
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

QUESTION ANSWERING OVER WIKIDATA USING ENTITY LINKING AND
NEURAL SEMANTIC PARSING

TESIS PARA OPTAR AL GRADO DE
MAGÍSTER EN CIENCIAS, MENCIÓN COMPUTACIÓN

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL EN COMPUTACIÓN

DANIEL ALEJANDRO DIOMEDI PINTO

PROFESOR GUÍA:
AIDAN HOGAN

MIEMBROS DE LA COMISIÓN:
ANDRÉS ABELIUK KIMELMAN
FEDERICO OLMEDO BERÓN

HANS LÖBEL DÍAZ

Este trabajo ha sido parcialmente financiado por el
Instituto Milenio Fundamento de los Datos.

SANTIAGO DE CHILE
2021

Resumen

El objetivo de Question Answering sobre Knowledge Graphs (KGQA) es encontrar res-
puestas para preguntas en lenguaje natural sobre un Knowledge Graph. Recientes enfoques
de KGQA basados en Neural Semantic Parsing adoptan un enfoque de Neural Machine
Translation (NMT), en el que la pregunta en lenguaje natural se traduce a un lenguaje de
consulta estructurado. En este contexto, queremos generar una consulta SPARQL que ob-
tenga las respuestas esperadas al ejecutarse en el endpoint del respectivo Knowledge Graph.

Sin embargo, el enfoque basado en NMT adolece del problema de falta de vocabulario, en
el que los términos de una pregunta pueden no haberse visto durante el entrenamiento, lo
que dificulta su traducción. Este fenómeno es particularmente problemático para las millones
de entidades que describen los grandes Knowledge Graphs. En este trabajo proponemos en
cambio un enfoque para KGQA que delega el procesamiento de entidades a sistemas de
Entity Linking (EL). Por lo tanto, en lugar de generar la consulta SPARQL completa, el
modelo de NMT se utiliza para crear un Query Template con placeholders que se llenan
con entidades identificadas en la etapa de EL. Se proponen sistemas EL tipo ensemble que
combinan resultados de varios sistemas EL individuales del estado del arte. Se propone un
enfoque de Slot Filling para decidir qué entidad ocupa qué placeholder, el cual combina el
uso de un modelo de Sequence Labeling con un algoritmo de llenado propuesto.

Evaluamos nuestro enfoque en el contexto de Wikidata para preguntas en inglés. Los
experimentos evalúan el rendimiento del sistema de Question Answering de principio a fin, así
como cada etapa de la generación de consultas SPARQL. Los resultados muestran que nuestro
enfoque supera al enfoque de NMT puro: aunque sigue existiendo una fuerte dependencia
en haber visto Query Templates similares durante el entrenamiento, los errores relacionados
con las entidades se reducen en gran medida.

La principal conclusión es que la combinación de Entity Linking y Neural Semantic Par-
sing muestra una mejora prometedora en el rendimiento de la tarea KGQA en el contexto de
Wikidata. El trabajo futuro incluye experimentar con otros modelos de NMT como también
trabajar en la construcción de conjuntos de datos de entrenamiento de mejor calidad, agregar
nuevos sistemas EL para impulsar los sistemas tipo ensemble y probar nuevas heurísticas
para el proceso de Slot Filling.

i

Abstract

The goal of Question Answering over Knowledge Graphs (KGQA) is to find answers for
natural language questions over a Knowledge Graph. Recent Neural Semantic Parsing-based
KGQA approaches adopt a Neural Machine Translation (NMT) approach, where the natural
language question is translated into a structured query language. In this context, we want
to generate a SPARQL query that should retrieve the expected answers by being executed
over any Knowledge Graph’s endpoint service.

However, the approach based on NMT suffers from the out-of-vocabulary problem, where
terms in a question may not have been seen during training, impeding their translation. This
issue is particularly problematic for the millions of entities that large Knowledge Graphs
describe. We rather propose a KGQA approach that delegates the processing of entities
to Entity Linking (EL) systems. Thereby, instead of generating the entire SPARQL query,
the NMT is used to create a Query Template with placeholders that are filled by entities
identified in an EL phase. We propose ensemble EL systems that combine output from several
individual EL systems from the state of the art. A Slot filling approach is proposed to decide
which entity fills which placeholder, combining a Sequence Labeling model with a proposed
filling algorithm.

We evaluate our approach in the context of Wikidata for English questions. Experiments
evaluate the performance of the end-to-end QA system as well as each stage of the SPARQL
query generation. The results show that our approach outperforms the pure NMT approach:
while there remains a strong dependence on having seen similar Query Templates during
training, errors relating to entities are greatly reduced.

The main conclusion is that the combination of Entity Linking and Neural Semantic
Parsing shows a promising improvement in the performance of the KGQA task in the context
of Wikidata. Future work includes experimenting with other NMT models while also working
on building better quality training datasets, adding new EL systems for boosting ensemble
systems, and trying new heuristics for the Slot Filling process.

ii

Para Delia Pinto y Alexis Diomedi, por ser
un pilar fundamental en este hito cumplido.

iii

Agradecimientos

Con este trabajo culmina una etapa que duró casi 7 años de mi vida, y por supuesto hubo
harta gente que me brindó su apoyo que fue indispensable y muy valioso. Esta página es
para todos y todas ustedes que estuvieron ahí.

Partir con agradecer a mi familia, que siempre me brindó todo lo necesario para que
pudiese dar lo mejor de mí durante mis estudios. Agradezco su comprensión en momentos en
que la universidad no dejaba otra cosa que ser la prioridad. Fueron, han sido, y serán la base
de todo lo que he logrado durante mi estancia en la universidad y los logros que se vienen.

No todo fue seriedad y estudio por supuesto. Los momentos de distensión también fueron
muy valiosos y donde guardo los mejores recuerdos es con la gente del Pasillo. Muchas gracias
a todos y todas los que se pasaron aunque sea una vez por el pasillo por cada almuerzo
compartido y por cada conversación llena de risas, complicidad e irreverencia.

También mencionar a toda la gente maravillosa con la que pude compartir en la universi-
dad, en especial la gente del DCC. Aunque no solía frecuentar muchos espacios de estudios,
siempre fue un gusto conversar con cada persona que me crucé por esos lares. Mención es-
pecial a los manDCCos por no solo las tarde de estudio, si no también todas esas noches de
juegos hasta la madrugada (o no tanto dado que “dormir temprano” es mi segundo nombre).

Una tremenda mención honrosa a Sandra y Angélica por aguantar tantos semestres de
mi haciendo preguntas y buscando consejo. Siempre tuvieron la mejor de las disposiciones y
no encuentro la manera de agradecer por su valioso apoyo durante todo este tiempo.

Esta tesis no hubiera salido sin la indispensable ayuda de mi profesor guía Aidan. Aunque
habían semanas en las que sentía que no había avance, su invaluable guía siempre me entre-
gaba una perspectiva alentadora a los desafíos que iban saliendo. Agradezco a Juan Pablo
Silva por escuchar mis delirios con la tesis, a Henry Rosales por su asesoría en sistemas de
Entity Linking, a Alberto Moya por su ayuda en montar Wikidata en Virtuoso, a Felipe
Bravo y Jorge Peréz por el espacio para compartir mi trabajo y por el feedback entregado.

Y gracias a ti, Javiera Francisca, por ser y estar.

iv

Tabla de Contenido

1. Introduction 1
1.1. Motivation . 1
1.2. Hypothesis . 5
1.3. Objectives . 6
1.4. Methodology . 6
1.5. Contributions . 7
1.6. Work Structure . 9

2. Theoretical Framework 11
2.1. Semantic Web . 11

2.1.1. Web of Data . 11
2.1.2. Resource Description Framework . 13
2.1.3. SPARQL Query Language . 16
2.1.4. Linked Open Data Cloud . 18
2.1.5. Wikidata . 19

2.2. Information Extraction . 22
2.2.1. Information Extraction methods with Semantic Web technologies . . 22
2.2.2. Entity Linking . 23

2.2.2.1. DBpedia Spotlight . 26
2.2.2.2. AIDA . 27
2.2.2.3. TAGME . 29
2.2.2.4. OpenTapioca . 30

2.2.3. Sequence Labeling . 31
2.2.3.1. Contextual String Embeddings 32

2.2.3.1.1. Language Models 33
2.2.3.1.2. Extracting Flair Embeddings 33

2.2.3.2. Sequence Labeling Architecture 34
2.3. Semantic Parsing . 36

2.3.1. Sequence to Sequence models . 37
2.3.1.1. Convolutional Sequence to Sequence Model 38

2.3.2. Natural Language to SPARQL . 41

v

2.3.2.1. Neural Machine Translation 42
2.4. Question Answering over Knowledge Graphs 44

2.4.1. KGQA approaches . 45
2.4.1.1. Information Retrieval-based methods 46
2.4.1.2. Neural Semantic Parsing-based methods 46

2.4.2. Main Challenges . 47
2.4.3. Benchmark & Datasets . 49

2.4.3.1. QALD . 49
2.4.3.2. LC-QuAD 1 . 50
2.4.3.3. DBNQA . 50
2.4.3.4. LC-QuAD 2 . 51

3. System Overview 54
3.1. Question Answering general overview . 54
3.2. Query Generation Module . 55

3.2.1. Query Generation pipeline . 56
3.2.2. Query Encoding . 57
3.2.3. Fairseq Model . 58

3.3. Entity Linking Module . 59
3.3.1. Entity Linking pipeline . 60
3.3.2. Individual Entity Linking systems . 61
3.3.3. Ensemble Entity Linking system . 62

3.3.3.1. Precision Priority system 63
3.3.3.2. Voting system . 64
3.3.3.3. Other optimizations . 65

3.4. Slot Filling Module . 66
3.4.1. Slot Filling pipeline . 66
3.4.2. Sequence Tagger model . 67
3.4.3. Slot Filling method . 68

4. Experimental Design 72
4.1. Question Answering general overview . 72
4.2. Question Answering Dataset . 73

4.2.1. LC-QuAD 2 Dataset Cleaning . 73
4.2.2. Query Template Dataset . 75
4.2.3. Sequence Labeling Dataset . 76
4.2.4. Final Dataset Format . 76

4.3. System Implementation . 77
4.4. Experiments . 78

4.4.1. Datasets . 78
4.4.2. Query Template Generation . 79
4.4.3. Entity Linking . 79
4.4.4. Sequence Labeling and Slot Filling 80

vi

4.4.5. Question Answering over Knowledge Graphs 80

5. Results 82
5.1. Query Template generation . 82
5.2. Entity Linking . 84
5.3. Sequence Labeling and Slot Filling . 87
5.4. SPARQL Query Generation . 88
5.5. Question Answering over Knowledge Graphs 92

6. Conclusions 95
6.1. Relevance and Contributions . 96
6.2. Future work . 97

Bibliography 99

Appendix A. Neural Networks overview 123
A.1. Neural Networks Fundamentals . 123

A.1.1. Multilayer Perceptrons . 123
A.1.2. Network Training . 125

A.2. Recurrent Neural Networks . 128
A.2.1. Long Short-Term Memory . 129

A.3. Convolutional Neural Networks . 131
A.3.1. Convolutional layer . 132
A.3.2. Pooling layer . 133
A.3.3. Common architectures . 134

Appendix B. Question Answering Dataset 135
B.1. Normalized Dataset Format . 135
B.2. LC-QuAD 2 base templates . 136

vii

Índice de Tablas

2.1. Results from SPARQL query example in Listing 2.3. 17
2.2. Performance comparison of three models included in Yin et al.[197]. 43

4.1. Comparison of Wikidata datasets used for experiments. 79

5.1. Perplexity and BLEU score after training the ConvS2S model. 82
5.2. BLEU score and Accuracy for the Query Template generation task. 83
5.3. Performance comparison per template between Query Template generator and

Baseline. 83
5.4. Performance of the Individual Entity Linking systems over LC-QuAD 2 valida-

tion. 84
5.5. Results of the Ensemble Entity Linking systems over LC-QuAD 2 validation. . 85
5.6. Results of the Entity Linking systems over QALD-7 (train+test). 86
5.7. Results of the Entity Linking systems over our proposed WikiSPARQL dataset. 86
5.8. Results of the Flair Sequence Tagger. 87
5.9. Results of the Slot Filling system using the standard filling method. 87
5.10. Results of the Slot Filling system using the force filling method. 87
5.11. Perplexity and BLEU score after training the SPARQL Query Generator baseline. 88
5.12. Comparison of performance for the SPARQL Query generator when varying the

EEL system and filling method. 88
5.13. BLEU score and Accuracy for the SPARQL Query generation task. 89
5.14. Performance comparison per template for the SPARQL Query generation task. 89
5.15. SPARQL query generation comparison results with baseline divided by error

cases. 90
5.16. ElNeuQA modules correct cases per template. 91
5.17. Macro measure results for the Question Answering task. 93
5.18. Performance comparison per template for the Question Answering task. . . . 94

viii

Índice de Ilustraciones

1.1. Expected SPARQL query example from a KGQA system. 8

2.1. Semantic Web Stack [91] . 12
2.2. RDF graph representing facts about Gabriela Mistral from Listing 2.1. 15
2.3. Example of an external application of Wikidata using Reasonator. 21
2.4. A general model of Entity Linking based on Wu and He [189] 24
2.5. Flair Sequence Labeling architecture [4]. 35
2.6. Sequence to Sequence model [72]. 37
2.7. Convolutional block structure with a multi-step attention mechanism [61]. . 40
2.8. Example of LC-QuAD 2 question workflow generation [47]. 53

3.1. Question Answering system pipeline. 55
3.2. Query Generation pipeline example. 56
3.3. Entity Linking pipeline example. 60
3.4. Slot Filling pipeline example. 66
3.5. Force Filling case examples. 70

A.1. Multilayer perceptron [72]. 124
A.2. Example of early stopping analysis using validation data [72]. 127
A.3. Recurrent Neural Network architecture example [72] 128
A.4. LSTM memory block with one cell [72]. 130
A.5. Convolutional Neural Network for pattern image classification [136]. 132
A.6. Convolution operation example [136]. 133

ix

x

Chapter 1

Introduction

1.1. Motivation

The volume of knowledge found on the web is growing considerably, so the interest of
many communities is in profiting from that knowledge. Many questions are being asked to
search engines like Google, which serves roughly 4.2 million searches done by users every
minute1. Since most of the data found on the web does not have a standard structure, search
engines do not tend to reply to the question directly but just to retrieve the documents that
might contain the answer. Though many questions can be answered by doing so, many other
more complex questions require a higher level of reasoning that is difficult to achieve by
consulting only unstructured data. Thus, there is still a challenging problem with making
data more accessible, even knowing that its volume is increasing exponentially.

To give semantic meaning to all this information available on the Web in a manner in
which both humans and machines can understand, a common framework is required. Thus,
the Semantic Web [19] was proposed as an extension of the World Wide Web built on
standards set by the World Wide Web Consortium (W3C). The primary purpose of this
initiative is to support a “Web of Data” where data can be searched like in databases, but
at the scope of the Web. The compilation of Semantic Web techniques and tools provides
a framework where applications can query that data, draw inferences using vocabulary, etc.
Thus, the ultimate goal is to extend the variety of tasks that computational systems can
support, while developing trusted interactions over the network.

The Semantic Web establishes a standard method to describe data using the Resource
Description Framework (RDF) [157]. This data model describes resources using statements
of the form subject-predicate-object, also called triples, and can be represented as a direc-
ted edge-labelled graph. A collection of RDF statements is known as a Knowledge Graph

1https://www.internetlivestats.com/

1

https://www.internetlivestats.com/

(KG) [84]. Altogether, these KGs when linked together on the Web give shape to what is
called the Linked Data Cloud [17]: a large amount of interlinked RDF datasets that comprise
more than 30 billion RDF triples. Among the most popular KGs, Wikidata [183] and DBpe-
dia [107] are huge and become more useful and accessible each day for research fields and
applications [120, 128].

Wikidata [183] is a free open Knowledge Graph that can be read and edited by both
humans and machines. Since the Wikimedia Foundation first launched Wikidata in October
2012, it has grown vastly. It has served as a reference resource for many of Wikimedia’s sister
projects, like Wikipedia, the largest virtual encyclopedia on the Web. Wikidata is a valuable
and comprehensive source of knowledge. It is supported mainly by its community and is
designed in a way that people from all over the world can contribute. Many applications
have used Wikidata as an information provider such as Apple’s Siri; it has also been used
for research activities in life sciences and social science, and it even is used by Google to
empower its search engine [120].

Thereafter, for querying this vast amount of data available on the web, a query language
is needed. SPARQL [80] is a query language able to retrieve and manipulate data stored in RDF
format. The main advantages of SPARQL are that it allows for writing queries that follow RDF
specifications and provides a specific graph transversal syntax for querying arbitrary-length
paths in graphs.

While all of this knowledge available in the public domain drives growing interest in doing
research regarding the Semantic Web, there is also a need to have a basic understanding of
how data is structured (RDF) and how to access this data (SPARQL). These requirements
represent a barrier-to-entry for non-expert users. Hence these barriers lead to the broad and
complex challenge of developing intuitive and easy-to-use interfaces for end-users.

Many solutions have emerged to approach this issue, among which natural language in-
terfaces such as Question Answering Systems (QASs) [26, 177, 31] have been receiving much
attention. These systems aim to answer questions posed by humans in natural language, ex-
tracting the answer from one or more sources. There are QASs able to retrieve answers from
an unstructured collection of natural language [26]. However, we are interested in systems
able to construct their responses by querying structured data, like relational databases or
knowledge graphs from the Linked Data Cloud.

More specifically, the task of answering natural language questions using Knowledge
Graphs is known as Question Answering over Knowledge Graphs (KGQA) [31] or Ques-
tion Answering over Linked Data (QALD) [177, 112]. Unger et al. [177] define the QALD
task as follows: “translate the users’ information need into a form such that they can be eva-
luated using standard Semantic Web query processing and inference techniques”. Their work
also describes the types of questions these systems aim to answer, which often focus on defi-
nition questions (“Who was Tom Jobim?”) or factoid questions. These last ones that can be

2

divided into predicative questions (“Who was the first man in space?”), list questions (“Give
me all cities in Germany”) or boolean questions (“Was Margaret Thatcher a chemist?”).

Several Question Answering systems have been developed to address some of the main
challenges in Question Answering, commonly using pattern matching [50, 111], grammar-
based techniques [40, 123], or graph exploration [191, 205] approaches. Although these sys-
tems have shown good results when dealing with a considerable amount of questions, their
performance decreases [90] with questions involving more complex graph patterns or with
vocabulary mismatches caused by the user typing different terms to the ones contained in
the Knowledge Graph from which the information is being retrieved (this issue is also known
as the lexical gap [77]). One example is the question “Which US player is the highest scorer
in World Cups?” which could require complex operations like aggregation and sorting (count
goals, sort and retrieve the maximum scorer) and might have vocabulary mismatches (it is
not made explicit that we refer to FIFA World Cups, or the US might not be registered as
an abbreviation of United States).

Aside from works that have tried to mitigate these problems [77, 66], some approaches that
rely on Semantic Parsing have shown positive results due to recent advances in Deep Learning
applied to Natural Language Processing [8]. Semantic Parsing is the process of mapping a
natural language sentence into a formal representation of its meaning [8]. Some applications
include code generation [149, 196], automated reasoning [99] or query construction [55].
In particular, Andreas et al. [8] discussed how Semantic Parsing could benefit from using
Machine Translation methods, whereby natural language is “translated” into a structured
representation. Following their work, some Neural Machine Translation (NMT) approaches
have brought about a growing interest in applying deep neural networks to Semantic Parsing
problems [30, 44, 204]. In NMT, pairs of sequences are given as input to a Deep Neural
Network model, which is expected to learn the translation model. A natural idea is then to
try to apply the NMT approach for translating Natural Language (NL) to SPARQL, and some
works have begun to explore such techniques [116, 162, 163].

There are multiple challenges relating to converting a NL question to its SPARQL query
representation (NL-to-SPARQL); some of these challenges are directly inherited from the
original NL-to-NL translation problem, while others are distinct. First, there isn’t a one-to-
one mapping for every NL question to a SPARQL query. On one hand, there are multiple ways
to express a question in NL. For example, the question “How far away is the Earth from the
Sun?” can also be rephrased as “What is the distance between the Sun and Earth?”. On the
other hand, questions can be translated to SPARQL in different ways. For example, a question
“What is the largest country in Africa?” might be translated to a query based on population
or area, where one such translation must be chosen, and where both give different answers.
Moreover, one SPARQL query has potentially equivalent queries that will return the same
results (over any data). In the question about US players, for example, we can first retrieve
US players and then count their scores, or vice versa; thus there is a need to establish some
common conventions when designing NL-to-SPARQL systems.

3

Another issue is the lack of corpora for training NL-to-SPARQL models when compared
to the enormous amount of documents in different languages that can be found on the
Web for training NL-to-NL models (e.g. news, blogs, articles, academic documents, etc.).
Generating data for NL-to-SPARQL is not an easy task considering the need for a basic SPARQL
understanding to build such datasets, although there is some work regarding automating
parts of the process of generating NL-to-SPARQL pairs [81, 174]. Furthermore, the queries
required to answer a question change from dataset to dataset, where the SPARQL queries
needed for DBpedia are not the same as those for Wikidata.

One of the most recent works in regards to using NMT for SPARQL is that of the Neural
SPARQL Machine (NSpM) [162], which considers SPARQL as a foreign language. The main
idea is to train an end-to-end learning model to translate any NL expression into a sequence of
tokens in the SPARQL grammar that expresses a query equivalent to the question over a given
dataset. Question Answering systems based on neural networks usually aim to generate the
whole SPARQL query in an attempt to perform the entire process of identifying the relevant
entities along with deducing the KG properties, triples, and operators that would retrieve
the expected answer.

An analysis of the performance of many NMT models on translating NL to SPARQL has
been performed by Yin et al. [197], where eight deep neural network models were tested
over different datasets based on questions over DBpedia. One relevant dataset is the Large
Complex Question Answering Dataset (LC-QuAD 1) [174], consisting of 5,000 complex ques-
tions based on 38 hand-made templates. Another dataset is the DBpedia Neural Question
Answering dataset (DBNQA) [81] that includes almost 900,000 questions based on templa-
tes extracted from questions of the LC-QuAD 1 dataset and the 7th version of the Question
Answering over Linked Data dataset (QALD-7) [178].

Though the performance of these models shows promising potential for constructing mea-
ningful and useful SPARQL queries, they present some key limitations relating to the data
used to train the models. First, despite the fact that many NMT models report positive
results when evaluated over simple and large datasets like the DBNQA dataset [197], which
contains questions with little variation in syntax and phrasing, such regular data do not give
an accurate understanding of the real performance of these systems. In fact, the performan-
ce of such models drops dramatically when evaluated over more complex questions like the
ones included in the LC-QuAD 1 dataset, which might not contain enough questions to learn
accurately [197]. Second, the current models are vocabulary-dependent, which means there
is no capability for recognizing new entities or properties that were not used in the training
data [197]. These issues lead to the constant need to train the model with new, manually
created pairs of NL questions and SPARQL queries.

The first issue can be addressed by building a more comprehensive dataset that has enough
cases for an NMT to learn properly while maintaining an abstraction level that allows us to
respond accurately to complex and diverse questions. Regardless, creating new datasets does

4

not necessarily help with the vocabulary dependency issue, unless we have examples using
every entity and property in the Knowledge Graph, which seems infeasible to generate in the
short-to-medium term. Therefore, an important goal is to maximize the available training
examples, where there is a need to find an alternative approach to complement the parsing
power of NMTs with a system that helps to address vocabulary dependency by extracting
the information NMTs cannot generalize.

For example, NMTs cannot be expected to extract entities from a question and translate
them to their identifiers in the KG. Developing labelled examples for each entity does not
seem feasible, as mentioned before. Plenty of solutions have addressed the entity extraction
task over Linked Data. In particular, the Information Extraction area, which involves the
automatic extraction of implicit information from unstructured or semi-structured sources,
intersects in many ways with the Semantic Web [124]. Some examples are systems that
perform Named Entity Recognition [104], Sequence Labeling [117, 5], or Entity Linking [128,
198, 52, 42] while leveraging Semantic Web resources and/or techniques. In particular, Entity
Linking (EL) systems aim to perform the entire process of identifying entity names in a text,
mapping names to KG resources, and disambiguating them depending on the context of a
given corpus [189]. Considering again the question “Which US player is the highest scorer
in World Cups?”, an EL system could effectively identify the resources associated with the
country US or the FIFA World Cup. Many EL systems [128, 198, 52, 42] have achieved
positive results when linking entities over text and these systems tend to generalize well over
any new corpus.

Furthermore, these Information Extraction tools can be complemented with intermediate
representation of structured queries. An example can be found in a proposed Text-to-SQL
system [55], where given a question in NL, an intermediate representation of an SQL query
is generated, consisting of a SQL template with slots to be filled later with relevant words
identified in the question using Named Entity Recognition tools [134].

We see an opportunity to improve state-of-the-art performance for QASs in the context
of RDF/SPARQL by exploring the idea of combining the parsing capacity of NMT to get an
intermediate representation of a SPARQL query, with the entity extraction and disambiguation
power of Entity Linking systems to identify the relevant entities in questions, decreasing the
dependency of current QA systems on training examples that cover the full vocabulary
of a Knowledge Graph. Additionally, there are many challenges to address – as we have
previously mentioned – like how to deal with different representations of the same question
(e.g. paraphrased questions), what canonical representation of SPARQL queries we should
adopt, how to evaluate that a QAS is fulfilling its purposes, among others.

1.2. Hypothesis
In this work, we propose the following hypothesis: a combination of Information Extrac-

tion with Semantic Parsing can develop a Question-Answering system that outperforms a

5

system that relies only on Semantic Parsing in the Question Answering over Knowledge
Graphs task.

In order to measure performance, this work will use metrics based on two perspectives:
one focuses on the final answers that are derived from Question Answering over Knowledge
Graphs (KGQA) benchmarks (i.e., a Question Answering-based evaluation), and the second
focuses on how close is the generated SPARQL query compared with the expected query (i.e.,
a Machine Translation-based evaluation).

The scope of this work will be limited to answering questions in English, but similar
techniques should be applicable in any other language assuming the availability of similar
datasets for that language. In the same way, this hypothesis will be explored in the con-
text of questions over Wikidata, so the results might differ for other Knowledge Graphs.
Nevertheless, the selected approach should be generalizable to other domains.

1.3. Objectives

General Objective

We aim to improve upon state-of-art Question Answering systems based on Neural Se-
mantic Parsing models by reducing vocabulary dependency on the data used in the learning
process of such models.

Specific Objectives

The specific objective is to build a Question-Answering system over Wikidata in English,
that relies on Entity Linking and Neural Machine Translation systems, with an intermediate
system that combines both tools. Our initial claim is that such a system can improve upon
the state-of-the-art Neural Machine Translation approaches found in the literature.

1.4. Methodology

Accomplishing the proposed objectives involves the following tasks:

• Survey previous work regarding Neural Machine Translation, Entity Linking, and Ques-
tion Answering approaches that rely on Neural Machine Translation.

• Define a benchmark that should include KGQA datasets for training, validation and
testing along with metrics to compare all involved systems.

• Define a baseline system for Question Answering based on Neural Machine Translation.

6

• Define a pipeline process to convert a natural language question into a SPARQL query
by combining Entity Linking techniques with Neural Machine Translation.

• Implement a Question-Answering system over Wikidata in English based on the desig-
ned pipeline.

• Validate the proposed system by comparing it with baseline approaches over the pro-
posed benchmark.

1.5. Contributions
We present the three main contributions anticipated for this work.

Benchmark on Question Answering over Wikidata

After a bibliographic revision, we will define a benchmark as a combination of three
components: a baseline system, a set of metrics to compare with the baseline, and one or
more datasets with which to conduct experiments.

The baseline consists of one of the Neural Machine Translation systems described by Yin
et al. [197]. From the eight models that were compared in this work, the ConvS2S model [61]
significantly outperforms all the other models . Following these results, a baseline QAS is
implemented using the Fairseq library [137], which includes a ConvS2S implementation over
Pytorch2 ready to use for training and translation. The model is trained using the same
settings described by Yin et al.

The primary dataset used is the LC-QuAD 2 dataset, which contains around 30, 000 ques-
tions over Wikidata [47]. A quality check is performed over this dataset, where cases that
contain either invalid questions or invalid SPARQL queries are filtered. The DBNQA dataset [81]
is considered as well, where a mapping process is applied to obtain queries over Wikidata.
The queries that cannot be mapped are ignored. The Question Answering over Linked Data
(QALD) [112] dataset is also used as part of this benchmark. In particular, the 150 questions
included in QALD-7 [178] that can be answered over Wikidata are considered. Besides these
datasets, we build a new dataset of 100 questions over Wikidata. Only LC-QuAD 2 and the
mapped version of DBNQA are used for training and validation. The other datasets are used
only for testing purposes. All datasets are arranged to follow a common format, which will
permit an easy evaluation of every subtask performed for the proposed Question Answering
system (Entity Linking, Query Template Generation, Slot Filling) along with the main task
(Question Answering over Knowledge Graphs).

The metrics used for comparing systems are based on the ones used for comparing Neural
Machine Translation systems and the ones found on the QALD benchmark. The first set of

2https://pytorch.org/

7

https://pytorch.org/

metrics includes the BLEU score, Perplexity, and Accuracy by comparing an exact match
on the SPARQL query. On the other hand, the QALD benchmark uses Precision, Recall, and
F1-score over the answers obtained when executing the output SPARQL query. Additionally,
we propose a fine-grained analysis over each case where predicted queries are evaluated
with respect to the following components: correct entities, correct slots, and correct query
templates.

Question Answering system over Wikidata

The main contribution of this work is a Question Answering system that translates natural
language questions in English to SPARQL queries executable on Wikidata endpoints. See an
example of an expected SPARQL query in Figure 1.1. The implementation of this system
is divided into the construction of three modules: a Query Template generator, an Entity
Linking system, and an intermediate Slot Filling system.

Figure 1.1: Expected SPARQL query example from a KGQA system.

The Query Template generator produces incomplete SPARQL queries (which we call Query
Templates) that contain “placeholders” in the position where entities are supposed to be
(e.g. placeholders <sbj_1> and <obj_1> instead of entities Q80871 and Q49757 of the query
shown in Figure 1.1). This module is built using the same model used to implement the
baseline QAS. However, the training data is adapted to generate Query Templates instead
of the complete query. This is achieved by removing the entities from the output SPARQL
queries included in the selected datasets such that the entities can rather be found by Entity
Linking.

The role of the Entity Linking module is to recognize the relevant entities contained in
each question (e.g. identify that concepts “Gabriela Mistral” and “poet” corresponds to the
entities Q80871 and Q49757 in Figure 1.1) that are used to fill the Query Template. We
implement various entity retrieval systems using one or more of the existing Entity Linking
systems that have APIs available. The first variant is to use each EL system individually,
which includes DBpedia Spotlight [128], AIDA [198], TAGME [52], and OpenTapioca [42].
All of these systems, except for OpenTapioca, only work for DBpedia; therefore an extra
mapping layer is implemented to map DBpedia entities to Wikidata entities. Two ensem-
ble EL approaches are then proposed: one that prioritizes systems with higher Precision
and another that implements a voting mechanism. We keep the variant that performs best
according to the experiments that are explained in the Experimental results subsection.

8

Additionally, a Slot Filling module is built by combining a Sequence Tagger model of the
Flair library [4] and a filling algorithm proposed in this work. Training the Sequence Tagger
model requires building training data based on the selected datasets. Intuitively speaking,
a Query Template may have multiple slots and multiple entities, where the Slot Filling
module decides which entity should fill which slot (e.g. to infer that the concept “Gabriela
Mistral” corresponds to the placeholder <sbj_1>, therefore the entity Q80871 should replace
the occurrences of <sbj_1> in the Query Template).

Experimental results

We conduct several experiments for validating each implemented module (Entity Lin-
king, Slot Filling, and Query Template Generation) along with experiments over the defined
benchmark for the end-to-end Question Answering process.

The Entity Linking systems are compared using Precision, Recall, and F1-score on the
entities for each case on the dataset used for training. Testing is conducted over QALD-7 and
our proposed dataset. The slot filling system is validated using Precision, Recall, and F1-
score over the identified BIO labels (a common tagging format for sequence labeling tasks)
over LC-QuAD 2 and the mapped DBNQA dataset. The query generator system is validated
using BLEU score, Perplexity, and Accuracy over LC-QuAD 2 and the mapped DBNQA dataset.
When training the query generator system, many split methods are tested according to the
methodology proposed by Finegan-Dollak et al. [55] for Text-to-SQL systems. The end-to-
end Question Answering system is tested over all the datasets using the metrics described
in the Benchmark on Question Answering over Wikidata subsection.

1.6. Work Structure

This worked is divided into the following chapters:

1. In Chapter 2, we describe the theoretical framework enclosed on this work. This chapter
the Semantic Web, Information Extraction methods and how they relate with Semantic
Web technologies, Semantic Parsing applied to translating natural language to SPARQL,
and the current state and challenges of the Question Answering over Knowledge Graphs
task.

2. In Chapter 3, we give an overview of the proposed Question Answering system for
this work. This includes a general explanation of the pipeline proposed to generate a
SPARQL query, and more specific details on how each component is designed.

3. In Chapter 4, we go into details about the experiments we run in this work. We present
the research questions we aimed to answer, the baseline we compare our system with,
and the metrics used to quantify the performance of each system.

9

4. In Chapter 5, we present the results derived from running the proposed experiments.
Aside from that, we include a brief discussion and analysis of the results.

5. In Chapter 6, we summarize the conclusion of this work, discuss its limitations and the
future work regarding Question Answering over Knowledge Graphs.

10

Chapter 2

Theoretical Framework

2.1. Semantic Web

2.1.1. Web of Data

During the short history of the World Wide Web, we have greatly benefited from how its
content has been increasing every day while serving multiple purposes. This vast amount of
knowledge has become humanly impossible to traverse, so we rely on machines to process the
content of documents automatically. As Hogan mentions, machines require the data to fulfill
two primary requirements in order to be able to process them automatically in a meaningful
way: to have a machine-readable structure and semantics [91]. Unless a more “formal” notion
of structure and semantics is provided, machines can not be used to their full potential.

Various standards have emerged to partially structure the Web’s content, such as XML,
CSV, or JSON. However, structured content without some semantics does not permit ma-
chines to do much more than split the content up by its delimiters and load its structure.
Some other standards define semantic meaning for their structure, where some prominent
examples are HTML, RSS or XML Schema (XSD), but often the semantics are defined in a
human-readable way, for example, to describe how certain HTML elements should be ren-
dered in a browser. Though these markup-based specifications provide a set of terms that
often serve a singular purpose within the context of a given application, their interpretation
tends to differ significantly for the respective consumer applications.

The multiple purposes that standards like HTML can serve are not able to address some
of the shortcomings of the current Web. Since content is often created to serve specific
functionalities in the context of a given site, much of this content ends up not being directly
reusable, high levels of redundancy appear or it cannot be integrated with other sites. In an
effort to address these limitations, the Semantic Web was proposed.

11

The Semantic Web is designed as an extension of the current World Wide Web so as
to enable the creation, sharing, and intelligent re-use of machine-readable content on the
Web. The inception of the modern notion of the Semantic Web is founded on two major
milestones: the original W3C recommendation of the first Resource Description Framework
(RDF) standard defining the core data model [105], and the introduction of the vision for the
Semantic Web outlined by Berners-Lee et al. [19].

The vision of the Semantic Web can be represented through the Semantic Web Stack,
first conceived by Berners-Lee et al., as seen in Figure 2.1. The lower levels describe the
foundational elements of the Semantic Web which are aligned with the Web itself. First, the
Web needs some standard to map from binary-streams and storage to textual information, so
it relies on Characters from the standard Unicode character-set. Then, Identifiers respond
to the main purposes of denoting any concept or concrete thing. The natural choice is to
use Uniform Resource Identifiers (URI), which is the native standard for identification on
the Web, or a recently adopted generalization of URI, Internationalized Resource Identifiers
(IRI), which additionally support unescaped Unicode strings. The Syntax layer serves the
objective of allowing machines to automatically parse content into its elementary components
by defining syntaxes with formally defined grammars. For example, one of the most common
syntaxes used to encode Semantic Web data is the Terse RDF Triple Language (Turtle)
syntax [15], based on the Notation3 (N3) syntax [18].

Figure 2.1: Semantic Web Stack [91]

The next set of layers forms the core of the Semantic Web. The Data Model layer
provides a canonical representation where machines can exchange machine-readable data in

12

a generic framework. The core data-model for the Semantic Web is the Resource Description
Framework (RDF) [121]. In order to bring some meaning to the RDF content, it requires formal
languages whose meta-vocabulary complement the RDF data-model by providing well-defined
semantics. These languages correspond to the Schema & Ontologies layer, where the
RDF Schema (RDFS) [105] and Web Ontology Language (OWL) [125, 69] standards are the
essential languages integrated as part of the current Semantic Web. Eventually, the content
described in RDF needs to be processed by declarative querying and rules languages that
serve many purposes, like generating results for user interfaces or inferring novel RDF data.
The Querying & Rules layer is where the querying and rules standards for the Semantic
Web are defined. In this case, the SPARQL Protocol and RDF Query Language [147, 51, 80]
defines the querying standards and the Rule Interchange Format (RIF) [101] defines the rules
standards.

The top and side of the stack in Figure 2.1 are layers yet to be realized. Though many
proposals have been made in the research literature, no mature standards or tooling have
emerged. The remaining top layers aim to combine the described low-level technologies into
a unifying language to execute queries and rules over knowledge represented in RDF (Unifying
Logic), provide proofs to validate procedures or information used (Proof), and determine the
trustworthiness of information sources (Trust). The Cryptography side layer is centered on
cryptographic techniques for verifying and allowing access control mechanisms.

Providing more details on this broad overview of the Semantic Web, we start by focusing
on how data is represented and how querying the content is described by any selected source.
Then, in the following sections, we go deeper into understanding the Semantic Web data-
model, RDF, and its querying standard, SPARQL.

2.1.2. Resource Description Framework

The Resource Description Framework (RDF) standard [121] provides a data-model
on the Semantic Web, which can be serialized using the Turtle syntax [15]. Having this
data-model allows for any content framed in RDF to be generically processed and indexed
by external systems, whatever its topic or origin. The atomic elements that constitute the
RDF data-model are called RDF Terms. RDF does not follow the Unique Name Assumption
(UNA), so two RDF terms can refer to the same referent. The set of RDF terms are divided
into three disjoint subsets: URIs, Literals and Blank Nodes.

As mentioned previously, Uniform Resource Identifiers serve as identification for any
resource. An example to identify the country Chile in DBpedia [107] is the URI http:
//dbpedia.org/resource/Chile. A shorter version can be used by using the CURIE-style
shortcuts [20], where a re-usable prefix can be defined: @prefix dbr: <http://dbpedia.
org/resource/>. This way, the identifier of Chile can be abbreviated to dbr:Chile.

Literal values represent lexical values and are divided into two categories. Plain literals

13

http://dbpedia.org/resource/Chile
http://dbpedia.org/resource/Chile
http://dbpedia.org/resource/
http://dbpedia.org/resource/

are a set of plain strings, such as “Hello World”, and can include an associated language
tag, such as “Hello World”@en. Typed literals are literals that include a datatype, such as
“8”^^xsd:int. Datatypes are identified by URIs (such as xsd:int) and borrow most of the
datatypes defined for XML Schema [142]. Datatypes are often used for data validation or
mapping.

Blank Nodes are used as existential variables that denote the existence of some resource
without having to explicitly reference it using a URI or literal. The scope of a blank node is
limited to the local RDF document where it is defined, so it cannot be referenced elsewhere.
In Turtle, blank nodes can be referenced explicitly with an underscore prefix _:bnode1 or
implicitly in a variety of other manners.

RDF terms are then combined together to form RDF Triples. As its name suggests, a triple
is a 3-tuple of RDF terms. The three components of a triple are commonly called subject,
predicate and object. RDF triples can be seen as an atomic representation of a “fact” or
“claim”, e.g. “Santiago is the capital city of Chile”. Typically each RDF triple position fulfills
a certain role: the subject is the primary resource that is being described (either a URI
or a blank node), the predicate is the relation between the subject and the object (must
be a URI), and the object is the value of the relation (any of the mentioned RDF terms).
For instance, we illustrate the Turtle representation of a set of RDF triples from DBpedia in
Listing 2.1.

PREFIX DECLARATIONS
@prefix dbr: <http://dbpedia.org/resource/>
@prefix dbo: <http://dbpedia.org/resource/>
@prefix dbp: <http://dbpedia.org/resource/>
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

RDF TRIPLES
dbr:Gabriela_Mistral rdfs:label "Gabriela Mistral"@en .
dbr:Gabriela_Mistral dbp:occupation dbr:Poet .
dbr:Gabriela_Mistral dbo:birthPlace dbr:Vicuña,_Chile .
dbr:Gabriela_Mistral dbo:awards dbr:Nobel_Prize_in_Literature .
dbr:Gabriela_Mistral dbo:awards dbr:National_Prize_for_Literature_(Chile) .
dbr:Vicuña,_Chile rdfs:label "Vicuna, Chile"@en .
dbr:Vicuña,_Chile dbo:populationTotal 25085 .
dbr:Vicuña,_Chile dbo:isPartOf dbr:Elqui_Province .
dbr:Vicuña,_Chile dbo:isPartOf dbr:Coquimbo .
dbr:Vicuña,_Chile dbo:country dbr:Chile .

Listing 2.1: Set of RDF triples about Gabriela Mistral in DBpedia using Turtle syntax.

Listing 2.1 shows facts about Gabriela Mistral, a famous Chilean poet, and how those facts
are structured as a set of RDF triples, where each triple is separated by a dot symbol. The
use of CURIE-style prefixes helps to simplify the content and make it easier to understand
for a human reader [20]. Moreover, Listing 2.2 shows how Turtle allows for abbreviating the

14

content by grouping triples with common subjects (using the ‘;’ symbol) or predicates (using
the ‘,’ symbol).

...
RDF TRIPLES
dbr:Gabriela_Mistral rdfs:label "Gabriela Mistral"@en ;

dbp:occupation dbr:Poet ;
dbo:birthPlace dbr:Vicuña,_Chile ;
dbo:awards dbr:Nobel_Prize_in_Literature, dbr:National_Prize_for_Literature_(

↪→ Chile) .
dbr:Vicuña,_Chile rdfs:label "Vicuña, Chile"@en ;

dbo:populationTotal 25085 ;
dbo:isPartOf dbr:Elqui_Province , dbr:Coquimbo ;
dbo:country dbr:Chile .

Listing 2.2: Set of RDF abbreviated triples about Gabriela Mistral in DBpedia.

Given the triple-based structure of RDF triples, it is possible to represent entire datasets
as an RDF graph, also known as a Knowledge Graph (KG): a directed labeled graph where
subjects and objects are represented by nodes, and predicates are represented by the directed
edges that bond two nodes. The RDF graph of the example shown above can be drawn as in
the diagram of Figure 2.2, where by convention ellipses correspond to URIs or blank nodes,
and rectangles symbolize literals.

Figure 2.2: RDF graph representing facts about Gabriela Mistral from Listing 2.1.

Besides RDF triples and RDF graphs, RDF standards provide a rich set of built-in vocabulary
terms under a core RDF namespace, which helps to standardize frequently used RDF patterns.
One popular term is rdf:type, which helps to assign resources sharing certain commonalities
into classes. For example, we can denote dbr:Vicuna_Chile as a city by combining it with
the predicate rdf:type and the object dbr:City. Another example is the term rdfs:label
that comes from RDF Schema [27], which provides other resources for describing relations
such as subproperties or subclasses. Though our work is not focused on the use of the
Web Ontology Language (OWL) [69, 125], it is worth mentioning that it also adds a wealth
of new vocabulary to describe new relations between resources like equivalences, disjointness,
inverse properties, among others.

15

Ultimately, there are numerous syntaxes for writing RDF apart from Turtle [15], among
which we can name RDF/XML [14], N-Triples [71], RDFa [85, 2], and JSON LD [164].
However, no matter what syntax is chosen, every one is represented in the same RDF data
model; thus it is possible to convert any RDF content in one syntax to another while keeping
the same RDF data.

2.1.3. SPARQL Query Language

The SPARQL protocol defines how SPARQL queries retrieve results over the RDF data-
model [51]. These standards became W3C Recommendations in 2008 [147] and then were
extended in 2013 in the SPARQL 1.1 version [80] superseding the previous W3C Recom-
mendations. Some SPARQL query features and keywords are similar to the ones found in the
Structured Query Language (SQL), though SPARQL is designed for interacting with RDF data.

PREFIX DECLARATIONS
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
DATASET CLAUSE
FROM <http://dbepdia.org/data/Gabriela_Mistral.ttl>
RESULT CLAUSE
SELECT ?people ?award
QUERY CLAUSE
WHERE {

?people dbo:birthPlace dbr:Vicuña,_Chile ;
dbo:award ?award .

}
SOLUTION MODIFIERS
LIMIT 2

Listing 2.3: SPARQL query for getting awards won by people who were born in Vicuña.

There are five main components that describe a SPARQL query. First, Prefix Declara-
tions serve as shortcuts for later in the query, similar to the Turtle shortcuts. Following
prefixes, the Dataset Clause allows for specifying one or more RDF graphs over which the
query should be executed. When no dataset clause is specified, query patterns are matched
against the default graph which usually corresponds to all of the data loaded and indexed.
The Result Clause indicates what type of query is being executed and what results are
expected. The most relevant part is the Query Clause, where the query patterns to match
against the data are specified and used to generate variable bindings. Finally, the Solution
Modifiers permit to order, slice or paginate the results. Note that the only mandatory part
is the result clause, though most queries also include at least one query clause. An example
of a SPARQL query is represented in Listing 2.3, where we are looking for which awards people
who were born in Vicuña have won.

For example, if the RDF triples shown in Listing 2.1 were contained in the RDF graph <http:
//dbpedia.org/data/Gabriela_Mistral.ttl>, the results expected from the SPARQL query

16

http://dbpedia.org/data/Gabriela_Mistral.ttl
http://dbpedia.org/data/Gabriela_Mistral.ttl

in Listing 2.3 would be as shown in Table 2.1.

?people ?award
dbr:Gabriela_Mistral dbr:Nobel_Prize_in_Literature
dbr:Gabriela_Mistral dbr:National_Prize_for_Literature_(Chile)

Table 2.1: Results from SPARQL query example in Listing 2.3.

There are four types of SPARQL queries, which are defined by the first keyword used in the
Result Clause. The example shown above is a SELECT query, which requests a list of bindings
for variables specified in the Query Clause. Since a SELECT query returns duplicate results by
default, it can include either the DISTINCT keyword to filter duplicate results, or the REDUCED
keyword that may allow duplicates such that the engine can choose whatever it deems to be
more efficient. An ASK query returns a boolean value indicating whether or not the query’s
results are non-empty. A CONSTRUCT query provides an RDF template with placeholders to be
filled later, thus returning an RDF graph according to those inserted variables. The last type
is the DESCRIBE query, which provides an RDF description for a particular RDF term. For this
work we only focus on SELECT and ASK type queries.

Knowing how to define the content inside a Query Clause is crucial in order to specify
what results a SPARQL query should return. There are many core features defined over the
basic graph patterns that are used to create complex query patterns in query clauses. Among
these patterns, we highlight the FILTER keyword that serves to establish conditions that a
query solution should match. These conditions can be constructed from a broad arsenal of
tools: arithmetic operators and comparators, built-in functions, casting, boolean connectives
and even user-defined functions. We also mention the UNION operator, that allows joining
results from two groups of query patterns. Another important feature is the OPTIONAL feature,
which allows for matching data if available (if not, the corresponding result is still returned,
where the variables exclusive to the OPTIONAL clause are left unbound).

After retrieving results from the Query Clause, such results can be divided or modified.
The ORDER BY operation sorts results in ascending (ASC) or descending (DESC) order based
on one or more variables; and the LIMIT keyword restricts the amount of results to return.
Finally, the OFFSET clause allows the query to skip a certain number of results.

Besides the basic operations provided by the original SPARQL standard, the later update to
SPARQL 1.1 [80] brought a wide-range of new features that increase the expressiveness and
capabilities of this query language. Some core additions are property paths, aggregation,
binding variables, subqueries, updates, new format outputs (CSV, TSV, JSON), among
others. For this work we want to highlight the use of property paths and aggregation that
will be often used. Property paths allow the user to match paths of arbitrary length in an
RDF graph using regular expressions. Aggregation techniques include operations like count,
max, min, sum, etc.; and can be applied over query results grouped by common terms.

17

Though many other SPARQL features are left to be mentioned, we focused on the features
described above since those are the important ones for the development of this work.

2.1.4. Linked Open Data Cloud

Having briefly mentioned some core components of the Semantic Web, we have scratched
just a tiny portion of what the Semantic Web concept means, and how it can be deployed
on the Web. Most of what defines the use of the Semantic Web on the Web itself resides
in understanding Linked Data. The early attempts to publish RDF on the Web tended to
produce large dumps of data rarely interlinked with other RDF datasets and using different
conventions. These issues ended up leaving entire isolated islands of RDF datasets that were
difficult to access and with little chance of being discovered by other communities. Therefore,
Linked Data emerged as a set of principles and best practices [17] to provide an environment
where Semantic Web standards can be effectively deployed on the Web.

The four Linked Data principles arise from the Web Design Issues document published by
Berners-Lee [17]. According to this document, these principles are: (1) use URIs as names for
things, (2) use HTTP URIs so those names can be looked up, (3) return useful information
upon lookup of those names, and last (4) include links by using URIs that dereference to
remote documents.

Besides these principles, there is an emphasis on publishing data that can be easily pro-
cessed, reused and exchanged between machines. As an approach to bootstrap Semantic Web
publishing, a 5-star system [17] was promoted to describe the quality of published RDF data.
Each star corresponds to one of the following considerations: (1) publish data under an open
license, (2) publish structured data, (3) use non-proprietary formats, (4) use URIs to identify
things, and (5) link the published data to other data.

A community project named “Linking Open Data”, supported by W3C and inspired by the
growth in Open Data, emerged to promote these Linked Data principles [84]. The community
project aims to introduce the benefits of Semantic Web technologies to the Open Data
movement and to bootstrap the Web of Data by including many emerging open datasets.
The community published guidelines are based on the core principles mentioned before.
Among those guidelines, the main ones are:

• Dereferencing practices: describes how to identify and perform lookups for either
entities or documents. This includes recommendations on indirect URIs to signify dis-
tinctions on a HTTP level or providing as detailed an RDF description as possible when
dereferencing resources.

• Linking Aliases: allow the use of multiple URI aliases that refer to the same thing.
For example, owl:sameAs links can be used to specify equivalence between resources
in different datasets.

18

• Describing Vocabularies Terms: promotes the shared use of common vocabularies
of class and property terms. A common example is to use FOAF to describe people.

• Provision of SPARQL Endpoints: though not required, providing a SPARQL end-
point for a given Linked Data site gives consumers a single-point-of-access to query
over the merge of contributions on that site.

Based on these standards and guidelines, the Linking Open Data Cloud, a set of more
than 300 different interlinked RDF datasets, has been constantly growing and including a
wider range of topics. Some of the most relevant datasets are DBpedia [107], whose content is
mostly based on Wikipedia articles, Freebase [24], a dataset previously supported by Google,
and Wikidata [183], a large dataset supported by its community. Our work is mainly focused
on the latter knowledge graph, which we will introduce in the next section.

2.1.5. Wikidata

As described by Vrandečić and Krötzsch [183], Wikidata is a free collaborative Know-
ledge Graph founded by the Wikimedia Foundation1 in October 2012. Given the constant
growth of its sister project Wikipedia, one of the most popular online encyclopedias, Wiki-
data is introduced as a new multilingual “Wikipedia for data”.

Despite Wikipedia’s rich amount of data, consisting of more than 30 million articles
in at least 287 languages, it started to face serious limitations in terms of providing data
easily to the community [183]. There was the lack of direct access through query services or
downloadable data exports, the same information often needed to be manually maintained in
the same articles across many languages and across many articles within a single language,
among others limitations. Wikidata aims to overcome many of Wikipedia’s limitations by
managing its data centrally.

Wikidata offers many features that make it an attractive and potentially useful resour-
ce for sharing information and connecting communities. Some aspects to consider about
Wikidata are:

• Openly editable: allows any user to extend and edit the stored information.

• Community control: contributor community control that not only supervises the
data being published but also the schema of the data.

• Plurality: though many facts can be disputed or be uncertain, Wikidata provides
mechanisms to organize conflicting data for coexisting together.

• Secondary data: gathers facts published in primary sources including references to
these sources.

1https://wikimediafoundation.org/our-work/wikimedia-projects/

19

https://wikimediafoundation.org/our-work/wikimedia-projects/

• Multilingual data: all data have universal meaning and most of it is not tied to a
single language. There is only one universal version of Wikidata.

• Easy access: data published under liberal legal terms are made easily accessible th-
rough web services, allowing the widest possible reuse.

• Continuous evolution: Wikidata grows with its community of editors and developers,
so new features are constantly being added.

Wikidata has its own data model but further offers exports that follow the Semantic
Web standards [49]. To identify items, Wikidata provides unique IDs, which are highly
reusable and provide unambiguous definitions that do not depend on language labels. The
same example of the entity Chile mentioned before is now represented in Wikidata as http:
//www.wikidata.org/wiki/Q298.

PREFIX DECLARATIONS
@prefix wd: <http://wikidata.org/wiki/>
@prefix wdt: <http://wikidata.org/prop/direct/>
@prefix p: <http://wikidata.org/prop/>
@prefix pq: <http://wikidata.org/prop/qualifier/>
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

RDF TRIPLES
Gabriela Mistral
wd:Q80871 rdfs:label "Gabriela Mistral"@en ;

wdt:P106 wd:Q49757 ;
wdt:P19 wd:Q201007 ;
wdt:P166 wd:Q37922, wd:Q860699 .

Vicuna
wd:Q201007 rdfs:label "Vicuña"@en ;

p:P1082 _:population2017 ;
wdt:P131 wd:Q721224 ;
wdt:P17 dbr:Chile .

_:population2017 pq:P1082 25085
Elqui Province
wd:Q721224 wdt:P131 wd:Q2121 .

Listing 2.4: Set of RDF triples about Gabriela Mistral in Wikidata.

Since some facts cannot be directly expressed by simply using the property-value conven-
tion, like the population of Chile across different years, Wikidata also provides additional
subordinate property-value pairs called “qualifiers”. Qualifiers can be used to state contex-
tual information such as validity time or ternary relations (e.g. cast members of a movie
with their role). Another way to understand qualifiers is by looking at Wikipedia infoboxes
which have a similar data representation.

2https://reasonator.toolforge.org/?&q=80871

20

http://www.wikidata.org/wiki/Q298
http://www.wikidata.org/wiki/Q298
https://reasonator.toolforge.org/?&q=80871

Figure 2.3: Example of an external application of Wikidata using Reasonator2.

For a better understanding, let us recall the same data about Gabriela Mistral, but now
using Wikidata resources, as shown in Listing 2.4. Since different knowledge graphs do not
necessarily represent the same information in the same way, we can appreciate slight diffe-
rences like how the city Vicuña is described. In this case, Vicuña is not directly represented
as part of Coquimbo but instead only the Elqui Province. Nevertheless, both representa-
tions are intrinsically correct since both are portraying the same fact. Another difference is
the use of a Wikidata property qualifier to denote that the population for Vicuña shown in
Listing 2.4 is the population of 2017, in contrast to the DBpedia representation, shown in
Listing 2.2, which does not show that fact.

Ultimately, the data in Wikidata lends itself to numerous applications on very different
levels of data integration. Wikidata provides many language labels and descriptions for many
terms in different languages, which allows any service to present and/or or translate infor-
mation for various audiences. Some applications are built to access Wikidata’s data more
conveniently and effectively. One example is illustrated by Figure 2.3, showing information

21

about Gabriela Mistral retrieved by the data browser Reasonator using the Wikidata API.
Additionally applications can be enriched with information provided by Wikidata, such as
how Google Maps uses Wikidata’s geographical labels to enhance its application interface.

On a more advanced level, many research analyses can be performed over the information
in Wikidata in order to derive new insights beyond its surface data. A couple of potential
examples are analyses using logical reasoning to understand intrinsic meaningful relationships
among entities, or statistical evaluations over the data to analyze biases like the ones that
involve language coverage [78] or gender balance [184]. Wikidata is already an important
platform and has the potential to be a major resource for both researchers and developers [29,
182].

2.2. Information Extraction

2.2.1. Information Extraction methods with Semantic Web techno-
logies

As the Semantic Web aims to make structured data available enabling high levels of
automation, there are still some challenges regarding the increasing demand for informa-
tion. There is still a gap between the coverage of structured and unstructured data on the
Web [145]. However, making high-quality annotations on unstructured data is not a trivial
task because it requires processing vast amounts of information that is constantly changing.

Thus, automatic techniques for extracting and annotating information have gotten more
attention in the context of the Semantic Web. As described by Martinez et. al., Information
Extraction (IE) refers to the automatic extraction of implicit information from unstructured
or semi-structured sources [124]. IE methods are used to identify entities, concepts and/or
semantic relations implicit in an input source, typically a text in natural language.

Many systems have been developed to automate the extraction or enrichment of Semantic
Web resources such as ontologies, knowledge graphs, etc. These systems are often based on
Information Extraction methods which usually rely on techniques from areas such as Natural
Language Processing, Machine Learning and Information Retrieval.

The combination of tools from the Semantic Web and Information Extraction areas pre-
sents two perspectives: using Information Extraction to populate the Semantic Web, or using
Semantic Web resources to improve Information Extraction processes. In this work we fo-
cus on the last perspective mentioned, in particular how to extract and link entities over
unstructured input sources (such as natural language questions).

An entity is understood as an atomic element within a Semantic Web Knowledge Graph
or ontology. Entity Extraction & Linking (EEL) is then the task of identifying mentions
in a text or document, and linking them as entities to one or more reference knowledge

22

graphs. EEL is typically divided into two main steps: a recognition stage where relevant
named entities are identified, and a disambiguation stage, where entities are mapped to
candidate resources in the Knowledge Graph and subsequently ranked. Entity extraction
often uses off-the-shelf Named Entity Recognition (NER) tools to recognise relevant entities.
After extraction, Entity Linking follows, where the disambiguation of the spotted mentions
links each mention to an identifier in a target knowledge graph, and may include a score or
weight calculation that denotes the confidence or support over the output annotations. We
now discuss the Entity Linking process in more detail.

2.2.2. Entity Linking

Entity Linking is the task of linking mentions in text to their corresponding entities
in a Knowledge Graph (e.g. Wikipedia, Wikidata, DBpedia) [189]. Aside from extracting
entities from a knowledge graph, a disambiguation step is also needed. For example, for the
question “Has Claudio Bravo played for Manchester City FC?”, Entity Linking with respect
to Wikidata should link the mention “Claudio Bravo” to the Chilean football goalkeeper
Claudio Bravo (Q313161) instead of the Chilean painter Claudio Bravo (Q491787), given the
context of the sentence (a person playing in a football club). Some applications of Entity
Linking involve fields such as information retrieval [37, 22, 25] knowledge fusion [45, 23], or
Knowledge Graph population [150, 46, 131].

Commonly, the entity linking process is divided into three modules: candidate entity
generation, candidate entity disambiguation and linking the result. A formal description of
Entity Linking according to Wu and He [189] is the following: Given a set of documents
d = {d1, d2, . . .} and a Knowledge Graph K, we can get a mention set M = {m1,m2, . . .}
using a Named Entity Recognition tool. For each mi ∈ M , we can get a candidate set
C = {c1, c2, . . .} from a knowledge base. The goal of Entity Linking is to choose an entity
from c ∈ C for each mention m ∈M . If score(m, c) is below τ (τ is a threshold) for all c ∈ C,
then the target entity of m is Not In Lexicon (NIL); otherwise, m will be linked to c′ such
that score(m, c′) = max{score(m, c) | c ∈ C}. Figure 2.4 shows a general model including
each phase and the formal description mentioned.

The first module selects the candidate entities for each mention identified in the text and
finds related entities in the knowledge base. For example, Claudio Bravo is related to the
entities Claudio Bravo (football goalkeeper) and Claudio Bravo (painter).

The second module ranks the candidate entities by combining different features of entities
and assigning scores to each candidate. Some features could be entity popularity, entity type,
similarity between names or context in the query, topic similarity and a combination of several
features. In the example, Claudio Bravo (football goalkeeper) should have a higher score than
Claudio Bravo (painter) due to the football-related context of the sentence.

The last module selects the target entity for each mention according to the ranking derived

23

Figure 2.4: A general model of Entity Linking based on Wu and He [189]

from the previous module. The candidates with the highest score per mention are selected
among the candidates whose scores are above the threshold. If scores from all candidates are
below the threshold, some systems return a NIL clustering [94], although we will work with
systems that directly discard results that do not satisfy the threshold.

There are various existing methods for addressing candidate entity generation and disam-
biguation. The methods for candidate entity generation can be divided into methods based
on dictionaries [203, 79], direct search [126, 46] and probabilistic methods [60, 138]. On the
other hand, the methods for candidate entity disambiguation can be divided into methods
based on similarity computation [38, 28], machine learning [60, 203] and graphs [70, 79].

One of the main difficulties in Entity Linking is the high ambiguity of entity mentions,
which makes it more difficult to understand the meaning of entity mentions. These ambi-
guities include polysemies, which refer to mentions that correspond to many entities (e.g.
Claudio Bravo) or multiword synonyms, which refer to entities that may have many kinds
of surface forms (e.g. Manchester City FC is also known as The Citizen or The Sky Blues).
Another problem happens when selecting entities in the linking results phase since the th-
reshold is selected manually and can lead to the problem that correct targets can be below
the threshold, thus being discarded.

Entity Linking evaluation criteria are usually based on Precision, Recall and F1-score. For
each of these metrics there is a micro measure and a macro measure [36]. The macro measure
gives equal importance to each document since it first calculates the relevant measure over
each document, and then calculates the arithmetic average. On the other hand, the micro
measure considers all mentions as part of one document when calculating the relevant measu-
re, thus giving more importance to documents with more mentions. The following equations

24

represent the micro and macro measures of Precision and Recall:

Precisionmicro =
|S ∩G|
|S|

Recallmicro =
|S ∩G|
|G|

Precisionmacro =

∑|D|
i=1
|si∩gi|
|si|

|D|

Recallmacro =

∑|D|
i=1
|si∩gi|
|gi|

|D|

where D represents a document containing a number of texts, G is the set of annotated
entities that should be linked in a document (gi is the equivalent for each document), S
the set of linked entities generated by a system in a document (si is the equivalent for each
document). The Precision is the ratio of entities correctly linked to a Knowledge Graph over
the linked entities generated by a system, while the Recall is the ratio of entities correctly
linked to a Knowledge Graph over the entities that should be correctly linked. Then, the
F1-score is a measure that combines Precision and Recall as two interacting values and is
calculated with the following formula (based on the harmonic mean of both measures):

F1x = 2
Precisionx ·Recallx
Precisionx +Recallx

where x corresponds to the micro or macro version of the F1-score. Aside from Precision,
Recall and F1-score, some systems also include an Accuracy measure that includes NIL
entities, though we will not consider this metric in our evaluations as NIL entities in questions
cannot generate results for queries.

There are many datasets used for evaluation such as KORE50 [88], AIDA-CoNLL [89],
NEEL [153], and OKE2016 [144], which can be evaluated over knowledge bases such as
Wikipedia, DBpedia [107], and YAGO [166]. To the best of our knowledge, there is no dataset
for evaluating Entity Linking over Wikidata, but since Wikidata, DBpedia and Wikipedia
are all interlinked, we can use datasets with labels for any such resource.

In this work we will use several Entity Linking systems that we will briefly describe later.
The criteria to choose these systems were:

1. have a public API available that allows at least 10,000 requests per day;

2. have references/papers explaining how the system functions; and

3. work over either Wikipedia, Wikidata, DBpedia or YAGO.

25

Given these criteria, the selected systems are: DBpedia Spotlight, AIDA, TAGME and
OpenTapioca.

2.2.2.1. DBpedia Spotlight

DBpedia Spotlight [128] is a system that automatically annotates text documents with
DBpedia URIs. The system allows users to configure annotations to their specific needs
through the DBpedia Ontology and quality measures provided by the system. Their approach
is divided into four phases.

The spotting stage identifies the phrases in a sentence that may contain a mention of
a DBpedia resource. Before performing the spotting process, the system builds a lexicon of
labels extracted using a graph of labels, redirects and disambiguation pages in DBpedia.
The labels of DBpedia resources are created from Wikipedia page titles, which are seen as
community-approved surface forms. Redirects to URIs indicate synonyms or alternative sur-
face forms (including common misspellings and acronyms) whose labels also become surface
forms. Disambiguation pages provide links from ambiguous surface forms to the resources
they potentially link to. The resulting collection of surface forms composes the set of labels
for the target resources.

As an additional resource for the later disambiguation stage, a collection of occurrences
for each resource based on wikilinks (page links in Wikipedia associated with one resource)
is stored as a document in a Lucene3 index.

A candidate selection is then employed to map resource names to candidate disam-
biguations spotted in the previous phase. The DBpedia Lexicalization dataset is used to
determine candidate disambiguations for each surface form. This phase aims to reduce the
number of disambiguation possibilities keeping a trade-off between time performance and
system Recall.

Following candidate selection is the disambiguation stage, where the system uses the
context gathered from surface forms to choose the best choice amongst candidates. DBpedia
resource occurrences are modeled in a Vector Space Model (VSM) [156] where each DBpedia
resource is a point in a multidimensional space of words. The Term Frequency (TF) weight
and the Inverse Candidate Frequency (ICF) weight are used to score each candidate.

The TF weight represents the relevance of a word for a given resource. The ICF weight
is proposed given that the standard Inverse Document Frequency (IDF) weight [98] only
identifies the global importance for a word, and thus fails to capture the importance of
a word for a specific set of candidate resources. Instead, the ICF weight aims to weight
words based on their ability to distinguish between candidates for a given surface form. The
intuition behind the ICF formula is that the discriminative power of a word is inversely

3http://lucene.apache.org

26

http://lucene.apache.org

proportional to the number of DBpedia resources it is associated with.

Having the VSM representation of DBpedia resources with TF ∗ICF weights, the disam-
biguation process is performed by ranking candidate resources using the cosine similarity
score between their context vectors and the context surrounding the surface form.

Finally, annotations can be customized through configuration parameters in order to
tune parameters to a specific task. The offered configuration parameters can be used to
allow/deny URIs with some classes or its subclasses, set a required minimum of inlinks,
establish thresholds to prioritize resources relevant to the topic, reduce highly ambiguous re-
sources, and configure a disambiguation confidence to keep a good trade-off between avoiding
incorrect annotations and losing correct annotations.

A web-service4 is available for integration with external web processes. The service is im-
plemented through RESTful and SOAP web services for the annotation and disambiguation
processes, and supports various output formats (HTML, XML, JSON or XHTML+RDFa).

2.2.2.2. AIDA

The Accurate Online Disambiguation of Named Entities (AIDA) [89, 198] is an online
tool that performs entity detection and disambiguation over the YAGO Knowledge Graph.
The system’s approach combines the use of a Named Entity Recognition (NER) tool with a
graph-based mapping.

The system automatically detects mentions using the Stanford NER Tagger5 based on a
Conditional Random Fields (CRF) Classifier [56]. Their approach uses Gibbs sampling to
identify non-local structures while preserving tractable inference by simulated annealing in
place of Viterbi decoding in sequence models. They use this technique to improve an existing
CRF-based information extraction system with long-distance dependency models.

The collection mapping relies on a graph constructed with mentions and their candidate
entities as nodes and two types of edges: mention-entity edges and entity-entity edges. The
mention-entity edges are weighted edges between mentions and their candidate entities
(one edge per candidate) and represent the similarity between the context of each node.
The entity-entity edges are weighted edges between different entities and represent the
coherence, i.e. the semantic relatedness between both nodes.

The similarity between a mention and a candidate entity is defined as the linear com-
bination of the prominence of an entity and the context similarity between a mention and
a candidate entity. The prominence (or popularity) of an entity is calculated using the
frequency of Wikipedia-based link href anchor texts and links referencing the entity. The
context similarity is calculated in different ways for a mention’s context and an entity’s

4https://www.dbpedia-spotlight.org/
5https://nlp.stanford.edu/software/CRF-NER.shtml

27

https://www.dbpedia-spotlight.org/
https://nlp.stanford.edu/software/CRF-NER.shtml

context.

The context of a mention simply considers all tokens in the document as the context [171].
For the context of an entity, the system considers entity keyphrases, which are pre-computed
phrases derived from link anchors in Wikipedia articles that entities connect to [171]. These
include phrases in the entity article that contain category names, citation titles, external
references or titles of incoming links. This process forms a keyphrase set KP (e) for each
entity e.

The Mutual Information (MI) measure, which quantifies the “amount of information”
one random variable obtains from observing another one, is used to quantify the specificity
weight of a keyword with regard to an entity. In this context, the MI for each keyword w
is based on a joint probability P (e, w) that reflects the probability of w to be contained in
either the keyphrase KP (e), or any of the keyphrase sets of entities linked to e.

Since keyphrases can rarely match multi-word keyphrases (e.g. the phrase “Nobel Prize
winner” may occur in the form of “Nobel winner”), a partial-match model is added to improve
coverage [170]. This model matches individual words and rewards their proximity. Following
this approach, a phrase’s cover is computed for each keyphrase, which consists of the shortest
window of words that maximize the number of words of the keyphrase. For example, the text
“winner of many prizes including a Nobel” the cover length of the keyphrase “Nobel award
winner” is 7. Then, the partial-match score of a phrase in a text is calculated using the MI
weights of the keyphrase words in the phrase and the ones included on the phrase’s cover.

Lastly, the similarity score between a mention and a candidate entity is computed by
summing all the partial matching scores of the phrases that are part of the keyphrase KP (e).

The coherence weight between a pair of entities is calculated using the number of inco-
ming Wikipedia links that both entities share in their Wikipedia articles, which are denoted
using crossreferencing properties such as same-as. This approach is polished up by conside-
ring the total number of entities in the Wikipedia collection [130].

Having built the weighted graph, the system aims to provide an output graph which
consists of the graph reduced to a dense subgraph where each mention is connected to only
one candidate entity. The concept of density refers to the minimum weighted degree in the
subgraph. The calculation of this subgraph is computed using a greedy algorithm where its
main loop performs two main steps in each iteration: (1) identify the entity node with the
lowest weighted degree and (2) remove this node and its incident edges only if it is not the
last remaining candidate entity for one of the mentions.

AIDA provides a HTTP JSON web service6 for annotating texts. It can be accessed via
CURL requests and only needs to be provided by the text that needs to be annotated.

6https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/
ambiverse-nlu/aida

28

https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/ambiverse-nlu/aida
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/ambiverse-nlu/aida

2.2.2.3. TAGME

The TAGME system permits augmenting plain-text with hyperlinks to Wikipedia pa-
ges [52]. It can work over short and poorly composed texts. The system annotation is divided
into three phases.

The first stage includes generating an anchor dictionary based on Wikidata pages. An
anchor (also referred to as a spot) for a page p is defined as the text used in the hyperlink of
another page to refer to p. These anchors are extracted fromWikipedia pages and also include
titles of redirect pages and other variants [39]. The anchors composed by one character or
just numbers and anchors with low-frequency are removed. The set of all Wikipedia pages
linked by a given anchor a is denoted as Pg(a). The final anchor dictionary is indexed using
Lucene.

Then, each annotation of an anchor a with some page pa ∈ Pg(a), denoted a → pa,
forms what the authors refer to as a sense7. These senses are built using all Wikipedia pages
but discarding disambiguation pages, list pages and redirect pages, also indexed by Lucene.
These results are indexed in a link-graph using Webgraph8.

Often an anchor a has more than one candidate sense, so a disambiguation process is
performed. Having the set of all anchors contained in a text T , denoted by AT , the system
tries to disambiguate each anchor a ∈ AT by computing a score for each possible sense
pa ∈ Pg(a). This process is implemented using a voting scheme that computes for each other
anchor b ∈ AT\{a} its vote for the annotation a→ pa.

To disambiguate the anchor a, a ranking process is designed to select its best annotation
a→ pa. The TAGME system presents two variants for the ranking algorithm: one based on
a classifier (DC) and the other based on a threshold (DT). DC uses as features the score
rela(pa) and the commonness Pr(pa|a) to train a classifier to calculate the “probability of
correct disambiguation” for all senses pa ∈ Pg(a). The pa reporting the highest classification
score is selected. The other approach, DT, computes the top-ε best senses p′a ∈ Pg(a)
according to their rela(p′a) score and then annotates a with the sense that obtains the highest
commonness amongst them. For time performance optimization, both variants discard senses
with a commonness below a certain threshold τ .

Finally, in the anchor pruning stage, the setM(AT) of candidates produced in the previous
stage are pruned to avoid meaningless anchors. A bad anchor is defined by a score computed
using two features: the link probability lp(a) of the anchor a and the coherence of its candidate
senses with respect to the candidate senses of other anchors in M(AT) [130]. This link
probability lp(a) corresponds to the ratio between the number of times the phrase a occurs

7For example, a mention of Gabriela Mistral on any given Wikipedia article, “Gabriela Mistral” is the
anchor, and two possible senses are https://en.wikipedia.org/wiki/Gabriela_Mistral or https://en.
wikipedia.org/wiki/Museo_Gabriela_Mistral.

8http://webgraph.dsi.unimi.it

29

https://en.wikipedia.org/wiki/Gabriela_Mistral
https://en.wikipedia.org/wiki/Museo_Gabriela_Mistral.
https://en.wikipedia.org/wiki/Museo_Gabriela_Mistral.
http://webgraph.dsi.unimi.it

as an anchor in Wikipedia, and the frequency with which this phrase occurs in both anchor
and non-anchor occurrences.

The coherence between two candidate annotations is equivalent to the process followed
in the AIDA system. A score ρ(a→ p) is then calculated per candidate annotation, which is
compared to a threshold ρNA, so annotations with a score lower than the given threshold are
pruned by setting a→ NA (a fake page to denote pruned annotations). Two approaches that
combine lp and coherence are presented to compute this score: one is an average between
the two features and the second is a linear combination trained via linear regression.

A web-service hosted by D3Science Infrastructure9 is available to annotate text. The
system allows to set a threshold p used for discarding annotations.

2.2.2.4. OpenTapioca

OpenTapioca is a lightweight Named Entity Linking system that works over Wikidata [42],
and is restricted to people, locations and organizations. Let D be a document; a spot s is
a pair of start and end positions in D. This spot defines a phrase ds in D, and a set of
candidate Wikidata entities Es. The OpenTapioca system is based on a binary classifier that
predicts for each spot s, and each candidate entity e linked to that spot, if s should be linked
to e. This approach combines local compatibility and semantic similarity to classify entities
according to their context.

The local compatibility for an entity e with a phrase ds is represented by a vector of
features that considers the popularity of the entity and the commonness of the phrase. The
popularity of an entity is estimated by a log-linear combination of its number of statements
ne, site links se and its PageRank r(e) (calculated using Wikidata statement values and
qualifiers as edges). The commonness of a phrase is estimated using a unigram language
model trained from Wikidata item labels.

Since the aforementioned features do not consider the context of the mention, a graph is
defined whose nodes are the candidate entities and edges link semantically related entities.
The approach consists of finding a combination of candidate entities which are both highly
compatible and densely related in the graph.

Along these lines, the semantic similarity measure is used to make the process context-
sensitive. An adaptation of the Han et al.’s [79] approach is proposed, where a similarity
metric sim(e, e′) is defined for each pair of entities (e, e′) that defines the probability that
two random walks starting from e and e′ end up on the same item.

Next, a weighted graph GD is built where each vertex is a pair (s, e) such that ds ∈ D
and e ∈ Es. A maximum distance ρmax is fixed for edges so a pair of vertices can only be
linked if its distance is less than or equal to ρmax, and both vertices are referring to a different

9https://sobigdata.d4science.org/web/tagme/tagme-help

30

https://sobigdata.d4science.org/web/tagme/tagme-help

mention. The weight is defined for each edge, which is proportional to the smoothed similarity
between entities, discounted by the distance between mentions. The weighted graph GD is
represented by a column-stochastic matrix MD which is an adjacency matrix normalized by
its columns to sum to one.

The resulting matrix MD defines a Markov chain on the candidate entities that is used
to propagate the local evidence, which helps to classify entities according to the context. A
Markov chain is a mathematical model used to model transitions from one state to another,
usually in a stochastic way. One particularity of Markov chains is that the stochastic process
is “memoryless”. That is, the probability of transitioning to any particular state depends
solely on the current state and time elapsed10.

Then, instead of combining the local features into a local evidence score as done by Han
et al. [79], each local compatibility feature is propagated independently along the Markov
chain. This allows for recording the features at each step, which defines a vector of features
more sensitive to the context while keeping the number of features small. Finally, a linear
support vector classifier is trained on these features, which defines the final score of each
candidate entity. For each spot, the system picks the highest scoring candidate that the
classifier predicts, if any.

OpenTapioca is available through a web-service11 implemented using Solr12 and some
Python libraries. Its service keeps synchronized with Wikidata in real time.

2.2.3. Sequence Labeling

Another application of Information Extraction methods is Sequence Labeling [72, 117],
also known as Semantic Role Labeling [65]. Sequence Labeling is a semantic analysis tool
that can be used to detect meaningful entities, relationships or semantic properties in a given
sentence. For example, for the sentence “Barbara lives in Santiago”, the name Barbara could
be identified as the subject of the sentence or as a person, while the name Santiago could
be recognized as the object of the sentence or as a location.

Some traditional sequence labeling models are based on linear statistical models such
as Hidden Markov Models [151] or Conditional Random Fields (CRF) [140, 114], which
mainly rely on hand-crafted features and thus are difficult to adapt to new tasks or new
domains [118]. On the other hand, recent works that combine Neural Networks and Word
Embeddings have been broadly used to enhance sequential data modeling [34, 63]. The
combination of these two components have shown better results on many Natural Languages
Processing (NLP) tasks such as POS tagging [117, 93], Named Entity Recognition [33, 92] or

10One example of a Markov chain process is the probability question of getting a certain color ball from
a bag of balls, when replacement is allowed each time a ball is drawn.

11https://opentapioca.org/
12https://lucene.apache.org/solr/

31

https://opentapioca.org/
https://lucene.apache.org/solr/

Speech Recognition [75], mainly due to its capacity to learn and generalize with information
learned from unlabeled data, which reduces the ambiguity issues that previous statistical
models suffer from [118].

In particular, we are interested in Sequence Tagger systems which, given a sequence of
words, provide a semantic meaning to words or composed words in the context of a given
corpus. This semantic meaning varies depending on the task. For example, in Part-of-Speech
(POS) tagging, words in a sentence are usually tagged as nouns, verbs, adjectives, adverbs,
etc. Another area of use is Name Entity Recognition (NER), where the sequence tagger can
identify entity names and tag them as person, location, organization, etc.

Then, the information output by the tagger can be used in other IE methods such as
Entity Linking. The task fulfilled by the tagger can be adapted depending on the labels used
(e.g. provide more entity types for NER) but the process of training and learning such labels
should not change. We will apply these methods later to identify which sequences of terms
in the question text refer to which elements of the query. The labels output by the system
are usually known as BIO labels (where BIO means beginning-inside-outside) and demark a
tag for a word and whether a word is the beginning of a tag, an inside part of a tag, or a
word outside a tag. An example of a BIO label output can be seen in Figure 2.5.

The performance of a Sequence Tagger is measured using a per-word accuracy [122]. Let
W = (w0, . . . , wn) denote a sequence of words, (l0, . . . , ln) a sequence of expected BIO labels
and (l′0, . . . , l

′
n) a sequence of BIO labels output by a Sequence Tagger; a word wi would be

labeled correctly if its expected label li matches with the label l′i delivered by the Sequence
Tagger. Then, the Accuracy over W will be accuracy(W) =

#words correctly labeled
total # words .

In this work, we will use the Flair Framework [4], which provides up-to-date state-of-the-
art language models and word embeddings in a simple interface. Flair is implemented in
Python using the Pytorch framework for implementing Neural Network based models. One
of the tools Flair provides is a Sequence Tagger model, which includes pre-trained models
or the capacity of training a new model by providing training data. In order to understand
how the Flair Sequence Tagger works, we will explain its two main components: Contextual
String Embeddings [5] and its main architecture based on a Bidirectional LSTM-CRF model.

2.2.3.1. Contextual String Embeddings

The construction of Contextual String Embeddings (aka Flair embeddings) is based on
two Language Models (LM) where each one captures semantic-syntactic information for each
word in the sentence; one model captures information from the “past” and the other model
from the “future” of each word. The information from both models is combined to construct
representations of words based on their surrounding context.

32

2.2.3.1.1. Language Models

A Language Model (LM) is a probability distribution over sequences of words [146]. Language
models can be character-level or word-level, where the difference lies in the atomic unit
selected for the language model [146]. In this work we focus on character-level LMs.

For a character-level LM, the goal is to predict the expected character given a set of
characters as context, i.e., to provide a good distribution P (x0:T) over sequences of characters
(x0, x1, . . . , xT) [73]. Intuitively speaking, we aim to respond to the question: given a certain
sequence of characters, what is the most probable character that follows to that sequence?
(e.g. if we provide with the sequence “goalkeepe”, it is very likely that the character ‘r’
should come next). Then, if the objective is to predict the next character given the previous
characters, we will train a language a model to learn P (xt|x0, ..., xt−1), for 0 < t <= T , which
gives an estimate of the predictive distribution over the next character given the previous
characters.

Recent work on language models prefers architectures based on Recurrent Neural Net-
works [5]. Language models based on Neural Networks, also known as Neural Language
Models, have shown better results than statistical language models [73], mainly because sta-
tistical models decrease their performance when dealing with large vocabulary size, which
causes a data sparsity problem [48] (therefore their capacity to generalize is limited).

Among many applications of neural language models, a key application is the creation of
word embeddings, which are vector representations of words typically based on the trainable
weights within the Neural Networks used in the language model. Word embeddings have
shown a great capacity of encapsulating semantic attributes of abstract concepts (e.g. we
can capture to a certain extent that “red” is a color, because we identify a degree of semantic
similarity when comparing its numeric values to other colors’ embeddings), and such know-
ledge can be transferred to other tasks in order to enhance other models’ learning capabilities
(as we will do here for the Sequence Labeling task). In this case, the architecture used to
construct Flair embeddings is the LSTM variant [87, 73, 201] which enhances the ability to
encode long-term dependencies with its hidden states (weights in an LSTM architecture).

2.2.3.1.2. Extracting Flair Embeddings

As mentioned earlier, the goal of a character-level language model is to estimate the dis-
tribution P (x0:T) over a sequence of characters x0 : T = (x0, x1, . . . , xT). This results in a
joint distribution over the entire sentence, which is the product of the conditional probability
P (xt|x0, ..., xt−1) of each character of the sentence:

P (x0) =
T∏
t=0

P (xT |x0:t−1) (2.1)

33

In an LSTM architecture, the conditional probability P (xi|x0, . . . , xi−1) is approximated
as a function of the network output ht:

P (xT |x0:t−1) ≈
T∏
t=0

P (xT |ht; θ)

where ht represents the past context of the character sequence and is computed recursively
using an additional memory cell ct:

ht(x0:t−1) = fh(xt−1, ht−1, ct−1; θ)

ct(x0:t−1) = fc(xt−1, ht−1, ct−1; θ)

where θ denotes all the parameters of the model. The proposed model includes a fully con-
nected softmax layer on top of ht, so the likelihood of every character is given by:

P (xt|ht;V) =
exp(V ht + b)

‖exp(V ht + b)‖

where hbt is denoted as the hidden states of the backward model calculated the same way as
Equation 2.1. We also denote hft as the hidden states ht of the forward model.

Finally, output hidden states from both models are concatenated to form the final em-
bedding which represents the surrounding context of a word itself. Formally, the contextual
string embedding of a word-string that begins at character inputs with indices t0, t1, . . . , tn
is defined as:

wCharLMi :=

[
hfti+1−1
hbti−1

]

The result are Contextual String Embeddings capable of producing different representa-
tions for the same lexical word string in different contexts while capturing the semantics
of contextual use together with the word itself. These embeddings are then used to boost
standard Sequence Labeling models as explained next.

2.2.3.2. Sequence Labeling Architecture

Though the Flair framework supports various sequence tagging models, the default is to
use the model based on a Bidirectional LSTM with a Conditional Random Field layer on top

34

of the final BiLSTM layer, also known as BiLSTM-CRF [93]. Let us denote by wo, w1, . . . , wn
the input of the model; then we have that:

ri :=

[
rfi
rbi

]

where rfi and rbi are the forward and backward output states of the model. The final
sequence probability is then given by a CRF over the possible labels y:

P̂ (y0:n|r0:n) ∝
n∏

i=1

exp(W(yi−1,yi)ri + b(yi−1,yi))

The component that improves the performance of these BiLSTM-CRF models is the
addition of stacked embeddings, which are a combination of different types of embeddings.
The way to combine each embedding vector is by concatenating them to form a final word
vector representation. The final word representation chosen in this work is given by:

wi :=

[
wCharLMi

wGloV e
i

]
(2.2)

where wGloV e
i is a precomputed GloVe embedding [141].

Figure 2.5: Flair Sequence Labeling architecture [4].

Note that these word representations are the input words for the BiLSTM-CRF. An
example is shown in Figure 2.5, where the Character Language Model mentioned before
is fed the sentence “George Washington was born” as a sequence of characters. The output

35

delivered by the Language Model corresponds to the vector representation of each word
following Equation 2.2. Then, these sequences of words are taken by the Sequence Labeling
Model, which gives an output of a sequence of BIO labels such as to indicate that the phrase
“George Washington” is tagged as a person (PER).

2.3. Semantic Parsing
As mentioned by Kamath and Das [100], Semantic Parsing is defined as the mapping

from a natural language utterance into a semantic representation. These representations
usually refer to logical forms, meaning representations or programs, which are executed
over an underlying context such as relational tables or Knowledge Graphs. This execution
yields a desired output like an answer to a question. For example, given a question in natural
language, a semantic parser can aim to generate a valid SPARQL query based on the Wikidata’s
ontology grammar that produces the correct answer when executed over a Wikidata endpoint.

The first component of a Semantic Parsing framework is the language to represent logical
forms or meaning representations such as logic based formalisms [109, 10], graph based for-
malisms [12, 135] or programming languages [54]. In particular, we focus on query languages
such as SQL or SPARQL. Another component is the grammar, which is a set of rules used
to decide the expressivity of a semantic parser. An example is the Combinatory Categorial
Grammar for complex structured queries [165]. A last component is the underlying con-
text, which is the environment over which the output mappings are interpreted or executed.
Knowledge Graphs such as Wikidata or DBpedia serve as examples of an underlying context.

The early attempts for Semantic Parsing were systems based on rules or statistical tech-
niques. Among the rule-based systems, systems could be based on pattern matching [97] or
syntax-based systems [188]. Though their implementation is simple, rule-based systems tend
to be domain specific, thus hard to adapt to other domains. On the other hand, statistical
models are able to train given examples of input-output pairs from any domain. Many ap-
proaches require a lexicon as a-priori knowledge [202, 173], which is used to extract relevant
semantic or syntactic information. Since these examples are usually manually annotated or
require complex annotations, statistical models are hard to scale. There is also an issue with
data sparsity, so these models only work in narrow domains.

Some of the most recent approaches that have emerged are based on Sequence-to-Sequence
(Seq2seq) models, which usually uses an encoder-decoder framework based on neural net-
works. Some approaches implement an end-to-end paradigm where an intermediate represen-
tation is not needed to deliver a meaning representation; thus they do not rely on lexicons,
templates or manually generated features. Though traditional approaches are able to better
model and leverage the in-built knowledge of logic compositionality, approaches based on se-
quence models outperform traditional approaches due to the fact that Seq2seq-based models
generalize better with more complex and longer sentences [95]. Furthermore, Seq2seq-based
models can also generalize across domains [100].

36

In the following subsections, we discuss in more depth how systems based on Sequence-
to-Sequence models work. First, we will briefly explain Sequence-to-Sequence models along
with the approach we will use in this work: the Convolutional Sequence-to-Sequence model.
Then, we will introduce Neural Machine Translation systems and how these models can be
used for the task of translating natural language questions to SPARQL queries.

2.3.1. Sequence to Sequence models

The Sequence-to-Sequence (Seq2seq) model was first introduced by Cho et al. [34] for
statistical Machine Translation. They proposed a neural network model based on an encoder-
decoder framework which is based on recurrent neural networks (RNNs) [186, 155, 87]. More
details about RNNs can be found in Appendix A.

In a Seq2seq architecture, the encoder converts a variable-length sequence into a fixed-
length vector representation (i.e., it encodes the input sequence into a context vector) which
is passed through to the decoder that transforms this fixed-length vector representation
back into a variable-length sequence (i.e. decodes a context vector back to another output
sequence). Figure 2.6 illustrates graphically how a Seq2seq looks, where the length T of the
input sequence does not necessarily equal the length T ′ of the output sequence.

Figure 2.6: Sequence to Sequence model [72].

Technically, the model is learning a conditional distribution over a variable-length sequen-
ce conditioned on yet another variable-length sequence p(y1, . . . , y′T |x1, . . . , xT). The encoder
is an RNN that reads each symbol of an input sequence x sequentially. While it is reading
the current symbol on each step t, the hidden state het of the RNN changes are described as:

het = f(het−1, xt)

37

After reading the end of the sequence, the hidden state of the RNN is the summary c of
the whole input sequence, also known as its context vector. Then, the decoder is another
RNN trained to generate the output sequence by predicting the next symbol yt given the
hidden state hdt . This prediction is also conditioned on the previous predicted symbol yt−1
and on the context vector c. Then, the hidden state of the decoder is defined for the step t,
where f is usually the sigmoid function:

hdt = f(hdt−1, yt−1, c)

Similarly, the conditional distribution of the next symbol, where g is commonly a softmax
function since a valid probability must be produced, is defined as follows:

P (yt|yt−1, yt−2, . . . , y1, c) = g(hdt−1, yt−1, c)

Both components of the sequence model are jointly trained to maximize the following
conditional log-likelihood function:

maxθ
1

N

N∑
n=1

log p(yn|xn)

Once the model is trained, it can be used to generate a target sequence given an input
sequence. Though Seq2seq models were originally designed based on RNNs, other variants
have emerged [169, 44]; among the more modern ones, a recent work introduces a sequence
learning approach based on convolutional neural networks, which has shown to outperform
many RNN-based models in the task of NL-to-SPARQL [197].

2.3.1.1. Convolutional Sequence to Sequence Model

A Seq2seq model based completely on convolutional neural networks (CNNs) is proposed
by Gehring et al. [61], called the Convolutional Sequence-to-Sequence model (ConvS2S). For
this subsection we will assume a basic understanding of CNNs, where more details about
this topic can be found in Appendix A.

Since CNNs do not receive the input as a sequence like RNNs do, a position embedding
is proposed. First, the input elements x = (x1, . . . , xm) are embedded in distributional space
as w = (w1, . . . , wm), where wj is a column in an embedding matrix D. These embeddings
are combined with an absolute position vector p = (p1, . . . , pm), which indicates the position
of the word in the sequence, in order to establish a sense of order in the input. From this
combination the input element representation e = (w1 + p1, . . . , wm + pm) is obtained. The
output elements generated by the decoder are built using a similar representation.

38

To compute intermediate states, a simple convolutional block structure is used for
both encoder and decoder, where such blocks are also referred to as layers. These intermediate
states are based on a fixed number of input elements whose output for the l-th block are
denoted as zl = (zl1, . . . , z

l
m) for the encoder network and hl = (hl1, . . . , h

l
m) for the decoder

network. Each block contains a one dimensional convolution followed by a non-linearity.

Each convolution kernel is parameterized as (W, bw) and takes as input X, which is a
concatenation of k input elements embedded in d dimensions, and maps them to a single
output element Y . Subsequent blocks operate over the k output elements of the previous
block. The gated linear unit (GLU) [41] was chosen as the non-linearity to apply over the
output of the convolution Y . This gating mechanism permits controlling which input values
of the current context are relevant. Aside from that, to enable deep convolutional networks,
residual connections are added from the input of each convolution to the output of the
block [82].

The input of the encoder network is padded to match the output length of the convolutio-
nal blocks for each block. The padding is done by adding k− 1 zero vectors on both the left
and right side of the input to then remove k elements from the end of the convolution output.
The same padding cannot be done for the decoder network since no future information is
known beforehand [179].

A linear mapping is added for projecting between the embedding size and the convolution
outputs. This mapping is applied to w when feeding embeddings to the encoder network, to
the encoder output zuj , to the final block of the decoder just before the softmax hL, and to
all decoder blocks hl before computing the attention score, which is explained later.

Lastly, a distribution is calculated over the T possible next target elements yi+1 by trans-
forming the top decoder output hLi via a linear layer with weights Wo and bias bo, as follows:

p(yi+1|y1, . . . , yi, x) = softmax(Woh
L
i + bo)

Besides the convolutional block structures, a separate attention mechanism is imple-
mented for each decoder layer. Attention allows the model to focus on the relevant parts of
the sentence for each time step. The entire process is illustrated in Figure 2.7. The calcula-
tion of the attention starts in the bottom left part of Figure 2.7 with a combination between
the current decoder state hli and the embedding of the previous target element gi, which is
defined as:

dli = W l
dh

l
i + bld + gi

Then looking at the center part of Figure 2.7, for a decoder block l, the attention alij

39

of state i and source element j is computed as a dot-product between the decoder state
summary dli and each output zuj of the last encoder block u:

alij =
exp(dli · zuj)∑m
i=1 exp(dli · zuj)

Subsequently, the conditional input cli to the current decoder block is a weighted sum of
the encoder outputs as well as the input element embeddings ej = wj +pj which corresponds
to the center right part of Figure 2.7, and is defined as:

cli =
m∑
j=1

alij(z
u
j + ej)

Finally, the conditional input cli is added to the output of the corresponding decoder layer
hli, as seen in the bottom right part of Figure 2.7. Compared with the classical single step
attention, this proposal is named a multi-step attention mechanism since each step takes into
account the attention history of the previous time steps, based on how conditional inputs
are computed. Thus, information does not struggle to survive several steps as happens with
recurrent networks.

Figure 2.7: Convolutional block structure with a multi-step attention mechanism [61].

40

Some normalization strategies are applied to stabilize the learning process. First, the
input and output of a residual block are summed with

√
0,5 to halve the variance of the

sum. Second, the conditional input cli are scaled by m
√

1/m to counteract any change in
variance. Lastly, for convolutional decoders with multiple attention, the gradients for the
encoder blocks were scaled by the number of attention mechanisms used, excluding source
word embeddings.

Besides scaling, a weight initialization is also done to keep variance retained. Em-
beddings are initialized from a normal distribution with mean 0 and standard deviation
0.1. Weights from layers whose output is not directly fed to a GLU are initialized from
N (0,

√
1/nl), where nl is the number of input connections to each neuron. This helps to

maintain a variance of the input with a normalized distribution. Layers followed by a GLU
are initialized from N (0,

√
4/nl), which is a weight initialization scheme based on works by

He et al. [82] and Glorot & Bengio [68]. Biases are uniformly set to zero. Lastly, dropout is
applied to the input on some layers with a probability of p of being retained and so scaled
by 1/p, or setting them to zero otherwise [169].

2.3.2. Natural Language to SPARQL

Though most works have focused on translating natural language to SQL queries [30, 204],
recent work has also addressed the translation of natural language to SPARQL. In particu-
lar, Neural Machine Translation (NMT), which involves Machine Translation systems based
on Neural Networks, has been used to develop systems that translate questions to SPARQL
queries. An evaluation of eight different NMT models was performed by Yin et al. [197].
The NMT models included in this work were based on the aforementioned encoder-decoder
Seq2seq architecture. Among these models, six of them are based on recurrent neural net-
works (RNN), while the remaining two are based on the ConvS2S model [61] and the Trans-
former model [180] respectively.

The systems based on RNNs include a baseline and many variants of the same LSTM
architecture and different types of attention mechanisms. As a baseline, a Neural SPARQL
Machine (NSpM) [162, 163] is used, which consists of a 2-layer LSTM model with no at-
tention mechanisms. Then, two variants of the NSpM are used with two different types of
attention: global attention and local attention. Global attention uses the entire input sen-
tence to calculate an attention vector, which complements the context vector output by the
encoder [11]. On the other hand, local attention only uses a fixed size window around every
word of the sequence to calculate a scoped attention vector per word [115]. Another model
is based on a proposal from Luong et al. [115], which consists of a 4-layer LSTM model
with local attention. Lastly, the Google Machine Translation (GNMT) architecture [190] is
included with two different variants: a 4-layer LSTM and a 8-layer LSTM, both with local
attention. The only difference between Luong’s model and the GNMT is that the second
model includes residual connections from the third layer and uses a bidirectional LSTM in
the first layer of the encoder.

41

2.3.2.1. Neural Machine Translation

Though the architecture of each model varies, the encoding of SPARQL queries used in
all approaches is the same as that proposed by Soru et al. [162]. Their encoding suggests
that URIs are abbreviated using their prefixes followed by an underscore; brackets and dots
are replaced by their verbal description, and SPARQL keywords are lower-cased. For example,
a query over Wikidata is shown in Listing 2.5, when after an encoding conversion, it is
converted to an encoded query as seen in Listing 2.6.

PREFIX wd: <http://wikidata.org/wiki/>
PREFIX wdt: <http://wikidata.org/prop/direct/>

SELECT ?sbj
WHERE {

?sbj wdt:P19 wd:Q201007 .
?sbj wdt:P166 wd:Q37922 .

}

Listing 2.5: SPARQL query before encoding.

After training, the system will output an encoded form that can be transformed back to
the original SPARQL representation.

select var_sbj where brack_open var_sbj wdt_p19 wd_q201007 sep_dot var_sbj wdt_p166
↪→ wd_q37922 sep_dot brack_close

Listing 2.6: SPARQL query after encoding (note it excludes the PREFIX clauses).

The evaluation metrics typically used to compare these systems are string-matching Ac-
curacy, BLEU score and Perplexity. The string-matching Accuracy is used to measure the
amount of exact matches delivered by each system. The global Accuracy is then the percen-
tage of cases that are syntactically equal to the expected answer. This metric is particularly
useful when measured over a dataset based on SPARQL templates, giving insights into whether
or not the expected SPARQL form is being correctly generated.

The Bilingual Evaluation Understudy (BLEU) score is used to measure how similar two
sentences are by using a geometric average of modified n-gram Precision [139], which is
represented by the following formula:

BLEU = BP · exp(
N∑
n=1

wn log pn)

The modified Precision pn for each candidate counts the number of times an n-gram
occurs in a reference translation(s), takes the maximum count of each n-gram among the

42

reference(s), and then clips the count of each n-gram in the candidate translation to the
maximum count. To avoid short candidate translations getting higher scores than desired, a
brevity penalty (BP) is applied which is set to 1 if the candidate length c is larger than the
maximal reference length r or set to exp(1 − r/c) otherwise. The wn represents weights for
each modified Precision. By default wn = 1

N
and N = 4. In this case, the BLEU score goes

from 0 to 100, where a score closer to 100 means the model is performing better. Note that
BLEU does not account for word order.

Perplexity is used to understand the model’s intrinsic behavior based on a cross entropy
H(p,q) which is defined as follows:

H(p, q) = −
∑
x

p(x) log q(x)

where p represents the target probability distribution and q is the estimated probability
distribution. Their similarity is defined by all possible values x in the distribution. In this
case, p is the one-hot encoding vector of the target vocabulary and q is deduced from the
result of the output softmax layer. Then the Perplexity is defined as the exponentiation of
the cross entropy:

perplexity(p, q) = 2H(p,q)

According to the experiments conducted by Ying et al. [197], the model that performs best
was the ConvS2S model. Although many datasets were used in their experiments, we are only
interested in LC-QuAD 1 [47] and DBNQA [81], two datasets that represent opposite traits of a
Question Answering Dataset: the LC-QuAD 1 dataset contains few questions (5000) but with
high complexity and high variance of its questions while the DBNQA dataset contains a huge
volume of questions (nearly 900, 000) but it lacks variety in its questions. We explain with
more details what we understand by a “good dataset” in the Question Answering section 2.4.
The results of the three best models among the eight selected over the mentioned datasets
are shown in Table 2.2.

Perplexity BLEU Score Accuracy
LC-QuAD 1 DBNQA LC-QuAD 1 DBNQA LC-QuAD 1 DBNQA

Models Train Valid Train Valid Valid Test Valid Test Valid Test Valid Test
LSTM_Luong 1.12 4.92 1.90 2.15 52.43 51.06 77.64 77.67 0 0 34 34
ConvS2S 1.14 3.25 1.12 1.25 61.89 59.54 96.05 96.07 8 8 85 85
Transformer 1.16 3.15 2.21 3.34 58.99 57.43 68.68 68.82 7 4 3 3

Table 2.2: Performance comparison of three models included in Yin et al.[197].

Based on the Perplexity results, there is a serious overfit for all models over the LC-QuAD
1 dataset which Yin et al. attributes to the small size of the dataset and its complex ques-
tions. No evident overfit is spotted over DBNQA, and the ConvS2S shows better results which
is reflected in the other results as well. The BLEU score results reflect that ConS2S again

43

outperformed all other models and shows a correlation between Perplexity and BLEU, es-
pecially when looking at DBNQA results. Finally, Accuracy results clearly show that RNN
based models and the Transformer do not perform positively in any case when compared to
the ConvS2S model. However, the results over the LC-QuAD 1 dataset shows there is still a
challenge regarding the handling of more complex questions among all NMT models.

2.4. Question Answering over Knowledge Graphs

Question Answering systems respond to the need to access information on the Web
without detailed knowledge of Semantic Web technologies such as how data is structured
(RDF) or how to access data (SPARQL). In particular, Question Answering systems (QASs)
provide end-users with an intuitive and easy-to-use user interface, which hides the comple-
xity behind the Semantic Web standards [177]. These systems differ from traditional search
engines such as Google in the final objective: search engines only return documents in which
the answer can be potentially found, whereas a Question Answering system aims to return
precise answers [113].

When we mention the task of Question Answering over Knowledge Graphs (KGQA), we
refer to receiving a natural language question and returning an answer retrieved from one
or more Knowledge Graphs (e.g. the first man to walk on the moon is Neil Amstrong13).
Though there is work that includes a wider context along with the question, such as hybrid
questions or chain of questions, we focus only on the problem of responding to an individual
question without further context besides the question itself.

Another consideration for defining the scope of Question Answering is the question and
answer type a system aims to respond to/with. Among the types of questions for which a
Question Answering system usually provides an answer are:

• Definition question, refers to a definition of a subject or object (e.g. “Who was
Violeta Parra?”).

• Factoid questions, which are related to facts. This type of questions includes three
different variants:

– Predicative questions that refer to a specific object related to a predicate such
as who, what, where, how (e.g. “Who was the first man in space?”, “What is the
highest mountain in Chile?”).

– List questions that refer to all the answers that fulfill the fact being asked (e.g.
“Give me all the countries in America”).

– Boolean questions that refer to whether the fact being questioned is true or

13https://www.wikidata.org/wiki/Q1615 in Wikidata.

44

https://www.wikidata.org/wiki/Q1615

not (e.g. “Was Gabriela Mistral a poet?”).

In the context of Linked Data, a Question Answering system is limited to the information
the available knowledge graphs can represent. For instance, questions not based on specific
facts such as process questions (e.g. “How do I make a lemon pie?”) or opinion questions
(e.g. “What do most Chileans think of global warming?”) cannot be answered.

Questions can also be classified depending on the answer type expected. One example is
the work of Li et al. [108], which classifies questions given five high-level categories: entities
(e.g. event, color, animal, plant), descriptions (e.g. definition, manner, reason), humans
(e.g. individual, group), locations (e.g. city, country, mountain) and numbers (e.g. count,
date, distance, size). Another way is to classify questions according to their focus and topic,
representing what the question is about. For instance, the question “What is the height of
Aconcagua mountain?” focuses on the property height in the topic of geography while the
question “What is the best height-increasing drug?” focuses on the same property, but a
different topic, which is medicine.

According to Fu et al. [59], current systems do not struggle with answering simple ques-
tions, i.e. questions that only require one subject-predicate-object triple fact, but complex
questions are still a challenge for KGQA. A complex question usually is referred to as th-
ree types: questions under specific conditions (e.g. “Who was the president of Chile during
the Great Recession of 2008?”), questions with more intentions (e.g. “Give the names of
the Chilean national football team and the number of goals they have scored”), and ques-
tions requiring constraint inference (e.g. “What is the most expensive movie starring Pedro
Pascal?”).

2.4.1. KGQA approaches

Though there is no standard approach for KGQA, most techniques or methods proposed
follow a similar four-stage pipeline [43]. First, a question analysis stage includes techniques
that extract information from the current question using purely syntactic features. Then, the
phrase mapping stage defines techniques that identify KG resources for each named entity
and its dependencies. Next, the disambiguation stage encapsulates techniques that rank and
determine for each named entity the most relevant resources according to the context of
the question. Lastly, the query construction stage considers techniques used to construct the
SPARQL query that should retrieve the final answer. In summary, most Question Answering
systems are a combination of these four steps and vary with respect to which techniques are
used to address each phase of the Question Answering process.

On the other hand, KGQA approaches can be classified according to which techniques
their models are based on. The traditional KGQA models rely on predefined templates and
manuals to parse questions [43]. However, these traditional approaches require a certain
level of knowledge of linguistics, and tend to be difficult to scale. Therefore, recent work has

45

focused more on two kinds of approaches: methods based on Information Retrieval methods
and other ones based on Neural Semantic Parsing.

2.4.1.1. Information Retrieval-based methods

Information Retrieval (IR) based models reduce the QA task to binary classification or
sorting over candidate answers. An IR-based method usually begins by identifying relevant
entities mentioned in the question. Then, it extracts topic-entity-centric subgraphs where
all nodes are considered candidate answers. Next, candidates are scored using features that
provide semantic relevance and help to select the final answers. Depending on how the
feature representations are built, IR-based methods can be divided into those based on
feature engineering and those based on representation learning.

Methods based on feature engineering rely on manually defined and extracted features.
For example, Yao et al. [194] extract four types of features based on the question’s syntactic
information, which includes question words, question focus words, topic words, and central
verbs. These features are used in a classification model to determine the final answer. Howe-
ver, building these features is time-consuming and is not able to capture the entire semantic
information of questions.

Methods based on representation learning convert questions and candidate answers into
vector representations and reduce KGQA to a semantic matching computation between re-
presentations of questions and their candidate answers. Some methods incorporate external
knowledge to complement the representation information and address the incompleteness
that the KG might have [192, 168, 175]. Some other methods incorporate a multi-hop reaso-
ning process to handle more complex questions [167, 129, 148].

Overall, IR-based models get rid of manually defined templates and rules, and can follow
an end-to-end training. However, these methods lack model interpretability and are not able
to handle complex questions that require constraint inference.

2.4.1.2. Neural Semantic Parsing-based methods

In this context, methods based on Semantic Parsing aim to convert natural languages
into executable query languages. Methods based on Neural Semantic Parsing (NSP) rely
on Neural Networks to enhance the parsing capacity and scalability, instead of relying on
predefined templates or rules. Thus, these models aim to map unstructured questions to
intermediate logical forms which are later converted to structured queries.

One approach is to use query graphs, which are graphs that encoded questions, have
strong representation ability and share topological commonalities with knowledge graphs.
One example is GraphParser, proposed by Reddy et al. [152] which frames the Semantic
Parsing problem as a Graph Matching problem. Derived from GraphParser, the Staged
Query Graph Generation [195] (STAGG) and the Multiple Constraint Query Graph [13]

46

(MultiCG) were proposed. While STAGG proposed a different construction of the query
graph based on a restricted subset of lambda-calculus in the graph representation, MultiCG
extends STAGG to include more constraint types and operators in order to cover more
complex questions. Since all these proposals rely on Entity Linking tools to initialize the
query graph construction, Yu et al. [200] assumes a poor performance of such tools and
proposes a Hierarchical Residual BiLSTM with the goal of improving entity recognition
Accuracy.

On the other hand, other work proposes to use encoder-decoder models to reduce the
Semantic Parsing task into a Sequence-to-Sequence problem. One example is the Seq-to-
Tree model proposed by Dong et al. [44] that uses a hierarchical tree-structured decoder to
capture the structure of logical forms. Then, in order to take more advantage of the syntactic
information of the input question, the Graph-to-Seq model was proposed by Xu et al. [193]
to encode the question as a syntactic graph. A last example is the Neural Symbolic Machine
proposed by Liang et al. [110], which proposed a lighter supervision approach by training a
Seq2seq model with reinforcement learning. Nevertheless, none of the examples mentioned
above have been evaluated in the context of KGQA.

In general, the results of NSP-based models tend to be slightly better than the results
from IR-based models. Nevertheless, it is still challenging to train a Neural Semantic Parser
due to the lack of training data.

2.4.2. Main Challenges

The KGQA task is still an open problem, where many challenges have partially been
addressed. Some of these challenges are related to the question being asked and others to
the answers that can be returned.

There are different ways to express the same question, as there are different ways to re-
present information within Knowledge Graphs. The lexical gap is the difference between the
vocabulary used in a question and how information is expressed in the Knowledge Graph [77].
The bigger this gap is, the more difficult it is for QA systems to locate the correct resources
for each named entity identified.

Some work has tried to address the lexical gap, where most techniques are based on
string normalization, pattern matching or entailment. For example, string normalization
methods, such as converting to lower case or stemming (e.g. convert “writing”, to its base
form “write”) help to reduce the search space when mapping entities. Another example are
pattern libraries, such as PATTY [133] or BOA [62], that support pattern matching from a
phrase to a resource. Nevertheless, most techniques proposed are based on manually defined
rules, which is hard to scale or to transfer to other Knowledge Graphs.

Another challenge related with input expressivity is the ambiguity bound to each ques-
tion, in other words, questions with different semantic meaning but with similar syntactic

47

structure. There are two main types of ambiguities: homonymy, when different concepts are
represented by a string with the same spelling (e.g. the word “right” can refer to “correct” or
“direction opposite to left”), and polysemy, when one string can represent different but related
concepts (e.g. “newspaper” can refer to a “printed publication” or to a “media company”).

Among the approaches used to address ambiguity are corpus-based methods or resource-
based methods. Usually the corpus-based methods use statistical models from unstructured
text corpora [160, 159]. On the other hand, resource-based methods take advantage of the
RDF properties of candidate resources. A score is calculated for each entity following the
assumption that a better score applies a higher probability of a resource to be chosen. Some
examples are RVT, which uses Hidden Markov Models [64]; CASIA, which relies on Markov
Logic Networks [161]; or Treo [57, 58], which uses Wikipedia-based semantic relatedness.

Unlike the lexical gap, which affects the Recall of a QA system, ambiguity negatively
affects its Precision. While some methods aim to reduce the lexical gap, these same methods
can make it difficult to address ambiguity. It is customary that in the disambiguation stage
the systems try to balance the effects of both issues.

From challenges that are related to the query construction, the needs of complex ope-
rators affect the capability of a QA system to respond to more complex questions. The
difficulty to handle a question increases when several facts have to be identified. Some exam-
ples that have tried to addresses these issue are YAGO-QA [3], which tries to address nested
questions; PYTHIA [176], which can answer question involving quantifiers, comparatives,
superlatives and others; and IBM Watson [67], which can respond to indirect questions and
multiple sentences.

As mentioned before, there are certain types of questions that current QA systems struggle
to handle. One example is that of procedural questions (i.e. describe a procedure), which
no QA system has been able to solve. Another example relates to temporal questions
which refer to questions that require inferring temporal relations between events, though
some works have tried to address temporal questions [6, 53, 127]. A last example relates to
spatial questions that include questions referring to locations. The capability of answering
spatial questions depends on how the schema of the knowledge represents locations (e.g.
latitude and longitude), and how QA systems can use that information to enrich semantic
data [199, 205].

The use of templates is thus more common to construct SPARQL queries that include
complex operators such as aggregation or filter functions. These SPARQL Query Templates
can be either manually or automatically created. One template-driven approach is Casia [161]
that uses the question type, named entities and POS tagging techniques to generate graph
pattern templates from which a SPARQL query is built. Other approaches use manually created
templates combined with machine learning methods [1].

48

2.4.3. Benchmark & Datasets

In order to measure a Question Answering system performance, the most common para-
meters used across all benchmarks are Precision,Recall and F1-score. These three metrics
usually are based on a gold standard set per question, which are the entities or values expec-
ted to be returned by the QA system. Given a question q, the formulas for Recall, Precision
and F1-score are represented in the following formulas:

Recall(q) =
number of correct system answers for q
number of gold standard answers for q

Precision(q) =
number of correct system answers for q

number of system answers for q

F1(q) =
2 ∗ Precision(q) ·Recall(q)

Precision(q) +Recall(q)

(2.3)

As an example, given the question “Which are the primary colors?”, the gold standard
answer would be {red, green, blue}. If a system answer is {brown, green}, the Precision
would be 0.5 since green is the only color part of the correct answers among the two colors
returned, while the Recall would be 0.33 because the only color correctly returned among
the golden standard set is green.

Similar to Entity Linking system evaluations, the global Precision or global Recall can be
reported in two ways: as a micro average or a macro average. The F1-score is also used to
combine Precision and Recall into one measure.

In recent years, many datasets have been developed to include complex questions. In
particular, we will briefly describe the datasets used in this work whose questions often
require complex query construction and provide the expected query and result.

2.4.3.1. QALD

The series of QALD datasets are part of the Question Answering over Linked Data
(QALD) challenges, which aim to provide an up-to-date benchmark for measuring perfor-
mance and comparing Question Answering systems [112]. The QALD challenge is divided
into multiple tasks that invite QA systems to address different challenges of Question Ans-
wering: multilinguality, hybrid questions, large-scale question answering and adaptability to
other data sources. Though most versions of QALD contain questions that can be only ans-
wered over DBpedia, one of the versions of QALD did contain questions over Wikidata for
the task of adaptability.

That being said, the 7th version of QALD (QALD-7) [178] includes a dataset of 150 ques-
tions over Wikidata, divided into 100 questions for training and 50 for testing. The questions
comes from a real-world question and query logs, where each question is manually annotated

49

and includes a manually specified SPARQL query. Regarding the complexity of the questions,
about 38% are considered complex, including questions with counts, superlatives, compara-
tives, and temporal aggregations.

Despite the good quality of the questions of QALD-7 and its proximity to real-world
questions, its limited size means that it is insufficient for training NSP-based models, which
require a considerable amount of annotations to undergo a successful learning process

2.4.3.2. LC-QuAD 1

The Large-Scale Complex Question Answering Dataset (LC-QuAD 1) is a dataset based on
DBpedia [174], where 82% of its questions are considered complex. Differently from QALD,
the SPARQL queries are built using a relatively small number of predefined templates, thus
generating a large high-quality dataset with low domain-expert intervention. This results in
a dataset that contains a total of 5000 questions with their corresponding queries.

Their dataset construction pipeline follows a different proposal to the standard one, where
instead of writing the natural language question and then its logical form (aka the SPARQL
query), the process is inverted. Thus the process starts by filling 38 hand-made SPARQL
templates with seed entities and relations from a preferred predicate list to generate specific
SPARQL queries. After that, a natural language question (NLQ) is deduced, for each generated
SPARQL query, following a three-step process: a generation of a normalized NLQ by filling a
Normalized Natural Question Template (NNQT) with the entity and relations names used
to generate the current query, a verbalization of the normalized NLQ using crowdsourcing
tools, and a final validation done by an independent reviewer.

The proposal of LC-QuAD 1 was a first step to allow NSP-based models to be applied to
the field of Question Answering in the RDF/SPARQL setting, though most works [59] show
that a larger number of examples are still required to train models properly.

2.4.3.3. DBNQA

The DBpedia Neural Question Answering (DBNQA) [81] dataset is thus far the largest
dataset for Neural Question Answering over DBpedia, with 894,499 annotated pairs. The
process to construct this dataset is similar to the one proposed for LC-QuAD 1, though its
templates are extracted from the multilingual QALD-7 train dataset that includes 215 ques-
tions (not the same dataset as the Wikidata QALD-7 dataset mentioned before) and the
same LC-QuAD 1dataset. This extraction process provides 5217 SPARQL templates. Another
difference is the approach to generate natural language questions. This dataset originated
from the purposes of training Neural SPARQL Machines, mentioned in the Semantic Parsing
section 2.3.

The template extraction process for each case consisted of replacing the concrete entities
with placeholders. This is the case for the original question, where resource labels are repla-

50

ced, and the query, where entities are replaced. This process functioned differently for the
two datasets used. For the QALD-7 train [178] dataset the resources were manually replaced,
while for LC-QuAD 1 an automatic script was implemented taking advantage of the fact that
the resources were marked in the questions. As an example, given the question “What are the
artists that are born in Stockholm?” which generates the query in Listing 2.7, the template
extraction process would return a question template “What are the artists that were born in
<A>?”, replacing the resource Stockholm, and would generate the Query Template shown
in Listing 2.8.

SELECT DISTINCT ?sbj WHERE {
?sbj dbp:placeOfBirth dbr:Stockholm .
?sbj rdf:type dbo:MusicalArtist .

}

Listing 2.7: SPARQL query for the question: “What are the artists that are born in
Stockholm?”.

SELECT DISTINCT ?sbj WHERE {
?sbj dbp:placeOfBirth <A> .
?sbj rdf:type dbo:MusicalArtist .

}

Listing 2.8: Query Template for the question: “What are the artists that are born in
<A>?”.

Then, the dataset is constructed following a similar approach to the one used for LC-QuAD
1. First, a set of entities is chosen per Query Template, where the entities selected are the ones
that contain the relations contained in the query (e.g. if the property location is contained
in the query, places would be selected accordingly). Then the selected entities are used to
generate each SPARQL query with its corresponding NLQ.

Since the construction of each case does not include a paraphrasing stage, there is almost
no variation of questions that comes from the same template, i.e. there was no syntactic
difference for questions with the same purpose. This lack of variation negatively affects the
generalisation capabilities of NSP-based models trained on this dataset [16].

2.4.3.4. LC-QuAD 2

Taking into account all the advantages and disadvantages of the aforementioned datasets,
a second version of the Large-Scale Complex Question Answering Dataset (LC-QuAD 2) was
proposed [47]. In particular, this dataset provides around 30,000 questions over Wikidata
which contains complex questions and high diversity among its questions. The dataset ge-
neration workflow combines semi-automatic question generation along with a crowdsourced-
based paraphrasing phase.

51

SPARQL queries are generated given a set of entities, predicates and templates, and do not
differ much compared to the first version of LC-QuAD. Nevertheless, the SPARQL templates
used are different from the ones used before. Now the templates are based on one of the 10
types of question LC-QuAD 2 aims to address:

1. Single fact: use a single (S-P-O) triple query, e.g. “Who is the screenwriter of Mr.
Bean?”.

2. Single fact with type: the fact is focused on the type of constraint, e.g. “Billie Jean
was on the tracklist of which studio album?”.

3. Muti-fact: use two connected facts, e.g. “What is the name of the sister city tied to
Kansas City, which is located in the county of Seville Province?”.

4. Fact with qualifiers: includes more informative facts stored in qualifier properties,
e.g. “What is the venue of Barack Obama’s marriage ?”.

5. Two intentions: consider questions with two intentions and also rely on qualifiers,
e.g. “When and where did Barack Obama get married to Michelle Obama?”.

6. Boolean: ask whether a fact is true or false, including questions with number as an
object, e.g. “Did Breaking Bad have 5 seasons?”.

7. Count: uses the COUNT keyword to perform a numeric count over a certain fact, e.g.
“What is the number of Siblings of Edward III of England ?”.

8. Ranking: requires counting and sorting in order to rank entities regarding a certain
property, e.g. “What is the binary star which has the highest color index?”.

9. String Operation: applies string operations at a work or character level, e.g. “Give
me all the Rock bands that start with the letter R?”.

10. Temporal aspect: covers temporal properties where various time facts are included
in qualifier properties, e.g. “With whom did Barack Obama get married in 1992?”.

Considering that some types of questions might have more than one SPARQL template
variation, a total of 22 templates are used.

Then, a set of relevant entities and a predicate list is selected based on each SPARQL
template, meaning that each question type includes different entities and properties (e.g.
the property birthPlace might not be used for questions that require counting). For each
case, a subgraph is built based on three factors: an entity, the SPARQL template, and one
or more suitable predicates. From each subgraph a SPARQL query is generated. Next, each
SPARQL query is transformed to a normalized natural language question, called a Question
Template (QT), which is then verbalized and paraphrased in a three-step pipeline based on

52

Figure 2.8: Example of LC-QuAD 2 question workflow generation [47].

human turkers from the Amazon Mechanical Turk tool (a crowdsourcing tool to perform
simple tasks on a large scale).

The first step is to convert each QT into Verbalized Question (QV), where most of the
grammatical errors and semantic inconsistencies of the QT are fixed. The second step is to
paraphrase each QV, where the resulting Paraphrased Question (QP) should preserve the
overall semantic meaning while changing its syntactic content and structure. An example
of the entire generation of one case is illustrated in Figure 2.8. The last step is a human
verification where a comparison is done between each QT with its corresponding QP in
order to measure the quality of the final result in terms of semantic similarity.

After the entire generation process, a dataset is provided with around 52% complex
questions and significant variation in their question structure. There is, however, a small
percentage of error derived from using a crowdsourcing tool [47], with questions losing part
of their semantic intent or questions that are poorly verbalized/paraphrased, which should
be taken into consideration when using this dataset to train NSP-based models.

53

Chapter 3

System Overview

In this chapter we describe the main components of the proposed Question Answering
system. First we briefly provide a general overview of the proposed system structure, and
then explain in more detail each of the modules implemented for this work.

3.1. Question Answering general overview

The Question Answering pipeline is divided into different stages, as seen in Figure 3.1,
which do not differ much from the standard Question Answering pipeline described by Lopez
et al. [43]. We assume that the target Knowledge Graph is Wikidata for the purposes of the
example, but the architecture can be applied more generally to any Knowledge Graph. For
the question “Was Gabriela Mistral a poet?”, the expected answer can be retrieved from the
Wikidata query service by executing an ASK-type SPARQL query. In other cases a SELECT
query may be required.

In order to build this SPARQL query, the Question Answering system starts with a Query
Template Generation stage to generate SPARQL Query Template candidates with placeholders
to be filled with entities in a later stage. These entities are first annotated in the Entity
Linking stage, where relevant labels are identified (e.g., “Gabriel Mistral” or “poet”) and
linked to their corresponding entity Knowledge Graph.

The process of filling the annotated entities on the placeholders of a Query Template is
not a straightforward process. In the example provided in Figure 3.1, the entity of “Gabriel
Mistral” (Q80871) should be the subject of a triple in a SPARQLquery, but in other contexts
this entity could be the object of a triple. Sometimes Entity Linking may recognize more
entities than placeholders to be filled, thus adding another layer of complexity that an Entity
Linking system cannot exclusively address. Therefore, the Slot Filling stage aims to identify
which entities should be used to fill which placeholders of the Query Template candidates.

54

Figure 3.1: Question Answering system pipeline.

The Question Answering pipeline described in the Figure 3.1 is implemented by building
three modules that execute each one of the described stages.

3.2. Query Generation Module

In this section we describe the Query Generation Module, which is used by the Baseline
system and adapted for the system proposed in this work. Given a Natural Language (NL)
question, the goal is to generate its logical form in terms of SPARQL grammar, which can be
either a complete SPARQL query representation (baseline) or an intermediate Query Template
representation (our system).

We now explain the main components that encapsulate the Query Generation module.
First, we describe the Query Generation pipeline, which does not differ much between the
generation of an entire SPARQL query or its Query Template. Then, we explain the Query
Encoding used to deliver a normalized expression of the expected output for the model
that performs the generation process. Finally, we describe in more detail how the model is
trained and used to generate queries based on the FairSeq library for implementing Sequence
to Sequence models in Python.

55

3.2.1. Query Generation pipeline

This module addresses two different tasks: translation from NL to SPARQL queries, and
generation of Query Templates from NL.

On one hand, when we refer to SPARQL queries, we refer to complete queries with all
the entities, properties, SPARQL keywords and operators necessary to be executable on any
Wikidata endpoint. Previous works on this task are usually based on Sequence-to-Sequence
models, where many have SQL as their target language [44, 30, 204]. Most recent works
apply similar models targeting SPARQL [116, 162, 163].

On the other hand, Query Templates refer to intermediate representations of SPARQL
queries, which instead of containing the necessary entities included in a complete SPARQL
query, contain placeholders that will be later filled using the entities obtained in the Entity
Linking stage. An example of both cases can be found in Figure 3.2, where the left side shows
a SPARQL query, and the right side its Query Template.

Figure 3.2: Query Generation pipeline example.

In Figure 3.2, we can see the Query Generation pipeline and expected output for both
tasks given the input NL question “Was Gabriela Mistral a poet?”. On the left, the SPARQL
query pipeline outputs an ASK-type SPARQL question with two entities involved. On the
other side, a Query Template is returned, which looks like an ASK-type SPARQL query but
it replaces the entities for two placeholders indicating that there is a subject entity and an
object entity expected in the first triple of the Query Clause. The idea of the Query Template
is that these placeholders will later be filled by the Slot Filling module.

56

As we mentioned before, the Query Generation pipeline does not change whether the
model is generating an entire SPARQL query or just an intermediate Query Template, and
there are two reasons that explain this. First, both tasks can be seen as translating NL to
a meaning representation, where such representations only vary on the information they are
displaying. While generating a SPARQL query includes the entities involved in the query, the
generation of a Query Template replaces those entities for placeholders indicating that in
those places an entity or a plain value will be needed, without specifying which ones. The
second reason is that both models rely on the same data: a set of pairs of NL questions and
SPARQL queries. The only difference is that the output data used for the Query Template
model is adapted to fit the Query Template generation task, where entities and plain values
(e.g. numbers or strings values) are replaced by a placeholder that keeps a certain degree
of information for the replaced value (e.g. placeholder type, query triple position, etc). This
dataset adaptation process is explained in more detail in the Experimental Design chapter 4.

Aside from the input and output process, there are some intermediate steps performed
over the input and output data. In the case of the input NL questions, a normalization process
is conducted where the question string is lower-cased and non-relevant symbols are removed.
On the output side, an encoding process is performed over the data used for training, and
a decoding process is done for the query string output by the Query Generator system. The
Query Encoding is done by tokenizing the SPARQL grammar, allowing for treating it as a
target wordy language, following the idea of reducing this problem to a Machine Translation
task used in previous works [35, 8, 197]. Then, each of the two Generator models shown in
Figure 3.2 corresponds to a previously trained Fairseq model, which receives a normalized
NL question and returns an encoded meaning representation that has to be later decoded to
obtain the final SPARQL query or Query Template output.

3.2.2. Query Encoding

Following the same encoding approach used by Soru et al. [162], we encode the SPARQL
queries into tokens that describe entities, keywords, symbols, and operations. One difference
is that we are using a dataset that includes new query components such as numbers or string
values; thus we propose novel tokens to encode those values. An example of this encoding
can be seen in Listing 3.1. The main advantage of this encoding is that it allows the system
to express chunks of commonly used patterns (e.g. order by asc/desc, or filter patterns) in a
simpler way, thus reducing the complexity of the translation task.

ASK WHERE { wd:Q658 wdt:P1108 ?obj FILTER(?obj < 1.2) }

ask where brack_open wd_q658 wdt_p1108 var_obj filter attr_open var_obj math_lt 1
↪→ _dot_2 attr_close brack_close

Listing 3.1: SPARQL query example with its encoded form.

Query Templates are encoded in a similar way, but instead of encoding entities, numbers

57

or string values, placeholders are used to replace those values. Besides those components,
there is no other difference in the encoding process. Listing 3.2 shows the Query Template
of Listing 3.1 and its encoded form.

ASK WHERE { <sbj_1> wdt:P1108 ?obj FILTER(?obj < <num>) }

ask where brack_open placeholder_sbj_1 wdt_p1108 var_obj filter attr_open var_obj
↪→ math_lt placeholder_num attr_close brack_close

Listing 3.2: SPARQL query example with its encoded form.

Note that instead of using letters for naming each placeholder as done by Ying et al. [197]
(e.g. A, B or C) we use labels that provide more information about placeholders. For example,
we identify placeholder type (subject, object, string value or numeric value) and position for
entities placeholder (e.g. sbj_1 corresponds to the subject of the first triple in the Query
clause).

These placeholder labels are also used in the Slot Filling system mentioned later in order
to identify which entities output by the Entity Linking system correspond to each one of the
Query Template placeholders.

3.2.3. Fairseq Model

The Query Generation model is implemented using the Facebook AI Research Sequence-
to-Sequence Toolkit (Fairseq), which implements various Seq2seq models based on Pytorch.
Fairseq provides various off-the-shelf implementations and other settings to configure user
experiments.

In particular, we use the Convolutional Sequence to Sequence model (ConvS2S) [61] im-
plementation to build the Query Generator model. The decision to use the ConvS2S is based
on the work done by Yin et al. [197], where eight Sequence-to-Sequence models were imple-
mented and compared regarding the NL-to-SQL task. From this comparison, the ConvS2S
model ended up having the best performance in terms of Perplexity, BLEU score, and string-
match Accuracy. This model has to be trained and can be used later to generate an output
depending on the given data. If we need to build a SPARQL Query generator, we have to feed
the system with pairs of NL questions and SPARQL queries. In the same way, for a Query
Template generator we instead use Query Templates as our output examples for training.

We now explain the main components of the ConvS2S architecture, the hyperparameters
used with their values, and other training settings relevant to comprehend the training
process. Note that the architecture used and its configuration is done following the work
from Yin et al. [197].

The ConvS2S architecture components used are based on the best-performance settings

58

for natural language NMT [197]. In particular, the most relevant hyperparameters are the
followings:

• The number of layers used for the convolutional encoder and decoder is 15. From
these layers, the first 9 layers use 3 × 3 kernels with 512 units, the next 4 layers use
3× 3 kernels with 1024 units, and the final 2 layers use a 1× 1 kernel with 2028 units.

• The optimizer, i.e. the learning algorithm used, is Stochastic Gradient Descent with
minibatches. The default minibatch size is 64.

• The learning rate is set to a fixed value of 0.5, which is maintained during the entire
training session.

• As a regularizer, dropout is applied with a fixed value of 0.2.

Besides those parameters, the Multi-step Attention mechanism is applied to some layers.
The loss function used is the cross-entropy function mentioned in the Theoretical Framework
chapter 2.3.1.

The training process is performed using Google Colaboratory, an online research tool that
allows for writing and executing Python code and provides free computational resources, such
as GPUs, to boost the training process. It is mainly focused on developing machine learning
tasks. We also follow the same dataset split used by Yin et al. [197]: 80% for training and
20% for dev/test. One difference is we only use train and dev sets, since other datasets are
proposed as test sets. We chose this strategy as some of the existing datasets we use contain
related or paraphrased questions, where creating an independent test set ensures that test
questions are not derived from, or variants of, training questions. Each model is trained for
a maximum amount of 40 epochs, where after every epoch a checkpoint is saved. Then, the
checkpoint that achieves the lowest loss value for the validation set is kept.

The best values obtained from the training process can be imported later to the same
Fairseq model implementation to perform new evaluations. When decoding on the evaluation
stage, beam search is applied with a beam width of 5. As a last note, the same normalization
process done for the training data has to be done with every new NL question. On the other
hand, to obtain the SPARQL query or the Query template it is always necessary to perform
the decoded process over the Query Generator output.

3.3. Entity Linking Module

Two types of Entity Linking systems are considered for this work: Individual Entity
Linking systems and Ensemble Entity Linking systems. First we discuss the pipeline that
these systems follow.

59

3.3.1. Entity Linking pipeline

An example for the Entity Linking pipeline is shown in Figure 3.3, for the question “Was
Gabriela Mistral a poet?”. We assume that the Entity Linking module is available through an
API; the Entity Linking system first retrieves the annotations by querying the API service,
which returns annotations along with extra information (e.g. scores, second ranking entities,
etc). In the case that the Entity Linking system targets a different Knowledge Graph to the
one over which questions are answered, in a second (optional) phase the entities are mapped
from the former to the latter (we do not compute the mapping in this work but rather assume
that a mapping is made available).

Figure 3.3: Entity Linking pipeline example.

In this example, we show for each spotted mention: the start and end position, the an-
notation label and its associated resource. Then, an entity mapping process is performed to
convert the DBpedia resources (dbr:Gabriela_Mistral and dbo:Poet) into Wikidata re-
sources (Q80871 and Q49757 respectively). As we mentioned, this mapping is optional and it
depends on the target Knowledge Graph we are interested in, which in this case is Wikidata,
and whether the system returns entities on that target Knowledge Graph.

The API service input parameters and output format is different for each web service,
though the final output annotations from the Entity Linking module are always the same.
An additional piece of information that is also returned are the scores each system gives to
each annotation. Though these scores cannot be compared across systems, such scores are
used to establish which entities are more relevant for each system.

The Entity Mapping process assumes an existing mapping between the entities of both
Knowledge Graphs. In this particular case, we can take advantage of the fact that many
DBpedia resources and Wikidata resources are both bound to Wikipedia articles via the
schema:about property. This information can be found on Wikidata, thereby, given a set of
DBpedia entities, a SPARQL query can be performed to retrieve their corresponding Wikipedia
article and their related Wikidata entities, if any. An example of a SPARQL query to map
DBpedia entities to Wikidata ones can be seen in Listing 3.3.

60

SELECT ?article ?wikidata ?dbpedia WHERE {
?article schema:about ?wikidata .
BIND(IRI(CONCAT("https://en.wikipedia.org/wiki/", SUBSTR(STR(?dbpedia),29))) AS ?

↪→ article)
VALUES ?dbpedia { <http://dbpedia.org/resource/Gabriela_Mistral> <http://dbpedia.

↪→ org/ontology/Poet> }
}

Listing 3.3: SPARQL query example to map DBpedia resources to Wikidata ones.

Following the same logic, Wikipedia articles can be mapped to their associated Wikidata
resources. The opposite mapping from Wikidata resources to DBpedia ones can be easily
performed as well. If any entity cannot be mapped from the results of the Entity Linking
system to the target Knowledge Graph, it is discarded.

A final note about the entity mapping process is that it is performed over batches of
entities, which means that a set of entities are mapped at the same time. This batch entity
mapping is used to minimize the amount of queries done to the Wikidata query service. The
final output values are returned in a JSON format.

3.3.2. Individual Entity Linking systems

We consider an Individual Entity Linking system as one of the Entity Linking systems
mentioned in the Information Extraction chapter 2.2.2: DBpedia Spotlight [128], AIDA [198,
89], TAGME [52], and OpenTapioca [42]. These systems were selected because they provide
public APIs that can be invoked over the Web. The annotation process is reduced to making
a request on the corresponding API’s web service. We will briefly describe some details of
the implementation and mention some aspects to take into consideration for each one of the
aforementioned systems.

The DBpedia Spotlight system [128] aims to annotate DBpedia entities, so it requires
a mapping process to convert the output annotations into Wikidata entities. The input
parameters for the API request are the query text, a confidence value, and a support value.
The confidence parameter is a threshold for disambiguation, and the support parameter
is used to filter resources with a small number of Wikipedia inlinks. On the output side,
DBpedia Spotlight assigns two scores to each entity: a similarity score, which represents how
similar are the mention and the entity, and a percentage of second rank, which is the ratio of
similarity scores between the second and the first candidates of the corresponding mention
(used to measure the level of ambiguity for the mention).

The AIDA system [198, 89] works over YAGO entities, though all YAGO entities map to
a Wikipedia article. The annotations of this system can thereby be expressed as Wikipedia
resources without the need for an extra query to the Wikidata query service. Nevertheless,
the mapping process is done to map Wikipedia resources to Wikidata ones. Besides the
text input parameter, the AIDA system does not require any other parameter. Each output

61

annotation includes a disambiguation score which is the score assigned in the candidate
ranking stage.

The TAGME system [52] makes annotations over Wikipedia. As per AIDA, it requires
a mapping stage to convert Wikipedia resources into Wikidata ones. Aside from the query
text input parameter, TAGME requires a token parameter for authentication, which can be
retrieved from its API website. Each entity annotation has a “rho” score assigned, which is
derived from the candidate ranking stage.

The OpenTapioca system [42] is the only one that works directly over Wikidata. It
does not require any extra parameter besides the query text. In the output annotation, a
logarithmic likelihood score is assigned to each annotation, which points out how prominent
the entity is in the Wikidata Knowledge Graph.

As a general aspect, the GET requests of most of the systems’ web services are done
using the request1 Python library, except for AIDA where curl2 requests are done using
the subprocess Python library. Then, the mapping queries performed on the Wikidata query
service are done using the SPARQLWrapper3 Python library.

3.3.3. Ensemble Entity Linking system

Besides each individual Entity Linking system, we propose an ensemble of Entity Linking
systems in order to improve the performance in terms of recognizing all the entities in a given
question. Since each individual system relies on different techniques or prioritizes different
features, they can identify entities that are either very prominent or quite rare. In the context
of Question Answering, if an Entity Linking system cannot identify all of the entities needed
to build the required SPARQL query, the Question Answering system will fail to provide the
right answer. The inability to identify all entities is more prone to happen when little context
is provided in the given text, which is a common situation in Question Answering settings.

An ensemble Entity Linking system aims to make the most of all individual Entity Linking
systems by combining their results together to achieve better Recall and Precision. Then,
an ensemble system is given the annotations of each individual system as the system input
and returns a final output annotation set. We present two variants to combine the individual
annotations: Precision Priority system and Voting system. To better illustrate the variants
proposed in this work, let us assume that each individual Entity Linking system returns the
following annotations, for the question “Does FC Barcelona have Juan Jose Ibarretxe as a
chairperson?”:

1https://pypi.org/project/requests/
2https://curl.haxx.se/
3https://pypi.org/project/SPARQLWrapper/

62

https://pypi.org/project/requests/
https://curl.haxx.se/
https://pypi.org/project/SPARQLWrapper/

AIDA

FC Barcelona - wd:Q7156

OpenTapioca

Juan Jose Ibarretxe - wd:Q351738

TAGME

Juan Jose Ibarretxe - wd:Q351738
chairperson - wd:Q140686

DBpedia Spotlight

Does - wd:Q302057
FC Barcelona - wd:Q7156
Juan Jose Ibarretxe - wd:Q351738
chairperson - wd:Q140686

After the description of each variant, an example of the expected output annotations is
given based on the results shown above.

In this example, the annotations expected to be recognized are the entities from “FC
Barcelona” and “Juan Jose Ibarretxe”. Even though some systems recognized “chairperson”
as an entity, the property “chairperson” (wdt:P488) is more likely to be used when building
the SPARQL query for this question, so its entity is not expected to be identified. Though this
ambiguity issue (whether something is a property or an entity) can complicate building the
SPARQL query, it is not something that we address in the Entity Linking stage. Returning
more entities than the number expected is still acceptable as long as the correct entities
are included among the output annotations. However, we will see in the Slot Filling module
section 3.4 that the more entities are passed from the Entity Linking stage, the more difficult
it can be to find the correct entity-placeholder mapping. Thus, a threshold can be set to define
the number of expected entities, which is commonly the number of slots contained in the
predicted Query Template.

3.3.3.1. Precision Priority system

The Precision Priority (PPrior) ensemble system establishes that some individual Entity
Linking systems are more likely to return the expected answers, which in this case are the
individual systems that tend to return fewer entities but with a high level of confidence, i.e.
systems that prioritize Precision over Recall.

63

Then, the PPrior system assigns a priority to each individual system according to their
performance on the datasets we are interested in (LC-QuAD 2, DBNQA, and QALD-7). In parti-
cular, systems with better Precision have higher priority. These results can be found in the
Results chapter 5.2, which establishes the following priority: AIDA, OpenTapioca, TAGME,
and DBpedia Spotlight. Next, the PPrior system retrieves the annotations of each individual
system following the established priorities until the number of unique expected entities is
reached. For example shown above, the PPrior system would rank each entity in the following
way:

1. FC Barcelona - wd:Q7156
2. Juan Jose Ibarretxe - wd:Q351738
3. chairperson - wd:Q140686
4. Does - wd:Q302057

The first entity (Q7156) comes from the AIDA system, the second one (Q351738) from
OpenTapioca, the third one (Q140686) from one of the annotations output by TAGME (since
the other entity has already been considered), and the remaining one (Q302057) comes from
DBpedia Spotlight. Therefore, if the number of expected entities is two, the entities of the
mentions “FC Barcelona” and “Juan Jose Ibarretxe” would be output as final annotations.

One advantage of this variant is that it would perform more efficiently in an online setting
since it only requires to request annotations from the individual systems until it fulfills its
expected number of entities. A disadvantage to take into consideration is that the PPrior
system relies on the idea that systems with higher priority make fewer mistakes (e.g. recognize
fewer false positives); thus incorrect entities from higher priority systems would have more
value than correct entities from smaller priority systems.

3.3.3.2. Voting system

The Voting ensemble system establishes a voting scheme where annotations from each
individual system are considered to be a vote that is used to rank entities. This is based on
the idea that if an entity is widely recognized across Entity Linking systems, that entity is
more likely to be a correct annotation. Note that votes go for the entity identifier and not
for the mention. Therefore, if two individual systems recognize the same entity but differ
on the mentions linked, both systems are voting for the recognized entity (e.g. the Q351738
entity could have been assigned to “FC Barcelona” or only to “Barcelona”, but votes go to
the Q351738 entity).

Given that ties are possible, the entities that come from more precise systems would have
priority (following the same reasoning as with the PPrior system). For example, the Voting
system would rank each entity in the following way:

64

1. (3) Juan Jose Ibarretxe - wd:Q351738
2. (2) FC Barcelona - wd:Q7156
3. (2) chairperson - wd:Q140686
4. (1) Does - wd:Q302057

The most voted entity is Q351738 with three votes, which comes from OpenTapioca,
TAGME, and DBpedia Spotlight. Next, the entities Q7156 and Q140686 get the same amount
of two votes. Since Q7156 comes from a system with higher priority (AIDA), that entity
ranks higher. The last entity Q302057 only has one vote from the system with least priority
(DBpedia Spotlight). Thereafter, if the number of expected entities is two, the entities of the
mentions “Juan Jose Ibarretxe” and “FC Barcelona” would be output as final annotations.

The main advantage of the Voting system is that it can benefit from every system equally
(all votes weigh the same regardless of their system’s Precision). Thus, it seems reasonable
to assume that the more systems are included in the voting process, the greater the chances
are that the correct entities will be among the top voted ones. Some disadvantages are that
with few systems the voting system does not differ much from the PPrior system, and its
process is more expensive to execute since it always requires retrieving the annotations from
all individual systems included.

3.3.3.3. Other optimizations

In order to improve the performance of Ensemble Entity Linking systems, a couple of
heuristic optimizations are proposed to achieve better performance. These improvements are
included in the two variants mentioned before, and are optional features that can be skipped
if no significant improvement is perceived.

First, some entities linked to stopwords (e.g. “Does” linked to Q302057) are filtered using
an English stopwords list provided by the Natural Language Toolkit4. Before performing any
join annotation process, the annotations that contain stop words are discarded. The idea
behind this filter is to avoid entities from systems with low Precision negatively affecting
the identification of correct entities. However, some entities may include stopwords in their
names (e.g. the rock band “The Who”), where this approach may negatively affect the results
for such entities.

Lastly, a tiebreak system is implemented for entities that are ranked in the same position
and come from the same system. Since each individual system assigns a score to each anno-
tation, such scores can be used to break the tie and decide which entities will be considered
in the final output. For example, if only two entities are expected but the second and third
are tied (e.g. in the Voting system let us assume the entities from “Juan Jose Ibarretxe” and
“chairperson” comes from OpenTapioca and have two votes each), we look at which has a
higher score according to the individual Entity Linking system these annotations come from

4https://www.nltk.org/

65

https://www.nltk.org/

(i.e. which one has a higher log_likelihood score according to OpenTapioca).

3.4. Slot Filling Module

In this section we describe the main components of the Slot Filling module, which is
divided into two stages: the sequence labelling stage done by a Sequence Tagger, and the
Query Filling stage where the spotted entities are filled into the given Query Template. We
explain with details how the Slot Filling pipeline is structured, and then describe how the
Sequence Tagger and the Query Filling algorithm are implemented.

3.4.1. Slot Filling pipeline

In Figure 3.4, we can see an overview of the Slot Filling process. Differently from the other
modules, the Slot Filling system not only receives the input NL question, but also the outputs
from the Entity Linking system and the Query Template generator. The expected output
is a SPARQL query which is based on the Query Template output by the Query Template
generator, containing entities from the annotations returned by the Entity Linking system.

Figure 3.4: Slot Filling pipeline example.

66

Before the actual Slot Filling process, the input NL question is passed to a Sequence
Tagger that identifies relevant named entities (or labels) and their corresponding placeholder
tag. We understand a placeholder tag as a placeholder name in a Query Template. As seen
in Figure 3.4, given the question “Was Gabriela Mistral a poet?”, the expected output for the
Sequence Tagger is to identify “Gabriela Mistral” and “poet” as two relevant labels which are
expected to have a Wikidata entity recognized by the Entity Linking system. For example,
“Gabriela Mistral” is tagged as “sbj_1”, meaning that the entity which corresponds to that
label (Q80871) should be assigned to the placeholder <sbj_1> in the Query Template. The
same happened with the label “poet”, which should be assigned to the placeholder <obj_1>.
Note here that the goal is to infer label–placeholder annotations, whereas the Entity Linking
system aims to produce label–entity annotations.

Next, the labels tagged with their corresponding placeholder are passed to the Query
Filling stage, along with the Entity Linking annotations and the generated Query Template.
A filling algorithm is proposed to perform the Query Filling process. The algorithm will
return a SPARQL query only if the filling process is successful. As we will explain later, this
filling process could fail due to the previous systems failing to recognize some entities, or due
to a mismatch between the placeholders recognized in the tagging stage and the placeholder
contained in the given Query Template.

3.4.2. Sequence Tagger model

The Sequence Tagger identifies which labels are more likely to have an entity assigned to
a certain placeholder in the Query Template. To implement this model, we use the Flair5
framework for Natural Language Processing. Flair contains many off-the-shelf Sequence La-
belling and Name Entity Recognition models implemented using Pytorch. It also supports
training a custom Sequence Labelling model if training data is provided.

We then adapt the same dataset used for generating the Query Template dataset to
describe the expected output (more details in the Experimental design chapter 4.4.1). A
Sequence Tagger model receives an NL question, and returns a sequence of tags where each
tag is related to one word (or token) in the input question. These tags follow the BIO
format, where each word is classified as the beginning of a tag, as the intermediate part of
it, or as a non-tag token. For example, if given the question “Was Gabriela Mistral a poet?”,
the expected output would be (O, B-sbj_1, I-sbj_1, O, B-obj_1). From this output we
can infer that “Gabriela Mistral” is identified as one tag (“Gabriela” is the beginning of the
tag and “Mistral” is an intermediate part of it), and “poet” is identified as another tag. On
the other hand, the words “Was” and “a” are identified as non-tag tokens. Note that the
length of the tagger output and the number of tokens in the input question are always the
same amount, so every token is assigned with a BIO tag.

In this work three types of placeholders are chosen for three types of values: entities,
5https://github.com/flairNLP

67

https://github.com/flairNLP

numbers, and string values. The entity placeholder identifies entities from the Knowledge
Graph resource (e.g. Q80871). Each entity placeholder identifies two aspects of the entity:
1) its role in the query triple (subject or object), and its query triple position. For example,
if an entity is tagged as “sbj_1”, it means it is the subject of the first query triple. As their
names may suggest, the number placeholder identifies numeric values, whereas the string
value placeholder marks text relevant to the query (e.g. for filtering entities that contain a
certain string label).

There are two main steps before training the Sequence Tagger model: preprocessing the
dataset, and configuring the model architecture. The Sequence Labelling dataset has to be
converted to a tag dictionary that fits the Flair model input. Each output value has to be
expressed as a sequence of BIO tags. Whatever BIO tags are chosen determines the tags
the Sequence Tagger will use. Next, the configuration of the model architecture is divided
into embeddings and model settings. First, the embedding layer is set, where one or more
types of embeddings can be joined into stacked embeddings. In this case, we use the GloVe
embeddings along with contextual embeddings, also known as Flair embeddings [4]. Lastly,
the model architecture used is the same standard architecture used by Akbik et al. [5], which
is a BiLSTM [93] with the number of hidden layers set to 256, along with a CRF layer put
on top of the final layer.

Finally, there are some training parameters and settings that are defined by default and
others that can be tuned for a particular task. Some default aspects include the learning algo-
rithm (mini-batch stochastic gradient descent) and the loss function (cross-entropy function).
Some relevant training parameters that can be tuned are the learning rate, the minibatch
size, and the number of epochs. The model is trained until it has a fixed number of epochs
without an improvement in terms of loss value.

3.4.3. Slot Filling method

The placeholder tags for each named entity, along with the annotations from the Entity
Linking system and the Query Template from the Query Template generator, need to be
combined together to build the final SPARQL query output. The Slot Filling method decides
which placeholder to replace with which entity, and is based on a novel filling algorithm
divided into two filling stages. The first stage is a Standard Filling process that may not
fill all the placeholders in the query, and the second stage is a Force Filling process that
tries to complete the spots that the previous stage was not able to fill.

The first stage, the Standard Filling process, follows a straightforward process of com-
paring labels from the outputs of the Entity Linking system and the Sequence Tagger to
identify entity-slot matches which are then inserted into the Query Template to form the
SPARQL query. Then, the algorithm that describes the standard filling process is shown in
Listing 3.4. As an example from the input shown in Figure 3.4, the algorithm would first
compare the label “Gabriela Mistral” with all the labels from the entity annotations. Then, it

68

would be found that the placeholder sbj_1 should correspond to the entity wd:Q80871 given
that both labels are equal. Based on this match, the entity wd:Q80871 should replace all the
appearances of the placeholder sbj_1 in the current SPARQL query that is being constructed.

standard_filling(annotations, slots, query_template)
sparql_query = query_template
for s_label, placeholder in slots

if placeholder has been used or placeholder not in sparql_query
skip

if placeholder is a <num> or <str_value>
replace placeholder in sparql_query for the s_label value

if placeholder is an <entity_type> (e.g. <sbj_1>)
for e_label, entity in annotations

if s_label equal to e_label
replace placeholder in sparql_query for the entity value
break

mark placeholder and/or entity as used, if applies
return sparql_query

Listing 3.4: Standard Filling algorithm.

Some problems can arise from this algorithm, which are mainly due to previous systems
passing incorrect or incomplete information (e.g. not all the entity annotations are identified,
or the Sequence Tagger tag some mentions incorrectly). Consequently, some placeholders may
not be filled by the standard filling process. In such cases, a second filling process, called
Force Filling, is performed to address these issues.

Force Filling aims to fill all slots in a best-effort manner, and is performed based on some
assumptions and heuristics. The first assumption is that since we usually deal with short
questions, the number of entities to be identified and placeholders to be filled tend to be low,
not having more than three spots to fill in average. We also assume that most of the mistakes
made by the Sequence Tagger are due to incorrect tagging. Also, multiple word labels from
annotations and from the Sequence Tagger might differ but if they share one or more words,
it is more likely that both labels refer to the same value. Lastly, we assume that if one spot
is left to be filled, and one entity is left to be used, it is likely that that entity should be
placed there even if the slot label and the entity label are not the same. Considering all that,
the mistakes made by previous systems can be mitigated by using simple heuristic rules.

To summarize, a similar filling process to the one shown in Listing 3.4 is executed, but
adding the following rules:

• If any slot label is contained in an entity label (or vice versa), it counts as a match.

• When comparing entity type placeholders, if the slot placeholder is the same entity type
(subject or object) or is assigned to the same query triple (e.g. the first query triple
pattern on the SPARQL query) as some of the remaining Query Template placeholders,

69

it counts as a match.

• Finally, if there is any remaining entity that was not identified by the Sequence Tagger,
and there are still placeholders to fill in the Query Template, the entities will be inserted
in order until all spots have been filled (where the order is defined by the entity identifier
number).

As an example, let us assume we have the outputs illustrated in Figure 3.5 for the question
“How many Nobel Prizes has Gabriela Mistral won?”, which requires a count operation. The
expected slots state that the subject of the first query triple should be filled with the entity
of the label “Gabriela Mistral”, while the object of the second query triple should be filled
with the entity of the label “Nobel Prizes”. However, it may happen that a label is incorrectly
associated with the wrong query triple (case 1), or the wrong entity type (case 2). In the first
case, the “Nobel Prizes” entity would not be filled in the Standard Slot Filling stage due to
the <obj_2> not existing in the Query Template, but it would be recognized in the Force Slot
Filling stage because it will identify that the remaining slot in the Query Template (<obj_1>)
is the same entity type as the slot incorrectly labeled (<obj_2>). The same happens in the
second case, where the incorrect label (<obj_1>) is associated with the same query triple
(the first triple) as the remaining slot in the Query Template (<sbj_1>).

Figure 3.5: Force Filling case examples.

Although more cases can be correctly filled by applying these rules, there are some other
cases that are not possible to correctly fill. For example, the Sequence Tagger can identify
the expected placeholder but it can wrongly associate each one to an incorrect mention (e.g.
wrongly associate the subject entity and object entity of one query triple). A more serious
case is when the Sequence tagger provides placeholders that have nothing to do with the ones

70

found in the Query Template, usually because both systems identified a different intention
in the given answer. In summary, the success rate of the filling process is strongly affected by
the performance of the previous systems that deliver the input for this Slot Filling system.

71

Chapter 4

Experimental Design

We present an overview of the research questions we address in this work along with
the details of the experimental design. The implementation of the system, experiments,
and datasets used can be found in the following Github repository: https://github.com/
thesemanticwebhero/ElNeuKGQA/.

4.1. Question Answering general overview

The task of Question Answering over Knowledge Graphs is far from being resolved, where
one of the main challenges that still remains is answering complex questions. Current approa-
ches rely mostly on hand-crafted rules, achieving decent performance over simple questions
(that only require a few query triple patterns), but not for more complex questions. Complex
questions are difficult to handle mainly because they may be structured in a more elabo-
rate way, and most of them require the use of more advanced SPARQL operations (such as
aggregations, ranking, or the use of more complex graph patterns).

Some recent approaches based on Neural Networks have shown some potential for handling
more complex questions. These Neural-based approaches usually aim to build the entire
SPARQL query given a natural question, reducing the problem of Question Answering to
Semantic Parsing. The main weakness of these systems is that they are dependent on the
vocabulary of the data used for training such models, so even though these systems can
generalize to different question forms, they are not able to identify unknown entities that
were not included in the training set.

In order to address this problem, we study the effectiveness of an approach that combines
Neural Semantic Parsing with Entity Linking through a Slot Filling method proposed in this
work. The research questions we propose are the following:

72

https://github.com/thesemanticwebhero/ElNeuKGQA/
https://github.com/thesemanticwebhero/ElNeuKGQA/

• Can Entity Linking and Slot Filling improve the performance of Question Answering
systems over Knowledge Graphs based on Neural Semantic Parsing?

• Which stages of the proposed Question Answering pipeline (Entity Linking, Query Tem-
plate Generation, Slot Filling) produce the most errors, what types of errors do they
produce, and how do they affect the overall performance of the Question Answering
system?

Note that all these questions are addressed specifically in the context of Wikidata as the
target Knowledge Graph and for questions in English.

4.2. Question Answering Dataset
In this section we describe the dataset used for this work which includes the preprocessing

required to improve the quality of the data used for training, validation and testing all of
the modules (Query Generation, Entity Linking, and Slot Filling) and the final end-to-end
Question Answering System.

First, we describe the revision and cleaning performed over the LC-QuAD 2 dataset, which
is the main source we use to train the Neural Network-based models. Second, we explain
the SPARQL query encoding used for the training of the Query Template generation and the
baseline SPARQL Query Generation models. Third, we describe the process for generating
the Query Templates used for training the Query Template generation model. Fourth, we
describe the same process for the Slot Filling dataset. Finally, we present the normalized
dataset format which we designed to handle all the datasets used.

4.2.1. LC-QuAD 2 Dataset Cleaning

The LC-QuAD 2 dataset requires a cleaning process where some cases were discarded
or fixed due to various issues in either their question or SPARQL query answer. First we
mention which cases were discarded according to some problems found in their paraphrased
or verbalized question. Next, we describe which cases were discarded according to problems
found in their SPARQL query. Since there are some queries with an easy fix, we explain briefly
those cases.

Given that the questions contained in the LC-QuAD 2 dataset were built from a two-step
question correction (a verbalization and a later paraphrasing), each dataset case contains
three representations of the same question: a normalized question, a verbalized question
and a paraphrased question. An example is shown in Listing 4.1. Since this process was
performed using a crowdsourcing tool, we found issues related with question verbalization
(e.g., the human that performed the verbalization didn’t understand the normalized question)
or loss of the question’s semantics through the conversion from normalized to paraphrased
questions.

73

normalized question -> Did {Alexander_Hamilton} {occupation} {lawyer}?
verbalized question -> Is Alexander Hamilton a lawyer?
paraphrased question -> Did Alexander Hamilton practice law?

Listing 4.1: Example of questions contained in one case of the LC-QuAD 2 dataset.

A case is discarded if both the verbalized and the paraphrased questions present an issue.
To define if a question is an invalid verbalization/paraphrase, the following issues are taken
into account:

1. The question is null, empty or not applicable (marked as “NA”).

2. The question has not been corrected, e.g., it still contains brackets from the normalized
question, or it is the same question as the normalized version without brackets.

3. The question contains the answer to the previous normalized or verbalized question
instead of the verbalization or paraphrasing, respectively.

4. The length of the actual version compared with the previous version is too long or too
short, which for us is a way to identify the third issue or an indicator of a question
that did not maintain the semantic meaning of its previous version.

5. The question is either too short or too long. We set a minimum of 4 tokens and a
maximum of 30, where each token is divided by whitespace characters.

Note that given the large number of questions in the dataset, this validation was not
performed manually but rather using a script to identify these issues as best as possible.
Thus some undesirable cases may slip into the final preprocessed dataset, though we consider
that as an acceptable amount of noise.

Other cases presented issues with their Wikidata SPARQL query, where either the query
was empty/null, or contained invalid entities or tokens. An entity is considered invalid if it
does not present the common Wikidata pattern: a valid prefix (e.g. wd, wdt, etc) along with a
valid identifier, which always is composed by a Q and a number (e.g. Q80871). A few queries
contained invalid numbers such as “t1231” which are corrected by removing the t. Some
other queries presented syntax errors or had some clauses missing, which were corrected.
Finally, a simple canonicalization process was performed over the variable names in order to
follow similar conventions (e.g. use sbj and obj as base variable names).

Aside from that, some cases were duplicated due to the observation that they contained
the same normalized question or the same SPARQL query. Those with the same normalized
question but different SPARQL queries were merged into one case, though just one SPARQL
query is used later. Other cases with the same SPARQL query (regardless of whether their
normalized question is the same or not) were discarded.

74

In summary, from the 30,226 cases contained in the LC-QuAD 2 dataset, 2,520 cases were
discarded: of these, 2,478 cases were discarded for having an invalid question or query, and
42 cases were duplicate cases. Note that 52% of this final preprocessed dataset is composed
of complex questions (a deeper explanation of which cases are considered complex can be
found in Appendix B). After preprocessing, this dataset is used to train the Neural-based
models used in this work.

4.2.2. Query Template Dataset

From the cleaned LC-QuAD 2 dataset, a Query Template dataset was created for training
the Query Template generator model. More specifically, a Query Template was inferred
from each SPARQL query by replacing every subject and object entity in the query with a
placeholder. As explained in the System Overview chapter 3.4.2, in order to maintain some
degree of the semantic meaning of the entity that is being replaced, we propose using several
types of placeholder labels. For example, an entity that was the subject of the first query
triple will be replaced by a placeholder labeled as “sbj_1”. For numerical or string values,
the placeholder would be “num” or “str_value”, respectively. This is a different approach
to generate Query Templates than the one followed by Yin et al. [197], where instead they
replaced entities by one-letter names such as A, B or C.

SPARQL Query
SELECT ?obj WHERE { wd:Q14752155 wdt:P19 ?obj }

Query Template
SELECT ?obj WHERE { <sbj_1> wdt:P19 ?obj }

Listing 4.2: SPARQL query and its Query Template version.

An example can be seen in Listing 4.2, where in the SPARQL query for the question “Where
was Pedro Pascal born?” the entity Q14752155 from Pedro Pascal was replaced for the sbj_1
placeholder. All queries from the cleaned dataset were able to be transformed into their Query
Template version.

Since some cases may have issues with either the verbalized or the paraphrased question,
we decided to maintain a one-to-one correspondence between question and query. Although
it would be interesting to test whether having many variations of the same question might
affect the system performance, we think such an experiment has to be done with a dataset
where each case has the same amount of variations (which cannot be guaranteed with this
dataset without having to discard an uncertain amount of valid cases). Then, in each case
we first use the paraphrased question as the case’s question. However, if the paraphrased
question is not valid, we use the verbalized question instead (if it is valid).

75

4.2.3. Sequence Labeling Dataset

In order to train the Sequence Labeling model from the Slot Filling module, a dataset
was needed. As per the Query Template dataset, the Slot Labeling dataset is based on the
cleaned LC-QuAD 2 dataset. The creation of this dataset is divided into two stages.

The first stage consists of identifying the entity-label mapping in terms of which part
of the question corresponds to each entity from the ones contained in the SPARQL query.
In the example of “Where was Pedro Pascal born?”, the label “Pedro Pascal” contained in
the question should correspond to the entity Q14752155 corresponding to the Chilean actor
Pedro Pascal. This mapping identification was performed using the Wikidata labels found in
the normalized question provided in the LC-QuAD 2 dataset (see an example in Listing 4.1).

In the second stage, the labels identified previously are associated with the placeholders
used for the creation of the Query Template. In this case, the placeholder sbj_1 shown in
Listing 4.3 corresponds to the entity Q14752155, therefore the label “Pedro Pascal” will be
associated with the placeholder sbj_1. We use the BIO label format as the output format
for the Sequence Tagger, as shown in Listing 4.3 (the ‘?’ is ignored).

NL Question
Where was Pedro Pascal born ?

Expected label output
O O B-sbj_1 B-sbj_1 O

Listing 4.3: BIO label representation for a Natural Language Question.

Some labels were not able to be associated with their corresponding placeholders due
to the question rephrasing performed over the LC-QuAD 2 dataset. The main issue was the
discrepancy between the Wikidata label associated with an entity, and its current label in
the question (which may be modified due to the rephrasing). As opposed to what we did
for the Query Template dataset, we decided to add both verbalized and paraphrased valid
cases to compensate for the loss of information. After processing the dataset, we ended up
with 36,854 valid cases from the 52,853 initial cases (counting for each case its verbalized
and paraphrased version), which is almost 70% of the dataset.

4.2.4. Final Dataset Format

After extracting the Query Templates, the entities, and their entity/placeholder slots, a
final LC-QuAD 2 dataset was built containing all this information. In summary, each case
possesses a question identifier, the question string, a Wikidata SPARQL query, their entities
with the corresponding label, a Query Template deduced from the SPARQL query, and a
mapping between the entity labels and the Query Template placeholders.

We proposed a normalized format and delivered a dataset that not only can be used to

76

evaluate systems on the KGQA task, but also over the tasks of Entity Linking, Name Entity
Recognition, Slot Filling, Intent Classification, or Semantic Parsing. A sample of the entire
dataset can be found in Appendix B.

4.3. System Implementation

The system implementation was divided into three main modules which represent each
stage described in the System Overview chapter 3: Query Generation, Entity Linking, and
Slot Filling. These modules were assembled in our proposed Question Answering system,
which receives a Natural Language question as an input, and returns a Wikidata SPARQL
query that can be executed on the Wikidata service endpoint as an output. The Question
Answering system only returns a valid SPARQL query; otherwise, if one cannot be computed,
it will return nothing. The entire system was implemented using Python 3.6.

The implementation of the two variants on the Query Generation module (SPARQL Query
Generator and Query Template Generator) was divided into two stages. First the models
were trained on Google Colaboratory1 using the ConvS2s [61] model implementation included
in the Fairseq framework2 and the settings described in the Fairseq Model subsection in the
System Overview chapter 3.2.3 (we recall that this model had the best performance in the
comparison of Yin et al. [197]). After the training phase, a Fairseq Wrapper was implemented
in order to import the models and perform the prediction over new data. These wrappers
receive the NL question as the input and can return either the best predicted sequence, or a
list with the best N predictions (where N can be a number defined by the user).

The various individual Entity Linking systems (DBpedia Spotlight [128], AIDA [198, 89],
TAGME [52], OpenTapioca [42]) were implemented using the web services each system has
available. Then, an Entity Linking wrapper was created for each system, where they received
the NL question as the input returning a set of annotations which contain a Wikidata entity,
the label in the question that entity was associated with, and the score the system gives to
the respective annotations (which varies across systems). Then, the Precision Priority system
and Voting systems were implemented combining the individual Entity Linking wrappers,
maintaining the same input–output frame.

Finally, the Slot Filling module implementation followed similar stages to those for the
Query Generation module. A Sequence Labeling model is trained using Google Colabora-
tory and the Flair Sequence Tagger from the Flair framework3 and the setting described in
the System Overview chapter 3.4.2. Then, a Flair wrapper was implemented to import the
Sequence Labeling model and perform the tagging over new data. This wrapper was used
to implement the Slot Filling system, where the input consists of an NL question, a Query

1https://colab.research.google.com/
2https://fairseq.readthedocs.io/en/latest/
3https://github.com/flairNLP/flair/

77

https://colab.research.google.com/
https://fairseq.readthedocs.io/en/latest/
https://github.com/flairNLP/flair/

Template, and the Entity Linking annotations. Then, the output is a SPARQL query built
from the given set of values, only if the Slot Filling is successful.

4.4. Experiments

Several experiments were conducted for the purpose of getting some insights to address
the proposed research questions. Some experiments were performed to determine the optimal
setting of the proposed Question Answering (QA) system, in terms of which components
are the most appropriate to use (e.g. which Entity Linking configuration delivers the best
results), while others are done to validate the performance of each individual module (Query
Generation, Entity Linking, Slot Filling) and the end-to-end QA system overall.

4.4.1. Datasets

As a summary, the datasets that are used to perform the experiments are the following:

• LC-QuAD 2 [47] (cleaned version), which contains 27,706 questions over Wikidata (from
the original 30,000) that are divided into a training set and a validation set in a ratio
of 80/20. The training set is only used to train the Query Generator models and the
Sequence Tagger model. The validation set is used to evaluate the performance of the
end-to-end QA system and its modules. We use a split method that guarantees that
all the Wikidata properties are included in at least one case in the training set, thus
giving the possibility to a Query Template Generator model to learn from all properties
contained in the dataset.

• QALD-7 [178], which is divided into a training set (100 cases) and a test set (50 cases)
for Wikidata. Since neither of these datasets are used for training in our experiments,
both splits are merged to be used as one dataset to evaluate the performance of the
end-to-end QA system and some of its modules. Note that some LC-QuAD 2 templates
are based on QALD-7 cases.

• WikiSPARQL, which is a novel dataset generated in this work with the objective of mea-
suring how capable our system is of generalizing to cases that are not necessarily based
on the templates used in the LC-QuAD 2 dataset. This dataset consists of 100 cases of
manually created questions over Wikidata, and is used to evaluate the performance of
the end-to-end QA system and its modules.

An overview of each of the datasets used in this work can be seen in Table 4.1.

At the beginning of this work, we planned to include a mapped version of the DBNQA [81]
dataset, with the DBpedia queries being mapped to Wikidata queries. However, we were
unable to automatically map more than 12% of the dataset to Wikidata, losing the variety
in query types this dataset provides. Besides, most of the mapped queries did not even

78

Dataset Size Entities Properties Type
LC-QuAD 2 27,706 21,151 4,447 Tran/Valid
QALD-7 150 178 100 Test
WikiSPARQL 100 132 86 Test

Table 4.1: Comparison of Wikidata datasets used for experiments.

return an answer when executed over the Wikidata endpoint. For these reasons, we decided
to exclude that dataset from the experiments in this work.

4.4.2. Query Template Generation

The Query Template Generator is trained using the LC-QuAD 2 training set, and is eva-
luated over the training and validation datasets using Perplexity, and BLEU score. Then, the
model is evaluated over the LC-QuAD 2 validation, QALD-7 and WikiSPARQL datasets using
BLEU score and string-match Accuracy. More details on the hyperparameters and training
dataset can be found here in the System Overview chapter 3.2.3.

The only point of reference for this model is to use the Baseline Query Generator model,
and evaluate which of the two better predicts which Query Template corresponds to each
case. The way this comparison can be done is to take the Baseline’s SPARQL query output,
and convert it into its Query Template version by removing the Wikidata entities that the
query contains.

4.4.3. Entity Linking

In order to determine which Entity Linking system performs the best, each Individual
Entity Linking (IEL) system, along with the Ensemble Entity Linking (EEL) systems pro-
posed in this work, are evaluated over a set of datasets and their results are compared. Note
that the results over the IEL systems are also used to determine the priorities that are used
in the EEL systems, as explained in the System Overview chapter 3.3.3. Aside from that, in
the evaluation of the EEL systems proposed (Precision Priority and Voting system), we test
the different configurations described in the System Overview chapter 3.3.3.

The performance of each Entity Linking system is measured using Precision, Recall and
F1-score over their output annotations. Both macro and micro measures are used. First, IEL
systems are evaluated over the LC-QuAD 2 validation set in order to select the priority that
each IEL system will have for the EEL systems. The priority is determined by comparing
the IEL systems’ Precision, so an IEL system with higher Precision will have higher priority.
Then, EEL systems are also evaluated over the LC-QuAD 2 validation set. After that, both
EEL and IEL are evaluated over QALD-7 and our WikiSPARQL datasets.

As a point of reference we calculate the best scenario for an EEL system with an “oracle”,

79

where given the results from the IEL systems, the EEL system is capable of choosing only
the correct entities. Note that if there is any correct entity that is not recognized for any
of the IEL systems, the EEL system itself will not be able to deliver that entity as part of
the output annotations. This way, we are setting the performance expectation for an EEL
system that should be able to recognize which of the entities delivered are part of the correct
set of entities. We will refer to this best EEL system scenario, as the Oracle Entity Linking
system (OEL).

4.4.4. Sequence Labeling and Slot Filling

The Slot Filling system is evaluated in two phases: evaluation over the Sequence Tagger
performance, and evaluation over the Slot Filling algorithm.

First, the Sequence Tagger model is trained using the LC-QuAD 2 training set, and is
evaluated using Precision, Recall, and F1-score over the output labels. Then, the model is
evaluated over the LC-QuAD 2 validation, QALD-7 and WikiSPARQL datasets using the same
metrics. Details on the implementation used can be found here in the System Overview
chapter 3.4.2.

After that, the Slot Filling system is evaluated in terms of how the filling process is perfor-
med. Then, using the results obtained from the Query Template Generation and the Entity
Linking experiments, we evaluate the ratio of correct/incorrect cases given the different in-
put cases (e.g. all the incoming input is correct, some of the systems delivered an incorrect
output, and so on).

4.4.5. Question Answering over Knowledge Graphs

The evaluation of the overall QA system is performed using two approaches: the traditional
approach of evaluating answers given by the system [112], and (as used by many Neural-
based systems) the approach of evaluating the SPARQL query returned [197]. The baseline for
both approaches is the SPARQL Query generator based on the ConvS2S model that performs
the best among the Neural-based models according to the Ying et al.’s work [197].

The first approach consists of evaluating the performance of the QA system using Pre-
cision, Recall and F1-score over the system’s answers. This approach values more the final
output of the system, regardless of how it was retrieved. The second approach consists of
evaluating the performance of the QA system using BLEU score and exact string-match
Accuracy. This last approach values more the query string used to generate the answer, and
how close it is for the expected query. Both approaches are evaluated over the LC-QuAD 2
validation set, QALD-7, and WikiSPARQL.

Aside from a general performance evaluation, we study the performance of the system
considering not only the best SPARQL query answer, but the five SPARQL queries with the

80

highest scores given by the system. This can be performed given that the Query Template
Generator is capable of returning a list of templates. We believe that this is an interesting
analysis given that a possible heuristic to improve the system performance is to look for the
correct answer by trying more than one possible SPARQL query, which would work particularly
well under the assumption that the input question indeed has some answer, and that many
of the incorrect SPARQL query outputs will not generate answers. This analysis is evaluated
over the LC-QuAD 2 validation set, QALD-7, and WikiSPARQL.

Then, in order to understand which components of a question and its SPARQL query
influence the QA system performance more, an evaluation per template is performed. The
same evaluation over the entire dataset is split into partitions corresponding to each LC-QuAD
2 base template. Given that only LC-QuAD 2 is a template-based dataset; this analysis is only
performed over that dataset.

Finally, a more granular analysis is conducted in order to understand how much each stage
influences the overall results. We compare the correct and incorrect cases of each module
(Query Template generation, Entity Linking, and Slot Filling) with the correct/incorrect
cases of the QA system, and calculate the ratio of error of each module and how much each
one of them contributes to the overall error of the QA system. This analysis is evaluated
over the LC-QuAD 2 validation set, QALD-7, and WikiSPARQL.

81

Chapter 5

Results

In this chapter we present the results obtained from the experiments proposed in the
Experimental Design chapter 4. For each section, we display a table with the results along
with a brief discussion for each case. All results are based on models trained on the training
set of LC-QuAD 2.

5.1. Query Template generation

In Table 5.1 we can see the Perplexity and BLEU score values after training the Convolu-
tional Sequence to Sequence model (ConvS2S) for 40 epochs. Note that each epoch outputs a
model checkpoint, and these results correspond to the best checkpoint in terms of the model
with the lowest loss value over the validation set.

System
LC-QuAD 2 (train) LC-QuAD 2 (valid)

Size: 21,394 Size: 5,772
Perplexity BLEU score Perplexity BLEU score

ConvS2S 1.17 91.88 1.47 73.42

Table 5.1: Perplexity and BLEU score after training the ConvS2S model.

Table 5.2 shows the results of the Query Template task evaluated over the LC-QuAD 2
validation dataset and the other two test datasets. We include the results of the Query
Template generator which uses the trained ConvS2S model over LC-QuAD 2 data. Aside
from the evaluation over the best predicted Query Template, we also include an evaluation
over the best prediction among the top 5 predictions. We consider the best prediction as
the one with the highest BLEU score if compared with the expected answer. The baseline is
the ConvS2S model trained over complete SPARQL queries (as done by Yin et al. [197]), but
adding an extra layer that removes the entities from the output SPARQL queries, in a similar

82

way as was done for generating the actual LC-QuAD 2 Query Template dataset. The training
results of the baseline are shown later in this chapter.

System
LC-QuAD 2 (valid) QALD-7 WikiSPARQL

Size: 21,394 Size: 5,772 Size: 100]
BLEU score Accuracy (%) BLEU score Accuracy (%) BLEU score Accuracy (%)

QTG - Top 1 65.18 34.27 20.29 0 20.12 0
QTG - Top 5 76.86 49.53 22.58 0.67 23.10 0

Baseline 63.06 29.82 19.72 0.67 20.31 0

Table 5.2: BLEU score and Accuracy for the Query Template generation task.

According to the results of Tables 5.1 and 5.2, we see that the Query Template generation
has a better performance than the Baseline in both BLEU score and Accuracy. If we look
at the best 5 for the LC-QuAD 2 validation dataset, we find there are better results. On the
other hand, we see that the models trained on the LC-QuAD 2 training set do not generalize
well to other datasets.

Performance analysis per template (QT generator vs Baseline) - LC-QuAD 2 valid

ID Template type Size %
Dataset

QTG
Accuracy

Baseline
Accuracy Diff Accuracy

1 ask_one_fact 112 1.94% 51.79% 17.86% 33.93%
2 ask_one_fact_with_filter 362 6.27% 45.03% 42.82% 2.21%
3 ask_two_facts 113 1.96% 30.97% 7.96% 23.01%
4 count_one_fact_object 126 2.18% 25.40% 23.02% 2.38%
5 count_one_fact_subject 182 3.15% 9.89% 3.85% 6.04%
6 rank_instance_of_type_one_fact 78 1.35% 32.05% 34.62% -2.57%
7 rank_max_instance_of_type_two_facts 68 1.18% 7.35% 7.35% 0.00%
8 rank_min_instance_of_type_two_facts 70 1.21% 14.29% 8.57% 5.72%
9 select_object_instance_of_type 392 6.79% 23.72% 23.47% 0.25%
10 select_object_using_one_statement_property 583 10.10% 50.94% 40.82% 10.12%
11 select_one_fact_object 78 1.35% 7.69% 10.26% -2.57%
12 select_one_fact_subject 288 4.99% 5.90% 9.72% -3.82%

13 select_one_qualifier_value_and_object_using
_one_statement_property 136 2.36% 52.94% 48.53% 4.41%

14 select_one_qualifier_value_using_one
_statement_property 631 10.93% 52.14% 39.78% 12.36%

15 select_subject_instance_of_type 424 7.35% 25.00% 20.75% 4.25%
16 select_subject_instance_of_type_contains_word 286 4.95% 70.98% 61.19% 9.79%
17 select_subject_instance_of_type_starts_with 285 4.94% 77.54% 74.04% 3.50%
18 select_two_answers 191 3.31% 16.23% 9.95% 6.28%
19 select_two_facts_left_subject 393 6.81% 13.23% 12.98% 0.25%
20 select_two_facts_right_subject 412 7.14% 14.08% 17.72% -3.64%
21 select_two_facts_subject_object 389 6.74% 31.88% 31.11% 0.77%

22 select_two_qualifier_values_using_one
_statement_property 173 3.00% 26.59% 24.28% 2.31%

Total 5772 100.00% 34.67% 29.82% 4.85%

Table 5.3: Performance comparison per template between Query Template generator and
Baseline.

We present in Table 5.3 a more granular comparison between our proposed Query Tem-
plate generator and the baseline by dividing the results into the 22 base templates used

83

for generating the LC-QuAD 2 dataset (more details on each base template can be found in
Appendix B). We note that, even though our Query Template generator performs better in
many cases, there are some others where the Baseline performs better. A possible explanation
for this difference is that the Baseline still maintains an advantage in terms of the amount of
information it keeps in the entities used in training versus the placeholders used to replace
those entities for generating the training data for our Query Template generator. While the
Baseline can identify more effective entity categories (e.g. people, locations, organizations),
the placeholder only can maintain information about entity location in the query (to which
query pattern it belongs) or entity type (subject or object).

In summary, we see that the same ConvS2S model can perform as well or better for the
task of generating Query Templates as it does for SPARQL query generation, obtaining scores
of BLEU and Accuracy equal or greater than the ones obtained from the baseline. On the
other hand, we still identified a certain degree of overfitting in the model (similar to the
results obtained by Yin et al. [197]), thus not being able to perform well on the proposed
test datasets (QALD-7 and WikiSPARQL). However, we think the metrics used for measuring
performance here (BLEU score and Accuracy) do not quantify the equivalences between
Query Templates properly. For example, queries in the test data could have a different
ordering in their query triples than the generator uses to build Query Templates.

5.2. Entity Linking
First, we calculate the performance of each Individual Entity Linking (IEL) system over

the validation LC-QuAD 2 dataset. These results were used to determine the priority each IEL
system will have when being used by the Ensemble Entity Linking (EEL) systems. As men-
tioned before, the priority of each IEL system is determined by their Precision results where
more precise systems have higher priority. Therefore, according to the results in Table 5.4,
the priority used is the following: AIDA, OpenTapioca, TAGME, and DBpedia Spotlight.

LCQUAD2 (valid): 5772 questions

System Micro Macro
Recall Precision F1-score Recall Precision F1-score

AIDA 31.3 72.5 43.7 30.5 38.5 33.1
OpenTapioca 32.0 61.8 42.2 30.2 34.9 31.4

TAGME 59.5 25.0 35.2 59.4 29.5 37.4
DBpedia Spotlight 52.7 20.8 29.9 52.5 23.3 30.8

Table 5.4: Performance of the Individual Entity Linking systems over LC-QuAD 2 validation.

Next, we tested the two EEL systems proposed in this work: the Precision Priority
(PPrior) system and the Voting system. For each EEL system we tried different heuristics
proposed to improve performance: vary the number of entities in the output, filter stopwords,
or apply tiebreak using IEL system scores. In the case of varying the number of entities, we

84

tried including all entities, reducing output size to either a fixed value1 or a variable amount
defined by the number of placeholders contained in the Query Template for each case.

The baseline (Oracle system) combines all the results of the IEL systems and evaluates
what is the best performance an EEL system could achieve if it could “guess” the correct
entities among the IEL system answers in each case; in other words, the baseline indicates
the best possible result given the results of the IEL systems.

The variants for both EEL systems are shown in Table 5.5, where we tried different
combinations of the proposed heuristics. Here we evaluate the results over the LC-QuAD 2
validation dataset, resulting in the Voting system having a slight better performance for
most variations.

LCQUAD2 (valid): 5772 questions

System Output
size

Stopwords
filter Tiebreak Micro Macro

Recall Precision F1-score Recall Precision F1-score
Precision prior All True – 68.6 19.5 30.3 68.4 23.9 33.6
Precision prior 3 True True 63.8 32.1 42.7 64.1 32.7 41.9
Precision prior + False False 58.2 33.8 42.8 57.6 44.4 48.2
Precision prior + True False 59.3 34.8 43.9 58.8 45.6 49.3
Precision prior + True True 55.1 55.3 55.2 54.4 54.4 54.4
Voting system All True – 68.6 19.5 30.3 68.4 23.9 33.6
Voting system 3 True True 63.7 32.1 42.7 64.0 32.7 41.9
Voting system + False False 57.6 43.7 49.7 57.0 50.4 52.5
Voting system + True False 58.3 44.5 50.5 57.7 51.1 53.2
Voting system + True True 56.2 56.4 56.3 55.4 55.4 55.4

Baseline: Oracle system 68.6 70.4 69.5 68.4 68.4 68.4

Table 5.5: Results of the Ensemble Entity Linking systems over LC-QuAD 2 validation.

Note that when including all entities the results of the PPrior system and Voting system
are identical, though the ranking scores assigned to each entity might differ. Furthermore, the
variants that include all entities in the output results reach a better Recall, which is consistent
with these variants including more entities that are potentially part of the expected answers.

The effect of decreasing the amount of entities returned for each case is a trade-off between
Recall and Precision: while the Recall tends to decrease, we note a major increase in Precision.
While the case with a fixed number of three maintains most of the correct answers without
degrading Precision much, the case where the number varies (denoted as “+” in Table 5.5)
presents the worst performance but the best Precision. The filter of stopwords helped a small
amount in both Recall and Precision, whereas the use of tiebreak greatly benefits Precision
while slightly degrading Recall.

Finally, we evaluate both IEL systems and EEL systems over the test datasets: QALD-7,
and our proposed WikiSPARQL dataset. For each EEL system we include the three variants

1Since most SPARQL queries included in our datasets have at most three entities, we set that value as the
fixed size.

85

QALD 7: 150 questions

System Micro Macro
Recall Precision F1-score Recall Precision F1-score

AIDA 41.2 79.1 54.2 43.7 54.0 47.1
OpenTapioca 33.2 60.3 42.8 34.2 38.9 34.2

TAGME 58.3 31.5 40.9 62.0 36.0 43.1
DBpedia Spotlight 62.6 31.4 41.8 65.7 32.3 41.1
Precision Prior (All) 74.4 27.7 40.4 76.6 32.5 43.6
Precision Prior (3) 69.7 35.5 47.0 72.2 37.3 47.5
Precision Prior (+) 58.8 59.0 58.9 60.6 60.6 60.6
Voting system (All) 74.4 27.7 40.4 76.6 32.5 43.6
Voting system (3) 68.7 35.0 46.4 71.3 36.9 47.0
Voting system (+) 61.1 61.4 61.3 63.0 63.0 63.0
Oracle system 74.4 76.2 75.3 76.6 76.8 76.6

Table 5.6: Results of the Entity Linking systems over QALD-7 (train+test).

WikiSPARQL: 100 questions

System Micro Macro
Recall Precision F1-score Recall Precision F1-score

AIDA 23.3 75.4 35.5 27.3 34.2 29.5
OpenTapioca 14.0 51.2 22.0 18.8 20.6 18.9
TAGME 60.7 37.0 46.0 59.3 40.3 45.5
DBpedia Spotlight 60.0 34.9 44.1 57.5 38.9 43.1
Precision Prior (All) 75.3 32.7 45.6 72.5 38.4 47.6
Precision Prior (3) 69.3 38.0 49.1 67.3 41.4 49.0
Precision Prior (+) 52.7 49.4 51.0 51.2 52.2 51.6
Voting system (All) 75.3 32.7 45.6 72.5 38.4 47.6
Voting system (3) 70.7 38.7 50.0 68.1 42.1 49.7
Voting system (+) 56.7 53.1 54.8 53.2 54.2 53.5
Oracle system 75.3 76.4 75.8 76.5 76.7 76.6

Table 5.7: Results of the Entity Linking systems over our proposed WikiSPARQL dataset.

in output size used for Table 5.5. Tables 5.6 and 5.7 display the result for the QALD-7, and
WikiSPARQL, respectively.

From the results of Tables 5.6 and 5.7 we can see that overall the Voting system is the
system with the best F1 score. The EEL system variants with the highest Recall and Precision
maintain that tendency over all datasets. In this case, it seems that the systems with variable
output size fall behind compared to the oracle, where the best performing system is around
0.15 to 0.2 points behind the oracle results in terms of F1-score.

86

5.3. Sequence Labeling and Slot Filling
The performance results of the Flair Sequence Tagger are shown in Table 5.8. In this case,

the Precision and Recall are measured with respect to the pairs <slot, label>, where the
slot is a placeholder of Query Template and the label is a substring of a natural language
question.

Dataset Number
of cases

Micro Macro
Recall Precision F1-score Recall Precision F1-score

LC-QuAD 2 (valid) 5772 66.9 62.0 64.4 66.9 63.8 64.8
QALD-7 150 43.6 37.0 40.0 45.3 45.4 44.8

WikiSPARQL 100 29.8 22.7 25.8 31.8 30.9 31.0

Table 5.8: Results of the Flair Sequence Tagger.

Next, we measure how the proposed filling method performs. In this case, the Precision
and Recall are measured with respect to the pairs <slot, entity>, where the slot remains
the same and the entity corresponds to the ones contained in a SPARQL query. We test the
standard filling method, and the force filling method we proposed to address the Sequence
Tagger errors. These results are shown in Table 5.9 and 5.10, respectively. Note that we are
using the Entity Linking results corresponding to the Voting system returning all entities in
the output. We chose to return all entities to see how each filling method performs when there
are incorrect entities. Also, we use the Voting system given that it presents better performan-
ce than the PPrior system according to the results shown in the Entity Linking section 5.2,
as well as for the results shown below in the SPARQL Query generation section 5.4.

Dataset Number
of cases

Micro Macro
Recall Precision F1-score Recall Precision F1-score

LC-QuAD 2 (valid) 5772 45.7 61.4 52.4 46.7 54.2 49.2
QALD-7 150 27.9 52.6 36.4 35.2 39.0 36.3

WikiSPARQL 100 13.2 26.3 17.6 19.8 22.3 20.5

Table 5.9: Results of the Slot Filling system using the standard filling method.

Dataset Number
of cases

Micro Macro
Recall Precision F1-score Recall Precision F1-score

LC-QuAD 2 (valid) 5772 49.2 51.0 50.1 50.3 52.7 50.5
QALD-7 150 39.2 31.3 32.1 40.8 34.0 35.9

WikiSPARQL 100 17.0 16.5 16.7 20.6 16.8 17.7

Table 5.10: Results of the Slot Filling system using the force filling method.

The number of correct cases for both slot filling methods is lower than the correctly
labeled cases of the Sequence Tagger. This is expected since many incorrect cases might
occur due to the errors given by the Entity Linking system. On the other hand, the standard
filling method shows more Precision while the force filling method brings more Recall. This

87

is also expected since the force filling method adds more labels that might bring more correct
answers, along with more incorrect ones. As opposed to the case for Entity Linking systems,
we prefer a filling method with higher Recall in order to generate more valid SPARQL queries.

5.4. SPARQL Query Generation

The training results for the Baseline of the SPARQL Query generation task are shown in
Table 5.11. We note similar results as the ones obtained in Yin et al [197], where there is
notable overfitting for the training data.

System
LC-QuAD 2 (train) LC-QuAD 2 (valid)

Size: 21934 Size: 5772
Perplexity BLEU score Perplexity BLEU score

Baseline 1.19 98.35 3.20 60.39

Table 5.11: Perplexity and BLEU score after training the SPARQL Query Generator baseline.

Next, the results of the Entity Linking Neural Question Answering (ElNeuQA) system
proposed in this work are displayed in Table 5.12. In this case, we try four different variants
where we chose the best variant of both PPrior and Voting systems and both slot filling
methods. These variations are tested over the LC-QuAD 2 validation dataset. We also output
results picking the best among the top 5 predicted results per case over both variants that
utilized the Force filling method. In this context, the criterion to select the best results offers
the highest BLEU score.

System Entity Linking
system

Filling
method

LC-QuAD 2 (valid)
Size: 5772

BLEU score Accuracy (%)
ElNeuQA PPrior (All) Standard 58.01 11.83
ElNeuQA PPrior (+) Standard 57.36 10.41
ElNeuQA Voting (All) Standard 58.47 12.72
ElNeuQA Voting (+) Standard 57.60 10.88
ElNeuQA PPrior (All) Force 59.16 13.70
ElNeuQA PPrior (+) Force 57.95 10.90
ElNeuQA Voting (All) Force 59.34 13.96
ElNeuQA Voting (+) Force 58.13 11.31

ElNeuQA - Top 5 PPrior (All) Force 68.16 20.32
ElNeuQA - Top 5 Voting (All) Force 68.43 20.70

Baseline 51.50 3.27

Table 5.12: Comparison of performance for the SPARQL Query generator when varying the
EEL system and filling method.

88

The results obtained for LC-QuAD 2 do not transfer to the other test datasets. As seen
in Table 5.13, our system is not capable of generalizing the results obtained from training
over other types of datasets given that the types of queries contained in test datasets are not
based on template generation, thus making it difficult to generate an exact match. We may
also be generating equivalent SPARQL queries (i.e. that return the same answers if executed),
and the way we are evaluating these results does not consider SPARQL query equivalences.

System
LC-QuAD 2 (valid) QALD-7 WikiSPARQL

Size: 5772 Size: 150 Size: 100
BLEU
score

Accuracy
(%)

BLEU
score

Accuracy
(%)

BLEU
score

Accuracy
(%)

ElNeuQA - Top 1 59.34 13.96 20.14 0 20.48 0
ElNeuQA - Top 5 68.43 20.70 21.99 0 22.15 0

Baseline 51.50 3.27 19.09 0 18.80 0

Table 5.13: BLEU score and Accuracy for the SPARQL Query generation task.

Performance analysis per template (ElNeuQA vs Baseline) - LC-QuAD 2 valid

ID Template type Size %
Dataset

ElNeuQA
Accuracy

Baseline
Accuracy Diff Accuracy

1 ask_one_fact 112 1.94% 36.61% 0.00% 36.61%
2 ask_one_fact_with_filter 362 6.27% 20.44% 0.83% 19.61%
3 ask_two_facts 113 1.96% 15.93% 0.00% 15.93%
4 count_one_fact_object 126 2.18% 20.63% 8.73% 11.90%
5 count_one_fact_subject 182 3.15% 9.34% 0.55% 8.79%
6 rank_instance_of_type_one_fact 78 1.35% 11.54% 17.95% -6.41%
7 rank_max_instance_of_type_two_facts 68 1.18% 0.00% 1.47% -1.47%
8 rank_min_instance_of_type_two_facts 70 1.21% 8.57% 0.00% 8.57%
9 select_object_instance_of_type 392 6.79% 4.34% 6.12% -1.78%
10 select_object_using_one_statement_property 583 10.10% 19.55% 0.17% 19.38%
11 select_one_fact_object 78 1.35% 7.69% 1.28% 6.41%
12 select_one_fact_subject 288 4.99% 3.82% 4.17% -0.35%

13 select_one_qualifier_value_and_object_using_one
_statement_property 136 2.36% 47.06% 17.65% 29.41%

14 select_one_qualifier_value_using_one
_statement_property 631 10.93% 20.29% 0.16% 20.13%

15 select_subject_instance_of_type 424 7.35% 5.42% 7.31% -1.89%
16 select_subject_instance_of_type_contains_word 286 4.95% 13.64% 2.10% 11.54%
17 select_subject_instance_of_type_starts_with 285 4.94% 14.04% 16.84% -2.80%
18 select_two_answers 191 3.31% 14.14% 3.66% 10.48%
19 select_two_facts_left_subject 393 6.81% 8.91% 0.00% 8.91%
20 select_two_facts_right_subject 412 7.14% 9.95% 0.00% 9.95%
21 select_two_facts_subject_object 389 6.74% 14.14% 0.00% 14.14%

22 select_two_qualifier_values_using_one
_statement_property 173 3.00% 8.67% 2.31% 6.36%

Total 5772 100.00% 13.96% 3.27% 10.69%

Table 5.14: Performance comparison per template for the SPARQL Query generation task.

The same analysis per template performed over the Query Template generation task are
done for the SPARQL query generation task. In Table 5.14 the results in terms of Accuracy

89

are displayed for each LC-QuAD 2 base template. We can see that there are more cases than
before where our proposed system performed better than the Baseline, especially due to the
inability of the latter system to generate a single valid query for some templates. Among
those cases, the ask_one_fact template is the most noticeable case since it should be the
simplest one. The main reason for these cases to occur is that the Baseline system fails to
identify the relevant entities due to not having seen them during training time. As we will
discuss later, the vocabulary dependence of the Baseline plays a major role in the worse
performance of this system.

The proposed system manages to achieve better Accuracy in most cases. The cases that
present the best results are the ASK type queries with one query triple (ask_one_fact)
and the SELECT queries that utilize one property statement and one qualifier property
(select_one_ qualifier_value_and_object_using_one_statement_property), both of
which require only one entity. One noticeable case where our system does not present a
good performance is the rank type query that requires two query triples, where no query
was successfully generated. As opposed to the best performing cases, these rank queries were
among the most complex cases since they require 2 entities and 3 properties to be correctly
predicted; thus a single error would make the entire query incorrect.

Template Entities Slots ElNeuQA Baseline
Number
of cases

Dataset
%

Number
of cases

Dataset
%

O O O 806 13.96% 189 3.27%
O O X 229 3.97% 74 1.28%
O X O 0 0.00% 0 0.00%
O X X 967 16.74% 1458 25.26%
X O O 903 15.64% 158 2.74%
X O X 1415 24.51% 149 2.58%
X X O 0 0.00% 0 0.00%
X X X 1452 25.17% 3744 64.86%

Total 5772 100.00% 5772 100.00%

Table 5.15: SPARQL query generation comparison results with baseline divided by error cases.

Finally, in order to identify the most common sources of errors, we divided the results
depending on the correct/incorrect answers expected for each module (Query Template ge-
nerator, Entity Linking, Slot Filling). A comparison between our proposal (using the best
performing settings) and the baseline is presented in Table 5.15. For each case, a circle means
the system performed correctly and a cross is the opposite. For the Query Template gene-
ration task, a correct case is measured using the string-match Accuracy. For Entity Linking
we use Recall, meaning that we count a case as correct if it identifies at least all expected
entities, regardless of its Precision (understanding that this is the minimum requirement to
build a valid SPARQL query). For Slot Filling we consider it correct if all slot–entity pairs are

90

correctly identified. Note that a correct SPARQL can only be generated if these three items
deliver a correct answer.

The most noticeable comparison between both systems comes from the major difference
in terms of vocabulary dependency for entities. While only 47.6% of the incorrect cases were
caused by entity recognition error for our system, in the Baseline almost 94% of the incorrect
cases were caused due to not identifying all relevant entities. The error delivered from the
Query Template generation was similar for both our system and the baseline, with 65.32%
and 70.2% incorrect cases respectively.

The performance of the Slot Filling system is strongly impacted by the results delivered
by the Entity Linking system. This can be inferred from the fact that there is no case where
the slots were correctly identified while the entities were not. Aside from that, we notice
that the Slot Filling system correctly filled 78% of the 1035 cases where both templates and
entities are correctly identified (i.e. cases from the first and second row of Table 5.15).

Analysis per template for each module of the ElNeuQA system
ID Template Dataset Accuracy Template Entity Slot
1 ask_one_fact 1.90% 36.61% 51.79% 84.48% 83.67%
2 ask_one_fact_with_filter 6.30% 20.44% 45.03% 59.38% 77.89%
3 ask_two_facts 2.00% 15.93% 30.97% 62.86% 81.82%
4 count_one_fact_object 2.20% 20.63% 25.40% 84.38% 96.30%
5 count_one_fact_subject 3.20% 9.34% 9.89% 94.44% 100.00%
6 rank_instance_of_type_one_fact 1.40% 11.54% 32.05% 40.00% 90.00%
7 rank_max_instance_of_type_two_facts 1.20% 0.00% 7.35% 20.00% 0.00%
8 rank_min_instance_of_type_two_facts 1.20% 8.57% 14.29% 80.00% 75.00%
9 select_object_instance_of_type 6.80% 4.34% 23.72% 22.58% 80.95%
10 select_object_using_one_statement_property 10.10% 19.55% 50.94% 68.35% 70.37%
11 select_one_fact_object 1.40% 7.69% 7.69% 100.00% 100.00%
12 select_one_fact_subject 5.00% 3.82% 5.90% 76.47% 84.62%

13 select_one_qualifier_value_and_object_using_one
_statement_property 2.40% 47.06% 52.94% 90.28% 98.46%

14 select_one_qualifier_value_using_one
_statement_property 10.90% 20.29% 52.14% 77.04% 61.54%

15 select_subject_instance_of_type 7.30% 5.42% 25.00% 26.42% 82.14%
16 select_subject_instance_of_type_contains_word 5.00% 13.64% 70.98% 28.49% 76.47%
17 select_subject_instance_of_type_starts_with 4.90% 14.04% 77.54% 29.21% 76.92%
18 select_two_answers 3.30% 14.14% 16.23% 100.00% 87.10%
19 select_two_facts_left_subject 6.80% 8.91% 13.23% 69.23% 97.22%
20 select_two_facts_right_subject 7.10% 9.95% 14.08% 74.14% 95.35%
21 select_two_facts_subject_object 6.70% 14.14% 31.88% 52.42% 84.62%

22 select_two_qualifier_values_using_one
_statement_property 3.00% 8.67% 26.59% 54.35% 60.00%

Total 100.00% 13.96% 34.67% 57.12% 78.00%

Table 5.16: ElNeuQA modules correct cases per template.

A more granular analysis per template is provided in Table 5.16. The purpose is to un-
derstand how the Entity Linking and Slot Filling perform per template when the Query
Template is correctly generated. We provide the SPARQL Query accuracy from Table 5.14

91

and the percentage of correct Query Templates (Template), similar to what is shown in Ta-
ble 5.3. In the case of the entities (Entity), we only include the cases with a correct Query
Template (though the overall results per template do not vary much). For the slots (Slot),
we only count the cases where the Query Template and entities are correctly identified 2.

When the template requires one entity (e.g. templates 4, 5, 10, 11, 12, 13, 18) the Entity
Linking system obtains the best results. There are some exceptions (e.g. templates 9, 15,
16, 17) that expect more generic entities like human (Q5), city (Q515), writer (Q36180), etc;
which are usually aligned with triples using the wdt:P31 property (instance of). The problem
with those types of entities might be that they don’t score high for Entity Linking systems in
terms of relevance, given that some terms can be perceived as more common, thus not being
considered meaningful. The same happens with the rank-type templates (i.e. templates 7
and 8) that require at least one “instance of” entity, which would further explain the poor
performance for those cases. Lastly, in other cases that require more than one entity (e.g.
templates 1, 14), Entity Linking succeeds in recognizing all entities in a good amount of
cases (where the Query Template is correctly identified).

In regards to the Slot Filling system performance, results from Table 5.16 reassure us
that when the input is properly provided, this module can deliver good results overall.
When there is only one entity to replace, the filling process is executed almost perfectly
(e.g. templates 4, 5, 11, 19, 20). We believe the incorrect cases might come from choosing
the wrong entity 3, which also applies for templates that require more than one entity. Slot
filling has lower success for templates with two to three triples (e.g. templates 7, 8, 22) that
contain placeholders such as obj_2 or obj_3, which can be explained by the low prevalence
these placeholders had in the training dataset. An interesting case are the templates that
contain non-entity placeholders, i.e. numeric or string values, where around 3 of 4 cases are
filled correctly (see templates 2, 16, 17).

5.5. Question Answering over Knowledge Graphs
We evaluate the results of the SPARQL queries output by our QA system proposal (using

the best settings in terms of SPARQL Query generation performance) over Wikidata, and
compare those results with the proposed Baseline. We show in Table 5.17 the results for
both systems on the KGQA task. We chose to display only the macro measures given the
difference of answer sizes for each case, where we wanted to weigh each case equally. Here we
noticed that even though neither our proposal nor the baseline were capable of generating the
expected SPARQL queries for the test datasets, some generated SPARQL queries were capable
of obtaining answers among the expected results.

2We make this differentiation because we are only interested in illustrating the correctness of the Slot
Filling system when the input (i.e. Query Template and entities) is well provided. We don’t expect this
module to perform correctly otherwise.

3Let us remember that even though the Entity Linking system might identify the correct entity, it may
also include some garbage entities that add noise to the filling process

92

We also evaluate the performance looking at the best 5 predictions per case, where a
general improvement is noticed along all datasets. In this case, the best prediction is the first
query that returns a non-empty answer when being executed in the Wikidata endpoint. Note
that this approach is not effective with ASK type questions, since there is always a non-empty
answer (True or False) or in cases where the correct query may not return results.

System
LC-QuAD 2 (valid) QALD-7 WikiSPARQL

Size: 5772 Size: 150 Size: 100
Recall Precision F1 Recall Precision F1 Recall Precision F1

ElNeuQA - Top 1 27.0 26.9 26.9 9.3 9.3 9.3 12.9 12.9 12.9
ElNeuQA - Top 5 30.0 29.6 29.6 12.7 12.7 12.7 11.9 11.9 11.9

Baseline 16.6 16.4 16.4 7.3 7.3 7.3 6.0 5.5 5.3

Table 5.17: Macro measure results for the Question Answering task.

Finally, an analysis over the different LC-QuAD 2 templates is presented in Table 5.18.
We noticed that our proposal does better in almost every case compared with the baseline.
The cases with the best performance include templates like ASK queries, SELECT queries that
include property statements and qualifiers.

Another aspect to notice is that there is no clear correlation between the performance and
the amount of cases per template, meaning that a greater amount of cases for one template
to use in the training stage does not necessarily come with an increase in performance. A
clear example are the COUNT queries: while the count_one_fact_object template has fewer
examples than the count_one_fact_subject, our system performs worse with the latter
template.

Lastly, the complexity of each template does not necessarily predict the performance of the
Question Answering system in terms of Macro F1. Queries derived from complex templates
such as the rank_max_instance_of_type_two_facts template present better performance
than simpler templates such as the select_subject_instance_of_type template. There
might be other variables that affect performance per template that we are not considering
here. For example, there might be entities or properties used for each template that can be
more complex to identify or are not very common, thus making it more difficult to predict
those cases.

93

Performance analysis per template (ElNeuQA vs Baseline) - LC-QuAD 2 valid

ID Template type Size %
Dataset

ElNeuQA
Macro F1

Baseline
Macro F1

Diff
Macro F1

1 ask_one_fact 112 1.94% 54.46 16.07 38.39
2 ask_one_fact_with_filter 362 6.27% 45.86 34.25 11.60
3 ask_two_facts 113 1.96% 60.18 30.97 29.20
4 count_one_fact_object 126 2.18% 21.43 11.11 10.32
5 count_one_fact_subject 182 3.15% 10.44 2.20 8.24
6 rank_instance_of_type_one_fact 78 1.35% 18.72 31.79 -13.08
7 rank_max_instance_of_type_two_facts 68 1.18% 30.98 25.29 5.69
8 rank_min_instance_of_type_two_facts 70 1.21% 31.43 23.43 8.00
9 select_object_instance_of_type 392 6.79% 16.07 20.38 -4.32
10 select_object_using_one_statement_property 583 10.10% 33.28 14.82 18.46
11 select_one_fact_object 78 1.35% 14.10 6.41 7.69
12 select_one_fact_subject 288 4.99% 11.79 12.15 -0.36

13 select_one_qualifier_value_and_object_using_one
_statement_property 136 2.36% 48.61 20.11 28.50

14 select_one_qualifier_value_using_one
_statement_property 631 10.93% 31.41 11.89 19.52

15 select_subject_instance_of_type 424 7.35% 17.30 19.87 -2.57
16 select_subject_instance_of_type_contains_word 286 4.95% 27.19 16.41 10.79
17 select_subject_instance_of_type_starts_with 285 4.94% 29.99 26.34 3.65
18 select_two_answers 191 3.31% 22.43 7.33 15.10
19 select_two_facts_left_subject 393 6.81% 17.02 9.03 7.99
20 select_two_facts_right_subject 412 7.14% 20.54 10.84 9.70
21 select_two_facts_subject_object 389 6.74% 28.02 14.91 13.11

22 select_two_qualifier_values_using_one
_statement_property 173 3.00% 26.59 16.18 10.40

Total 5772 100.00% 26.90 16.40 10.50

Table 5.18: Performance comparison per template for the Question Answering task.

94

Chapter 6

Conclusions

In this work, we address the Question Answering over Knowledge Graphs task, which,
given a natural language question, consists of generating the expected answer when evaluated
on the KG. In particular, we proposed a Question Answering system that generates a SPARQL
query expressing the question, and that combines Entity Linking systems with a Neural
Machine Translation model to address the dependency on the vocabulary used for training
the NMT model when generating SPARQL queries.

The SPARQL query generation process was divided into several stages. First, we trained a
Convolutional Sequence to Sequence model and we used it to generate a Query Template,
which is a SPARQL query with its entities replaced by placeholders. Second, relevant entities
were extracted using an Ensemble Entity Linking system, which combines many Individual
Entity Linking systems to increase the amount of entities identified. Two variants of Ensemble
Entity Linking system were proposed: a Precision Priority system and a Voting system.
Finally, we proposed a Slot Filling system to fill entities into the Query Template, which
relies on a Sequence Tagger (based on the state-of-art in Named Entity Recognition) and a
proposed filling algorithm, giving the final SPARQL query as a result.

We conducted various experiments to compare the performance of our system with a
proposed baseline, which includes an overall comparison for the tasks of SPARQL query ge-
neration and Question Answering, and also an analysis for each one of the three sub-tasks
involved in our proposal (Query Template Generation, Entity Linking, and Slot Filling).

According to the hypothesis proposed in this work, we showed that by combining Entity
Linking and Neural Semantic Parsing through a Slot Filling system, it is possible to obtain
better performance in the Question Answering over Knowledge Graph task. This is according
to the proposed metrics used to compare the system: BLEU score and Accuracy for SPARQL
query generation, and Precision, Recall and F1 score for Question Answering. We found that
this increase in performance comes mainly from the reduction of errors in the system due to

95

not identifying the correct entities required to build the SPARQL query.

It is important to remember that our hypothesis was explored in the context of Wiki-
data for questions in the English language. Nevertheless, the approach we follow should
be generalizable to other Knowledge Graphs and languages. The conclusions based on the
hypothesis also allow us to determine that our specific objective of building a Question
Answering system over Wikidata for English questions was accomplished, though this system
is obviously subject to further improvement in future.

At the time that this work was developed, and to the best of our knowledge, the models
described by Yin et al. [197] were the state-of-the-art for KGQA systems based on Neural
Machine Translation models. They validate each model over DBpedia datasets. In our case,
we took the model they stated has better performance to compare with our system. Moreover,
we validate our results using LC-QuAD 2 (a more complex dataset in terms of questions
variations and SPARQL query complexity); QALD-7 (which is also used to evaluate Information
Retrieval-based QA systems), and WikiSPARQL (a new dataset with cases that require new
types of operations). That being said, we think our general objective of improving the
state-of-the-art was accomplished.

The last thing to mention are the limitations we identified in our work. The first issue
is related with the performance shown in the Query Template generation task. According to
our results, most of the cases where the SPARQL query was built incorrectly were due to the
Query Template being incorrect. Even though in this work we could not identify the main
cause of the poor performance for this task, we think it might be caused by different reasons:
either the LC-QuAD 2 dataset contained cases that are inherently difficult to respond even for
an SPARQL expert, or it does not contain enough cases to allow the NMT model to generalize
across templates. As a consequence, the SPARQL queries our proposed KGQA system can
generate are strongly limited by the type of question found in the LC-QuAD 2 training set.
For example, our system may be able to generate questions that require counting, but given
that the only COUNT type query included in the LC-QuAD 2 dataset uses only one fact,
questions that require counting and use more than one fact will not be correctly interpreted.

The second limitation involves our proposed Slot Filling system using a Sequence Tagger
to label the placeholders in the Query Template, which is an “ad-hoc” solution for this work.
This means that if we want to train our proposal over another dataset, we will have to adapt
that dataset to be utilized to train the Sequence Tagger. That is one of the reasons we also
proposed a normalized dataset format, so the Sequence Tagger dataset construction could
be simplified.

6.1. Relevance and Contributions

First, we propose a benchmark for comparing Question Answering systems that work over
Wikidata. By cleaning the LC-QuAD 2 to have less noisy cases and a normalized format, we

96

reduce the amount of work others will have to spend in having a ready to use dataset to
either train Neural-based models or evaluating their KGQA systems. Moreover, we deliver a
new dataset that includes new SPARQL operations and patterns. These datasets can not only
be used to evaluate KGQA systems, but also to compare Entity Linking systems and Slot
Filling systems.

Second, we contribute with a new Question Answering system over Wikidata for questions
in English. The implementation comes from our proposed three-stage pipeline that addresses
the SPARQL Query generation process. This pipeline can be used to implement Question
Answering systems focused on other Knowledge Graphs or languages.

As a side effect, we propose an approach to boost the performance of Entity Linking
systems when dealing with questions that have little to no context: Ensemble Entity Linking
systems. We proposed two variants on how to combine results from individual Entity Linking
systems to deliver a more complete response. The Precision priority system shows how to
improve performance by prioritizing results from more precise systems.

The type of questions our system can address are directly tied to the types of questions
contained in the LC-QuAD 2 dataset. Some examples are boolean questions (including cases
that use literal numeric values), and questions that require use of string operations, counting,
property statements, or ranking. Even though not all query variants are considered, this is a
big step forward in terms of the type of queries that are supported, since none of the previous
Neural-based models support cases we did consider by using the LC-QuAD 2 dataset (e.g. use
of numeric values or literal strings).

In terms of overall relevance, we deliver new insights on how to address the Question
Answering over Knowledge Graphs task. In particular, we proposed an approach that aims
to address the vocabulary dependency that Neural-based models might suffer from, and show
how there is a direct impact on Neural-based KGQA systems’ performance.

6.2. Future work

The Question Answering over Knowledge Graphs task is still a challenging problem despite
there being plenty of work in this field. There are individual components of our system that
can be improved but also new things to try or add to our system.

One thing is to work on improving the training dataset by increasing its size and adding
the SPARQL query variants the LC-QuAD 2 dataset lacks. We think a bigger dataset would
help the Query Template generator model have a better learning process, and the addition
of new variants would let the model address a wider range of questions. Furthermore, we
should focus on questions that are asked more frequently by the users of Wikidata. Then, a
possible next step would be to implement a crowdsourcing tool that lets users ask questions
for our system, thus identifying common patterns or categories that can be materialized

97

in new query base templates. Lastly, it would be interesting to add new operations in the
training examples (e.g. property paths, conditional operations, optional patterns or unions
of results).

Another aspect that could be improved is the learning architecture we are using for the
Query Template generator, where we could also try either of the other models used in Yin et
al.’s work, or try new architectures from the state-of-the-art for Semantic Parsing or Machine
Translation. One other component which might help better estimate the model performance
in practice, would be to follow a k-fold cross-validation during the training phase [9]. Aside
from that, we could also propose new logical forms for representing Query Templates. For
example, we can condense some common query patterns (e.g. the syntax pattern to see
whether a string is contained in an entity label is always the same), or use program-based
representations.

Even though our proposed Slot Filling system manages to perform well enough, we would
like to have a system that reduces the amount of incorrect slots as much as possible. One
proposal would be to test other placeholder classifications that capture different dimensions
of entities, e.g. tag entities as humans, organizations, places, etc. Another approach that
we may follow is to include the placeholder labeling during the Query Template generation
stage, perhaps by adapting the Pointer Network architecture [181], which aims to address
the issue of vocabulary dependency by adding pointers in the output sequence that map to
labels contained in the text being processed.

To work more on the Entity Linking stage, we see a potential in the Voting Entity Linking
system we proposed in this work. We think that the performance of this system can be
improved horizontally, i.e., we can add further Individual Entity Linking systems to improve
the results of the voting scheme. Moreover, we can add Entity Linking systems focused on
specific categories (e.g. sports, medicine, music, etc), so more rare entities can be identified
more easily.

As we mentioned before, our approach should be generalizable to other languages or
Knowledge Graph domains. Another possible step is to evaluate our system over other lan-
guages such as Spanish, French, or German, or to try to generate SPARQL queries for other
Knowledge Graphs such as DBpedia. To give an idea, the main changes that would be re-
quired are essentially to provide a dataset that either changes the input language of the
questions or the input Knowledge Graph and SPARQL queries, used for both training and
evaluation.

98

Bibliografía

[1] Asma Ben Abacha and Pierre Zweigenbaum. Medical question answering: translating
medical questions into sparql queries. In Gang Luo, Jiming Liu, and Christopher C.
Yang, editors, ACM International Health Informatics Symposium, IHI ’12, Miami, FL,
USA, January 28-30, 2012, pages 41–50. ACM, 2012.

[2] Ben Adida, Mark Birbeck, Shane McCarron, and Steven Pemberton. RDFa in XHTML:
Syntax and Processing. W3C Recommendation, October 2008. https://www.w3.org/
TR/rdfa-syntax/.

[3] Peter Adolphs, Martin Theobald, Ulrich Schäfer, Hans Uszkoreit, and Gerhard Wei-
kum. YAGO-QA: Answering Questions by Structured Knowledge Queries. In Procee-
dings of the 5th IEEE International Conference on Semantic Computing (ICSC 2011),
Palo Alto, CA, USA, September 18-21, 2011, pages 158–161. IEEE Computer Society,
2011.

[4] Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif Rasul, Stefan Schweter, and
Roland Vollgraf. FLAIR: An Easy-to-Use Framework for State-of-the-Art NLP. In
Waleed Ammar, Annie Louis, and Nasrin Mostafazadeh, editors, Proceedings of the
2019 Conference of the North American Chapter of the Association for Computatio-
nal Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Demonstrations, pages 54–59. Association for Computational
Linguistics, 2019.

[5] Alan Akbik, Duncan Blythe, and Roland Vollgraf. Contextual String Embeddings for
Sequence Labeling. In Emily M. Bender, Leon Derczynski, and Pierre Isabelle, edi-
tors, Proceedings of the 27th International Conference on Computational Linguistics,
COLING 2018, Santa Fe, New Mexico, USA, August 20-26, 2018, pages 1638–1649.
Association for Computational Linguistics, 2018.

[6] James F. Allen. Maintaining Knowledge about Temporal Intervals. Commun. ACM,
26(11):832–843, 1983.

[7] Guozhong An. The effects of adding noise during backpropagation training on a gene-

99

https://www.w3.org/TR/rdfa-syntax/
https://www.w3.org/TR/rdfa-syntax/

ralization performance. Neural computation, 8(3):643–674, 1996.

[8] Jacob Andreas, Andreas Vlachos, and Stephen Clark. Semantic Parsing as Machine
Translation. In Proceedings of the 51st Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2013, 4-9 August 2013, Sofia, Bulgaria, Volume 2: Short
Papers, pages 47–52. The Association for Computer Linguistics, 2013.

[9] Davide Anguita, Luca Ghelardoni, Alessandro Ghio, Luca Oneto, and Sandro Ridella.
The’K’in K-fold Cross Validation. In ESANN, pages 441–446, 2012.

[10] Yoav Artzi, Nicholas FitzGerald, and Luke S. Zettlemoyer. Semantic Parsing with
Combinatory Categorial Grammars. In 51st Annual Meeting of the Association for
Computational Linguistics, ACL 2013, Proceedings of the Conference Tutorial Abs-
tracts, 4-9 August 2013, Sofia, Bulgaria, page 2. The Association for Computer Lin-
guistics, 2013.

[11] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation
by Jointly Learning to Align and Translate. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[12] Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Herm-
jakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider. Abstract
Meaning Representation for Sembanking. In Stefanie Dipper, Maria Liakata, and An-
tonio Pareja-Lora, editors, Proceedings of the 7th Linguistic Annotation Workshop and
Interoperability with Discourse, LAW-ID@ACL 2013, August 8-9, 2013, Sofia, Bulga-
ria, pages 178–186. The Association for Computer Linguistics, 2013.

[13] Junwei Bao, Nan Duan, Zhao Yan, Ming Zhou, and Tiejun Zhao. Constraint-Based
Question Answering with Knowledge Graph. In Nicoletta Calzolari, Yuji Matsumoto,
and Rashmi Prasad, editors, COLING 2016, 26th International Conference on Compu-
tational Linguistics, Proceedings of the Conference: Technical Papers, December 11-16,
2016, Osaka, Japan, pages 2503–2514. ACL, 2016.

[14] Dave Beckett and Brian McBride. RDF/XML Syntax Specification (Revised). W3C
Recommendation, February 2004. https://www.w3.org/TR/rdf-syntax-grammar/.

[15] David Beckett, Tim Berners-Lee, Eric Prud’hommeaux, and Gavin Carothers. RDF
1.1 Turtle – Terse RDF Triple Language. W3C Recommendation, February 2014.
https://www.w3.org/TR/turtle/.

[16] Jonathan Berant and Percy Liang. Semantic Parsing via Paraphrasing. In Proceedings
of the 52nd Annual Meeting of the Association for Computational Linguistics, ACL
2014, June 22-27, 2014, Baltimore, MD, USA, Volume 1: Long Papers, pages 1415–

100

https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/turtle/

1425. The Association for Computer Linguistics, 2014.

[17] Tim Berners-Lee. Linked Data. W3C Design Issues, July 2006. From https://www.
w3.org/DesignIssues/LinkedData.html; retr. 2010/10/27.

[18] Tim Berners-Lee and Dan Connolly. Notation3 (N3): A readable RDF syntax. W3C
Team Submission, March 2011. https://www.w3.org/TeamSubmission/n3/.

[19] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
American, 284(5):34–43, 2001.

[20] Mark Birbeck and Shane McCarron. CURIE Syntax 1.0 – A syntax for expressing
Compact URIs. W3C Recommendation, January 2009. https://www.w3.org/TR/
curie/.

[21] Christopher M Bishop et al. Neural networks for pattern recognition. Oxford university
press, 1995.

[22] Roi Blanco, Giuseppe Ottaviano, and Edgar Meij. Fast and Space-Efficient Entity Lin-
king for Queries. In Xueqi Cheng, Hang Li, Evgeniy Gabrilovich, and Jie Tang, editors,
Proceedings of the Eighth ACM International Conference on Web Search and Data Mi-
ning, WSDM 2015, Shanghai, China, February 2-6, 2015, pages 179–188. ACM, 2015.

[23] Christoph Böhm, Markus Freitag, Arvid Heise, Claudia Lehmann, Andrina Mascher,
Felix Naumann, Vuk Ercegovac, Mauricio A. Hernández, Peter Haase, and Michael Sch-
midt. GovWILD: integrating open government data for transparency. In Alain Mille,
Fabien L. Gandon, Jacques Misselis, Michael Rabinovich, and Steffen Staab, editors,
Proceedings of the 21st World Wide Web Conference, WWW 2012, Lyon, France, April
16-20, 2012 (Companion Volume), pages 321–324. ACM, 2012.

[24] Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
Freebase: a collaboratively created graph database for structuring human knowledge.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2008, Vancouver, BC, Canada, June 10–12, 2008, pages 1247–1250,
2008.

[25] Danushka Bollegala, Yutaka Matsuo, and Mitsuru Ishizuka. Measuring semantic simi-
larity between words using web search engines. In Carey L. Williamson, Mary Ellen
Zurko, Peter F. Patel-Schneider, and Prashant J. Shenoy, editors, Proceedings of the
16th International Conference on World Wide Web, WWW 2007, Banff, Alberta, Ca-
nada, May 8-12, 2007, pages 757–766. ACM, 2007.

[26] Abdelghani Bouziane, Djelloul Bouchiha, Noureddine Doumi, and Mimoun Malki.
Question Answering Systems: Survey and Trends. Procedia Computer Science, 73:366

101

https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/TeamSubmission/n3/
https://www.w3.org/TR/curie/
https://www.w3.org/TR/curie/

– 375, 2015. International Conference on Advanced Wireless Information and Com-
munication Technologies (AWICT 2015).

[27] Dan Brickley, R.V. Guha, and Andrew Layman. Resource Description Framework
(RDF) Schemas. W3C Working Draft, April 1998. https://www.w3.org/TR/1998/
WD-rdf-schema-19980409/.

[28] Razvan C. Bunescu and Marius Pasca. Using Encyclopedic Knowledge for Named
entity Disambiguation. In Diana McCarthy and Shuly Wintner, editors, EACL 2006,
11st Conference of the European Chapter of the Association for Computational Lin-
guistics, Proceedings of the Conference, April 3-7, 2006, Trento, Italy. The Association
for Computer Linguistics, 2006.

[29] Sebastian Burgstaller-Muehlbacher, Andra Waagmeester, Elvira Mitraka, Julia Turner,
Tim Putman, Justin Leong, Chinmay Naik, Paul Pavlidis, Lynn Schriml, Benjamin M
Good, and Andrew I Su. Wikidata as a semantic framework for the Gene Wiki initia-
tive. Database, 2016, 03 2016.

[30] Ruichu Cai, Boyan Xu, Zhenjie Zhang, Xiaoyan Yang, Zijian Li, and Zhihao Liang. An
Encoder-Decoder Framework Translating Natural Language to Database Queries. In
Jérôme Lang, editor, Proceedings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pages
3977–3983. ijcai.org, 2018.

[31] Nilesh Chakraborty, Denis Lukovnikov, Gaurav Maheshwari, Priyansh Trivedi, Jens
Lehmann, and Asja Fischer. Introduction to Neural Network based Approaches for
Question Answering over Knowledge Graphs. CoRR, abs/1907.09361, 2019.

[32] Jinmiao Chen and Narendra S. Chaudhari. Capturing Long-Term Dependencies for
Protein Secondary Structure Prediction. In Fuliang Yin, Jun Wang, and Chengan
Guo, editors, Advances in Neural Networks - ISNN 2004, International Symposium
on Neural Networks, Dalian, China, August 19-21, 2004, Proceedings, Part II, volume
3174 of Lecture Notes in Computer Science, pages 494–500. Springer, 2004.

[33] Jason P. C. Chiu and Eric Nichols. Named Entity Recognition with Bidirectional
LSTM-CNNs. CoRR, abs/1511.08308, 2015.

[34] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On
the Properties of Neural Machine Translation: Encoder-Decoder Approaches. In Dekai
Wu, Marine Carpuat, Xavier Carreras, and Eva Maria Vecchi, editors, Proceedings of
SSST@EMNLP 2014, Eighth Workshop on Syntax, Semantics and Structure in Sta-
tistical Translation, Doha, Qatar, 25 October 2014, pages 103–111. Association for
Computational Linguistics, 2014.

102

https://www.w3.org/TR/1998/WD-rdf-schema-19980409/
https://www.w3.org/TR/1998/WD-rdf-schema-19980409/

[35] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning Phrase Representations using
RNN Encoder-Decoder for Statistical Machine Translation. In Alessandro Moschitti,
Bo Pang, and Walter Daelemans, editors, Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014,
Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 1724–
1734. ACL, 2014.

[36] Marco Cornolti, Paolo Ferragina, and Massimiliano Ciaramita. A framework for bench-
marking entity-annotation systems. In Daniel Schwabe, Virgílio A. F. Almeida, Hart-
mut Glaser, Ricardo Baeza-Yates, and Sue B. Moon, editors, 22nd International World
Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013, pages 249–
260. International World Wide Web Conferences Steering Committee / ACM, 2013.

[37] Marco Cornolti, Paolo Ferragina, Massimiliano Ciaramita, Stefan Rüd, and Hinrich
Schütze. A Piggyback System for Joint Entity Mention Detection and Linking in Web
Queries. In Jacqueline Bourdeau, Jim Hendler, Roger Nkambou, Ian Horrocks, and
Ben Y. Zhao, editors, Proceedings of the 25th International Conference on World Wide
Web, WWW 2016, Montreal, Canada, April 11 - 15, 2016, pages 567–578. ACM, 2016.

[38] Silviu Cucerzan. Large-Scale Named Entity Disambiguation Based on Wikipedia Data.
In Jason Eisner, editor, EMNLP-CoNLL 2007, Proceedings of the 2007 Joint Conferen-
ce on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, June 28-30, 2007, Prague, Czech Republic, pages 708–716. ACL,
2007.

[39] Silviu Cucerzan. Large-Scale Named Entity Disambiguation Based on Wikipedia Data.
In Jason Eisner, editor, EMNLP-CoNLL 2007, Proceedings of the 2007 Joint Conferen-
ce on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, June 28-30, 2007, Prague, Czech Republic, pages 708–716. ACL,
2007.

[40] Danica Damljanovic, Milan Agatonovic, and Hamish Cunningham. Identification of the
Question Focus: Combining Syntactic Analysis and Ontology-based Lookup through
the User Interaction. In Nicoletta Calzolari, Khalid Choukri, Bente Maegaard, Joseph
Mariani, Jan Odijk, Stelios Piperidis, Mike Rosner, and Daniel Tapias, editors, Procee-
dings of the International Conference on Language Resources and Evaluation, LREC
2010, 17-23 May 2010, Valletta, Malta. European Language Resources Association,
2010.

[41] Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language Modeling
with Gated Convolutional Networks. CoRR, abs/1612.08083, 2016.

[42] Antonin Delpeuch. OpenTapioca: Lightweight Entity Linking for Wikidata. CoRR,

103

abs/1904.09131, 2019.

[43] Dennis Diefenbach, Vanessa López, Kamal Deep Singh, and Pierre Maret. Core techni-
ques of question answering systems over knowledge bases: a survey. Knowl. Inf. Syst.,
55(3):529–569, 2018.

[44] Li Dong and Mirella Lapata. Language to Logical Form with Neural Attention. In
Proceedings of the 54th Annual Meeting of the Association for Computational Linguis-
tics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. The
Association for Computer Linguistics, 2016.

[45] Xin Luna Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Kevin Murphy,
Shaohua Sun, and Wei Zhang. From Data Fusion to Knowledge Fusion. CoRR, ab-
s/1503.00302, 2015.

[46] Mark Dredze, Paul McNamee, Delip Rao, Adam Gerber, and Tim Finin. Entity Di-
sambiguation for Knowledge Base Population. In Chu-Ren Huang and Dan Jurafsky,
editors, COLING 2010, 23rd International Conference on Computational Linguistics,
Proceedings of the Conference, 23-27 August 2010, Beijing, China, pages 277–285.
Tsinghua University Press, 2010.

[47] Mohnish Dubey, Debayan Banerjee, Abdelrahman Abdelkawi, and Jens Lehmann. LC-
QuAD 2.0: A Large Dataset for Complex Question Answering over Wikidata and
DBpedia. In Chiara Ghidini, Olaf Hartig, Maria Maleshkova, Vojtech Svátek, Isabel F.
Cruz, Aidan Hogan, Jie Song, Maxime Lefrançois, and Fabien Gandon, editors, The
Semantic Web - ISWC 2019 - 18th International Semantic Web Conference, Auckland,
New Zealand, October 26-30, 2019, Proceedings, Part II, volume 11779 of Lecture Notes
in Computer Science, pages 69–78. Springer, 2019.

[48] Leo Egghe. Untangling Herdan’s law and Heaps’ law: Mathematical and informetric
arguments. J. Assoc. Inf. Sci. Technol., 58(5):702–709, 2007.

[49] Fredo Erxleben, Michael Günther, Markus Krötzsch, Julian Mendez, and Denny Vran-
decic. Introducing Wikidata to the Linked Data Web. In Peter Mika, Tania Tudorache,
Abraham Bernstein, Chris Welty, Craig A. Knoblock, Denny Vrandecic, Paul Groth,
Natasha F. Noy, Krzysztof Janowicz, and Carole A. Goble, editors, The Semantic Web
- ISWC 2014 - 13th International Semantic Web Conference, Riva del Garda, Italy,
October 19-23, 2014. Proceedings, Part I, volume 8796 of Lecture Notes in Computer
Science, pages 50–65. Springer, 2014.

[50] Anthony Fader, Luke S. Zettlemoyer, and Oren Etzioni. Paraphrase-Driven Learning
for Open Question Answering. In Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2013, 4-9 August 2013, Sofia, Bulgaria,
Volume 1: Long Papers, pages 1608–1618. The Association for Computer Linguistics,

104

2013.

[51] Lee Feigenbaum, Gregory Todd Williams, Kendall Grant Clark, and Elias Torres.
SPARQL 1.1 Protocol. W3C Recommendation, March 2013. https://www.w3.org/
TR/sparql11-protocol/.

[52] Paolo Ferragina and Ugo Scaiella. TAGME: on-the-fly annotation of short text frag-
ments (by Wikipedia entities). In Jimmy Huang, Nick Koudas, Gareth J. F. Jones,
Xindong Wu, Kevyn Collins-Thompson, and Aijun An, editors, Proceedings of the 19th
ACM Conference on Information and Knowledge Management, CIKM 2010, Toronto,
Ontario, Canada, October 26-30, 2010, pages 1625–1628. ACM, 2010.

[53] Óscar Ferrández, Christian Spurk, Milen Kouylekov, Iustin Dornescu, Sergio Ferrández,
Matteo Negri, Rubén Izquierdo, David Tomás, Constantin Orasan, Guenter Neumann,
Bernardo Magnini, and José Luis Vicedo González. The QALL-ME Framework: A
specifiable-domain multilingual Question Answering architecture. J. Web Semant.,
9(2):137–145, 2011.

[54] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg, Ma-
nuel Blum, and Frank Hutter. Efficient and Robust Automated Machine Learning. In
Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Gar-
nett, editors, Advances in Neural Information Processing Systems 28: Annual Confe-
rence on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, pages 2962–2970, 2015.

[55] Catherine Finegan-Dollak, Jonathan K. Kummerfeld, Li Zhang, Karthik Ramanathan,
Sesh Sadasivam, Rui Zhang, and Dragomir R. Radev. Improving Text-to-SQL Eva-
luation Methodology. In Iryna Gurevych and Yusuke Miyao, editors, Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018,
Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers, pages 351–360. Asso-
ciation for Computational Linguistics, 2018.

[56] Jenny Rose Finkel, Trond Grenager, and Christopher D. Manning. Incorporating Non-
local Information into Information Extraction Systems by Gibbs Sampling. In Kevin
Knight, Hwee Tou Ng, and Kemal Oflazer, editors, ACL 2005, 43rd Annual Meeting of
the Association for Computational Linguistics, Proceedings of the Conference, 25-30
June 2005, University of Michigan, USA, pages 363–370. The Association for Compu-
ter Linguistics, 2005.

[57] André Freitas, Joao Gabriel Oliveira, Edward Curry, Seán O’Riain, and Joao Car-
los Pereira da Silva. Treo: combining entity-search, spreading activation and semantic
relatedness for querying linked data. In Proc. of 1st Workshop on Question Answering
over Linked Data (QALD-1) at the 8th Extended Semantic Web Conference (ESWC
2011), 2011.

105

https://www.w3.org/TR/sparql11-protocol/
https://www.w3.org/TR/sparql11-protocol/

[58] André Freitas, João Gabriel Oliveira, Seán O’Riain, João Carlos Pereira da Silva, and
Edward Curry. Querying linked data graphs using semantic relatedness: A vocabulary
independent approach. Data Knowl. Eng., 88:126–141, 2013.

[59] Bin Fu, Yunqi Qiu, Chengguang Tang, Yang Li, Haiyang Yu, and Jian Sun. A Survey on
Complex Question Answering over Knowledge Base: Recent Advances and Challenges.
CoRR, abs/2007.13069, 2020.

[60] Octavian-Eugen Ganea, Marina Ganea, Aurelien Lucchi, Carsten Eickhoff, and Tho-
mas Hofmann. Probabilistic bag-of-hyperlinks model for entity linking. In Proceedings
of the 25th International Conference on World Wide Web, pages 927–938, 2016.

[61] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin.
Convolutional Sequence to Sequence Learning. In Doina Precup and Yee Whye Teh,
editors, Proceedings of the 34th International Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine
Learning Research, pages 1243–1252. PMLR, 2017.

[62] Daniel Gerber and Axel-Cyrille Ngonga Ngomo. Extracting Multilingual Natural-
Language Patterns for RDF Predicates. In Annette ten Teije, Johanna Völker, Sieg-
fried Handschuh, Heiner Stuckenschmidt, Mathieu d’Aquin, Andriy Nikolov, Nathalie
Aussenac-Gilles, and Nathalie Hernandez, editors, Knowledge Engineering and Know-
ledge Management - 18th International Conference, EKAW 2012, Galway City, Ireland,
October 8-12, 2012. Proceedings, volume 7603 of Lecture Notes in Computer Science,
pages 87–96. Springer, 2012.

[63] Felix A. Gers, Jürgen Schmidhuber, and Fred A. Cummins. Learning to Forget: Con-
tinual Prediction with LSTM. Neural Comput., 12(10):2451–2471, 2000.

[64] Cristina Giannone, Valentina Bellomaria, and Roberto Basili. A HMM-based Approach
to Question Answering against Linked Data. In Pamela Forner, Roberto Navigli, Dan
Tufis, and Nicola Ferro, editors, Working Notes for CLEF 2013 Conference , Valencia,
Spain, September 23-26, 2013, volume 1179 of CEUR Workshop Proceedings. CEUR-
WS.org, 2013.

[65] Daniel Gildea and Daniel Jurafsky. Automatic Labeling of Semantic Roles. Comput.
Linguistics, 28(3):245–288, 2002.

[66] Alfio Massimiliano Gliozzo and Aditya Kalyanpur. Predicting Lexical Answer Types
in Open Domain QA. Int. J. Semantic Web Inf. Syst., 8(3):74–88, 2012.

[67] Alfio Massimiliano Gliozzo and Aditya Kalyanpur. Predicting Lexical Answer Types
in Open Domain QA. Int. J. Semantic Web Inf. Syst., 8(3):74–88, 2012.

106

[68] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Yee Whye Teh and D. Mike Titterington, editors, Procee-
dings of the Thirteenth International Conference on Artificial Intelligence and Statis-
tics, AISTATS 2010, Chia Laguna Resort, Sardinia, Italy, May 13-15, 2010, volume 9
of JMLR Proceedings, pages 249–256. JMLR.org, 2010.

[69] Christine Golbreich and Evan K. Wallace. OWL 2 Web Ontology Language: New
Features and Rationale. W3C Recommendation, December 2012. https://www.w3.
org/TR/owl2-new-features/.

[70] Jing Gong, Chong Feng, Yong Liu, Ge Shi, and Heyan Huang. Collective Entity Linking
on Relational Graph Model with Mentions. In Maosong Sun, Xiaojie Wang, Baobao
Chang, and Deyi Xiong, editors, Chinese Computational Linguistics and Natural Lan-
guage Processing Based on Naturally Annotated Big Data - 16th China National Con-
ference, CCL 2017, - and - 5th International Symposium, NLP-NABD 2017, Nanjing,
China, October 13-15, 2017, Proceedings, volume 10565 of Lecture Notes in Computer
Science, pages 159–171. Springer, 2017.

[71] Jan Grant and David Beckett. RDF Test Cases. W3C Recommendation, February
2004. https://www.w3.org/TR/rdf-testcases/.

[72] Alex Graves. Supervised Sequence Labelling with Recurrent Neural Networks, volume
385 of Studies in Computational Intelligence. Springer, 2012.

[73] Alex Graves. Generating Sequences With Recurrent Neural Networks. CoRR, ab-
s/1308.0850, 2013.

[74] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Con-
nectionist temporal classification: labelling unsegmented sequence data with recurrent
neural networks. In Proceedings of the 23rd international conference on Machine lear-
ning, pages 369–376, 2006.

[75] Alex Graves, Abdel-rahman Mohamed, and Geoffrey E. Hinton. Speech recognition
with deep recurrent neural networks. In IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP 2013, Vancouver, BC, Canada, May 26-31,
2013, pages 6645–6649. IEEE, 2013.

[76] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidirec-
tional LSTM networks. In Proceedings. 2005 IEEE International Joint Conference on
Neural Networks, 2005., volume 4, pages 2047–2052. IEEE, 2005.

[77] Sherzod Hakimov, Christina Unger, Sebastian Walter, and Philipp Cimiano. Applying
Semantic Parsing to Question Answering Over Linked Data: Addressing the Lexical
Gap. In Chris Biemann, Siegfried Handschuh, André Freitas, Farid Meziane, and

107

https://www.w3.org/TR/owl2-new-features/
https://www.w3.org/TR/owl2-new-features/
https://www.w3.org/TR/rdf-testcases/

Elisabeth Métais, editors, Natural Language Processing and Information Systems -
20th International Conference on Applications of Natural Language to Information
Systems, NLDB 2015 Passau, Germany, June 17-19, 2015 Proceedings, volume 9103
of Lecture Notes in Computer Science, pages 103–109. Springer, 2015.

[78] Scott A. Hale. Multilinguals and Wikipedia Editing. CoRR, abs/1312.0976, 2013.

[79] Xianpei Han, Le Sun, and Jun Zhao. Collective entity linking in web text: a graph-
based method. In Wei-Ying Ma, Jian-Yun Nie, Ricardo Baeza-Yates, Tat-Seng Chua,
and W. Bruce Croft, editors, Proceeding of the 34th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, SIGIR 2011, Beijing,
China, July 25-29, 2011, pages 765–774. ACM, 2011.

[80] Steve Harris, Andy Seaborne, and Eric Prud’hommeaux. SPARQL 1.1 Query Langua-
ge. W3C Recommendation, March 2013. https://www.w3.org/TR/sparql11-query/.

[81] Ann-Kathrin Hartmann, Edgard Marx, and Tommaso Soru. Generating a Large Da-
taset for Neural Question Answering over the DBpedia Knowledge Base. 2018.

[82] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning
for Image Recognition. CoRR, abs/1512.03385, 2015.

[83] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning
for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770–778.
IEEE Computer Society, 2016.

[84] Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a Global Data
Space (1st Edition), volume 1 of Synthesis Lectures on the Semantic Web: Theory and
Technology. Morgan & Claypool, 2011. Available from http://linkeddatabook.com/
editions/1.0/.

[85] Ivan Herman, Ben Adida, Mark Birbeck, and Shane McCarron. RDFa 1.1 Primer –
Second Edition. W3C Working Group Note, August 2013. https://www.w3.org/TR/
rdfa-primer/.

[86] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, et al. Gradient
flow in recurrent nets: the difficulty of learning long-term dependencies, 2001.

[87] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-TermMemory. Neural Comput.,
9(8):1735–1780, 1997.

[88] Johannes Hoffart, Stephan Seufert, Dat Ba Nguyen, Martin Theobald, and Gerhard
Weikum. KORE: keyphrase overlap relatedness for entity disambiguation. In Xue-wen
Chen, Guy Lebanon, Haixun Wang, and Mohammed J. Zaki, editors, 21st ACM In-

108

https://www.w3.org/TR/sparql11-query/
http://linkeddatabook.com/editions/1.0/
http://linkeddatabook.com/editions/1.0/
https://www.w3.org/TR/rdfa-primer/
https://www.w3.org/TR/rdfa-primer/

ternational Conference on Information and Knowledge Management, CIKM’12, Maui,
HI, USA, October 29 - November 02, 2012, pages 545–554. ACM, 2012.

[89] Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, Hagen Fürstenau, Manfred
Pinkal, Marc Spaniol, Bilyana Taneva, Stefan Thater, and Gerhard Weikum. Robust
Disambiguation of Named Entities in Text. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2011, 27-31 July 2011,
John McIntyre Conference Centre, Edinburgh, UK, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 782–792. ACL, 2011.

[90] Konrad Höffner, Sebastian Walter, Edgard Marx, Ricardo Usbeck, Jens Lehmann,
and Axel-Cyrille Ngonga Ngomo. Survey on challenges of Question Answering in the
Semantic Web. Semantic Web, 8(6):895–920, 2017.

[91] Aidan Hogan. Linked Data & the Semantic Web Standards. In Andreas Harth, Katja
Hose, and Ralf Schenkel, editors, Linked Data Management, pages 3–48. Chapman and
Hall/CRC, 2014.

[92] Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard H. Hovy, and Eric P. Xing. Har-
nessing Deep Neural Networks with Logic Rules. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12,
2016, Berlin, Germany, Volume 1: Long Papers. The Association for Computer Lin-
guistics, 2016.

[93] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional LSTM-CRF Models for Sequence
Tagging. CoRR, abs/1508.01991, 2015.

[94] Heng Ji, Ralph Grishman, Hoa Trang Dang, Kira Griffitt, and Joe Ellis. Overview
of the TAC 2010 knowledge base population track. In Third text analysis conference
(TAC 2010), volume 3, pages 3–3, 2010.

[95] Robin Jia and Percy Liang. Data Recombination for Neural Semantic Parsing. In
Proceedings of the 54th Annual Meeting of the Association for Computational Linguis-
tics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. The
Association for Computer Linguistics, 2016.

[96] Kam-Chuen Jim, C Lee Giles, and Bill G Horne. An analysis of noise in recurrent neural
networks: convergence and generalization. IEEE Transactions on neural networks,
7(6):1424–1438, 1996.

[97] Tim Johnson. Natural Language Computing: The Commercial Applications. Knowl.
Eng. Rev., 1(3):11–23, 1984.

[98] Karen Spärck Jones. A statistical interpretation of term specificity and its application

109

in retrieval. J. Documentation, 60(5):493–502, 2004.

[99] Cezary Kaliszyk, Josef Urban, and Jirí Vyskocil. Automating Formalization by Statis-
tical and Semantic Parsing of Mathematics. In Mauricio Ayala-Rincón and César A.
Muñoz, editors, Interactive Theorem Proving - 8th International Conference, ITP 2017,
Brasília, Brazil, September 26-29, 2017, Proceedings, volume 10499 of Lecture Notes
in Computer Science, pages 12–27. Springer, 2017.

[100] Aishwarya Kamath and Rajarshi Das. A Survey on Semantic Parsing. In 1st Conference
on Automated Knowledge Base Construction, AKBC 2019, Amherst, MA, USA, May
20-22, 2019, 2019.

[101] Michael Kifer. Rule Interchange Format: The Framework. In Diego Calvanese and
Georg Lausen, editors, Web Reasoning and Rule Systems, Second International Con-
ference, RR 2008, Karlsruhe, Germany, October 31-November 1, 2008. Proceedings,
volume 5341 of Lecture Notes in Computer Science, pages 1–11. Springer, 2008.

[102] Petri Koistinen and Lasse Holmström. Kernel regression and backpropagation training
with noise. Advances in Neural Information Processing Systems, 4:1033–1039, 1991.

[103] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classification
with Deep Convolutional Neural Networks. In Peter L. Bartlett, Fernando C. N.
Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q. Weinberger, editors,
Advances in Neural Information Processing Systems 25: 26th Annual Conference on
Neural Information Processing Systems 2012. Proceedings of a meeting held December
3-6, 2012, Lake Tahoe, Nevada, United States, pages 1106–1114, 2012.

[104] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and
Chris Dyer. Neural Architectures for Named Entity Recognition. In Kevin Knight,
Ani Nenkova, and Owen Rambow, editors, NAACL HLT 2016, The 2016 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, San Diego California, USA, June 12-17, 2016, pages 260–270.
The Association for Computational Linguistics, 2016.

[105] Ora Lassila and Ralph R. Swick. Resource Description Framework (RDF) Model and
Syntax Specification. W3C Recommendation, February 1999. https://www.w3.org/
TR/1999/REC-rdf-syntax-19990222/.

[106] Yann LeCun, Leon Bottou, G Orr, and Klaus-Robert Muller. Efficient backprop.
Neural Networks: Tricks of the Trade. New York: Springer, 1998.

[107] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pa-
blo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören Auer,
and Christian Bizer. DBpedia – A large-scale, multilingual knowledge base extracted

110

https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

from Wikipedia. Semantic Web, 6(2):167–195, 2015.

[108] Xin Li and Dan Roth. Learning Question Classifiers. In 19th International Confe-
rence on Computational Linguistics, COLING 2002, Howard International House and
Academia Sinica, Taipei, Taiwan, August 24 - September 1, 2002, 2002.

[109] Chen Liang, Jonathan Berant, Quoc V. Le, Kenneth D. Forbus, and Ni Lao. Neural
Symbolic Machines: Learning Semantic Parsers on Freebase with Weak Supervision.
CoRR, abs/1611.00020, 2016.

[110] Chen Liang, Jonathan Berant, Quoc V. Le, Kenneth D. Forbus, and Ni Lao. Neural
Symbolic Machines: Learning Semantic Parsers on Freebase with Weak Supervision. In
Regina Barzilay and Min-Yen Kan, editors, Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July
30 - August 4, Volume 1: Long Papers, pages 23–33. Association for Computational
Linguistics, 2017.

[111] Vanessa López, Miriam Fernández, Enrico Motta, and Nico Stieler. PowerAqua: Sup-
porting users in querying and exploring the Semantic Web. Semantic Web, 3(3):249–
265, 2012.

[112] Vanessa Lopez, Christina Unger, Philipp Cimiano, and Enrico Motta. Evaluating
Question Answering over Linked Data. Web Semantics Science Services And Agents
On The World Wide Web, 21:3–13, 2013.

[113] Vanessa López, Victoria S. Uren, Marta Sabou, and Enrico Motta. Is Question Ans-
wering fit for the Semantic Web?: A survey. Semantic Web, 2(2):125–155, 2011.

[114] Gang Luo, Xiaojiang Huang, Chin-Yew Lin, and Zaiqing Nie. Joint Entity Recognition
and Disambiguation. In Lluís Màrquez, Chris Callison-Burch, Jian Su, Daniele Pighin,
and Yuval Marton, editors, Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, September 17-21,
2015, pages 879–888. The Association for Computational Linguistics, 2015.

[115] Thang Luong, Hieu Pham, and Christopher D. Manning. Effective Approaches to
Attention-based Neural Machine Translation. In Lluís Màrquez, Chris Callison-Burch,
Jian Su, Daniele Pighin, and Yuval Marton, editors, Proceedings of the 2015 Confe-
rence on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon,
Portugal, September 17-21, 2015, pages 1412–1421. The Association for Computational
Linguistics, 2015.

[116] Fabiano Ferreira Luz and Marcelo Finger. Semantic Parsing Natural Language into
SPARQL: Improving Target Language Representation with Neural Attention. CoRR,
abs/1803.04329, 2018.

111

[117] Xuezhe Ma and Eduard H. Hovy. End-to-end Sequence Labeling via Bi-directional
LSTM-CNNs-CRF. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume
1: Long Papers. The Association for Computer Linguistics, 2016.

[118] Xuezhe Ma and Fei Xia. Unsupervised Dependency Parsing with Transferring Distri-
bution via Parallel Guidance and Entropy Regularization. In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics, ACL 2014, June
22-27, 2014, Baltimore, MD, USA, Volume 1: Long Papers, pages 1337–1348. The
Association for Computer Linguistics, 2014.

[119] Behrooz Mahasseni, Michael Lam, and Sinisa Todorovic. Unsupervised Video Sum-
marization with Adversarial LSTM Networks. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017,
pages 2982–2991. IEEE Computer Society, 2017.

[120] Stanislav Malyshev, Markus Krötzsch, Larry González, Julius Gonsior, and Adrian Bie-
lefeldt. Getting the Most Out of Wikidata: Semantic Technology Usage in Wikipedia’s
Knowledge Graph. In The Semantic Web – ISWC 2018 – 17th International Semantic
Web Conference, Monterey, CA, USA, October 8–12, 2018, Proceedings, Part II, pages
376–394, 2018.

[121] Frank Manola, Eric Miller, and Brian McBride. RDF Primer. W3C Recommendation,
February 2004. https://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

[122] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a Large
Annotated Corpus of English: The Penn Treebank. Comput. Linguistics, 19(2):313–
330, 1993.

[123] Anca Marginean. Question answering over biomedical linked data with Grammatical
Framework. Semantic Web, 8(4):565–580, 2017.

[124] Jose L. Martinez-Rodriguez, Aidan Hogan, and Ivan Lopez-Arevalo. Information Ex-
traction meets the Semantic Web: A Survey. Semantic Web, 11(2):255–335, 2020.

[125] Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology Langua-
ge Overview. W3C Recommendation, February 2004. https://www.w3.org/TR/
owl-features/.

[126] Paul McNamee, James Mayfield, Dawn J. Lawrie, Douglas W. Oard, and David S.
Doermann. Cross-Language Entity Linking. In Fifth International Joint Conference
on Natural Language Processing, IJCNLP 2011, Chiang Mai, Thailand, November 8-
13, 2011, pages 255–263. The Association for Computer Linguistics, 2011.

112

https://www.w3.org/TR/2004/REC-rdf-primer-20040210/
https://www.w3.org/TR/owl-features/
https://www.w3.org/TR/owl-features/

[127] Dora Melo, Irene Pimenta Rodrigues, and Vítor Beires Nogueira. Cooperative Question
Answering for the Semantic Web. In Joaquim Filipe and Kecheng Liu, editors, KMIS
2011 - Proceedings of the International Conference on Knowledge Management and
Information Sharing, Paris, France, 26-29 October, 2011, pages 258–263. SciTePress,
2011.

[128] Pablo N. Mendes, Max Jakob, Andrés García-Silva, and Christian Bizer. DBpe-
dia spotlight: shedding light on the web of documents. In Chiara Ghidini, Axel-
Cyrille Ngonga Ngomo, Stefanie N. Lindstaedt, and Tassilo Pellegrini, editors, Pro-
ceedings the 7th International Conference on Semantic Systems, I-SEMANTICS 2011,
Graz, Austria, September 7-9, 2011, ACM International Conference Proceeding Series,
pages 1–8. ACM, 2011.

[129] Alexander H. Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes,
and Jason Weston. Key-Value Memory Networks for Directly Reading Documents. In
Jian Su, Xavier Carreras, and Kevin Duh, editors, Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas,
USA, November 1-4, 2016, pages 1400–1409. The Association for Computational Lin-
guistics, 2016.

[130] David N. Milne and Ian H. Witten. Learning to link with wikipedia. In James G. Sha-
nahan, Sihem Amer-Yahia, Ioana Manolescu, Yi Zhang, David A. Evans, Aleksander
Kolcz, Key-Sun Choi, and Abdur Chowdhury, editors, Proceedings of the 17th ACM
Conference on Information and Knowledge Management, CIKM 2008, Napa Valley,
California, USA, October 26-30, 2008, pages 509–518. ACM, 2008.

[131] Bonan Min, Marjorie Freedman, and Talya Meltzer. Probabilistic Inference for Cold
Start Knowledge Base Population with Prior World Knowledge. In Mirella Lapata,
Phil Blunsom, and Alexander Koller, editors, Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics, EACL 2017,
Valencia, Spain, April 3-7, 2017, Volume 1: Long Papers, pages 601–612. Association
for Computational Linguistics, 2017.

[132] Alan F Murray and Peter J Edwards. Enhanced MLP performance and fault tolerance
resulting from synaptic weight noise during training. IEEE Transactions on neural
networks, 5(5):792–802, 1994.

[133] Ndapandula Nakashole, Gerhard Weikum, and Fabian M. Suchanek. PATTY: A Taxo-
nomy of Relational Patterns with Semantic Types. In Jun’ichi Tsujii, James Hender-
son, and Marius Pasca, editors, Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Lear-
ning, EMNLP-CoNLL 2012, July 12-14, 2012, Jeju Island, Korea, pages 1135–1145.
ACL, 2012.

113

[134] Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar, An-
tonios Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux, Trevor
Cohn, Kevin Duh, Manaal Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji, Ling-
peng Kong, Adhiguna Kuncoro, Gaurav Kumar, Chaitanya Malaviya, Paul Michel,
Yusuke Oda, Matthew Richardson, Naomi Saphra, Swabha Swayamdipta, and Peng-
cheng Yin. DyNet: The Dynamic Neural Network Toolkit. CoRR, abs/1701.03980,
2017.

[135] Stephan Oepen, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Silvie Cinková, Dan
Flickinger, Jan Hajic, and Zdenka Uresová. SemEval 2015 Task 18: Broad-Coverage
Semantic Dependency Parsing. In Daniel M. Cer, David Jurgens, Preslav Nakov, and
Torsten Zesch, editors, Proceedings of the 9th International Workshop on Semantic
Evaluation, SemEval@NAACL-HLT 2015, Denver, Colorado, USA, June 4-5, 2015,
pages 915–926. The Association for Computer Linguistics, 2015.

[136] Keiron O’Shea and Ryan Nash. An Introduction to Convolutional Neural Networks.
CoRR, abs/1511.08458, 2015.

[137] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David
Grangier, and Michael Auli. fairseq: A Fast, Extensible Toolkit for Sequence Mode-
ling. In Waleed Ammar, Annie Louis, and Nasrin Mostafazadeh, editors, Proceedings
of the 2019 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2-7, 2019, Demonstrations, pages 48–53. Association for Computatio-
nal Linguistics, 2019.

[138] Xiaoman Pan, Taylor Cassidy, Ulf Hermjakob, Heng Ji, and Kevin Knight. Unsu-
pervised Entity Linking with Abstract Meaning Representation. In Rada Mihalcea,
Joyce Yue Chai, and Anoop Sarkar, editors, NAACL HLT 2015, The 2015 Conference
of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Denver, Colorado, USA, May 31 - June 5, 2015, pages
1130–1139. The Association for Computational Linguistics, 2015.

[139] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a Method for
Automatic Evaluation of Machine Translation. In Proceedings of the 40th Annual Mee-
ting of the Association for Computational Linguistics, July 6-12, 2002, Philadelphia,
PA, USA, pages 311–318. ACL, 2002.

[140] Alexandre Passos, Vineet Kumar, and Andrew McCallum. Lexicon Infused Phrase
Embeddings for Named Entity Resolution. In Roser Morante and Wen-tau Yih, edi-
tors, Proceedings of the Eighteenth Conference on Computational Natural Language
Learning, CoNLL 2014, Baltimore, Maryland, USA, June 26-27, 2014, pages 78–86.
ACL, 2014.

114

[141] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global Vec-
tors for Word Representation. In Alessandro Moschitti, Bo Pang, and Walter Daele-
mans, editors, Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of
SIGDAT, a Special Interest Group of the ACL, pages 1532–1543. ACL, 2014.

[142] David Peterson, Shudi Gao, Ashok Malhotra, C. M. Sperberg-McQueen, and Henry S.
Thompson. W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes.
W3C Recommendation, April 2012. https://www.w3.org/TR/xmlschema11-2/.

[143] David C Plaut et al. Experiments on Learning by Back Propagation. 1986.

[144] Julien Plu, Giuseppe Rizzo, and Raphaël Troncy. Enhancing Entity Linking by Combi-
ning NER Models. In Harald Sack, Stefan Dietze, Anna Tordai, and Christoph Lange,
editors, Semantic Web Challenges - Third SemWebEval Challenge at ESWC 2016, He-
raklion, Crete, Greece, May 29 - June 2, 2016, Revised Selected Papers, volume 641 of
Communications in Computer and Information Science, pages 17–32. Springer, 2016.

[145] Axel Polleres, Aidan Hogan, Andreas Harth, and Stefan Decker. Can we ever catch up
with the Web? Semantic Web, 1(1-2):45–52, 2010.

[146] Jay M. Ponte and W. Bruce Croft. A Language Modeling Approach to Information
Retrieval. In W. Bruce Croft, Alistair Moffat, C. J. van Rijsbergen, Ross Wilkinson,
and Justin Zobel, editors, SIGIR ’98: Proceedings of the 21st Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, Au-
gust 24-28 1998, Melbourne, Australia, pages 275–281. ACM, 1998.

[147] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF. W3C
Recommendation, January 2008. https://www.w3.org/TR/rdf-sparql-query/.

[148] Yunqi Qiu, Yuanzhuo Wang, Xiaolong Jin, and Kun Zhang. Stepwise Reasoning for
Multi-Relation Question Answering over Knowledge Graph with Weak Supervision.
In James Caverlee, Xia (Ben) Hu, Mounia Lalmas, and Wei Wang, editors, WSDM
’20: The Thirteenth ACM International Conference on Web Search and Data Mining,
Houston, TX, USA, February 3-7, 2020, pages 474–482. ACM, 2020.

[149] Maxim Rabinovich, Mitchell Stern, and Dan Klein. Abstract Syntax Networks for Co-
de Generation and Semantic Parsing. In Regina Barzilay and Min-Yen Kan, editors,
Proceedings of the 55th Annual Meeting of the Association for Computational Linguis-
tics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, pages
1139–1149. Association for Computational Linguistics, 2017.

[150] Delip Rao, Paul McNamee, and Mark Dredze. Entity Linking: Finding Extracted
Entities in a Knowledge Base. In Thierry Poibeau, Horacio Saggion, Jakub Piskorski,

115

https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/rdf-sparql-query/

and Roman Yangarber, editors, Multi-source, Multilingual Information Extraction and
Summarization, Theory and Applications of Natural Language Processing, pages 93–
115. Springer, 2013.

[151] Lev-Arie Ratinov and Dan Roth. Design Challenges and Misconceptions in Named
Entity Recognition. In Suzanne Stevenson and Xavier Carreras, editors, Proceedings
of the Thirteenth Conference on Computational Natural Language Learning, CoNLL
2009, Boulder, Colorado, USA, June 4-5, 2009, pages 147–155. ACL, 2009.

[152] Siva Reddy, Mirella Lapata, and Mark Steedman. Large-scale Semantic Parsing
without Question-Answer Pairs. Trans. Assoc. Comput. Linguistics, 2:377–392, 2014.

[153] Giuseppe Rizzo, Amparo Elizabeth Cano Basave, Bianca Pereira, and Andrea Varga.
Making Sense of Microposts (#Microposts2015) Named Entity rEcognition and Lin-
king (NEEL) Challenge. In Matthew Rowe, Milan Stankovic, and Aba-Sah Dadzie,
editors, Proceedings of the the 5th Workshop on Making Sense of Microposts co-located
with the 24th International World Wide Web Conference (WWW 2015), Florence,
Italy, May 18th, 2015, volume 1395 of CEUR Workshop Proceedings, pages 44–53.
CEUR-WS.org, 2015.

[154] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal
representations by error propagation. Technical report, California Univ San Diego La
Jolla Inst for Cognitive Science, 1985.

[155] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representa-
tions by back-propagating errors. nature, 323(6088):533–536, 1986.

[156] Gerard Salton, A. Wong, and Chung-Shu Yang. A Vector Space Model for Automatic
Indexing. Commun. ACM, 18(11):613–620, 1975.

[157] Guus Schreiber and Yves Raimond. RDF 1.1 Primer. W3C Working Group Note, June
2014. https://www.w3.org/TR/rdf11-primer/.

[158] Mike Schuster and Kuldip K. Paliwal. Bidirectional recurrent neural networks. IEEE
Trans. Signal Process., 45(11):2673–2681, 1997.

[159] Yelong Shen, Jun Yan, Shuicheng Yan, Lei Ji, Ning Liu, and Zheng Chen. Sparse
hidden-dynamics conditional random fields for user intent understanding. In Sadago-
pan Srinivasan, Krithi Ramamritham, Arun Kumar, M. P. Ravindra, Elisa Bertino,
and Ravi Kumar, editors, Proceedings of the 20th International Conference on World
Wide Web, WWW 2011, Hyderabad, India, March 28 - April 1, 2011, pages 7–16.
ACM, 2011.

[160] Kiyoaki Shirai, Kentaro Inui, Hozumi Tanaka, and Takenobu Tokunaga. An empirical

116

https://www.w3.org/TR/rdf11-primer/

study on statistical disambiguation of japanese dependency structures using a lexically
sensitive language model. In Proceedings of Natural Language Pacific-Rim Symposium,
pages 215–220, 1997.

[161] He Shizhu, Zhang Yuanzhe, Liu Kang, Zhao Jun, et al. CASIA@ V2: A MLN-based
Question Answering system over Linked Data. 2014.

[162] Tommaso Soru, Edgard Marx, Diego Moussallem, Gustavo Publio, Andre Valdestilhas,
Diego Esteves, and Ciro Baron Neto. SPARQL as a Foreign Language. In Javier D.
Fernández and Sebastian Hellmann, editors, Proceedings of the Posters and Demos
Track of the 13th International Conference on Semantic Systems - SEMANTiCS2017
co-located with the 13th International Conference on Semantic Systems (SEMANTiCS
2017), Amsterdam, The Netherlands, September 11-14, 2017, volume 2044 of CEUR
Workshop Proceedings. CEUR-WS.org, 2017.

[163] Tommaso Soru, Edgard Marx, André Valdestilhas, Diego Esteves, Diego Moussallem,
and Gustavo Publio. Neural Machine Translation for Query Construction and Com-
position. CoRR, abs/1806.10478, 2018.

[164] Manu Sporny, Dave Longley, Gregg Kellogg, Markus Lanthaler, and Niklas Lindström.
JSON-LD 1.0 – A JSON-based Serialization for Linked Data. W3C Recommendation,
January 2014. https://www.w3.org/TR/json-ld/.

[165] Mark Steedman. A very short introduction to CCG. Unpublished paper. http://www.
coqsci. ed. ac. uk/steedman/paper. html, 1996.

[166] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. YAGO: A Large Ontology
from Wikipedia and WordNet. J. Web Sem., 6(3):203–217, 2008.

[167] Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. Weakly Super-
vised Memory Networks. CoRR, abs/1503.08895, 2015.

[168] Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn Mazaitis, Ruslan Salakhutdi-
nov, and William W. Cohen. Open Domain Question Answering Using Early Fusion
of Knowledge Bases and Text. In Ellen Riloff, David Chiang, Julia Hockenmaier, and
Jun’ichi Tsujii, editors, Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018, pages
4231–4242. Association for Computational Linguistics, 2018.

[169] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to Sequence Learning with
Neural Networks. In Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Law-
rence, and Kilian Q. Weinberger, editors, Advances in Neural Information Processing
Systems 27: Annual Conference on Neural Information Processing Systems 2014, De-
cember 8-13 2014, Montreal, Quebec, Canada, pages 3104–3112, 2014.

117

https://www.w3.org/TR/json-ld/

[170] Bilyana Taneva, M Kacimi El Hassani, and Gerhard Weikum. Finding images of rare
and ambiguous entities. 2011.

[171] Stefan Thater, Hagen Fürstenau, and Manfred Pinkal. Contextualizing Semantic Re-
presentations Using Syntactically Enriched Vector Models. In Jan Hajic, Sandra Car-
berry, and Stephen Clark, editors, ACL 2010, Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics, July 11-16, 2010, Uppsala, Sweden,
pages 948–957. The Association for Computer Linguistics, 2010.

[172] Trias Thireou and Martin Reczko. Bidirectional Long Short-Term Memory Networks
for Predicting the Subcellular Localization of Eukaryotic Proteins. IEEE ACM Trans.
Comput. Biol. Bioinform., 4(3):441–446, 2007.

[173] Cynthia A. Thompson and Raymond J. Mooney. Acquiring Word-Meaning Mappings
for Natural Language Interfaces. J. Artif. Intell. Res., 18:1–44, 2003.

[174] Priyansh Trivedi, Gaurav Maheshwari, Mohnish Dubey, and Jens Lehmann. LC-
QuAD: A Corpus for Complex Question Answering over Knowledge Graphs. In Claudia
d’Amato, Miriam Fernández, Valentina A. M. Tamma, Freddy Lécué, Philippe Cudré-
Mauroux, Juan F. Sequeda, Christoph Lange, and Jeff Heflin, editors, The Semantic
Web - ISWC 2017 - 16th International Semantic Web Conference, Vienna, Austria,
October 21-25, 2017, Proceedings, Part II, volume 10588 of Lecture Notes in Computer
Science, pages 210–218. Springer, 2017.

[175] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bou-
chard. Complex Embeddings for Simple Link Prediction. In Maria-Florina Balcan
and Kilian Q. Weinberger, editors, Proceedings of the 33nd International Conference
on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volu-
me 48 of JMLR Workshop and Conference Proceedings, pages 2071–2080. JMLR.org,
2016.

[176] Christina Unger and Philipp Cimiano. Pythia: Compositional Meaning Construction
for Ontology-Based Question Answering on the Semantic Web. In Rafael Muñoz, An-
drés Montoyo, and Elisabeth Métais, editors, Natural Language Processing and Infor-
mation Systems - 16th International Conference on Applications of Natural Language
to Information Systems, NLDB 2011, Alicante, Spain, June 28-30, 2011. Proceedings,
volume 6716 of Lecture Notes in Computer Science, pages 153–160. Springer, 2011.

[177] Christina Unger, André Freitas, and Philipp Cimiano. An Introduction to Question
Answering over Linked Data. In Manolis Koubarakis, Giorgos B. Stamou, Giorgos
Stoilos, Ian Horrocks, Phokion G. Kolaitis, Georg Lausen, and Gerhard Weikum, edi-
tors, Reasoning Web. Reasoning on the Web in the Big Data Era - 10th International
Summer School 2014, Athens, Greece, September 8-13, 2014. Proceedings, volume 8714
of Lecture Notes in Computer Science, pages 100–140. Springer, 2014.

118

[178] Ricardo Usbeck, Axel-Cyrille Ngonga Ngomo, Bastian Haarmann, Anastasia Krithara,
Michael Röder, and Giulio Napolitano. 7th Open Challenge on Question Answering
over Linked Data (QALD-7). In Mauro Dragoni, Monika Solanki, and Eva Blomq-
vist, editors, Semantic Web Challenges - 4th SemWebEval Challenge at ESWC 2017,
Portoroz, Slovenia, May 28 - June 1, 2017, Revised Selected Papers, volume 769 of
Communications in Computer and Information Science, pages 59–69. Springer, 2017.

[179] Aäron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel Recurrent
Neural Networks. In Maria-Florina Balcan and Kilian Q. Weinberger, editors, Procee-
dings of the 33nd International Conference on Machine Learning, ICML 2016, New
York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference
Proceedings, pages 1747–1756. JMLR.org, 2016.

[180] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Isabelle
Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Proces-
sing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pages 5998–6008, 2017.

[181] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer Networks. arXiv preprint
arXiv:1506.03134, 2015.

[182] Denny Vrandečić. The Rise of Wikidata. IEEE Intelligent Systems, 28(4):90–95, 2013.

[183] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase.
Commun. ACM, 57(10):78–85, 2014.

[184] Claudia Wagner, Eduardo Graells-Garrido, David Garcia, and Filippo Menczer. Wo-
men through the glass ceiling: gender asymmetries in Wikipedia. EPJ Data Science,
5(1):5, Mar 2016.

[185] Paul J Werbos. Generalization of backpropagation with application to a recurrent gas
market model. Neural networks, 1(4):339–356, 1988.

[186] Paul J Werbos. Backpropagation through time: what it does and how to do it. Pro-
ceedings of the IEEE, 78(10):1550–1560, 1990.

[187] Ronald J Williams and David Zipser. Gradient-based learning algorithms for recurrent.
Backpropagation: Theory, architectures, and applications, 433, 1995.

[188] William A. Woods. Progress in natural language understanding: an application to lunar
geology. In American Federation of Information Processing Societies: 1973 National
Computer Conference, 4-8 June 1973, New York, NY, USA, volume 42 of AFIPS

119

Conference Proceedings, pages 441–450. AFIPS Press/ACM, 1973.

[189] Gong-Qing Wu, Ying He, and Xuegang Hu. Entity Linking: An Issue to Extract
Corresponding Entity With Knowledge Base. IEEE Access, 6:6220–6231, 2018.

[190] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva
Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. Google’s Neural Machine Translation System:
Bridging the Gap between Human and Machine Translation. CoRR, abs/1609.08144,
2016.

[191] Kun Xu, Yansong Feng, and Dongyan Zhao. Answering Natural Language Questions
via Phrasal Semantic Parsing. In Linda Cappellato, Nicola Ferro, Martin Halvey,
and Wessel Kraaij, editors, Working Notes for CLEF 2014 Conference, Sheffield, UK,
September 15-18, 2014, volume 1180 of CEUR Workshop Proceedings, pages 1260–1274.
CEUR-WS.org, 2014.

[192] Kun Xu, Siva Reddy, Yansong Feng, Songfang Huang, and Dongyan Zhao. Question
Answering on Freebase via Relation Extraction and Textual Evidence. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics, ACL
2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. The Association
for Computer Linguistics, 2016.

[193] Kun Xu, Lingfei Wu, Zhiguo Wang, Mo Yu, Liwei Chen, and Vadim Sheinin. Exploi-
ting Rich Syntactic Information for Semantic Parsing with Graph-to-Sequence Model.
In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii, editors, Procee-
dings of the 2018 Conference on Empirical Methods in Natural Language Processing,
Brussels, Belgium, October 31 - November 4, 2018, pages 918–924. Association for
Computational Linguistics, 2018.

[194] Xuchen Yao and Benjamin Van Durme. Information Extraction over Structured Data:
Question Answering with Freebase. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics, ACL 2014, June 22-27, 2014, Baltimore,
MD, USA, Volume 1: Long Papers, pages 956–966. The Association for Computer
Linguistics, 2014.

[195] Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao. Semantic Parsing
via Staged Query Graph Generation: Question Answering with Knowledge Base. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Natural Language Processing of the
Asian Federation of Natural Language Processing, ACL 2015, July 26-31, 2015, Bei-

120

jing, China, Volume 1: Long Papers, pages 1321–1331. The Association for Computer
Linguistics, 2015.

[196] Pengcheng Yin and Graham Neubig. TRANX: A Transition-based Neural Abstract
Syntax Parser for Semantic Parsing and Code Generation. In Eduardo Blanco and
Wei Lu, editors, Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2018: System Demonstrations, Brussels, Belgium, Oc-
tober 31 - November 4, 2018, pages 7–12. Association for Computational Linguistics,
2018.

[197] Xiaoyu Yin, Dagmar Gromann, and Sebastian Rudolph. Neural Machine Translating
from Natural Language to SPARQL. CoRR, abs/1906.09302, 2019.

[198] Mohamed Amir Yosef, Johannes Hoffart, Ilaria Bordino, Marc Spaniol, and Gerhard
Weikum. AIDA: An Online Tool for Accurate Disambiguation of Named Entities in
Text and Tables. Proc. VLDB Endow., 4(12):1450–1453, 2011.

[199] Eman M. G. Younis, Christopher B. Jones, Vlad Tanasescu, and Alia I. Abdelmoty.
Hybrid Geo-spatial Query Methods on the Semantic Web with a Spatially-Enhanced
Index of DBpedia. In Ningchuan Xiao, Mei-Po Kwan, Michael F. Goodchild, and Shashi
Shekhar, editors, Geographic Information Science - 7th International Conference, GIS-
cience 2012, Columbus, OH, USA, September 18-21, 2012. Proceedings, volume 7478
of Lecture Notes in Computer Science, pages 340–353. Springer, 2012.

[200] Mo Yu, Wenpeng Yin, Kazi Saidul Hasan, Cícero Nogueira dos Santos, Bing Xiang,
and Bowen Zhou. Improved Neural Relation Detection for Knowledge Base Question
Answering. In Regina Barzilay and Min-Yen Kan, editors, Proceedings of the 55th An-
nual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver,
Canada, July 30 - August 4, Volume 1: Long Papers, pages 571–581. Association for
Computational Linguistics, 2017.

[201] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent Neural Network Re-
gularization. CoRR, abs/1409.2329, 2014.

[202] John M. Zelle and Raymond J. Mooney. Learning to Parse Database Queries Using In-
ductive Logic Programming. In William J. Clancey and Daniel S. Weld, editors, Procee-
dings of the Thirteenth National Conference on Artificial Intelligence and Eighth Inno-
vative Applications of Artificial Intelligence Conference, AAAI 96, IAAI 96, Portland,
Oregon, USA, August 4-8, 1996, Volume 2, pages 1050–1055. AAAI Press / The MIT
Press, 1996.

[203] Wei Zhang, Jian Su, Chew Lim Tan, and Wenting Wang. Entity Linking Leveraging
Automatically Generated Annotation. In Chu-Ren Huang and Dan Jurafsky, editors,
COLING 2010, 23rd International Conference on Computational Linguistics, Procee-

121

dings of the Conference, 23-27 August 2010, Beijing, China, pages 1290–1298. Tsinghua
University Press, 2010.

[204] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2SQL: Generating Structured
Queries from Natural Language using Reinforcement Learning. CoRR, abs/1709.00103,
2017.

[205] Lei Zou, Ruizhe Huang, Haixun Wang, Jeffrey Xu Yu, Wenqiang He, and Dongyan
Zhao. Natural language question answering over RDF: a graph data driven approach.
In Curtis E. Dyreson, Feifei Li, and M. Tamer Özsu, editors, International Conference
on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, pages
313–324. ACM, 2014.

122

Appendix A

Neural Networks overview

We provide an overview of the main concepts and techniques relating to Neural Networks
as are important for this work. Section A.1 and A.2 are based on Graves [72] work description
for Supervised Sequence Labeling with Recurrent Networks and Section A.3 is based on [136].

A.1. Neural Networks Fundamentals

Artificial Neural Networks (ANNs), or simply Neural Networks (NNs), are mathematical
models inspired by how biological brains process information. Their basic structure is a
network of small processing units, also seen as nodes, joined to each other by weighted
connections. Similar to how synapses work in biological neurons, the network is activated by
providing an input to some or all nodes, which spreads this activation throughout the rest
of the network along the weighted connections.

A.1.1. Multilayer Perceptrons

Among the different varieties of neural networks, Feedforward Neural Networks are
structured in an acyclic way, meaning their connections do not form a cycle. One example
are the multilayer perceptrons (MLP), which are arranged in layers with connections feeding
forward from one layer to the next. An illustration can be seen in Figure A.1, where input
data are passed to an input layer and then propagated through one or more hidden
layers to the final output layer. This kind of architecture is more suitable for classification
or function approximation tasks [72].

The process to pass data through layers is known as the forward pass of the network.
Given an input vector of length I, an input layer of the same length would receive this input
vector where each unit in the input layer calculates a weighted sum. For a hidden unit h, we
refer to this sum as the network input to unit h, denoted as ah. Denoting wij as the weight

123

Figure A.1: Multilayer perceptron [72].

from unit i to unit j, the formula of ah for a layer Hl is calculated using the formula in
Equation A.1.

ah =
I∑

h′∈Hl−1

wh′h bh′ (A.1)

where bh′ corresponds to the final activation function of the previous layer. The bh value
is calculated by applying an activation function θh over ah, as seen in Equation A.2. Note
that for the first hidden layer, the previous layer is the input layer.

bh = θh(ah) (A.2)

This activation function h can vary, though some of the most common functions used
are the hyperbolic tangent A.3 or sigmoid A.4 functions. Two important features about
activation functions: they are non-linear and differentiable. Non-linearity allows the network
to build more complex internal features (e.g. build more flexible boundaries in a classification
task), and differentiability is required to perform the backward pass that will be mentioned
below.

tanh(x) =
e2x − 1

e2x + 1
(A.3)

sigmoid(x) =
1

1 + e−x
(A.4)

This process of summation and activation is repeated for L hidden layers until reaching
the output layer, where the output vector y is determined by using the activation of the last

124

hidden layer HL. Then, the network input ak to each output unit k is calculated by summing
over the units of the connected to it, the same way as is expressed in Equation A.1. The
output activation function to be used depends on the task the network aims to fulfill. For
simple binary classification, the sigmoid function A.4 is applied since its values between 0 or
1 can be seen as a binary probability p(z|x), with z being the target vector. Furthermore, if
the classification task includes more than 2 classes, there is a convention to have K output
units, and normalize the output activations with the softmax function A.5. Therefore, the
class probability for Ck given the output x is represented by Equation 5

p(Ck|x) = yk

= softmax(ak)

=
eak∑K
k′=1 eak′

(A.5)

Lastly, a 1-to-K scheme is used to represent the target class z where z is represented as a
one-hot vector (e.g. if K = 4, the class C2 is represented as [0, 1, 0, 0]). More formally, the
way to express the target probabilities are as follows:

p(z|x) =
K∏
k=1

yzkk

In the context of pattern classification, the class label that should be chosen corresponds
to the most active output unit, i.e. the higher value from all target probabilities.

A.1.2. Network Training

In order to have an idea whether a neural network is working as expected, a loss function
is used. As per activation functions, the loss function to be used depends on the task the Neu-
ral Network is performing. For example, for multiple classification the maximum-likelihood
function is commonly used as a loss function [21]:

L(yk, z) =
K∑
k=1

zkln yk

Neural networks are able to learn, i.e. they can generalize to unseen data, so they can be
trained by minimizing the loss function L. One of the simplest algorithms to perform such
training process is the gradient descent algorithm. Gradient descent consists of repeatedly
taking a small, fixed-size step in the direction of the negative error gradient of the loss

125

function, which can also be seen as going in the opposite direction of the negative slope of
the loss function. Note that we perform gradient descent over a training dataset, while we
save a test dataset that is not used to train but to evaluate the overall performance after
training.

Thus, a weight update ∆wn, also known as gradient , is used to update the weight vector
wn from the nth network layer. The gradient ∆wn consists of the partial derivative of the loss
function when the weight vector wn varies. This derivative is adjusted by a learning rate
α ∈ [0, 1] which limits how quick the training process is converging. Then, on each gradient
descent iteration i the weight vector wn is updated as follows:

wni = wni−1 −∆wni−1 = wni−1 − α
∂L

∂wni−1

The backpropagation technique is commonly used to calculate these gradients [154, 187,
185], often referred to as the backward pass of the network. Backpropagation consists of
the repeated application of chain rule for partial derivatives. For example, for a multiclass
network, the application of the chain rule over the loss function defined as ∂L(x,z)

∂wij
= ∂L(x,z)

∂aj

∂aj
wij

,
which then can be deduced by applying the chain rule again over the unknown gradients.
Note that this process has to be performed over every weight of each layer on the network.

The training algorithm is repeated until a stopping criteria is met (e.g. stop after a fixed
amount of steps, when reaching a certain loss threshold, or when failing to reduce the loss on
a given number of consecutive steps). Usually, this process involves using the entire training
data more than one time, where an entire pass over the data is known as one epoch. By the
end of the training process, we expect to have the neural network’s weights such that the
loss function has reached a value as close as possible to the global minimum when evaluating
over test examples (i.e. it can predict as best as possible over the training data).

The training process involves many issues that can lead to bad performance, a long time
to train models, or divergence problems (i.e. training process never ends). One common issue
is when the gradient descent process gets stuck in local minimums, which can be addressed
by adding a momentum term to reduce learning inertia [143]. To boost training time, many
variants of gradient descent have been proposed such as stochastic gradient descent or mini-
batch gradient descent [106].

Another issue related with bad performance is overfitting, which causes the network not
to be able to generalise properly since it “memorizes” the data from the training dataset.
One way to see if a model is overfitted is to check the loss function values evolution over the
training process for the training and the test set: if the loss for the test is not decreasing but
instead increasing while the loss for the training set is constantly decreasing, the model is
getting overfitted.

126

Figure A.2: Example of early stopping analysis using validation data [72].

One solution that helps to address the overfitting issue is to use a small portion of the
training set as a validation set to include an early stopping criteria. This validation set is
not used to train the network but to perform validation steps every certain amount of training
steps. Then, the loss values for the validation steps are used to decide when to stop training.
For example, Figure A.2 shows the losses over all three data sets (train, validation, test)
through the training process. Then, we can detect that the best weight values are found just
before the validation loss stops its decreasing tendency and starts increasing again (where
the “best” stripped vertical line is placed). There are other techniques to reduce overfitting
known as regularizers based on input noise [7, 102, 21] or weight noise [132, 96].

Though most of the performance of ANNs relies on learnable parameters (such as layers’
weights), there are other parameters that can be set manually to improve the model’s per-
formance, also known as hyperparameters. Some hyperparameters could be the number
of hidden layers, the number of hidden units per layer, the learning rate, among others.

Lastly, it is also important to understand how the network input is represented. When
we mention the input representation, we refer to the representation of the information
required to predict the outputs, such as the input vector or the network weights. One pro-
cedure is input standardisation, which consists of normalizing the components of the input
vectors to have mean 0 and standard deviation 1 over the training set. This standardization
does not alter the information but helps to improve performance by limiting the values of
the input vector to a more suitable range for a standard activation function [106]. Note that
the validation set and test set have to be standardised using the same distribution used for
the training set.

Another procedure is weight initialisation, which helps gradient descent to “break sym-
metry” between units [106] and avoid training divergence. Weight initialisation then is to
initialise weights with either a random distribution in the range of small values or a Gaussian
distribution with mean 0 and standard deviation 0.1.

127

After reviewing the fundamental concepts needed to understand how neural networks are
structured and trained, we will review two neural networks architectures used in this work:
Recurrent Neural Networks and Convolutional Neural Networks.

A.2. Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a generalization of traditional feedforward Neural
Networks that allows cyclical connections [72]. While MLPs can only map from input to
output vectors, RNNs can map the entire history of previous inputs to an output. Hence,
RNN connections allow the network to have “memory” of previous inputs, thus influencing
the network output. Furthermore, RNNs are more fit for tasks involving sequence data, such
as text or audio. An example of a RNN architecture can be seen in Figure A.3.

Figure A.3: Recurrent Neural Network architecture example [72] .

A standard RNN computes the forward pass the same way as an MLP with a single
hidden layer, with the difference that the activations arrive at the hidden layer from both the
current external input and the hidden layer activations from the previous time step. Given a
sequence of inputs (x1, . . . , xT), with T the input length, the forward pass for an RNN with
I input units and H hidden units is computed using the following formula:

ath =
I∑

i=1

wih x
t
i +

H∑
h′=1

wh′h b
t−1
h′ (A.6)

where xti denotes the value of input i, atj is the network input to unit j, and btj is the
activation unit of unit j, all three at time t. Then, the non-linearity h is applied the same
way as for an MLP, where functions such as the sigmoid function or softmax function are
again a common choice:

bth = θh(a
t
h) (A.7)

128

The entire learning process for RNNs is then summarized as a recursive application of
the Equations A.6 and A.7, starting at t = 1. Since initial values b0i are needed, they can be
initialized using the same weight initialization methods mentioned above. The output units
ak can be calculated at the same way as the hidden activations:

atk =
H∑
h=1

whk b
t
h (A.8)

Then, the final activation function also depends on the task involved. For connection
temporal classification (CTC) tasks, such as sequence labeling or translation, it is common
to use the softmax function [74]. The CTC loss function is used, that is defined as the
negative log probability of correctly labelling all examples in the training set.

The backward pass can be performed using a backpropagation through time (BPTT)
algorithm [187, 186], which is an algorithm based on the standard backpropagation process
but adapted to RNNs. The BPTT algorithm also consists of a repeated application of the
chain rule, with the difference that, aside from the output layer, the loss function also de-
pends on the activation of the hidden layer through its influence on the hidden layer at the
next timestep. The derivatives can be calculated using the same procedure described in the
Network Training subsectionA.1.2, but taking into consideration that the same weights are
being reused at every timestep.

Since the classical RNN architecture only looks to past information, the Bidirectional
Recurrent Neural Network (BRNN) was proposed to also include future context [158].
The BRNN’s structure consists of two separate recurrent hidden layers, both connected to
the same output layer. This idea allows a forwards and backwards training sequence, where
the layer that performs the backward training receives the input sequence in the opposite
direction. The output layer is not updated until both hidden layers have processed the entire
input sequence.

A.2.1. Long Short-Term Memory

Though RNNs work well with short sentences, their performance decreases with long sen-
tences that involve long term dependencies due to the vanishing gradient problem [87, 86],
which occurs when the influence of the given input on the hidden layer (and therefore on the
network output), either decays or explodes exponentially through the recurrent connections.
In order to address this issue, the Long Short-Term Memory (LSTM) model [87] was
proposed. The LSTM model allows models to perform well on tasks which require long range
temporal dependencies, such as Sequence Labeling [93, 117], Machine Translation [190] or
Summarization [119]. As per RNNs, the LSTM also has a bidirectional variant, also known
as BiLSTM [76, 32, 172].

129

An LSTM network is similar to a standard RNN, except that the summations units in
the hidden layer are replaced by memory blocks, as shown in Figure A.4. This structure
allows the memory cells to store and access information over long periods of time, thereby
reducing the effects of the vanishing gradient problem.

Figure A.4: LSTM memory block with one cell [72].

The following equations presented below are the formulas used to perform the forward
pass evaluation over an LSTM with a single memory block for a timestep t. For multiple
blocks the computations are repeated for each block. The values of wij, atj and btj have the
same definition used before.

First, the Input Gates, denoted as atι A.9 and btι A.10. The number of inputs is denoted
by I, the number of cells in the hidden layer is H and the number of memory cells is C.
The gate activation function f most commonly used is the sigmoid function, so the gate
activations are between 0 (gate closed) and 1 (gate open). The weight wcι represents the
peephole weight from cell c to the input gate. The state of the cell c at time t is denoted as
stc, which is calculated using Equation A.14.

atι =
I∑

i=1

wiι x
t
i +

H∑
h=1

whι b
t−1
h +

C∑
c=1

wcι s
t−1
c (A.9)

btι = f(atι) (A.10)

Then, the Forget Gates, denoted as atφ A.11 and btφ A.12. The weight wcφ represents the
peephole weight from cell c to the forget gate. Besides that, other symbols are equivalent to
those mentioned for the input gate.

130

atφ =
I∑

i=1

wiφ x
t
i +

H∑
h=1

whφ b
t−1
h +

C∑
c=1

wcφ s
t−1
c (A.11)

btφ = f(atφ) (A.12)

The Cells, denoted as atc A.13 and stc A.14. The cell input activation function g is usually
hyperbolic tangent or sigmoid.

atc =
I∑

i=1

wic x
t
i +

H∑
h=1

whc b
t−1
h (A.13)

stc = btφ s
t−1
c + btι g(atc) (A.14)

Next, the Outputs Gates, denoted as atω A.15 and btω A.16. The weight wcω represent
the peephole w eight from cell c to the output gate.

atω =
I∑

i=1

wiω x
t
i +

H∑
h=1

whω b
t−1
h +

C∑
c=1

wcω s
t−1
c (A.15)

btω = f(atω) (A.16)

Finally, the Cell Outputs, denoted as btc A.17. The cells outputs btc are the only ones
connected to the other blocks in the layer. The index h is used to refer to cell outputs from
other blocks in the hidden layer, if they exist. As per g, the output activation function h is
usually hyperbolic tangent or sigmoid, though sometimes the identity function can be used.

btc = btω f(stc) (A.17)

A.3. Convolutional Neural Networks
The creation of Convolutional Neural Networks (CNNs) responds to the need to

process certain types of data: images [136]. Traditional ANNs do not perform well when
processing images since its architecture does not properly support the computational com-
plexity that involves processing large images as input. Whereas a 32×32 image will be no
problem to a traditional ANN, since it will require only 1024 parameters for a single neuron,
images tend to have more resolution. On a higher scale, an image of 1024×1024 will instead
require 1,048,576 parameters, which is a substantial increase. Moreover, if we consider co-
lored images (RGB), a 1024×1024 RGB image would require 3,145,728 parameters. There

131

is then a noticeable drawback of using standard feed-forward models where nodes are often
connected to each node from the previous layer.

Convolutional Neural Networks share many similarities with standard ANNs in the way
that both are composed of a set of neurons that are capable of learning, where each neuron
receives an input and performs many operations, which commonly is a scalar product followed
by an activation function. The difference resides in that CNNs are based on the idea that
the input is shaped as an image. This idea allows the CNN architecture to adapt to this
specific type of data. Then, a CNN architecture is built using three different types of layers:
convolutional layers, pooling layers and fully-connected layers (same layers used in traditional
ANNs). Additionally, each layer is organised into three dimensions: the spatial dimension
(width and height) and the number of channels (also known as depth, which is not the same
as the number of layers). An example of a CNN architecture for pattern image classification
is shown in Figure A.5.

Figure A.5: Convolutional Neural Network for pattern image classification [136].

A.3.1. Convolutional layer

A convolution layer is the central component of CNNs, which determines the output
of neurons using calculations based on local regions of the input. This type of layer is based
on learnable kernels, which define local convolution operations over the input vector. A
convolution consists of the scalar product for each value in a kernel of dimension M×N over
a local region with the same size as the kernel used:

(X ∗ w)i,j =
M∑
m=1

N∑
n=1

Xm,n · wi−m,j−n (A.18)

For example, in Figure A.6 the convolution is being applied over a 3×3 pooled vector,
which is the size of the kernel w, that is, the local region of the entire input vector X. Though
these kernels usually have a small spatial dimensionality, they are spread along the whole
input vector. Besides kernel dimension, an application of padding over the input vector is

132

also possible, which is the process of padding the border of the input with zeros. Padding
controls both the dimensionality of the output volumes and gives more relevance to the
input borders. Lastly, the stride is the amount of spaces the kernel is moved between each
convolution. By setting a stride greater than 1, it is possible to reduce the amount of overlap
and thus reduce the dimension of the activation output.

Figure A.6: Convolution operation example [136].

Let N be the size of a input vector of size N×N, F the kernel F×F dimension, P the
padding size, and S the stride value; the final dimension of the output volume will be⌊
N−F+2P

S
+ 1
⌋
. Note that, in the same way an image can be represented in 3 dimensions, the

kernel can be extended to a third dimension by increasing the number of channels, thus
giving control over the output depth of the convolutional layer. The number of channels,
stride and padding are hyperparameters that can be optimized.

Kernel values are the trainable parameters which a CNN can tune through the same
type of learning process ANNs perform. The composition of convolutional layers allows to
reduce the dimensionality of a Neural Network in terms of learnable parameters, based on
the assumption of parameter sharing. This assumption says that “if one region is useful to
compute at a set spatial region, then it is likely to be useful in another region”. The constraints
of each activation within the output volume to the same weights and bias means a significant
decrease in the number of parameters used in a convolution layer. Then, the backward pass
for each neuron in the output represents the overall gradient across channels, where only a
single set of weights is updated.

After the application of the convolution, an activation function is applied over the output
volume. The most common choice is the rectified linear unit (ReLu) which is an elementwise
function that given a certain threshold α will set all values less than α to 0 .

A.3.2. Pooling layer

A pooling layer aims to reduce the volume of an input representation with the purposes
of reducing the computational complexity of the model. After each activation from a convo-
lutional layer, a pooling layer can be applied to scale its dimensionality through a reducing
function. The most common type of pooling is the max-pooling layer, which is a kernel that
applies a MAX reduction on a local region as per a convolutional kernel. Other examples are

133

average pooling, or general pooling that applies average reduction and L1/L2 normalization
respectively.

Though pooling layers also include settings such as kernel size, stride or number of chan-
nels, they do not add learnable parameters. However, they do influence the backward pass to
calculate the gradients. Lastly, it is recommended to keep a low stride and kernel size since
its application could negatively affect performance if large values are used.

A.3.3. Common architectures

As mentioned before, a CNN architecture is commonly built with an input layer, which
receives the values of the image, followed by various stacked convolutional layers, each one
followed by pooling layers, and a final stack of fully-connected layers. However, defining
exactly the amount of layers to use is not a simple task. In fact, most of the literature is
based on standard architectures that have shown good results on certain image processing
tasks.

Among the most popular architectures, ImageNet [103] is a Deep Convolutional Network
with five convolutional layers, some followed by max-pooling layers, followed by two fully-
connected layers. Another example is ResNet [83], which includes residual connections
that aim to reduce the vanishing gradient problem that a very dense convolutional network
can suffer. The main principle of residual connections is to create connections between non-
adjacent layers that skip a certain amount of layers.

134

Appendix B

Question Answering Dataset

We provide more details on the data used for the training and validation of our system.

B.1. Normalized Dataset Format

As mentioned in the Experimental Design chapter 4, we proposed a dataset format so the
process of generating the Query Template dataset and the Sequence Labeling datasets could
be simplified. This normalized format is also used for the other test datasets (QALD-7 and
WikiSPARQL). In Listing B.1 we can see an example of what information each case contains:

"question_id": 30226,
"natural_language_question": "Did Alexander Hamilton practice law?",
"query_answer": [

{
"query_id": 0,
"sparql_query":

"ASK WHERE { wd:Q178903 wdt:P106 wd:Q40348 }",
"entities": [

{"label": "Alexander Hamilton", "entity": "wd:Q178903"},
{"label": "lawyer", "entity": "wd:Q40348"}

],
"slots": [

{"slot": "<sbj_1>", "label": "Alexander Hamilton"},
{"slot": "<obj_1>", "label": "lawyer"}

],
"sparql_template": "ASK WHERE { <sbj_1> wdt:P106 <obj_1> }"

}
]

Listing B.1: Example of one LC-QuAD 2 case following our proposed normalized format.

135

• Question ID: the unique identifier of the question; for LC-QuAD 2 we decided to treat
each verbalized and paraphrased version of the normalized question as a separate case.
Verbalized cases are then numbered from 0 to 30, 225, and paraphrased cases from
30, 226 to 60, 451.

• Natural Language Question: the question text (verbalized or paraphrased version).

• Query Answer: a list of possible SPARQL query valid responses. We allow more than
one possible query since for each question there are many ways to reach the expected
answer (for example, “What is the biggest country?” may refer to population, area, etc.;
however in this work we only have one SPARQL query per case). Each query answer case
has the following fields:

– Query ID: unique identifier to identify query answers for the same question.

– SPARQL query: the SPARQL query string.

– Entities: list of expected annotations of the entities being used in the SPARQL
query answer. Each annotation contains the entity URL and the label of the
question associated with that entity.

– Slots: list of expected slots to use for the Slot Filling system. Each slot contains
the associated label in the question and its corresponding placeholder in the Query
Template.

– SPARQL Template: the Query Template derived from the SPARQL query.

B.2. LC-QuAD 2 base templates

In the Results chapter 5 we displayed an analysis based on the 22 base templates used
for building the LC-QuAD 2 dataset [47]. According to each base template structure, we
established which cases are considered complex cases, which allows us to estimate the per-
centage of complex questions this dataset contains. A base template is considered a complex
case if it includes any of the following operations: (1) counting, (2) filtering, (3) ordering,
(4) use of strings or numbers,(5) use of property statements, or (6) returns more than one
variable.

Next, we present a brief overview of each one of these base templates along with a repre-
sentative example from the dataset:

1. ask_one_fact: ASK query with one query triple.

• Example: Did Alexander Hamilton practice law?

136

• Query:

ASK WHERE {
wd:Q178903 wdt:P106 wd:Q40348

}

2. ask_one_fact_with_filter: ASK query with one query triple and a numeric filter
operation (either less than, equal, or greater than).

• Example: Does the standard molar entropy of silver equal 34.08?

• Query:

ASK WHERE {
wd:Q1090 wdt:P3071 ?obj filter(?obj = 34.08)

}

3. ask_two_facts: ASK query with two query triples. Note that the same subject and
property are used in both query triples.

• Example: Was William Henry Harrison both a United States senator and Gover-
nor of Indiana?

• Query:

ASK WHERE {
wd:Q11869 wdt:P39 wd:Q16147601 .
wd:Q11869 wdt:P39 wd:Q13217683

}

4. count_one_fact_object: SELECT query with COUNT operation from one query
triple. Count the number of objects that match the query triple.

• Example: How many Latin conjugations are there?

• Query:

SELECT (COUNT(?obj) AS ?value) WHERE {
wd:Q397 wdt:P5206 ?obj

}

5. count_one_fact_subject: SELECT query with COUNT operation from one query
triple. Count the number of subjects that match the query triple.

• Example: What is the number of spore print colors for olive?

137

• Query:

SELECT (COUNT(?sbj) AS ?value) WHERE {
?sbj wdt:P787 wd:Q864152

}

6. rank_instance_of_type_one_fact: SELECT query with two query triples with
sorting and limit. The first query triple always uses the property instance of (wdt:P31).
Ordering might vary (ascending or descending).

• Example: What battery power station has the highest amount of energy storage
capacity?

• Query:

SELECT ?ent WHERE {
?ent wdt:P31 wd:Q810924 .
?ent wdt:P4140 ?obj

} ORDER BY DESC(?obj) LIMIT 5

7. rank_max_instance_of_type_two_facts: SELECT query with three query tri-
ples using sorting and limit. The first query triple always uses the property instance of
(wdt:P31). Descending ordering is used to get the maximum value.

• Example: What is the largest village in Muchinigi Puttu?

• Query:

SELECT ?ent WHERE {
?ent wdt:P31 wd:Q532 .
?ent wdt:P2046 ?obj .
?ent wdt:P131 wd:Q11107378

} ORDER BY DESC(?obj) LIMIT 5

8. rank_min_instance_of_type_two_facts: Same as the previous base template
but with ascending ordering to get the minimum value.

• Example: What is the name of a manned spacecraft in low Earth orbit with sma-
llest periapsis?

• Query:

138

SELECT ?ent WHERE {
?ent wdt:P31 wd:Q7217761 .
?ent wdt:P2244 ?obj .
?ent wdt:P522 wd:Q663611

} ORDER BY ASC(?obj) LIMIT 5

9. select_object_instance_of_type: SELECT query with two query triples. The
first query triple always uses the property instance of (wdt:P31). Return the entities
that are the object of the first query triple.

• Example: What is the prefecture of Hiroshima in Japan?

• Query:

SELECT DISTINCT ?obj WHERE {
wd:Q34664 wdt:P131 ?obj .
?obj wdt:P31 wd:Q50337

}

10. select_object_using_one_statement_property: SELECT query with three query
triples. Uses one property statement and one property qualifier.

• Example: When did Louis XVIII of France, husband of Marie Josephine of Savoy,
die?

• Query:

SELECT ?value WHERE {
wd:Q7750 p:P26 ?s .
?s ps:P26 wd:Q231844 .
?s pq:P582 ?value

}

11. select_one_fact_object: SELECT query with one query triple. Return the entities
that are the subject of that query triple.

• Example: Which are the characters for La Malinche?

• Query:

SELECT DISTINCT ?answer WHERE {
?answer wdt:P674 wd:Q230314

}

12. select_one_fact_subject: SELECT query with one query triple. Return the enti-

139

ties that are the object of that query triple.

• Example: Which is the electric charge for antihydrogen?

• Query:

SELECT DISTINCT ?answer WHERE {
wd:Q216121 wdt:P2200 ?answer

}

13. select_one_qualifier_value_and_object_using_one_statement_property:
SELECT query with three query triples. Uses one property statement and one property
qualifier. Only one entity used for the first query triple.

• Example: What grant did Konrad Lorenz win, and who won it with him?

• Query:

SELECT ?value1 ?obj WHERE {
wd:Q78496 p:P166 ?s .
?s ps:P166 ?obj .
?s pq:P1706 ?value1 .

}

14. select_one_qualifier_value_using_one_statement_property: SELECT query
with three query triples. Uses one property statement and one property qualifier. Two
entities used for building each query, where the second entity was used as the object
of the property qualifier triple.

• Example: What role did Theodore Roosevelt occupy after William McKinley?

• Query:

SELECT ?obj WHERE {
wd:Q33866 p:P39 ?s .
?s ps:P39 ?obj .
?s pq:P1365 wd:Q35041

}

15. select_subject_instance_of_type: SELECT query with two query triples. The
first query triple always uses the property instance of (wdt:P31). Return the entities
that are the subject of the first query triple.

• Example: Which irresistible illness is caused by Staphylococcus aureus?

140

• Query:

SELECT DISTINCT ?sbj WHERE {
?sbj wdt:P828 wd:Q188121 .
?sbj wdt:P31 wd:Q18123741

}

16. select_subject_instance_of_type_contains_word: SELECT query with two
query triples. The first query triple always uses the property instance of (wdt:P31).
The second query triple also includes a filter over the string value to check whether the
target word is contained in this string (includes filtering for the English language).

• Example: What is the title of a human that contains the word vitellius in their
name.

• Query:

SELECT DISTINCT ?sbj ?sbj_label WHERE {
?sbj wdt:P31 wd:Q5 .
?sbj rdfs:label ?sbj_label .
FILTER(CONTAINS(lcase(?sbj_label), 'vitellius')) .
FILTER (lang(?sbj_label) = 'en')

} LIMIT 25

17. select_subject_instance_of_type_starts_with: SELECT query with two query
triples. The first query triple always uses the property instance of (wdt:P31). The se-
cond query triples also includes a filtering over the string value to check whether this
string starts with a target letter (including filtering for the English language).

• Example: What are the video games which start with the letter W?

• Query:

SELECT DISTINCT ?sbj ?sbj_label WHERE {
?sbj wdt:P31 wd:Q7058673 .
?sbj rdfs:label ?sbj_label .
FILTER(STRSTARTS(lcase(?sbj_label), 'w')) .
FILTER (lang(?sbj_label) = 'en')

} LIMIT 25

18. select_two_answers: SELECT query with two query triples. Return two variables
(also known as double intention), with each one being the object of each query triple.

• Example: Where was Jane Austen born and where did she die?

141

• Query:

SELECT ?ans_1 ?ans_2 WHERE {
wd:Q36322 wdt:P19 ?ans_1 .
wd:Q36322 wdt:P20 ?ans_2

}

19. select_two_facts_left_subject: SELECT query with two query triples.

• Example: Who were the creators of The Late Awesome Planet Soil?

• Query:

SELECT ?answer WHERE {
wd:Q22081649 wdt:P144 ?obj .
?obj wdt:P50 ?answer

}

20. select_two_facts_right_subject: SELECT query with two query triples. Similar
to the previous template (in fact we could not find any difference between both cases).

• Example: What time zone is Arizona State University in?

• Query:

SELECT ?answer WHERE {
wd:Q670897 wdt:P17 ?obj .
?obj wdt:P421 ?answer

}

21. select_two_facts_subject_object: SELECT query with two query triples. Uses
one entity in the subject of the first query triple, and another one in the object of the
second query triple.

• Example: What lake of Sao Jorge island has the tributary Curoca River?

• Query:

SELECT ?answer WHERE {
wd:Q743362 wdt:P206 ?answer .
?answer wdt:P974 wd:Q10361834

}

22. select_two_qualifier_values_using_one_statement_property: SELECT query
with four query triples. Uses one property statement and two property qualifiers. Re-

142

turn the two object values of each query triple using a property qualifier.

• Example: Give me the year and name of the person with whom Bob Barker shared
the MTV Movie Award for Best Fight.

• Query:

SELECT ?value1 ?value2 WHERE {
wd:Q381178 p:P166 ?s .
?s ps:P166 wd:Q734036 .
?s pq:P585 ?value1 .
?s pq:P1706 ?value2

}

143

	Introduction
	Motivation
	Hypothesis
	Objectives
	Methodology
	Contributions
	Work Structure

	Theoretical Framework
	Semantic Web
	Web of Data
	Resource Description Framework
	SPARQL Query Language
	Linked Open Data Cloud
	Wikidata

	Information Extraction
	Information Extraction methods with Semantic Web technologies
	Entity Linking
	DBpedia Spotlight
	AIDA
	TAGME
	OpenTapioca

	Sequence Labeling
	Contextual String Embeddings
	Language Models
	Extracting Flair Embeddings

	Sequence Labeling Architecture

	Semantic Parsing
	Sequence to Sequence models
	Convolutional Sequence to Sequence Model

	Natural Language to SPARQL
	Neural Machine Translation

	Question Answering over Knowledge Graphs
	KGQA approaches
	Information Retrieval-based methods
	Neural Semantic Parsing-based methods

	Main Challenges
	Benchmark & Datasets
	QALD
	LC-QuAD 1
	DBNQA
	LC-QuAD 2

	System Overview
	Question Answering general overview
	Query Generation Module
	Query Generation pipeline
	Query Encoding
	Fairseq Model

	Entity Linking Module
	Entity Linking pipeline
	Individual Entity Linking systems
	Ensemble Entity Linking system
	Precision Priority system
	Voting system
	Other optimizations

	Slot Filling Module
	Slot Filling pipeline
	Sequence Tagger model
	Slot Filling method

	Experimental Design
	Question Answering general overview
	Question Answering Dataset
	LC-QuAD 2 Dataset Cleaning
	Query Template Dataset
	Sequence Labeling Dataset
	Final Dataset Format

	System Implementation
	Experiments
	Datasets
	Query Template Generation
	Entity Linking
	Sequence Labeling and Slot Filling
	Question Answering over Knowledge Graphs

	Results
	Query Template generation
	Entity Linking
	Sequence Labeling and Slot Filling
	SPARQL Query Generation
	Question Answering over Knowledge Graphs

	Conclusions
	Relevance and Contributions
	Future work

	Bibliography
	Appendix Neural Networks overview
	Neural Networks Fundamentals
	Multilayer Perceptrons
	Network Training

	Recurrent Neural Networks
	Long Short-Term Memory

	Convolutional Neural Networks
	Convolutional layer
	Pooling layer
	Common architectures

	Appendix Question Answering Dataset
	Normalized Dataset Format
	LC-QuAD 2 base templates

