the mean squared error of each clustering
and plot it against the number of clusters in Figure 5.9. The elbow method visually suggests
2,500 as an optimal number of cluster to work with, therefore we use this number of cluster
for a complete clustering of the training dataset. When the complete clustering finish, we
get the Bag of Words descriptor BoWdt(v) of a video v by assigning each of its trajectory
vector S ′ ∈ dt(v) to the nearest cluster. Formally:

BoWdt(v)i = number of S ′ ∈ dt(v) nearest to cluster i (5.1)

1https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html
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Figure 5.8: Percentage of training videos with less or equal extracted frames. If we consider
a limit of 64 frames, only ∼ 1% or 23 videos from MSVD dataset will have its visual features
list cropped.
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Figure 5.9: Mean square error of K-means clustering of Dense Trajectories over video from
MSR-VTT. Cluster size between 200 and 8,000 clusters. we visually select 2,500 using the
elbow method. 10% of training videos were used to do these multiple clusterings, processing
a total of 110,754,058 dense trajectories.

5.4.2 Sentence vectorization

The first step to generate the input embeddings of a sentence is to create a fixed vocabulary
V . We create it by counting every word in the training dataset Dtrain (MSVD + MSR-VTT
+ TGIF) and keeping only the ones with 5 repetitions or more; we adapt these criteria from
the work of Dual Encoding by Dong et al. [11]. With this process over, the complete training
dataset Dtrain we get a vocabulary of size |V | = 10, 192 words.
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• For the Bag of Words embedding we count each word occurrence in a sentence s,
considering only words from the vocabulary V . This creates a vector BoW (s).

• The embedding input necessary for the RNN of the model, in this case a single layer
GRU [17] and schematized in Figure 5.10, is sequence of vocabulary indices of each
word in the sentence; the network uses these indices to get the Word2Vec vector of
each word from a lookup table loaded into memory, creating a sequence of Word2Vec
vectors that is the input of the GRU. This lookup table has 4 special vectors with their
values uniformly generated between -1 and 1: INIT, END, UNK and PAD. INIT and
END mark the beginning and end of a sentence respectively, UNK is a placeholder for
words not present in the vocabulary V, and PAD fills the sequence after END to create
batches during training and validation, since all sequences must be of the same length
equal to the larger sequence of the batch.

These two embeddings correspond to the original input selection for the model of Li et
al. 2018 [1]. We pre-compute every embedding of every sentence of the training datasets
MSR-VTT [13], MSVD [14] and TGIF [12] to speed up the training process.

Figure 5.10: Example of the process to generate the 3 sentence embeddings the base model
and our models use as input.
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5.5 Dense Trajectories with CUDA
As mentioned in Section 4.1.1, we wrapped the official Dense Trajectories implementation2

into a Python 3 library for easier usability3. During this process we noticed the original
implementation does the Farneback optical flow [35] calculation in CPU with the OpenCV
image processing library4, but this library has a GPU version for such heavy algorithm5

which we use to speed up the Dense Trajectory extraction of our Python 3 library.

To test the gain in time complexity of this implementation decision, we select two differ-
ent sets of 100 random videos from the MSR-VTT dataset, and measure the total time of
extracting Dense Trajectories from these videos using our Python library with and without
CUDA implementation of the Färneback algorithm. Table 5.6 shows how this implementa-
tion decision speeds up in an average factor of 5.18 for the set 1, and a factor of 5.31 for set
2. When we are talking about more than 200 thousand videos and GIFs, this speed up saves
a considerable amount of time.

Set 1 Set 2
DT with CPU DT with CUDA DT with CPU DT with CUDA

Mean (s) 1,211.5 233.7 1,174.0 221.2
Std (s) 15.9 6.1 0.7 1.0
Speedup 5.18 5.31

Table 5.6: Comparison of Dense Trajectory generation with CPU and CUDA. Measure of
mean and standard deviation in seconds.

5.6 Hardware
Because of the large number of data to process and parameters to train, we use a high-end
custom personal computer to train, validate and test the models in study. Its specifications
are:

• CPU: AMD Ryzen 7 2700 3200 MHz
• GPU: Asus Dual RTX 2070 8GB
• RAM: 32 GB 3200 MHz DDR4
• SSD: Kingston A2000 500GB M.2 NVMe
• MB: Asus TUF x470 Plus Gaming
• PSU: Seasonic FOCUS Plus 750W 80+ Gold Certification

we also use an external hard drive of 2 TB to store raw data of each dataset, along with the
pre-computed vectors that we add to a database corpus in the main solid state drive.

2https://lear.inrialpes.fr/people/wang/dense_trajectories
3https://gitlab.com/nbravo/pydensetrajectories-gpu
4https://opencv.org/
5https://docs.opencv.org/3.4/d9/d30/classcv_1_1cuda_1_1FarnebackOpticalFlow.html
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Chapter 6

Experimental evaluation

The different models we present in this research focus on a specific task called Video-To-Text
Matching & Ranking created by NIST for their TRECVID competition since 2016. The
experiments are focused on validating and comparing the modifications proposed to the base
models in terms of their results.

In what follows the experimental setup to train and evaluate the models is outlined. The
sections of this chapter are: mean inverted rank description, base model implementation
and validation; research model implementation, training and testing; and results comparison
against the base model performance.

6.1 Evaluation metric: Mean Inverted Rank
Because its the official score metric of the TRECVID VTT Matching & Ranking challenge
[56, 66, 67], we use the Mean Inverted Rank score to compare the performance between the
multiple model variations of this research.

For a finite number of queries, this metric summarizes how well the model matches correct
pairs, in our case video-sentence pairs, by averaging the inverse of the rank (position of each
query). This score is the official evaluation metric in TRECVID for the Video-To-Text
Matching & Ranking task, therefore the one we use to compare the performance of the
reported base model with our implementation. Formally, for a set of queries qi = (vi, Si)
where the model matches a video vi with a set of sentences Si with a match order criteria,
the Mean Inverted Rank definition is:

MIR =
1

|q|

|q|∑
i=i

1

rank(qi)
(6.1)

where rank(qi) is the position ∈ [1, |Si|] the corresponding sentence si ∈ Si of vi is in the
matching query qi. Giving this definition, the extent of this metric is the domain (0, 1], where,
for example, a value of 0.5 means that the average query ranks the corresponding sentence
in the second position.
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6.2 Base model validation
Because the focus of this research is to prove the effectiveness of Dense Trajectories [4]
and InferSent [3] descriptors in a state-of-the-art model for the Video-To-Text Matching &
Ranking description task, the first and crucial step is to validate if our own implementation
of the base model reproduces the reported results of the model; a task we successfully achieve
as Table 6.2 shows.

The difficulty of this model is to find the correct combination of hyper-parameters that
reproduces the reported results of Dong et al. [66], mainly because the lack of information the
authors published of a fine tuning process they did with the TRECVID 2016 Video-to-Text
dataset [77]. This model has a large number of hyper-parameters whose range and selected
value we show in Table 6.1.

Our implementation in Python 3 of the base model successfully reproduces the reported
results of Li et al. in their participation of TRECVID 2018 Matching and Ranking task
[1], as presented in Table 6.2 where we compare the baseline report with several runs of our
baseline implementation. We validate with multiple runs to discard the effects of randomness
the training parameters initialization could generate. We define each hyper-parameters as
follow:

• Initial Learning Rate: Initial value of the rate the learnable parameters update
according to their gradient in the Stochastic Gradient Descent method.

• Optimizer: algorithm to update the learnable parameters of the model with each
training batch.

• Gradient clipping: Maximum norm value of the learnable parameters vectors. It
prevents the gradient to explode by limiting the value of them.

• No improvement epochs to halve LR: Number of consecutive iterations with no
validation error improvement to decide halve the learning rate value.

• No improvement epochs for early stop: Number of consecutive iterations with no
validation error improvement to decide stop the training process.

• Video RNN hidden state dimension: Dimension size of the hidden state vector of
the bi-GRU in the second video encoding level.

• Sentence RNN hidden state dimension: Sentence side counterpart of "Video RNN
hidden state dimension".

• Video convolution channels: Number of channels of each convolution in the third
video encoding level.

• Sentence convolution channels: Sentence side counterpart of "Video convolution
channels".

• Common vector space dimension: Dimension size of the common vector space
between videos and sentence where a distance function is used to match and rank
them.

• Triplet Ranking Loss margin: Minimum distance the loss function (Eq. 3.14) set
between hard negative and hard positive vectors. (see Section 4.3.1)
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Parameter Range Selection
Initial Learning Rate 0.0001 - 0.005 0.0001
Optimizer Adam or MSRProp Adam no weight decay
Gradient clipping 0.0 - 5.0 0.2
No improvement epochs to halve LR 3 - 5 3
No improvement epochs for early stop 10 10
Video RNN hidden state dimension 256 - 2,048 1024
Sentence RNN hidden state dimension 256 - 2,048 1024
Video convolution channels 256 - 2,048 512
Sentence convolution channels 256 - 2,048 512
Common vector space dimension 256 - 4,096 2048
Triplet Ranking Loss margin 0.2 - 0.3 0.2

Table 6.1: Hyper-parameter selection for Li et al. 2018 [1] model validation.

Set A B C D E

Li et al. 2018 0.450 0.448 0.430 0.436 0.448
run 1 0.433 0.432 0.429 0.428 0.449
run 2 0.451 0.439 0.433 0.432 0.448
run 3 0.439 0.433 0.423 0.417 0.429

Table 6.2: Mean Inverted Rank comparison between the reported by Li et al. 2018 [1] in
TRECVID 2018, and 3 runs of our implementation. Table 6.1 shows the hyper parameters
selection to achieve this model validation. Each column corresponds to an official subset of
data from the evaluation dataset of VTT matching & ranking TRECVID 2018. The best
result by subset is highlighted in bold.

6.3 Training methodology

For the sake of a correct performance comparison, we use the same training process for every
model under study. The method follows the training of the Dual Encoding for Zero-example
Video Retrieval model of Dong et al. [11] on the TRECVID 2018 matching & Ranking task
[1]; with a hyper-parameter tuning using the validation dataset TRECVID 2016 Matching &
Ranking set A. The authors used this tuning process, as they described to TRECVID 2018
in [1]. However, they did not publish nor share by email their hyper-parameters selection,
leading to repetition of this process for the baseline validation.

6.3.1 Training validation metrics

We use the precision for RANK@1, RANK@5 and RANK@10 to compare between the
different model variations we propose. For a set of video-sentences matching queries Q and a
given number N , the definition of RANK@N is the number of queries in Q where the correct
match is ranked in the first N positions of the query. With this, RANK@1 represents how
many queries have a perfect match, RANK@5 represents the number of queries that rank the
correct sentence of the video in the first 5 positions, and RANK@10 the first 10 positions.
This metric gives an understanding on how well the model performs in a real use case.
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6.4 Training results

To show a correct training process for each model of study, we present charts for the opti-
mization of the Margin Ranking Loss (see Section 3.14) over the training dataset (MSR-VTT
+ MSVD + TGIF), and the RANK@1, RANK@5, RANK@10 and sum of ranks over the
validation dataset (TRECVID 2016 subset A). We show results for the base model of Dong et
al. 2019 [11], its variations INFERSENT-ONLY, INFERSENT-ALL, DT-ONLY, DT-ALL.
For the models that depend on ResNeXt-101 embedding we show results of runs using the
Shufflenet model of the baseline, and runs for the ResNeXt-101 pre-trained on Imagenet-1k
from the MXNet framework.

6.4.1 Baseline Li et al. 2018 ResNeXt-101 comparison

For the training of our baseline, we compare in Figure 6.1 the 3 runs of our Dong et al. 2018
implementations with the Shufflenet ResNeXt-101, against the original Imagenet-1k model
from MXNet. If we focus on one ResNeXt-101, we observe a similar optimization behavior
in all 3 runs, which we quantify by calculating the Mean Absolute Error (MAE) between
two runs. For two Shufflenet runs P,Q we get their MAE as:

MAES
P,Q =

1

min(|P |, |Q|)

min(|P |,|Q|)∑
k=1

|Pk −Qk| (6.2)

with MMX
P,Q if they are MXnet runs.

With Eq. 6.2 we have MAES
1,2 = 311.14, MAES

2,3 = 727.83 and MAES
1,3 = 806.14,

difference values that are insignificant if we compare them to the order of magnitude of the
loss function. This shows the consistency of the optimization for this model. Also, another
sign these runs are consistent is the fact they early stop in similar iterations, where run 1
(brown) and 2 (red) stop at epoch 18, while run 3 (yellow) in epoch 20; which shows they
converge to their maximum validation score almost at the same iteration.

For the MXnet runs we have MAEMX
1,2 = 1, 981.12, MAEMX

2,3 = 1, 148.03 and MAEMX
1,3 =

2, 927.13, with run (1) stopping at epoch 22, (2) at 27 and (3) at 26. Metrics that show less
consistency for these ResNeXt-101 embeddings. However, their difference calculated with
MAE it is also insignificant in order of magnitude compared to the loss function values.

If we compare the optimization between different ResNeXt-101 embeddings, we see that
the original ResNeXt-101 not only performs a better optimization process but also in fewer
iterations than using the convolution network from MXNet. This behavior is present in the
validation scores we show in Figure 6.2.

For the validation of each training iteration we calculate the 3 different ranks of Section
6.4, using the sum of them as the validation score for the early stopping indicator. We see in
Figure 6.2 the improvement of rank for the 3 runs of the same ResNeXt-101 is identical in
the first 2-3 epochs, getting bigger variations in late iterations. These differences are more
significant in RANK@1 because it is the most strict of the ranks and gets lower precision
values than the other metrics.
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Figure 6.1: Training loss progress of our implementation of Dong et al. 2018. The 3 runs
have a consistent minimization of the sum of Margin Ranking Loss over the complete training
dataset. However, the ResNeXt trained in Shufflenet has a quicker and greater minimization.

Figure 6.2: Validation loss progress of our implementation of Dong et al. 2018, with Shufflenet
and MXnet embeddings.

When comparing between different visual vector embeddings, we find the same perfor-
mance differences as the training loss reflects: Shufflenet embeddings get a greater validation
score in fewer iterations than MXnet embeddings, for every all 4 metric validations.

6.4.2 Baseline Li et al. 2018 distance function comparison

We also train the baseline using the Euclidean distance for the common vector space instead
of the original cosine distance. We test the Euclidean distance with a loss margin of 2.0
because it gives us the best training and testing results. Because the Euclidean and cosine
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functions have a large difference in the magnitude of their domains, the analysis does not
compare their training loss evolution, only their validation scores in Figure 6.3.

Figure 6.3: Validation loss progress of our implementation of Li et al. 2018, with Shufflenet
embeddings, using cosine similarity and Euclidian distance as the distance function in the
common vector space.

We see a similar behavior in rank with both distances, where the cosine distance has a
maximum sum of ranks of 103.68, while the Euclidean distance has a maximum of 103.18.
Because there is no gain using the Euclidean compared to the cosine distance, and because
the margin for the loss function it is difficult to find in a non-closed numerical space, we do
not use the Euclidean distance in the experimentation of the models of this study.

6.4.3 DT-ALL variation

This model has a similar behavior in loss optimization as the baseline for both ResNeXt-101
embeddings as shown in Figure 6.4, with a slightly lower performance where it takes more
iterations to get a minimum total loss greater to the minimum of the baseline. For Shufflenet
this model has a minimum loss of 29,790, against 20,017 of the baseline; and for MXnet gets
a minimum Total Margin Ranking Loss of 45,941, against 37,114 of the base model.

To compare different runs of the same visual vector embedding, we get Mean Absolute
Errors for Shufflenet of MAES

1,2 = 700.98, MAES
2,3 = 1, 075.87 and MAES

1,3 = 449.34; for
MXnet runs we have MAEMX

1,2 = 2, 844.49, MAEMX
2,3 = 2, 817.57 and MAEMX

1,3 = 1, 933.30.
These results show the MXnet embeddings have less consistency in the loss minimization.

For the validation process, we also observe in Figure 6.5 a behavior similar to the baseline
validation, but with a greater loss of performance with the MXnet embeddings, where for
RANK@1 does not reach 5% of accuracy, and the iterations for early stopping are much

44



Figure 6.4: Training loss progress of the DT-ALL model, which shows similar behaviors as
the baseline of Figure 6.1.

Figure 6.5: Validation loss progress of DT-ALL model, with Shufflenet and MXnet embed-
dings.

greater than its Shufflenet counterpart or even the baseline with MXnet ResNeXt-101 em-
beddings.
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DT-ALL trained without TGIF dataset

During Section 5.1.4 we study the difference in framerate of the 3 datasets used to train the
models under study, observing the majority of GIFs from the TGIF dataset have a framerate
between 10 to 20 frames per second, much lower than the videos of MSVD and MSR-VTT,
where their framerate is generally 30 frames per second or higher. This difference raises the
question if the use of this dataset to train a model with Dense Trajectory descriptors have a
negative impact in their performance, because, by definition, a Dense Trajectory is directly
affected by the smoothness of the video, because a low framerate generates a small amount of
Dense Trajectories and can create shifting trajectories between subsequent frames, i.e., the
trajectory jumps from one point to another trying to follow the irregular transition between
two frames of its group of pixels. To test this on the DT-ALL model, 3 training runs of this
model not using TGIF in the training dataset were done. The DT-ALL model of study is
the version with the Shufflenet ResNeXt-101 architecture because its better results showed in
Section 6.4.3. Figure 6.6 compares the loss function evolution during training and Figure 6.7
compares the training validation scores of the DT-ALL model with and without the TGIF
dataset. The results of removing the TGIF dataset have a similar negative impact on the
training of the model that using the MXnet version of a ResNeXt-101, where the sum of ranks
of the validation cannot surpass the 0.4 score mark, a performance worst than its counterpart
trained with the TGIF dataset. The testing results of the DT-ALL model without TGIF are
shown in Table 6.3, with further discussion and conclusion in Section 6.6.3.

Figure 6.6: Loss function evolution during the training of the DT-ALL model with and
without the TGIF in its training dataset. DT-ALL model of study is the version with the
Shufflenet ResNeXt-101 architecture. Notice the reason for lower loss function values in the
non-TGIF version is due to a smaller training dataset, not a better optimization process.
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Figure 6.7: Validation scores for the DT-ALL model trained with and without the TGIF
dataset.

6.4.4 DT-ONLY variation

This model does not use ResNeXt-101 embeddings for video vectorization, just the DT-
BoW we describe in Section 4.1.1. Its loss optimization in Figure 6.8 struggles to reach
the 100,000 value, getting similar values for the 3 runs. Their cross difference is MAE1,2 =
605.63,MAE2,3 = 835.87 andMAE1,3 = 1, 271.94; which shows the consistency of the model
configuration.

The validation process in Figure 6.9 shows a poor performance of this model in every metric
when using the same scale as the previous models. The maximum values for each metrics in
this model are max(RANK@1) = 0.51%, max(RANK@5) = 1.36%, max(RANK@10) =
2, 38% and max(sums of ranks) = 4.82%.
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Figure 6.8: Training loss progress of the DT-ONLY model. This model does not use ResNeXt-
101 embeddings as input, therefore no comparison between both networks.

Figure 6.9: Validation loss progress of the DT-ONLY model. Notice, because its low scores,
it does not share the same scales as other validation charts.
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DT-ONLY trained without TGIF dataset

In the second part of Section 6.4.3, the results of DT-ALL trained without the TGIF collection
showed a worse training process for the model, not reaching even half of the validation score
of the same model trained with TGIF. In this section the same comparison is done for the
DT-ONLY model with and without the TGIF dataset, where Figure 6.10 compares the loss
function evolution and Figure 6.9 shows the validation scores comparison between the two
training dataset scenarios of DT-ONLY. When removing the TGIF dataset, the negative
impact in the loss function evolution of DT-ONLY is lower than in DT-ALL (see Figure 6.6),
in fact, a higher loss function optimization can be appreciated since epoch 2 in all 3 runs, in
comparison to the non-TGIF version of DT-ALL that seems to have more trouble minimizing
the loss function. However, this better optimization process is not reflected in the validation
scores of each epoch, where the same range of values is achieved no matter the run or the
lack of the TGIF dataset. The testing metrics of the non-TGIF version of DT-ONLY are
shown in Table 6.3, with further discussion in Section 6.6.3.

Figure 6.10: Loss function evolution during the training of the DT-ONLY model with and
without the TGIF in its training dataset.
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Figure 6.11: Validation loss progress of the DT-ONLY model. Notice, because its low scores,
it does not share the same scales as other validation charts.

6.4.5 INFERSENT-ALL variation

The training of the INFERSENT-ALL model share similar behavior with the baseline, but
with a slightly lower performance as we see in Figure 6.12, with a minimum loss for Shufflenet
runs 5,514 units greater than the minimum of Shufflenet runs of the baseline, but only 664
units greater for the MXnet runs.

For the training loss, the behavior between Shufflenet runs is also consistent, with
MAES

1,2 = 1, 305.22, MAES
2,3 = 554.16 and MAES

1,3 = 856.27. For MXnet runs we have
MAEMX

1,2 = 581.75, MAEMX
2,3 = 746.09 and MAEMX

1,3 = 356.18. These metrics show the
consistency between runs of the same ResNeXt-101 embedding.

The validation process of Figure 6.13 shows the Shufflenet and MXnet runs reach a preci-
sion very similar to their baseline counterpart, which reflects the testing results in the Section
6.5. Comparing with the DT-ALL model, which adds the DT-BoW embedding to the video
vectorization, INFERSENT-ALL outperforms it in every metric, getting a sum of Ranks over
0.4 with MXnet embeddings, in contrast to the slightly over the 0.2 mark for the DT-ALL
model.
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Figure 6.12: Training loss progress of our implementation of the INFERSENT-ALL model,
which shows similar behaviors as the baseline of Figure 6.1.

Figure 6.13: Validation loss progress of the our implementation of the INFERSENT-ALL
model, with Shufflenet and MXnet embeddings.

6.4.6 INFERSENT-ONLY variation

These models shares many characteristics with the DT-ONLY variation, where, as shown in
Figure 6.14, no optimization of the loss function is done, and the model does not get over
5% of accuracy in any rank metrics of sum of ranks, as shown in Figure 6.15.

For both ResNeXt-101 embeddings we see similar loss evolution results in these models,
with errors ofMAES

1,2 = 978.96, MAES
2,3 = 1, 049.28 andMAES

1,3 = 771.07. And for MXnet
runs we have MAEMX

1,2 = 2, 708.36, MAEMX
2,3 = 1, 560.42 and MAEMX

1,3 = 1, 372.15.

The validation process leads to low precision metrics as shown in Figure 6.15 where both
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Shufflenet and MXnet versions do not follow a visible pattern of behavior. Their overall
maximums are max(RANK@1) = 0.17%, max(RANK@5) = 0.68%, max(RANK@10) =
1.07% and max(Sumofranks) = 1, 92%.

Figure 6.14: Training loss progress of our implementation of the INFERSENT-ONLY model,
which shows similar behaviors as the baseline of Figure 6.1.

Figure 6.15: Validation loss progress of our implementation of the INFERSENT-ONLY
model, with Shufflenet and MXnet embeddings. Notice, because its low scores, it does not
share the same scales as other validation charts.
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6.5 Testing results
After training a model where we use stochastic gradient descent to optimize the sum of the
Margin Ranking Loss (Eq. 3.14) over the training dataset, we test each model by measuring
the Mean Inverted Rank (MIR Eq. 3.14) of their Video-to-Text matching over the TRECVID
2018 Matching and Ranking dataset (see Section 5.2.1). This dataset comprises 1,897 videos
and 5 sets of 1,915 video-sentence pairs: A, B, C, D and E, where we get the MIR over each
set independently.

Model A B C D E

Li et al. 2018 (SH) 0.441 ± 0.007 0.434 ± 0.003 0.428 ± 0.004 0.425 ± 0.006 0.442 ± 0.009

Li et al. 2018 (MX) 0.176 ± 0.009 0.181 ± 0.007 0.179 ± 0.006 0.168 ± 0.003 0.171 ± 0.005

INFERSENT-ALL (SH) 0.442 ± 0.001 0.432 ± 0.008 0.427 ± 0.008 0.431 ± 0.007 0.439 ± 0.003

INFERSENT-ALL (MX) 0.169 ± 0.002 0.169 ± 0.006 0.172 ± 0.003 0.165 ± 0.004 0.167 ± 0.002

INFERSENT-ONLY (SH) 0.004 ± 0.001 0.005 ± 0.001 0.005 ± 0.001 0.004 ± 0.001 0.004 ± 0.002

INFERSENT-ONLY (MX) 0.004 ± 0.001 0.004 ± 0.001 0.004 ± 0.001 0.004 ± 0.001 0.004 ± 0.001

DT-ALL (SH) 0.290 ± 0.002 0.280 ± 0.008 0.286 ± 0.007 0.278 ± 0.007 0.293 ± 0.009

DT-ALL (SH no TGIF) 0.093 ± 0.002 0.089 ± 0.005 0.093 ± 0.005 0.088 ± 0.002 0.092 ± 0.001

DT-ALL (MX) 0.077 ± 0.008 0.078 ± 0.007 0.080 ± 0.006 0.075 ± 0.003 0.078 ± 0.003

DT-ONLY 0.012 ± 0.001 0.012 ± 0.001 0.012 ± 0.002 0.011 ± 0.001 0.010 ± 0.002

DT-ONLY (no TGIF) 0.008 ± 0.001 0.008 ± 0.001 0.008 ± 0.001 0.008 ± 0.001 0.009 ± 0.001

Table 6.3: Mean Inverted Rank results for every model of this study. Models with (SH)
use the Shufflenet embedding, while (MX) use the MXnet version. Models with no TGIF
in their training dataset included (no TGIF). The values correspond to the average model
MIR between its 3 experimental runs, with their standard deviation error. Each column
correspond to an official subset of data from the evaluation dataset of VTT matching &
ranking TRECVID 2018. The best result by subset is highlighted in bold.

Table 6.3 summarizes all the experimentation of the models in study, where we highlight
the best performed models overall for each testing set. We notice that Dong et al. 2018
and INFERSENT-ALL with Shufflenet embeddings models perform best for this task in this
dataset. In contrast, INFERSENT-ONLY is the worst performed model with no apparent
advantage by using Shufflenet or MXnet embeddings; even DT-ONLY outperforms this model
configuration. If we compare the same models with different ResNeXt-101 embeddings, we
see the use of Shufflenet embeddings outperforms MXnet embedding in every model, in an
average factor of 2.48 for Dong et al. 2018, 2.57 for INFERSENT-ALL, 1.1 for INFERSENT-
ALL, and 3.67 for DT-ALL.

To do a visual comparison between ResNeXt-101 embeddings of the same model, we
present 4 bar charts of equal scale along with the error bar to represent the standard deviation
over the 3 runs of the same configuration. If we compare the baseline of Figure 6.16 with the
INFERSENT-ALL model of Figure 6.17, we see a light difference in performance. Using the
same Mean Inverted Rank scale on every model in Figures 6.16, 6.17, 6.18, 6.19 and 6.20, we
quickly determine poorly performing models INFERSENT-ONLY and DT-ONLY because its
corresponding bars collapse.
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Figure 6.16: Mean Inverted Rank on TRECVID 2018 Matching & Ranking task of our Dong
et al. 2018 implementation with ResNeXt-101 embeddings of Shufflenet and MxNet.

Figure 6.17: Mean Inverted Rank on TRECVID 2018 Matching & Ranking task of
INFERSENT-ALL model with ResNeXt-101 embeddings of Shufflenet and MxNet.
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Figure 6.18: Mean Inverted Rank on TRECVID 2018 Matching & Ranking task of our
INFERSENT-ONLY implementation using ResNeXt-101 embeddings from Shufflenet and
MxNet.

Figure 6.19: Mean Inverted Rank on TRECVID 2018 Matching & Ranking task of our
DT-ALL implementation using ResNeXt-101 embeddings from Shufflenet and MxNet.
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Figure 6.20: Mean Inverted Rank on TRECVID 2018 Matching & Ranking task of our
DT-ONLY implementation. This model does not use a ResNeXt-101 embedding.

6.5.1 Video-sentence matching examples

To have a better understanding of each model performance during their expected use case
scenario, we present several video-sentence matching examples using the TRECVID 2018
evaluation dataset each model was tested on. An example focus on a single video, showing
the top matching sentence for each set (from set A to set E ) in every model under study.
We decided to show only examples using the Shufflenet versions of each model because the
inclusion of the MXnet variations will create too much information that we think is not
necessary considering their performance is consistently lower in every configuration. We use
only the first run of each model because if we try to summarize the 3 runs into a single result,
it is a problem to decide which of the three 1st matching sentences must be shown on the list.
Relevant sentences are highlighted in green, while the irrelevant ones in red. The selection
of video examples is based on topic variety and interesting ranking behavior with the model
variations of the baseline.
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Well baseline match video example: man kicking a tennis ball towards the referee.

Figure 6.21: Top 1 sentence match of video 779 for each model under study and evaluation
set of TRECVID VTT 2018.

In Figure 6.21 we can observe the baseline model ranks perfectly the sentences of the
video. For its variants we can observe:

• The INFERSENT-ALL results shows a similar ranking than the baseline, reflecting the
expected behavior of this model considering there is no statistical difference with the
base model, as we can see in the results of Table 6.3. Although, we can see this model
did not do a correct match in set D, where it ranked a sentence that shares the same
topic (tennis) but with a different description of events. Considering the corresponding
sentence in this set was ranked at 2nd place, we can suggest this model has problems
differentiating events that happen in same contexts or locations, but it still ranks the
corresponding sentence and similar ones in high positions.

• The DT-ALL model does not match correctly any corresponding sentence, but the sen-
tences it suggests share sport topics like baseball, sports, crowds and stadium. This
behavior could mean this model learned to match videos with scenes related to sport
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(like this video example where a tennis ball and field are portrayed) with words re-
lated to sports, but did not learn to differentiate between them. This model ranked
the corresponding sentences of each set in positions 32th, 89th, 23th, 25th and 39th,
respectively.

• The results of INFERSENT-ONLY and DT-ONLY show they did not learn correct
patterns, matching the video with different topics. INFERSENT-ONLY sentences focus
primarily in clothes, where the majority of them use the word shirt, except for set C.
This could suggest this model did not focus on the tennis related objects, but in the
shirt the referee is wearing when the camera focus directly on him. The DT-ONLY
results do not seem to follow a pattern, where only the word red is shared between
sets A, C and D but with different topics, however the video has no relevant sections
with the red color to suggest a link to this behavior, therefore we conclude the sentence
rankings of DT-ONLY follow no pattern.

Confuse video example: model walking on a runaway

Figure 6.22: Top 1 sentence match of video 817 for each model under study and evaluation
set of TRECVID VTT 2018.
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Figure 6.22 shows interesting rankings for a video where a model walks on a runaway and
amazes the judges:

• The model of Li et al. 2018 ranks in set C and D descriptions that are similar to the
video content, but not quite correct. The corresponding sentences for this video were
ranked in position 2nd and 3rd in their respective sets, showing a clear confusion of
the model in differentiating between a runaway and a show on a stage. This confusion
can be because both incorrect sentences not only talk about a person showing off, but
also they focus on the clothes they are using, creating a subtle difference versus the
groundtruth.

• The INFERSENT-ALL model does a better job than the baseline in this video, being
able to match a relevant sentence for set D, but having the same trouble in set C where
it ranked the corresponding sentence in 2nd place. As stated before, this reflects its
performance similarity to the base model.

• On the other hand, in the DT-ALL and DT-ONLY models the use of Dense Trajectories
is able to match corresponding sentences with a success similar to the baseline and
INFERSENT-ALL; with DT-ALL confusing in set D the video with another show
in a stage. But in set C both models confuse the video with another fashion show
with similar clothes. Focusing in set B, the reason of the incorrect match of DT-
ONLY could be the high similarities the video of this matched sentence (video 621) has
with the target one, where the first video portraits young girls posing to the camera
while changing clothes, a scene alike in terms of behavior to a model walking on a
runaway. The good performance of this example could also be due to the clean model’s
background, where her silhouette is portrayed against a blank wall, which could have
facilitated the movement encoding with Dense Trajectories.

• The bad matching results of INFERSENT-ONLY reflect the poor testing results it
obtained in Table 6.3, not ranking a single sentence close to the content of the target
video, nor following a pattern between these sentences. In fact, this model variation
ranks the correct sentence for each set in positions 1,730th, 615th, 364th, 1,661th and
44th, respectively.
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Bad example overall: adult man hitting a kid by accident.

Figure 6.23: Top 1 sentence match of video 855 for each model under study and evaluation
set of TRECVID VTT 2018.

In the example of Figure 6.23, where a man running towards the camera hits a kid acci-
dentally, all models under study fail to match a relevant sentence for this video, but there
are details to show from their results:

• The sentences matched by the base model and INFERSENT-ALL seem to share the
topic of a game show, with actions performed by adult players or boys. This shows
the models are able to identify the subjects and context of the target video, being the
basketball player and the boy the subjects and the basketball stadium the context,
but fail to identify the correct events. This could happen because the unusual actions
happening in this video, where in a stadium is expected to happen sport related events
but instead an adult is accidentally hitting a kid. This reason has a greater importance if
we consider we were unable to find any training example that shares a similar situation.

• The match of DT-ALL seems to only identify the context of the video, but fails to
identify the objects that take place in it. It ranks sentences that describe sport or
competition events, but focusing in crowd events than actual players. This could be
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because the large quantity of people portrayed in the background of the video, taking
the attention of the model from the main event of the target video.

• DT-ONLY ranking has an interesting behavior. It identifies the video context is about a
sport event, but its sentences share the topic of wrestling, a context that shares similar
actions, e.g. people hitting or crashing each other, with the target video. With this
example it can be stated that the DT-ONLY variant has the same problem with this
video as the model walking in a runaway of Figure 6.22, where it is able to identify an
action that is portrayed in the video: a person hitting another person, and by combining
it with the fact this is happening in a stadium or sport event, the model resolves to
identify the target video as a wrestling event.

• The results of INFERSENT-ONLY show some of the sentences share common subjects
with the target video like children in sets A and E, but is not sufficient to say the model
follows a visible pattern, reflecting again its lack of performance in the testing results.

6.6 Discussion

6.6.1 Training and testing results

Analyzing the overall metrics of the models under study, their training and validation progress
in Section 6.4, and their testing results in Section 6.5, it is possible to identify which models
will generally do a good job in their expected use-case scenario, and which ones will have
trouble ranking sentences relevant to the content of the target video. Table 6.3 shows the
baseline variations with the highest testing performance are INFERSENT-ALL and DT-ALL,
both with the strategy to add a new video or sentence embedding to the ones the baseline
uses. Between these two, the INFERSENT-ALL is the one with most similar results to the
baseline, being the only one reaching the 0.4 MIR using the Shufflenet embeddings, and
performing better than the baseline in the sets A and D. The DT-ALL model surprisingly
does not have a performance similar to the base model as INFERSENT-ALL does, even when
its architecture definition is almost identical. These results suggest the DT-BoW descriptor
defined in Section 4.1.1 for this model is not as well defined as the InferSent descriptor, and
the addition of DT-BoW to the base model hinders the learning capacity of the model instead
of improving it or, as in the case of InferSent for the INFERSENT-ALL model, not affecting
it at all. A better approach for the DT-BoW descriptor could be achieved by improving the
following aspects of it:

• The selected cluster size using the elbow method (2,500 clusters) could be under-efficient
and does not have the complexity necessary to encode the majority of Dense Trajectory
patterns of the training dataset. The elbow method of this research explores cluster
sizes in the range of 100 and 8000, using only 10% of the training dataset videos and
GIFs. An improvement to this could be to use more videos from the training dataset
to explore the different cluster sizes, or to do a search in a wider range of sizes. This
last option must be carefully explored because too many clusters can decrease the
representativity of the dense trajectories and will increase the learnable parameters of
the models, which could lead to an overfitting scenario.

• The K-means clustering algorithm selected for the Dense Trajectories with Bag of Words
descriptor DT-BoW, may not be the optimal algorithm to the problem, mainly because
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one of the weaknesses of the K-means algorithm: it can select poor cluster borders
because its focus on centroid optimization instead of cluster border optimization. A
possible approach is to define the DT-BoW descriptors using a density-based algorithm
like DBSCAN [78], which could have the advantage of finding better dense clusters of
actions encoded with dense trajectories, but it also may show poor results if the density
of these clusters is too different [79]. Also, this algorithm uses 2 hyper-parameters:
epsilon ε and the minimum points required to form a dense region, whose values can
be experimentally found using the elbow method.

• Another aspect of the DT-BoW descriptor is how is added to the architecture. The
approach of this study concatenates both x -axis and y-axis histograms into a single
1-dimensional vector f v4 that is feed into the vector space mapping (see Section 4.1.1).
A different approach for the fusion of the two histograms is to add a mapping layer
for each axis before the concatenation step. With this configuration the model is able
to learn during the training process what dimension of each axis histogram has more
importance for the loss optimization, giving a higher weight before concatenating them
into f v4 and transforming it to the common vector space using the affine transformation
explained in Equation 3.12.

Going back to the test results of Table 6.3, if we focus on the worst performing models
an interesting behavior is noticed: the performance of DT-ONLY surpasses the results of
INFERSENT-ONLY in each of its two video embedding versions. This is interesting because
both models aim to subtract every embedding of one side of the baseline, but replacing the
visual feature embeddings has less negative impact than replacing the three text embedding
of the baseline. This result could mean the performance of this model owes more to the
encodings chosen for the text than to those chosen for the video. An experimental approach to
test if this behavior is true could be to do more performance comparisons of model variations
using different text and video encodings, e.g., compare the MIR of a model with only BoW
+ Word2Vec as sentence encoding versus the MIR of a model with a convolutional network
with less accuracy in a common computer vision task than the network used by the baseline
model. However, this experimental analysis escapes the objectives of this research and is
proposed to be done in future research.

6.6.2 Models performance in real use-case scenarios

Section 6.5.1 presents 3 different video-sentence examples with the top 1 sentence ranked of
5 models under study that use the Shufflenet ResNeXt-101 variant because they consistently
show better performance than the MXnet ones. This example analysis helps to understand
in more detail the performance of these models, by looking for certain patterns in the ranking
examples that could suggest what is the model priority to rank those sentences as the best
description for the target video. This section discusses the possible reasons of the matching
behavior of a model according to its results showed in the three examples.

The examples from Figures 6.21 and 6.22 show the INFERSENT-ALL variation has a
performance similar to the base model under a good real use-case scenario, which suggests its
better Mean Inverted Rank scores in set A and D of Table 6.3 are not statistically significant
to conclude this model can outperform the baseline. In fact, the 0.001 MIR difference in
set A means that both models are able to rank a relevant sentence in the second place on
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average, interpretation that can also be applied to the 0.006 MIR difference in set D. Also,
when analyzing the results of the baseline and INFERSENT-ALL for the bad performed
example of Figure 6.23, both models match the video with sentences related to a stadium or
sports, with boys, fans or men as the subject, but they fail to recognize the main action in
the scene. This result suggests there is no difference on adding the InferSent descriptor as
an additional sentence encoding to the base model, it does not hinder its learning capacity
nor improves it.

The behavior of the DT-ALL model in the ranked sentences of Figures 6.22 and 6.23
shows this variation model is able to identify the topic of the actions and subjects portrayed
in those videos, but has problems with the fine differences between contexts that share similar
topics, e.g. can identify a sport stadium but fails to recognize which sport is portrayed, or can
identify a stage but fails to identify if is a runaway or another kind of show. This performance
could be a mix between the good results of the baseline and the loss of capacity the DT-BoW
descriptor applies when coupling it to the baseline model.

The DT-ONLY model shows a similar behavior of DT-ALL in the runaway and basketball
examples, where it is able to identify the actions of the target video but, unlike DT-ALL,
in some cases this model ignores the subjects portrayed in the video, ranking sentences with
contexts where the model thinks the action is more suitable of, e.g. in the video example of
Figure 6.23 this model ranks sentences of wrestling when the target video is about a basketball
player accidentally hitting a kid, action that could be interpreted as two people hitting each
other and, therefore, a context of wrestling is more suitable for this action. Although these
examples suggest the DT-ONLY model is able to encode actions of a video, they are not
enough to prove this statement and further work must be done to analyze, for example,
the accuracy of the model on an action topic classification task in a labeled video-sentence
dataset.

The results of the INFERSENT-ONLY suggest this model does not follow any visible
patterns in its behavior, being the variation with the lowers performance among all the
ones under study. This model shows the InferSent descriptor cannot replace the three text
descriptors used by the baseline and the three levels of encoding defined when using these
descriptors. But also, as shown by the results of INFERSENT-ALL, it does not increase the
performance of the baseline when adding as an extra text descriptor.

6.6.3 Training and testing dataset selection

During the exploratory data analysis of the datasets selected to train, validate and test the
models under study, two questions raised about the quality of these collections regarding the
representation levels of the training and validation dataset, and the generally low framerates
of GIFs in the TGIF dataset.

Do the training and validation datasets have a representation level of the testing
dataset?

The comparison analysis of the training dataset against the test dataset in Section 5.3 suggests
the large corpus of the former gives it an advantage in the quantity of contexts it covers,
making it suitable to be used as training data for the VTT matching & ranking task in
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general, because this problem does not fixes any kind of categories and its solutions must
learn a large quantity of scenarios. However, in the third video example of Section 6.5.1,
where a basketball player accidentally hits a kid, we analyze the bad matching results of the
baseline and INFERSENT-ALL models, both with the best training and testing performance
metrics (see Table 6.3), finding an interesting behavior: both models were able to identify the
sport-related context and the main subjects of the video (a man and a kid), but they were
unable to rank the correct sentence. After manually searching training examples that could
share a similar scenario with no success, this lack of learning examples could be the reason
that prevented the two well-performed models to identify the unusual situation of the target
video. This example suggests the large training dataset composed of 363,806 video-sentence
pairs still has room to be improved by adding more diversity of video scenarios, a key aspect
to have a high quality training dataset for the target task of this research.

On the other hand, the idea to use the evaluation data of the challenge from previous
years (TRECVID 2016) as the validation dataset of a model, strategy we follow from the
authors of our baseline [1], has a direct reason: it shares the same source than the testing
dataset of TRECVID 2018. Also, during Section 5.2 we make a comparison between the
set A of TRECVID 2016, and the complete dataset of TRECVID 2018, showing a level of
representation of the former when we explore the topics of them in Figure 5.7.

Does the generally low framerate of TGIF have a negative impact in the perfor-
mance of Dense Trajectories models, like DT-ALL or DT-ONLY, when trained
with it?

After visualizing in Figure 5.4 the framerate distribution of the training dataset and noticing
the high difference of TGIF GIFs against the videos from MSVD and MSR-VTT, we study
the possible impact of the low framerate collection in the DT-ALL and DT-ONLY models,
as stated in Section 5.1.4. For this we train both DT-ALL and DT-ONLY models without
the TGIF dataset and compare its training and testing metrics against their version trained
with this dataset. The training results of Figures 6.7 and 6.11, and Mean Inverted Rank
of Table 6.3 show the addition of TGIF to the training dataset of the models with Dense
Trajectory descriptors has a positive impact in their overall performance compared to the
non-TGIF models of the table, an effect contrary of what can be stated at first glance. The
possible reason of this result is the large volume of visual and sentence data TGIF offers
(125,782 GIFs and sentences) adds more to the performance of a model in terms of quantity
and variety of complex patterns to learn, than the performance the low framerate of this
dataset could take away, if there is existence of this negative effect. This restates the decision
of using TGIF as training dataset for all models under study.

The validation scores evolution of the DT-ALL model is compared in Figure 6.7. This
chart shows removing the TGIF dataset decreases the generalization of the model, not being
able to obtain half of the validation score of the model trained with TGIF in its training
dataset. This lower training score is reflected in the testing results of Table 6.3, where the
DT-ALL (SH no TGIF) model obtains almost a third MIR value of its counterpart trained
with TGIF, in all testing sets. This shows the use of TGIF dataset has a positive effect in
the generalization of the DT-ALL model.

For the DT-ONLY model, Figure 6.11 shows there is no significant difference in the val-
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idation loss value when training this model with and without TGIF, but the runs without
the dataset stop the training 6 to 8 epochs earlier, suggesting they reach their highest value
in fewer iterations. The testing result in Table 6.3 shows the DT-ONLY (no TGIF) model
has a lower MIR in every evaluation set, confirming the performance benefits of TGIF as a
training dataset for this model.

6.6.4 ResNeXt-101: Shufflenet vs MXnet

The results show the importance of using the original ResNeXt-101 visual feature vectors
trained in the Shufflenet dataset, a variant of Imagenet with its object classes balanced in
terms of quantity of images per class. In contrast, the MXnet ResNeXt-101 has its parameters
trained on the standard Imagenet-1k dataset, which only uses the top 1,000 classes of the
Imagenet corpus without dealing with class unbalance. This difference in training datasets
may lead to a better object generalization of the Shufflenet network, being able to generate
better training encodings for a variety of objects that can appear in videos of random content
as the ones in the training and testing datasets.

6.6.5 Training methodology

After analyzing the testing results of Table 6.3 and the rank examples of Section 6.5.1, we
wonder about how much each model under study overfits on the training data, even when
the validation scores of the models increase during training until a certain maximum. The
architecture of all models implements dropout and batch normalization as regularization
measures to prevent an overfitting scenario, but this unwanted behavior still may find its
way in the generalization capacity of the model.

To measure the overfit levels of the base model and its variations, these models are tested
on 3 samples from the training dataset, samples composed of 1,915 training videos and 1,915
training sentences related to one of these videos. This recreates the testing scenario of a
model when obtaining its MIR score over a set of the official evaluation collection of VTT
matching & ranking task of TRECVID 2018, allowing to do a metric comparison of these
results with the ones of Table 6.3. The 1,915 videos of each sample are randomly selected
between all the training dataset, taking care there is a similar number of videos or GIFs
extracted from MSR-VTT, MSVD and TGIF datasets. The Shufflenet version of the base
models and variations is used because this ResNeXt-101 version shows better results than
the MXnet one. All 3 training runs of each model are tested under the training samples,
showing their average MIR and standard deviation error in Table 6.4. These results show
almost all models have a better performance in the 3 random training samples than in the
testing dataset, being the only exception INFERSENT-ONLY because its low scores both in
the training samples and in the testing data.

The base model obtains a minimum MIR of 0.634 on training sample 1, while it obtained
a maximum MIR of 0.442 in the test set E of Table 6.3. INFERSENT-ALL gets a minimum
of 0.589 in sample 2, and a maximum of 0.439 in testing set E. DT-ALL obtains a minimum
of 0.571 in training sample 3, while in the testing set E obtains a maximum of 0.293. DT-
ONLY minimum sample MIR is 0.076 in training sample 2, while its maximum MIR in
the testing data is 0.012, showing a higher average score in the training data even taking
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into account the standard deviation error. Finally, the INFERSENT-ONLY model obtains
a minimum sample MIR of 0.005 in the training sample 3, while the maximum MIR in
the testing dataset is 0.005 in sets B and C, although these results are not sufficient to
say INFERSENT-ONLY has a better performance on the training dataset. These results
show the base model, INFERSENT-ALL, DT-ALL and DT-ONLY models have a level of
overfitting that could be reduced by using more regularization techniques like adding weight
decay to the Adam optimizer used in the training process, or by decreasing the training batch
size [80]. The reason we choose not to use them is to have the same training configuration
than the baseline model to replicate its reported results in TRECVID 2018 [1], and do a
correct comparison of its variants.

Model Sample 1 Sample 2 Sample 3

Dong et al. 2018 (SH) 0.634 ± 0.029 0.637 ± 0.023 0.643 ± 0.023

INFERSENT-ALL 0.596 ± 0.038 0.589 ± 0.035 0.605 ± 0.033

INFERSENT-ONLY 0.006 ± 0.001 0.006 ± 0.001 0.005 ± 0.001

DT-ALL (SH) 0.569 ± 0.036 0.569 ± 0.035 0.571 ± 0.033

DT-ONLY (SH) 0.080 ± 0.025 0.076 ± 0.030 0.083 ± 0.033

Table 6.4: Average Mean Inverted Rank with its standard deviation error of the results of
the 3 training runs of each model under study, over the 3 random training samples created
to test their overfit levels. Only models with a ResNeXt-101 pre-trained on Shufflenet are
tested.

Finally, a major bottleneck in this investigation was the missing information about the
hyper-parameters of the baseline implementation where all models of this study are based on.
Li et al. 2018 [1] stipulate they do a hyper-parameter optimization using the TRECVID 2016
Matching & Ranking training dataset, which according to them, comprises 200 video-sentence
pairs. However, this dataset does not exist in the official repositories of the TRECVID
conference, and they do not provide it either. Fortunately the default hyper-parameters they
use in the model’s repository, which they use in performance benchmark using the MSR-VTT
dataset, give a guideline of the values these important parameters should have.
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Chapter 7

TRECVID 2019 participation

We took part in the Matching & Ranking task of the TRECVID 2019 challenge. The submis-
sions for this competition follow the approach of Dong et al. for the same task of TRECVID
2017 [2]. Although we did not win the competition, we spotted the flaws of this architecture
and made a model base on Li et al. 2018 [1] (see Section 3). We emphasize the model of this
participation is different from the ones presented in this study.

7.1 System Detail

Similar to our approach in Ad-Hoc video search, for Matching and Ranking subtask we use
a deep learning model based on W2VV++ [1] to encode visual and textual embeddings into
a common vector space. For this approach, rather than using audio as an extra embedding
of the video, we extend W2VV++ by using Dense Trajectories [4] as a visual embedding to
encode temporal information of the video. We think that combining the pre-trained Resnet-
152 [2] and ResNeXt-101 [43] descriptors of W2VV++, with Dense Trajectories descriptors
of the video, we extract spatial and temporal information from it, respectively.

Dense Trajectories [4] describes groups of pixels paths across a fixed number of frames of
the video, by using Histogram of Oriented Gradients (HOG) and Histogram of Optical Flow
(HOF) for pixel tracking. These trajectories are represented by a set of coordinates (x, y)
where x, y ∈ [−1, 1]. We fix the trajectory length to 15 frames and the dense pixel size to a
5x5 square of pixels.

Since a single video generates thousands of dense trajectories, we use K-Means clustering
to find a fixed number of codewords across the training videos and represent all the dense
trajectories of a video into a single histogram or Bag of Words vector. Using the elbow
method, we found that 800 codewords were more than enough to encode all Dense Trajectories
of the training dataset.

For the sentence representation, we use the same encoding in Ad-hoc video search: a
concatenation of Bag of Words, Word2Vec and a trainable Gated Recurrent Unit layer.
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fusions = BoW (s) || w2v(s) ||gru(s) (7.1)

For the video representation, define maxrs152(v) as the max pooling of the set of pre-trained
ResNet-152 [2] vectors: and maxrs101(v) the max pooling of the pre-trained ResNeXt-101
[43] vectors, we get a single vector representation of the video by concatenating them with
BoWdt(v): the Bag of Words vector resulting from the clustering of the Dense Trajectories
of the video.

fusionv = BoWdt(v) || max
rs152

(v) || max
rs101

(v) (7.2)

Following the Matching and Ranking model of Dong et al. for TRECVID 2017 [2], to
transform the sentence and video embedding into a common vector space, we use two fully
connected layers with a ReLU activation function. We also use batch normalization [81] in
one of the submitted runs, e.g., for the video branch of the model:

v′ = σ(BN(W1fusionv + b1))

v = σ(BN(W2v
′ + b2))

(7.3)

where W1 are W2 trainable weight matrices for each fully connected layer, with b1 and b2

being their corresponding bias. BN represents a batch normalization layer and σ the ReLU
function.

Figure 7.1: Model used for Matching and Ranking subtask. We use this configuration with
batch normalization for the run 1, but for the second run this feature is missing.

The loss function we use is a Triplet Ranking Loss function defined as:

l(v, s; θ) = max
s−

(0, α + S(v, s−)− S(v, s))) (7.4)

where (v, s) is a corresponding video-sentence pair, θ is the set of parameters of the model, s−
is the hardest negative sentence in the batch, e.i., the sentence in the batch different to s that
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is closest to v; α is a constant that sets the minimum margin desired between s and s− and
S is the cosine similarity function. With this, if D is the training dataset, the optimization
process aims to minimize the sum:

min
θ

∑
(v,s)∈D

l(v, s; θ) (7.5)

We also follow Dong et al.’ s [2] approach for the optimization of equation 7.5. Using
RMSProp [82] with initial learning rate η = 0.0003, weight decay γ = 0.9 and ε = 10−9. We
use dropout on all fully connected layers with p = 0.2. The training process splits in half the
learning rate if the validation loss has not improved in 2 iterations, stopping it if there is no
improve in 5 iterations.

7.2 Datasets

We trained the model using MSR-VTT [13], which comprises more than 150k of video-
sentence pairs. The videos come from the YouTube™ web platform and the annotations are
made by Amazon Mechanical Turk™ with a rigorous quality review from the authors of the
dataset. We use the same dataset for cross-validation, randomly choosing 10% of the dataset
as validation for every epoch.

7.3 Submissions

For this task, we submitted 2 runs with different configurations of the model. The first one
uses batch normalization on the two fully connected layers of each branch, while in the second
one we remove this feature. For a submission subset, to rank a video v with a set of sentences
{s}1..n we use the cosine similarity function S used in the loss function (7.4), calculating the
distance between the vector representation of video in the common space v and the vector
representations of the set of sentences {s}1..n, and sorting them in decreasing order to get
the ranking list for v.

Table 7.1 shows the Mean Inverted Rank score (see Section 6.1) results of all 4 participants
in the VTT matching & ranking subtask of TRECVID 2019: 4 submissions from the Renmin
University of China (RUC_AIM3) [83], 4 from the Renmin University of China and Zhejiang
Gongshang University team (RUCMM) [84], a single submission from Nagaoka University
of Technology (KsLab) [85], and our 2 described submissions. The results show the first
submission of the Renmin University of China, consisting of an ensemble of two models based
on our baseline by Dong et al. 2018 [11] using BERT [86] sentence descriptors, outperforms
every other entry in the competition, obtaining the highest score in the subtask at the
moment, although these scores are not comparable with previous years because its different
evaluation data, as stated by the TRECVID organizers in their competition report [67]. If
we focus on our results, the second run with no batch normalization got better results in the
subtask, with a consistently higher score than the batch normalization approach.
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Run A B C D E
RUC_AIM3 run 1 0.723 0.727 0.721 0.721 0.722
RUC_AIM3 run 2 0.623 0.635 0.627 0.636 0.630
RUC_AIM3 run 3 0.569 0.581 0.575 0.579 0.575
RUC_AIM3 run 4 0.572 0.580 0.574 0.579 0.572
RUCMM run 1 0.432 0.442 0.429 0.437 0.441
RUCMM run 2 0.436 0.443 0.444 0.447 0.446
RUCMM run 3 0.474 0.480 0.474 0.487 0.481
RUCMM run 4 0.471 0.480 0.470 0.484 0.477
Our run 2 0.015 0.017 0.015 0.016 0.018
Our run 1 0.004 0.005 0.004 0.005 0.005
KsLab run 1 0.002 0.003 0.002 0.002 0.003

Table 7.1: Mean Inverted Rank obtained by all participants in every evaluation set in the
VTT Matching and Ranking subtask of TRECVID 2019. Best result by evaluation set is
highlighted in bold.

7.4 Result examples
Taking into account the definition of Mean Inverted Rank (see Section 6.1), the 0.005 to
0.004 score obtained of our run 1 show this submission ranked, on average, the corresponding
sentence of a video in the position 200th to 250th, respectively: while the 0.018 to 0.015 score
of our run 2 means an average rank between positions 55th to 66th. This results show both
models do not perform well in the VTT matching & ranking substask, in fact, as shown in
Table 7.2 for each evaluation set, only a few videos got their corresponding sentence ranked
in position 3 or lower. Because there is a few good examples to choose from, only a single
example for our first and second run is shown in Figures 7.2 and 7.3, respectively.

Run A B C D E
Our run 2 15 15 13 17 22
Our run 1 2 4 4 2 4

Table 7.2: Quantity of videos, from a total of 2054, with their corresponding sentence ranked
in the first 3 positions, for each evaluation set of the subtask.

The ranking example of our first submission in Figure 7.2 shows the model has trouble
identifying subject, action and context of the video. In set E our submission with batch
normalization is able to rank in third place a relevant sentence of the video where a person
is bathing a duck, while in set A the model is able to rank sentences related to an animal
bathing or an aquatic animal, but the other evaluation sets do not share any visible patterns
related or unrelated to the target topic, reflecting its poor performance reported in Table 7.1.
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Figure 7.2: Top 3 ranked sentences of our run 1 for evaluation video id 1,105, where a person
is bathing a white duck.

Figure 7.3: Top 3 ranked sentences of our run 2 for evaluation video id 814, where a person
is pressing the touchscreen of a ticket machine.
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The ranking of our submission without batch normalization in Figure 7.3 shows better
results than the first one, where is able to rank two related sentences in set A and set B, while
set C and E the model is able to rank sentences related to machines like "man operates a
claw machine" and "An indoor digital art exhibit", respectively. It set D, even though it does
not rank sentences related to the video content, it is able to show a shared subject pattern
of boxes or sarcophagus between the first 3 ranked sentences. Although in this example the
model without batch normalization shows certain patterns, is not enough to prove the model
has learned them or overfit them.

The low performance of both submissions can be derived from two reasons:

• The extra parameters in run 1 added by the batch normalization may overfit the model
on the training dataset.

• As shown in Table A.1 of Appendix A, our own implementation of the base model [2]
selected for this competition submission failed to replicate the reported results of this
model, which led to a poor performed base architecture for the variation with Dense
Trajectories. The problems with the implementation of the baseline were multiple,
being the main ones the inaccurate explanation of the soft-attention mechanism by the
authors and the ambiguous description of the validation dataset used by Dong et al. .
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Chapter 8

Conclusions and future work

8.1 Conclusions

This research tests the effectiveness of Dense Trajectories and InferSent description in the
Video-to-Text Matching & Ranking task. For this we selected a state-of-the-art model and
applied different variations to use the two descriptors. After the multiple analysis of data and
results done in this work, the quantitative analysis of the Mean Inverted Rank performance
of the models under study, and the qualitative analysis of video matching examples in Section
6.5.1, the main conclusion of this work are:

• The results show the effectiveness of the three text encoding levels of the base model,
not being replaceable by InferSent, a sentence descriptor with a high transfer learning
performance. In the INFERSENT-ALL model, the addition of this descriptor as an
additional sentence encoding to the baseline, does not improve or hinders the general-
ization capacity of the base model, obtaining similar scores in their training process and
testing results. On the other hand, replacing the 3 text encoders of the base model by
Li et al. [1] with the InferSent descriptor, as is done in the INFERSENT-ONLY model,
has the most negative impact on the base model performance of all the variations of
this study, obtaining the lowest MIR scores in the testing dataset and not showing any
visible pattern in the sentence rankings of the video examples in Section 6.5.1.

• The results of the DT-ALL model show the addition of the DT-BoW descriptor hinders
the capacity of the base model, reducing its performance on the testing dataset by a half
in almost all evaluations subsets and, as seen in some video examples, having trouble
to differentiate between video contexts that share a similar topic. The reasons of this
behavior may rely on the DT-BoW descriptor definition, the clustering process done
to generate it, and the strategy selected to integrate it on the base model architecture,
as discussed in Section 6.6.1.

• The DT-ONLY model results show a loss in performance when removing the static in-
formation descriptor ResNeXt-101, along with the 3 levels of video encoding of the base
model. This architecture, as seen in the sentences ranked in the examples of Figures
6.22 and 6.23, is able to encode some actions but fails to properly encode the subject
of the video, matching sentences with subjects and contexts more accordingly to the
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action portrayed in the video, independently of the real subject. This is an interesting
behavior that can support the approach of separating the information retrieval into two
roles: encoding static information retrieval with a pre-trained ResNeXt-101 and encod-
ing temporal information with a Dense Trajectory descriptor, but further investigation
must be done to completely prove this.

• The comparison of performance using the original ResNeXt-101 pre-trained on Shuf-
flenet versus the same architecture pre-trained on the standard Imagenet-1k dataset,
shows the critical importance of the first pre-trained architecture in the state-of-the-art
results of the base model.

• The results of using the InferSent sentence descriptor to encode the textual data in the
model of Li et al. [1] to solve the VTT matching & ranking task of TRECVID 2018
concludes to be unnecessary because it does not improve the performance of the model
in any of the two configurations studied.

• The results for the use of Dense Trajectory descriptors in the base model suggest it is
capable of encoding the actions portrayed in certain videos, as the results of the video
examples show, but the definition for the DT-BoW descriptor can be improved in
several aspects, or a different approach to be integrated to the base model architecture
is needed.

• The low scores of our TRECVID 2019 for the VTT matching & ranking subtask were
obtained because our incorrect implementation of the base model of Dong et al. of
2017 [2], but these results gave us the insight necessary to switch to a different baseline
for this work, selecting the model presented by Li et al. [1] from where we defined and
studied different variations in this research.

• The low framerate of GIFs in the TGIF dataset has no significant impact in the quality
of this dataset, even for models that rely on the movements of pixels like DT-ALL
or DT-ONLY. Sections 6.4.3 and 6.4.4 show that removing the TGIF dataset from the
training dataset of these two models drastically reduces the performance of DT-ALL, or
has no impact in the low performance of DT-ONLY. A possible reason of this result is
the large volume of visual and sentence data TGIF offers (125,782 GIFs and sentences)
adds more to the performance of a model in terms of quantity and variety of complex
patterns to learn, than the performance the low framerate of this dataset could take
away, if there is existence of this negative effect.

8.2 Source Code

This research presents a unique approach to the video-to-text Matching & Ranking task by
exploiting a Dense Trajectories descriptor to extract temporal information from a video, and
the InferSent sentence encoding model to obtain a vector representation of a text.

We publish the implementation of the validated baseline and its 5 variations using an up-
dated machine learning framework 1. To give a better access to the use of Dense Trajectories,
we compiled the original C++ version into a Python 3 library to generate this descriptor,
along with a GPU accelerated version to speed up the process (see Section 4.1.1).

1https://gitlab.com/nbravo/vttm-dt
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8.3 Baseline validation obstacles

The reproduction of results for the baseline has several difficulties that we want to address.
The authors do not publish their selection of hyper-parameters in any direct form, and
the method they describe in [1] to get them is unclear, creating a bottleneck for further
investigations that need to use their model and reproduce their results. Also, the need of using
such specific ResNeXt-101 pre-trained in Shufflenet creates another obstacle to reproduce the
results, restricting the use of other pre-trained networks to create visual vectors for this model.

8.4 Future work

The results obtained by the DT-ALL and DT-ONLY models suggest the Dense Trajectory
descriptors have the potential to describe the actions of a video in the VTT matching &
ranking task of TRECVID 2018, but the approach of this investigation, which we call DT-
BoW (see Section 4.1.1) may not have been obtained the maximum results out of these
descriptors, and several aspects can be improved:

• The selected cluster size using the elbow method (2,500 clusters) could be under-efficient
and does not have the complexity necessary to encode the majority of Dense Trajectory
patterns of the training dataset. The elbow method of this research explores cluster
sizes in the range of 100 and 8000, using only 10% of the training dataset videos and
GIFs. An improvement to this could be to use more videos from the training dataset to
explore the different cluster sizes, or to do a search in a wider range of sizes. This last
option must be carefully explore because too many clusters can decrease representation
of the dense trajectories and will increase the learnable parameters of the models, which
could lead to an overfitting scenario.

• The K-means clustering algorithm selected for the Dense Trajectories with Bag of Words
descriptor DT-BoW, may not be the optimal algorithm to the problem, mainly because
one of the weaknesses of the K-means algorithm: it can select poor cluster borders
because its focus on centroid optimization instead of cluster border optimization. A
possible approach is to define the DT-BoW descriptors using a density-based algorithm
like DBSCAN [78], which could have the advantage of finding better dense clusters of
actions encoded with dense trajectories, but it also may show poor results if the density
of these clusters is too different [79]. Also, this algorithm uses 2 hyper-parameters:
epsilon ε and the minimum points required to form a dense region, whose values can
be experimentally found using the elbow method.

• Another aspect of the DT-BoW descriptor is how is added to the architecture. The
approach of this study concatenates both x -axis and y-axis histograms into a single
1-dimensional vector f v4 that is feed into the vector space mapping (see Section 4.1.1).
A different approach for the fusion of the two histograms is to add a mapping layer
for each axis before the concatenation step. With this configuration the model is able
to learn during the training process what dimension of each axis histogram has more
importance for the loss optimization, giving a higher weight before concatenating them
into f v4 and transforming it to the common vector space using the affine transformation
explained in Equation 3.12.
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The results of Table 6.3 indicate that introducing our Dense Trajectories descriptor as an
additional video input impacts the model performance by reducing its Mean Inverted Rank
almost to its half. This behavior does not occur with the introduction of InferSent in the
sentence side of the model, in fact INFERSENT-ALL outperforms the base model in set
A and D. A next step would be finding the reason of this, where an initial hypothesis is
that these results reflect a high sensitivity of the video side to changes in its architecture,
in comparison to the sentence side of the model. An experimental approach to test if this
behavior is true could be to do more performance comparisons of model variations using
different text and video encodings, e.g., compare the MIR of a model with only BoW +
Word2Vec as sentence encoding versus the MIR of a model with a convolutional network
with less accuracy in a common computer vision task than the network used by the baseline
model. However, this experimental analysis escapes the goals of this research and is proposed
to be done in future research.

Further investigation is needed to determinate the exact reasons why the reproduction
of the reported results of the baseline needs the convolutional network to be trained on
such specific Shufflenet dataset. A preliminary hypothesis is that the Shufflenet dataset has
more image samples per class, which gives a better object generalization than Imagenet-1k,
allowing the ResNeXt-101 to create better descriptors for more video frames contexts.

After finding a level of overfitting in the base model, INFERSENT-ALL, DT-ALL and DT-
ONLY models, the testing results of this research could be improved if more regularization
techniques are applied, like adding weight decay to the Adam optimizer used in the training
process, or by decreasing the training batch size [80].
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Appendix A

Dong et al. 2017 model validation

Dong et al. submission of TRECVID 2017 [2] got the best Mean Inverted Rank score (see
subsection 6.1) in the competition: the reason we implemented this approach at the beginning
of the research. The code of this model is not public, therefore we made the model from
scratch by following the description in the competition’s paper [2]. We abandoned this
model as a baseline because of several inconsistencies in its definition.

Figure A.1: Model published by Dong et al. for Ad-hoc video search and Matching and
Ranking tasks in TRECVID 2017.

The selected base model of Dong et al. 2018 follows the same strategy of this model: a
multi-modal neural network transform video and sentence embeddings into a common vector
space where a distance function is used to rank and match video-sentence pairs.
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The video encoder extracts visual features using a pre-trained Resnet-152 [10], then a
set of Gated Recurrent Units [17] encodes the sequence of visual feature vectors into a set
of temporal information vectors, then it concatenates them with the original visual feature
vector using a skip connection. Later a specific attention mechanism is used to summarize the
set concatenated vectors into a single vector representation. Finally, a fully connected neural
network of two layers with Batch Normalization transforms this single vector representation
into the common vector space.

The sentence side of the model uses three different text embeddings as input: a Bag of
Word mechanism, a pre-trained Word2Vec [62] model and a Gated Recurrent Unit [17] rep-
resentation, concatenating them to create a single vector representation of the sentence. The
transformation of this vector to the common vector space is like the single vector representa-
tion of the video: by a fully connected neural network of two layers, with Batch Normalization
to prevent over-fitting.

In the explanation of the Soft-attention mechanism, there is a big problem where they say
they are using the concatenation of scalars operation to create a summary vector represen-
tation of the attention, but this operation makes little sense because it applies to numbers
between −1 and 1 and if we use the concatenation, we end up losing most of the scalars in
non-important float positions. We assumed this issue is a typo and Dong et al. meant to
apply an addition of scalars instead of a concatenation.

Set 2 3 4 5
Subset A B A B C A B C D A B C D E
Reported Dong et al. 2017 0.350 0.350 0.500 0.500 0.500 0.600 0.600 0.600 0.600 0.700 0.700 0.700 0.700 0.700
Our implementation 0.006 0.005 0.008 0.008 0.007 0.014 0.014 0.019 0.013 0.031 0.030 0.046 0.035 0.034

Table A.1: Mean Inverted Rank reported by Dong et al. 2017 [2] and that obtained by our
implementation.

Because of the inaccurate explanation of the soft-attention mechanism, the missing infor-
mation of the fully connected network configuration and, because of these issues, the difficulty
of recreating the reported results using the same training and testing data, we discarded this
model as a baseline for our research.
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