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Versión en español

En este trabajo de tesis estudiamos los grupos de automor�smos y de simetrías extendidas de
sistemas dinámicos simbólicos (en particular, espacios de shift) que presentan una estructura
jerárquica de algún tipo. Esto incluye shifts de tipo �nito aperiódicos (como el shift de
Robinson), shifts sustitutivos multidimensionales y shifts de interés en la teoría de números
como el shift libre de cuadrados, que son de�nidos a partir de una secuencia creciente de
reticulados. Estos grupos se estudian desde un punto de vista esencialmente geométrico (en
el caso multidimensional), buscando caracterizaciones de éstos en cada contexto mediante
herramientas del álgebra, el análisis y la combinatoria.

English version

In this thesis work we study the automorphism and extended symmetry groups of symbolic
dynamical systems (in particular, shift spaces), focusing on those that exhibit some kind of
hierarchical structure. They include aperiodic shifts of �nite type (like the Robinson shift),
multidimensional substitutive subshifts and shift spaces of number-theoretical interest, such
as the square-free shift, which are de�ned by an increasing sequence of lattices. These groups
are studied from an essentially geometric viewpoint (in the multidimensional case), looking
for characterizations in each context via tools from algebra, analysis and combinatorics.
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You are �lled with
determination.

A Vásquez Castillo
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Introduction

Symbolic dynamical systems, which include subshifts, odometers, Bratteli-Vershik systems,
and many others, are a subject of great interest in the literature, both of interest by them-
selves (see, e.g., applications to coding and information theory, Markov chains, etc.), and as
representations of other dynamical systems (e.g. the relationship between Sturmian subshifts
and circle rotations, Markov partitions for dynamical systems on the interval, etc.). Thus, it is
an interesting question to determine whether there exist mathematical objects (invariants)
that allow us to distinguish between these kinds of subshifts. Another related, interesting
question is to see if such an object re�ects some aspect of the internal structure of the sym-
bolic space, in an analogous way as how, e.g. homology groups re�ect properties about the
shape of a surface, such as its Euler characteristic, its �number of holes� and so on.

One of the most studied algebraic invariants for symbolic systems (and topological dynamical
systems in general) is the automorphism group Aut(X,G), which consists of the set of
all bijections of the phase space to itself which preserve the underlying group action. By this
de�nition, elements from this group must be maps that preserve other dynamical features of
the phase space, e.g. automorphisms map asymptotic pairs to asymptotic pairs, periodic or
transitive orbits to periodic or transitive orbits, isolated points to isolated points and so on.

In our main case of interest, the dynamical system under scrutiny is a shift space, and the
corresponding group action is the action by translations (the shift action σ) where every
symbol is moved in a �xed direction from its original position. By this nature, automorphism
groups are thus described in a combinatorial way, with the well-known Curtis�Hedlund�
Lyndon theorem being a central part of the theory. Thus, the study of automorphisms is a
con�uence of dynamics, combinatorics, and algebra, and one may expect that the group under
scrutiny re�ects some properties of the shift space: �simple� subshifts should have �small�
automorphism groups (in a sense given by its algebraic structure), while �complicated� shift
spaces should result in more complex groups.

While the automorphism groups of several examples of shift spaces have been thoroughly
studied, their analysis is in general complicated, see e.g. the characterization of this group
for mixing shifts (and, in particular, the full shift) by Boyle, Lind and Rudolph [19, 62].
Determining whether the automorphism groups of {0, 1}Z and {0, 1, 2}Z are isomorphic or
not is still an open problem; this is an example of how this problem is more nuanced than
expected. Another example comes from number theory: the two-dimensional shift of visible
points, which is generated by the indicator function of the set V ⊂ Z2 of all points (m,n) with
integer coordinates satisfying gcd(m,n) = 1. This shift space, which is discussed in Chapter 6
and has been thoroughly studied before (see e.g. [3] and references therein), has several
interesting properties, among them one of the most notorious (for our current purposes)
being that it has positive entropy, which intuitively means it is a �complicated� subshift.
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However, its automorphism group is actually as close to trivial as possible, being comprised
only of the maps induced by the Z2-group action itself. This shows that �complicatedness�
does not always translate to the automorphism group. Furthermore, we may interpret this
as a statement about the structure of the points of the shift space itself, and consequently of
the set V : there are no locally-de�ned transformations that preserve the local structure of V
beside translations.

However, it is not hard to see that there are many other transformations one may apply to
the set V that preserve its structure. For instance, if we think of V as a set of points in
the plane, we see that rotations by multiples of 1

2
π and re�ections along the coordinate axes

leave the set as-is; furthermore, it is not hard to prove that for any invertible integral matrix
A ∈ GL2(Z), we have A · V = V . One may extend this line of reasoning to the associated
shift space XV itself: if we think of the elements of XV as indicator functions 1W of some
W ⊂ Z2, we have that 1W ∈ XV if, and only if, 1A·W ∈ XV . It is, thus, easy to wonder whether
there is some mathematical object which captures this additional structure, for which the
automorphism group has proven itself inadequate.

There are several other algebraic invariants one may look upon to, such as the full group [[σ]],
or the set of all homeomorphisms XV → XV , which may re�ect this structure. However, most
of them may be too broad or hard to handle, or lose some other information about the shift
space, e.g., by not being as closely related to its dynamical properties such as asymptotic
pairs, minimal equicontinuous factor and so on. Thus, it might be a good idea to limit our
scope to something that behaves close enough to automorphisms, so as to preserve structures
in a similar way. For this, we examine what automorphisms are in an algebraic sense, for a
Zd-shift space (similar considerations apply, of course, for shifts de�ned over more general
group and more diverse dynamical systems), where their structure is given by the equality:

f ∈ Aut(X,Zd) ⇐⇒ (∀n ∈ Zd) : f ◦ σn = σn ◦ f, or equivalently f ◦ σn ◦ f−1 = σn,

which, in algebraic terms, means that f belongs to the centralizer of the subgroup 〈σ〉 :=
{σn : n ∈ Zd} in the set Homeo(X) of all homeomorphisms of the space X, that is, the set of
all homeomorphisms which commute with every shift map σn. One may relax this condition
so as to apply to the whole set 〈σ〉 instead of to individual elements, that is, f ◦〈σ〉◦f−1 = 〈σ〉.
That is, we are looking for homeomorphisms f : X → X that satisfy the weaker condition:

(∀n ∈ Zd)(∃m ∈ Zd) : f ◦ σn = σm ◦ f. (1)

While this condition is weaker than the one de�ning an automorphism, it is still strong
enough to preserve characteristic features of a dynamical system, like periodic points and
asymptotic pairs. We call the set of all these mappings the extended symmetry group
Sym(X,Zd) of the space X, and this will be the main subject of study along the publications
that compose this work. As we can easily verify, the previous de�nition is equivalent to
saying that Sym(X,Zd) is the normalizer of the set 〈σ〉, and is thus the largest subgroup
of Homeo(X) where 〈σ〉 is normal.

It can be proven that Aut(X,Zd) is itself normal in Sym(X,Zd), and that the relation between
n and m in (1) is linear, that is, there is some invertible integral matrix A ∈ GLd(Z),
depending only on f and not on n, such that m = An. This shows that the quotient
Sym(X,Zd)/Aut(X,Zd) is some subgroup of GLd(Z). The interesting part is that we can give
a geometrical interpretation of this quotient, as symmetries in a geometrical sense (isometries,
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a�ne transformations, etc.) visible in the points of the subshift. For instance, going back to
our example of the set of visible points, given some A ∈ GLd(Z), the map ΦA : 1W 7→ 1A·W
is always an extended symmetry under this de�nition, as it can very easily veri�ed to be
continuous, with inverse ΦA−1 = Φ−1

A and satisfying ΦA ◦ σn = σAn ◦ ΦA. Thus, this new
group captures all these geometric symmetries that were �missed� by the usual automorphism
group. A similar situation happens with the Robinson tiling, as seen in Chapter 4, where
extended symmetries corresponding to rotations by multiples of 1

2
π and re�ections along

the coordinate axes appear; furthermore, it may be proven that, up to a shift, no other
automorphisms or extended symmetries appear, and thus this group is entirely dictated by
the geometric structure imposed by the grid of interlocked squares characteristic of this shift
space.

This work has as its goal to study extended symmetries from this geometric viewpoint, while
also delving in the algebraic and dynamical aspects of the study of this group. It is divided
as follows:

� We summarize the prerrequisites on each topic in Chapters 1 (group theory), 2 (ring
theory and algebraic number theory) and 3 (symbolic dynamics). This is not intended
as a thorough exposition, but as an accessible quick reference or �thesaurus�. While
Chapters 1 and 3 are relevant for this whole work, Chapter 1 has been written with
the topics dealt with in Chapter 5 in mind �rst and foremost. Similarly, Chapter 2 is
mostly relevant for the topics discussed in Chapter 6, which diverges somewhat from
the exposition on the previous two chapters.

� Chapters 4 and 5 deal with automorphisms and extended symmetries in bijective subs-
titutions.

� Chapter 4 is an adaptation of Extended symmetry groups for multidimensional
subshifts with hierarchical structure [22], and deals with the multidimensional case
from a geometrical and combinatorial viewpoint; it also applies similar techniques
to the study of the Robinson tiling.

� Chapter 5, which is a collaboration with Daniel Luz and Neil Mañibo from Uni-
versität Bielefeld, corresponds to a version of Admissible Reversing and Exten-
ded Symmetries for Bijective Substitutions [23] with some additional commentary,
comments both on the one- and multidimensional situations, but pays more atten-
tion to the algebraic aspects of these groups, while delving into some algorithms
and criteria to determine the group Sym(Xθ,Z

d) from the underlying substitution.

� Chapter 6 is a commented version of Number-theoretic positive entropy shifts with
small centraliser and large normaliser [4], a collaboration with Michael Baake, Chris-
tian Huck, Marius Lema«czyk and Andreas Nickel. This deals with shifts of number-
theoretical origin, particularly k-free and B-free shift spaces, and analogous subshifts
de�ned via factorization properties in a ring of algebraic integers, which are studied
using the extended symmetry group as a main tool, and connections between this group
and the underlying ring's divisibility properties are studied.
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Part I

Preliminaries
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Chapter 1

Elementary group theory

This chapter intends to introduce the basics of group theory that will be required as back-
ground for this work. As this is intended as a basic reference only, most proofs are omitted
or given very brief overviews.

1.1. Basic notions

Although we assume the corresponding de�nitions to be known by the reader, we shall sum-
marize them below for quick reference. We direct the interested reader to any standard
reference book on abstract algebra, such as Lang [68], Hungerford [53] or Grilliet [48], or
alternatively specialized books on the subject such as Hall [49].

De�nition 1.1 A group is an ordered pair (G, ∗), where G is any set and ∗, the group
operation is a function1 G×G→ G, satisfying the following properties:

� Associativity: x ∗ (y ∗ z) = (x ∗ y) ∗ z.

� Neutral element: there exists a unique 1G ∈ G such that, for all x ∈ G, 1G ∗ x =
x ∗ 1G = x.

� Existence of inverses: for all x ∈ G, there exists a unique x−1 ∈ G such that
x ∗ x−1 = x−1 ∗ x = 1G.

If in addition the operation ∗ is commutative, i.e. x ∗ y = y ∗ x for all x, y, then we say that
G is an abelian group.

Examples of abelian groups include the integers (Z,+) with the operation of addition, the
nonzero real numbers with the usual multiplication (R \ {0}, ·) and p-adic groups, described
below. Nonabelian groups include the symmetric group on a set2 A, (SA, ◦), that consists
of all bijections from the set A to itself, and the general linear group GLd(R), which
consists of all invertible real d× d matrices, with the operation of matrix multiplication.

1As usual, we use in�x notation for the group operation, writing x∗y instead of ∗(x, y) or ∗xy. Furthermore,
if the group operation is deemed understood by context, we omit any speci�c symbol for it and just write xy
instead of x ∗ y.

2Usually, A = {1, 2, . . . , n}; in this case, we write Sn for the corresponding symmetric group.
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De�nition 1.2 Let G be a group and H ⊆ G any subset. We say that H is a subgroup of
G (symbolized3 as H ≤ G) if H is itself a group with the restriction of ∗ to H as a operation,
i.e. if it satis�es the following three properties:

� Closure: if x, y ∈ H, then x ∗ y ∈ H.

� Neutral element: 1G ∈ H.

� Closure of inverses: for all x ∈ H, the element x−1 is also in H.

If H ≤ G, then for any g ∈ G the following subset is called a left coset of H:

g ∗H = {g ∗ h : h ∈ H}.

Right cosets H ∗ g are de�ned similarly. If for all g ∈ G the equality g ∗ H = H ∗ g holds,
we say that H is a normal subgroup of G, written H E G. The set of all left (resp. right)
cosets of a subgroup H ≤ G is written as G/H (resp., H\G); when H is normal, both of
these sets are equal.

For �nite groups, we usually use the term order for its cardinality |G|. If H is a subgroup of
G, its index [G : H] is the cardinality of the set G/H (or H\G, as both sets have the same
cardinality).

A very simple criterion to determine which subsets can be subgroups is the following:

Theorem 1.3 (Lagrange) If H is a subgroup of G, then |H| divides |G|.

Corollary 1.4 Let G be a �nite group. For any g ∈ G, the equality g|G| = 1G holds.

The latest observation comes from the fact that H = {gn : n ∈ Z} is a subgroup of G,
implying that it is �nite and that gn = gn+|H| for all n. This |H| is also called the order of
the element g ∈ G and often written as ord(g), as it is the least positive n such that gn = 1G.

1.2. Group homomorphisms

We often want to compare di�erent groups. For instance, if (R+, ·) is the group of positive
real numbers under multiplication, we see that every positive real number x ∈ R+ can be
written as et for some t ∈ R, and this is a bijection between R and R+. Furthermore, using
exponentials allows us to describe multiplication more easily via the usual exponent law
et · es = et+s, converting multiplication into addition, which is a di�erent binary operation.
Thus, in a way, multiplication and addition are �the same�. To state this equivalence formally,
we need to introduce operation-preserving functions as a de�nition:

De�nition 1.5 Let (G, ·) and (H, ∗) be two groups. A group homomorphism (or just
group morphism) is a function f : G→ H that satis�es the identity:

(∀g, h ∈ G) : f(g · h) = f(g) ∗ f(h).

3As usual, we use H < G to symbolize �H ≤ G and H 6= G�. We use H / G for strict normal subgroups
as well. To keep consistency, we also use H ⊂ G for strict set inclusion, instead of alternative notations such
as H $ G.
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If f is injective, we say it is a monomorphism (often written as f : G ↪→ H), and similarly
we call an epijective homomorphism an epimorphism (and we use a two-headed arrow,
f : G � H). When f is a bijection, we call it an isomorphism and say (G, ·) and (H, ∗)
are isomorphic groups; in this case, we write (G, ·) ≡ (H, ∗).

We think of isomorphic groups as di�erent versions of the same �abstract group�, since every
property held by one of them is shared by the other. For instance, the group of the symmetries
of a triangle, D3, is isomorphic to the set of all permutations of the set {1, 2, 3}, S3.

Composition of group homomorphisms is once again an homomorphism, and, in particular,
it is easy to verify that the set of all isomorphisms of a group G to itself (that is, auto-
morphisms) is a group, called the automorphism group of G and denoted Aut(G).

Group morphisms de�ne some subgroups of interest both in their domain and codomain. We
shall be mainly interested in the following:

De�nition 1.6 Let f : G→ H be a group homomorphism. The kernel of f is the preimage
under f of 1H , that is:

ker(f) := f−1[{1H}]{g ∈ G : f(g) = 1H}.

The image of f is the set of all elements of H that are images of some g ∈ G under f , i.e.

im(f) := f [G] = {f(g) : g ∈ G}.

The kernel ker(f) is always a normal subgroup of G, with the property that f(g) = f(h) if
and only if gh−1 ∈ ker(f). The image is a subgroup of H, although not always normal. The
group homomorphism f is injective if and only if ker(f) = {1G}, and is surjective if and only
if im(f) = H.

1.3. Group actions

Usually groups are de�ned in terms of transformations of spaces or other objects, e.g. the
set of all homeomorphisms from a topological space X to itself forms a group, Homeo(X),
and the elements of this group have a very special relationship with the elements (points)
of the space X. Similarly, the group of d × d invertible matrices over a �eld K, GLd(K),
has an interesting relationship with the corresponding vector space Kd, dictated by matrix
multiplication; we brie�y detail the main aspects of this connection between abstract groups
and sets of transformations of spaces. The interested reader should consult the book by de
Neymet [32].

De�nition 1.7 Let G be a group and X be a set. A (left) group action of G on X is a
function ϕ : G×X → X that satis�es the following properties:

� ϕ(1G, x) = x, for every x ∈ X,

� ϕ(g, ϕ(h, x)) = ϕ(gh, x), for every g, h ∈ G, x ∈ X.

We write G
ϕ
y X to state that ϕ : G×X → X is a group action of G on X.
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We often write g · x instead of ϕ(g, x), and we write ϕg : X → X for the function ϕg(x) :=
ϕ(g, x). We note that, since ϕ1G = idX and ϕg ◦ ϕg−1 = ϕ1G = idX , every ϕg is a bijection
X → X and thus an element of the symmetric group SX . Thus, we may think of a group
action G

ϕ
y X as a group morphism ϕ̃ : G → SX . In particular, any subgroup of SX acts

naturally on the set X in an obvious way.

A group action G
ϕ
y X partitions the set X into �orbits�, which are subsets Y ⊆ X such

that every point from Y is �reachable� from any other point of Y via the group action. More
precisely:

De�nition 1.8 Let G
ϕ
y X be a group action. The orbit of a point x ∈ X is the following

set:
Orb(x) = G · x := {g · x : g ∈ G}.

Orbits are equivalence classes under the relation given by:

x ∼ϕ y ⇐⇒ (∃g ∈ G) : g · x = y,

and thus we write X/G for the set of all orbits. If |X/G| = 1 (i.e. for some, and thus all,
x ∈ X, we have Orb(x) = X), we say that the group action is transitive.

A fundamental domain for the group action ϕ is a subset D ⊆ X such that |D ∩ E| = 1
for all E ∈ X/G, that is, it is a set of representatives of the equivalence classes for ∼ϕ.

Since the set X often has some structure, it is common to introduce weaker versions of the
notion of transitivity. For example, if X is a topological space, we say that ϕ is topologically
transitive if some orbit Orb(x) is dense in X. Note that now it might be the case that not
every orbit is dense, and thus we also say that x is a transitive point; if every point is
transitive, we say that the action ϕ is minimal.

We can also give stronger notions of transitivity. For instance, since a group action is transitive
if, and only if, for every x, y ∈ X there exists some g ∈ G such that g · x = y, we may
instead check this property for several points simultaneously. Thus, a group action is doubly
transitive if for every four points x1 6= x2, y1 6= y2 ∈ X there exists some g ∈ G such that
g · xi = yi, i = 1, 2. This easily generalizes to n pairs of points.

A notion closely related to that of orbit is the following subgroup of G:

De�nition 1.9 Let G
ϕ
y X be a group action and x ∈ X any point. The stabilizer of x is

the following subgroup of G:

Stab(x) = Gx := {g ∈ G : g · x = x}.

The orbit and stabilizer relate to each other via the following well-known result:

Theorem 1.10 (Orbit-stabilizer theorem) Let G
ϕ
y X be a group action and x ∈ X be any

point. Then, the following equality holds:

|Orb(x)| = [G : Stab(X)].
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This is a particularly strong result in the case where the set X is �nite, or when all orbits
are �nite. It still holds true when X is in�nite, in the form of the cardinal equality |G| =
|Orb(x)| · |Stab(x)|, although, due to how cardinal arithmetic works, the end result may
appear �less interesting� in general.

Stabilizers appear often in connection with repetitive behavior and periodicity. A period of
a point x ∈ X is an element g ∈ Stab(x) \ {1G}. The following notions are closely related:

De�nition 1.11 A group action G
ϕ
y X is faithful if

⋂
x∈X Stab(x) = {1G}, i.e. if for

every g ∈ G \ {1G} there is some x ∈ X such that g · x 6= x. Similarly, ϕ is free if, for every
x ∈ X and g ∈ G \ {1G}, we have g · x 6= x.

Free group actions are always faithful. The latter property may be interpreted in terms of the
associated homomorphism ϕ̃ : G→ SX , which is injective if and only if the action is faithful.
Alternatively, one may say that a group action is faitful if the points from X do not all share
a common period.

As stated before, the set X may have some additional structure, and thus we may want to
impose some constraints on the group action ϕ in order to ensure a good interplay between
it and the structure of the set G. For instance, when X is a topological space, one would
like all mappings ϕg to be continuous, and, since ϕg−1 = ϕ−1

g , homeomorphisms of the space
X into itself. Similarly, we may think of group actions on the vertices or edges of a graph;
in such a case, we impose that adjacency must be preserved, i.e. if v1, v2 are two adjacent
vertices (or edges), then g · v1 and g · v2 must be adjacent as well. More complex examples
appear in several branches of mathematics.

One particularly interesting case is when X is itself a group; then, we request that every
ϕg is a group homomorphism (isomorphism) X → X, and say that G acts on X by
automorphisms; the notation gx instead of g · x is common in this context. For instance,
G acts on itself via inner automorphisms, via the group action de�ned by conjugation as
follows:

gh = ϕ(g, h) := ghg−1.

Any mapping of the form ϕg, in this case, is called an inner automorphism as well; the set of
all inner automorphisms is a subgroup of Aut(G), often written Inn(G). Any automorphism
of G not of this form is called an outer automorphism, and we write Out(G) for the
quotient group Aut(G)/ Inn(G) (see the de�nition below).

1.4. Group constructions

There exist several constructions that create new groups from known ones. We dedicate this
section to brie�y list the ones we are interested in for what follows.

1.4.1. Intersections, unions and generating sets

Since subgroups are closed under the group operation, if g1 and g2 both belong to two di�erent
subgroups H1, H2 ≤ G, then g1g2 belongs to both subgroups as well, and is thus in their
intersection. A similar reasoning for identity and inverse elements thus shows that H1 ∩H2

is also a subgroup of G. This immediately extends to arbitrary collections of subgroups:
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Proposition 1.12 Let {Hi}i∈I be a family of subgroups of G. Then H =
⋂
i∈I Hi is a

subgroup of G as well. Furthermore, if all Hi are normal subgroups of G, then H E G.

Unions of subgroups usually do not have this property (much less unions of arbitrary groups);
in fact, if H1 ∪ H2 is a subgroup of G, then H1 ≤ H2 or H2 ≤ H1. However, in some
circumstances the union of a speci�c kind of in�nite family of subgroups is a new subgroup:

Proposition 1.13 Let {Hi}∞i=0 be a denumerably in�nite family of groups that form an
ascending chain, i.e. H0 ≤ H1 ≤ H2 ≤ . . . . Then H =

⋃
i∈I Hi is a group. If all the Hi are

subgroups of a given group G, then H ≤ G.

Below, we shall mention other group constructions that generalize directed unions, and that
end up being very important for our purposes.

The fact that arbitrary intersections of subgroups are themselves subgroups allows us to
give answer to questions such as �which is the smallest subgroup (under inclusion) of G that
contains a given element g ∈ G?� The general de�nition is as follows:

De�nition 1.14 Let G be a group and S ⊆ G be any subset of G. The subgroup generated
by S is the smallest subgroup under inclusion that contains S, which equals:

〈S〉 :=
⋂

S⊆H≤G

H.

Similarly, the normal subgroup generated by S is the smallest normal subgroup that
contains S, equal to:

〈〈S〉〉 :=
⋂

S⊆HEG

H.

If G = 〈S〉 for some S ⊆ G, we say that S is a generating set for G, and we say that S is
irredundant if 〈T 〉 6= 〈S〉 for any strict subset T ⊂ S. The least cardinality of a generating
set for G is called the rank of the group G and written rank(G).

If G = 〈S〉, then every element of G may be written as a �nite product of elements of S
and their inverses. In particular, a group of rank 1 (i.e. generated by a single element c) is
called a cyclic group, and is always isomorphic to Z or to Z/nZ for some n ≥ 1, as all of
its elements are of the form ck for some k ∈ Z; thus, they are either �nite or denumerably
in�nite. Similarly, a �nitely generated group (i.e. of �nite rank) is always denumerable.

Group homomorphisms are strongly related to generating sets: as every element g ∈ G is a
product of s±1

i with the si ∈ S, the element f(g) is a product of the corresponding f(si)
±1.

Thus, we have the following property:

Proposition 1.15 Let f, g : G→ H be two group homomorphisms and suppose that G = 〈S〉.
If f |S = g|S, then4 f = g.

4However, it is not always the case that a map S → H extends to a group morphism G → H. A free

group G is one with this property, i.e. G has a generating set S such that every map S → H extends to a
group morphism G→ H; for example, Z is a free group of rank 1, but any other cyclic group is not free. We
shall not deal with free groups in any big capacity in the rest of this work.
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1.4.2. Quotient groups

If H is a normal subgroup of G, we may give a group structure to the set of cosets G/H =
H\G, as follows:

De�nition 1.16 Let H be a normal subgroup of G, and g, h ∈ G. We say that g is congruent
to h modulo H if gh−1 ∈ H, and write g ≡ h (mód H); this is an equivalence relation, whose
equivalence classes are exactly the cosets gH from the set G/H. It is not hard to verify that
if g ≡ g′, h ≡ h′ (mód H), then gh ≡ g′h′ (mód H), and thus this de�nes a binary operation
on G/H given by:

gH ∗ hH = (gh)H.

This operation satis�es the properties of a group listed above, and thus we call G/H jointly
with this binary operation the quotient group given by the subgroup H.

There is a natural group epimorphism p : G� G/H that maps every g ∈ G to its correspon-
ding equivalence class under congruence (that is, the coset gH). This quotient map actually
gives a strong characterization of quotient groups, as follows:

Theorem 1.17 (Factor theorem, or fundamental homomorphism theorem) Let f : G → H
be a group morphism and N E G a normal subgroup. Suppose that N ⊆ ker(f), that is,
f(g) = 1H for every g ∈ N . Then there exists a map f̃ : G/N → H such that f = f̃ ◦ p, i.e.
the following diagram commutes:

G
f
//

p

��

H

G/N
f̃

<<

It is easy to see that ker(f̃) = ker(f)/N . Thus, this immediately leads to the following
well-known result:

Corollary 1.18 (First isomorphism theorem) Given a morphism f : G → H, there is a
canonical isomorphism:

G/ ker(f) ∼= im(f),

which is given by the map f̃ from the factor theorem.

1.4.3. Direct and semidirect products, wreath products and exten-

sions

Remember that the Cartesian product of two sets A and B is the set of all ordered
pairs (a, b) where a ∈ A and b ∈ B. This construction generalizes to any collection of sets,
even in�nite ones5: if {Ai}i∈I is some collection of sets,

∏
i∈I Ai is the set of all functions6

5In the in�nite case, one may need to appeal to the Axiom of Choice to ensure that the Cartesian product
of in�nitely many nonempty sets is nonempty; however, we do not need the full generality of this construction
in the cases we shall deal with below.

6We use the notation ai instead of a(i) for the �i-th coordinate� of an element of a Cartesian product.
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a : I →
⋃
i∈I Ai such that ai ∈ Ai for all i ∈ I. It is easy to see that an ordered tuple

(a1, . . . , an) may be seen as a function {1, . . . , n} → A1 ∪ · · · ∪An that satis�es the condition
ai ∈ Ai, which shows how this de�nition is a generalized version of �nite Cartesian products.

When the individual sets involved in a Cartesian product are groups, there is an obvious
way to give a group structure to the corresponding product, which corresponds to �operating
coordinate-wise�, as follows:

De�nition 1.19 Given a family of groups {Gi}i∈I , the (external)7 direct product of this
family is the set G =

∏
i∈I Gi, together with the binary operation ∗ given by:

(∀g, h ∈ G, i ∈ I) : (g ∗ h)i = gihi.

Relatedly, the direct sum of the family {Gi}i∈I is the following subgroup of
∏

i∈I Gi:

⊕
i∈I

Gi :=

{
(gi)i∈I ∈

∏
i∈I

Gi : (∃F ⊆ I �nite)(∀i ∈ I \ F ) : gi = 1Gi

}
,

that is, the elements of
⊕

i∈I Gi are those elements of
∏

i∈I Gi that are the identity in all but
a �nite number of coordinates. When I is �nite, both groups are the same.

In a direct product of two groups, the subgroups G̃ = G × {1H} and H̃ = {1G} × H are
copies of G and H, normal in G × H, and every element of G × H is of the form g̃h̃, with
g̃ ∈ G̃, h̃ ∈ H̃. Thus, we might say that G×H is a group that �decomposes� into G and H,
and the latter two groups describe the whole structure of G × H. The purpose of most of
these constructions is to express the structure of a new group we may encounter in terms of
groups we already know, as in this example, or in the case of quotient groups.

However, any element from G̃ commutes with any other element from H̃. For our �decons-
truction� process, this restriction might be excessive in some circumstances. A situation that
often appears is that the estructure of some group is given entirely by two subgroups G and
H, but only one is normal in the larger group. We give this construction a name, as follows:

De�nition 1.20 Let (G, ∗) and (H, ?) be two groups, and suppose there is a group action

H
ϕ
y G by automorphisms. De�ne the following binary operation on the set G×H:

(g1, h1) · (g2, h2) = (g1 ∗ h1g2, h1 ? h2).

The set G×H, endowed with this binary operation, forms a group, which is called the (exter-
nal)8 semidirect product of G and H. We write Goϕ H for the resulting group structure,
to distinguish it from the usual Cartesian product.

It is not hard to see that once again G̃ = G× {1H} and H̃ = {1G} ×H are both subgroups
of G oϕ H, respectively isomorphic to G and H, and the �rst is normal in G oϕ H, while

7If a group G has a family of normal subgroups {Gi}i∈I with Gi∩Gj = {1G} for all i 6= j and 〈
⋃
i∈I Gi〉 =

G, then we say that G is the internal direct product of the Gi; in this scenario, G is isomorphic to
∏
i∈I Gi

as de�ned above.
8Once again, if G has two subgroups G1 E G,G2 ≤ G with G1∩G2 = {1G} and 〈G1∪G2〉 = G, the group

G is isomorphic to the semidirect product G1 oϕ G2, where the action G2
ϕ
y G1 is given by ϕg(x) = gxg−1.
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the second is not unless the group action ϕ is trivial (in which case the semidirect product
becomes just a direct product); thus, in a similar fashion to the direct product, elements of
G oϕ H decompose as products g̃h̃ with g̃ ∈ G̃, h̃ ∈ H̃, and now elements of G̃ no longer
necessarily commute with those of H̃, showing the larger generality of this construction.

One particular case that is often encountered is the one in which G is a direct product (or
direct sum) of copies of the same group, indexed by some set I, and H acts on the set of
indices in any way, which induces a group action by automorphisms on G. More precisely:

De�nition 1.21 Let H
ϕ
y I be any group action of a group H on an arbitrary set I, and

let G be any other group. The (unrestricted)9 wreath product of G and H, written G oH,
is the semidirect product GI oϕ̂ H (where GI =

∏
i∈I G) where the action by automorphisms

H
ϕ̂
y GI is given by:

ϕ̂(h, (gi)i∈I) = (gϕ(h,i))i∈I ,

that is, the group operation is given by:

((gi)i∈I , h) · ((g′i)i∈I , h′) = ((gig
′
ϕ(h,i)), hh

′).

One particular (and very important) case of a wreath product is the set of rigid symmetries
of a d-dimensional cube Wd, which is isomorphic to the set of all graph automorphisms of
the graph with vertex set {0, 1}d and an edge joining v1 and v2 if and only if they di�er in
exactly one coordinate. This group can be seen to be isomorphic to (Z/2Z) oSd; the informal
reasoning for this equality is that any rigid symmetry of the cube has to permute the d
coordinate axes in some way (corresponding to the permutation group component Sd), and
some of them might be re�ected afterwards, which corresponds to a sign change in some
coordinate (and thus to the (Z/2Z)d component, interpreting each Z/2Z coordinate as the
multiplicative group {+1,−1}). A similar reasoning shows thatWd is isomorphic to the group
of all d× d signed permutation matrices.

Semidirect products (and thus, in particular, wreath products) are particular cases of the
following general situation:

De�nition 1.22 Let G be any group, with H E G a normal subgroup and F any arbitrary
group. We say that G is a H-by-F group extension if G/H ∼= F , that is, if they �t in the
following short exact sequence:

{1} // H �
� ι // G

p
// // F // {1} , (1.1)

where ι is the inclusion map H ↪→ G and p is the quotient map G → G/H ∼= F ; the
term exact sequence refers to the fact that the kernel of every group homomorphism in the
sequence equals the image of the previous homomorphism in the sequence (thus, ι is injective,
p must be surjective and ker(p) = im(ι)).

We say that this sequence is an split exact sequence (or that it splits) if there exists a right
inverse τ : F → G for p, that is, a group morphism such that p ◦ τ = 1H .

9The same construction, using the direct sum instead of the direct product of copies of G, yields a speci�c
subgroup of G oH known as the restricted wreath product. Since we shall only encounter wreath products
with �nite index sets I, we do not need to deal with this distinction.
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The importance of split exact sequences lies in the following theorem:

Theorem 1.23 Let the group G be an H-by-F extension. If the associated short exact se-
quence splits, then G is isomorphic to a semidirect product of the form HoϕF . The converse
is also true.

This result comes from the fact that F̃ = im(τ) is a copy of F contained in G, and thus it
can be made to act on H by simple conjugation. The exactness of the associated sequence
shows that F̃ ∩H = {1G}; the end result follows from there. Thus, a way to show that a given
group is a semidirect product of previously known ones is to show that it is an extension, and
then show either τ or the associated subgroup im(τ); we shall make use of this technique in
later chapters.

An example of a group extension that is not isomorphic to a semidirect product is Z, as it
may be seen as a Z-by-(Z/2Z) extension, taking H = 2Z ∼= Z; were Z isomorphic to such a
direct product, it would contain elements of order 2, which is absurd.

1.4.4. Projective limits

The �nal example of a group construction we shall deal with is a very versatile one, of which
previously detailed ones may be seen as subcases. As this is a very specialized construction,
the reader may be inclined to consult a standard book on category theory [74,86] for a more in-
depth description; we also recommend to consult de Neymet's book on group actions [32] for
applications of this construction in the construction of dynamics-related groups. Remember
that a directed set is a set I together with a binary relation � which is:

� re�exive, i.e. x � x for every x ∈ I,

� transitive, that is x � y ∧ y � z =⇒ x � z, and

� concurrent, that is, for every x, y ∈ I there exists some z ∈ I such that x � z and
y � z.

Let {Gi}i∈I be any family of groups, where I is a directed set under the relation �. We
say that this is an inverse system of groups if there exists a family of group morphisms
fi,j : Gj → Gi, de�ned for every pair of indices such that i � j, that satis�es the following
properties:

� fi,i = idGi , and

� fi,j ◦ fj,k = fi,k whenever i � j � k.

De�nition 1.24 The projective limit (or inverse limit) of the inverse system of groups
({Gi}i∈I , {fi,j}i�j) is the following subgroup of

∏
i∈I Gi:

ĺım
←−i

Gi :=

{
(gi)i∈I ∈

∏
i∈I

Gi : (∀i � j ∈ I) : fi,j(gj) = gi

}
.

If G = ĺım←iGi, one may de�ne the obvious proyection homomorphism πi : G → Gi which
satis�es the relation πj((gi)i∈I) = gj. We see that, by the condition we set on the elements
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of G, these projections satisfy the equality πi = fi,j ◦ πj. This property actually describes10

projective limits entirely; that is, if H is another group that has morphisms βi : H → Gi

which satisfy the condition βi = fi,j ◦βj for every i � j, then there is a morphism β : H → G
such that βi = πi ◦ β.
Projective limits can be seen as a generalization of in�nite decreasing intersections of groups.
Indeed, N with the usual ordering, ≤, may be seen as a directed set, and if G0 ≥ G1 ≥ G2 ≥
. . . is a descending chain of subgroups of a group G, we may de�ne fi,j : Gj → Gi as the
usual inclusion map whenever i ≤ j; evidently, fi,j ◦ fj,k = fi,k. If we examine the inverse
limit, we see that the following equality holds:

ĺım
←−i

Gi =

{
(gi)i∈N ∈

∏
i∈I

Gi : (∀i ≤ j ∈ N) : gi = gj

}
,

since every Gi can be identi�ed with a subgroup of all preceding Gj, j < i, and the inclusion
maps send every element of Gi to itself. This means that every element of the inverse limit
is an in�nite sequence of equal elements (g, g, g, . . . ), and such a g has to belong to every Gi;
reciprocally, if g ∈

⋂
i∈NGi, the in�nite sequence (g, g, g, . . . ) satis�es the condition in the

de�nition of the inverse limit. Thus, there is a natural bijection:

ϕ :
⋂
i∈N

Gi → ĺım
←−i

Gi,

g 7→ (g, g, g, . . . ),

and it is easy to see that this preserves the group operation and is thus an isomorphism.

One may allow distinct con�gurations of groups and homomorphisms and de�ne projective
limits in full generality without involving directed sets in the construction. For instance, it
can be shown that both the direct and semidirect products may be seen as speci�c subcases
of a more general de�nition of projective limit. However, we shall only need this restricted
de�nition for our purposes, so we won't go into further detail.

1.5. Center, centralizer and normalizer

In this work we shall be interested in certain subgroups of a given group G which have an
interesting algebraic description. Thus, we brie�y describe them and their main properties.

De�nition 1.25 Let G be any group. The center of G is the subgroup Z(G) of all elements
g ∈ G that commute with every other element of the group, i.e.:

Z(G) := {g ∈ G : (∀h ∈ G) : gh = hg}.

Z(G) is always an Abelian subgroup of G. Note that, if z ∈ Z(G), then zgz−1 = zz−1g = g
for all g ∈ G, and thus the inner automorphism ϕz de�ned previously is trivial. Reciprocally,
if ϕz(g) 6= g, we have that zgz−1 6= g =⇒ zg 6= gz, and thus z /∈ Z(G). This is the essence
of the proof of the following:

10This is called a universal property.
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Proposition 1.26 For any group G, Inn(G) ∼= G/Z(G). In particular, Abelian groups do
not have nontrivial inner automorphisms.

Closely related is the question of, given a speci�c subset S ⊆ G, which is the largest subgroup
H ≤ G which commutes with every s ∈ S. We de�ne:

De�nition 1.27 Let S be any subset11 of G. The centralizer of S is the set of all elements
of G which commute with every element of S:

cent(S) = centG(S) := {g ∈ G : (∀s ∈ S) : gs = sg}.

Note that centG(S) is actually a group, and that it may not actually contain elements from
S; for instance, if gh 6= hg, centG({g, h}) is nonempty (as it at least contains 1G) but cannot
contain g (as it does not commute with h) nor h (as it does not commute with g). However,
it is not hard to see that centG(centG(S)) does in fact contain S.

Note, �nally, that Z(G) is the largest subgroup H ≤ G for which centG(H) = G.

Proposition 1.28 For any S ⊆ G, we have centG(S) = centG(〈S〉).

Proposition 1.29 For any family of subsets {Si}i∈I of G, we have:

centG

(⋃
i∈I

Si

)
=
⋂
i∈I

centG(Si).

In particular, if H is a subgroup of G generated by S = {s1, . . . , sk}, we can compute
centG(H) as the intersection

⋂k
i=1 centG({si}); for certain groups G, such as permutation

groups, computing the centralizer of a single element can be done algorithmically, providing
a reasonable method to compute centralizers of �nitely generated subgroups.

Closely related to centralizers are the following:

De�nition 1.30 Let S be any subset of G. The normalizer of G is the following subset:

normG(S) = {g ∈ G : gS = Sg}.

In particular, if H ≤ G is a subgroup, normG(H) is the largest subgroup H E normG(H) ≤
G in where H is normal. We note that elements of normG(S) satisfy a sort of �quasi-
commutativity�, in the sense that if g ∈ G, s ∈ S, there exists some s̃ ∈ S such that gs = s̃g.
In particular, if H is a subgroup of G, there is an automorphism fg ∈ Aut(H) such that
gh = fg(h)g for every g ∈ G, h ∈ H, where fg depends only on g; this fact will be important
in later chapters.

11Often S is assumed to be a subgroup; however, it is convenient to allow any arbitrary set (in particular,
singletons) in this de�nition. Replacing S by 〈S〉 results in the same set, so the chosen convention makes no
real di�erence.
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1.6. Some groups that will be encountered later

1.6.1. Permutation groups

As stated above, the permutation group associated to a set X is the group SX of all
bijections X → X, with the operation of composition; these bijections are usually referred
to as permutations. Often (but not always) X is taken to be the set {1, 2, . . . , n}, and we
use the notation Sn instead of SX in such a situation; these groups are thoroughly described
in the textbook by Hall [49]. Note that, in this case, |Sn| = n!.

As usual in group theory, we forgo the composition symbol whenever it does not lead to
confusion. Thus, we will write στ instead of σ ◦ τ . There are two standard notations that are
used for permutations on �nite sets. The �rst one is pretty straightforward:

σ =

(
1 2 . . . n
s1 s2 . . . sn

)
,

which means that σ is the bijection that maps the element i to the corresponding si. This no-
tation lends itself nicely to direct computation of compositions and inverses of permutations;
for instance:

σ =

(
1 2 3 4
2 4 3 1

)
, τ =

(
1 2 3 4
4 1 2 3

)
=⇒ στ =

(
1 2 3 4
4

1
1

2
2

4
3

3

)
,

and similarly:

σ−1 =

(
1 2 3 4
4 1 3 2

)
.

In both cases, computation is performed via simple operations such as matching columns from
both permutations that share an entry, �ipping or reordering the corresponding columns.
However, this notation quickly becomes cumbersome for values of n larger than, say, 10, and
thus it is often impractical. The second notation relies on the following de�nitions:

De�nition 1.31 Let σ ∈ SX be any permutation. The support of σ is the following subset
of X:

supp(σ) = {x ∈ X : σ(x) 6= x},
that is, the complement of supp(σ) is the largest set where σ acts trivially.

For instance, the support of the permutation σ of the previous example is supp(σ) = {1, 2, 4},
since σ(3) = 3. Note that σ necessarily maps supp(σ) to itself.

De�nition 1.32 A cycle (of length k) is a permutation σ ∈ SX with �nite support supp(σ) =
{s1, . . . , sk} such that σ(si) = si+1 for all 1 ≤ i ≤ k − 1, and σ(sk) = s1; a transposition is
a cycle of length 2. Two cycles σ, τ ∈ SX are called disjoint if supp(σ) ∩ supp(τ) = ∅.

The standard notation for a cycle σ as described above is:

σ = (s1 s2 . . . sk).

Note that (sj sj+1 . . . sk s1 s2 . . . sj−1) represents the same cycle, for any value of j between
1 and k.
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Lemma 1.33 If σ and τ are disjoint cycles, then στ = τσ.

This comes as a consequence of the equality σ[supp(σ)] = supp(σ). Thus, τ behaves like
the identity in supp(σ), implying τ(σ(x)) = σ(x) = σ(τ(x)) for all x ∈ supp(σ); the same
reasoning holds in reverse by swapping the roles of σ and τ . Everywhere else, στ(x) = x =
τσ(x) trivially.

Theorem 1.34 (Cycle decomposition theorem) If |X| <∞, every permutation is a compo-
sition of disjoint cycles in a unique way up to ordering.

To construct the individual cycles, we choose any x ∈ supp(σ) and de�ne x0 = x, x1 =
σ(x), x2 = σ2(x), and so on. Since X is �nite and σ is a bijection, eventually xk = x0 = x
for some k > 0, and thus the restriction of σ to {x1, . . . , xn} is equal to the cycle κ1 =
(x1 x2 . . . xn). Iterating this process with some y ∈ supp(σ) \ supp(κ1) and so on produces
the desired cycles κ2, κ3, . . . , which have disjoint support and commute pairwise.

Thus, arbitrary permutations are often described with cycle notation using the above cycle
decomposition. For instance: (

1 2 3 4 5
5 4 2 3 1

)
= (1 5)(2 4 3).

An important consequence of the cycle decomposition theorem is the following:

Corollary 1.35 Every permutation with �nite support is a �nite product of transpositions.
If σ can be written in two di�erent ways, as a product of m transpositions and as a product
of k transpositions, then m and k have the same parity, and we say that σ is an even
permutation or odd permutation depending on whether m (and thus k) is even or odd.

This is a consequence of the following equality:

(s1 s2 . . . sk) = (s1 sk)(s1 sk−1) · · · (s1 s3)(s1 s2),

and thus a cycle of length k is even if and only if k is odd.

Corollary 1.36 Sn is generated by the set of all transpositions.

Furthermore, we see that the product of two even permutations or two odd permutation is
even, while the product of an even permutation with an odd permutation is an odd permu-
tation. This motivates the following:

De�nition 1.37 The alternating group An ≤ Sn is the subset (subgroup) of all even
permutations.

We can easily see that An is e�ectively a group after noting that it is the kernel of the
following group homomorphism sgn: Sn → {+1,−1} ∼= Z/2Z:

f(σ) =

{
0 if σ is even,

1 if σ is odd.
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Since the group {+1,−1} has only two elements, [Sn : An] = 2. It can be proven that An
can be generated by the set of all cycles of length 3. Furthermore, the following is a very
important property of the alternating group:

Theorem 1.38 For all values of n except 1, 2 and 4, the group An is simple, i.e. the only
normal subgroups it has are An itself and the trivial subgroup {1Sn}.

The following computational property is very useful when dealing with conjugation in per-
mutation groups:

Proposition 1.39 Let σ be any permutation and κ = (s1 s2 . . . sk) be a cycle. We have that
σκσ−1 is a cycle as well; more precisely:

σ(s1 s2 . . . sk)σ
−1 = (σ(s1)σ(s2) . . . σ(sk)).

This can be used as part of an algorithm to compute centralizer and normalizers, whose
exposition will be delayed until a later chapter. However, we note this interesting consequence:

Corollary 1.40 For all n ≥ 3, rank(Sn) = 2. Indeed, Sn = 〈(1 2), (1 2 3 . . . n)〉.

Indeed, conjugating (1 2) by powers of (1 2 3 . . . n) results in all transpositions of the form
(k (k+1)). Conjugating (2 3) by (1 2) produces (1 3), which by conjugation again produces all
transpositions (k (k + 2)); iterating this process results in all permutations, which generate
the whole of Sn.

Our interest in symmetry groups does not come only fr om their natural group action on a
given set, but also from the following well-known result:

Theorem 1.41 (Cayley representation theorem) Let G be any �nite group and n = |G|.
Then G is isomorphic to a subgroup of Sn, which consists of the bijections Lg : G→ G (after
identifying G with {1, 2, . . . , n} in some fashion) given by:

Lg(x) = g · x,

for any g ∈ G. The subgroup L(G){Lg : g ∈ G} is called the left Cayley representation
of G. Similarly, the functions:

Rg(x) = x · g−1,

generate another isomorphic copy of G into Sn, called the right Cayley representation of
G and written R(G). Usually, L(G) 6= R(G).

It is obvious that Lg 6= Lh if g 6= h, as Lg(1G) = g. Besides, these functions satisfy the natural
properties Lg ◦Lh = Lgh and L−1

g = Lg−1 , showing that the set of all Lg is a subgroup of Sn,
after identifying the elements of G with {1, 2, . . . , n}. Verifying the corresponding properties
for R(G) is straightforward.

An interesting property that will be useful later is the following:
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Theorem 1.42 For any group G with n <∞ elements, its left and right Cayley representa-
tions are linked by the following relationship:

R(G) = centSn(L(G)), L(G) = centSn(R(G)).

This comes from the observation that Lg(Rh(x)) = g(xh−1) = (gx)h−1 = Rh(Lg(x)). A
similar, but slightly more complicated relationsip, holds for normalizers:

Theorem 1.43 If G is any group of n <∞ elements, Aut(G) is isomorphic to some subgroup
A ≤ Sn, after identifying G with {1, 2, . . . , n}, and A has trivial intersection with both L(G)
and R(G). Furthermore, if σ ∈ Sn is a permutation such that, for every g ∈ G, there exists
some h ∈ G such that σLgσ

−1 = Lh, then there exist σ′ ∈ A (i.e. the representation of some
automorphism of G) and k ∈ G such that σ = Lkσ

′. The converse also holds. Thus:

normSn(L(G)) = 〈L(G) ∪ A〉 ∼= Go Aut(G) ∼= 〈R(G) ∪ A〉 = normSn(R(G)).

1.6.2. Matrix groups

We assume the elementary properties of matrices, matrix operations (addition, multiplication,
inversion, determinant, etc.) and so on to be known by the reader. We shall write Md(K)
for the set (which is actually a ring) of all d × d matrices with entries over a ring12 K. We
also write Id for the corresponding identity matrix. We are interested in subsets of Md(K)
closed under matrix multiplication and inversion, that is, that conform groups under matrix
multiplication.

De�nition 1.44 Let K be a ring and d ≥ 1. The general linear group GLd(K) is the
set of all d× d invertible matrices in K. A linear group is one that is isomorphic to some
subgroup of GLd(K) for some d and K.

Remember that K× is the set of all units of K (i.e. elements which have inverses); in particu-
lar, when K is a �eld, K× ∼= K \ {0}. We have the following characterization of the elements
of the general linear group:

Theorem 1.45 A matrix A ∈Md(K) belongs to GLd(K) if, and only if, det(A) ∈ K×.

For instance, GLd(R) consists of all d×dmatrices whose determinant is nonzero (equivalently,
with linearly independent columns), while GLd(Z) is the subgroup of GLd(Z) that consists
of matrices with integer entries and whose determinants are ±1 (thus, not every matrix from
GLd(R) with integer coe�cients belongs to GLd(Z)).

Some linear groups that appear fairly often include:

� the special linear group:

SLd(K) := {A ∈ GLd(Z) : det(A) = 1},
12Which is often, but not always, expected to be a �eld. For the purposes of this work, we shall only be

interested in rings of characteristic 6= 2, so we will not make note of the di�erences in treatment regarding,
e.g., determinants.
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� the orthogonal group (for real matrices) and the unitary group (its complex equi-
valent):

Od(R) := {A ∈ GLd(R) : ATA = Id},

Ud(C) := {A ∈ GLd(C) : A
T
A = Id},

� the upper triangular group (and its lower triangular counterpart):

∆d(K) := {A ∈ GLd(K) : Ai,j = 0 for all i > j},

� the Heisenberg group:

H(K) =


1 a b

0 1 c
0 0 1

 : a, b, c ∈ K

 ,

where K is often chosen as either R or Z.

Part of our interest in matrix groups comes from the following notion:

De�nition 1.46 Let G be any group. A linear representation (of dimension d over K)
of G is any group homomorphism % : G → GLd(K) for some d and K; we say % is faithful
if it is injective.

We won't go into detail regarding representation theory; however, it is important to note that
a group G is linear if, and only if, it has a faithful representation. In a further chapter we
shall be interested in linear representations of general rings K, which are connected with the
associated representations of their unit groups K×; linear representation of groups and rings
facilitates computation and might make certain features of the groups and rings under study
more evident. For the reader interested in a more in-depth description of these notions, we
suggest consulting the books by Hall [49] and Grilliet [48], together with a more specialized
reference such as the book on �nite representation theory by Burrow [21].

We note that all �nite groups are linear, as a consequence of the Cayley representation
theorem and the following property:

Proposition 1.47 Let K be any ring and S be the set of all d × d matrices from K with
entries in {0, 1} which have exactly one 1 on every row and column. Then S is a subgroup of
GLd(K), isomorphic to the permutation group Sd.

A matrix with the aforementioned property is called a permutation matrix. Of course, this
is an �ine�cient� matrix representation in the sense of requiring extremely large matrices for
large values of |G|. By choosing the ring K and the representative matrices appropriately, we
may �nd representations which require matrices that are signi�cantly smaller than |G|; for
example, the quaternion group de�ned below would require 8×8 matrices for a representation
of this type, but there exists a natural representation that uses 2× 2 matrices over C.

Permutation matrices give an upper bound on the least d for which there exists a d-dimen-
sional linear representation of a �nite group G over Z, which is d ≤ |G|. The following result
is useful in estabilishing a lower bound for this d:
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Theorem 1.48 Every �nite subgroup of GLd(Z) is isomorphic to a subgroup of GLd(Z/3Z).

Corollary 1.49 For every d ≥ 1, there are �nitely many isomorphism classes of �nite
subgroups of GLd(Z).

The �eld Z/3Z is �nite, and thus, GLd(Z/3Z) must be �nite as well. Using basic techniques
from combinatorics to determine the ways in which a d × d matrix can have d linearly
independent columns, we get the following result:

Proposition 1.50 |GLd(Z/3Z)| =
∏d−1

k=0(3d − 3k).

Corollary 1.51 If |G| >
∏d−1

k=0(3d − 3k), then G cannot have a d-dimensional linear repre-
sentation.

1.6.3. The quaternion group

The construction used to obtain the �eld of complex numbers C from the �eld of real numbers
R by adding an imaginary unit i is quite well known. Slightly lesser known but about just as
important is the fact that one may obtain a larger division ring H (known as the quaternion
skew �eld) by adjoining three units instead of one, only losing the commutativity of the
multiplication, using a variant of the same construction (which is a subcase of the group ring
method from representation theory).

In what follows we are interested in the four units {1, i, j, k} which generate H, which generate
an eight-element group [49] with the following multiplication table:

1 i j k −1 −i −j −k
1 1 i j k −1 −i −j −k
i i −1 k −j −i 1 −k j
j j −k −1 i −j k 1 −i
k k j −i −1 −k −j i 1
−1 −1 −i −j −k 1 i j k
−i −i 1 −k j i −1 k −j
−j −j k 1 −i j −k −1 i
−k −k −j i 1 k j −i −1

We write Q = {1, i, j, k,−1,−i,−j,−k} and call it the quaternion group. It is not hard to
see from the table that Q is a rank 2 group generated by {i, j}, and its elements satisfy the
following identities:

i2 = j2 = k2 = ijk = −1, (1.2)

and that Z(Q) = {1,−1} ∼= Z/2Z. This is also an example of a group extension that is not
a semidirect product, as 〈i〉 ∼= Z/4Z (the group of units that generate C from R as a group
ring) is a normal order 4 subgroup of Q, and thus Q/〈i〉 ∼= Z/2Z; however, the only order 2
subgroup of Q is Z(Q), which is already contained in 〈i〉; this shows that there is no group
action Z/2Z

ϕ
y Z/4Z such that Q ∼= (Z/4Z)oϕ (Z/2Z) (see the note on internal semidirect
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products in the previous section). Furthermore, it can be veri�ed that every subgroup of Q
is normal13 and any nontrivial subgroup of Q contains Z(G)

We are interested in the quaternion group as a source of examples for some constructions
below. Thus, we list a few more properties in this section.

Proposition 1.52 Inn(Q) ∼= Q/Z(Q) ∼= (Z/2Z)2.

Proposition 1.53 Aut(Q) ∼= S4, and thus Out(Q) ∼= S3.

Proposition 1.54 Q can be represented as a matrix group comprised of 2 × 2 complex
matrices, as it is isomorphic to the subgroup of GL2(C) given by:

Mi =

[
i 0
0 −i

]
, Mj =

[
0 −1
1 0

]
,

where i in the matrix entries is to be taken as
√
−1 ∈ C and not the corresponding element

of H, to prevent confusion.

Similarly, Q is isomorphic to the subgroup of GL4(R) given by:

M ′
i =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 , M ′
j =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 .
Proposition 1.55 Q has the following group presentation:

Q = 〈i, j : i4 = 1, i2 = j2, j−1ij = i−1〉.

This means that Q is the �largest� group generated by two elements i and j which satis�es
these three identities, as there is a group epimorphism from Q to any other group of rank 2
that satis�es these equalities.

1.6.4. Dihedral groups and other geometrical groups

Remember that an isometry14 of the Euclidean space Rd is a function f : Rd → Rd that
preserves distances, that is:

(∀x,y ∈ Rd) : ‖f(x)− f(y)‖ = ‖x− y‖.

It is not hard to see that if f �xes a point O in Euclidean d-space, then f is entirely determined
by its image on an orthonormal basis of Rd after choosing a coordinate system with O as

13A group with this property is called a Hamiltonian group. Every Hamiltonian group contains a copy
of Q as a subgroup.

14With the de�nition given here, isometries in Rd are automatically bijective. Some authors allow the word
isometry to refer to non-surjective mappings which preserve distances, such as the natural embedding of Rd

into Rd+1 or the shift map from a separable Hilbert space into itself; however, we will not delve into such
situations, so our isometries will be bijective.
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its point of origin. The image of such a basis under f is again an orthonormal basis (as
a consequence of the polarization identities15). This implies that f , with regards to this
coordinate system, is a linear map and its representative matrix has orthogonal columns (i.e.
it is an element of Od(R)). From this, we can deduce that any isometry of Rd is of the form:

f(x) = Ax+ b, A ∈ Od(R), b ∈ Rd,

and, reciprocally, any function of this form is an isometry; thus, isometries form a group
which is isomorphic to RdoϕOd(R), where ϕ is the restriction to Od(R) of the natural action
of GLd(R) on Rd.

Let X ⊆ Rd be any set of points in the plane. We are interested in the set of isometries that
preserve X:

De�nition 1.56 The group of rigid symmetries of X, Sym(X), is the set of all isometries
f : Rd → Rd which map X to itself, i.e.:

Sym(X) := {f : Rd → Rd : f(x) = Ax+ b, A ∈ Od(R), b ∈ Rd, f [X] = X}.

Remark Note that Sym(X) depends implicitly on the ambient space Rn. For instance, if
X = [0, 1] ∪ {−1}, there are no nontrivial isometries of R that map X to itself and thus
Sym(X) = {1}. However, if we identify R with the horizontal line R×{0} ⊂ R2 we see that
the re�ection m : R2 → R2 along the horizontal axis maps X to itself, and thus Sym(X) has
a nontrivial element. To avoid this issue, we usually require Sym(X) to act faithfully on X,
and thus we identify any two symmetries f, g which satisfy f |X = g|X .

If X is bounded, then there must exist some point O in Euclidean space (not necessarily
belonging to X) which is left �xed by all f ∈ Sym(X). For instance, if X is measurable and
has positive measure, then the centroid of X may be taken as such a point. Thus:

Proposition 1.57 If X ⊂ Rd is bounded, Sym(X) is (isomorphic to) a subgroup of Od(R).

Thus, Sym(X) is a linear group with a d-dimensional representation16. We are interested in
certain groups of rigid symmetries we shall encounter often in what follows:

De�nition 1.58 For any n ≥ 3, the dihedral group Dn is the group of rigid symmetries
of an n-sided regular polygon in R2. Alternatively17:

Dn := Sym({e2πik/n : 0 ≤ k < n}).

It is not hard to see that Dn is generated by a rotation r by an angle of 2π/n and a re�ection
m through any axis of symmetry; using this, it is easy to see that:

15Which allow us to write the inner product in Rd in terms of the norm.
16Using some techniques from linear algebra, we can see that in the general case Sym(X) is also a linear

group, having a (d+ 1)-dimensional representation.
17This allows us to de�ne D2 as well, which corresponds to the Klein 4-group (Z/2Z)2 and may be

thought of as the set of rigid symmetries of a rectangle. Note that in this case D2 does not act faithfully on
{+1,−1} ⊂ C, but by using this convention for D2 the semidirect product and group presentation schema of
the other dihedral groups is still satis�ed.
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Proposition 1.59 Dn
∼= (Z/nZ) o (Z/2Z) (where the group action is the only possible

nontrivial one), and thus it has the following group presentation:

Dn = 〈r,m : rn = 1,m2 = 1, (rm)2 = 1〉.

As well, we have the following matrix representation:

Proposition 1.60 Dn is isomorphic to the subgroup of GL2(R) given by the two matrices:

R =

[
cos(2π/n) − sin(2π/n)
sin(2π/n) − cos(2π/n)

]
, M =

[
1 0
0 −1

]
.

Another group that appears fairly often is the following, which is a sort of �limit of Dn when
n tends to in�nity�:

De�nition 1.61 The in�nite dihedral group D∞ corresponds to Sym(Z) (with R as am-
bient space).

Proposition 1.62 As in the case of �nite dihedral groups, D∞ is generated by the translation
r(n) = n + 1 and the re�ection m(n) = −n or, alternatively, by the two re�ections m and
s(n) = 1− n. Thus, it has the following two group presentations:

D∞ = 〈r,m : m2 = 1, (rm)2 = 1〉,
= 〈s,m : m2 = 1, s2 = 1〉.

It has a 2-dimensional real (integral) linear representation generated by the two matrices:

R =

[
1 1
0 1

]
, M =

[
−1 0
0 1

]
.

D∞ is isomorphic to a semidirect product of the form Zo (Z/2Z), where the group action is
the only possible nontrivial one.

Finally, while we have already addressed these groups as an example of wreath products, it
is worth mentioning a few properties of the groups of symmetries of d-dimensional cubes.
These groups are described thoroughly by Baake [2].

De�nition 1.63 The d-dimensional hyperoctahedral group Qd is the group of rigid sym-
metries of a d-dimensional cube, that is, Sym([−1, 1]d).

For instance, Q2 = D4, the group of symmetries of a square. As stated before, this group has
the following structure:

Proposition 1.64 We have Qd
∼= (Z/2Z) o Sd = (Z/2Z)d o Sd, and thus |Qd| = 2dd!.

This group has a d-dimensional real matrix representation given by the set of all signed
permutation matrices, that is, matrices with a single nonzero entry on every row and
column, which may be either 1 or −1.
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Figure 1.1: The three-dimensional hyperoctahedral group Q3 as the group of rigid symmetries
of a cube. Seen as a wreath product, the S3 component corresponds to permutations of
the coordinate axes shown in the �gure, irregardless of orientation; the Z/2Z components
represent re�ections along the plane orthogonal to the corresponding axis.

Every signed permutation matrix is a product of a permutation matrix and a diagonal matrix
whose diagonal entries are either 1 or −1. This matrix representation can be derived from the
fact that any A ∈ Qd must permute the coordinate axes (corresponding to the permutation
matrix) and then might change the orientation of some of them (depending on the signs of
the corresponding diagonal matrix).

1.6.5. Groups of p-adic integers and odometers

We conclude this section with a brief description of a family of in�nite groups we shall en-
counter fairly often in the following chapters. In what follows, p > 1 will be a �xed integer18.
First, note that if m ≡ n (mód pk), then m ≡ n (mód p`) for every ` < k. This de�nes na-
turally a surjective group morphism p`,k : Z/pkZ→ Z/p`Z for every pair of positive integers
` < k (which is actually the quotient morphism for the group (Z/pkZ)/(p`Z/pkZ)).

The collection of all cyclic groups Z/pkZ, together with the mappings p`,k, form an inverse
system, as de�ned above. Thus, their projective limit is well-de�ned, and equals the following
group:

De�nition 1.65 Given any integer p > 0, the group of p-adic integers19 is the inverse

18In most applications, p is taken to be a prime. However, for our purposes, it is useful to allow p to be a
composite integer.

19Actually, multiplication is also well-de�ned for p-adic integers, de�ned componentwise just like addition,
and thus Zp is actually a ring. However, if p is composite, Zp contains zero divisors, which is why in
applications where the multiplicative structure matters p is usually expected to be a prime. In this work, we
are only interested in the group structure.
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limit given by:

Zp := ĺım
←−k

Z/pkZ =

{
(nk)k≥1 ∈

∞∏
k=1

Z/pkZ : (∀k > `) : nk ≡ n` (mód p`)

}
.

That is, every element of Zp may be thought of as a sequence of positive numbers n1, n2, . . . ,
such that every nk leaves a remainder of nk−1 when divided by pk−1. If we write the numbers
n1, n2, . . . in base p, we see that this means that each n` corresponds to the last ` digits of
every nk that appears afterwards. For example, the following would be a typical element of
Z10:

x = (5, 5, 5, 3005, 43005, 43005, 8043005, . . . )

Addition is performed componentwise. Alternatively, one may think of an element of Zp as
a sequence of digits d0, d1, d2, . . . between 0 and p − 1, extending in�nitely to the left, such
that pkdk + nk = nk+1, i.e. n1 = d0, n2 = pd1 + d0, and in general:

nk = d0 + pd1 + p2d2 + . . .+ pk−1dk−1.

For instance, the aforementioned x would correspond to a sequence of the form . . . 8043005
in this representation. In this case, addition is performed using the �carry the one� algorithm
used to compute the sum of two numbers in base p in Z, repeated inde�nitely to the left.

The group Zp naturally contains an embedded copy of Z: for any positive n, there exists an
element (n1, n2, . . . ) ∈ Z that eventually stabilizes at n (i.e. nk = n for all k ≥ k0) and it
is not hard to see that addition of any two such sequences stabilizing at n and m results in
a sequence stabilizing at n + m (in particular, (1, 1, 1, 1, . . . ) is the generating element for a
copy of N inside Zp which contains all eventually stabilized sequences). In terms of the digits
d0, d1, . . . , this corresponds to taking the base p representation of n and extending it with
in�nitely many zeros to the left. Similarly, we may think of elements which have in�nitely
many digits p−1 to the left as negative numbers; for instance, the decimal expansion of −1 in
Z10 is . . . 9999999. We identify Z with this subgroup of Zp and make no di�erence between,
e.g. the integer 104 and the 10-adic integer . . . 000000104, nor between . . . 99999911 and −89.
Note, though, that Zp is always strictly larger than Z; for instance, the in�nite sequence of
digits . . . 101010101 does not correspond to any integer.

The group Zp can be given a topological group structure, i.e. it can be given a topology
that makes the operations of addition (x, y) 7→ x + y and inverses x 7→ −x continuous. It is
actually a metric space, via the following distance function:

K(. . . d3d2d1d0, . . . e3e2e1e0) =

{
N if dN 6= eN ∧ dk = ek for all k < N,

∞ if d = k = ek for all k,

δp(x, y) = p−K(x,y).

This is a particular case of the shift metric we shall encounter in a latter chapter; we see
that δp(x, y) < p−n if x and y match on their �rst n digits, read from right to left. Note
that under this metric sequences such as pk and 1 + p + p2 + . . . + pk converge; e.g., in Z10

the sequence 9, 99, 999, . . . converges to −1. Furthermore, Z is a dense subset of Zp in this

topology, as if x = (n1, n2, . . . ), then δp(nk, x)
k→∞−−−→ 0.

The following two results allow us to understand the structure of Zp when p is not a prime:
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Proposition 1.66 For any k ≥ 1 and prime p, we have Zp ∼= Zpk .

Proposition 1.67 If gcd(p, q) = 1, then Zpq ∼= Zp × Zq.

Since Zp is a topological group which contains a copy of Z, one may de�ne a group action
Z

ωy Zp, totally determined by the function ω : Zp → Zp given by ω(x) = x+1. The function
ω is continuous, and thus, the pair (Zp, ω) is a topological dynamical system, called a p-adic
odometer. Since the orbit of any x is x+Z, all p-adic odometers are minimal; furthermore,
they have other interesting dynamical properties such as equicontinuity and zero entropy,
and they appear often in relation to more complicated systems.

Similarly to the one-dimensional case, we may de�ne d-dimensional analogues of the p-adic
integers (and thus of p-adic odometers) by taking any matrix U with integer entries and
satisfying the condition |det(U)| > 1, and de�ning an inverse system using the natural
maps p`,k : Zd/UkZd → Zd/U `Zd. When U is a diagonal matrix whose entries are positive
integers s1, . . . , sd > 1, the resulting projective limit group ZU is isomorphic to the product
Zs1 × · · · ×Zsd , but in the general case no such decomposition exists. Regardless, we obtain
a topological group once again, with a similar shift metric and a natural embedding of Zd as
a dense subset, and thus there is a minimal group action Zd

ωy ZU with nice properties. We
shall encounter some of these d-dimensional odometers in latter chapters.
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Chapter 2

Algebraic number theory and algebraic

geometry

One of our subjects of interest in what follows is the setting of subshifts de�ned via algebraic
conditions. In this line of work, we need some basic concepts from ring theory, specially from
a number-theoretic viewpoint, which we proceed to detail below. Afterwards, we detail some
very basic notions of algebraic geometry and the theory of algebraic sets.

2.1. Basic notions of rings

De�nitions below can be consulted in most abstract algebra references, such as the afore-
mentioned book by Grilliet [48], or in specialized books on algebraic number theory, such
as Jarvis [55] or Neukirch [81]. Some basic knowledge on general number theory is also ad-
vised, although not required; the author recommends the introductory book from Projeto
Euclides [76].

De�nition 2.1 A ring is an ordered triple (R,+, ·) where R is a set and both + (the ring
addition) and · (ring multiplication) are functions R × R → R satisfying the following
properties:

� (R,+) is an abelian group with neutral element 0R. Inverses in this context are denoted
via additive notation, i.e. the inverse of x ∈ R is written as −x.

� (R, ·) is a monoid, i.e. · is an associative (but not necessarily commutative) operation
with neutral (identity) element 1R. Note that we do not expect all elements of R to have
a multiplicative inverse. When they do exist, we use multiplicative notation and write
x−1 for the inverse of x, and in this case we say that x is a unit. The set R× of all
units is a group under multiplication.

� The operation · is distributive over +, i.e. it satis�es the following two equalities:

(∀x, y, z ∈ R) : x · (y + z) = (x · y) + (x · z),

(x+ y) · z = (x · z) + (y · z).
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When the operation · is commutative, we say that R is a commutative ring or domain1.
If all nonzero elements of R\{0R} have a multiplicative inverse, we say that R is a division
ring. A commutative division ring is called a �eld.

Examples of commutative rings include the integers Z, the rationals Q, the reals R and the
complex numbers C, each with their standard addition and multiplication operations. The
latter three are also �elds, although the �rst is not. The set of all d× d matrices, Md(R), is
a noncommutative ring, which exhibits the following phenomenon:

De�nition 2.2 Let R be a ring. We say R has zero divisors if there exist x, y ∈ R \ {0R}
such that x ·y = 0R. A commutative ring without zero divisors is called an integral domain.

We shall be interested mostly in integral domains, although some rings with zero divisors can
make appearances sometimes, such as the aforementioned matrix ring Md(R). We note that
the general linear group introduced previously, GLd(R), corresponds exactly to the group of
units of Md(R).

Several of the usual de�nitions from group theory carry over to rings with minimal changes.
However, some issues arise that are important to keep in mind, so we make sure to note what
things change.

De�nition 2.3 Let R be a ring. A subset S ⊆ R is a subring of R if:

� it is a ring as well under the same operations + and ·, restricted to S (i.e. (S,+) is an
abelian subgroup of (R,+), the product of two elements of S is in S, etc.), and

� 1R ∈ S, that is, they have the same multiplicative identity.

An ideal2 of R is an additive subgroup (i,+) of (R,+) that satis�es the following property:

r ∈ R, a ∈ i =⇒ ra, ar ∈ i.

Remark The requirement of 1R belonging to any subring is non-obvious, and indeed, if R has
zero divisors, there may be subsets S ⊂ R closed under addition and multiplication and that
may be rings in their own, but that have a di�erent identity element. For example, we may
embed the ringMd(R) intoMd+1(R) by �lling the additional row and column with zeros, and
thus the matrix diag(1, . . . , 1, 0) acts as an identity on Md(R) under matrix multiplication;
however, this is not a true subring of Md+1(R) as this is not the usual identity matrix.

Note that, while both ideals and subrings are closed under addition and multiplication, an
ideal need not to be a subring3 and vice versa. In fact, if i is both a subring and an ideal, the
fact that 1R ∈ i implies that R ⊆ i, since every r ∈ R equals r1R and thus also belongs to

1Some books have a looser de�nition of ring, which allows a ring to lack a multiplicative neutral element.
Under such a de�nition, triples such as (2Z,+, ·) would be rings. The word �domain� refers speci�cally to a
commutative ring that has a multiplicative neutral element.

2More precisely, a two-sided ideal. We shall mostly deal with commutative rings, so we will not discuss
left or right ideals.

3Some authors refer to any subset closed under addition and multiplication as a subring, and, with such
a de�nition, ideals would be subrings. However, our additional requirement that 1R belongs to every subring
excludes this situation.
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i. Thus i = R. Hence, we say that an ideal is nontrivial if it does not equal {0} nor R, and
that nontrivial ideals are never subrings. We note, as well, that �elds do not have nontrivial
ideals, as if x ∈ i \ {0}, then x−1x = 1R ∈ i. In general, we have the following:

Proposition 2.4 If i is a nontrivial ideal in R, then i ∩R× = ∅.

While ideals and subrings are now di�erent kinds of objects, they will take the role normal
and non-normal subgroups had in group theory. In fact, we have the following:

Proposition 2.5 Given a nontrivial ideal i ⊂ R, the relation x ∼ y if x − y ∈ i is an
equivalence relation that satis�es the following properties:

x ∼ x′ ∧ y ∼ y′ =⇒ x+ y ∼ x′ + y′ ∧ xy ∼ x′y′.

Thus, the set of all equivalence classes R/i is a ring under the operations [x] + [y] = [x + y]
and [x] · [y] = [xy], called the quotient ring of R over i.

Ring homomorphisms, just like their group analogues, are de�ned as to preserve the struc-
ture of the corresponding rings as well as possible, which includes both operations and the
multiplicative identities:

De�nition 2.6 Let (R,+, ·) and (S,+, ·) be two rings. A function f : R → S is a ring
homomorphism if it satis�es the following properties:

� f(x+ y) = f(x) + f(y),

� f(xy) = f(x)f(y),

� f(1R) = 1S.

The terms monomorphism, epimorphism and isomorphism retain their meaning from group
theory. As well, we think of two isomorphic rings as the same ring for all intents and purposes.
The following de�nition appears very frequently as well:

De�nition 2.7 Given a ring homomorphism f : R → S, the kernel of f is the ideal k =
ker(f) containing all r ∈ R with f(r) = 0S.

It is not hard to check that f(0R) = 0S and 0S · x = 0S for any x ∈ S, in any ring, thus k is
clearly an ideal, which is the trivial ideal {0} if, and only if, f is injective. Once again, the
�rst isomorphism theorem holds:

Theorem 2.8 (First Isomorphism Theorem for rings) For any ring R and any ring homo-
morphism f : R→ S, we have R/ ker(f) ∼= im(f).

Furthermore, it is worth noting that, since homomorphisms preserve the multiplicative units,
we must have f(x−1) = f(x)−1 for any x ∈ R×, i.e. if f : R→ S is a ring homomorphism, f
maps R× to S×. In particular, if R is a �eld, the only element that can be mapped to 0S is
0R, and thus f is injective.

In applications to number theory, there are several kinds of ideals that take a central role, as
well as many properties of them. We start with a few operations on ideals:
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Proposition 2.9 Given any collection of ideals {ai}i∈I , their intersection
⋂
i∈I ai is once

again an ideal. Thus, given any subset S ⊂ R, we may speak of the ideal generated by S
as the following ideal of R:

(S) :=
⋂
S⊆i

i.

The product of two ideals a and b is de�ned by:

a · b := ({ab : a ∈ a, b ∈ b}),

while their sum is given by:

a + b := {a+ b : a ∈ a, b ∈ b} = (a ∪ b).

The operations of sum and product of ideals are associative, so we may extend them to any
number of ideals. Furthermore, the following inclusions hold:

a · b ⊆ a ∩ b ⊆ a, b ⊆ a + b.

For instance, in Z all ideals are of the form (n) = nZ. We have that (m)+(n) = (gcd(m,n)),
while (m) · (n) = (mn); in contrast, (m) ∩ (n) = (lcm(m,n)), with the equality (m) ∩ (n) =
(mn) holding only when m and n are coprime, that is, they have no common factors. In
fact, the intuitive interpretation we shall give to ideals is exactly as sets of multiples of a
given number (and thus we interpret the sentence a ∈ (b) as a synonym for b | a, i.e. a is a
multiple of b), and if the ring is �well behaved� this is exactly what they are:

De�nition 2.10 An integral domain (R,+, ·) is called a principal ideal domain (PID) if
every ideal is generated by a single element, i.e. every ideal is of the form (r) for some r ∈ R.
An ideal generated by a single element is called a principal ideal.

The ring of integers Z is the quintaessential example of a principal ideal domain. Fields are
PIDs by default, as they do not have any ideals besides the trivial ones (generated by 0R and
1R, and thus principal). A less trivial class of PIDs is given by the following fact, which we
shall implicitly use often:

Theorem 2.11 Let K be a �eld. Then, the ring of polynomials on one variable over K,
K[x], is a principal ideal domain.

However, we often have to deal with rings that do not have such good behavior. For instance,
the above theorem does not extend to polynomial rings over several variables, or over rings
that are not �elds, as both R[x, y] and Z[x] are not PIDs. There is a weaker property that
has more �stability� in this sense, and we shall make use of it in certain situations:

De�nition 2.12 An integral domain (R,+, ·) is called a Noetherian ring if every ideal is
�nitely generated, i.e. for every ideal i there exist r1, . . . , rk ∈ R such that i = (r1, . . . , rk).

Theorem 2.13 A ring R is Noetherian if, and only if4 it satis�es the ascending chain
condition: if i0 ⊆ i1 ⊆ i2 ⊆ · · · is an ascending sequence of ideals in R, there exists some
n0 ∈ N where the sequence stabilizes, i.e., for every n ≥ n0, we have in = in0.

4The proof of this equivalence uses the Axiom of Choice.
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The following two properties imply that most (if not all) of the rings we will encounter in
what follows are Noetherian:

Theorem 2.14 If R is a Noetherian ring, then R[x], the set of all polynomials with coe�-
cients in R, is Noetherian. In particular, given the isomorphism between R[x1, . . . , xn] and
(R[x1, . . . , xn−1])[xn], any ring of polynomials over �nitely many variables with coe�cients
in a Noetherian ring R is Noetherian as well.

Theorem 2.15 If R is Noetherian, then, for any ideal i in R, the quotient ring R/i is
Noetherian.

Over the next sections we shall see that a very powerful tool to study number rings in algebraic
number theory is that we can easily construct isomorphisms between them and quotients of
polynomial rings. Indeed, we can �add new elements� to a �eld or ring that satisfy a desired
algebraic equation by taking appropriate quotients. The previous results ensure that, if we
start with a Noetherian ring, the end result will be Noetherian as well, which, as we shall
see, has important number-theoretical implications.

The following de�nitions will be central for the next sections:

De�nition 2.16 Let R be an integral domain. A maximal ideal is a nontrivial ideal p such
that, if there is some ideal i ⊇ p, then either i = p or i = R (i.e. p is maximal under inclusion
among nontrivial ideals). Similarly, p will be a prime ideal if, whenever a product ab ∈ p,
then either a ∈ p or b ∈ p.

While these two de�nitions may seem disparate, it turns out that both are generalizations
of the idea of �prime number�. Indeed, if we interpret (m) ⊇ (n) as m | n (as is the case in
Z), maximal ideals (p) correspond exactly to those where if m | p then either m is ±p or ±1,
i.e. p is prime. Similarly, it can be proven that p is prime if and only if p | ab implies that
p | a or p | b, which corresponds to the second condition. Note that primality of an ideal is
a property that also translates to products of ideals, i.e. whenever a · b ⊆ p, then a ⊆ p or
b ⊆ p. The two de�nitions are connected by the following result:

Theorem 2.17 An ideal p is maximal if, and only if, R/p is a �eld; it is prime if R/p is an
integral domain, and vice versa. Thus, a maximal ideal is always prime. When R is a PID,
the converse is also true.

When R is not a PID, the converse of the latter statement might be false.

2.2. Field extensions and algebraic numbers

Remember that a �eld extension K|F is a pair of �elds F ⊂ K. Since in this situation K
may be seen as a F -vector space, we call the value [K : F ] = dimF (K) the degree of the
extension; if L ⊇ K ⊇ F then the degree satis�es the equality [L : F ] = [L : K] · [K : F ].

Remark In this section and in what follows, we shall assume that all �elds involved have
characteristic zero and thus have Q as a sub�eld, unless stated otherwise.
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De�nition 2.18 Given a �eld extension K|F , an element α ∈ K is an algebraic number
over F if there is a polynomial p ∈ F [x] with coe�cients in F such that p(α) = 0. Otherwise,
we say that x is a transcendental number over F . An algebraic �eld extension K|F is
one where every element of K is algebraic over F .

Note that, given α ∈ K algebraic over F , the set of polynomials p ∈ F [x] such that p(α) = 0 is
an ideal. Since F is a �eld, this ideal is principal, i.e. generated by a single polynomial mα(x),
which may be assumed monic. We call this theminimal polynomial of α (over F ); this is an
irreducible polynomial over F , in the sense that mα(x) does not factor into polynomials
of strictly smaller degree in F [x]. Note that this also implies that the corresponding ideal
(mα(x)) is maximal.

Sums, products and quotients of algebraic numbers are algebraic as well. It may be a hard
problem to determine the explicit polynomials mα+β(x) or mαβ(x) from the coe�cients of
the polynomials mα(x) and mβ(x) (although it can be done via matrix manipulations based
on the linear representation techniques brie�y described further down), so this fact is usually
proved via algebraic tricks based on the following two facts:

Proposition 2.19 If K|F and L|K are algebraic extensions, then L|F is algebraic as well.

Proposition 2.20 If [K : F ] <∞, then the extension K|F is algebraic.

Of course, the converse is false; for instance, we could take the set of all complex numbers
that are algebraic over Q and see that they form a �eld A, but, since n

√
2 ∈ A for all values

of n and these numbers are all linearly independent over Q, we must have [A : Q] = ∞.
However, all algebraic extensions are, in a way, constructed from �nite ones, as we shall see
below; we need some terminology �rst.

Let K be any �eld and R ⊂ K be a subring (not necessarily a �eld itself). Suppose S is any
subset of K. Write R[S] for the smallest subring (under inclusion) of K that contains both
S and R, and R(S) for the smallest sub�eld of K that contains both S and R, that is:

R[S] =

A subring of K⋂
R,S⊆A

A, R(S) =
F sub�eld of K⋂

R,S⊆F

F.

Just as in the case of ideals, arbitrary intersections of subrings and sub�elds result in subrings
and sub�elds, respectively; thus, R[S] and R(S) are both well-de�ned. It is not hard to verify
that:

Proposition 2.21 Let R ⊆ K be any subring of the �eld K. If S = {α}, with α ∈ K, then
every element of the ring R[α] is of the form a0 + a1α + . . . + amα

m with a0, . . . , am ∈ R.
Similarly, any element of R(α) is of the form:

a0 + a1α + . . .+ amα
m

b0 + b1α + . . .+ bnαn
, a0, . . . , am, b0, . . . , bn ∈ R.

A similar result holds for any �nite S ⊆ K, by using the fact that, e.g. (R[S])[T ] = R[S ∪T ].
From this, we get the following consequence:
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Proposition 2.22 Let K|F be a �eld extension and α ∈ K. The following are equivalent:

� α is algebraic over F ,

� [F (α) : F ] <∞,

� F [α] = F (α).

Thus, any element α of an algebraic extension K of F lies in some �nite extension of F
contained in K. Furthermore, deg(mα(x)) = [F (α) : F ]. An important tool to study �eld
extensions (linked to the last two propositions) is the following:

Lemma 2.23 Let Eα : F [x] → K be the morphism that maps every polynomial p(x) =
a0 + a1x + . . . + anx

n in F [x] to its evaluation in α, i.e. the value a0 + a1α + . . . + anα
n. If

α is algebraic over F , then ker(Eα) = (mα(x)), and thus, we have an isomorphism:

F [x]/(mα(x)) ∼= F (α).

Similarly, for any irreducible p(x) ∈ F [x], the quotient F [x]/(p(x)) is a �eld which is iso-
morphic to a �nite �eld extension of F of the form F (α), and p(x) = mα(x).

An example of usage of this lemma is the well-known case of the construction of the complex
numbers from the reals, in where we have C ∼= R[x]/(x2 +1). The equivalence class of x in the
latter quotient satis�es the condition [x]2 + [1] = [0], i.e. [x] takes the role of the imaginary
unit i. As we know, the resultant �eld C satis�es the property5 that every polynomial in C[x]
factors into linear terms; this is a particular case of the following:

De�nition 2.24 A �eld K is algebraically closed if, for every nonconstant polynomial
p ∈ K[x] has a zero in K (and, thus, p factors into a product of linear terms (ax + b)).
In other terms, K is algebraically closed if every element that would be algebraic over K
already belongs to K. The algebraic closure of K is any �eld K satisfying the following
two conditions:

� K is algebraically closed, and

� the extension K|K is algebraic.

It can be proved that the algebraic closure of a �eld always exists and is unique up to
isomorphism, so speaking of �the� algebraic closure is completely justi�ed. For example, the
aforementioned sub�eld A of C may be proved to be the algebraic closure of Q. Note that
A does not equal C; in particular, the former is denumerable while the latter is not. Since
we are interested mostly in algebraic �eld extensions, we shall assume that the larger �eld K
from a �eld extension K|F is a sub�eld of F unless stated otherwise.

Before concluding this section, we need to introduce a special sort of ring homomorphism
that is closely linked to algebraic �eld extensions.

De�nition 2.25 Let K|F be a �eld extension. A F -automorphism of K is a ring auto-
morphism f : K → K which satis�es the property f(x) = x for all x ∈ F . The set of all

5Widely known as the Fundamental Theorem of Algebra.
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F -automorphisms of K is a group under composition, which we shall denote as Aut(F |K)
or6 Gal(F |K).

For instance, complex conjugation a + bi 7→ a − bi is a R-automorphism of C (and, as we
shall see, the only nontrivial one). Note that, if p is a polynomial with coe�cients in F and
f is a F -automorphism of K, then p(f(α)) = f(p(α)) for every p ∈ F [x], which means that,
in particular, if α is a zero of p, then f(α) is a zero as well. Thus, if K = F (α), f is entirely
determined by the permutation it induces on the roots of mα(x), as long as it maps α to
some element of F (α). The latter condition is actually very important, so we give it a name:

De�nition 2.26 An algebraic �eld extension K|F is a normal extension if, whenever a
polynomial p ∈ F [x] has a root in K, then every other root of p is also in K, that is, p factors
as c(x− α1) · · · (x− αn) with α1, . . . , αn ∈ K.

K|F is called a separable extension if every α ∈ K has a minimal polynomial without
multiple roots, i.e. mα(x) has no factors of the form (x − β)r with r ≥ 2 after factoring in
F .

Finally, a Galois extension K|F is one that is both normal and separable.

We actually only care about normal extensions in this context, as separability is automatic for
�elds with characteristic zero (and thus �normal� and �Galois� are synonyms for our purposes
here). An example of a non-normal algebraic extension is Q( 3

√
2), as this �eld is a sub�eld

of R; the minimal polynomial of 3
√

2, x3 − 2, has three distinct roots, but the remaining two
are complex and thus cannot belong to Q( 3

√
2). Obviously, the algebraic closure of a �eld is

a Galois extension, but it is not the only one:

De�nition 2.27 Let F be a �eld and p ∈ F [x] a polynomial. The splitting �eld of F is the
smallest �eld F ⊇ K ⊇ F such that p factors into linear terms in K.

Proposition 2.28 If F has characteristic zero, then K|F is a Galois extension of F if, and
only if, K is the splitting �eld of some polynomial p ∈ F [x].

Note that the splitting �eld of a polynomial p ∈ F [x] is a �nite extension of F and, thus, for
any �eld extension K|F , there exists some �eld extension N |K such that N |F is �nite and
Galois. An important class of examples of Galois extensions we shall encounter later on is
the following:

De�nition 2.29 A cyclotomic �eld is the splitting �eld of the polynomial xn − 1 ∈ Q[x].
If we write ζn = e2πi/n, then the cyclotomic �eld associated to xn − 1 is precisely Q(ζn).

When K|F is a Galois extension, we use the notation Gal(F |K) to refer to the group of all
F -automorphisms of K. The reason is due to the following central result:

Theorem 2.30 (Fundamental Theorem of Galois theory) If K|F is a �nite Galois �eld
extension, there is a 1-1 correspondence between sub�elds K ⊇ L ⊇ F and subgroups of

6We reserve this second notation for a speci�c subcase, which will be detailed below.
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Gal(K|F ). More precisely, if H ≤ Gal(K|F ), write:

KH := {x ∈ K : f(x) = x for every f ∈ H}.

Then every sub�eld K ⊇ L ⊇ F is of the form L = KH for precisely one subgroup H of
Gal(K|F ). Furthermore, H > H ′ if, and only if, KH ⊂ KH′.

The Galois group Gal(K|F ) will be important for some applications in the next sections.
We note a few properties of interest:

Proposition 2.31 If K|F is a �nite Galois extension (and thus a splitting �eld for some
p ∈ F [x]) then |Gal(K|F )| = [K : F ]. In the non-Galois case, |Aut(K|F )| divides [K : F ].

Proposition 2.32 Gal(Q(ζn)|Q) ∼= Z/nZ.

Proposition 2.33 If [K : Q] = 2, then K|Q is normal and Gal(K|Q) ∼= Z/2Z. Such a K
is called a quadratic �eld.

Closely related to F -automorphisms (and thus the associated Galois group), but sometimes
easier to handle, is the notion of F -embeddings, de�ned as follows:

De�nition 2.34 Let K|F be a �eld extension. A F -embedding is any ring homomorphism
ι : K ↪→ F that satis�es ι(x) = x for every x ∈ F .

In the previous de�nition, F may be replaced by any algebraically closed �eld that contains F .
Since for our purposes F will usually be Q (or a �nite extension thereof), we may assume that
Q-embeddings are ring homomorphisms ι : K → C, which makes no di�erence. For instance,
Q(
√

2) has two Q-embeddings into C, the standard inclusion map and the map ι(a+ b
√

2) =
a−b
√

2 ∈ C, while Q( 3
√

2) has three Q-embeddings, which are entirely determined by whether
they map 3

√
2 to any of the three elements 3

√
2, ζ3

3
√

2, ζ2
3

3
√

2. In general, we have the following:

Proposition 2.35 There are exactly [K : F ] = d F -embeddings ι : K ↪→ F .

Since we may assume without loss of generality that Q-embeddings of a �eld extension K|Q
map K to some sub�eld of C, it makes sense to distinguish whether this sub�eld is also a
sub�eld of R or not; therefore, we speak of real embeddings ι : K ↪→ R and conjugate
pairs of complex embeddings ι, ῑ : K ↪→ C, depending on the case; if there are r distinct
real embeddings and s pairs of conjugate complex embeddings, we must have r + 2s = d.

Proposition 2.36 A �eld extension K|F is Galois if, and only if, there is some �xed sub�eld
K̃ ⊆ K such that the image of K under any F -embedding is K̃. In such a case, given a �xed
embedding ι : K ↪→ F , every other F -embedding is of the form ι ◦ f , where f ∈ Gal(K|F ).

This gives an explanation to the fact that Q( 3
√

2) is not Galois, as, while the three �elds
Q( 3
√

2), Q(ζ3
3
√

2) and Q(ζ2
3

3
√

2) are isomorphic, they correspond to distinct subsets of C, and
the intersection of any two of them is just Q.
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De�nition 2.37 Suppose that K|Q is a �nite �eld extension with r real Q-embeddings
ι1, . . . , ιr : K ↪→ R and s conjugate pairs of complex embeddings σ1, σ̄1, . . . , σs, σ̄s : K ↪→ C.
The Minkowski embedding of K is the function M : K → Rr × Cs given by:

M(x) = (ι1(x), . . . , ιr(x), σ1(x), . . . , σs(x)),

where we choose only one of each conjugate pair of complex embeddings.

This embedding (or, more precisely, its restriction to a speci�c subset that will be de�ned
afterwards) will take an important role in a later chapter.

We say that two elements α, β ∈ F (or, in general, in K for a given �eld extension K|F )
are conjugate if they share the same minimal polynomial mα = mβ ∈ F [x]. We see that
two di�erent F -embeddings of K map a given x ∈ K to conjugate elements of F ; similarly,
F -automorphisms from Aut(K|F ) map any element of K to one of its conjugates, and, if
K|F is Galois, all conjugates of any x ∈ K are of the form f(x) for some f ∈ Gal(K|F ).
Since mα has a �nite number of roots, every element of K has �nitely many conjugates, and
thus we may add or multiply all of them. The resulting elements of K are mapped to the
same number ν ∈ F by any F -embedding of K, and it can be proved that this only happens
when ν ∈ F (e.g. a number is real if, and only if, it is equal to its complex conjugate). Thus,
we give these numbers a name:

De�nition 2.38 Let K|F be a �nite �eld extension and x ∈ K. The norm of x, NK|F (x), is
the product of all conjugates of x, while the trace trK|F (x) of x is the sum of these conjugates.
In symbols:

NK|F (x) =
∏

ι : K↪→F

ι(x), trK|F (x) =
∑

ι : K↪→F

ι(x).

While NK|F (x) and trK|F (x) are, by de�nition, elements of F , it is not hard to verify that
they must belong to F itself. Thus, the norm and trace may be thought of as maps K → F
with the following properties:

NK|F (xy) = NK|F (x)NK|F (y), trK|F (x+ y) = trK|F (x) + trK|F (y),

NK|F (x) = x[K:F ], x ∈ F, trK|F (x) = [K : F ]x, x ∈ F,
NL|F (x) = NL|K ◦NK|F (x), F ⊆ K ⊆ L, trL|F (x) = trL|K ◦ trK|F (x), F ⊆ K ⊆ L.

The term �norm� comes from the fact that, for the �eldQ(i),NQ(i)|Q(a+bi) = a2+b2 = |a+bi|2,
and early studies on the ring Z[i] and the associated �eld Q(i) stated many of its results in
terms of the standard complex norm. Regardless of this name, the norm may take positive
or negative values; for instance, in the �eld extension Q(

√
2)|Q, we have:

NQ(
√

2|Q)(a+ b
√

2) = (a+ b
√

2)(a− b
√

2) = a2 − 2b2,

and thus, for instance, NQ(
√

2)|Q(
√

2) = −2. In the next section we shall see some properties
of norms and traces more closely connected to algebraic number theory, which we shall make
use of afterwards.
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2.3. Algebraic integers and number rings

We are now in a position to introduce the basic notions of algebraic number theory we shall
employ in latter chapters. Our main objects of study will be the following:

De�nition 2.39 Let K|Q be a �eld extension. An algebraic number α ∈ K is called an
algebraic integer if its minimal polynomial mα(x) (which, as stated before, is assumed to
be monic) has integer coe�cients.

That is, α ∈ K is an algebraic integer if p(α) = 0 for some p ∈ Z[x] with leading coe�cient
1. Numbers such as

√
2 and ϕ = (1 +

√
5)/2 are algebraic integers, but others such as 1/

√
3

are not, despite being algebraic numbers.

De�nition 2.40 Given a �eld extension K|Q, the ring of integers or maximal order7

of K is the set of all algebraic integers of K, written OK (or sometimes ZK).

The set OK is e�ectively a subring of K, as it should be obvious that 1 ∈ OK and this set
is closed under addition and multiplication, even if the veri�cation of this is not as obvious
as it might appear at �rst. The name �algebraic integer� comes from the fact that OK has a
similar relationship with K that Z has with Q (and, in fact, OQ = Z), up to and including
the fact that every element of K is of the form n/m with n,m ∈ OK .

Proposition 2.41 The ring OK is an integrally closed subset of K, meaning that if p(x) ∈
Z[x] is a monic polynomial with a root on K, that root belongs to OK.

Remark In particular, if a monic polynomial with integer coe�cients has a rational root,
that root must be an integer.

2.3.1. Divisibility and factorization

One of our main subjects of interest in regards to a ring of algebraic integers is a generalized
notion of divisibility, which is connected with many questions from number theory. For ins-
tance, a classical question is to determine which numbers can be represented as the sum of
two squares of integers (e.g. 5 = 12 + 22, but it can be veri�ed by hand that 7 does not equal
a2 + b2 for any a, b ∈ Z). One way to solve this question is to note that the following set of
complex numbers:

Z[i] = {a+ bi : a, b ∈ Z},

is actually the ring of algebraic integers of the �eld Q(i), whose �eld norm is NQ(i)|Q(a+ bi) =
a2 + b2. Thus, to determine whether n ∈ N is a sum of two squares, we need to either �nd
a number u ∈ Z[i] with NQ(i)|Q(u) = n, or show that such a number does not exist. This
question actually relates to the factorization of n as an element of Z[i]: it can be shown that
n is a sum of two squares if it is of the form n = a2b, where a, b ∈ N and b is a product of
prime numbers who are also sums of two squares. The latter primes are exactly those who

7An order is a ring all of whose elements are algebraic integers. Thus, the ring of integers of K is an order
that is maximal under inclusion. As we shall see, rings such as Z[

√
5] are non-maximal orders.
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cease being prime in Z[i], factoring into smaller terms, showing how this classical problem
reduces to an issue of divisibility on a speci�c ring.

De�nition 2.42 Let R be an integral domain, and x, y ∈ R. We say that x is a divisor of
y (or x divides y) if there exists z ∈ R such that xy = z; in this situation, we write x | y.
If x | y and y | x, we say that x and y are equivalent.

Remark Two elements x, y ∈ R are equivalent if, and only if, there exists some unit u ∈ R×
such that x = uy. When we deal with factorizations, we usually disregard the units from R×,
and we treat two factorizations that di�er only in the presence or absence of certain units as
the same.

Most of our study of divisibility in Z relies on �splitting� a given number into its component
parts, that is, factorization into prime numbers. We would like to reintroduce this tool in
the general setting of rings; however, we will encounter several di�culties that do not appear
for our usual integers in Z. First and foremost, we note that we may extend the concept of
prime number to integral domains in two di�erent, non-equivalent ways:

De�nition 2.43 Let R be an integral domain, and p ∈ R. We say that p is irreducible if,
whenever q | p, either p | q (that is, q is equivalent to p) or q ∈ R×.
We say that p is prime if, whenever p | ab for some a, b ∈ R, then p | a or p | b.

As noted before in the setting of ideals, the notion of irreducibility generalizes the idea of
prime numbers having no divisors other than themselves, while the notion of primality is a
generalization of the property p | mn =⇒ p | m ∨ p | n which characterizes prime numbers
in Z. Prime elements can be easily seen to be irreducible (if p = ab, then, since p divides
itself, it must divide either a or b, being equivalent to it and forcing the other element to be
a unit), but the converse is false in general. For instance, in Z[

√
−5], 3 may be seen to be

irreducible, and it obviously divides 6 = (1 +
√
−5)(1 −

√
−5). However, it does not divide

1 +
√
−5 nor 1−

√
−5 (something that may be seen by comparing norms) and thus it is not

prime.

We could think at this point that it might be possible to choose the better behaved out of
those two notions as our version of �building blocks� for a ring and develop a factorization
theory from there. However, our example with Z[

√
−5] shows that neither is the proper

one in some circumstances: 6 decomposes into irreducible numbers in two di�erent ways, as
(1+
√
−5)(1−

√
−5) and 2 ·3, but no one of the numbers involved is prime, and we may show

that there are no prime elements of Z[
√
−5] that are �up to the task�, so to speak. In fact,

the lack of prime numbers is what allows the existence of two di�erent factorizations into
irreducible elements. Thus, it is important to give a name to the �well-behaved� situation:

De�nition 2.44 An integral domain R is called a unique factorization domain (UFD) if
every element r ∈ R\{0} may be written as a product of irreducible elements in a unique way
up to equivalence. That is, for every r ∈ R \ {0} there exist u ∈ R× and p1, . . . , pk ∈ R such
that r = up1 · · · pk, with all the pj being irreducible; moreso, if r = wq1 · · · q` with w ∈ R×
and q1, . . . , q` irreducible, then k = ` and there is some permutation σ ∈ Sk such that pi and
qσ(i) are equivalent.
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We settle for irreducibles in the de�nition above because in the setting of UFDs it does not
actually make a di�erence:

Proposition 2.45 If R is a UFD, then every irreducible element is prime.

We have met several examples of unique factorization domains already, as shown by:

Proposition 2.46 Every principal ideal domain is a UFD.

This includes every ring of polynomials K[x] over a �eld, and algebraic integer rings such as
Z[i] and Z[ζ3]. In these rings, the theory of divisibility can be developed in a similar way as
what we know from Z (besides the additional care one must take with regards to units from
R×) and an important tool in the context of algebraic integers is the �eld norm, because of
its multiplicative properties. We have:

Proposition 2.47 Let K|Q be a �nite �eld extension, N = NK|Q the associated �eld norm
and OK the corresponding ring of integers. We have the following properties:

� N(x) ∈ Z for every x ∈ OK,

� if x ∈ R× (i.e., it is a unit) then N(x) = ±1, and similarly,

� if x and y are equivalent, then N(x) = ±N(y),

� x | N(x); thus, if x is irreducible (hence prime), N(x) = pk for some prime integer p;
more generally,

� x | y =⇒ N(x) | N(y),

� [OK : (x)] = |N(x)|, where the left term is the index of the ideal (x) seen as an additive
subgroup of (OK ,+).

Thus, one may detect distinct irreducible factors of some x ∈ OK by studying the prime
factors of N(x) ∈ Z, and units are automatically discarded in this fashion. While this does
not eliminate all of the work involved (as N(x) may be a power of the same prime p for
non-equivalent irreducible elements of OK), for certain �elds K the factorization problem
reduces almost entirely to the equivalent problem in Z.

2.3.2. Ideal factorization and Dedekind domains

What happens in the case where R is not a UFD? As it turns out, norms are still a very
powerful tool for the task, and we will have something akin to unique factorization for any
ring OK when [K : Q] < ∞. In particular, the existence of a factorization into irreducibles,
even though it is not unique, can be proved via norms: either x is irreducible or x = yz
with y, z non-units. Since neither y nor z can be equivalent to x, then |N(y)| and |N(z)|
are strictly smaller than |N(x)|, as they are nontrivial divisors of the latter. We can iterate
this process on y and z, but only a �nite number of times due to the well-ordering of N;
the end result is a factorization of x into irreducible terms. Thus, we need to see whether
we can guarantee uniqueness, or if some generalization of this setting allows to �re�ne� two
non-equivalent factorizations to result in the same decomposition.
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Our solution will lean towards the latter option. Think of the previous example of failure of
unique factorization, Z[

√
−5]: we have that 6 has two essentially di�erent factorizations into

irreducibles, those being 2 · 3 and (1 +
√

5)(1 −
√

5). One may think that, by introducing
additional �numbers� to Z[

√
−5] (just like one adds the imaginary unit i =

√
−1 to R to get

a solution for the equation x2 + 1 = 0), one may have a factorization such as:

2 = ab, 3 = cd, 1 +
√

5 = ac, 1−
√

5 = bd,

with a, b, c, d being some of those new �numbers�, taking the role of prime or irreducible
factors, such that abcd is �the� factorization of 6. Kummer, who introduced this idea, called
these extra elements �ideal numbers�, and, as we shall see, the name is not a coincidence.

First, note that Z[
√
−5] is not a PID (as that would immediately imply that it is a UFD).

The ideal (6) can be written as a product of two principal ideals in two ways coming from
the previous factorizations; however, neither of the four ideals (2), (3), (1 +

√
5), (1 −

√
5)

is actually a maximal ideal. Indeed, if we write a = (2, 1 +
√

5), we see that both (2) and
(1 +

√
5) are contained in a; however, 3 /∈ a and thus this ideal is nontrivial. Similarly, one

may write b = (2, 1−
√

5), c = (3, 1 +
√

5) and d = (3, 1−
√

5), and then it can be seen that:

(2) = a · b, (3) = c · d, (1 +
√

5) = a · c, (1−
√

5) = b · d.

Neither of these four ideals is principal, as that would imply the existence of irreducible
nontrivial factors for numbers we already know are irreducibles. However, a, b, c, d are all
maximal, as it can be veri�ed that, e.g., [OK : a] = 2 so that there cannot be a nontrivial
ideal that strictly contains a.

We previously mentioned that, for a general integral domain R, the notions of m | n, n ∈ (m)
and (m) ⊇ (n) are all equivalent for m,n ∈ R. Thus, it makes sense to move our questions
about divisibility to the domain of ideals, and no longer think directly on terms of elements
of R unless it is strictly necessary. Thus, for two ideals a and b, we write a | b as a synonym
for b ⊆ a and we also write a | b as a shorthand for a | (b) (thus we can say that a given ideal
divides some element of R). Again, we interpret principal ideals (a) as the set of multiples
of a given number a; hence, we could interpret a general, non-principal ideal as the set of
multiples of one of those �ideal numbers� R has been augmented with.

The following results lead us to our desired de�nition:

Proposition 2.48 For any �nite extension K|Q, the ring of algebraic integers OK is a
quotient of some ring of polynomials Z[x1, . . . , xd] and is thus Noetherian.

Note that the fact that the extension K|Q is �nite is essential to estabilish this result. For
example, E = OA, the set of all algebraic integers, cannot be Noetherian, as it contains the
in�nite ascending chain (2) ⊂ (

√
2) ⊂ ( 4

√
2) ⊂ ( 8

√
2) ⊂ . . . which never stabilizes.

Proposition 2.49 In a commutative Noetherian ring, every ideal a can be written as a �nite
product of maximal ideals.

Thus, we already have a method to factor ideals into a sort of equivalent of prime numbers.
However, we lack uniqueness still; for this, we actually need primality, as this property of
ideals is the one that actually ensures uniqueness of factorizations. Indeed, if an ideal a can
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be written in two ways p1 · · · pr and q1 · · · qs as a product of prime ideals, each pi must divide
one of the qj due to primality, and vice versa; under appropriate conditions and some work,
this implies that each pi is one of the qj and that r = s.

Remember that an ideal p of an integral domain R is prime if R/p is also an integral domain,
and maximal if this quotient is a �eld. Both situations are equivalent if this quotient is �nite,
and, since this is always the case8 for rings of algebraic integers for a �nite �eld extension
K|Q, we have the following:

Proposition 2.50 If K|Q is a �nite �eld extension, all nonzero prime ideals of OK are also
maximal (thus, the two notions are equivalent).

In short, rings of algebraic integers for �nite extensions are always in the following category:

De�nition 2.51 An integral domain R is a Dedekind domain if it is Noetherian, integrally
closed and every nonzero prime ideal is maximal.

This turns out to be exactly what we want for our purposes, as:

Theorem 2.52 An integral domain R is a Dedekind domain if, and only if, every nonzero
ideal a has a unique factorization as a product of prime (equivalently, irreducible) ideals.
This is, there exist prime ideals p1, . . . , pr such that a = p1 · · · pr and, if there are other prime
ideals q1, . . . , qs such that a = q1 · · · qs, then r = s and there exists some permutation σ ∈ Sr
such that pj = qσ(j), 1 ≤ j ≤ r.

To summarize, factorization of ideals is very well-behaved in our cases of interest:

Corollary 2.53 For a �nite �eld extension K|Q, every ideal a in OK factors as a product
of prime (equivalently, irreducible) ideals in a unique way.

Thus, whenever we are analyzing a number ring that is not a UFD, we will use ideal fac-
torization as our tool to answer questions of divisibility. These are often stated in terms of
valuations, which, while for us will be little more than notational devices, are very important
when delving deeper into number theory, �eld theory or algebraic geometry.

De�nition 2.54 Let K be a �eld. An (integer-valued9) valuation is a function v : K →
Z ∪ {∞} satisfying the following three properties:

� v(x) =∞ ⇐⇒ x = 0,

� v(ab) = v(a) + v(b),

� v(a+ b) ≥ mı́n(v(a), v(b)).

8This is a consequence of the integral basis lemma from the next section, and of the fact that submodules
of modules of �nite rank over a PID are also of �nite rank.

9In a general setting, it is useful to allow valuations whose values come from a general ordered group;
however, we shall only need the Z-valued version.
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For example, the polynomial degree can be used to de�ne a valuation in the �eld of rational
fractions Q(x): it is clear that, for polynomials p, q ∈ Q[x], we have that deg(pq) = deg(p) +
deg(q) and deg(p + q) ≤ máx(deg(p), deg(q)). Thus, de�ning v(p/q) = deg(q) − deg(p) for
nonzero polynomials p and q results in a function with the aforementioned three properties.
Another example, which is the one we are interested in, is the following function de�ned in
Z for a given prime number p:

vp(n) :=

{
∞ if n = 0,

k if pk | n ∧ pk+1 - n.

This extends to Q in the obvious way: vp(a/b) = vp(a) − vp(b), and can be veri�ed to be
a valuation in this �eld, called the p-adic valuation. The name is strongly related to the
group of p-adic integers de�ned in the previous chapter, as the function δp(x, y) = p−vp(x−y)

is exactly the restriction to Z of the p-adic metric (shift metric) we de�ned for Zp. Indeed,
one may complete Z as a metric space using this p-adic valuation and obtain Zp naturally.

The p-adic valuations satisfy the following equality:

(∀x ∈ Q) : x =
∏
p∈P

pvp(x),

(where P represents the set of all integer primes) which, for integer values of x, equals their
prime factorization. For general �nite extensions, ideal factorization satis�es the same role; if
we write P(K) for the set of all nontrivial prime ideals of OK and let p ∈ P(K), the following
de�nes a function that satis�es the three properties of a valuation in OK :

vp(n) :=

{
∞ if n = 0,

k if n ∈ pk \ pk+1,

and, since every element of K can be written as m/n for some m,n ∈ OK , we can extend
the function vp to a valuation de�ned on all of K in the same way as in the integers. Thus,
once again, the principal ideal (x) in OK factors as:

(x) =
∏

p∈P(K)

pvp(x),

which will be our principal way to write ideal factorizations from now on.

As in the case of standard factorizations, the �eld norm is a very useful tool in this case. If
we disregard signs, we may extend this to ideals themselves by reexamining their properties
noted previously. Indeed, every ideal a is an additive subgroup of OK , which is always of �nite
index when the extension K|Q is �nite, and for principal ideals a = (a) the value [OK : a] is
exactly |NK|Q(a)|. Thus, we de�ne:

De�nition 2.55 The norm of an ideal a of OK in a �nite �eld extension K|Q is its index
as an additive subgroup of OK, i.e. NK|Q(a) = [OK : a].

Once again, NK|Q(a) ∈ a (a fact we may write as a | NK|Q(a)); as well, if a | b (that is,
a ⊇ b), then N(a) | N(b) and, similarly, NK|Q(a · b) = NK|Q(a)NK|Q(b). Thus, we have the
following result which shall be useful in later chapters:
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Lemma 2.56 Let x ∈ OK for a �nite �eld extension K|Q. Then:

NK|Q(x) = ±
∏

p∈P(K)

NK|Q(p)vp(x).

Note that NK|Q(p) = pk for any prime ideal p and some integer prime p ∈ P, and hence p | p;
that is, all prime ideals come from the factorization of integer primes in the ring OK . This
allows us to classify the primes from Z (and the corresponding prime ideals) according to
the behavior of their factorization in OK :

De�nition 2.57 Let K|Q be a �nite �eld extension and p ∈ P an integer prime. We say
that p is:

� an inert prime if the principal ideal (p) is prime in OK, i.e. the ideal factorization of
(p) has exactly one term, which is (p) itself,

� a split prime if (p) factors as a product of distinct prime ideals, i.e. (p) = p1 · · · pr
with p1, . . . , pr ∈ P(K) all distinct, and

� a rami�ed prime if there is some prime ideal p such that p2 | (p), that is, the ideal
factorization of (p) has some repeated factor.

By abuse of terminology, we often use the terms inert, split and rami�ed to refer to the
resulting prime ideals themselves.

This classi�cation is important for our purposes because split and rami�ed primes (particu-
larly the latter) introduce certain artifacts in our study of factorization that have implications
of interest in the dynamical systems we shall de�ne out of them. Determining which primes
exhibit each of these behaviors (or a combination thereof) is something beyond the scope of
this work; however, since we are particularly interested in rami�ed primes, it is worth noting
the following result:

Theorem 2.58 Let K|Q be a �nite �eld extension and letM : K ↪→ Rr×Cs be the Minkowski
embedding de�ned above, with r + 2s = d = [K : Q]. Let V be the least volume of a d-
dimensional nondegenerate parallelogram whose vertices lie all in M [OK ] ⊂ Rr × Cs; the
discriminant of K is the value ∆K = ±V 2, which is always an integer10. Then, a prime p
is rami�ed in OK if, and only if, p | ∆K.

The value ∆K can be computed directly without appealing to the Minkowski embedding,
and we shall indicate a method of doing so in a further section.

2.3.3. Dirichlet's unit theorem

We introduce now a small characterization of units in rings of algebraic integers, which we
shall employ later on. Remember that the set R× of units of a ring R is the collection of all
elements that have multiplicative inverses; since (xy)−1 = y−1x−1, R× is a group (which is
abelian when R is commutative). We brie�y discuss the structure of this group.

10The sign depends on the embeddings of the �eld K into C; after we see an e�ective computation method
for ∆K below it will be clear that, since it involves determinants that may have imaginary terms, ∆K can
be negative.
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Remember that a root of unity is a solution of the equation xn−1 = 0, that is, an element of
the form ζkn = e2πik/n. Every n-th root of unity α that belongs to a given algebraic extension
K of Q is a unit of OK , since α−1 = αn−1 and α is naturally an algebraic integer. Thus, roots
of unity are elements of �nite order of the group O×K ; conversely, if u ∈ O

×
K is of �nite order,

it is necessarily a root of unity. This can be used to show that O×K is a group of the form
U ×F , where U is a group consisting of elements that are of in�nite order11 and F is a �nite
group (corresponding to O×K ∩ S1, with S1 = {z ∈ C : |z| = 1}).

To see that U may have nontrivial elements, think for example of the ring Z[
√

2] = OQ(
√

2).

From the formula of the corresponding �eld norm, NQ(
√

2)|Q(a+ b
√

2) = a2 − 2b2, we can see

that, say, λ =
√

2+1 (the case a = b = 1) is a unit with inverse
√

2−1; however, its absolute
value as an element from C is greater than 1, which implies that the numbers (

√
2 + 1)n are

all distinct for n ∈ N, i.e. this is a unit of in�nite order. It is not hard to convince oneself
that every unit of Z[

√
2]× is of the form (±1 ±

√
2)n, and thus can be written as ±λn for

n ∈ Z, which implies that Z[
√

2]× ∼= Z× (Z/2Z) (in our previous terminology, U = 〈λ〉 and
F = {1,−1} are the two roots of unity present in R, as Q(

√
2) is embedded into the reals).

As it turns out, there is a strong relationship between the possible embeddings ofK into C and
the units of OK . Remember that what we called a Q-embedding is a ring homomorphism
ι : K ↪→ C whose restriction to Q is the identity; we distinguished real embeddings and
complex ones depending on whether the image im(ι) was entirely contained in R or not, and
mentioned that complex embeddings come in pairs (i.e. if ι is a complex embedding, then
ῑ(x) := ι(x) is another one). With this in mind, the relationship between these embeddings
and the units of OK is dictated by the following theorem:

Theorem 2.59 (Dirichlet's unit theorem) Let K|Q be a �nite �eld extension, and suppose
K has exactly r real embeddings and s conjugate pairs of complex embeddings (such that
r + 2s = [K : Q]). Then U , the set of elements of in�nite order of O×K, is isomorphic to the
group Zr+s−1. More precisely, there exist m = r + s − 1 distinct units λ1, . . . , λm ∈ O×K, all
multiplicatively independent (that is, λj11 · · ·λjmm = 1 implies that j1 = · · · = jm = 0), such that
every element of O×K is of the form ζλj11 · · ·λjmm for some root of unity ζ and j1, . . . , jn ∈ Z.

One may compute the values of r and s without determining all of the embeddings. For
instance, if we can �nd some α such that K = Q(α), then the conjugates of α are exactly the
n roots of mα(x), and every embedding K ↪→ C is entirely determined by which conjugate
is chosen as the image of α; then, the embedding will be real if, and only if, this conjugate
is real as well. Thus, r is the number of real roots of mα, and consequently the remaining
complex roots are exactly 2s = [K : Q]− r.

The generators of U are called the fundamental units of OK , and the set as a whole is called
a fundamental unit system. In some casos, fundamental unit systems may be computed
via geometric or algebraic considerations; for example, if K is a real �eld with [K : Q] = 2,
then the fundamental unit λ may be chosen as the element from O×K with smallest absolute
value greater than 1 (any of the two candidates may be chosen).

11The fundamental structure theorem for �nitely generated Z-modules implies, after some work, that U is
then isomorphic to Zr for some value of r.
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2.3.4. Matrix representations for algebraic integers

This is, in a way, a continuation of the few notions of representation theory introduced in
the previous chapter, and thus we once again we invite the reader to consult the book by
Burrow [21] or other specialized sources; the computational aspects are also discussed by
Jarvis [55]. After the discussion of the previous two sections, it is useful for computational
purposes to �nd reasonable ways to embed rings of the form OK (and, consequently, the
whole �eld K) into the ring of matrices Md(Q) for some appropriate d ≥ 1. We start with a
very useful de�nition that doubles as a lemma:

Lemma 2.60 (Integral basis lemma) Every ring of algebraic integers OK has an integral
basis12 B; that is, there exists a set of d = [K : Q] linearly independent elements B =
{ω1, . . . , ωd} ⊆ OK such that OK is the Z-linear span of B, that is:

OK = {n1ω1 + . . .+ ndωd : n1, . . . , nd ∈ Z}.

Note that the set B is also a basis, in the linear algebra sense, of K seen as a Q-vector space.
We say that OK is a d-dimensional (or rank d) Z-module. In general, a module is essentially
the same as a vector space, with the di�erence that scalar coe�cients are allowed to belong
to a ring instead of a �eld; we will not deal with many other examples of modules in this
work, however.

Thus, we may identify OK with Zd via the usage of an integer basis. If we take some α ∈
K, the function Mα(x) = αx is linear (since multiplication is distributive) and thus has a
representative matrix in the basis B = {ω1, . . . , ωd}. Furthermore, if α ∈ OK , then Mα must
map any vector of K ∼= Qd with integer coordinates in the basis B to another vector with
integer coordinates in this basis, which implies that the representative matrix13 of Mα must
necessarily have integer entries. In particular, if α ∈ Z, it is not hard to see that Mα = αId,
a multiple of the identity matrix. It is not hard to verify that:

Mα +Mβ = Mα+β, Mα ·Mβ = Mα·β,

and thus the mapping that sends α to the matrix Mα is a ring homomorphism %B : OK →
Md(Z), that is, a linear representation of the ring OK into the ring of matrices with integer
entries. Furthermore, this representation is injective (that is, faithful), so it determines a
subgroup of Md(Z) that is isomorphic to OK .
It is also not hard to check that, if α ∈ O×K , the matrix Mα has Mα−1 as its inverse, which is
also a matrix with integer entries; thus, Mα ∈ GLd(Z) and hence det(Mα) = ±1. Hence, O×K
is a linear group under multiplication.

It is worth remembering, now, that the determinant function is a multiplicative homo-
morphism Mn(Q) → Q, this is, det(AB) = det(A) det(B). The �eld norm is also a mul-
tiplicative homomorphism that maps elements from O×K to ±1; from here, it is not hard to
suspect the following:

12The de�nition of an integral basis also extends to the situation of an intermediate �eld K ⊃ F ⊃ Q,
in which elements of OK are represented via linear combinations with coe�cients in OF ; however, in this
more general situation integral bases may not exist (see Neukirch [81]). The proof of their existence relies, in
particular, on the fact that Z is a PID.

13Below, we shall assume that we have a �xed integral basis B and thus we won't make distinctions between
the linear transformation x 7→ αx and its representative matrix, writing Mα for both.
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Proposition 2.61 Given an integral basis B for OK and %B : OK → Md(Z) the correspon-
ding linear representation, the following two equalities hold:

det(%B(α)) = NK|Q(α), tr(%B(α)) = trK|Q(α).

Note that the same equalities hold for the obvious extension of %B to the whole of K. It is
also easy to note that, for any polynomial p ∈ Q[x], p(Mα) = Mp(α); thus, since any α ∈ K is
algebraic over Q, its minimal polynomial mα ∈ Q[x] satis�es the equality mα(Mα) = 0d, the
zero matrix. Hence, we have the following as a consequence of the Cayley-Hamilton theorem:

Proposition 2.62 Given K|Q a �nite �eld extension, B an integral basis for OK, and %B
the corresponding linear representation, let α ∈ K and M = Mα = %B(α) the associated
matrix. Then, the minimal polynomial of the matrix M (that is, the least degree polynomial
p ∈ Q[x] such that p(M) = 0) is mα(x), the minimal polynomial of α in the �eld extension
sense. Furthermore, the characteristic polynomial of M is a power of mα; more speci�cally,
it equals:

χM(x) = mα(x)[K:Q(α)].

The previous two results give us powerful tools to compute the norm, trace and minimal
polynomial of algebraic integers upon �nding an appropriate integral basis. For example,
{1, 3
√

2, 3
√

4} is an integral basis for Q( 3
√

2), upon which the representation homomorphism
%B is given by:

%B(
3
√

2) =

0 0 2
1 0 0
0 1 0

 =⇒ %B(a+ b
3
√

2 + c
3
√

4) =

a 2c 2b
b a 2c
c b a

 ,
and thus the norm and trace are now easy to compute:

NQ( 3√2)|Q(a+ b
3
√

2 + c
3
√

4) =

∣∣∣∣∣∣
a 2c 2b
b a 2c
c b a

∣∣∣∣∣∣ = a3 + 2b3 + 4c3 − 6abc,

trQ( 3√2)|Q(a+ b
3
√

2 + c
3
√

4) = 3a.

To compute the norm directly from the de�nition, we would have required to �nd explicitly
the three embeddings of Q( 3

√
2) into C or �nd a Galois extensionK of Q that contains Q( 3

√
2);

a similar situation applies to the trace. Furthermore, if we wanted to compute the minimal
polynomial of, say, 1 + 3

√
4, we could do so as follows:

M = %B(1 +
3
√

4) =

1 2 0
0 1 2
1 0 1

 ,
=⇒ χM(λ) = det(λI3 −M) =

∣∣∣∣∣∣
λ− 1 −2 0

0 λ− 1 −2
−1 0 λ− 1

∣∣∣∣∣∣
= (λ− 1)3 − 4,

∴ m1+ 3√4(x) = x3 − 3x2 + 3x− 5.
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Finding an appropriate integral basis may be hard. It is a known fact that any �nite �eld
extension K|Q may be taken to be of the form K = Q(α) for some appropriate α ∈ K,
and thus Bα = {1, α, α2, . . . , αd−1} is a basis of K as a Q-vector space, where d = [K : Q].
However, this α need not be an algebraic integer, or, if it is, the Z-linear span of Bα may be
a strict submodule of OK (see, e.g. Q(

√
5), where

√
5 is an algebraic integer, but Z[

√
5], the

linear span of {1,
√

5}, does not contain the golden ratio ϕ = 1
2
(1 +
√

5) despite it also being
an algebraic integer, as a root of x2−x− 1). Furthermore, it is known that there exists some
�elds K such that OK has no integral basis of this form. We note that such bases, if they do
exist, are relatively easier to handle, as if mα(x) = xd + ad−1x

d−1 + · · · + a0 is the minimal
polynomial of α, then, in the basis B = Bα, we have:

Mα =


0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −ad−1

 =⇒ %B

(
d−1∑
k=0

bkα
k

)
=

d−1∑
k=0

bkM
k
α,

which is often friendly to computations.

An additional application of integral bases is the e�ective computation of the discriminant
∆K de�ned previously in connection with rami�ed primes. We have the following result:

Lemma 2.63 Let K|Q be a �nite �eld extension of degree d = [K : Q], {ω1, . . . , ωd} be an
integral basis of OK, and {ι1, . . . , ιd} be the set of all (real and complex) Q-embeddings of K.
Then, the discriminant may be computed as any of the two following determinants:

∆K =

∣∣∣∣∣∣∣∣∣
ι1(ω1) ι1(ω2) · · · ι1(ωd)
ι2(ω1) ι2(ω2) · · · ι2(ωd)

...
...

. . .
...

ιd(ω1) ιd(ω2) · · · ιd(ωd)

∣∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣∣
trK|Q(ω1ω1) trK|Q(ω1ω2) · · · trK|Q(ω1ωd)
trK|Q(ω2ω1) trK|Q(ω2ω2) · · · trK|Q(ω2ωd)

...
...

. . .
...

trK|Q(ωdω1) trK|Q(ωdω2) · · · trK|Q(ωdωd)

∣∣∣∣∣∣∣∣∣ .
This also gives a theoretical (albeit not very practical) method to �nd an integral basis, by
looking, among all linearly independent d-tuples of algebraic integers of K, the ones that
minimize the value of this determinant.

2.3.5. Quadratic �elds and number rings

Now, we brie�y summarize the properties and classi�cations held by �elds K of index 2 and
their associated rings of algebraic integers; this is based on the discussion in the book by
Jarvis [55]. As we shall see, these �elds are always of the form Q(

√
d), where d ∈ Z is a

square-free number (i.e., for any p ∈ P, p2 - d), and their properties can be linked directly to
the value of d.

De�nition 2.64 Any �eld K with [K : Q] = 2 is called a quadratic �eld. They are always
of the form Q(

√
d) with d a square-free integer. When d > 0, we speak of a real quadratic

�eld, and an imaginary quadratic �eld otherwise; this is because Q(
√
d) ⊆ R has two

real embeddings when d > 0 and none when d < 0.
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Both real and imaginary quadratic �elds Q(
√
d) have only one nontrivial Galois automor-

phism, which is conjugation a + b
√
d 7→ a − b

√
d. When d < 0, this coincides with complex

conjugation, and thus Q(
√
d) has a conjugate pair of complex embeddings (s = 1, r = 0). For

real quadratic �elds, there are two real embeddings (i.e. r = 2, s = 0). In both cases, Q(
√
d)

is trivially a Galois extension of Q with |Gal(Q(
√
d)|Q)| = 2.

We mentioned previously that sometimes OQ(
√
d) is not Z[

√
d]. This actually depends on the

value of d, and is easily summarized by the following:

Proposition 2.65 If d 6= 4k + 1 for some k ∈ Z, then the ring of algebraic integers of
Q(
√
d) is Z[

√
d], and thus {1,

√
d} is an integral basis for Q(

√
d). When d = 4k+ 1, we have

OQ(
√
d) = Z[δ] with δ = 1

2
(1 +

√
d), which implies that {1, δ} is an integral basis.

For example, OQ(
√

5) = Z[ϕ], with ϕ the golden ratio, and Z[
√

5] is a strict subring (a non-
maximal order).

Dirichlet's theorem gives us the following characterization of units in quadratic �elds:

Corollary 2.66 Imaginary quadratic �elds have always a �nite number of units, which
correspond to roots of unity: four for d = −1, six for d = −3 and two for every other
negative value of d. In contrast, real quadratic �elds have in�nitely many units, and thus
O×
Q(
√
d)
∼= Z× (Z/2Z), and all of the units are of the form ±(a + b

√
d)n, n ∈ Z where (a, b)

is the smallest positive solution of the associated Pell's equation14 a2 − db2 = 1.

The ring OQ(i) = Z[i] is often called the ring of Gaussian integers. Similarly, OQ(
√
−3) =

Z[ζ3] is known as the ring of Eisenstein integers. Both are PIDs and therefore unique fac-
torization domains; furthermore, they are Euclidean domains, meaning that they have a
division algorithm just like the one of the integers. To be more precise:

De�nition 2.67 We say that an integral domain R is Euclidean if there exists some fun-
ction ϕ : R \ {0} → N such that, for every a, b ∈ R, there exist q, r ∈ R for which a = bq + r
and either r = 0 or ϕ(r) < ϕ(b). Such a function is called an Euclidean function.

That is, the function ϕ is the one that gives a notion of the remainder r being �smaller� than
b in some sense. In the usual division algorithm in Z, we use the absolute value ϕ as our
Euclidean function; for polynomials over a �eld K, the degree is the most obvious candidate.
Since the existence of a division algorithm allows us to compute greatest common divisors
using Euclid's algorithm, this is a property that is strictly stronger than being a PID. It is
known that:

Theorem 2.68 An imaginary quadratic �eld Q(
√
d), d < 0 has an Euclidean ring of algebraic

integers only when d = −1,−2,−3,−7,−11. This ring is a non-Euclidean principal ideal
domain only when d = −19,−43,−67,−163.

It is conjectured (but not known) that there are in�nitely many real quadratic �elds that are
PIDs; the status of Euclidean domain among them is, thus, also unknown.

14This equation can be solved via continued fraction techniques.
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Figure 2.1: Primes in the ring of Gaussian integers Z[i]; this is an example of the ring of
integers of a quadratic �eld.

We conclude with some brief notes on the classi�cation of prime numbers in some quadratic
�eld K. First, using the integral bases we noted above, we obtain the following:

Proposition 2.69 The discriminant ∆K of K = Q(
√
d) is given by:

∆K =

{
d if d = 4k + 1, k ∈ Z,
4d otherwise.

Given our characterization of rami�cation above, we conclude then that:

Corollary 2.70 A rational prime p ∈ P rami�es in OQ(
√
d) if it divides d. If d 6≡ 1 (mód 4),

then 2 is also a rami�ed prime.

For the remaining primes, there is also a veri�able condition to check whether they split or
not:

Proposition 2.71 Let p be a rational prime that does not ramify in Q(
√
d). Then, p splits

if, and only if, there exists some b ∈ Z such that d− b2 is divisible15 by p.

This is a consequence of the fact that d− b2 factors as (
√
d+ b)(

√
d− b) in OQ(

√
d), and the

primality property for ideals. Using techniques such as the quadratic reciprocity theorem, it
is then possible to classify every prime in the ring of integers of a quadratic �eld as inert
((p) = p), split ((p) = pp̄) or rami�ed ((p) = p2).

15We say that d is a quadratic residue modulo p, that is, there exists a solution b in Z/pZ of the equation
x2 ≡ d (mód p).
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2.4. Basic notions of algebraic geometry

As a complement to the previous section, we brie�y introduce some basic notions of algebraic
geometry, used in connection to the study of norms in integer rings. The standard references
in this subject are the books by Hartshorne [51] (albeit to a level of detail unneeded in the
current work) and Shafarevich [93], and the book by Lang [69] has an overview of the more
classical aspects of the theory. Gathmann [45] and Kendig [60] provide a simpler introduction
to the basic underlying concepts we shall need, along with Vaisencher [95] for the case of plane
curves..

Algebraic geometry deals with the set of solutions of algebraic equations in a �eld, such as, e.g.
S1 = {(x, y) ∈ R2 : x2 + y2 = 1}, which corresponds to a plane curve (speci�cally, a circle).
Similarly, equations with more variables may be thought of as de�ning surfaces or manifolds
in appropiate ambient spaces. However, these sets of solutions often exhibit phenomena not
usually taken into account in the standard theory of curves, e.g. self-intersections or multipli-
cities. For instance, the Descartes folium is a curve, given by the equation x3 + y3 = 3xy,
that intersects itself, while the equation (x + y − 1)2 = 0 describes the same points as the
equation x + y = 1, which corresponds to a straight line; however, each point on the �rst
equation is �accounted for� twice, and we may think of this equation as representing two
straight lines, one on top of the other. This is, in a way, a distinction of algebraic nature.

Another problem that may arise is that a given set V may need more than one equation
to describe it, or that there may be several di�erent equations appearing naturally that
result in the same set V . Thus, in the algebraic-geometric viewpoint, we identify each curve
(or surface, or etc.) with the corresponding family of (systems of) equations de�ning it, a
viewpoint which naturally leads to ideals: if p(x, y) = 0 along every point of a curve, then,
for any polynomial q(x, y), we will have q(x, y)p(x, y) = 0 as well. Formally, we proceed as
follows:

De�nition 2.72 Let K be a �eld and K[x1, . . . , xd] be the corresponding ring of polynomials
in d variables. Given an ideal r ⊆ K[x1, . . . , xd] in the latter ring, the a�ne variety (or
zero locus, or algebraic set; in the particular case of d = 2 we often speak of an algebraic
curve) de�ned by r corresponds to the following subset of Kd:

V(r) := {(u1, . . . , ud) : (∀p(x1, . . . , xd) ∈ r) : p(u1, . . . , ud) = 0}.

Reciprocally, given any set X ⊆ Kd, we de�ne the ideal of X as the following set of polyno-
mials:

I(V ) := {p ∈ K[x1, . . . , xd] : (∀(u1, . . . , ud) ∈ X) : p(u1, . . . , ud) = 0}.

If r = (p1, . . . , pk) is the ideal generated by the polynomials p1, . . . , pk, we may use the
notation V(p1, . . . , pk) instead of V(r) for the corresponding variety.

A�ne varieties represent our idea of curves, surfaces, etc., described by algebraic equations;
for instance, the unit circle S1 ⊆ R2 corresponds to the a�ne variety V(x2 + y2 − 1) in the
reals, while the straight line in R3 that passes through (0, 0, 0) and (1, 1, 1) corresponds to
V(x − y, x − z), which can be seen as the intersection of the two hyperplanes V(x − y) and
V(x− z).

The sets V(r) and I(X) are related by the following properties:
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Proposition 2.73 Given r, s ideals in K[x1, . . . , xd] and X, Y ⊆ Kd, we have the following:

(i) X ⊆ Y =⇒ I(Y ) ⊆ I(X).

(ii) r ⊆ s =⇒ V(s) ⊆ V(r).

(iii) X ⊆ V(I(X)), with equality when X is an a�ne variety.

(iv) r ⊆ I(V(r)).

To clarify the latter relationship, we need to introduce an additional concept:

De�nition 2.74 Let R be any integral domain and a an ideal in R. The radical of a is the
following ideal of R: √

a := {r ∈ R : (∃n ∈ N) : rn ∈ a}.

Note that if, for a set X we have that p(x)n = 0 for all x ∈ X, then p(x) = 0 for all x ∈ X.
Thus, if p(x)n ∈ I(X), then p(x) ∈ I(X), i.e.

√
I(X) = I(X). An ideal with this property

is called a semiprime ideal or radical ideal. We have, thus, that:

Theorem 2.75 If K is an algebraically closed �eld and r an ideal of K[x1, . . . , xd], then
I(V(r)) =

√
r; thus, equality holds if and only if r is a radical ideal. We have a 1-1 correspon-

dence between a�ne varieties in Kd and radical ideals in K[x1, . . . , xd], given by the maps I
and V.

The previous theorem is a form of Hilbert's Nullstellensatz, one of the central theorems in
algebraic variety. Another form, which is the one that is more commonly found, is the one
that ensures that algebraic varieties in algebraically closed �elds are nonempty. Indeed, we say
that a zero of an ideal r ⊆ K[x1, . . . , xd] is a point (u1, . . . , ud) such that p(u1, . . . , ud) = 0
for every p ∈ r; then, Hilbert's theorem says:

Theorem 2.76 (Hilbert's Nullstellensatz ) Let K be an algebraically closed �eld. If r is a
nontrivial ideal of K[x1, . . . , xd], then r has a zero in Kd.

Note that for d = 1 this is a restatement of the fact that K is algebraically closed, and thus
this hypothesis cannot be weakened.

The theory of algebraic sets and varieties is much more developed for the situation where K
is algebraically closed, as tools such as the previous theorem and the guarantee that every
one-variable polynomial decomposes as a product of linear factors are routinely employed in
this context. Thus, most of the facts below will apply to the space Cd, and we shall keep in
mind that they do not always translate directly to our context (e.g. it will not be obvious
how to study the set of points with integer coordinates of an algebraic variety) and we might
need some additional work.

We now introduce some basic properties of a�ne varieties in relation to ideals. Firstly, we
have the following:

Proposition 2.77 Let V1 and V2 be a�ne varieties. Then V1 ∩ V2 and V1 ∪ V2 are a�ne
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varieties. In particular, if Vi = V(ri), we have that:

V1 ∪ V2 = V(r1 · r2) = V(r1 ∩ r2),

V1 ∩ V2 = V(r1 + r2).

The latter relationship may be extended to any in�nite collection of ideals, by noting that the
set
⊕

i∈I ri (the set of all �nite sums of terms from
⋃
i∈I ri) is an ideal as well, that contains

every ri. Thus, we have: ⋂
i∈I

Vi = V

(⊕
i∈I

ri

)
,

and hence the arbitrary intersection of a�ne varieties is also an a�ne variety.

The previous result may be restated as: the set of all algebraic varieties over the space
Kd is the collection of closed sets of a topology on Kd. We call this topology the Zariski
topology; it has the advantage that we may use the language of topological spaces when
describing variety-related phenomena, such as connectedness.

As noted before, there are some varieties made of �pieces� or �components� which are them-
selves varieties. For instance, the variety x2 − y2 = 0 in R2 consists of two straight lines
x± y = 0. We thus distinguish between varieties that have such a decomposition from those
which don't:

De�nition 2.78 An a�ne variety V is reducible if it is the union of two nonempty a�ne
varieties V1, V2, both strictly smaller than V ; otherwise, we say that V is irreducible. A
component of V is a maximal irreducible a�ne subvariety V ′ ⊆ V .

Irreducibility, which may be thought of as a purely geometric notion, is pretty much algebraic
as well. Indeed, it can be shown that:

De�nition 2.79 Let r ⊆ K[x1, . . . , xd] be a radical ideal in an algebraically closed �eld.
Then, the a�ne variety V(r) is irreducible if, and only if, the ideal r is prime.

In the previous example given by the equation x2 − y2 = 0, we see that the polynomial
x2 − y2 is not irreducible, and factors as (x − y)(x + y), each of the factors corresponding
to one of the two lines we identi�ed as irreducible components. In contrast, the hyperbola
de�ned by the equation x2 − y2 = 1 is irreducible and its only component is itself, as the
polynomial x2−y2−1 is irreducible, and the corresponding ideal prime. Intuitively, if an ideal
r in K[x1, . . . , xd] factors as a product of prime ideals p1 · · · pk, the irreducible components
of V(r) should be V(pj), 1 ≤ j ≤ k. We have:

Theorem 2.80 Let V be an a�ne variety in Kd, with K an algebraically closed �eld. Then
there exist �nitely many irreducible varieties V1, . . . , Vk, with Vi * Vj for i 6= j, such that
V = V1 ∪ · · · ∪ Vk.

Since every irreducible component V ′ ⊆ V is equal to the union of the a�ne varieties V ′∩Vj,
then it must be equal to one of the Vj, as otherwise it contradicts either the irreducibility or
the maximality of V . Thus, this decomposition into irreducible components is unique up to
reordering, and V1, . . . , Vk are the only irreducible components of V .
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It is common in algebraic geometry to work in projective space KPd instead of usual a�ne
space Kd, as this makes the statement of certain theorems easier. Projective space is obtained
by endowing Kd with additional �points at in�nity� such that, for instance, two parallel
lines in Kd intersect in one of these new points. Formally, this corresponds to a quotient
(Kd+1 \ {0})/∼, where ∼ is the equivalence relation x ∼ y i� x = λy for some nonzero
λ ∈ K. When K (and thus Kd) has a topological space structure, we give the associated
quotient topology to KPd.

Points in KPd may be associated a set of d+ 1 coordinates [u1, . . . , ud+1], not all of them 0,
with the understanding that [λu1, . . . , λud+1] represents the same point for any λ 6= 0. The set
of points with coordinates [u1, . . . , ud, 1], in particular (or any other set with one coordinate
�xed as a nonzero value) is in a 1-1 bijection with Kd, while the additional elements of KPd

may be thought of as points at in�nity (which by themselves have the same structure as
KPd−1).

Any a�ne variety in Kd extends to KPd in a natural way as a quotient of a (d + 1)-
dimensional a�ne variety under the equivalence relation ∼; for example, the extension of the
parabola y− x2 = 0 to projective space is the set of all points [x, y, t] ∈ RP2 that satisfy the
equation ty − x2 = 0, which are exactly the same points [x, y, 1] from the original parabola
together with an additional point [0, 1, 0] which makes the resulting curve homeomorphic to a
circle. Note that the 3-dimensional a�ne variety V(ty− x2) has the property that, whenever
(x, y, t) ∈ V(ty − x2), we have (λx, λy, λt) ∈ V(ty − x2) as well, so as to make the quotient
well-de�ned; a similar procedure can be made for any a�ne variety given by some ideal r. We
call the quotient of a (d+ 1)-dimensional a�ne variety from Kd+1 under ∼ a d-dimensional
projective variety.

Now that we have the basic terminology of algebraic geometry, we introduce a few theorems of
common usage that we might encounter later on, including some properties of conic sections
we will �nd useful later on. First, we note that, while we are appealing to an intuitive
de�nition of dimension dim(V ) of a variety V , in the case of varieties it may formally be
de�ned as the longest possible chain of inclusions V ⊃ V ′ ⊃ V ′′ ⊃ · · · ⊃ V (n) where each
V (i) is irreducible and the inclusions are strict. This coincides with our intuitive notion of
dimension whenever the variety looks locally like a d-dimensional space in a topological sense.
Thus, it makes sense to de�ne the codimension of V as cod(V ) := d− dim(V ).

Theorem 2.81 (Dimension theorem) For two a�ne (or projective) varieties V1 and V2, we
have:

cod(V1 ∩ V2) ≤ cod(V1) + cod(V2).

Note that for a�ne varieties V1 ∩ V2 might be empty, so we de�ne cod(∅) = −1.

The following is an important result about intersections of varieties with codimension 1. We
only use a very weak version of this theorem, but for completeness we state it in full:

Theorem 2.82 (Bézout) Let p1, . . . , pd ∈ K[x1, . . . , xd] be n polynomials over an algebrai-
cally closed �eld K, and V(p1), . . . ,V(pd) the associated projective varieties, all of them of
codimension 1. Then, either:

�

⋂d
k=1 V(pk) is in�nite, or
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� the number of intersections, counting multiplicities, is
∏d

k=1 deg(pk).

Additional conditions may be introduced to ensure that the �nite case happens; however,
they are too technical for the scope of this work. We present a simple corollary of this result,
which may be proved by more elementary methods and is of interest to us; remember that a
conic section is a plane curve whose equation is of the form:

ax2 + bxy + cy2 + dx+ ey + f = 0.

Corollary 2.83 (Five points determine a conic) Let V1 and V2 be two irreducible conic
sections (that is, neither is the union of two straight lines). If |V1 ∩ V2| ≥ 5, then V1 = V2.

In particular, any two irreducible, distinct conic sections intersect in exactly four points,
counting multiplicities (that is, points where both curves are tangent), complex intersections
and points at in�nity.

Finally, to close this section, we introduce an important result on mappings between algebraic
varieties, in the version that is useful for us:

Theorem 2.84 (Ax�Grothendieck) Let p = (p1, . . . , pd) : Kd → Kd be a function of Kd to
itself (with K algebraically closed) such that every coordinate pj is a polynomial function on
the variables x1, . . . , xd, and suppose p[V ] ⊆ V for an a�ne (or projective) variety V . Then,
if p is injective, it must be surjective as well.

The original version of this theorem, proved by both James Ax and Alexander Grothendieck
independently, was stated for V = Cd and used model theory in an interesting way to derive
a contradiction. Our main interest is in the a�ne subcase: if V is a variety andM ·V +x ⊆ V
for some invertible matrix M and x ∈ Kd, then M · V + x = V .
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Chapter 3

Multidimensional symbolic dynamics,

aperiodic order and a�ne topics

In this chapter we introduce the main concepts of symbolic dynamics we will need for this
work. The classic references for one-dimensional symbolic dynamics are the books by Lind
and Marcus [71] and Kitchens [62], together with K·rka [64] for a description of certain
subshifts with interesting dynamical behavior. One-dimensional substitutions are studied
in several books, including Lothaire [72, 73] and Pytheas Fogg [38]. Finally, we direct the
reader to Ceccherini-Silberstein and Coornaert's book [24], as, while it is not focused on
symbolic dynamics proper, it introduces most of the new terminology that distinguishes the
multidimensional situation from the more studied one-dimensional case.

3.1. Shift spaces

The symbol A will be reserved for a �nite set (alphabet) and its elements will be referred
to as symbols. Since we deal with multidimensional subshifts, we shall reserve the letter d
to refer to the dimension of the space, and use vector notation k = (k1, . . . , kd) to refer to
speci�c elements of Zd. The letter s and corresponding tuple (s1, . . . , sd), in particular, will
be reserved for a speci�c �size� number associated to a speci�c substitution.

In what follows, we shall deal with spaces of functions or con�gurations1 of symbols
x : Zd → A; these functions assign a symbol xk to each point k ∈ Zd. As we can see,
this de�nes a family of topological dynamical systems, where the Zd-group action is de�ned
by translations:

De�nition 3.1 The Zd-full-shift AZd is the set of all the aforementioned con�gurations
with the prodiscrete topology, which can be described via the shift metric:

d(x, y) := sup({2−r : x|[−r,r]d 6= y|[−r,r]d , r ∈ N} ∪ {0}).

We de�ne the following Zd-group action Zd
σy AZd on the full-shift:

(σm(x))k = xm+k.

1In general, the word �con�guration� refers to any function K : U → A, where U ⊆ Zd; this set U is called
the support of the con�guration. We shall place a special emphasis on the case where |U | <∞, which will
be described below.
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This is called the shift action2, and the functions σn, with n ∈ Zd are called shift maps.
Any X ⊆ AZd that is both topologically closed and σ-invariant (that is, σ[X] = X), is called
a subshift, shift space or simply shift.

Subshifts are topological dynamical systems on their own, with the induced topology and
the restriction of the group action to them. Interest in them arose originally from the fact
that the associated group action is quite simple to describe, and yet they are su�ciently
versatile to describe the behavior of seemingly much more complicated dynamical systems
(e.g. billiards, geodesic �ows, the baker's map, decimal expansions of numbers, etc.), with the
di�culty in the description of the group action being transferred to appropriately describing
the phase space, something that might be more tractable by combinatorial means. Thus, it
is important to have a good grasp on the inner works of the topology of the full-shift and
any subshift.

De�nition 3.2 A pattern P is a con�guration of �nite support, that is, given a �nite set3

U b Zd, a pattern with support U =: supp(P ) is any map P : U → A. We say that a pattern
Q is a translate4 of P if supp(Q) = supp(P ) + n and Qn+k = Pk.

Given a pattern P : U b Zd → A and some con�guration K : V ⊆ Zd → A (e.g. another
pattern, or a point of AZd), we say that P is contained in K, and write P v K, if there is
some translate Q of P such that K|supp(Q) = Q. The language of a shift space X is the set
of all patterns that are contained in some x ∈ X, that is:

L(X) := {x|U : x ∈ X,U b Zd}.

We also write LU(X) for the set of all patterns of L(X) with support U . Similarly, given
some x ∈ AZd, we write L(x) (respectively, LU(x)) for the set of all patterns P (respectively,
those with support U) with P @ x. Note that, if x ∈ X, then L(x) ⊆ L(X).

In the one-dimensional case, we often only use patterns w = w1w2 . . . wn with support
{1, 2, . . . , n}, which we call words (of length n), and we completely identify words by trans-
lation; we can develop the full theory of one-dimensional shift spaces with little to no change
with this restriction. In this situation, we write A∗ for the set of all words (including the
empty word ε of length 0); this set is a monoid under concatenation, meaning that the
following rule de�nes an associative operation for words:

(u · w)j =

{
uj if 1 ≤ j ≤ |u|,
wj−|u| if |u| < j ≤ |u|+ |w|,

where the notation |w| refers to the length of the word w. Note that ε · w = w = w · ε.

In this one-dimensional case, the language L(X) of the shift space is extensible, meaning
that every w ∈ L(X) is contained in a strictly larger word w′ ∈ L(X), and factorial, i.e.

2Actually, the shift action may be de�ned for an arbitrary group G on AG. However, one must take into
account that the group G is usually nonabelian, and thus one may not obtain a left group action directly;
the most common de�nition used that compensates for this is given by (σg(x))h = xg−1h, but others such as
(sg(x))h = xhg are also common.

3We use the symbol b for ��nite subset of�.
4For most intents and purposes, we identify two patterns if one is a translate of the other.
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every subword w′′ v w ∈ L(X) is also in L(X). The converse also holds: any collection of
words with these two properties is the language of a subshift. Higher-dimensional analogues
of these two notions exist, and characterize the set of patterns that appear in a shift space.

As stated before, the topology of shift spaces is (the one induced by) the product topology,
taking A as a discrete space. This means that a sequence5 x(n) of points of AZd converges to
some x∗ ∈ AZd if, for every �nite F b Zd, there is some N(F ) such that, for all n > N(F )
we have x(n)|F = x∗|F . Thus, open sets for this topology must re�ect this phenomenon: an
open neighborhood for x∗ in the shift space X ⊆ AZd would be the set of all y ∈ X such
that x∗|F = y|F , for some �nite F . Formally:

De�nition 3.3 Given some pattern P : U b Zd → A, the corresponding cylinder in a
subshift X is a set of the form:

[P ] := {x ∈ X : x|U = P}.

Cylinders form a base of the topology of a shift space. It is not hard to see that an open ball
of radius 2−r around some x ∈ X is equal to the cylinder [x|[−r,r]d ]; similarly, any cylinder
can be seen as a �nite union of open balls. We note, as well, that if a pattern Q is a translate
of another pattern P , then [Q] is the image of [P ] under some shift map σn. This allows us
to determine which subsets of AZd are subshifts in terms of cylinders, and, consequently, of
patterns.

Indeed P 6v x if and only if x ∈
⋂
m∈Zd σm[[P ]], which is a closed, σ-invariant set and thus

a subshift. It is not hard to see that, since closedness and σ-invariance are properties that
transfer to intersections, any intersection of subshifts is a shift space as well. Thus, for any
collection F of forbidden patterns, the set:

XF := {x ∈ AZd : (∀P ∈ F) : P 6v x},

is a subshift; conversely, every subshift is of this form for some F (which may not be uniquely
de�ned). In particular, we always have that X = XL(X)c .

De�nition 3.4 Shifts of �nite type (SFT) are those of the form X = XF for which the
set F of forbidden patterns may be chosen �nite. If we can choose F so that every forbidden
pattern has support {0, ei} for some element ei of the canonical basis, we say that XF is a
nearest neighbor subshift (or nnSFT).

Proposition 3.5 A subshift X is of �nite type if, and only if, there exists some �nite set
U b Zd and a set of patterns P with support U such that, for every x ∈ X and each m ∈ Zd
we have that x|m+U is a translate of some pattern in P.

For instance, one may take P = LU(X) for some su�ciently large �nite set U . Note that in
this case X = XLU (X)c .

We shall be interested in subshifts where the shift action is faithful (i.e. not all points share a
common period), as we de�ned in the chapter about groups and group actions. Periodic points

5We do not need the full generality of nets, since shifts are metric spaces.
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are often important in our study, and thus we make some sub-classi�cations: a point x ∈ AZd

is strongly periodic if [Zd : Stab(x)] < ∞, and weakly periodic if Stab(x) 6= {0}. Note
that strongly periodic points are also weakly periodic. A shift space is weakly aperiodic if
it does not contain strongly periodic points, and strongly aperiodic if it does not contain
weakly periodic points.

Since the topology of a shift space can be described wholly in terms of cylinders, and those in
turn are entirely described by patterns, then it makes sense to describe certain topological and
dynamical properties in terms of patterns and languages. First, remember that a topological
dynamical systemX is transitive if it has a point x∗ whose orbit is dense inX, andminimal
if every point has this property. In our context, transitivity means that the orbit of this point
intersects every cylinder [P ], and thus P @ x. Indeed, we have that:

Proposition 3.6 A subshift X is transitive if, and only if, there exists some x∗ ∈ X with
L(x) = L(X). Equivalently, for every P ∈ L(X), P @ x.

Minimality is similarly described by the property that L(X) = L(x) for every x ∈ X.
However, we may characterize this di�erently:

De�nition 3.7 Let X be a Zd-subshift. We say that X is recurrent if, for every pattern
P ∈ L(X), there exists some �nite set F (P ) b Zd such that, for every x ∈ X, P v x|F (P ).

In practice, this means that there is a radius r(P ) (that depends on P ) that ensures that we
may �nd the pattern P at distance at most r(P ) from the origin. Since this applies to shifts of
x as well, this also implies that, for all n ∈ Zd, P v x|F (P )+n as well. Note that this obviously
implies that X is minimal; the converse comes from the fact that, if this property were to be
false, for a given pattern P ∈ L(X) one may �nd a sequence of points x(n) ∈ X such that
no instance of P appears in x(n) at distance less than n from the origin. By compactness,
we may �nd a point that does not contain P as the limit of some subsequence, proving that
L(x) 6= L(X). Thus, we have:

Theorem 3.8 A Zd-subshift X is minimal if, and only if, it is recurrent.

Note that, a priori, r(P ) does not have an obvious dependence on P beyond roughly increasing
with the diameter of the support of this pattern. When r(P ) has an upper bound of the form
C · diam(supp(P )) for any pattern P , we say that X is a linearly recurrent subshift.

3.2. Sliding block codes

This work focuses on certain mappings that preserve some structure of a shift space. Our
main point of interest are the following:

De�nition 3.9 Let A ∈ GLd(Z), and X, Y be two Zd-subshifts (or, more generally, two
Zd-topological dynamical systems). A continuous function ϕ : X → Y is said to be A-
equivariant if:

(∀m ∈ Zd) : ϕ ◦ σm = σAm ◦ ϕ,
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and, in particular, when A = Id, we call ϕ a sliding block code6 (or block map). When ϕ is
an homeomorphism and A = Id, we say that it is a conjugacy (or sometimes isomorphism)
and that X and Y are conjugate subshifts, writing X ∼= Y .

In the particular case where X = Y , we refer to ϕ as either an automorphism7, if A = Id, or
an extended symmetry in the general case (thus, automorphisms are extended symmetries,
but the converse is usually not true).

It can be proved that the inverse function of a bijective sliding block code is also a sliding
block code, which justi�es the use of the word isomorphism in this situation; however, this
word is more often used in a measurable context. This also implies that the collection of all
automorphisms is a group, which we shall denote Aut(X,Zd) or Aut(X, σ) (some authors
use S(X) instead). Extended symmetries form a group as well, which we shall denote as
Sym(X,Zd) or Sym(X, σ) (or8 R(X)). General A-equivariant maps are described in further
detail by de Neymet [32].

Extended symmetries (and, more generally, any A-equivariant map) are easily characterized
by the following result, which we cite in full generality [13, 24, 71] and explains the name
�sliding block code�:

Theorem 3.10 (Generalized Curtis�Hedlund�Lyndon theorem, or CHL) Let X, Y be two
subshifts over alphabets AX ,AY . A continuous map ϕ : X → Y is A-equivariant if, and only
if, there exists some �nite set U b Zd (called memory set) and a function Φ: AUX → AY
(local function9) such that:

(∀m ∈ Zd) : (ϕ(x))Am = Φ(x|m+U).

Note that here, if P is a pattern with support U and Q is any translate of P , we de�ne
Φ(Q) := Φ(P ).

When A = Id we recover the classic Curtis�Hedlund�Lyndon theorem, which is one
of the central results from symbolic dynamics. A proof for the one-dimensional case when
A = I1 = 1 may be found in the book by Lind and Marcus [71]; very little work needs to
be done to convert this proof into one that works for the completely general result (see the
paper by Baake, Roberts and Yassawi [13] and the book on cellular automata by Ceccherini-
Silberstein and Coornaert [24]). We note that we may always assume the memory set U to
be of the form [−r, r]d for some r; the least possible r is called the radius of ϕ. When ϕ is
an automorphism of radius 0, we refer to it as a letter swap or relabeling map. In the one-
dimensional case, one may be more speci�c, and note that the memory set U is contained in
an interval of the form [−m,n] with m,n ≥ 0; the values m and n are called memory and
anticipation, respectively. Note that at least one of them must equal the radius r.

6This term is reserved for the situation where both X and Y are shift spaces, due to the Curtis�Hedlund�
Lyndon theorem introduced below.

7Some authors follow the Smale convention in which every homeomorphism of X to itself is called an
automorphism, irregardless of whether it commutes with the shift action or not; these authors use the word
symmetry for what we are designating as �automorphisms�.

8This is a remnant of the one-dimensional case where extended symmetries that are not automorphisms
necessarily satisfy the equation ϕ ◦ σ = σ−1 ◦ ϕ and are thus called reversors.

9We use the convention from [71], that uses an uppercase version of the symbol used to denote an A-
equivariant map to refer to its local function.
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Surjective sliding block codes ϕ : X → Y (or, more generally, surjective equivariant maps
between two topological dynamical systems) are called factor maps, and in this situation
we say that Y is a factor of X. While a subshift conjugate to a shift of �nite type is also
of �nite type, this is not true for factors; thus, when ϕ : X → Y is a factor map and X is a
SFT, we say that Y is a so�c shift.

Since sliding block codes preserve the shift action and are continuous, many topological and
dynamical properties are preserved under them. For example, it is very easy to check that:

Proposition 3.11 The image of a p-periodic point under an A-equivariant map ϕ is an
(Ap)-periodic point. Thus, Stab(ϕ(x)) ⊇ A · Stab(x).

Note that, when ϕ is not injective, it may be the case that ϕ(x) has additional periods. For
instance, the factor map ϕ : {a, b, c, d}Z → {0, 1}Z given by a, c 7→ 0, b, d 7→ 1 maps the
4-periodic point10 (abcd)∞ to the 2-periodic point (01)∞, and thus there is a strict inclusion
Stab((abcd)∞) = 4Z ⊂ 2Z = Stab((01)∞).

Proposition 3.12 If ϕ : X → Y is a factor map (or, more generally, a surjective A-
equivariant map) and x ∈ X is a transitive point, then so is ϕ(x) ∈ Y (i.e. the image
of a topologically transitive subshift under a factor map is topologically transitive).

Other properties that depend only on convergence properties and the shift action (such as
asymptotic pairs) are preserved as well, maybe after taking into account the matrix A. The
following theorem is sometimes useful in the characterization of sliding block codes:

Theorem 3.13 Let ϕ : X → Y any sliding block code between two shift spaces. Then, there
is another subshift X̃ which is conjugate to X via the map ψ and a radius 0 sliding block code
ϕ̃ : X̃ → Y such that ϕ = ϕ̃ ◦ ψ, as in the below diagram:

X
ψ
//

ϕ

��

X̃

ϕ̃
��

Y

Something similar holds for general A-equivariant maps between subshifts. The key here is
that, if U is a memory set for ϕ, one may create X̃ as a new subshift whose alphabet is (in
bijection with) LU(X), and de�ning forbidden patterns that only allow two symbols of this
new alphabet to be adjacent if their overlap is consistent (i.e. if (m + U) ∩ (n + U) 6= ∅,
the two patterns P,Q ∈ LU(X) can appear in positions m and n in some point of X̃ if
the symbols of P and Q in this intersection are the same), and no forbidden pattern of the
original shift space appears. This construction is often called the higher block shift.

It is important to note that compositions and inverses of automorphisms are also auto-
morphisms, and the same holds for extended symmetries. Thus, they de�ne special subgroups

10The notation w∞ here refers to the point of AZ obtained by concatenating in�nitely many copies of the
word w. More complicated notations such as w∞1 .w2w

∞
3 are also in use, where the dot indicates the position

of the zero coordinate.
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of the set Homeo(X) of all self-homeomorphisms of the topological space X, called respecti-
vely the automorphism group Aut(X,Zd) and extended symmetry group Sym(X,Zd).
In group-theoretic terms, the automorphism group Aut(X,Zd) equals the centralizer of the
subgroup 〈σ〉 = {σn : n ∈ Zd} of all shift mappings in Homeo(X), while the group of
extended symmetries Sym(X,Zd) is the normalizer of 〈σ〉 in Homeo(X). Hence, passing
from Aut(X,Zd) to Sym(X,Zd) is not an arbitrary generalization, as the latter has a natural
algebraic de�nition in itself. Furthermore, both groups are conjugacy invariants, that is,
when two subshifts are conjugate, their corresponding automorphism and extended symmetry
groups are isomorphic, and thus �the same� from a group-theoretical viewpoint.

3.3. Substitutions

Most of the subshifts we shall deal with in what follows are substitutive subshifts. They are
described by a rectangular substitution θ : A → AR, where R = [0, s−1] =

∏d
i=1[0, si−1],

which is a map that associates to every symbol in A a rectangular pattern of symbols in the
same alphabet. We extend θ to arbitrary patterns or con�gurations by concatenation in every
direction (e.g. if P is a pattern with a and b are two symbols adjacent along the direction e1,
θ(P ) will contain the patterns θ(a) and θ(b), adjacent along the same direction) and then we
de�ne:

De�nition 3.14 Given a rectangular substitution θ : A → AR, the associated substitutive
subshift is given by:

Xθ:={x ∈ AZ
d

: for any �nite U b Zd, there are some k ∈ Z, a ∈ A such that x|U v θk(a)}.

Figure 3.1: A rectangular substitution extends to arbitrary patterns by concatenation, i.e.
preserving adjacencies.

In the one-dimensional case, we do not have the restriction of all words θ(a), a ∈ A to have the
same length, and thus it makes sense to think of a substitution as a function θ : A → A∗\{ε}.
For instance, the golden mean substitution (or Fibonacci substitution) is given by the
map:

θ : 0 7→ 01

1 7→ 0,

so that the sequence of patterns obtained by iterated substitution are of the form:

0 7→ 01 7→ 010 7→ 01001 7→ 01001010 7→ 0100101001001 7→ . . .
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that is, w0 = 0, w1 = 01, and wn+2 = wn+1wn for n ≥ 0, and a point x ∈ {0, 1}∗ belongs to the
associated subshift if there are arbitrarily large central patterns that appear in this sequence
of words. For d = 1, when the restriction of lengths is respected, we talk of a constant
length substitution (of length `) and see rectangular substitutions as a generalization of
this particular class of one-dimensional substitutions. We recommend K·rka's book [64] as
an introduction to the one-dimensional theory of substitutive subshifts, and the work by
Frank [41] as an entrance point for the multidimensional case.

Since we extended the function θ to arbitrary patterns or con�gurations, expressions such as
θk(a) are well-de�ned by induction (e.g. θ2 may be seen as a map A → AR(2)

where R(2) =∏d
i=1[0, s2

i−1], obtained by applying θ to every pattern θ(a) and concatenating appropriately)
and de�ne substitutions as well. This allows us to de�ne the following important property:

De�nition 3.15 A substitution θ is primitive if, for some k ≥ 1, every pattern θk(a)
contains every symbol in the alphabet.

In this case, it is easy to verify that Xθ = Xθk for any k, and thus we can replace θ by
a suitable power whenever appropriate. Using this characterization, we can also prove the
following:

Theorem 3.16 If θ is primitive, Xθ is a minimal subshift.

Due to these properties, in what follows we shall assume that every substitution we meet
is primitive, as the theory of non-primitive substitutions and the techniques used to study
the corresponding subshifts is quite di�erent [75]. The name �primitive� comes from the
corresponding characterization via matrices:

De�nition 3.17 Let θ : A → AR be a rectangular substitution, where A = {a1, . . . , am}. The
corresponding substitution matrix is a m×m matrix A with non-negative integer entries,
where Aij = k when the pattern θ(ai) has exactly k instances of the symbol aj.

It is easy to see that, if A is the substitution matrix of the substitution θ, then An is the
corresponding matrix of the iterated substitution θn. We can use, then, this matrix to cha-
racterize the properties of the substitution.

De�nition 3.18 A m ×m matrix A ∈ Mm(R) with nonnegative entries is irreducible if,
for every 1 ≤ i, j ≤ m, there is some power k such that Aki,j > 0. If there is some k > 0 such
that all entries of Ak are strictly positive, then we say that A is primitive.

Proposition 3.19 A substitution θ is primitive if, and only if, its associated substitution
matrix is primitive.

Since we often deal with iterated substitutions and automorphisms that a priori might have
positive radius, the following two notations prove useful:

R(r) := [0, sr − 1] =
d∏
i=1

[0, sri − 1], U◦r := {k ∈ U : k + [−r, r]d ⊆ U}.
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Indeed, if θ is a rectangular substitution of shape R, then the shape of θk is R(k). Similarly, if
f : X → Y is a sliding block code with radius R and x, y ∈ X satisfy the equality x|U = y|U ,
then f(x)|U◦r = f(y)|U◦r . Something similar holds for general A-equivariant maps.

As a substitution θ can be extended to any con�guration, it naturally induces a mapping
θ∞ : AZd → AZd . It can be veri�ed [41, 64] that there exists a θ∞-periodic point x∗ ∈ AZd ,
i.e. θk∞(x∗) = x∗, such that Xθ = Orb(x∗); any such point is entirely determined by its central
pattern x∗|{−1,0}d , which must be some element of L{0,1}d(Xθ); we call this pattern the seed
of x∗. This implies that, for any k ∈ N, we may see x∗, and thus any point x ∈ Xθ (due to
minimality), as a concatenation of patterns of the form θk(a), a ∈ A; it turns out that, in a
speci�c sense, this can be done in only one possible way:

Theorem 3.20 (Recognizability) Let θ : A → AR be a primitive rectangular substitution and
suppose the associated substitutive subshift Xθ has a faithful shift action. For each x ∈ Xθ,
and every k > 0, there exist unique mk ∈ R(k) and yk ∈ Xθ such that x = σmk

(θk∞(yk)).
Furthermore, for any ` > k, we have mk ≡ m` (mód sk), with this congruence being taken
componentwise.

This is a special case of a recognizability property, which implies that we can �undo�
the substitution to a certain extent, that is, that we can recover a pattern P from θ(P )
except maybe at its border. See the works by Mossé [79] and Solomyak [94] for reference;
additional details can be found in the work by Frank [41], and the books by K·rka [64],
Pytheas Fogg [38] and Baake and Grimm [6]. When dealing with in�nite con�gurations, this
recognizability property translates into what is known as a box structure (see Olli [83]),
which is a series of �grids� (sublattices of Zd, as de�ned further below) of increasing size, which
mark the positions of the patterns θk(a), a ∈ A in which a given point x ∈ Xθ decomposes,
for every value of k. This can be seen in Figure 3.2.

7→

7→

Figure 3.2: 2n × 2n grids associated with the iterates of a primitive substitution θ in a point
from a substitutive subshift. The corresponding substitution is indicated on the right.

The recognizability theorem is often stated as the existence of a factor map from Xθ to
a product of odometers (a special case of a generalized odometer, as de�ned at the end of
Chapter 1) Zs = Zs1×· · ·×Zsk [41], which maps a point x ∈ Xθ to the corresponding sequence
of shifts [m1,m2, . . . ] ∈ Zs. Under speci�c circumstances, this product of odometers is the
maximal equicontinuous factor (MEF) of Xθ and, at least in the one-dimensional case,
Zs is always a �nite index subgroup of this MEF. However, we shall not use this version of
the result except maybe for some passing remarks below. Regardless, we shall mention that
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the main obstacle for this product of odometers to actually be the MEF of the subshift lies
in the following:

De�nition 3.21 Let θ : A → A` be a one-dimensional constant length substitution. We say
that the height of θ is the following value:

h = máx{n ≥ 1 : gcd(n, `) = 1 and n | gcd({m ∈ N : um = u0})},

where u is a periodic point of θ. This value is independent of the chosen �xed point u.

If the substitution θ has height h > 1, we can partition the alphabet A into h disjoint subsets
A1,A2, . . . ,Ah in such a way that every symbol from Aj+1 appears right next to a symbol
from Aj (where the indexing values j are taken modulo h). It can be shown that the MEF
of the subshift Xθ is the odometer Z` whenever the height h equals 1.

We now introduce a classi�cation for certain kinds of substitutions due to their speci�c
properties:

De�nition 3.22 Given a rectangular substitution θ : A → AR and a k ∈ R, the k-th column
of θ is the mapping θk : A → A, a 7→ θ(a)k. We say that θ is bijective if all of its columns
are bijections; otherwise, if for some power m we have that θm(a)k = θm(b)k for all a, b ∈ A
and some k ∈ R(m), we say that θ has a coincidence.

Remark When |A| = 2, a rectangular substitution is either bijective or has a coincidence.
For alphabets with larger cardinality, intermediate cases can be found, where θ does not
satisfy either de�nition.

Since Xθ = Xθk whenever θ is primitive, we note that it is often useful to replace θ with a
suitable power. In particular, when θ is bijective, we may choose a k that is large enough
for a given column θk to be the identity. Thus, we may always assume, for instance, that
θ(a) has the symbol a at every corner of the d-dimensional rectangle; this implies that every
point x that is periodic under θ∞ is a θ∞-�xed point, which makes easier to compute certain
properties of the associated shift space.

3.4. Entropy

Entropy is a very important invariant in several branches of the theory of dynamical systems,
both in its ergodic and topological versions. We shall give some brief notes about topological
entropy in what follows.

De�nition 3.23 Given a Zd-subshift X, the topological entropy of X is the following
value:

htop(X) := ĺım
n→∞

log(|L[1,n]d(X)|)
nd

= ı́nf
n≥1

log(|L[1,n]d(X)|)
nd

.

This de�nition can be generalized to general amenable groups via the use of so-called Følner
nets, where it can be proven that the equivalent limit converges and equals the in�mum; see
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Ceccherini-Silberstein and Coornaert [24] for details. We will not be needing the full generality
of Følner nets in what follows. Note that we do not specify the base of the logarithm, as it is
irrelevant to our purposes; for simplicity, we will assume the logarithm to be natural, but in
other branches of mathematics (e.g. computer science) it makes sense to take logarithms in
base 2 (or, more generally, base |A|).
Entropy is a quantity that depends only on the conjugacy class of a given subshift, i.e. X ∼= Y
implies that htop(X) = htop(Y ); thus, computing entropy gives us a great deal of information
on the problem of deciding whether two shifts are �the same� from a topological dynamics
viewpoint. Indeed, we have that:

Proposition 3.24 If f : X → Y is a factor map (or, more generally, a surjective A-
equivariant map), then htop(X) ≥ htop(Y ).

We have a similar property for inclusions:

Proposition 3.25 If X ⊆ Y are both Zd-subshifts, then htop(X) ≤ htop(Y ).

Note that we could have equality even when there is a strict inclusion. In the one-dimensional
case, there are some conditions that ensure that a strict inclusion implies a strict inequality,
but these conditions fail for d > 1, which is our main case of interest, so we will not go into
detail.

Sometimes it is good to go into some �ner detail. The following de�nition, while not a
conjugacy invariant, allows us to study the behavior of systems for which entropy is too
rough a measurement:

De�nition 3.26 Let X be a Zd-subshift. The complexity function of X is the function
pX : Nd → N given by:

pX(n) := |L[1,n](X)|,

where [1,n] =
∏d

k=1[1, nk], n = (n1, . . . , nd).

Thus, if htop(X) = h, then pX(n, . . . , n) ≈ cehn
d
for large values of n. The real importance of

this function comes to be noticeable when X is a shift of entropy 0, as pX(n1, . . . , nd) may
have wildly di�erent behavior for di�erent subshifts even if they have the same entropy.

De�nition 3.27 A subshift X has linear complexity11 if there exists some constant C > 0
such that:

pX(n1, . . . , nd) ≤ Cn1 · · ·nd.

Thus, sublinear compexity means that there is very low variety among the patterns that can
be found in L(X), as the number of possibilities for some P ∈ LU(X) is roughly proportional
to the cardinality of U ; to contrast, in a full shift over an alphabet A, we would have |A|
possibilities for every coordinate in U , and thus |LU(AZd)| = |A||U |, an exponential growth.
Note that this also serves as a proof that, for the full shift in n symbols, the entropy is log(n).

11Some authors use sublinear complexity for what we call �linear complexity� here. This is because of
consistency with other branches of mathematics that deal with growth orders of functions.
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Proposition 3.28 Substitutive subshifts have linear complexity.

Corollary 3.29 Any substitutive subshift must have entropy htop(Xθ) = 0.

3.5. Sets of points and tilings

In this section, we brie�y introduce some basic notions from tiling theory, as, while the setting
is by nature di�erent to the one of symbolic dynamics, it shares a big part of its metodology
and approaches. Our main references for the following sections are the books by Baake and
Grimm [6] and Sadun [89]. We start by discussing some basic de�nitions for sets of points:

De�nition 3.30 A set of points Λ ⊆ Rd is discrete if every point of Λ is isolated, i.e. every
x ∈ Λ has an open neighborhood Ux ⊆ Rd such that Λ ∩ Ux = {x}. If there is some open
neighborhood U of 0 such that Ux = U +x for every x ∈ Λ, we say that this set is uniformly
discrete.

We may allow sets of points to be labelled, that is, we assign to each point in a point set
Λ a symbol in some alphabet A (indeed, one may think of such a labelled point set as a
function Γ: Λ→ A where Λ is a point set in the above sense, or as a collection of point sets
Γa = Γ−1[{a}], one for each a ∈ A). The notions de�ned below for point sets extend directly
to labelled point sets.

De�nition 3.31 A set of points Λ ⊆ Rd is r-dense if every point of Rd is at distance at
most r from some point of Λ, i.e. if Λ +B(0, r) = Rd. We say that Λ is relatively dense if
it is r-dense for some value of r > 0.

De�nition 3.32 A Delone set is a set Λ ⊂ Rd that is both uniformly discrete and relatively
dense. A Delone set is called a (r, R)-set if, for every x 6= y ∈ Λ we have r ≤ d(x,y) ≤ R.

We may assign a topology to the collection of all point sets 2R
d
(not necessarily Delone)

which comes from the generalization of the shift metric to this continuous setting. We say
that two point sets Λ,∆ are ε-close if there are vectors v1,v2 ∈ B(0, ε/2) such that:

(Λ + v1) ∩B(0, 1/ε) = (∆ + v2) ∩B(0, ε),

that is, the two patterns are equal in a large central patch, up to a small translation of size
at most ε. The tiling distance between both point sets is the in�mum of all ε such that Λ
and ∆ are ε-close, or 1 if no such ε exists or is greater than 1.

Note that this metric makes the translation functions αv : 2R
d → 2R

d
given by αv(Λ) = Λ+v

continuous, and thus this de�nes a group action Rd αy 2R
d
; those constitute a continuous

analogue to the shift maps from symbolic dynamics. Indeed, we may de�ne then a topological
dynamical system analogous to a subshift, comprised of a closed collection of point sets under
the above topology, which is also closed under translations by some subgroup (often not the
whole group) of Rd.

Patterns have an analogue for point sets, which consists of the set of points over a bounded
region of the plane (analogue to the �nite support of patterns in the symbolic dynamics
context):
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De�nition 3.33 A cluster of shape K (where K is a compact neighborhood of 0) on a point
set Λ is any set of the form Λ ∩ (K + p), with p ∈ Γ.

As with patterns in the context of symbolic dynamics, we identify two clusters of shape K if
one is a translate of the other.

De�nition 3.34 A discrete point set Λ has �nite local complexity if, for every neigh-
borhood K of 0, there is a �nite number of clusters of shape K in Λ, up to translation.

One comparatively very simple type of point set we shall encounter often is the following:

De�nition 3.35 A lattice in Rd is a subgroup Γ ≤ Rd that is both discrete and co-compact
(that is, the quotient Rd/Γ is compact). Equivalently, Γ is a lattice if there are d linearly
independent vectors b1, . . . , bd ∈ Rd such that:

Γ = {n1b1 + · · ·+ ndbd : n1, . . . , nd ∈ Z}.

The second de�nition is the one that will be useful for our purposes; however, we state
both as the �rst de�nition applies to more general groups. An example of lattice we have
already encountered is the Minkowski embedding of a �eld K of index d over Q in Rd;
see Chapter 2. Evidently, a lattice is a Delone set.

In the context of point sets, it is important to determine �how often� points of Γ may be
encountered. The following quantities allow us to measure the sparseness of a point set:

De�nition 3.36 The upper natural density of a point set Λ is the following quantity:

dens(Λ) := ĺım sup
n→∞

|Λ ∩B(0, r)|
µ(B(0, r))

,

where µ is the standard Lebesgue measure in Rd. The lower natural density dens(Λ) is
de�ned analogously with the limit inferior. When both values coincide, we say that Λ has
natural density equal to dens(Λ) = dens(Λ) = dens(Λ).

Note that natural density is de�ned via symmetric balls around the origin. This is important,
as the above limits may change when using other kinds of averaging sets (e.g. more general
Følner or van Hove nets). For instance, the set of square-free integer numbers V (2) ⊂ Z can
be seen to have natural density 6/π2, as, intuitively, the subset of integers from [−r, r] that
are not divisible by p2 is approximately 2r(1 − p−2) for every prime p; then, the product of
all (1− p−2) for p ∈ P converges to 1/ζ(2) = 6/π2, from where the result may be obtained.
However, it can be proved that V (2) has gaps of arbitrarily large size; thus, taking averaging
sets of increasing diameter that happen to be contained in these gaps will result in a computed
density of 0.

This observation is important because density in number-theoretical applications is often
de�ned for the positive integers only, using [1, r] instead of [−r, r] as averaging sets, and
hence a subset of N will have di�erent densities for both de�nitions. We note, however, that
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the shape itself is not than important under some reasonable constraints; for instance, the
following limite superior is also equal to the upper natural density of Λ:

dens(Λ) = ĺım sup
n→∞

|Λ ∩ [−r, r]d|
(2r)d

,

A quick computation shows immediately that:

De�nition 3.37 The natural density of a lattice Γ given by the d linearly independent vectors
b1, . . . , bd is 1/V , where V is the volume of the parallelogram whose edges are given by these
vectors. If bi = (bi,1, . . . , bi,d), then V is the determinant of the matrix [bi,j]i,j, up to a sign.

Given any point set Λ and a cluster C of Λ of shape K, we may de�ne numbers that measure
how often we may �nd translates of C inK. The following quantities accomplish this purpose:

De�nition 3.38 For a point set Λ and C = Λ∩ (K +p),p ∈ Λ a cluster of shape K, de�ne
the set:

LΛ(C) := {q ∈ Λ : Λ ∩ (K + q) is a translate of C}.

The upper frequency of C in Λ is the upper natural density of LΛ(C). The lower frequency
is de�ned similarly, and we speak just of frequency if both quantities coincide.

This de�nition extends naturally to the discrete setting of subshifts, where for a given x ∈ AZd

we de�ne the (upper, lower) frequency of a pattern P as the (upper, lower) natural density
of the subset of Zd of those points p where x|supp(P )+p is a translate of P . If, for a given
subshift X, this is a proper frequency that does not depend on the chosen x ∈ X, then this
may be used to de�ne a measure on X which is preserved by shift maps, which is called
the frequency measure; examples of this situation include, e.g. Sturmian subshifts. Since
automorphisms need to preserve this measure, it is an useful tool in the study of which local
functions e�ectively de�ne automorphisms or extended symmetries of a shift space.

We are now in a position to de�ne tiling spaces, which may be seen as a particular subcase
of labelled point sets. In the most general sense, a tiling of Rd is a decomposition of Rd as
a nonempty union of nonempty subsets (called tiles) of Rd. However, we shall impose some
limitations on the kinds of subsets of Rd that shall be tiles. The limitations often imposed
are the following (which, while somewhat redundant, are made explicit for clarity):

� Each tile equals the closure of its interior (this, in particular, implies that tiles must
have nonempty interior).

� The boundary of a tile has Lebesgue measure 0.

� Two tiles intersect only in their boundary, i.e. the interiors of two di�erent tiles are
disjoint.

� Tiles are bounded.

For our purposes, we can assume tiles to be polytopes (polygons, polyhedra, etc.), and that
they meet face-to-face, that is, the intersection of two tiles equals a shared face (e.g. a common
vertex, edge, etc.). Furthermore, we shall only be interested in the situation where there is
a �nite collection T of subsets of Rd satisfying the above restrictions, called prototiles,
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such that every tile is a translate of some prototile; note that, as in with point sets, we may
allow �labelled� or �decorated� prototiles (in which we assign symbols of an alphabet to each
prototile, which we may represent via arrows indicating orientation, colors, etc.), to allow
di�erent prototiles with the same shape.

De�nition 3.39 A simple tiling is a decomposition of Rd as a union of denumerably many
polygonal sets (tiles) following the restrictions above, (they equal the closure of their interior,
are bounded polytopes that meet face-to-face, etc.), and such that there exists some set T
of (possibly labelled) �nitely many subsets of Rd, called prototiles, for which every tile is a
translate of an element of T .

Thus, for every tiling T and every prototile τ ∈ T the set:

Λτ (T ) := {p ∈ Rd : p+ τ is a tile of T},

is a discrete point set. Hence, the collection of all {Λτ}τ∈T may be seen as a labelled Delone
point set, which, together with the set of prototiles T , entirely determines the tiling T , and
thus the notions of tiling distance, cluster, �nite local complexity, etc. translate immediately
to the realm of tilings.

De�nition 3.40 A tiling space Ω is a set of tilings (in this context, we limit ourselves to
simple tilings) that is closed under the translation action α and topologically closed under the
topology given by the previously de�ned tiling metric.

We may de�ne equivariant and A-equivariant maps in the same way as before, as continuous
maps between tiling spaces that behave well under translations (up to a multiplication by the
matrix A), and thus we may de�ne factor maps and conjugacies in the same way as in shift
spaces. However, while the tiling topology is a continuous analogue to the shift topology, it
may be the case that an equivariant map cannot be described via a local function (as in, there
is no direct analogue to the Curtis�Hedlund�Lyndon in the case of general tilings, although
there are somewhat weaker results in this direction that apply with more generality), and
thus it is important to note when it happens.

De�nition 3.41 Let Ω1,Ω2 be two tiling spaces. We say that Ω1 and Ω2 aremutually locally
derivable or MLD (sometimes written Ω1 ! Ω2) if there exists a conjugacy f : Ω1 → Ω2

such that there exists a �nite radius R > 0 such that, whenever T1, T2 ∈ Ω1 match in a ball of
radius R around the origin, f(T1) and f(T2) match on a ball of radius 1 around the origin.
Note that in this situation f−1 has the same property.

Of course, MLD tiling spaces are conjugate, but the converse is false; see the book by Sadun
[89] for some examples. The concept extends to a more general idea of local derivability,
which refers to the existence of a local description of a function.

Similar to shift spaces, tiling spaces may be described in a variety of ways, including local
rules in a similar way to shifts of �nite type. An example of this is the Socolar-Taylor tiling,
where the tiles are all the re�ections and rotations by multiples of 1

3
π of an hexagonal tile

with lines of di�erent colors as decoration; two tiles are allowed to be next to each other if
and only if the corresponding lines meet in speci�c ways.
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We shall be interested in the tiling analogue to substitutions as a source for examples. This
produces tilings that are �self-similar�, in the sense that if λT is the tiling obtained from T by
expanding each tile of T by a factor of λ > 1, the tiling spaces obtained as orbit closures of
T and λT are MLD. The situation we shall be mostly interested in is when, given a �nite set
of prototiles T , there is a rule J that assigns to every τ ∈ T a �nite cluster J(τ) of tiles of T
satisfying the rules of a simple tiling and whose union is λτ ; we call this an in�ation rule.
By iterating this process, we may obtain tilings Jk(τ) that cover any set of the form λkτ ,
which are obtained by applying J to every tile from Jk−1(τ) and translating appropriately;
this also allows us to extend J to any cluster of tiles from T . As these sets have nonempty
interior, we thus have a way to cover any arbitrarily large ball with tiles from T , in a way
dictated by the in�ation rule J .

Figure 3.3: A section of the Penrose tiling, a well-known example of aperiodic in�ation tiling.

De�nition 3.42 Given an in�ation rule J , the corresponding in�ation tiling space ΩJ is
the set of all tilings T where every �nite cluster of tilings from T is a translate of a subcluster
of tiles of the cluster Jk(τ).

Known examples include the chair and table tiling described by Olli [83], the half-hex tiling
and the Penrose tiling. One-dimensional symbolic substitutions may be also seen as a speci�c
subcase of in�ations, even when they are not of constant length: for instance, the golden
mean substitution θ : 0 7→ 01, 1 7→ 0 may be seen as a one-dimensional in�ation rule with
two prototiles, the intervals I1 = [0, 1] and I0 = [0, ϕ] (where ϕ is the golden mean), and an
in�ation factor of ϕ. The rule J transforms the interval I1 into an interval of length ϕ, so
that we may cover it with I0, while J(I0) is an interval of length ϕ2 = ϕ+ 1, so we may tile
it with a copy of I0 followed with a copy of I1. We note that, by checking the lengths of the
tiles in a tiling from ΩJ , we obtain a sequence of symbols from Xθ and vice versa.

Note that, if we identify a tiling T with the point sets Λτ (T ) indicating the positions of
translates of the prototile τ , one may de�ne �nite sets Fτ,τ ′ b Rd such that the cluster J(τ)
contains a translation of τ ′ ∈ T at p, for every p ∈ Fτ,τ ′ . Then, for any tiling T ∈ ΩJ , the
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in�ation rule J de�nes a new tiling J(T ) ∈ ΩJ given by:

Λτ (J(T )) =
⋃
τ ′∈T

λ · (Λτ ′(T ) + Fτ ′,τ ),

which is a useful form for computation. By ordering T in any way, we may de�ne a square
matrix with entries [|Fτ,τ ′ |]τ,τ ′∈T , which serves the same purpose as the substitution matrix
de�ned for symbolic substitutions. Thus, primitivity of this matrix accomplishes a similar role
by ensuring minimality of the action α and, consequently, that there exists some J-periodic
point T such that ΩJ is the orbit closure of T under translation.
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Part II

Substitutive and hierarchical systems
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Chapter 4

Extended symmetries in bijective

substitutions and the Robinson tiling

The contents below correspond to the paper Extended symmetry groups for multidimensional
subshifts with hierarchical structure, developed as part of the current thesis work. Some
commentary and additional background has been added, while other sections have been
simpli�ed to prevent redundancy.

4.1. Introduction

Symbolic systems are a well known and thoroughly studied family of dynamical systems;
among them, subshifts [62,71] take a central place due to the simplicity of the description of
the shift action, with the complexity of a system manifesting itself in the description of the
phase space instead. Thus, comparing di�erent kinds of subshifts and determining whether
they are �the same� in some sense (topological conjugacy, measure-theoretical isomorphism,
shift equivalence, etc.) is a central problem in the theory of symbolic dynamics, followed by
the search of mathematical objects that distinguish between �di�erent� subshifts.

In what follows, X will denote a Zd-subshift. Among the �distinguishing objects� or conju-
gacy invariants the automorphism group Aut(X,Zd) is noteworthy, as it is comprised
by self-conjugacies that preserve the dynamic structure of a subshift and, thus, the structure
of the group Aut(X,Zd) contains important information about the nature of the dynamics
of the subshift X. For instance, for a full Z-shift AZ, the automorphism group is �large�
among countable groups [19] (by group-theoretic standards), having subgroups isomorphic
to all �nite groups, to

⊕∞
n=1Z and to the free group on two generators F2. This suggests

that the shift action on the full Z-shift exhibits many kinds of wildly di�erent behaviors at
once, such as periodic points, transitive orbits, an uncountable number of asymptotic pairs of
points, etc., and such dynamical properties manifest in the increased complexity of the group
Aut(AZ,Z). By contrast, Sturmian subshifts Xα (where α refers to the angle of the associated
rotation) have a trivial automorphism group Aut(Xα,Z) = 〈σ〉 ∼= Z, which is consistent with
our intuition as they are minimal subshifts with low complexity [29,30,33]. Here, any single
point has enough information to determine the structure of the whole group. This suggests
that strong structural constraints on the points of a subshift should make Aut(X,Zd) sim-
ple enough to be tractable. The book by Kitchens [62] compiles some classic results about
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automorphisms in subshifts, e.g. the aforementioned theorems by Boyle, Lind and Rudolph
in [19]. Similarly, the work by Olli [83] deals with the computation of this group under strong
rigidity conditions, with examples such as the two-dimensional chair tiling.

However, as by de�nition an automorphism is a translation-commuting mapping, when we
deal with groups that have a rich geometrical structure (such as Zd, for d > 1) we see
that the structure of the automorphism group is not sensitive to geometrical symmetries of
a non-translational nature; this precludes Aut(X,Zd) from �detecting� di�erences in large-
scale structures coming from such symmetries between two di�erent subshifts. We can see
some antecedents of the �geometric� phenomena that arise in higher-dimensional contexts
in e.g. the algebraic systems studied by Kitchens and Schmidt [63, 90]. Thus, we would like
to expand our scope to a larger group of homeomorphisms f : X → X, that should satisfy
identities on the lines of:

f ◦ (rigid symmetry) = (rigid symmetry) ◦ f,

as this allows for the homeomorphism f to �interact� properly with structural symmetries
coming from rotations, re�ections, shearing, etc. For the multidimensional groups Zd, d > 1,
we may think of rigid symmetries as particular cases of a�ne transformations. In this context,
if we think of shifts by elements of Zd as geometric translations, we may attempt to formalize
the desired equality above by employing the following property: a translation followed by an
a�ne transformation equals the same a�ne transformation followed by a (possibly di�erent)
translation. In symbols, this results in an �almost shift-commuting� relation:

(∀m ∈ Zd)(∃n ∈ Zd) : f ◦ σm = σn ◦ f.

Algebraically, our new �generalized automorphisms� turn out to be exactly the elements of
the normalizer group of 〈σ〉 = {σn : n ∈ Zd} in Homeo(X) (since f−1 ◦ 〈σ〉 ◦ f = 〈σ〉),
just in the same way as the group Aut(X,Zd) is the centralizer of 〈σ〉 in Homeo(X).
Baake, Roberts and Yassawi study extensively these two groups and their relationship in the
context of symbolic dynamics [13], although several precedents do exist (see e.g. the work
by Goodson [47], the book on reversibility by O'Farrell and Short [82], or the study of the
connection between �ip-conjugacies and orbit equivalence, by Boyle and Tomiyama [18,20]).
As the relation between n and m ∈ Zd can be shown to be linear, i.e. n = Afm for some1

Af ∈ GLd(Z), the general linear group GLd(Z), representing the geometric structure of Zd,
takes a prominent role in this context. Following [13], we call this normalizer the extended
symmetry group of the Zd-subshift X, Sym(X,Zd).

In this work, we �nd strong restrictions for Aut(X,Zd) and Sym(X,Zd) for several Zd-
subshifts which exhibit a hierarchical structure. We focus mainly on bijective substitutions,
later diverting our attention towards the Robinson tiling. We prove the following results, all
in the context of topological dynamics:

� For a bijective d-dimensional substitution θ, under reasonable assumptions, we show
(Theorem 4.3) that the only nontrivial elements of Aut(Xθ,Z

d), modulo a shift, are
relabeling maps, i.e. sliding block codes induced by a permutation of the alphabet A,
and thus this group is virtually-Zd, as it is the direct product of Zd with a subgroup

1For a general group, a similar relationship holds, with Aut(G) taking the role of GLd(Z). However, we
shall not deal with this case in what follows.
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of S|A|, the symmetric group over A. This is a generalization of a result by Coven [28],
and also a continuation of previous work such as the characterization by Lema«czyk
and Mentzen [70] in a measurable, one-dimensional context, and later works in the
subject [41,57].

� In a similar fashion, we show (Theorem 4.6) that Sym(Xθ,Z
d) is a �nite extension of

Aut(Xθ,Z
d) by some subgroup of the group Qd of symmetries of the d-dimensional

cube. It is thus isomorphic to a subgroup of the product (Zd oϕ Qd)× S|A|, where the
group action Qd

ϕ
y Zd is the natural one coming from the identi�cation of Qd with a

subgroup of GLd(Z). An application of this result to the Thue�Morse d-dimensional
substitution can be found as Example 4.3 below.

� With an argument of a similar nature, we compute the extended symmetry group of the
Robinson tiling (and its minimal subshift), showing that it is a semidirect product of
the corresponding automorphism group, which is known to be Z2 [34], with Q2 = D4,
the group of symmetries of the square. These results are shown below as Proposition
4.11 and the following Corollary 4.13.

With those results, we showcase di�erent proof techniques based on geometric considerations,
highlighting how subshifts can be recognized as geometrical objects as well as dynamical ones.

4.2. Bijective substitutions and Coven's theorem

While this work is ultimately concerned with extended symmetries, it is helpful to have an
explicit description of the automorphism group of the shift spaces under study �rst. We shall
focus on bijective substitutions, de�ned before as those whose columns are all bijections.

Notation As previously, we reserve the letter d for the rank or dimension of the underlying
group Zd, and the letter s = (s1, . . . , sd) ∈ Zd for a �xed �size� number, to be detailed
below. As in Chapter 3, the symbol A will always denote the alphabet, whose elements are,
consequently, called symbols.

Remark We may as well consider as a part of our study the analysis of what we could call
the �extended substitutive subshift� X∗θ, which would be the σ-orbit closure of the (�nite)
set of periodic points of θ∞. This subshift is usually strictly larger than Xθ and consequently
non-minimal, although with closely related dynamics. Some proofs below can be simpli�ed
when dealing with X∗θ, due to the existence of �illegal� points with local properties preserved
by automorphisms.

Given a pattern P over the alphabet {0, 1}, we write P for the pattern with the same support
obtained by replacing all 1s by 0s and vice versa. It is easy to see that a substitution over
the alphabet {0, 1} is bijective if and only if θ(1) = θ(0). In this case, for any pattern P ,
θ(P ) = θ(P ), and in particular θk(1) = θk(0). We can also de�ne δ : Xθ → Xθ by δ(x)k := xk.
It is easy to see that δ is always a nontrivial automorphism of Xθ. Coven's result in one
dimension [28] states that, up to a shift, δ is the only such automorphism:

Theorem 4.1 (Coven) Let A = {0, 1} be a two-symbol alphabet. If θ : A → A` is a nontrivial,
bijective, primitive substitution of constant length ` > 1, then Aut(Xθ,Z) ∼= Z×(Z/2Z), with
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every automorphism being of the form σn or δ ◦ σn, where σ = σ1 is the elementary shift
action and δ the aforementioned �ip map.

In larger alphabets there is a similar characterization. While we are concerned with the
topological viewpoint only, regardless an important precedent worth mentioning is the cha-
racterization by Lema«czyk and Mentzen [70] of the nontrivial automorphisms of a bijective
substitution, which (modulo a shift) are biunivocally associated to alphabet permutations
that commute with the substitution θ; more precisely, they proved that:

Aut(Xθ, σ)/〈σ〉 ∼= Aut(Xθ, θ),

where the notations Aut(Xθ, σ) and Aut(Xθ, θ) are used to distinguish the corresponding
(semi-)group actions. Even though the method used in that work is oriented to the mea-
surable case2, certain ideas follow a similar pattern as the proof exhibited below for the
multidimensional case, employing desubstitution (i.e., the property of recognizability from
Lemma 3.20) in order to decompose a point from the shift as a concatenation of words θm(a)
for any desired m ≥ 1, which is then chosen appropiately depending on the automorphism
under scrutiny. Our goal in what follows is to show that these results from Coven, Lema«czyk
and Mentzen translate readily to the higher-dimensional case, in the context of topological
dynamics.

The main step in the proof of our generalization of the above results lies in the following
lemma3:

Lemma 4.2 Let θ : A → AS be a bijective substitution with nontrivial support S = [0, s−1]
over an alphabet A, and suppose f ∈ Aut(Xθ,Z

d) is an automorphism. Then, for any x ∈
Xθ there exist k, ` ∈ Zd and a su�ciently large m ≥ 1 such that both x and f(x) are
concatenations of patterns of the form θm(a), a ∈ A arranged over a translation of a �grid�
sm · Zd, and such that the pattern with support k + p + S(m) (with p ∈ sm · Zd) in the grid
corresponding to x determines uniquely the pattern with support ` + p + S(m) in the grid
corresponding to f(x).

Proof. As above, it is a direct consequence of Lemma 3.20 that for a �xed m ≥ 1 any
point x ∈ Xθ is a concatenation of patterns of the form θm(a), a ∈ A over a grid given by a
translation of sm ·Zd. So we actually are proving the correspondence between these patterns
in x and f(x).

By its nature as a sliding block code, any automorphism f ∈ Aut(Xθ,Z
d) can be assumed to

be of radius r ∈ N0, i.e. to have a local function with window [−r1, r1]. Thus, for any subset
R ⊆ Zd, x|R determines uniquely the con�guration f(x)|R◦r . From now on, f and r will be
�xed. Consider then the support S(m) of θm. As S was deemed nontrivial, S(m) must be a
d-dimensional rectangle of edge length at least 2m in any direction, and thus for su�ciently
large m (say, m > log2(2r + 1)) the set (S(m))◦r is nonempty and a d-dimensional rectangle
of edge length at least 2m − 2r in all directions.

By Lemma 3.20, there are vectors k, ` ∈ Zd such that, for any p ∈ sm · Zd, x|k+p+S(m)

and f(x)|`+p+S(m) are patterns of the form θm(a) for some a ∈ A. We shall refer to these

2Note that in the measurable setting it is not necessary to distinguish Xθ from X∗θ, as X
∗
θ \Xθ has measure

zero for the standard measures in this context, e.g. the frequency measure.
3We note that the proof below translates with no changes to X∗θ.
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rectangles as Kp :=k+p+S(m) and Lp :=`+p+S(m), respectively, for any p ∈ sm ·Zd. Note
that, since S(m) = [0, sm − 1] is a set of representatives for Zd/(sm ·Zd), the rectangles Kp,
indexed by all p ∈ sm · Zd, cover Zd completely (and thus the Lp rectangles do so as well).
Since we may replace k by any k+sm ·k′ (as then the new K ′p is just the old Kp+k′), we may
choose k in a suitable way such that, for any p ∈ sm · Zd, K◦rp has nonempty intersection
with Lp, say Ip :=K◦rp ∩ Lp. This is because the union of all Lp is the whole of Zd; we only
need to note that, for a suitable choice of k, the intersection I0 = K◦r0 ∩L0 is nonempty, and
then use the fact that Kp and Lp are translations of K0 and L0 by the same vector. It is
important to remark that, even though in most arguments we choose k and ` from the set
S(m) = [0, sm − 1], as the obvious representatives of the cosets of sm · Zd, it is not actually
necessary to do so, and in particular in this proof k and ` may be any two elements from Zd.

Kp
K◦rp

Ip

Lp Kp

Ip

Lp

Figure 4.1: In the �gure, we see how x|Kp = θm(a) (for some a ∈ A) determines f(x)|K◦rp and,
in particular, f(x)|Ip . Since the substitution is bijective, this forces f(x)|Lp to equal θm(b)
for some b ∈ A which depends solely on a.

As stated above, since θ (and thus θm) is a bijective substitution, then for any a, b ∈ A and
any q ∈ S(m) the condition θm(a)q = θm(b)q implies a = b and thus θm(a) = θm(b). Because
of this, the (unique) bp ∈ A such that the pattern f(x)|Lp corresponds to (a translation of)
θm(bp) is entirely determined by the subpattern f(x)|Ip (as Ip is nonempty), which in turn,
as a subpattern of f(x)|K◦rp , is entirely determined by x|Kp , which is of the form θm(ap) for
some ap ∈ A as well. Thus, for any p ∈ sm ·Zd, f(x)|Lp depends uniquely on x|Kp , as desired.

This proof shows that, associated to each f , there is a mapping τf : A → A such that, for
all p ∈ sm ·Zd, bp = τf (ap). This is enough to completely characterize f in terms of τf , and,
using this, we can describe Aut(Xθ,Z

d) explicitly:

Theorem 4.3 For a nontrivial, bijective, primitive rectangular substitution θ, Aut(Xθ,Z
d)

is generated by the shifts and a �nite set of relabeling maps of the form τ∞ : AZd → AZd

given by permutations of the alphabet τ : A → A. Thus, Aut(Xθ,Z
d) is isomorphic to the

direct product of Zd by some subgroup of S|A|. In particular, on the alphabet A = {0, 1},
Aut(Xθ,Z

d) is generated by the shifts and the relabeling map (�ip map) δ(x) := x, and thus
is isomorphic to Zd × (Z/2Z).

Proof. As remarked above, the relationship between f(x)|Lp and x|Kp can be stated as the
existence of a mapping τ : A → A (depending only on the automorphism f and perhaps on
the chosen x) such that if x|Kp is θm(a), then f(x)|Lp is θm(τ(a)). The mapping τ does not
depend on the chosen p ∈ sm · Zd due to the CHL theorem.

Since f is an automorphism and thus invertible, we may apply the same observations to f−1,
obtaining another mapping of the alphabet η : A → A. By choosing a su�ciently large m
and appropiate values for k and `, we see that η ◦ τ(a) = a for all a ∈ A. Since |A| <∞, τ
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must be a bijection, as expected. In particular, for a binary alphabet A = {0, 1}, τ is either
the identity or the map τ(a) = 1− a.

Now, note that the m chosen for the proof of Lemma 4.2 can be replaced with any m′ > m,
with the argument remaining unchanged. Using desubstitution as given by Lemma 3.20, it
is enough to prove the above equality for a point of the form θm(y). Taking m′ = m+ 1, the
above characterization implies that:

(∃k,k′ ∈ Zd)(∃τ, τ ′ : A → A) : f(θm+1
∞ (x)) = σk(θm∞(τ∞(θ∞(x))))

= σk′(θ
m+1
∞ (τ ′∞(x))),

and since k ≡ k′ (mód sm), this implies that each pattern θm+1(τ ′(a)) with a ∈ A is a
concatenation of the patterns θm(τ(b)), where the b are the corresponding symbols of the
pattern θ(a). But by de�nition θm+1(τ ′(a)) = θm(θ(τ ′(a))), and the mapping θ is injective;
thus, θ(τ ′(a)) = τ(θ(a)), i.e. the relabeling τ must send patterns of the form θ(b) to other
patterns of the form θ(b′).

By replacing θ with a suitable power, we may assume that for the bottom left corner 0 of
the support S the equality θ(a)0 = a holds. Thus, θ(τ ′(a)) has τ ′(a) in this position, while
τ(θ(a)) has τ(a) in the same position, i.e. τ(a) = τ ′(a). As this applies to any symbol a,
we conclude that τ = τ ′ and that τ and θ commute, i.e. θ∞ ◦ τ∞ = τ∞ ◦ θ∞ as mappings
AZd → AZd . Applying this result to the identity with f above, we conclude that:

(∃k ∈ Zd) : f(θm∞(x)) = σk ◦ τ∞(θm∞(x)),

and since τ∞ is an automorphism of the full shift, it naturally commutes with σk, which gives
an explicit form for f for points of the form θm∞(x). Any other point of Xθ is a shift of a point
of this form, and thus the result holds; in particular, for a binary alphabet, when τ(x) = 1−x
necessarily its extension to the full shift is τ∞ = δ.

Now, for any f ∈ Aut(Xθ,Z
d) and any x ∈ Xθ, f(x) is of the form θ∞ ◦ σ`−k(x) for some

bijection θ : A → A. Since f commutes with the shift action, the equality f |Orbσ(x) = (τ∞ ◦
σ`−k)|Orbσ(x) holds. The result then follows by minimality4.

Remark Note that the proofs of Lemma 4.2 and the following results also provide a necessary
condition for a bijection τ : A → A to induce a relabeling map τ∞ ∈ Aut(Xθ,Z

d), namely,
that θ∞ ◦ τ∞ = τ∞ ◦ θ∞ (under the condition that θ(a)0 = a for all a ∈ A, replacing
θ by a suitable power if needed). This is essentially equivalent to the condition from [70]
in the measurable case, as given by the isomorphism Aut(Xθ,Z

d)/〈σ〉 ∼= Aut(Xθ, θ∞). By
compactness, this condition is also su�cient, providing an explicit description of the group
Aut(Xθ,Z

d) in terms of the patterns θ(a), a ∈ A. This condition may be restated in terms
of the columns of the substitution θ, which are the bijections θk : A → A, a 7→ θ(a)k, for
k ∈ S; this leads to a complete characterization of relabeling maps, as seen in the work
by Frank [41], or in e.g. [57] in the one-dimensional case. Taking this previous work into
account, we actually show that there are no other automorphisms besides these relabeling
maps, making the aforementioned results a complete description of Aut(Xθ,Z

d).
4For the extension X∗θ, since we lack minimality, we need to use the fact that X∗θ is a �nite union of orbit

closures, the decomposition f = σk ◦ τ∞ applying to each of them. Since all these orbit closures must contain
Xθ, the relabeling τ must be the same for all of them.
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Example An example of a bijective substitution arising naturally from tiling theory is the
symbolic representation of the chair tiling. This tiling of R2 by 2×1 rectangles has a natural
symbolic representation as seen in Figure 4.2, as a substitution θ in a four-letter alphabet
corresponding to arrows pointing up, down, left and right.

The second power θ2 of this substitution satis�es the property that all four corners of θ2(a)
have the symbol a. Suppose that there is an automorphism that is not a shift. Then, by
appropriately composing this automorphism with a shift map, we may assume that it is a
relabelling map, i.e. a radius zero automorphism τ∞, where τ is a bijectionA → A, unequal to
the identity. Thus, τ must commute with θ2, i.e. θ2(τ(a))k = τ(θ2(a)k) for every k ∈ supp(θ2);
however, from the fact that the symbol a appears in all four positions of some edge of θ2(a),
and this edge is distinct for each value of a, we can easily see that the only mapping with
this property is idA. Thus, there are no nontrivial automorphisms in this shift space. This
answers a question by Olli [REF].

7−→7−→

Figure 4.2: The in�ation rule for the table tiling (above) and its symbolic representation as
a substitution on a four-letter alphabet (below).

4.3. Extended symmetries of bijective substitutions

Our next goal is to obtain generalizations of the previous result in the domain of extended
symmetries. These are a generalization of automorphisms, which introduce an additional
degree of �exibility by allowing, besides the standard local transformations given by a sliding
block code, to �deform� the underlying Zd lattice, by rotation, re�ection, shearing or other
e�ects of a geometric nature. This additional degree of freedom is captured by a group
automorphism of Zd, i.e. an element of GLd(Z).

The basic premises of the theory of extended symmetries of subshifts may be studied in [13].
Remember that, as in De�nition 3.9, an extended symmetry of a shift space X is an
homeomorphism f : X → X which is A-equivariant for some invertible matrix A ∈ GLd(Z),
i.e.:

(∀p ∈ Zd) : f ◦ σp = σAp ◦ f,

and that the collection of all such functions is a group, Sym(X,Zd), containing the auto-
morphism group Aut(X,Zd) as a normal subgroup. Under our standard hypothesis (namely,
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a faithful shift action) the matrix Af associated to an extended symmetry f is uniquely
determined and thus there is an obvious mapping ψ : Sym(X,Zd)→ GLd(Z), f 7→ Af . It is
also easy to see that ψ is a group homomorphism:

f ◦ g ◦ σp = f ◦ σψ(g)p ◦ g = σψ(f)(ψ(g)p) ◦ f ◦ g,

consequently, ψ(f ◦ g) = ψ(f)ψ(g). Evidently, ψ(f) = Id (the identity matrix) if and only
if f is a traditional automorphism of X, i.e. ker(ψ) = Aut(X,Zd). This implies that the
quotient group Sym(X,Zd)/Aut(X,Zd) is isomorphic to a subgroup of GLd(Z), and thus,
determining the nature of the latter quotient in terms of GLd(Z) is a very useful tool to
describe Sym(X,Zd).

As is the case for automorphisms, this allows us to show that whenever two points match on
a �large� set R ⊆ Zd, their images under an extended symmetry f match as well on a large
set, which depends on f and R. More precisely, if we suppose w.l.o.g. that the support U (as
de�ned in the theorem) of the symmetry f is of the form [−r1, r1], then:

x|R = y|R =⇒ f(x)|ψ(f)[R◦r] = f(y)|ψ(f)[R◦r].

In particular, if R is a half-space, the set ψ(f)[R◦r] is a half-space as well.

Notation Given a d-tuple u = (u1, . . . , ud) ∈ {−1,+1}d, we will denote by Qu the qua-
drant u1N0 × u2N0 × · · · × udN0. Any translate k + Qu will also be called a quadrant (of
vertex k). Notice that Zd can be written as the disjoint union of 2d quadrants.

Our goal is to characterize the group Sym(X,Zd)/Aut(X,Zd) when X = Xθ, θ being a
nontrivial, bijective, primitive substitution, and then use this characterization to describe the
extended symmetry group explicitly as a semidirect product, whenever possible. We shall see
that Xθ has some distinguished points with fractures, that is, these points are comprised of a
�nite number of large subcon�gurations (with a quadrant, a half-space, etc. as support) �glued
together� in a somewhat independent way. Therefore, there are distinct points that match
in a large subcon�guration (such as in a half-space) but are di�erent outside the support of
this con�guration, in such a way that these di�erences may be �detected� locally. The latter
implies, due to the generalized form of the CHL theorem, that extended symmetries have to
preserve these points with fractures, in the sense that points that exhibit such a behavior are
to be mapped to other points with similar characteristics. In particular, by analyzing these
points adequately, we can deduce strong restrictions on the matrices ψ(f) ∈ GLd(Z) for any
f ∈ Sym(X,Zd), as the set of possible �shapes� of the fractures must be preserved by the
matrix ψ(f). The following lemma provides us with pairs of points that satisfy this general
idea of �fractures�:

Lemma 4.4 Let θ be a nontrivial, bijective, primitive substitution such that Xθ has faithful
Zd-shift action over the alphabet A, and let ei be any element of the canonical basis of Zd.
Then there exist two points x, y ∈ Xθ such that, for any n = n1e1 + . . .+nded ∈ Zd, xn = yn
if, and only if, ni ≥ 0; that is, x and y match exactly on a half-space that is a union of 2d−1

quadrants.

Proof. For simplicity, we shall assume without loss of generality that i = 1. Since the action
Zd

σy Xθ is faithful and minimal, there must be symbols a, b, c ∈ A, with b 6= c, such that,
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for some points x, y ∈ Xθ, x0 = y0 = a but x−e1 = b, y−e1 = c. If this were not the case, for
any point x ∈ Xθ the symbol xk would determine xk+e1 uniquely. Since |A| <∞ this would
result in a direction of periodicity shared by all points in Xθ, contradicting the faithfulness
of the action.

As usual, we may replace θ by θm for a su�ciently large m such that every periodic point of θ
is a �xed point of θm. By the previous observation, there exist two �xed points x′, y′ ∈ Xθ such
that x′0 = y′0 = a and x′−e1 = b, y′−e1 = c. Those are obtained by iterating the substitution
over the points x, y from the previous paragraph and taking a convergent subsequence, which
exists by compactness. Since x′ and y′ are �xed points of the substitution, these symbols
determine the corresponding quadrants entirely, and thus x′ and y′ match on the subset
Q1 = Nd

0 but (due to bijectiveness) di�er in every symbol from (−N)×Nd−1
0 .

Now, take the direction p = (0,−1,−1, . . . ,−1). The pair of points σmkp(x
′) and σmkp(y

′) match
on the set Ek := {n1e1 + . . . + nded : n1 ≥ 0, n2, . . . , nd ≥ −k}, and di�er on every position
in the set Fk de�ned by the same inequalities except for n1 < 0. We may take a common
convergent subsequence of (σmkp(x

′))k≥0 and (σmkp(y
′))k≥0, converging, respectively, to a pair

of points x∗ and y∗ (note that such a pair exists by compactness). Due to the nature of
convergence in shift spaces, x∗ and y∗ must match in Ek for in�nitely many values of k, and
thus match in

⋃
k∈NEk = N0×Zd−1, and, simultaneously, they must di�er in every position

in the set
⋃
k∈N Fk = (−N)× Zd−1, as desired.

Remark In the extension X∗θ, the existence of these kinds of points is easier to see, as they
can be constructed directly from appropiate pairs of seeds. In fact, we can go further and
create pairs of points which match everywhere but in a speci�c quadrant, as seen in Figure
4.3. As stated before, such illegal points are �discarded� in the measurable setting; this hints
that we may use the additional structure of X∗θ in the topological case to gain insight on the
actual subshift of interest, Xθ.

7→ 7→

Figure 4.3: Points from the two-dimensional Thue-Morse substitution. The �rst two con�-
gurations correspond to (the central pattern of) two points x, y ∈ XθTM

matching exactly in
one half-plane, as in Lemma 4.4. The third con�guration is an �illegal� point z ∈ X∗θTM

\XθTM

from the extended substitutive subshift. The associated seeds and substitution rule are shown
below.

To continue, we introduce some terminology. Remember that a (real) hyperplane of Rd is a
(d− 1)-dimensional a�ne subspace of Rd; we shall call the intersection of such a hyperplane
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with Zd a discrete hyperplane, as long as it satis�es the additional restriction of being a
coset of a rank d − 1 subgroup of Zd (to avoid degenerate cases, e.g., a line with irrational
slope can intersect Z2 in at most one point). Note that a discrete hyperplane H that passes
through the origin is a rank d− 1 direct summand of Zd, that is, there is some v ∈ Zd such
that Zd = H ⊕ Zv. Any discrete hyperplane can be written as:

Hv := {w ∈ Zd : 〈v,w〉 = 0}, for some v ∈ Zd.

Note that the image of such a hyperplane under a matrix A ∈ GLd(Z) is another such
hyperplane, also given by some vector v′ with integer coe�cients. Such a hyperplane also
de�nes two disjoint half-spaces S+

v , S
−
v (given by the inequalities 〈v,w〉 > 0 and 〈v,w〉 <

0, respectively) which together with Hv cover the whole of Zd. Any other half-space is a
translation of a half-space of this type.

By the generalized CHL theorem, we verify that, given a pair of points x, y that match along
a half-space S±ej (as given by Lemma 4.4), their images under a �xed extended symmetry f
match along a �large� set of the form ψ(f)[(S±ej)

◦r] as well. We shall use this to prove that,
unless the image of a half-space S±ej by ψ(f) is itself a half-space of the form S±ej′ (where
it may be the case that j′ 6= j), the restriction of x to S±ej determines f(x) not only in
ψ(f)[(S±ej)

◦r], but in ψ(f)[(S∓ej)
◦r] (which is a translate of the complement of the previous

set) as well, and from this we later infer that x|S±ej determines f(x) in the whole plane.

Thus, the existence of two distinct points that match in S±ej contradicts the bijectivity of this
hypothetical f ∈ Sym(X,Zd).

The previous de�nitions allow us to state a simple yet important property of the �grid of
rectangles� that any point x ∈ Xθ determines via the desubstitution property, as follows:

Lemma 4.5 Let n ∈ Zd be a vector with positive entries, satisfying the condition ni > 1
for all 1 ≤ i ≤ d, and let S, S ′ be two disjoint half-spaces in Zd, given by vectors that are
not (multiples of) the elements from the canonical basis. Then, for any p ∈ Zd and any
su�ciently large j ∈ Z+ there is a q ∈ p+nj ·Zd such that q+ [0,nj − 1] intersects both S
and S ′.

Proof. First of all, note that the condition S ∩ S ′ = ∅ implies that for some v (which
is not a multiple of an element of the canonical basis) there exist t1, t2 ∈ Zd such that
S = t1 +S+

v , S
′ = t2 +S−v . This is a direct consequence of the characterization of a half-plane

via inequalities. We also note that it is enough to prove this result for d = 2, as we may
restrict ourselves to a subspace Zei ⊕ Zej where vi 6= 0 and vj 6= 0 (such i 6= j do exist
because of the restriction on v), and we also may assume p = 0 by applying an adequate
translation.

Note that, if we replace S and S ′ by subsets S ′′ ⊆ S, S ′′′ ⊆ S ′, proving the result for S ′′ and
S ′′′ does so for S and S ′ as well. Thus, without loss of generality, we may suppose that there
exists some v = (v1, v2) ∈ Z2 with v1v2 6= 0 and (for simplicity) gcd(v1, v2) = 1, and some
C > 0, such that S = {w ∈ Z2 : 〈v,w〉 ≥ C} and S ′ = {w ∈ Z2 : 〈v,w〉 ≤ −C} = −S.
Thus the following equality holds:

Z2 \ (S ∪ S ′) = {w ∈ Z2 : |〈v,w〉| ≤ C}.
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This implies that Z2 \ (S ∪ S ′) is a disjoint union of translates of the discrete hyperplane (in
the current context, a discrete line) Hv = {w ∈ Z2 : 〈v,w〉 = 0}, and the latter equals Zu,
where u = (−v2, v1); we shall suppose without loss of generality that both entries of u are
positive.

Under the latter additional hypothesis, we see that for any w ∈ Z2, the inner product 〈v,w+
e1〉 is strictly greater than 〈v,w〉 (with a di�erence of at least 1 since all quantities involved
are integers). Iterating this, it is easy to see that any vectors from the line Ce1 + Hv have
inner product withw greater than C, and thus Ce1+Hv ⊂ S. Similarly, 〈v,w+e2〉 < 〈v,w〉,
which implies that Ce2+Hv ⊂ S ′ under the same reasoning. In particular, Ce1 ∈ S,Ce2 ∈ S ′.
To conclude, note that the restriction n1, n2 > 1 implies that the rectangle [0,nj − 1] has
at least 2j elements on each side. Hence, for any su�ciently large j (say, j > log2(C)) this
rectangle contains both Ce1 and Ce2 and it thus intersects both S and S ′, as desired. The
same argument holds without the hypothesis v1,−v2 > 0 by replacing e1 and e2 by ±e1,±e2

with appropiate signs.

v

S

S ′

Ne1

Ne2

〈v,w
〉 >

CN

〈v,w
〉 <
−C
′N

Hv
: 〈v

,w
〉 = 0

Figure 4.4: The situation in the proof of Lemma 4.5. As the side length of the rectangles
associated with the substitution increases exponentially, the inner product 〈v,w〉 which de-
termines whether w belongs to S or S ′ (or neither) takes su�ciently many di�erent (integer)
values inside any of these rectangles to ensure that at least one such rectangle intersects both
S and S ′.

Now, note that by shifting x and y by an appropiate sequence of vectors (chosen w.l.o.g.
orthogonal to v), we may ensure that the rectangle obtained by Lemma 4.5 is centered
around the origin (e.g. if n = 2 ·1 then we may shift the corresponding points to ensure that
the rectangle obtained has support [−2m−1, 2m−1 − 1]d). By compactness, and appealing to
the continuity of the function that sends Xθ to its factor5 Zn (which maps each point to the
list of the vectors k corresponding to each shift in the representation from Lemma 3.20), we
can replace both x and y by other two points x∗ and y∗ having the same property of matching
in exactly one half-space and being di�erent in every position in the other half-space, and

5Which is the maximal equicontinuous factor of Xθ in the height 1 case, but in this situation we do not
actually need the maximality property.
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also are given in such a way that a rectangle centered around the origin satis�es the property
of Lemma 4.5 for in�nitely many values of j.

This choice of points allows us to see that, given an extended symmetry f : Xθ → Xθ, since
x∗ and y∗ di�er in a half-space S, f(x∗) and f(y∗) must di�er in in�nitely many positions
in ψ(f)[S] (which is a half-space as well, equalling S+

v for some v), and such discrepancies
may be found at an arbitrarily large distance from the separating hyperplane Hv; otherwise,
by shifting in the direction of v we can construct by compactness two di�erent points with
the same image, contradicting the bijectiveness of v. But any discrepancy between f(x∗) and
f(y∗) is located in a su�ciently large rectangle of the kind given by Lemma 4.5 centered
on the origin. This implies that, since the substitution is bijective, f(x∗) and f(y∗) must be
di�erent in all coordinates from S+

v located inside this rectangle. Since the rectangles can be
taken as large as desired, this implies that f(x∗) and f(y∗) must di�er in every position from
S+
v .

Now we may prove the core part of our characterization of the extended symmetries of Xθ,
in the form of the following theorem6:

Theorem 4.6 For a d-dimensional, nontrivial, bijective, primitive substitution θ, the group
of all admissible lattice transformations of the subshift Xθ, Sym(Xθ,Z

d)/Aut(Xθ,Z
d), is iso-

morphic to a subset of the hyperoctahedral group7 Qd
∼= (Z/2Z) o Sd = (Z/2Z)d o Sd, which

represents the symmetries of the d-dimensional cube. Thus, the extended symmetry group
Sym(Xθ,Z

d) is virtually-Zd.

Proof. To begin with, we need to show that, for an extended symmetry f , the matrix ψ(f)
must map half-spaces of the form S±ei to (possibly di�erent) half-spaces S±ej of the same sort.
Suppose that ψ(f)[S+

e1
] is S+

v for some v with at least two nonzero coordinates (that is, it
is not a scalar multiple of a vector from the canonical basis). By Lemma 4.4, we know that
there are two points x, y ∈ Xθ such that xn = yn if, and only if, 〈n, e1〉 ≥ 0. Without loss
of generality, we assume that these two points have the properties described in the brief
discussion after Lemma 4.5.

Note that the half-spaces S−e1 and S
+
e1
−e1 are a partition of Z2 and each of them determines

f(x) and f(y) over the sets ψ(f)[S−e1 ]
◦r and ψ(f)[S+

e1
−e1]◦r, which are translations of S−v and

S+
v , respectively. In particular, by the de�nition of x and y, we have that, for some C > 0,
f(x)|S = f(y)|S but f(x)|S′ and f(y)|S′ di�er at every coordinate, where S = {w ∈ Zd :
〈v,w〉 > C} and S ′ = {w ∈ Zd : 〈v,w〉 < −C}.
By desubstitution, since x and y match in a very large set containing a quadrant, we see
that for any m > 0 there exists some k ∈ Zd such that f(x) = σk(θm(x′)), f(y) = σk(θm(y′))
for some x′, y′ ∈ Xθ. Thus, both f(x) and f(y) are concatenations of patterns of the form
θm(a), a ∈ A with support p + [0,nm − 1], with p ∈ k + nm · Zd. By Lemma 4.5, we can
choose a su�ciently large m in order to ensure the existence of one such rectangle, say R,
that has nonempty intersection with both S and S ′.

6Once again, the same proof holds for Sym(X∗θ,Z
d), and so we omit explicit distinctions. However, for X∗θ

an alternative, simpler approach is possible, which is brie�y discussed afterwards.
7This group, with operation (n1, . . . , nd; τ) ∗ (m1, . . . ,md; ν) = (n1 + mτ(1), . . . , nd + mτ(d); τν), is a

particular case of a wreath product. A description of this group, its properties and relation to the geometry
of the integer lattice Zd can be found in [78], or in [2]. Wreath products in general are described in the book
by James and Kerber [54], among others.
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Since f(x)|S = f(y)|S, we must have f(x)|S∩R = f(y)|S∩R. As the substitution is bijective,
this implies f(x)|R = f(y)|R and, in particular, f(x)|S′∩R = f(y)|S′∩R. However, from our
previous observation, we know that since x and y di�er in every coordinate from S−e1 , we must
have f(x)|S′∩R 6= f(y)|S′∩R, which is a contradiction. As this contradiction arose from the
hypothesis of v not being a scalar multiple of some element of the canonical basis (as in the
hypothesis of Lemma 4.5), we must have v be some multiple of some ei. Since any positive
multiple of v de�nes the same half-space up to a translation, we may assume v = ±ej for
some index 1 ≤ j ≤ d. The same argument holds for any other element of the canonical basis
besides e1.

Since the sequence of vectors ψ(f)ei, 1 ≤ i ≤ d, must consist of linearly independent mem-
bers of the canonical basis, and thus corresponds to a permutation of this basis with added
signs, the group Sym(Xθ,Z

d) acts by permutation on the set of one-dimensional subspaces
{Ze1, . . . ,Zed}. Thus, ψ(f) must be given by a matrix that sends each ei from the cano-
nical basis to a vector ±ej and thus each column of ψ(f) is such a vector. Since ψ(f) is
non-singular, it must be of the form:

ψ(f) = [(−1)t1eπ(1) | (−1)t2eπ(2) | · · · | (−1)tdeπ(d)],

where π is a permutation of {1, . . . , d} and t1, . . . , td ∈ {0, 1}. These matrices correspond to a
�nite subgroup of GLd(Z) which is isomorphic to Qd. Indeed, the set of all diagonal matrices
of this form is isomorphic to (Z/2Z)d, while the set of all matrices with nonnegative entries
of this form is isomorphic to Sd, and any matrix of the aforementioned form is a product of
a permutation matrix with positive entries and a diagonal matrix in a unique way.

Thus, ψ can be seen as a group homomorphism Sym(Xθ,Z
d) → Qd by identifying the lat-

ter with the corresponding matrix group. Since ker(ψ) = Aut(Xθ,Z
d), we conclude that

Sym(Xθ,Z
d)/Aut(Xθ,Z

d) ∼= im(ψ) ≤ Qd, as desired.

Remark The proof given above is mostly combinatorial in nature, appealing to some geome-
tric properties both inherent to the general structure of the subshifts involved and present in
speci�c points of this space. We can take a di�erent approach, closer to topological dynamics
in the same vein as [13]; we shall proceed to give a sketch of this alternate method. As before,
ϕ : Xθ � Zn is the mapping from the substitutive subshift Xθ to its odometer factor.

Using arguments similar to the construction from Lemma 4.4 and the subsequent discussion,
we can show that for any integer coordinate of am ∈ Zs, we may insert a hyperplane in Zd,
parallel to the corresponding coordinate hyperplane, in such a way that these hyperplanes
induce a partition of Zd into 2r subsets E1, . . . , E2r , each a �nite union of 2d−r quadrants,
so that if U ⊂ Zd is any set that intersects all the Ej, then any x ∈ Xθ with ϕ(x) = m is
entirely determined by x|U . In particular, if ϕ(x) = 0, x is necessarily a periodic point of θ.

We can use this property to show that there exists an ` such that |ϕ−1[m]| = ` for any
m ∈ Zd, while |ϕ−1[m]| 6= ` for all m ∈ Zs \ Zd. Arguments akin to the ones shown in [13]
show that extended symmetries preserve the cardinality of these �bers of the factor ϕ, hence
they must map Perθ(Xθ) to itself. The result then follows by application of the extended CHL
theorem.

Remark While Theorem 4.6 applies to both the standard substitutive subshift Xθ and the
extended subshift X∗θ, in the latter case we may use the properties of quadrants in Zd and
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a�ne mappings for an alternate proof method. We summarize this alternative approach
brie�y, as we believe this proof scheme may apply to other kinds of subshifts with similar
geometrical properties.

Via basic linear algebra and convexity arguments, we may show that the image of a quadrant
Q under a matrix A cannot contain two disjoint quadrants; more precisely, as a quadrant is
the set of all nonnegative integral linear combinations of some set of the form {±e1, . . . ,±ed},
its image under an invertible matrix A ∈ GLd(Z) is also the set of nonnegative linear com-
binations of some set of d vectors. As AQ is the intersection of a convex cone with Zd, if
p ∈ Zd is a convex combination of two elements q, r ∈ AQ, then p ∈ AQ as well. Were AQ
to contain two distinct quadrants, then, this allows us to show that AQ contains all of the
(in�nitely many) points with integral coordinates of some line in Rd, and thus Q contains a
line as well; however, such a line would eventually have a point where one of the coe�cients
of the associated linear combination is negative, a contradiction.

This results in a limitation of the �shape� of the cone AQ obtained as this image to speci�c
con�gurations, which result on either AQ or A−1Q being strictly contained in a quadrant.
This, in turn, forces some rectangles associated to the desubstitution box structure (from
Lemma 3.20) to overlap both this cone and its complement in subsets of Zd with arbitrarily
large diameter. Hence, by the bijectiveness of θ, the con�guration of symbols in this cone in
f(x)|AQ is forced by the con�guration x|Qc outside of this quadrant.
Now, let x1 and x2 be two �xed points of θ (replacing it with a suitable power such that
θk(a) has the symbol a on every corner, if needed), whose seed (central pattern) is equal in
all but one symbol, in such a way as to ensure that those points have the same symbols in
every quadrant except Q, in which they di�er at every position. Then, as A±1Q is entirely
contained within some quadrant, the previous bijectiveness argument forces the images of x1

and x2 under f±1 to be the same. As f (and thus f−1) is a bijection, this is absurd.

The previous result imposes a very strict limitation on the structure of the group Sym(Xθ,Z
d);

thus, with some additional information, we can compute this group explicitly. For instance:

Example The extended symmetry group of the subshift induced by the d-dimensional Thue�
Morse substitution, given by:

θTM : {0, 1} → {0, 1}{0,1}d

a 7→ ((a+m1 + · · ·+md) mód 2)(m1,...,md)∈{0,1}d ,

is a semidirect product of the form:

Sym(XθTM
,Zd) ∼= (Zd × Z/2Z) oQd,

generated by the shifts, the relabeling map δ(x) = x and the 2dd! rigid symmetries of the
coordinate axes given by (ϕA(x))n = xAn, with A ∈ Qd.

Indeed, by Theorem 4.6, Sym(XθTM
,Zd) is a (Zd × (Z/2Z))-by-R group extension for some

R ≤ Qd. Consider x to be the �xed point of θTM whose seed x|{−1,0}d consists only of zeros.
It is easy to verify that, for any A ∈ Qd, ϕA(x) = x; since XθTM

is the orbit closure of x, this
immediately shows that ϕA maps XθTM

to itself and thus ϕA is a valid extended symmetry.
Hence, R = Qd, which embeds into Sym(XθTM

,Zd) by the map ι : A 7→ ϕA. Since ψ(ϕA) = A,
ι is a right inverse for ψ and thus the extension splits, corresponding to the above mentioned
semidirect product. With minor changes, we can show the same result for X∗θTM

.
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Example In a similar fashion, the symbolic version of the table tiling from Figure 4.2 may
be immediately seen to have D4 symmetry, as suggested by the corresponding in�ation rule.
We note that, in this case, the underlying local function of the extended symmetries must be
non-trivial; for instance, for a re�ection along the Y axis, this local function must preserve
the vertical arrows but swap the right- and left-pointing arrows. This is a similar situation to
the chair tiling example studied by Olli [83], whose extended symmetry group was described
by Baake, Roberts and Yassawi [13].

Remark It is worth noting that, while having extended symmetries associated to the hy-
peroctahedral group may be the expected result due to the underlying box structure, the
bijectiveness of θ plays an important role as well. For instance, consider the half-hex tiling,
which is given by the in�ation rule seen in Figure 4.5. Splitting each hexagon into three
triangles, we see that there are 13 possible con�gurations of one triangle pointing upwards
horizontally adjacent to one pointing downwards forming a rhombus.

Using this set of 13 rhombuses as an alphabet, the in�ation rule becomes a non-bijective
substitution θ which encodes the in�ation. Indeed, we may retrieve a tiling consistent with
this rule from every x ∈ Xθ and vice versa; this is a similar situation to the chair and table
tilings [83].

It is easy to see that applying an hexagonal symmetry to any tiling obtained via this in�ation
produces another tiling of the same thing. This fact may be used to produce a copy of D6

inside of Sym(Xθ,Z
d)/Aut(Xθ,Z

d) (it may be proved, even, that this quotient is exactly D6),
which is the symbolic encoding of the associated rotations and re�ections. In particular, this
quotient group has an element of order 6. As no matrix from D4 has this order, we see that
the bijectiveness hypothesis is essential in the proof of Theorem 4.6.

7−→

Figure 4.5: A half-hexagon and its image under the in�ation rule. Rotations by multiples of
1
3
π determine entirely this in�ation rule.
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4.4. The Robinson shift and fractures in subshifts

In the remaining section, we leave the setting of substitutive tilings from above and move on
to analyze a well-known example of strongly aperiodic Z2-subshift, the Robinson shift [88].

De�nition 4.7 Let X be a Zd-subshift. We say X is strongly aperiodic if all points in X
have trivial stabilizer, i.e., for all x ∈ X, σk(x) = x implies k = 0.

The Robinson shift is a two-dimensional nearest-neighbor shift with added local restrictions
(and thus of �nite type), whose alphabet consists of all the rotations and re�ections of the
�ve tiles from Figure 4.6, resulting in 28 di�erent symbols.

Figure 4.6: The �ve types of Robinson tiles, resulting in an alphabet of 28 symbols after
applying all possible rotations and re�ections. The third tile is usually called a cross.

The Robinson shift XRob is given by the following local rules:

(1) Every arrow head in a tile must be in contact with an arrow tail from an adjacent tile
(nearest-neighbor rule). This is similar to the local rule of a Wang tiling (although not
exactly equivalent; see [88] or [44] for details).

(2) There is a translation of the sublattice 2Z× 2Z that only has rotations of the central
tile of Figure 4.6 (which shall be referred to as a cross).

(3) Any other cross appears diagonally adjacent to one of the crosses from the sublattice
of Rule (2). Namely, if the cross-only sublattice of a given point is (2Z× 2Z) +k, then
any other cross is placed at one of the positions from (2Z× 2Z) + k + 1.

It is easy to see that those rules can be enforced with strictly local restrictions and thus XRob

is a shift of �nite type. These rules force the 28 basic tiles to form larger patterns with similar
behavior to each of the �ve tiles (in particular, patterns of size (2n−1)× (2n−1) that behave
as larger analogues of crosses and that are usually referred to as n-th order supertiles).
By compactness, as we can always build larger supertiles from smaller ones, we can prove
that XRob is a non-empty strongly aperiodic subshift. It is not minimal, but it has a unique
minimal subsystem MRob (which is the factor of a subshift of �nite type). Its automorphism
group has previously been characterized, e.g. by Donoso and Sun [34], and the underlying
behavior is similar to the one present in the chair tiling [83]:

Theorem 4.8 Aut(MRob,Z
2) = 〈σ(1,0), σ(0,1)〉 ∼= Z2.

From this result, it is possible to show that the same holds for XRob, namely that the only
automorphisms of the Robinson shift are the trivial ones. We aim to extend this result by
computing the extended symmetry group of the Robinson shift. For this, we need to introduce
a distinguished subset of Z2 which represents part of the structure of a shift which is preserved
by extended symmetries:

De�nition 4.9 Let X be a strongly aperiodic Z2-subshift. We say X has a fracture in the
direction q ∈ Z2 if there is a point x∗ ∈ X, two disjoint half-planes S+, S− ⊆ Z2 separated
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Figure 4.7: The formation of a second order supertile of size 3× 3.

by Zq (i.e. S+∩S− = S+∩Zq = S−∩Zq = ∅; it is not necessary that S+∪S−∪Zq = Z2)
and in�nite di�erent values k1 < k2 < k3 < . . . ∈ Z such that, for each j ∈ N, there is a
point x(j) ∈ X that satis�es the two conditions:

x(j)|S+ = x∗|S+ , x(j)|S− = σkjq(x
∗)|S− .

Remark We exclude subshifts with periodic points from this de�nition as, if x ∈ Perp(X),
we may take kj = j and x(j) = x for all values of j, resulting in a point with a fracture in the
direction p. This makes the de�nition of direction of fracture redundant with the concept of
direction of periodicity, which is also preserved by extended symmetries.

Lemma 4.10 Let q ∈ Z2 be a direction of fracture for a two-dimensional strongly aperiodic
subshift X and f ∈ Sym(X,Z2). Then ψ(f)q is a direction of fracture as well.

Proof. Let q be a direction of fracture, and x∗, (x(j))j∈N, (kj)j∈N be the associated points and
magnitudes from the de�nition above. By the generalized CHL theorem, as x∗|S+ = x(j)|S+ ,
then f(x∗)|ψ(f)((S+)◦r) = f(x(j))|ψ(f)((S+)◦r), where r is the radius of the symmetry f . By
the same argument, and since f ◦ σq = σψ(f)q ◦ f , we conclude that f(x(j))|ψ(f)((S−)◦r) =
σkjψ(f)q ◦ f(x∗)|ψ(f)((S−)◦r).

Note that, since S+ and S− are half-planes disjoint from the linear subspace Zq, and ψ(f) is
a linear map, (S±)◦r are also half-spaces and thus their corresponding images ψ(f)((S±)◦r)
are half-spaces as well. As subsets of the images of disjoint sets, they are also disjoint from
Z(ψ(f)q) and from each other. Thus, by de�ning y∗ = f(x∗), y(j) = f(x(j)) we see that these
points conform a fracture of X in the direction ψ(f)q.

The group Sym(X,Z2) is forced to act �naturally� over the set of directions of fracture; thus,
constraints for these directions enforce similar restrictions on the possible values of ψ(f) for
f ∈ Sym(X,Z2). Note the analogy with bijective substitutions in the previous section.

Proposition 4.11 For the Robinson shift, Sym(XRob,Z
2) ∼= Z2 oD4, where D4 = Q2 is the

dihedral group of order 8, that is, the group of isometries of the square.

Proof. To prove this result, we will show that the set S of all directions of fracture of XRob is
Ze1 ∪Ze2. Assuming this as true, we see that, since ψ(f) is always a Z-invertible matrix, it
must send {e1, e2} to a basis of Z2 contained in Ze1∪Ze2, which is always a two-element set
of the form {±e1,±e2} or {±e1,∓e2}, and thus the elements of Sym(XRob,Z

2) correspond
to one of the eight possible matrices belonging to the standard copy of D4 = Q2 (de�ned
in the previous section) in GL2(Z). Then, by �nding an explicit subgroup of Sym(XRob,Z

2)
isomorphic to D4 by ψ, we deduce the claimed semidirect product decomposition.
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To show that XRob has fractures in the directions e1 and e2, we need to recall some basic
details about the construction of an in�nite valid con�guration of the Robinson shift. As
stated above, the �ve basic Robinson tiles (together with their rotations and re�ections)
combine to form 3 × 3 patterns with a similar behavior to crosses, named second order
supertiles. Four of these second order supertiles, together with smaller substructures, further
combine to form 7× 7 patterns (third order supertiles) and so on. In every case, the central
tile of an n-th order supertile is a cross, which gives an orientation to the supertile in a similar
way to the two-headed, L-shaped arrow on a cross.

We may �ll the whole upper right quadrant Q1 = N2 as follows: we start by placing a
cross on its vertex 0 with its L-shaped arrow pointing up and right, and then place another
cross with the same orientation at the position (1, 1). This new cross, together with the
previously placed one, allows us to �ll the lower 3 × 3 section of N2, [0, 2]2, with a second
order supertile. We iterate this process by placing a cross with the same orientation at the
position (3, 3), (7, 7), . . . , (2n−1, 2n−1), . . . and constructing the corresponding second, third,
. . .n-th order supertile and so on. By compactness, there is only one way to �ll all of N2 as
a limit to this process. We call the resulting con�guration an in�nite order supertile.

We may �ll the other three quadrants with similar constructions resulting in in�nite order
supertiles with di�erent orientations, each of these separated from the other in�nite supertiles
by a row or column of copies of the �rst tile from Figure 4.6. As we see in Figure 4.8, this
will result in a translate of (Z× {0})∪ ({0} ×Z) containing only copies of this tile, with all
of the tiles in one of the strips Z× {0} or {0} ×Z (the latter in the �gure) having the same
orientation, while the other strip will have all of its tiles pointing towards the center.

Figure 4.8: A fragment of a point from the Robinson shift, distinguishing the four supertiles
involved, the vertical and horizontal strips of tiles separating each supertile and the 2Z× 2Z
sublattice that contains only crosses. Note that the tiles in the vertical strip separating the
supertiles are copies of the �rst tile of Figure 4.6 with the same orientation.

Since the Robinson shift behaves like a nearest-neighbor shift with added restrictions, the
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existence of a vertical (resp., horizontal) strip with copies of the same tile allows us to
vertically shift the tiles contained in the right half-plane however we see �t, as long as the
coset of the 2Z × 2Z sublattice containing only crosses is respected. In practice, this shows
that in the point x ∈ XRob represented partially in Figure 4.8 we may replace the tiles from
the right half-plane with the corresponding tiles from σ(0,2k)(x) and obtain valid points8 for
all values of k ∈ Z. We see an example of this in Figure 4.9.

Figure 4.9: Two possible ways in which the tiling from Figure 4.8 exhibits fracture-like beha-
vior, resulting in valid points from XRob.

This procedure shows that XRob has e1 and e2 as directions of fracture. Now, we need to show
that all directions of fracture are contained in the set Ze1 ∪Ze2, and thus all matrices from
ψ[Sym(XRob,Z

2)] send the set {e1, e2} to a linearly independent subset of {e1, e2,−e1,−e2}.
The argument we shall use for this follows a similar outline to the technique used in the �rst
half of the proof of Theorem 4.6: the points of the Robinson shift form a hierarchical structure
away from a horizontal or vertical fracture, allowing for a decomposition into subpatterns
of arbitrarily large size s placed correlative to a lattice of the form 2nZ × 2nZ (this is
similar to the decomposition of a point from a substitutive subshift into patterns of the form
θm(a), a ∈ A for arbitrarily large values of m). The existence of fractures that are neither
vertical nor horizontal would result in �ruptures� in this hierarchical structure, leading to a
contradiction.

Formally, we proceed as follows. Suppose that XRob has a fracture in the direction q ∈
Z2 \ (Ze1 ∪ Ze2), and let S+, S− be the disjoint half-planes separated by q. The set Fq =
Z2 \ (S+ ·∪ S−) is necessarily of the form Zq + [r1, r2], namely, a �nite union of translates
of Zq, and thus its intersection with any set of the form Z × {k} or {k} × Z is �nite. This
is because the intersection of such a set with Zq consists of at most a single point, as q is
not a multiple of e1 nor e2. Thus, for any su�ciently large value M ∈ N, it is easy to verify
that for any point p ∈ Fq, any translation of the rectangle [−M1,M1] that contains p also
contains points from either S+ or S− (or both).

Choose n ∈ N, n > 1, such that for M = 2n − 1 the above condition holds, while satisfying
the additional condition M > 2k1‖q‖1. All n-th order supertiles thus contain points from

8Note that, while the �fractured� points do not appear in the minimal subset MRob, the originating four-
supertile point does indeed belong to this minimal subshift, a detail which will be important in its study
down below.
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S+

S−

Zq

Fq

Figure 4.10: The substructure of a point of XRob in terms of n-th order supertiles. Note how
all supertiles overlap either S+ or S−.

S+ ·∪S−. Let p be an element from Fq that belongs to the support of an n-th order supertile,
and suppose this supertile overlaps the half-plane S+. If there is no such supertile, all n-th
order supertiles containing points of Fq only overlap S−, implying, since S+ is the intersection
of a real half-planeHα,c = {v ∈ R2 : 〈v,α〉 ≥ c} with Z2, that S+ is a translation of Z×(±N)
(or (±N)×Z). Convex combinations of points of S+ with integer coe�cients belong to S+ as
well, so S+ cannot have �gaps�, and it is a union of disjoint, horizontally or vertically adjacent
translates of [1, 2n]2. This implies that q is in the set Ze1 ∪ Ze2, a contradiction. Thus, the
aforementioned supertile exists. Evidently, the same argument shows the existence of other
n-th order supertiles which intersect S−.

Since each horizontal or vertical strip Fq ∩ (Z×{k}) (resp. Fq ∩ (Z×{k})) intersects �nitely
many supertiles, we see that the arrangement of the n-th order supertiles in S+ away from
a vertical or horizontal fracture (which in this case must correspond to a bi-in�nite column
or row of copies of the �rst tile from Figure 4.6, all with the same orientation) a�ects the
placement of the supertiles in S− as well. However, since the tiling has a fracture in the
direction q, we may shift the supertiles in S− by k1q and obtain a valid con�guration. By
our choice of n, the shift σk1q moves the n-th order supertiles by less than M units both
horizontally and vertically (since M > 2k1‖q‖1), and thus the supertiles in S− are shifted
to a position that does not match the arrangement of supertiles from S+. We may see this
situation in Figure 4.11.

Given that we are assuming that this point (say, x) is a fracture point for XRob, there must
be some other point y which matches x in S+ and σk1q(x) in S−, which breaks the rigidity of
the structure of supertiles imposed by the rules of the Robinson shift. Thus, fractures along
non-principal directions cannot exist.

Finally, we need to construct a copy of D4 contained in Sym(XRob,Z
2). For this, since D4

is a 2-generated group, we only need to show the existence of two extended symmetries
ρ, µ : XRob → XRob, mapped respectively by ψ to the matrices:

ψ(ρ) =

[
0 −1
1 0

]
, ψ(µ) =

[
−1 0
0 1

]
,

since these two matrices generate an isomorphic copy of D4 contained in GL2(Z). These
symmetries ρ and µ are essentially rigid symmetries of the coordinate axes; however, a com-
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S+

S−

Zq

Fq

Figure 4.11: How a shift by k1q makes the arrangement of supertiles in S+ not match with
the corresponding tiles in S−.

position with a relabeling map is also needed, to replace every tile with the corresponding
re�ection or rotation. For instance, if we de�ne R : A → A as the mapping which assigns
to each of the 28 symbols its corresponding rotation by 1

2
π, as seen in Figure 4.12, then

ρ(x)(i,j) = R(x(−j,i)) is the desired symmetry. In the same way, by de�ning M : A → A as
the mapping that sends each tile to its re�ection through the horizontal axes, then we de�ne
µ by the relation µ(x)(i,j) = M(x(−i,j)).

7→ 7→ 7→ 7→
7→ 7→ 7→ 7→
7→ 7→ 7→ 7→
7→ 7→ 7→ 7→
7→ 7→ 7→ 7→
7→ 7→ 7→ 7→
7→ 7→ 7→ 7→

Figure 4.12: The relabeling map R which replaces each tile with its corresponding rotation
by 1

2
π.

It is easy to verify that ρ and µ are valid extended symmetries, as they respect the conditions
on the arrowheads and tails, and the sublattice comprised of only crosses. Also, we see that
ψ sends both ρ and µ to the desired matrices, and that the mappings R∞,M∞ : AZ2 → AZ2

commute with the corresponding rigid symmetries of the coordinate axes. Thus, 〈ρ, µ〉 is a
copy of D4 contained in Sym(XRob,Z

2), as desired.

We remark that the proof above used the structure of the Robinson shift XRob exclusively
to compute the set of directions of fractures associated to this shift, and that extended
symmetries preserve this set in other contexts as well. This suggests that this technique
is open to generalization to other subshifts, even in higher dimensions, although possibly
replacing the concept of �direction of fracture� with �hyperplane of fracture�, as we need to
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separate half-spaces of Zd. We suggest the following tentative de�nition for a fracture in a
d-dimensional subshift:

De�nition 4.12 Let X be a (strongly aperiodic) Zd-subshift. We say that X has a fracture
in the direction of the hyperplane H = H0 + v if for some x ∈ X there are two half-spaces
S+, S− separated by H (i.e. S+∩S− = S+∩H = S−∩H = ∅) such that for some �su�ciently
large� subset B ⊆ H0 there is a family {x(b)}b∈B of points of X such that:

x(b)|S+ = x|S+ , x(b)|S− = σb(x)|S− .

Here, an appropiate de�nition of �su�ciently large� will depend on the subshift that is being
studied. For instance, in the case of the Robinson shift we only needed B to contain two
points ({0, k1q}) for our argument due to the hierarchical structure of XRob, albeit B in this
shift actually is an in�nite set, 2Zq. In all cases, as long as we apply a consistent restriction
to the possible instances of B, we see that an extended symmetry f must send a point of
fracture to another point of fracture due to the generalized CHL theorem, and thus ψ(f)
is a matrix that acts by permutation on the set of all hyperplanes of fracture of X. For a
su�ciently rigid Zd-shift X, this should result in a strong restriction on the matrix group
ψ[Sym(X,Zd)].

It is important to note the analogy between the method used for the Robinson tiling and
the ideas discussed before for bijective substitutions, and the above generalization scheme for
higher-dimensional fractures serves to highlight this similarity. We expect that many symbolic
systems with a strong hierarchical structure where substructures of large support can be built
�independently� should be amiable to such methods, as in the above two situations.

The discussion above shows the key idea behind the method: the hierarchical structure of
the aforementioned subshifts forces the appearance of �special directions�, which result in
a geometrical invariant that needs to be preserved by extended symmetries. By identifying
these special directions via combinatorial or dynamic properties, we can e�ectively restrict
ψ[Sym(X,Zd)] enough to e�ectively compute it in terms of Aut(X,Zd).

However, as stated before, the Robinson shift XRob is not minimal. To exhibit the above
mentioned special directions, a key point was using certain points that exhibit �fracture-like�
behavior, which are not present in the minimal subset MRob. However, since the �special
directions� come from the hierarchical structure of the subshift, they ought to be present in
its minimal subset as well in some form, and thus, they should impose the same restrictions
on the set of extended symmetries. We conclude this discussion by showcasing a method to
exhibit these directions in the minimal subset of the Robinson shift, thus proving that it has
the same extended symmetry group as its standard counterpart. The argument is as follows:

Corollary 4.13 Let MRob ⊂ XRob be the unique minimal subshift contained in XRob. Then,
Sym(MRob,Z

2) ∼= Z2 oD4.

Proof. Using the substitution rules devised by Gähler in [43], we can show thatMRob contains
a point, say x, that has only copies of the �rst tile from Figure 4.6, pointing to the right, on
the horizontal strip Z×{0}, and corresponding tiles of the same kind pointing downwards in
{0}×Z+ and upwards in {0}×Z−. Mirrored and rotated versions of this con�guration exist
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as points of MRob as well (of which one speci�c rotation may be observed in Figure 4.8); a
similar argument holds for the �fth tile.

Any point from H = {σ(n,0)(x) : n ∈ Z} has the same horizontal strip of copies of the same
tile on Z × {0}, and, due to the local rules of the Robinson tiling, any con�guration with
support Z × [−n, n] from some point y ∈ H must be (m, 0)-periodic for some su�ciently
large m. Note that this m must diverge to ∞ as n → ∞, because no point from MRob has
nontrivial periods.

Let f ∈ Sym(MRob,Z
2) be an extended symmetry. For any su�ciently large value of k ∈ N,

the window of this f is contained in Z× [−k, k]. Thus, due to Theorem 3.10, we may choose a
su�ciently large k such that the image of Z× [−k, k] under the matrix ψ(f) contains the set
La,b(k̃) :={(u, v) ∈ Z2 : −k̃ ≤ au+bv ≤ k̃} for any desired k̃ > 0 and some a, b ∈ Z, and thus
y|Z×[−n,n] determines f(y)|La,b(k̃) entirely. Since the strip y|Z×[−k,k] is periodic, the restriction
f(y)|La,b(k̃) must have a period as well, which we can choose as a multiple of (−b, a).

Suppose that ba 6= 0, which implies that ψ(f) maps e1 to a direction that is not parallel
to the coordinate axes. Since the n-th order supertiles increase in size exponentially with
n, and so do the associated �square drawings� determined by the crosses, the strip La,b(k̃)
must pass through the vertical lines (comprised of copies of rotations of the second, third,
fourth or �fth tiles from Figure 4.6) associated with the corresponding square of a n-th order
supertile for all su�ciently large n (as it is not parallel to any of the sides of such squares).
Thus, this con�guration cannot have a nontrivial period, since due to the positions of the
n-th order supertiles such a period cannot have a horizontal or vertical component smaller
than 2n, which applies for any su�ciently large n. We conclude, by this contradiction, that
ψ(f) maps e1 to a vector parallel to the coordinate axes; a similar argument holds with e2.

Remark We may also proceed with a topological method similar to the one mentioned in
Remark 4.3. As shown in [43], MRob factors onto a two-dimensional solenoid9 S2

2, and this
factor map is 28-to-1 in the set of all points from MRob comprised of four in�nite-order
supertiles, which is thus preseved by any extended symmetry, as can be seen from a �ber
cardinality argument. We arrive to the same conclusions after appealing to the CHL theorem.
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Chapter 5

Admissible extended symmetries and

geometrical constraints

This chapter is an adaptation of the publication Admissible Reversing and Extended Symme-
tries for Bijective Substitutions [23], which is a joint work with Daniel Luz1 and Neil Mañibo2

from Universität Bielefeld.

5.1. Introduction

The study of automorphism groups, often also known as symmetry groups, is an important
part of the analysis of a dynamical system, as it can o�er insight on the behaviour of the
system, as well as allowing classi�cations of distinct families of dynamical systems (acting
as a conjugacy invariant). In particular, automorphism groups of shift spaces have been
thoroughly studied (see e.g. the analysis of the automorphism group of the full shift [19], the
series of works on automorphisms in low-complexity subshifts [29, 31, 33], and recent works
on shifts of algebraic and number-theoretic origin [4, 39]).

Automorphisms of subshifts can be algebraically de�ned as elements of the topological cen-
tralizer of the group 〈σ〉 generated by the shift, seen as a subgroup of the space Aut(X) of
all self-homeomorphisms of X onto itself. Thus, a natural question at this point is whether
the corresponding normalizer has an interesting dynamical interpretation as well. This leads
to the concept of reversing symmetries (for d = 1); see [12, 13, 47], the monograph [82]
for a group-theoretic exposition, and [67] for a more physical background. These are special
types of �ip conjugacies; see [15]. In higher dimensions, one talks of extended symmetries;
see [3,13], which are examples of GL(d,Z)-conjugacies; compare [4,66]. These kinds of maps
are related to phenomena such as palindromicity and several properties of geometric and
topological nature, which is more evident in the higher-dimensional setting [13,22].

High complexity is often (but not always, see for instance the square-free subshift [4]) linked
to a complicated automorphism group. For instance, determining whether the automorphism
groups of the full shifts in two and three symbols are isomorphic has consistently proven
to be a di�cult question [19]. The low-complexity situation, thus, often allows for a more

1
dluz@math.uni-bielefeld.de

2
cmanibo@math.uni-bielefeld.de
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in-depth analysis and more complete descriptions, up to and including explicit computation
of these groups in many cases.

The particular case of substitutive subshifts has gathered signi�cant attention and here
a lot of progress has been made; see [57, 80]. Unsurprisingly, the presence of non-trivial
automorphisms is also tied to the spectral structure of the underlying dynamical system;
see [41,85]. In this work, we restrict to systems generated by bijective substitutions, both in
one and in higher dimensions. These substitutions are typically n-to-1 extensions of odome-
ters and generate coloured tilings of Zd by unit cubes, where one usually identi�es a letter
with a unique colour; see [41]. We compile and extend known properties about this family
of substitutive subshifts regarding automorphisms. Some natural questions in this direction
are:

1. What kinds of groups can appear as automorphism or extended symmetry groups of
speci�c substitutive subshifts?

2. Given a speci�c group G, can we construct a substitution whose associated subshift
has G as its automorphism or extended symmetry group?

Both questions are accessible for bijective substitutions. For automorphism groups, the second
question is answered in full in [33], which extends to higher dimensions with no additional
assumptions because the result does not depend on the geometry of the substitution; see [27]
for realisation results for more general group actions. We add to such known results in
Theorem 5.9. Aperiodicity also plays a key role here, which can easily be con�rmed in the
bijective setting; see Propositions 5.4 and 5.21.

On the other hand, the existence of non-trivial reversing or extended symmetries depends
heavily on the geometry and requires more in terms of the relative positions of the permu-
tations in the corresponding supertiles, the expansive maps, and the shape of the supertiles
themselves. In Theorem 5.13, we provide equivalent conditions for the existence of non-trivial
reversing symmetries, which we generalise to higher dimensions in Theorem 5.19 to cover ex-
tended symmetries.

As a corollary, in any dimension d, given a �nite group G and a subgroup P of the hype-
roctahedral group P , we provide a construction in Theorem 5.22 of a bijective substitution
whose underlying shift space has automorphism and extended symmetry group Zd ×G and
(Zd o P ) × G, respectively. A similar construction with a di�erent structure of the exten-
ded symmetry group is done in Theorem 5.23. We also provide algorithms on how one can
check whether there exist non-trivial automorphisms and extended symmetries for a given
substitution θ; see Sections 5.2.2 and 5.3.1.

5.2. Bijective constant-length substitutions

5.2.1. Setting and basic properties

Let A be a �nite alphabet and A+ =
⋃
L≥1AL be the set of �nite non-empty words over A;

we shall write A∗ = A+ ∪ {ε}, where the latter is the empty word. As in previous chapters,
a (one-dimensional) substitution is a map θ : A → A+; constant-length substitutions
are those for which, for some L ∈ N, all words have the same length L. As in the previous
chapter, we focus on primitive substitutions.
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Given a primitive substitution θ, we once again mention that the set of all words (patterns)
that appear as subwords of some word (respectively, pattern) of the form θk(a) for some
a ∈ A, k ≥ 1 is extensible and factorial, and thus entirely de�nes a shift space, which is the
substitutive subshift Xθ de�ned previously [41, 65, 85]. It is well known that the primitivity
of θ implies that Xθ is strictly ergodic (uniquely ergodic and minimal); see [6, 85]. We refer
the reader to [75] for a treatment of substitutions which are non-primitive.

As de�ned before, a constant-length substitution θ : A → AL is bijective if the map θj : a 7→
θ(a)j is a bijection on A, for all indices 0 ≤ j ≤ L−1. Equivalently, θ is bijective if there exist
L (not necessarily distinct) bijections θ0, . . . , θL−1 : A → A such that θ(a) = θ0(a) . . . θL−1(a)
for every a ∈ A. We shall refer to the mapping θj as the j-th column of the substitution θ.

Consider
{
θj
}L−1

j=0
⊂ S|A|. Let Φ: S|A| → GL(|A|,Z) be the representation via permutation

matrices. One then has the following; compare [41, Cor. 1.2].

Fact 5.1 Let θ be a primitive, bijective substitution, with columns
{
θ0, . . . , θL−1

}
. Then the

substitution matrix M is given by M =
∑L−1

j=0 Φ(θ−1
j ). Moreover, (1, 1, . . . , 1)T is a right

Perron�Frobenius eigenvector of M , so each letter has the same frequency for every element
in the hull Xθ, i.e., νa = 1

|A| for all a ∈ A and all x ∈ Xθ.

De�ne the n-th column group G(n) to be the following subgroup of the symmetric group
of bijections A → A:

G(n) := 〈{θj1 ◦ · · · ◦ θjn : 0 ≤ j1, . . . , jn ≤ L− 1}〉.

As it turns out, the groups G(n) generated by the columns give a good description of the
substitution θ in the bijective case; see [57] for its relation to the corresponding Ellis semigroup
of Xθ. The primitivity of θ may be characterised entirely by this family of groups, as seen
below. Recall that a subgroup G ≤ Sn of the symmetric group on {1, . . . , n} is transitive
if for all 1 ≤ j, k ≤ n there exists τ ∈ G such that τ(j) = k. Here, we let N ∈ N be the
minimal power such that θNj = id for some 0 ≤ j ≤ LN − 1; compare [85, Lem. 8.1]. In [57],
G(N) is called the structure group of θ.

Proposition 5.2 Let θ : A → AL be a bijective substitution. Then, the following are equiva-
lent:

1. The substitution θ is primitive.

2. All groups G(n), n ∈ N, are transitive.

3. The group G(N) is transitive.

Proof. Evidently, (2) =⇒ (3), so we only need to prove (3) =⇒ (1) =⇒ (2). To see the
�rst implication, note �rst that the columns of the iterated substitution θN are compositions
of the form θj1,...,jN :=θj1 ◦· · ·◦θjN , 0 ≤ j1, . . . , jN ≤ L−1, that is, for any a ∈ A the following
holds:

θN(a) = θ0,...,0,0(a)θ0,...,0,1(a) . . . θ0,...,0,L−1(a)θ0,...,1,0(a) . . . θL−1,...,L−1,L−1(a).

Since, by (3), the group G(N) is transitive, the substitution matrix MθN is irreducible, i.e.
it is the adjacency matrix of a strongly connected digraph. In other words, for all a, b ∈ A,
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there exists a composition of columns q, q′, . . . , q′′ of θN such that q ◦ q′ ◦ · · · ◦ q′′(a) = b,
which may be identi�ed with a path in the graph whose vertices are the letters of A and with
one edge from c to r(c) for any c ∈ A and column r. The choice of N also shows that MθN

has a non-zero diagonal, since one of the columns of θN is the identity. These two conditions
immediately imply that MθN is a primitive matrix (see [71, Ch. 2]) which in turn implies
primitivity of θ, as desired.

To prove (1) =⇒ (2), note that primitivity of θ implies that, for some k > 0 and for all
a ∈ A, the word θk(a) contains all symbols of the alphabet A, including a itself. Since the
columns of θk generate G(k), this implies that for all a, b ∈ A there is some generator of
this group that maps a to b, i.e. G(k) is transitive. Since θk(a) contains a as a subword, this
implies that θ2k(a) contains θk(a) as a subword, and, by induction, that θmk(a) contains θk(a)
as a subword for all m ≥ 1; thus, all groups G(mk) are transitive. Now, it is easy to see that
G(n) ≤ G(d) if d | n. Then, for all n ∈ N, G(n) has G(nk) as a transitive subgroup and hence
it is transitive.

The bijective structure of θ can also be exploited to conclude the aperiodicity of Xθ by just
looking at simple features of θ. Below, we provide several criteria for aperiodicity in terms of
|A|, L, and the existence of certain legal words.

Proposition 5.3 Let Xθ be the subshift generated by a primitive, bijective substitution θ of
length L on a �nite alphabet A. If gcd(|A|, L) > 1 then Xθ is aperiodic.

Proof. Assume that w∞ is a periodic word in Xθ with least period p, i.e., w∞ = v∞ with v
being a prime period (|v| = p). Then without loss of generality, we assume that w∞ is �xed
under θ by replacing it with a power θk such that the �rst column of θk is the identity. We
choose the smallest possible constants c, d ∈ N which satisfy cL = dp. That is, the word
w∞|[0,cL−1] is an in�ation of c letters and, at the same time, d copies of the prime period.
Since θ is a bijective substitution of length L, every in�ation word of length cL has exactly
one preimage under θ, which is a word of length c. In particular, since w∞ is �xed under θ,
the preimage of w∞|[0,cL−1] under θ must be an initial segment x1 . . . xc of w∞ of length c. As
cL is a multiple of p, then, for any k ∈ Z, w∞|[0,cL−1] =

(
σkcL(w∞)

)
[0,cL−1]

, which all have the
same preimage under θ. This means that w∞ is an in�nite concatenation of copies of x1 . . . xc
and is thus c-periodic. As p is the least period, we must have c = ep for some integer e. Since
c is minimal c = p and thus d = L, which certainly solves cL = dp.

From Fact 5.1 we know that every letter has the same frequency for any element in Xθ. This,
together with the fact that w∞ is a concatenation of v, implies that every letter appears
equally often within v, so |A| | p. If gcd(|A|, L) > 1 then gcd(p, L) = a > 1 as well. But
then c

a
L = d

a
p holds and c′ = c

a
and d′ = d

a
are smaller integer constants contradicting the

minimality of c and d. So our assumption that w∞ is periodic has to be false.

Another way to get aperiodicity is through the existence of proximal pairs; see [33, Sec. 3.2.1]
and [6, Cor. 4.2 and Thm. 5.1]. Two elements x 6= y ∈ (X, σ) are said to be proximal if there
exists a subsequence {nk} of N or −N such that d(σnkx, σnky) → 0 as k → ∞. A stronger
notion is that of asymptoticity, which requires d(σnx, σny) → 0 as n → ∞ or −∞. For
bijective substitutions, these two notions are equivalent, and asymptotic pairs are completely
characterised by �xed points of θ; see [57].

Consider a one-dimensional substitution θ and a �xed point w arising from a legal seed
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a|b, i.e., w = θ∞(a|b). Here, the vertical bar represents the location of the origin, and the
letter a generates all the letters at the negative positions, while b does the same for all non-
negative ones. Two �xed points w1, w2 ∈ Xθ generated by a1|b1 and a2|b2 are left-asymptotic
if they agree at all negative positions and disagree for all non-negative positions. Right-
asymptotic pairs are de�ned in a similar manner. We have the following equivalent condition
for aperiodicity in terms of existence of certain legal words; compare [57, Prop. 4.1]

Proposition 5.4 Let θ be a primitive, bijective substitution on a �nite alphabet A in one
dimension. Then the hull Xθ is aperiodic if and only if there exist distinct legal words of length
2 which either share the same starting or ending letter.

Proof. Let θ := θ0 · · · θL−1, with θi ∈ G. Choosing k = lcm(|θ0|, |θL−1|), we get that the �rst
and the last columns of θk are both the identity, i.e., θk0(a) = θk

Lk−1
(a) = a for all a ∈ A.

If there exist ab, ac ∈ Lθ with b 6= c, the bi-in�nite �xed points θ∞(a|b) and θ∞(a|c) they
generate under θk coincide in all negative positions and di�er in at least one non-negative
position, and hence are left-asymptotic and proximal. Since Xθ is minimal and admits a
proximal pair, all of its elements must then be aperiodic. Now suppose that every letter has
a unique predecessor and successor in A. This means that every element x ∈ Xθ is uniquely
determined by the letter at the origin. From the �niteness of A, one gets x = w∞ and hence
is periodic, from which the periodicity of the hull follows.

Example The substitution θ : a 7→ aba, b 7→ bab is primitive, bijective and admits a periodic
hull. Here, the only legal words of length 2 are ab and ba. Note that θ is of height 2 and
generates the same hull as the substitution θ′ : a, b 7→ ab.

5.2.2. Automorphisms

In the following sections, we deal with the automorphism group3 of our subshifts of inter-
est, which are certain homeomorphisms of the shift space which preserve the dynamics of the
shift action in a speci�c sense. Remember that this group is the set of all homeomorphisms
f : X → X which commute with the shift action:

(∀n ∈ Zd) : σn ◦ f = f ◦ σn. (5.1)

That is, Aut(X,Zd) is the centralizer of the set of shift maps in the group of all self-
homeomorphisms of the space X. As already stated in previous chapters, f is totally de-
termined by its local function F : AU → A, with U b Zd �nite (see Theorem 3.10).

Automorphism groups of one-dimensional bijective substitutions are a thoroughly studied
subject, both in the topological and ergodic-theoretical contexts. Complete characterisations
of these groups are known, as seen in e.g. [28] for a two-symbol alphabet, or [70] for a charac-
terisation in the measurable case; see also [29, 41] for further elaboration in the description
of the automorphisms in this category of subshifts. The following theorem summarizes this
classi�cation:

3This group is called symmetry group in several sources, particularly those that follow the Smale
convention, in which the notation Aut(X) refers to the set of all homeomorphisms, irregardless of whether
they preserve the shift action. This includes the paper by Baake, Roberts and Yassawi [13] and the original,
submitted version of this work.
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Theorem 5.5 Let Xθ be the hull generated by an aperiodic, primitive, bijective substitution θ
on Zd. Then, the automorphism group Aut(Xθ,Z

d) is isomorphic to the direct product of Zd,
generated by the shift action, with a �nite group of radius-0 sliding block codes τ∞ : Xθ → Xθ
given by τ∞((xj)j∈Zd) = (τ(xj))j∈Zd for some bijection τ : A → A.

Furthermore, let N be any integer such that θNj is the identity for some j (note that such an N

always exists). Then, τ : A → A induces an automorphism if and only if τ ∈ centS|A|G
(N).

As a consequence, every automorphism on Xθ is a composition of a shift map and a radius-zero
sliding block code as above. These conditions arise as a consequence of such a automorphism
having to preserve the supertile structure of any x ∈ Xθ at every scale, which in particular
implies that a level-k supertile θk(a), a ∈ A has to be mapped to some θk(b) for some other
b ∈ A by the �letter exchange map� τ . The choice of N above ensures that, when k is a
multiple of N , the equality a = b holds, which implies that τ commutes with the columns of
θN , and thus θN ◦ τ∞ = τ∞ ◦ θN . This in turn implies Eq. (5.1). For further elaboration on
the proof of the above result, the reader may consult [29, 41], among others.

Example Consider the following substitution θ on the three-letter alphabet A = {a, b, c}:

θ : a 7→ abc,

b 7→ bca,

c 7→ cab.

The columns correspond to the three elements of the cyclic group generated by τ = (a b c). It
is not hard to verify that the only elements of S3 = D3 that commute with τ are the powers
of τ themselves, and thus Aut(Xθ,Z) ∼= Z×C3, with the �nite subgroup C3 being generated
by the automorphisms induced by the powers of τ .

As it turns out, Theorem 5.5 provides an algorithm to compute Aut(Xθ,Z) explicitly. To
introduce this algorithm, let us recall some easily veri�able facts from group theory [49, Ch. 1
and 5]:

Fact 5.6 Let G be any group and H = 〈S〉 ≤ G a subgroup generated by S ⊂ G. Then,

centG(H) = {c ∈ G | (∀h ∈ H) : ch = hc} =
⋂
s∈S

centG(s).

Fact 5.7 Any permutation decomposes uniquely (up to reordering) as a product of disjoint
cycles. Conjugation by some τ ∈ Sn can be computed from this decomposition using the
identity:

τ(a1 a2 . . . an)τ−1 = (τ(a1) τ(a2) . . . τ(an)).

A permutation τ ∈ Sn belongs to centSn(π) if and only if τπτ−1 = π, and thus:

π = (a1 a2 . . . ak1)(b1 b2 . . . bk2) · · · (c1 c2 . . . ckr)

= (τ(a1) τ(a2) . . . τ(ak1))(τ(b1) τ(b2) . . . τ(bk2)) · · · (τ(c1) τ(c2) . . . τ(ckr)).

Hence, the uniqueness of this decomposition implies that every cycle in the second decompo-
sition is equal to a cycle of the same length in the �rst one.
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Thus, to compute the letter exchange maps that determine Aut(Xθ,Z), we need to �nd all
permutations τ that preserve certain cycle decompositions. We obtain the following proce-
dure:

Algorithm. Assuming that θ is a primitive, bijective, aperiodic substitution, the following algorithm
computes Aut(Xθ,Z) explicitly.

� Input: θ is a length-L bijective substitution, which may be represented as a function (dictio-
nary) θ : A → AL or a set of L permutations θ0, θ1, . . . , θL−1 : A → A, corresponding to each
column.

� Output: A (�nite) set of permutations C forming a group, so that Aut(Xθ,Z
d) = Zd × C.

(1) Compute the least positive integer N such that θNj is the identity on A for some column of the
substitution θ. N equals the least common multiple of all cycle lengths in the decomposition
of the columns θj into disjoint cycles (and is thus �nite).

(2) Determine all columns θj1 ◦ · · · ◦ θjN of the iterated substitution θN . This is a generating set

for the group G(N).

(3) For every column computed in (2), compute Gj1,...,jN = centSn(θj1 ◦ · · · ◦ θjN ) by taking the
cycle decomposition of this permutation (in where we identify A with the set {1, 2, . . . , |A|})
and employing the characterisation above.

(4) Let C =
⋂
j1,...,jn

Gj1,...,jN . As C can be biunivocally identi�ed with the set of valid letter

exchange maps modulo a shift, return Aut(Xθ,Z
d) = Zd × C as output.

Example 5.2.2 above corresponds to a simple case in which G(N) = G(1) is a cyclic group, and
we derive an abelian subgroup of S3 corresponding to the valid letter exchange maps. We
can use the above procedure to construct examples with more complicated automorphism
groups, see Example 5.2.2.

Example We take as alphabet the quaternion group Q8 = {e, i, j, k, ē, ı̄, ̄, k̄} (see [49] for
the multiplication table and basic properties of this group, which is generated by the two
elements i and j). With this, we construct a length-3 bijective substitution de�ned by right
multiplication, x 7→ (x · i)(x · j)(x · k), given in full by:

e 7→ ijk, ē 7→ ı̄̄k̄,

i 7→ ēk̄, ı̄ 7→ ek̄j,

j 7→ k̄ēi, ̄ 7→ keı̄,

k 7→ jı̄ē, k̄ 7→ ̄ie.

(1) The three permutations obtained from the columns which generate G(1) are:

Ri := (e i ē ı̄)(j k̄ ̄ k),

Rj := (e j ē ̄)(i k ı̄ k̄),

Rk := (e k ē k̄)(j i ̄ ı̄).
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Thus, the substitution θ3 has as columns Rxyz(g) = g · xyz with x, y, z ∈ {i, j, k}; in
particular, since jik = e, θ3 must have an identity column.

(2) By direct computation, G(n) = G(1) ∼= Q8 for all n, making the substitution primitive
(as Q8 acts transitively on itself in an obvious way). Also, since G(3) = G(1), this group
is the right Cayley embedding of Q8 into S8.

(3) By applying the above algorithm, we obtain that the group of letter exchange maps is
generated by the following two permutations:

π0 := (e i ē ı̄)(j k j̄ k̄),

π1 := (e j ē ̄)(i k̄ ī k).

We can verify that these permutations generate the left Cayley embedding of Q8 into
S8. Alternatively, if we consider the transposition ν = (k k̄), we can use Fact 5.7 above
to see that π0 = νRiν

−1 and π1 = νRjν
−1, which in turn implies that the group

generated by π0 and π1 is conjugate to the group generated by Ri and Rj, the latter
being isomorphic to Q8. This shows that Aut(Xθ,Z) ∼= Z×Q8.

It is well known that automorphism groups of aperiodic minimal one-dimensional subshifts
are virtually Z. The following result gives a full converse for shifts generated by bijective
substitutions.

Theorem 5.8 ( [33, Thm. 3.6]) For any �nite group G, there exists an explicit primitive,
bijective substitution θ, on an alphabet on |G| letters, such that Aut(Xθ,Z) ∼= Z×G.

The proof, which may be consulted in [33], follows a similar schema to the analysis done in
Example 5.2.2 above. In [41, Sec. 4.1], it was shown that the number of letters needed in
Theorem 5.8 is actually a tight lower bound. Below, we actually prove something stronger.

Theorem 5.9 Let θ be an aperiodic, primitive, bijective substitution on the alphabet A. If
Aut(Xθ,Z) ∼= Z×G, then G must act freely on A, and the order of G has to divide |A|.

Proof. As seen in [41, Sec. 4.1], if we replace θ with a suitable power, we may ensure that
the word θq(a) starts with a and contains every other symbol, for all a ∈ A. Thus, for any
π ∈ Sn, the equality π(a) = b implies π(θq(a)) = θq(b), which in turn determines the images
of every symbol in the alphabet; the bound |G| ≤ |A| follows from here.

Note as well that, since θ is bijective, if π(a) 6= a, then π(c) 6= c for every c ∈ A as the words
θq(a) and θq(b) are either equal or di�er at every position. This implies that if π has any �xed
point then it must be the identity, i.e. that, if we identify G with the corresponding group
of permutations over A, the action of G on the alphabet is free. Equivalently, the stabilizer
Stab(c) of any c ∈ A is the trivial subgroup.

The elements of G commute with every column of θq. Due to primitivity, there always exists
a column θ∗ = θj1 ◦ · · · ◦ θjq which maps this a to any desired c ∈ A. Since θ∗ commutes
with every π ∈ G (i.e., it is an equivariant bijection for the action of G on A), we have that
Orb(c) = θ∗[Orb(a)], i.e. the orbit of c under G is necessarily the image of the orbit of a
under θ∗.
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Thus, every orbit is a set of the same cardinality. This means that G induces a partition of
A into disjoint orbits of the same cardinality `, which then must divide |A|. By the freeness
of the group action and the orbit-stabilizer theorem, we have |G| = |Orb(a)| · |Stab(a)| = `,
and thus |G| divides |A|.

Remark It follows from Theorem 5.9 that the substitution in Example 5.2.2 is a minimal
one in the sense that for one to get a Q-extension in Aut(Xθ,Z), one needs at least eight
letters.

Remark At no point in the proof of Theorem 5.8 found in [33] nor in Theorem 5.9 above
the fact that the substitution was one-dimensional is actually used. Thus, since Theorem 5.5
is known to be valid for general rectangular substitutions, the two theorems above must be
valid in this more general setting as well, provided that the substitution is aperiodic in Zd,
which one can always guarantee; see Propositions 5.4 and 5.21.

Corollary 5.10 For any �nite group G, there exists an explicit primitive and bijective d-
dimensional rectangular substitution θ, on an alphabet of |G| letters, such that Aut(Xθ,Z

d) ∼=
Zd ×G. Furthermore, this is the least possible alphabet size: for any bijective, primitive and
aperiodic d-dimensional rectangular substitution θ on the alphabet A, if Aut(Xθ,Z

d) ∼= Zd×G,
then G acts freely on A, and |G| divides |A|.

5.3. Extended and reversing symmetries of substitution

shifts

5.3.1. One-dimensional shifts

Since the automorphism group (�symmetry group�) does not cover everything that can be
thought of as a symmetry (in the geometric sense of the word) we introduce the notion of
the reversing symmetry group; see [13] for a detailed exposition. We will exclusively look
at shift spaces Xθ which are given by a bijective, primitive substitution θ and we will exploit
this additional structure in determining the reversing symmetry group for this class.

Once again, we restate the de�nition of the extended (reversing) symmetry group for ease of
access. This group is given by:

Sym(X,Zd) := normHomeo(X)(〈σ〉) = {H ∈ Homeo(X) : H〈σ〉 = 〈σ〉H}

where 〈σ〉 is the group generated by the shift. In the case where the shift space is one-
dimensional, we call Sym(X,Z) the reversing symmetry group, as it can also be described
as:

Sym(X,Z) = {H ∈ Homeo(X) : H ◦ σ = σ±1 ◦H},
and thus any element in the reversing symmetry group that is not an automorphism �reverses
the direction� of shift maps, hence the name. Any such element is called a reversor or
a reversing symmetry. Once again, Theorem 3.10 gives a Curtis�Hedlund�Lyndon-type
characterisation of reversing and extended symmetries, which incorporates the mirroring
component (GL(d,Z)-component in higher dimensions); this is further discussed in [13].
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In what follows, we investigate the e�ect of a reversor f on in�ated words. Given a bijective
substitution θ : A → AL, θ := θ0θ1 · · · θL−1, the mirroring operation m acts on the columns of
θ via m(θ(a)) = θL−1(a) · · · θ2(a)θ0(a). We may extend this to in�nite con�gurations over Z
in two non-equivalent ways, given by m(x)k = x−k and m′(x)k = x1−k, respectively; we shall
refer to both as basic mirroring maps.

Proposition 5.11 Let θ be an aperiodic, primitive, bijective substitution. Then, any reversor
is a composition of a letter exchange map π ∈ Sn, where n = |A|, a shift map σk and one of
the two basic mirroring maps m or m′ (depending only on whether the substitution has odd
or even length, respectively).

See [13, Prop. 1] and Theorem 5.5. This result, while desirable, is not immediately obvious
(and can indeed be false for non-bijective substitutions, which may have reversors whose local
functions have positive radius), and thus we show this result as a consequence of bijectivity.

Proof. Suppose f : Xθ → Xθ is a reversor of positive radius r ≥ 1, i.e., x|[−r,r] = y|[−r,r] implies
that one has f(x)0 = f(y)0. There is some power k ≥ 1 such that the words θk(a) of length Lk

are longer than the local window of f , which has length 2r+1 (say, k = dlog(2r+1)/ log(L)e).
Any point of Xθ is a concatenation of words of the form θk(a), a ∈ A, which is unique up
to a shift because of aperiodicity; see [94]. In particular, if we choose a �xed x ∈ Xθ and let
y = f(x), both points have such a decomposition.

Now, suppose that the value Lk = 2` + 1 is odd (the case where L is even is dealt with
similarly). By composing f with an appropriate shift map (say f̃ = f ◦ σh), we can ensure
that the central word θk(a) in the aforementioned decomposition has support [−`, `] for both
x and y (note that we employ the uniqueness of the decomposition here, to avoid ambiguity
in the chosen h). Since Lk = 2` + 1 ≥ 2r + 1, we must have ` ≥ r, and thus y0 is entirely
determined by x|[−`,`], which is a substitutive word θk(a). But, since θ is bijective, this word
is in turn completely determined by its central symbol x0.

Figure 5.1: A reversor f establishes a 1-1 correspondence between words θk(a) in a point x
and its image f(x).

A similar argument shows that, for any n ∈ Z, if n ∈ mLk + [−`, `], then yn depends only on
the word x|−mLk+[−`,`], which contains (and is thus entirely determined by) x−n. Since any
point in Xθ is transitive, f̃ is entirely determined by the points x and y, and thus, f̃ is a
map of radius 0. Equivalently, for some bijection π : A → A, we have f̃(x)−n = π(xn), that
is, f̃ = f ◦ σh = π ◦m (identifying π with the letter exchange map AZ → AZ). We conclude
that f is a composition of a letter exchange map, a mirroring map and a shift map.

Remark With some care, it can be shown that the same argument applies in the higher-
dimensional case, where an element of the normalizer is a composition of a letter exchange
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map, a map of the form f(x)n = xAn, with A a linear map from the hyperoctahedral group
(see Theorem 5.16, below), and a shift map; see [13, Prop. 3] for a more general formulation.

This result leads to the following criterion for the existence of a reversor in terms of the
columns θi.

Proposition 5.12 Let θ be an aperiodic, primitive, bijective substitution θ of length L on
a �nite alphabet A of n letters. Suppose that there exists a letter-exchange map π ∈ Sn, π :
A → A which gives rise to a reversing symmetry. Then one has

π−1 ◦ θi ◦ θ−1
j ◦ π = θL−(i+1) ◦ θ−1

L−(j+1) (5.2)

for all 0 ≤ i, j ≤ L− 1, where θi is the i-th column of θ seen as an element of Sn.

Proof. Let a ∈ A. Let m be the mirroring operation and suppose that there exists π ∈ Sn
such that m ◦ π extends to a reversor f ∈ Sym(Xθ,Z). One then has

θ(a) = θ0(a) · · · θL−1(a)
m7−→ θL−1(a) · · · θ0(a)

π7−→ π ◦ θL−1(a) · · · π ◦ θ0(a).

Since Proposition 5.11 guarantees that this must result to mapping substituted words to
substituted words, one gets

π ◦ θL−1(a) · · · π ◦ θ0(a) = θ0(b) · · · θL−1(b) = θ0 ◦ τ(a) · · · θL−1 ◦ τ(a), (5.3)

where the permutation τ describes precisely this induced shu�ing of in�ation words. This
yields

τ = θ−1
j ◦ π ◦ θL−(j+1)

for all 0 ≤ j ≤ L − 1. Equating the corresponding right hand-sides for some pair i, j yields
Eq. (5.2). The claim follows since this must hold for all 0 ≤ i, j ≤ L− 1.

Theorem 5.13 Let θ be as in Proposition 5.12. Suppose further that θi = θL−(i+1) = id for

some 0 ≤ i ≤ L − 1. Then, given a permutation (letter exchange map) π ∈ Sn, π : A → A,
the following are equivalent:

(i) The letter exchange map π gives rise to a reversing symmetry f ∈ Sym(Xθ,Z) \
Aut(Xθ,Z) given by either f(x)n = π(x−n) or f(x)n = π(x1−n).

(ii) The permutation π satis�es the system of equations

π−1 ◦ θi ◦ π = θL−(i+1) (5.4)

for all 0 ≤ i ≤ L− 1.

(iii) There exist κ0, κ1, . . . , κL−1 ∈ Sn, where each κi satis�es κ
−1
i ◦ θi ◦ κi = θL−(i+1), such

that the following intersection of cosets is non-empty:

K =
L−1⋂
i=0

centSn(θi)κi, (5.5)

and π ∈ K.
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Proof. It is clear that Eq. (5.4) implies Eq. (5.2). Note that it is su�cient to satisfy Eq. (5.2)
for j = i + 1 mod L as any term can be obtained by multiplying su�cient numbers of
succeeding terms. Under the extra assumption that there exist a column pair which is the
identity, Eq. (5.2) simpli�es to Eq. (5.4). This shows that (i) =⇒ (ii).

For the other direction, we show that if Eq. (5.4) is satis�ed at by the level-1 in�ation words,
then these sets of equations must also be ful�lled by any power θk of θ. Remember that,
from any arbitrary bijective substitution θ, we may derive another bijective substitution θ′

that satis�es the additional condition of having two identity columns in opposing positions
by choosing k = lcm(|θ0|, |θL−1|) and replacing θ by its k-th power, θ′ := θk. This makes
no di�erence when studying Sym(Xθ,Z), because θ and θk de�ne the same subshift and the
group of reversing symmetries is a property of the hull.

First, we prove an important property of the columns of powers. Fix a power k ∈ N and pick
a column θi of θ

k, where 0 ≤ i ≤ Lk − 1. One then has θi = θi0 · · · θik−1
where i0i1 · · · ik−1 is

the L-adic expansion of i and θi` are columns of the level-1 substitution θ.

The corresponding L-adic expansion of Lk − (i+ 1) is then given by

Lk − (i+ 1) = (L− (i0 + 1)) · · · (L− (ik−1 + 1)).

This can easily be shown via the following direct computation

k−1∑
j=0

(L− (ij + 1))Lj =
k−1∑
j=0

(Lj+1 − Lj)−
k−1∑
j=0

ijL
j = Lk − (i+ 1).

This implies that if one considers the corresponding column θ
Lk−(i+1)

one gets that

θLk−(i+1) = θL−(i0+1) · · · θL−(ik−1+1). (5.6)

This has two consequences. First, if θ has an identity column pair, then all powers of θ admit at
least one identity column pair. For each power k one just needs to choose θj with j = iii · · · i,
which implies θj = θki = id. By Eq. (5.6), we also get that θLk−(j+1) = (θL−(i+1))

k = id. In
fact, θk contains at least 2k−1 pairs of identity columns.

Second, this property allows one to prove that if θ satis�es the system of equations in Eq. (5.4),
then it is satis�ed at all levels, i.e., by all powers of θ. To this end, choose 0 ≤ i ≤ Lk − 1
with L-adic expansion i0i1 · · · ik−1. From Eq. (5.4) one then obtains

π−1 ◦ θi ◦ π = π−1 ◦ θi0 · · · θik−1
◦ π = π−1 ◦ θi0ππ

−1 · · · ππ−1θik−1
π

= θL−(i0+1) · · · θL−(ik−1+1) = θLk−(i+1).

Since i is chosen arbitrarily and π induces a permutation of the substituted words at all
levels, this means it extends to a map f = σn ◦m ◦ π : Xθ → Xθ, which by Proposition 5.11
is a reversor. This shows (ii) =⇒ (i).

To prove the remaining equivalences, note that if π1, π2 ∈ Sn are two permutations satisfying
the equality π−1 ◦ θi ◦ π = θL−(i+1), then we have:

π1 ◦ θL−(i+1) ◦ π−1
1 = θi =⇒ (π2 ◦ π−1

1 )−1 ◦ θi ◦ (π2 ◦ π−1
1 ) = θi,
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that is, (π2 ◦ π−1
1 ) ∈ centSn(θi). As a consequence, π1 belongs to the right coset centSn(θi)π2

for any choice of π1, π2, and, since right cosets are either equal or disjoint, this means that all
solutions of Eq. (5.4), for a �xed i, lie in the same right coset of centSn(θi). Reciprocally, if π
satis�es Eq. (5.4) and γ ∈ centSn(θi), it is easy to verify that γ ◦ π satis�es Eq. (5.4) as well.
Thus, the set of solutions of this equation is either empty or the aforementioned uniquely
de�ned right coset.

Thus, suppose that π satis�es Eq. (5.4) for all 0 ≤ i ≤ L− 1. The set of solutions for each i
equals the unique coset centSn(θi)π, and thus the set of all permutations that satisfy Eq. (5.4)
for all i is exactly the intersection of all these cosets, i.e.

⋂L−1
i=0 centSn(θi)π. Taking κi = π for

all i, we see that this is exactly the set K from (5.5). Evidently, π belongs to this intersection,
and so we conclude that (ii) =⇒ (iii).

As stated before, our choice of κi ensures that the set centSn(θi)κi is exactly the set of solutions
of Eq. (5.4) for a given i; thus, any permutation π that satis�es all of these equalities must
be in all of these cosets and thus in the intersection (5.5), which is therefore non-empty. This
shows that (iii) =⇒ (ii), concluding the proof.

The following general criterion on when a letter-exchange map generates a reversor is given
in [13].

Lemma 5.14 ( [13, Lem. 2]) Let θ be a primitive constant-length substitution of height 1
and column number cθ. Suppose that θ is strongly injective. Then, a permutation π : A → A
generates a reversor f ∈ Sym(Xθ,Z) if and only if

1. ab ∈ L2(Xθ) =⇒ π(ba) ∈ L2(Xθ)

2. (π ◦ θcθ!)(ab) = (θcθ! ◦ π)(ba)

for each ab ∈ L2(Xθ).

For a primitive, aperiodic and bijective θ, one has cθ = |A|. Moreover, θ is always strongly
injective. Note that Theorem 5.13 implies conditions (1) and (2) in Lemma 5.14. The �rst
one immediately follows from primitivity, and the fact that any legal word ab appears in some
level-n superword, which is sent to another level-n superword by π ◦m, which guarantees the
legality of π(ba). The second follows from the fact that π is compatible with superwords of
all levels. In fact, one has

(
π ◦ θn

)
(ab) =

(
θn ◦ π

)
(ba) for all n ∈ N.

Remark It is a known fact from group theory that, if g1, . . . , gr are elements of a group
G and H1, . . . , Hr are subgroups of this group, the intersection of cosets

⋂r
i=1 giHi is either

empty or a coset of
⋂r
i=1 Hi. In this case, the latter intersection is exactly the group of non-

trivial automorphisms modulo a shift (letter exchanges), and thus, if there exist non-trivial
reversing symmetries, these must all belong to a single coset of the group of valid letter
exchanges. This is consistent with the fact that Sym(Xθ,Z) is at most an index 2 group
extension of Aut(Xθ,Z).

Item (3) in Theorem 5.13 provides an explicit algorithm to compute the group of permutations
π which de�ne extended symmetries, which is a counterpart to that in Section 5.2.2 for
automorphisms. As stated previously, the centralizers centSn(θj) can be computed for each
column using Fact 5.7, and thus the problem reduces to obtaining a suitable candidate for
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each κi, which once again can be done by an application of Fact 5.7. The algorithm is as
follows:

Algorithm. Assuming that θ is a primitive, bijective, aperiodic substitution, the following algorithm
computes the set K of permutations that induce reversors, which determines Sym(Xθ,Z).

� Input: θ is a length-L bijective substitution, represented either as a function or a set of
columns.

� Output: A (�nite) set of permutations K, either empty or a coset of the group C computed
by the previous algorithm, so that Sym(Xθ,Z)/〈σ〉 ∼= C ∪K (i.e. Sym(Xθ,Z) ∼= Zoϕ (C ∪K),
with ϕ(g, n) = n if g ∈ C, and −n if g ∈ K).

(1) Let N be the least positive integer which ensures that two opposite columns of θN are the
identity map. This can be computed as:

N = mı́n
{

lcm(ord(θi), ord(θL−(i+1))) : 0 ≤ i ≤ N/2
}
.

(2) For each 0 ≤ i ≤ N/2, compute κi via the following subroutine:

(2.i) If θi and θL−(i+1) are non-conjugate (i.e., their cycle decomposition has a di�erent number
of cycles of some length), stop the algorithm, as reversors do not exist (see Theorem 5.13).

(2.ii) Sort the cycles from the disjoint cycle decomposition of θi by increasing order of length.
Using this as a basis, by appropriately sorting the elements of each cycle in this decom-
position, de�ne a total order relation < on A, given by, say, a1 < · · · < an, such that all
of the elements of a given cycle come before the elements of the following cycle, in the
sorting by left. Do the same for θL−(i+1), de�ning a corresponding total order <

′ given by

b1 <
′ · · · <′ bn. This ensures that there are cycle decompositions of both permutations

such that the corresponding cycles, ordered from left to right, have the same length, as
follows:

θi = (a1 . . . aj)(aj+1 . . . aj′) · · · (aj′′+1 . . . an),

θL−(j+1) = (b1 . . . bj)(bj+1 . . . bj′) · · · (bj′′+1 . . . bn),

with 1 ≤ j ≤ j′ ≤ . . . ≤ j′′ ≤ n.
(2.iii) De�ne:

κi =

(
a1 a2 · · · an
b1 b2 · · · bn

)
, κL−(i+1) = κ−1

i .

(3) Compute each centralizer C(i) = centSn(θi), using the same procedure as in the computation
of Aut(Xθ,Z).

(4) Return K =
⋂N
i=1C

(i)κi. Any element of K induces a reversor; if K is empty, reversors do
not exist.

Any programming environment with suitable data structures (e.g. computer algebra systems
such as Sagemath® or Mathematica®) is amenable to the implementation of this algorithm,
providing e�ective procedures to entirely characterise the groups Sym(Xθ,Z) and Aut(Xθ,Z)
from a suitable description of the substitution θ, e.g. using a dictionary.
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Example Going back to Example 5.2.2, we may apply the previous algorithm to determine
whether reversors for this substitution do exist. Following the steps of Algorithm 2, we obtain:

(1) For the algorithm to work properly, we need two columns in opposite positions to be
identity columns. Since every element in the quaternion group Q8 has order 4, we may
just take N = 4 (and indeed, inspection shows that this is the smallest value of N that
satis�es this property).

(2) It is not hard to see that the columns of θ4 are, in order:

Ri4 , Ri3j, Ri3k, Ri2ji, . . . , Rk2jk, Rk3i, Rk3jRk4 ,

and thus, due to the nature of the elements of Q8 (namely, that the mapping that sends
i and j to any two of the three elements {i, j, k} is a group automorphism), opposite
columns are conjugate.

We need to �nd mappings κr such that the r-th column from left to right is conjugate
to the corresponding column from right to left under k. For example, the second and
penultimate column are given by:

Ri3j = Rk̄ = (e k̄ ē k)(i j ı̄ ̄),

Rk3j = Ri = (e i ē ı̄)(j k̄ ̄ k).

Using Fact 5.7, we see that if κ1 is a permutation that maps Ri3j to Rk3j via conjugation,
choosing the images of one element of the �rst cycle and one of the second is enough
to determine the whole permutation. If κ1(e) = k and κ1(i) = e, then it must map the
following elements of each cycle of Ri3j to the following elements of the corresponding
cycle in Rk3j, and thus we obtain:

κ1 =

(
e i j k ē ı̄ ̄ k̄
j̄ i ē k̄ j ı̄ e k

)
= (e ̄)(j ē)(k̄ k).

Thus, any element of the coset centS8(Ri3j)κ1 in S8 maps the second column to the
penultimate one by conjugation. Note that the corresponding step of Algorithm 2 abo-
ve actually returns a di�erent permutation, κ′1 = (k̄ i j)(k ı̄ ̄), but direct computation
shows that κ1 and κ′1 belong to the same coset of centS8(Ri3j) and thus the algorithm
proceeds in the same way for either; we choose κ1 instead of κ′1 for mere convenien-
ce. After this, we repeat the same procedure for the remaining 40 pairs of columns
(including the center, which is paired with itself) and compute the intersection of the
obtained cosets.

(3) We note that the computed permutation κ1 appears in every coset centS8((θ
4)r)κr, and

thus the intersection of all cosets involved equals a right coset of the left Cayley embed-
ding of Q8 in S8, which must equal K = L(Q8)κ1. It can be veri�ed from computation
that the union L(Q8) ∪ K of this embedding and the corresponding coset is also a
subgroup of S8.

(4) Thus, every element of Sym(Xθ,Z) is associated with a letter swap from the subgroup
G = L(Q8) ∪K of S8, with reversors corresponding to elements of K = G \ Q8. Note
that this group has order 16. Besides, {Re, κ1} is an order 2 subgroup of G with trivial
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intersection with Q8, which is normal in G due to being of index 2; thus, this group
has a natural semidirect product structure as G ∼= Q8 o C2.

Computation aided with computer algebra software shows that this group G has 15
subgroups and 7 di�erent conjugacy classes. The only group of order 16 with both
properties is the semidihedral group, SD16. Thus, we obtain a complete description of
Sym(Xθ,Z) as the semidirect product Zo SD16

∼= (Z×Q8) o C2.

5.3.2. Higher-dimensional subshifts

Now, we turn our attention to the situation in higher dimensions, and thus we will speak of
�extended symmetries� instead of reversing symmetries, once again.

Similar to automorphisms, there is a direct generalisation of the characterisation of extended
symmetries from Proposition 5.12 and the subsequent theorem to the higher-dimensional
setting, which is given by the following.

Proposition 5.15 Let θ be an aperiodic, primitive, bijective, block substitution in Zd. Then
any extended symmetry f ∈ Sym(Xθ,Z

d) \Aut(Xθ,Z
d) must be (up to a shift) a composition

of a letter exchange map and a rearrangement function fA given by fA(x)n = xAn, where
A ∈ GLd(Z), with A 6= I.

For shifts generated by bijective rectangular substitutions one has the following restriction
on the linear component A of an extended symmetry f .

Theorem 5.16 ( [22, Thm. 18]) Let θ an aperiodic, primitive, bijective rectangular substi-
tution in Zd. One then has

Sym(Xθ,Z
d)/Aut(Xθ,Z

d) ∼= P ≤ Wd,

where Wd
∼= Cd

2 o Sd is the d-dimensional hyperoctahedral group, which represents the sym-
metries of the d-dimensional cube.

With this, one can show that all extended symmetries of such subshifts are of �nite order.
The proof of the following result is patterned from [12, Prop. 2], which deals with the order
of reversors of an automorphism h of a general dynamical system with ord(h) =∞; compare
[47].

Proposition 5.17 Let Xθ be the same as above with automorphism group Aut(Xθ,Z
d) = Zd×

G. Let f ∈ Sym(Xθ,Z
d) \ Aut(Xθ,Z

d) be an extended symmetry, whose associated matrix is
A ∈ Wd\I. Then ord(f) divides ord(A)·|G|. Moreover, ord(f) ≤ 2|G|·máx {ord(τ) | τ ∈ Sd}.

Proof. Under the given assumptions, f ◦σm ◦ f−1 = σAm holds for allm ∈ Zd, which yields

f ` ◦ σm ◦ f−` = σA`m (5.7)

f ◦ σnm ◦ f−1 = σnAm (5.8)

for all `, n ∈ N. Choosing ` = ord(A), Eq. (5.7) gives f ord(A) ∈ Aut(Xθ,Z
d). From Theo-

rem 5.5, f ord(A) = σp ◦ π, for some p ∈ Zd and letter-exchange map π. From the direct
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product structure of the automorphism group, one has σp ◦ π = π ◦ σp, which implies
f ord(A)·|G| = σ|G|p ◦ π|G| = σ|G|p. Using the two equations above, one gets f ord(A)·|G| = σ|G|A`(p)

for all ` ∈ N. Since f is an extended symmetry, A 6= I. Next we show that p cannot be an
eigenvector of A.

Suppose Ap = p with p 6= 0. Note that f−ord(A)|G| = σ−|G|p. From Eqs. (5.7) and (5.8), one
also has f−1 ◦ σ|G|A−1p ◦ f = σ−|G|p, which implies A−1p = −p, contradicting the assumption
on p. Since ord(σp) = ∞, this forces p = 0 and hence f ord(A)·|G| = id from which the �rst
claim is immediate. The upper bound for the order follows from the upper bound for the
order of the elements of the hyperoctahedral group Wd; see [2].

Due to the fact that Sym(Xθ,Z
d) is (possibly) a larger extension of Aut(Xθ,Z

d) (that is,
the corresponding quotient can have up to 2dd!− 1 non-trivial elements instead of just one),
we would end up with a much larger number of equations of the form of Eq. (5.2), one for
each element of the hyperoctahedral group Wd except the identity. This leads us to another
problem of di�erent nature: if the rectangle R, which is the support of the level-1 supertiles
of θ, is not a cube in Zd, some symmetries from Wd may not be compatible with R, i.e.,
they may map R to a di�erent rectangle that is not a translation of R, so the corresponding
equation does not have a proper meaning (as it may compare an existing column with a
non-existent one).

7→ 7→

Figure 5.2: A non-square substitution that generates the two-dimensional Thue-Morse hull.

This could be taken as a suggestion that such geometrical symmetries cannot actually happen,
imposing further limitations on the quotient Sym(Xθ,Z

d)/Aut(Xθ,Z
d). Interestingly, this is

not actually the case. For instance, consider the two-dimensional rectangular substitution
from Figure 5.2. As the support for this substitution is a 4× 2 rectangle, we could guess that
this substitution is incompatible with rotational symmetries or re�ections along a diagonal
axis, which would produce a 2×4 rectangle instead. However, further examination shows that
the hull generated by this substitution is actually the same as the hull of the two-dimensional
Thue�Morse substitution as seen in e.g. [22], which is compatible with every symmetry from
W2 = D4. Thus, only geometrical considerations are not enough to exclude candidates for
extended symmetries.

Fortunately, there is a subcase of particular interest in which this geometrical intuition is
actually correct, which involves an arithmetic restriction on the side lengths of the support
rectangle R. It turns out that coprimality of the side lengths is a su�cient condition (although
it can be weakened even further) to rule out such symmetries, e.g. there are no extended
symmetries compatible with rotations when R is a, say, 2× 5 rectangle. To be precise:

Theorem 5.18 Let θ : A → AR be a bijective rectangular substitution with faithful associated
shift action. Suppose that R = [0,L−1] with L = (L1, . . . , Ld) (that is, R is a d-dimensional
rectangle with side lengths L1, L2, . . . , Ld) and that for some indices i, j there is a prime p
such that p | Lj but p - Li, i.e. Li and Lj have di�erent sets of prime factors. Let A ∈ Wd ≤
GL(d,Z) and suppose that A is the underlying matrix associated to an extended symmetry
f ∈ Sym(Xθ,Z

d). Then Aij = Aji = 0.
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The underlying idea is that, if A ∈ Wd induces a valid extended symmetry for some substi-
tution θ with support U , we can �nd another substitution η with support A · U (up to an
appropriate translation) such that Xθ = Xη, and then we use the known factor map from an
aperiodic substitutive subshift onto an associated odometer to rule out certain matrices A.
Similar exclusion results have been studied by Cortez and Durand [26].

Proof. Let ϕ : Xθ � ZL1×· · ·×ZLd = ZL be the standard factor map from the substitutive
subshift to the corresponding product of odometers. It is known [13, Thm. 5] that, for any
extended symmetry f : Xθ → Xθ with associated matrixA, there exists kf = (k1, . . . , kd) ∈ ZL
and a group automorphism αf : ZL → ZL satisfying the following equation:

ϕ(f(x)) = kf + αf (ϕ(x)), (5.9)

where αf is the unique extension of the map n 7→ An, de�ned in the dense subset Zd, to
ZL. In particular, for any n ∈ Zd, if f = σn is a shift map, then kσn = n and ασn = idZL

.

Now, consider the sequence hm = Lmi ei, and suppose Aji = ±1. Equivalently, Aei = ±ej,
since A is a signed permutation matrix. Without loss of generality, we may assume the
sign to be +. One has Lmi

m→∞−−−→ 0 in the Li-adic topology, and thus ϕ(σhm(x)) = hm +
ϕ(x)

m→∞−−−→ ϕ(x), as it does so componentwise. By compactness, we may take a subsequence
hβ(m) such that σhβ(m)

(x) converges to some x∗; then, as the factor map ϕ is continuous, we
have ϕ(x∗) = ϕ(x).

Eq. (5.9) and this last equality imply that ϕ(f(x)) = ϕ(f(x∗)) as well. Writing x∗ as a limit,
we obtain from continuity that

ϕ(x∗) = ĺım
m→∞

ϕ(f(σhβ(m)
(x))) = ĺım

m→∞
ϕ(σAhβ(m)

(f(x)))

= ϕ(x) + ĺım
m→∞

Ahβ(m) = ϕ(x) + ĺım
m→∞

L
β(m)
i Aei

=⇒ ĺım
m→∞

L
β(m)
i ej = ϕ(x∗)− ϕ(x) = 0.

The last equality implies that, in the topology of ZLj , the sequence Lβ(m)
i converges to 0.

However, since there is a prime p that divides Lj but not Li, due to transitivity we must
have Lj - Lni for all n, as otherwise p | Lni and thus p | Li. Thus, in base Lj, the last digit of
L
β(m)
i is never zero, and thus Lβ(m)

i remains at �xed distance 1 from 0 (in the Lj-adic metric),
contradicting this convergence. Thus, Aji cannot be 1 and must necessarily equal 0. For Aij,
the same reasoning applies to f−1. Since A is a signed permutation matrix, Aij = ±1 would
imply (A−1)ji = ±1, again a contradiction.

We now proceed to the generalisation of Theorem 5.13 in higher dimensions. As before, for
a block substitution θ, we have R =

∏d
i=1[0, Li − 1], with Li ≥ 2 and the expansive map

Q = diag(L1, L2, . . . , Ld). Let A ∈ Wd ≤ GL(d,Z) be a signed permutation matrix. First, we
assume that the location of a tile in any supertile is given by the location of its centre. De�ne
the a�ne map A(1) : R → R via A(1)(i) = A(i− x1) + |A|x1 where i ∈ R and x1 = Qv − v
with v = 1

2
(1, 1, . . . , 1)T . Here, (|A|)ij = |Aij|. The vector |A|x1 is the translation needed to

shift the centre of the supertile to the origin, which we will need before applying the map
A and shifting it back again. We extend A(1) to any level-k supertile by de�ning the map
A(k) : R(k) → R(k) given by

A(k)(i) = A(i− xk) + |A|xk, (5.10)
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with i ∈ R(k) and xk = Qkv − v. Here R(k) :=
∏d

i=1[0, Lki − 1] is the set of locations of tiles
in a level-k supertile.

Example Let θ be a two-dimensional block substitution with Q = ( 2 0
0 2 ) and A be the

counterclockwise rotation by 90 degrees, with corresponding matrix A = ( 0 −1
1 0 ). Consider

the level-3 supertile and let i = (7, 3)T ∈ R(3), with Q-adic expansion i =̂ i2i1i0. Here one
has i0 = i1 = e1 + e2 and i2 = e1. One then gets A(3)(i) = (4, 7)T ; see Figure 5.3. One can
check that

∑2
j=0 Q

j(A(1)(ij)) = A(3)(i).

Figure 5.3: The transformation of a marked level-3 location set R(3) under the map A(3).

The following result is the analogue of Theorem 5.13 in Zd.

Theorem 5.19 Let θ be an aperiodic, primitive, bijective block substitution θ : A → AR. Let
Wd be the d-dimensional hyperoctahedral group and let A ∈ Wd. Suppose there exists ` ∈ R
such that θ`′ = id for all `′ ∈ OrbA(`). Assume further that [A,Q] = 0 and |A|x1 = x1. Then
π, together with A, gives rise to an extended symmetry f ∈ Sym(Xθ,Z

d) if and only if

π−1 ◦ θi ◦ π = θA(1)(i) (5.11)

for all i ∈ R.

Proof. Most parts of the proof mimics those of the proof of Theorem 5.13, where one replaces
the mirroring operation m with a more general map A ∈ Wd. One then gets an analogous
system of equations, as in those coming from Eq. (5.3). Using this, one can show the necessity
direction.

To prove su�ciency, we show that if Eq. (5.11) is satis�ed for all i ∈ R, then it also holds for
all positions in any level-k supertile. Let i ∈ R(k), which admits the unique Q-adic expansion
given by i =̂ ik−1ik−2 · · · i1i0, i.e., i =

∑k−1
j=0 Q

j(ij). We now show that the Q-adic expansion
of A(k)(i) is given by A(k)(i) =̂A(1)(ik−1)A(1)(ik−2) · · ·A(1)(i0). Plugging in the expansion of
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i into Eq. (5.10), one gets A(k)(i) =
(∑k−1

j=0 AQ
j(ij)

)
− Axk + xk. On the other hand, one

also has

k−1∑
j=0

Qj(A(1)(ij)) =
k−1∑
j=0

Qj
(
A(i−Qv + v) +Qv − v

)
=

k−1∑
j=0

QjA(ij) +
k−1∑
j=0

(
−AQj+1v + AQjv

)
+

k−1∑
j=0

(
Qjv −Qjv

)
=

k−1∑
j=0

AQj(ij)−AQkv + Av︸ ︷︷ ︸
−Axk

+Qkv − v︸ ︷︷ ︸
xk

= A(k)(i),

where the penultimate equality follows from [A,Q] = 0 and the evaluation of the two teles-
coping sums. As in Theorem 5.13, one then obtains

π−1 ◦ θi ◦ π = π−1 ◦ θik−1
◦ θik−2

◦ · · · θi0 ◦ π = θA(k)(i),

whenever i =̂ ik−1ik−2 · · · i0 and π−1 ◦θis ◦π = θ
A(1)(is)

for all is ∈ R, which �nishes the proof.

Remark The conditions [A,Q] = 0 and |A|x1 = x1 in Theorem 5.19 are automatically
satis�ed if θ is a cubic substitution, i.e., Li = L for all 1 ≤ i ≤ d, which means one can use
Eq. (5.11) to check whether a given letter-exchange map works for any A ∈ Wd. For general
θ, these relations are only satis�ed for certain A ∈ Wd, e.g. re�ections along coordinate
axes, which means one needs a di�erent tool to ascertain whether it is possible for other rigid
motions to generate extended symmetries. For example, one can use Theorem 5.18 to exclude
some symmetries.

Before we proceed, we need a higher-dimensional generalisation of Proposition 5.4 regarding
aperiodicity. For this, we use the following result, which is formulated in terms of Delone
sets. Here, Sd−1 is the unit sphere in Rd.

Theorem 5.20 ( [6, Thm. 5.1]) Let X(Λ) be the continuous hull of a repetitive Delone set
Λ ⊂ Rd. Let

{
bi ∈ Sd−1 | 1 ≤ i ≤ d

}
be a basis of Rd such that for each i, there are two

distinct elements of X(Λ) which agree on the half-space {x | 〈bi|x〉 > αi} for some αi ∈ Rd.
Then one has that X(Λ) is aperiodic.

The proof of the previous theorem relies on the generalisation of the notion of proximality
for tilings and Delone sets in Rd, which is proximality along s ∈ Sd−1; see [6, Sec. 5.5] for
further details. Note that from a Zd-tiling generated by a rectangular substitution, one can
derive a (coloured) Delone set Λ by choosing a consistent control point for each cube (usually
one of the corners or the centre). Primitivity guarantees that Λ is repetitive and the notion
of proximality extends trivially to coloured Delone sets using the same metric. The two hulls
X(Λ) and Xθ are then mutually locally derivable, and the aperiodicity of one implies that of
the other. We then have a su�cient criterion for the aperiodicity of Xθ in higher dimensions.
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Proposition 5.21 Let θ : A → AR be a d-dimensional rectangular substitution which is
bijective and primitive. If there exist two legal blocks u, v ∈ L(Xθ) of side-length 2 in each di-
rection such that u and v disagrees at exactly one position and coincides at all other positions,
then the hull Xθ is aperiodic.

Proof. The proof proceeds in analogy to Proposition 5.4. Here we choose the appropriate

power to be k = lcm
{
|θr| : r =

∑d
i=1 riei, ri ∈ {0, Li − 1}

}
. If we then place u and v at the

origin, the resulting �xed points x = θ∞(u) and x′ = θ∞(v) which cover Zd will coincide at
every sector except at the one where uj 6= vj . One can then choose bi = ei and αi = 0 in
Theorem 5.20, and for each i, x and x′ to be the two elements which agree on a half-space,
which guarantees the aperiodicity of Xθ. More concretely, x and x′ are asymptotic, and hence
proximal, along ei for all 1 ≤ i ≤ d.

Remark Obviously, one can have a lattice of periods of rank less than d in higher dimensions.
An example would be when θ = θ1 × θ2, where θ1 is the trivial substitution a 7→ aa, b 7→ bb
and θ2 is Thue�Morse. Although θ1 is itself not primitive, the product θ is and admits the
legal blocks given in Figure 5.4, which generate �xed points that are Ze1-periodic. If one
requires that the shift component in Aut(Xθ,Z

d) is Zd, one needs all elements of Xθ to be
aperiodic in all cardinal directions, hence the stronger criterion in Proposition 5.21.

Figure 5.4: The image of two distinct blocks under θ coincide in the upper half-plane and
are distinct in the lower half-plane. In the limit, these legal seeds generate two �xed points
which are neither left nor right asymptotic with respect to σe1 .

The next result is the analogue of Theorem 5.8 for extended symmetries, which holds in any
dimension.

Theorem 5.22 Given a �nite group G and a subgroup P of the d-dimensional hyperoctahe-
dral group Wd, there is an aperiodic, primitive, bijective d-dimensional substitution θ whose
shift space satis�es

Aut(Xθ,Z
d) ∼= Zd ×G

Sym(Xθ,Z
d) ∼= (Zd o P )×G.

Proof. We start by taking a cursory look at the proof of Theorem 3.6 in [33]. For a given �nite
group G, we choose a generating set S = {s1, . . . , sr} that does not contain the identity, and
build a substitution whose columns correspond to the left multiplication maps Lsj(g) = sj ·g,
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seen as permutations of the alphabet A = G. These permutations generate the left Cayley
embedding of G in the symmetric group on |G| elements, whose corresponding centralizer,
which induces all of the letter exchanges in Aut(Xθ,Z

d), is the right Cayley embedding of G
generated by the maps Rsj(g) = g · sj.
In what follows, we shall assume �rst that the group G is non-trivial, as the case in which
G is trivial requires a slightly di�erent construction. We also assume that the rectangular
substitution we will construct engenders an aperiodic subshift, so that the group generated
by the shifts is isomorphic to Zd. We delay the proof of this until later on, to avoid cluttering
our construction with extraneous details.

Since Aut(Xθ,Z
d) depends only on the columns of the underlying substitution and not their

relative position, we shall construct a d-dimensional rectangular substitution θ with cubic
support whose columns correspond to copies of the aforementioned Lsj , placed in adequate
positions along the cube. We start with a cube R = [0, 2|S| + 2d + 1]d of side length 2|S| +
2d+ 2, where the additional layer corresponding to the term 2 will be used below to ensure
aperiodicity. This cube is comprised of N = |S| + d + 1 �shells� or �layers�, which are the
boundaries of the inner cubes [j, 2|S| + 2d + 2 − j]d; we shall denote each of them by Λj,
where j can vary from 0 to N − 1.

Fill the i-th inner shell ΛN−i with copies of the column Lsi , for all 1 ≤ i ≤ r. This ensures
that, as long as every other column is a copy of Lsj for some j or an identity column, the
automorphism group Aut(Xθ,Z

d) of the corresponding subshift will be isomorphic to G,
because in our construction the 2d corners of the point will always be identity columns.

Now, note that N is chosen large enough so that the point p = (0, 1, . . . , d − 1) lies in the
outer N − r ≥ d shells and, moreover, the cube [0, d − 1]d is contained in these outer shells
as well. Thus, any permutation of the coordinates maps the cube [0, d− 1]d to itself and, in
particular, two di�erent permutations map this point to two di�erent points in this cube,
that is, the orbit of p has d! di�erent points. Combining this with the fact that the mirroring
maps send this cube to one of 2d disjoint cubes (translations of [0, d− 1]d) in the corners of
the larger cube [0, N − 1]d, it can be seen that Wd acts freely on the orbit of the point p,
that is, there is a bijection between the hyperoctahedral group Wd and the set Orb(p).

Next, choose a �xed sj ∈ S that is not the identity element of G, so that Lsj is not an identity
column. As P is a subgroup of Wd, it is bijectively mapped to the set P ·p = {g ·p : g ∈ P}.
Place a copy of Lsj in each position from P ·p, and an identity column in every other position
from Orb(p). Fill every remaining position in the cube with identity columns. This ensures
that the group of letter exchanges will remain isomorphic to G, and, for each matrix A ∈ Wd

associated with some element g ∈ P , the map fA given by the relation fA(x)n = xAn will be
a valid extended symmetry, as a consequence of Theorem 5.19.

Since every other extended symmetry is a product of such an fA with some letter-exchange
map that has to satisfy the conditions given by Eq. (5.11) due to our construction, and Lsj
cannot be conjugate to the identity column, the only other extended symmetries are composi-
tions of the already extant fA with elements from Aut(Xθ,Z

d), i.e. Sym(Xθ,Z
d)/Aut(Xθ,Z

d)
has the equivalence classes of each fA as its only elements. As the set of all fA is an isomorphic
copy of P contained in Sym(Xθ,Z

d), we conclude that Sym(Xθ,Z
d) is isomorphic to the semi-

direct product Aut(Xθ,Z
d)oP . However, since every letter exchanges from G commutes with

every fA trivially, this semi-direct product may be written as Sym(Xθ,Z
d) ∼= (Zd o P )×G,

as desired.
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Figure 5.5: Examples of substitutions obtained by the above construction, for the Klein 4-
group C2 × C2, the cyclic group C4 and the whole W2 = D4, respectively. The thicker lines
mark the layer of identity columns separating the inner cube from the outer shell.

In the case where G is trivial, we may choose an alphabet with at least three symbols
(to ensure that S|A| is non-Abelian) and repeat the construction above with a collection of
columns θ0, . . . , θr−1 that generates some subgroup of S|A| with trivial centralizer (e.g. the
two generators of S|A| itself). The rest of the proof proceeds in the same way.

To properly conclude the proof, we need to verify that the constructed substitution generates
an aperiodic shift space. We focus on the case d > 1, as the one-dimensional case is a
straightforward modi�cation of the construction from Theorem 5.8. Since our d-dimensional
cube has at least d+1 ≥ 3 outer layers, we see that there is a 2×· · ·×2 cube R0 contained in
the outer layers that does not overlap any of the 2d cubes of size d×· · ·×d on the corners nor
the inner cube of size 2|S|× · · ·× 2|S|. As a consequence, this cube R0 contains only identity
columns. Since we have a layer Λd consists only of identity columns directly enveloping the
inner cube Λd+1 ∪ · · · ∪ Λd+|S|, the layer immediately following Λd is comprised only of non-
identity columns, which are copies of the same bijection π : A → A.. Thus, the 2d corners of
the hollow cube Λd ∪Λd+1 are 2× · · · × 2 cubes R1, · · · , R2d having exactly one non-identity
column each, with this non-identity column τ being placed in every one of the 2d possible
positions on these cubes.

Since τ is not the identity, there must exist some a ∈ A such that τ(a) 6= a. The previous
discussion thus implies that there is an admissible pattern Pa of size 2 × · · · × 2 comprised
only of copies of the symbol a, and 2d + 1 other admissible patterns P (n)

a that di�er from
Pa only in the position n ∈ [0, 1]d. Using the proximality criterion from Proposition 5.21, we
conclude that the subshift obtained is indeed aperiodic, as desired.

Remark An alternative Cantor-type construction, which produces the prescribed auto-
morphism and extended symmetry groups, involves putting the non-trivial columns on the
faces of R and labelling all columns in the interior to be the identity. Let G and P be gi-
ven. From Theorem 5.8, there exists a substitution on A with Aut(Xθ,Z

d) = Z × G. Let
θ0, . . . , θr−1 be the non-trivial columns of θ. Pick L to be large enough such that Wd acts
freely on the faces of R = [0, L − 1]d. Choose j0 ∈ R and consider the orbit of j0 under P ,
i.e., O0 := P · j0 = {A · j0 | A ∈ P} where A · j = A(1)(j) as in Eq. (5.10) . Label all the
columns in O0 with θ0. We then expand R via Q = diag(L, . . . , L) to get the d-dimensional
cube Q(R) of side length L2. Consider B1 := Q(O0) + R, pick j1 ∈ B1 and let O1 = P · j1.
Relabel all columns in B1 \ O1 with θ0 and all columns in O2 with θ1. One can continue this
process until all needed column labels appear; see Figure 5.6 for a two-dimensional example.

Note that one has θi = θ
A(1)(i)

for all A ∈ P and i ∈ R = [0, L− 1]d by construction, which
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(a) O0 in blue (b) B1 \ O1 in blue, O1 in red (c) B2 \ O2 in green

Figure 5.6: An example in Z2 with three non-trivial columns θ0 (blue), θ1 (red) and θ2 (green).
Here, one has G = centS|A| 〈θ0, θ1, θ2〉 and P ∼= V4, where V4 ≤ D4 = W2 is the Klein-4 group.

means π = id gives rise to an element of Sym(Xθ,Z
d) for all A ∈ P by Theorem 5.19. No

other extended symmetries can occur because all the location sets Bi only contain non-trivial
labels and are P -invariant, whereas if A /∈ P induces an extended symmetry, one must have
θ` = id for some ` ∈ Br.
The resulting block substitution is primitive, since reordering the columns does not a�ect
primitivity. It is also aperiodic because one has enough identity columns, and hence one can
�nd the legal words required in Proposition 5.21. For example, in the constructed substitution
in Figure 5.6, the legal seeds can be derived from the 2 × 2 block consisting of all identity
columns (i.e. all white squares), and another one with all columns being the identity except
at exactly one corner, where it is blue. This completes the picture and one has Aut(Xθ,Z

d) ∼=
Zd ×G and Sym(Xθ,Z

d) ∼= (Zd o P )×G.

We now turn our attention to examples where the letter-exchange map π that generates f ∈
Sym(Xθ,Z

d) is not given by the identity. In particular, in these examples, π does not commute
with the letter-exchanges which correspond to the automorphisms in Aut(Xθ,Z

d). To avoid
confusion, we will use letters for our substitution and the action of the hyperoctahedral
group will be given by numbers, seen as permutations of the coordinates. Mirroring along a
hyperplane will be denoted by mi, where i is the respective coordinate.

Example We explicitly give a substitution whose automorphism group is Aut(Xε,Z
d) =

Zd×C3 and build another C3 component in Sym(Xε,Z
d), which produces reversors of order 9.

With the requirement on Sym(Xε,Z
d)/Aut(Xε,Z

d), the space has to be at least of dimension
d ≥ 3.

ε0 = (a d g)(b e h)(c f i) ε2 = (a b c)(d e f)(g h i) ε5 = id

ε1 = (a g d)(b h e)(c i f) ε3 = (b c d)(e f g)(h i a)

ε4 = (c d e)(f g h)(i a b)

Here one has Aut(Xε,Z
3) = Z3 × C3, which is generated by (a d g)(b e h)(c f i). Depending

on the positioning of the columns, Sym(Xε,Z
3) can either be Z3 o C9, Z3 o C3 × C3 or

Z3×C3. The group Z3 oC3×C3 can be realised using the construction from Theorem 5.22.
On the other hand, Z3×C3 is obtained if one orbit of maximal size is labelled with just one
non-identity εi once, and the rest with ε0.

122



Note that π = (a b c d e f g h i) sends ε2 → ε3 → ε4 → ε2 and ε0 → ε0, ε1 → ε1. Taking
the cube of (a b c d e f g h i) gives (a d g)(b e h)(c f i) ∈ centS9(G

(1)), where G(1) is the group
generated by the columns. This is consistent with the bounds calculated in Proposition 5.17.
We will illustrate the positioning of a few elements following the construction in Theorem 5.22.
We look at a position that has the maximum orbit size under W3, for example (0, 1, 2) ∈ R.
The orbit under C3 is (0, 1, 2), (1, 2, 0), (2, 0, 1), which is obtained by cyclically permuting
the coordinates. We place ε2 at position (0,1,2), ε3 at position (1,2,0) and ε4 at position
(2,0,1). Since ε0, ε1 ∈ centS9(G), we will position them each along a di�erent orbit. All
remaining positions will be �lled with the identity to ensure that we cannot have additional
automorphisms. We use Proposition 5.21 to ensure aperiodicity. It is easy to see that one
gets the required patches by choosing the 2× 2× 2 cube in the upper right corner from the
�rst and second slices and the other one from the second and third. For this con�guration,
one has Sym(Xε,Z

3) = Z3 o C9.

Figure 5.7: The gray cubes are �lled with ε5 (the identity). Yellow and brown can be �lled
by either ε0, ε1, respectively. Lastly, ε2 is blue, ε3 is green and ε4 is red, where one has the
obvious freedom in choosing the colours due to the C3-symmetry.

Remark As a generalisation of Example 5.3.2, for any given cyclic groups Cn and Ck, we
can construct a substitution θ in Zn, such that Xθ has the automorphism group Zn×Ck and
its extended symmetry group is given by (Zn×Ck)oCn. More precisely, since the extended
symmetry group contains an element of order nk, Sym(Xθ,Z

n) = ZnoCnk. The substitution
can be realised by the following columns

ε0 = (a1 ak+1 · · · a(n−1)k+1) · · · (ak · · · ank)
εi = (ai ai+1 · · · ak−1+i)(ak+i ak+i+1 · · · a2k+i−1) · · · (a(n−1)k+i a(n−1)k+i+1 · · · ank−1+i)

εn+1 = id

where i runs from 1 to n, where the values are seen modulo nk.

From the columns εi with i 6= 0 we can see that the centralizer can only be the permutation
of the cycles limiting the centralizer to Sk, while ε0 limits it further to be Ck, since this copy
of Sk operates on the cycles independently and the centralizer of a cycle is just the cycle
itself. The extended symmetry is realised by the permutation (a1 · · · akn) which maps εi to
εi+1. Its orbit is determined by the action of Cn ≤ Wn on the positioning of the columns.

In the next example we illustrate how important it is to choose compatible structures for the
letter-exchange map and the corresponding action in Wd.
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Example We look at a four-letter alphabet with the following columns in Eq. (5.12) which
generate S4 as a subgroup of S4, thus implying that the shift space to have a trivial cen-
tralizer. We plan to have S3

∼= Sym(Xε,Z
d)/Aut(Xε,Z

d), so we place the columns in a
three-dimensional cube.

ε0 = id ε1 = (a b c d) ε4 = (a c d b)

ε2 = (a b d c) ε5 = (a d b c) (5.12)

ε3 = (a c b d) ε6 = (a d c b)

The automorphism group is trivial since the columns generate S4. Conjugation with τ = (c d)
maps ε1 to ε2, just as any τκ, with κ ∈ centS4(ε2).

Figure 5.8: The columns assigned to the colors are as follows: ε1 (blue),
ε2 (yellow), ε3 (green) ε4 (purple), ε5 (black) and ε6 (red).

Here C3 o C2
∼= S3 is realised by (b c d)(0 1 2) and (c d)(0 1). The transposition (c d) cannot

be realised in Wd by mirroring along an axis in the cube since that is not consistent with
the interaction between (b c d) and (c d). This can be easily be seen by looking at mirroring
along all hyperplanes.

We see that the diagram does not commute, thus there is no way to assign a single column
to the vertex (3, 1, 2). One can do this for all axes, which rules out the C3

2 component in W3,
thus yielding Sym(Xθ,Z

d) = Zd o S3.

Remark One can also ask whether, starting with a group G, one can build the centrali-
zer Aut(Xθ,Z

d) and normalizer Sym(Xθ,Z
d) organically from G, under a suitable embed-

ding of G. Consider the Cayley embedding G ↪→ S|G| as in Example 5.2.2. We know that
centS|G|(G) ∼= G and normS|G|(G) ∼= G o Aut(G); see [92]. Since the automorphisms of G
are given by conjugation in S|G|, they de�ne letter-exchange maps which are compatible
with reversors in Sym(Xθ,Z

d). By choosing the dimension appropriately, one can construct
a substitution θ on A = G such that the extended symmetry group is given by

Sym(Xθ,Z
d(G)) =

(
Zd(G) ×G

)
o Aut(G),
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where we choose d(G) such that Aut(G) ≤ Wd(G). This can always be done for d(G) = |G|,
but depending on Aut(G), a smaller dimension is possible. Let π ∈ Aut(G) and let Aπ ∈ Wd.
The construction from the proof of Theorem 5.22 can be applied. Here, the orbits of Aπ
will not be �lled with the same element, but with columns that are determined by π, i.e.,
θAπ(i) = π ◦ θi ◦ π−1, where π is seen as an element of S|G|.

These series of examples with more complicated structure can be generalised for arbitrary
groups G and P . Here, we have the following version of Theorem 5.22 where the letter
exchange map is no longer π = id, which we build from a speci�c set of columns.

Theorem 5.23 Let H,P be arbitrary �nite groups. Then for all ` ≥ c(P ), where c(P ) is a
constant which depends only on the group P , there is a shift space Xθ originating from an
aperiodic, primitive and bijective substitution θ such that

Aut(Xθ,Z
`) = Z` ×H

Sym(Xθ,Z
`) = (Z` ×H) o P.

Proof. The proof will be divided into two parts, beginning with a manual for the construction
of the substitution and a second part where we verify the claims made in the construction
and check if the subshift has the desired properties.

� We �rst turn our attention to the construction of P which later is supposed to be
isomorphic to Sym(Xθ,Z

`)/Aut(Xθ,Z
`). For that purpose we embed P ↪→ S` which is

certainly possible for some `. It is clear that there is a minimal c(P ) ∈ N for which this
embedding is possible, and that every ` ≥ c(P ) gives a valid embedding as well. This
means the choice of ` has a lower bound, but can be increased arbitrarily. This chosen `
determines the dimension of the space Z` where the subshift is constructed. Let us now
�x a suitable `, excluding ` = 2, 3, 6 since we use want to use AutS`(S`) = InnS`(S`) ∼= S`
which does not hold for these values of `; see [91].

� Next, we look for suitable columns for our substitution. Choose the set T = {ε1, · · · εk}
of all transpositions in S`, together with the identity column as the set of columns. T
generates S` and the action of S` (viewed as the automorphism group) acts faithfully on
T . From this, we get that P ⊂ S` ∼= InnS`(S`) ⊂ normS`({ε1, · · · , εk}). This is enough
for now, since P ⊂ normS`({ε1, · · · , εk}) and we can exclude the surplus later.

� Now, we compute the centralizer of the column group. In our current construction the
centralizer is trivial, which is why we need to modify our columns. We do this by exten-
ding our alphabet {a, · · · , `} to {a1, · · · , a|H|, b1, · · · , b|H|, · · · , `1, · · · , `|H|}. We simply
duplicate the cycles in each column: The permutations of the columns are mapped by
ρ→ ρ′ sending εi = (x y) 7→ εi = (x1 y1) · · · (x|H| y|H|).

� We embed G ↪→ S|H| with the usual Cayley embedding. This group is only acting on
the indices of the letters in the new alphabet. The action on the indices is applied to
every {a, . . . , `}, giving the �nal set of columns {η1, . . . , ηm} added to the substitution
ρ′ giving a new substitution θ.

� The Cayley embedding guarantees that centS|H|(Gθ) ∼= H, whereGθ is the column group
of θ. We can decrease the size of Sym(Xθ,Z

`)/Aut(Xθ,Z
`) with the same arguments

as in Theorem 5.22. This way we achieve a group Sym(Xθ,Z
`)/Aut(Xθ,Z

`) ∼= P where
the letter exchange component π of the extended symmetries are not in centS|H|(Gθ).
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Aperiodicity of Xθ can be easily obtained via proximal pairs. Regarding primitivity, it is
su�cient to check the transitivity of Gθ and use Proposition 5.2. For any pair (xj, yk) of
letters with indices chosen from the alphabet we need to �nd a g ∈ Gθ such that gxj = yk.
Note that the permutation (x1 y1) · · · (xj yj) · · · (x|H| y|H|) ∈ Gθ and maps xj to yj. Now we
need to map yj to yk, which is an action solely on the indices. The mapping on the indices
can be realized by the right embedding copy of H in S|H| and thus by an element composed
of the columns {η1, · · · , ηm}.
Let us prove that the centralizer is indeed isomorphic to G. The centralizer of G{ε1,···εk} can
only contain elements that are pure index permutations, since those columns generate S`.
Since the structure of the cycles in each column are independent of the index, any index
permutation is an element of centS`(G{ε1,···εk}) = S`.

We continue by determining centS`|H|(G{η1,··· ,ηm})
⋂
S`. The group S` are the pure index swit-

ches and since η1, · · · , ηm are the columns generated by the Cayley embedding of H into S`
their centralizer is isomorphic to H.

The following rule lifts an automorphism h′ on Gρ to h on Gθ .

h(εi) = h′(ε)i

Thus S|H| ≤ AutS`|H|(G{ε1,··· ,εk}). It is su�cient to prove that the automorphism group did not
decrease in size by the addition of the columns (η1, · · · , ηm). Then we can use the geometric
placement of the columns in Theorem 5.22 in the substitution to exclude any unwanted Wd-
component. Any lifted automorphism h still only maps the letters and �xes the indices. Since
the cycles in any η1, · · · , ηm contain only the same letter with di�erent indices and the index
structure is independent of the letter, every h is in centS|H|`(G{η1,··· ,ηm}) and surely legal. Thus
it is an automorphism on the whole of Gθ.

Remark Theorems 5.22 and 5.23 fall under realisation theorems for shift spaces. The most
general current result along this vein known to the authors is that of Cortez and Petite, which
states that every countable group G can be realised as a subgroup G ≤ Sym(X,Γ ), where
Sym(X,Γ ) is the normalizer of the action of a free abelian group Γ on an aperiodic minimal
Cantor space X; see [27].

5.4. Concluding remarks

While the higher-dimensional criteria in Theorems 5.19 and 5.18, which con�rm or rule
out the existence of extended symmetries, are rather general, it remains unclear how to
�nd a way to extend this to a larger (possibly all) class of systems, with no constraints on
the geometry of the supertiles. This is related to a question of determining whether, given
a substitution in Zd (or Rd), one can come up with an algorithm which decides whether
there is a simpler substitution which generates the same or a topologically conjugate hull,
which is easier to investigate. This is exactly the case for the two-dimensional Thue�Morse
substitution in Figure 5.2. Such an issue is non-trivial both in the tiling and the subshift
context; see [26,35,52].

Note that the letter-exchange map π ∈ S|A| in Theorem 5.19 always induces a conjugacy
between columns whenever it generates a valid reversor. It would be interesting to know
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whether outer automorphisms in this case can yield valid reversors for a bijective substitution
subshift in Zd, for example for those whose geometries are not covered by Theorems 5.19 and
5.18. For instance, Aut(S6) contains elements which are not realised by conjugation.

Another natural question would be to determine other possibilities for Aut(Xθ,Z
d) and

Sym(Xθ,Z
d) outside the class of bijective, constant-length substitutions. Here, the higher-

dimensional generalisations of the Rudin�Shapiro substitution would be good candidates;
see [40]. There are also substitutive planar tilings with | Sym(X,Z2)/Aut(X,Z2)| = D6,
which arises from the hexagonal symmetry satis�ed by the underlying tiling. For these clas-
ses, and in the examples treated above, the simple geometry of the tiles introduces a form of
rigidity which leads to Sym(X,Z2) being a �nite extension of Aut(X,Z2); see [13, Sec. 5] for
the notion of hypercubic shifts. There are substitution tilings whose expansive maps Q are no
longer diagonal matrices, and whose supertiles have fractal boundaries; compare [42, Ex. 12],
which allows more freedom in terms of admissible elements of GL(d,Z) which generate re-
versors. This raises the following question:

Question What is the weakest condition on the shift space/tiling dynamical systemX which
guarantees

[
Sym(X,Zd) : Aut(X,Zd)

]
<∞?

This is always true in one dimension regardless of complexity, since either the subshift is
reversible or not, but is non-trivial in higher dimensions because |GL(d,Z)| = ∞ for d > 1,
so in�nite extensions are possible; see [4]. We suspect that this is connected to the notions
of linear repetitivity, �nite local complexity, and rotational complexity; compare [13, Cor. 4]
and [52]. For in�ation systems, the compatibility condition [A,Q] = 0 in Theorem 5.19 might
also be necessary in general when the maximal equicontinuous factor (MEF) has an explicit
form.
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Chapter 6

Number-theoretical k-free shifts

This chapter is largely an adaptation of Number-theoretic positive entropy shifts with small
centraliser and large normaliser [4], a joint work with Michael Baake, Christian Huck, Marius
Lema«czyk and Andreas Nickel. Some commentary has been added regarding extensions of
this work that appear in the (not yet published) joint work with Michael Baake and Andreas
Nickel, On the stabiliser of some number-theoretic shift spaces [5].

6.1. Introduction

Shift spaces under the action of Zd form a much-studied class of dynamical systems, both
for d = 1, compare [71], and for d ≥ 2. In the latter case, much less is known in terms
of general classi�cations, and even subclasses such as those of algebraic origin [90] are still
rather enigmatic, despite displaying fascinating facets that have been analyzed intensely. In
particular, one is looking for interesting topological invariants to help analyse the jungle, and
quite a bit of progress in this direction has been made recently.

Among the available tools are the automorphism group of a shift space and its various siblings
and generalisations; see [3,27,29,30,33,36] and references therein. Here, we adopt the point of
view of [3,13] to analyse both the (topological) centralizer (denoted by Aut(X,Zd) below) and
the normalizer of the shift space, the latter denoted by Sym(X,Zd), as this pair can be quite
revealing as soon as d ≥ 2. In fact, both the topological setting and the extension to higher
dimensions go beyond some of the initial studies [46,61] that speci�cally looked at reversibility
in the measure-theoretic setting for d = 1; see [3, 82, 87] and references therein for more on
the early reversibility results. Further, the groups Aut(X,Zd) and Sym(X,Zd) are often
explicitly accessible, both for systems of low complexity, where Aut(X,Zd) is often minimal
due to some form of topological rigidity, and beyond, where other rigidity mechanisms of a
more algebraic nature emerge.

Below, we consider binary shift spaces of number-theoretic origin, as motivated by recent
progress on B-free systems and weak model sets; see [9, 36, 37, 56] and references therein.
By way of characteristic examples with pure point spectrum, we demonstrate that positive
topological entropy may very well be compatible with small or trivial centralizers, which
means that Aut(X,Γ) agrees with the underlying lattice Γ (meaning a co-compact discrete
subgroup of Rd, which we often assume to be Zd) or a �nite-index extension thereof, but also
that such systems may have considerably larger normalizers, which is particularly interesting
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for d ≥ 2. In fact, as shown in [13,22], it is the group Sym(X,Γ) that captures some obvious
symmetries, as visible from the chair tiling and related shift spaces with their pertinent
geometric symmetries. Also, the computability of Aut(X,Γ) and Sym(X,Γ) in these cases
can be an advantage over some of the more general, abstract (semi-)groups that are presently
attracting renewed attention.

The paper is organised as follows. After the introduction of some concepts and notions in
Section 6.2, we set the scene with the well-known example of the visible lattice points of
Z2 in Section 6.3, leading to Proposition 6.3 and Corollary 6.4, which in particular show
that one has Sym(XV ,Z

2) = Z2 o GL2(Z). Then, Section 6.4 states and proves this for Zd

with d ≥ 2 (Theorem 6.5) and introduces the general framework of lattice-based shift spaces,
which can often be characterised by a rather powerful admissibility condition for its elements
(Proposition 6.7). Then, under some mild assumptions, the normalizers are always maximal
extensions of the corresponding centralizers (Theorem 6.8), with elements that are a�ne
mappings (Corollary 6.9).

Section 6.5 explains the general number-theoretic setting of an algebraic B-free system in
higher dimensions, based on the classic Minkowski embedding of (commutative) maximal
orders and their ideals as lattices in Rd for a suitable d. Here, Theorem 6.12 states the results
on the triviality of Aut(X,Zd) and the direct product nature of Sym(X,Zd), which are true
under a coprimality condition of the ideals chosen for B and a mild convergence condition,
together known as the Erd®s property, in generalisation of the one-dimensional notion [36]
from B-free integers.

Sections 6.6 and 6.7 then cover some paradigmatic examples from quadratic number �elds.
In the complex case, we treat the shift spaces generated by the k-free Gaussian or the k-free
Eisenstein integers (Theorems 6.17 and 6.18). In both cases, Sym(X,Z2) is the extension of
Aut(X,Z2) ∼= Z2 by a maximal �nite subgroup of GL2(Z), which is substantially di�erent
from the case of the visible lattice points. Finally, in the real case, we consider k-free integers
in the maximal order of Q(

√
m ) form ∈ {2, 3, 5}. Here, Theorem 6.21 states that Sym(X,Z2)

is the semi-direct product of Aut(X,Z2) ∼= Z2 with a non-trivial in�nite subgroup of GL2(Z),
which can be given a clear interpretation in terms of algebraic number theory. The latter case,
which is the �rst example of this type to the best of our knowledge, is intermediate between
known examples from in�ation tilings and shifts such as that generated by the visible lattice
points. Thus, it looks particularly promising for future work and extensions to general number
�elds.

6.2. Preliminaries

Let Γ ⊂ Rd be a lattice in d-space, that is, a discrete and co-compact subgroup of Rd.
Below, we will be working with the full shift (or con�guration) space {0, 1}Γ, equipped with
the standard product topology, and certain of its closed subspaces (called subshifts or simply
shifts). We will generally use X to denote such a shift space, refering to either the full shift
or the subshift under consideration. When the situation is independent of the geometry of
the lattice, we will choose Γ = Zd for simplicity. Any element x ∈ X can also be viewed as a
subset of Γ, by taking the support of x, that is, by mapping x to

Ux := supp(x) = {n ∈ Γ : xn = 1} ⊆ Γ.
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Conversely, any point set U ⊆ Γ can be viewed as a con�guration, by mapping it to xU = 1U ,
that is, to its characteristic function. As usual, X admits a continuous action of Γ on it,
de�ned by T : Γ × X −→ X, where T (t, x) = Tt(x) with

(
Tt(x)

)
n

:= xn+t. When working
with Zd, we shall usually refer to its standard basis as {e1, . . . , ed}, and align this with the
elementary shift action of the d commuting shift operators Tei . For the action of Zd in this
case, with t = (t1, . . . , td), this simply means Tt(x) = T t1e1 · · ·T

td
ed

(x) for all x ∈ {0, 1}Zd .
Likewise, there is an action of Γ on its subsets de�ned by αt(U) = t+ U := {t+ u : u ∈ U}.
It is easy to check that UTt(x) = α−t(Ux). If we denote the power set of Γ by Ω, we thus get
the commutative diagram

X
Tt //

γ
��

X

γ
��

Ω
α−t

// Ω

(6.1)

where γ is the mapping de�ned by x 7→ Ux. This is a homeomorphism if we equip Ω with the
local topology, where two subsets of Γ are ε-close to one another when they agree on the
ball of radius 1/ε around 0. Consequently, by slight abuse of notation, we will not distinguish
these two points of view whenever the context is clear. This means that we will consider a
subset U ⊆ Γ simultaneously as a con�guration, and vice versa.

In this spirit, we can also consider the group of lattice automorphisms, Aut(Γ) ∼= GLd(Z).
Indeed, if Homeo(X) denotes the group of homeomorphisms of X, any M ∈ Aut(Γ) induces
an element hM ∈ Homeo(X), where(

hM(x)
)
n

:= xM−1n. (6.2)

In fact, the mapping M 7→ hM de�nes an injective group homomorphism. Here, one can
check that UhM (x) = MUx, so the counterpart to (6.1) is the commutative diagram

X
hM //

γ
��

X

γ
��

Ω M // Ω

(6.3)

which makes calculations with elements of the form hM more convenient in the formulation
with subsets. From now on, we identify X and Ω, and use the symbol X for both; when we
intend to explicitly show the dependence between X and V , we use the symbol XV (with a
di�erent typeface), to follow the previous notational conventions. To ease the understanding,
we will normally use x, y for con�gurations and U , V for sets.

Remember that a point set S ⊂ Rd, by which we mean an at most countable union of
singleton sets, is said to have natural density δ if

dens(S) = ĺım
r→∞

|S ∩Br|
vol(Br)

exists (and equals δ), where Br denotes the closed ball of radius r around 0. One can use
other sets for averaging, as long as they are centered around 0 and satisfy some condition of
Følner or van Hove type; see [6, 11] for details.

Below, we shall need the following simple result on sublattices of a given lattice, where the
term sublattice is meant to include the property that the corresponding index is �nite.
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Fact 6.1 Let Γ be a lattice in Rd, and let Γ1 and Γ2 be sublattices of Γ, with corresponding
indices m1 and m2, respectively. Then, Γ1 ∩ Γ2 and Γ1 + Γ2 are sublattices of Γ as well.

Further, if the indices m1 and m2 are coprime, one has Γ1 + Γ2 = Γ, which implies that Γ1

meets all cosets of Γ2 and vice versa.

Proof. If [Γ : Γi] = mi, one has miΓ ⊆ Γi by standard arguments, which implies

m1m2Γ ⊆ Γ1 ∩ Γ2 ⊆ Γ1 + Γ2 ⊆ Γ.

The sublattice property for Γ1 ∩ Γ2 and Γ1 + Γ2 is then clear.

The next statement is a consequence of what is sometimes referred to as the diamond iso-
morphism theorem, but can also be seen directly as follows. Set n = [Γ : (Γ1 +Γ2)] and
ni = [(Γ1+Γ2) : Γi]. Then, for i ∈ {1, 2},

mi = [Γ : Γi] = [Γ : (Γ1+Γ2)][(Γ1+Γ2) : Γi] = nni,

which implies n | gcd(m1,m2) = 1 and thus Γ1 + Γ2 = Γ. The �nal implication for the cosets
is a now simple consequence.

As described in Chapter 3, one of the main tools in the description of shift spaces are sliding
block codes, also known as block maps; see [71] for background. Remember that, given
two subshifts X ⊆ AZd and Y ⊆ BZd over �nite alphabets A and B, a continuous mapping
h : X −→ Y is called a block map if there is a non-negative integer1 ` such that, for every
x ∈ X and all n ∈ Zd, the image y = h(x) at position n is fully determined from the patch{
xn+m : m ∈ [−`, `]d

}
, that is, from the knowledge of x within a d-cube of sidelength 2`

centered at n. In other words, the action of h can be seen as the result of a sliding block code
φ = φh that, for some �xed ` ∈ N0, maps a cubic block of (2` + 1)d symbols from A to a
single letter from B, positioned at the center of the block (which can easily be modi�ed when
needed). This is the symbolic version of a local derivation rule from discrete geometry
[6, Sec. 5.2]. An important result that we shall need repeatedly is the Curtis�Hedlund�
Lyndon theorem (CHL): If a continuous mapping h : X −→ Y intertwines the shift action
on X and Y , it must be a block map based on some code φ of the above type [71, Thm. 6.2.9].

Below, as in the previous chapters, we shall only be interested in subshifts on which the
action of Γ is faithful, which means that the subshift contains non-periodic elements. In this
context, it is also natural to consider the a�ne lattice group Γ o Aut(Γ), whose elements
(t,M) act on Rd via (t,M)(y) :=My+ t, and correspondingly on X. In this formulation, the
group multiplication is (t,M)(s,N) = (t+Ms,MN), with neutral element (0,1) and inverse
elements (t,M)−1 = (−M−1t,M−1). This group will become important later.

Further notation and concepts can now better be introduced along a paradigmatic example,
which will simultaneously motivate the various extensions to follow.

6.3. Visible lattice points and their shift space

Consider the visible points V of the square lattice, Z2, which are de�ned as

V := {(m,n) ∈ Z2 : gcd(m,n) = 1}.
1The least possible ` is the radius, as described in Chapter 3.

132



Figure 6.1: Central patch of the visible points of Z2 (dots) and of the square-free Gaussian
integers (circles). The cross in the center marks the origin.

They are also known as the primitive points, and are used in many places; see also the cover
page of [1]. Clearly, one has V = Z2 \

⋃
p∈P(pZ2), where P denotes the set of rational primes.

Figure 6.1 shows a �nite patch around the origin, in comparison with another set that will
be discussed later, in Section 6.6. Let us recall some well-known properties of V ; see [6, 11]
and references therein for background and further results.

Fact 6.2 The set V is uniformly discrete, but not relatively dense. In particular, V contains
holes of unbounded inradius that repeat lattice-periodically. Yet, it satis�es V − V = Z2 and
has natural density dens(V ) = 1

ζ(2)
= 6

π2 , where ζ(s) is Riemann's zeta function.

Furthermore, the set V is pure point di�ractive, with the di�raction measure being invariant
under the action of the a�ne group Z2 o GL2(Z).

Now, let XV := Z2 + V be the orbit closure of V under the shift (or translation) action of
Z2, where the closure is taken in the standard product topology, also known as the local
topology due to its geometric interpretation: Two con�gurations (or subsets) are close if
they agree on a large neighborhood of 0 ∈ Z2. In particular, since V has holes of arbitrary
size, one immediately obtains that ∅ ∈ XV , where ∅ is the empty set and represents the all-0
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con�guration. Clearly, XV is a compact space, which is canonically identi�ed with a subshift
in {0, 1}Z2

, and
(
XV ,Z

2
)
is a topological dynamical system.

Call a subset of Z2 admissible if it misses at least one coset modulo pZ2 for any p ∈ P.
One easily veri�es that the set of admissible sets constitutes a subshift of {0, 1}Z2

as well,
denoted by A. Since the set V by the remark above misses the zero coset modulo each pZ2,
one readily veri�es that the elements of XV are admissible, so XV ⊆ A. In fact, it was shown
in [8, Lemma 4] that V shows all cosets except the zero coset modulo each pZ2, and is thus
a maximal element of XV . Further, one has the following result, the �rst part of which will
be generalised below on the basis of Propositions 6.7 and 6.11.

Proposition 6.3 ( [8]) The space XV coincides with the shift space of admissible sets, A. In
particular, XV is hereditary (closed under the formation of subsets). The topological dynamical
system

(
XV ,Z

2
)
has topological entropy 6

π2 log(2).

With respect to the existing natural frequency measure νM, which is also known as the Mirsky
measure, the measure-theoretic dynamical system

(
XV ,Z

2, νM

)
has pure point dynamical spec-

trum, but trivial topological point spectrum.

The measure νM is ergodic for the Z2-action, and V is a generic element for νM in XV .
Moreover, the measure-theoretic entropy for νM vanishes.

The characterisation of a number-theoretic shift space via an admissibility condition was
originally observed by Sarnak for the square-free integers, and later extended to Erd®s B-free
numbers in [37] and generalised to the lattice setting in [84]. Since this step is vital to us, we
later present a streamlined version of the proof that covers the generality we need.

Remark The generating shifts induce unitary operators on the Hilbert space L2(XV , νM),
and the simultaneous eigenfunctions form a basis of this space [9, 10]. Except for the trivial
one, no other eigenfunction is continuous. However, as follows from a recent result by Keller
[59], see also the discussion in [9, 14], there is a subset of XV of full measure on which the
eigenfunctions are continuous. This is related to the fact that V is a weak model set of
maximal density [9] in the cut and project scheme (R2, H,L) with compact internal group
H =

∏
p∈PZ

2/pZ2 and the lattice L being the diagonal embedding of Z2 into R2 ×H. It is
an interesting open problem to understand the missing null set, and to connect it with the
rather intricate relation between the topological and the measure-theoretic structure of this
dynamical system.

Let Homeo(XV ) be the group of all homeomorphisms of XV , irrespective of whether they
commute with the generators T1, T2 of the Z2-action or not. The translation action of Z2 on
XV is faithful, wherefore we have G := 〈T1, T2〉 ∼= Z2. Clearly, XV is not the full shift, and ∅ is
the only �xed point of XV under the translation action, since Z2 (as the all-1 con�guration)
is not an element of XV .

The automorphism group of XV , see [3] and references therein for background, is

Aut(XV ,Z
2) := centHomeo(XV )(G) = {H ∈ Homeo(XV ) : GH = HG for all G ∈ G},

which clearly contains G as a normal subgroup. This centralizer is sometimes called the
symmetry group of the subshift, denoted as S(XV ), most prominently in these works that
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follow the Smale convention, where the notation Aut(X) is reserved for what we denote as
Homeo(X). For any S ∈ Aut(XV ,Z

2), S(V ) has a dense shift orbit in XV (as V has dense
orbit by de�nition). Moreover, one has S(∅) = ∅ since S(∅) can also be seen as a �xed point
under the translation action.

Now, consider an arbitrary S ∈ Aut(XV ,Z
d). By the CHL theorem, there is a block code

(or map) φ : {0, 1}[−`,`]2 −→ {0, 1} of a suitable size (parameterised by `) such that, for any
x ∈ XV , the value of Sx at a position k ∈ Z2 is given by the value under φ of the corresponding
block of x around this very position, which we call its center. This means

(Sx)k = φ
(
x[k+[−`,`]2]

)
,

where x[k+[−`,`]2](m) = xk+m for m ∈ [−`, `]2. Since S(∅) = ∅, it is clear that φ
(
0[−`,`]2

)
= 0.

Next, following [3, 13], we de�ne the extended symmetry group as

Sym(XV ,Z
2) := normHomeo(XV )(G) = {H ∈ Homeo(XV ) : HGH−1 = G},

which contains both G and Aut(XV ,Z
2) as normal subgroups. Every H ∈ Sym(XV ,Z

d) must
satisfyH(∅) = ∅, asH(∅) can once again be shown to be �xed under any element of G. Since
every extended symmetry induces an automorphism of G ∼= Z2 via the conjugation action,
Sym(XV ,Z

2) can at most be a group extension of Aut(XV ,Z
2) by Aut(Z2) = GL2(Z).

Let us state the �nal result for this speci�c example, which is a special case of our more
general statement (Theorem 6.5) in the next section.

Corollary 6.4 For the topological dynamical system
(
XV ,Z

2
)
, the automorphism group is

the minimal one, so Aut(XV ,Z
2) = G ∼= Z2, while the extended symmetry group is

Sym(XV ,Z
2) = Aut(XV ,Z

2) o Aut(Z2) ∼= Z2 o GL2(Z),

hence the maximal extension possible.

This result shows that positive (topological) entropy is very well compatible with a minimal
centralizer, while the factor group Sym(XV ,Z

2)/Aut(XV ,Z
2) need neither be a �nite nor a

periodic group, where the latter statement implies that the factor group contains elements of
in�nite order. This combination can also occur for subshifts with zero entropy, as can be seen
from the subshift that is obtained as the orbit closure of a singleton con�guration and contains
the shift orbit of this con�guration together with the all-0 con�guration; compare [6, Ex. 4.3].

6.4. General lattice setting

The statement of Corollary 6.4 is not restricted to d = 2. Indeed, one has the following
generalisation; see [8, 11, 84] for its �rst part.

Theorem 6.5 Let V = {(n1, . . . , nd) ∈ Zd : gcd(n1, . . . , nd) = 1} = Zd \
⋃
p(pZ

d) be the set

of visible points of Zd, with d ≥ 2, and consider the topological dynamical system
(
XV ,Z

d
)

with XV = Zd + V . Then, XV has topological entropy log(2)/ζ(d) and satis�es XV = A,
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where A consists of all admissible subsets of Zd, that is, all subsets U ⊂ Zd such that, for
every p ∈ P, U misses at least one coset modulo pZd.

The automorphism group, or topological centralizer, of this system is Aut(XV ,Z
d) = Zd, while

its extended symmetry group, or topological normalizer, is Sym(XV ,Z
d) = Zd o GLd(Z).

Proof. The statement on the centralizer is a rigidity result that is driven by the identity
XV = A, which also forces XV to be hereditary. It follows from a slight modi�cation of
the argument put forward in [77], which we repeat here in a form that is tailored to the
higher-dimensional lattice systems we consider here and below. It employs a lattice version
of the Chinese remainder theorem (CRT) based on the pairwise coprime sublattices of the
form pZd (p prime) of the integer lattice. Note that the solutions of a system of congruences
appear lattice-periodically, which guarantees some �exibility regarding the actual position of
solutions in the square lattice. This argument also works for general lattices.

We start from the identity XV = A, which follows from Proposition 6.3 together with its
generalisation in Proposition 6.7 and Theorem 6.8 below. First, we show that any auto-
morphism S ∈ Aut(XV ,Z

d) acts on the singleton set U0 = {0} ∈ XV as a translation, that
is, S(U0) = U0 + k for some k ∈ Zd, where U0 ∈ XV follows from XV = A. Since S is a
homeomorphism that commutes with the shift action, it corresponds to a block code φ, by
the CHL theorem. Here and in what follows, we identify any subset of Zd with its charac-
teristic function, and thus with a binary con�guration, as explained in Section 6.2. Then,
S(U0) = U0 + k is equivalent to saying that φ takes the value 1 on exactly one block with
singleton support. For the latter, note �rst that φ cannot take the value 0 on all blocks with
singleton support, as this would imply S(U0) = ∅ which is impossible (S is invertible and
we already have S(∅) = ∅).

Assuming the existence of two di�erent blocks with singleton support that are sent to 1 by
the code, there is a prime p and an admissible set U ⊂ Zd of cardinality pd−1 that comprises
all cosets modulo pZd except the zero coset, together with the property that S(U) shows all
possible cosets modulo this very pZd and is thus no longer admissible. To see this, p is chosen
such that the di�erence n of the centers of the two blocks (a non-zero element of Zd) does
not belong to pZd. In fact, by the CRT, the pd − 1 elements of U can be chosen arbitrarily
well separated from one another. Then, the assertion follows because S(U) will contain a
translate of U ∪ (n+ U) and, since S(U) is admissible, a translate of this union is contained
in V. Consequently, for some m ∈ Zd, both U +m and (U +n) +m consist of pd−1 elements
and are equal modulo pZd (both showing all non-zero cosets modulo pZd) � a contradiction
to n 6= 0 modulo pZd from the construction.

After replacing S by S ′ := Tk ◦ S, so that S ′(U0) = U0, and slightly enlarging the size of the
block code, one can assume that the only block with singleton support that is sent to 1 is
the block that has value 1 only at 0. One is then left to show that S ′ = id. For convenience,
we now rename S ′ by S, and show that S = id.

This follows from the maximality of V together with the crucial observation that S(U) ⊆ U
(equivalently U ⊆ S−1(U)) for all U ∈ XV , due to the properties of the block code for S
just established. So, any (automatically admissible) block of 1U with value 0 at its central
position is sent to 0 by the code. This claim can be shown by an argument similar to the one
used above. Assume the existence of an admissible block C with value 0 at its center that
is sent to 1 by the code. This block then appears in V at a position s with s ∈ pZd for a
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suitable p. Again, one can choose a set U of pd−1 elements of V that shows all cosets except
the zero coset modulo pZd. By the CRT, we may assume that these pd − 1 elements are well
separated and also well separated from s (together with the whole block s+C of V at s). It
is then immediate that U ∪ (s + C) is admissible and that S(U ∪ (s + C)) will contain the
set U ∪ {s} and thus shows all cosets modulo pZd, a contradiction.

It remains to determine the normalizer. Since G ∼= Zd, with Aut(Zd) = GLd(Z), there is a
group homomorphism

ψ : Sym(XV ,Z
d) −→ GLd(Z)

that is induced as follows. If H ∈ Sym(XV ,Z
d), we have HGH−1 = G, so a set of generators

of G must be mapped to a (possibly di�erent) set of generators under the conjugation action.
Starting from our canonical choice, G = 〈Te1 , . . . , Ted〉, one �nds HTiH

−1 =
∏

j T
mji
j where

the mji are the matrix elements of MH = ψ(H). It is routine to verify the homomorphism
property. In particular, with Tn = T

n1
e1 · · ·T

nd
ed , one gets

HTnH
−1 = TMHn

. (6.4)

For M ∈ GLd(Z), in line with Eq. (6.2), de�ne the mapping HM on X = {0, 1}Zd by
(HMx)n = xM−1n,

which clearly is a homeomorphism of X. Now, each M maps our set V onto itself, as GLd(Z)
acts transitively on V . Consequently, also the orbit {t+ V : t ∈ Zd} is mapped onto itself by
M , hence M preserves XV by continuity. In other words, invoking (6.3), we see that HM is
an element of Sym(XV ,Z

d), and that

1 −→ Aut(XV ,Z
d)

id−→ Sym(XV ,Z
d)

ψ−→ GLd(Z) −→ 1

is a short exact sequence. Moreover, the mapping

ϕ : GLd(Z) −→ Homeo(XV )

de�ned by ϕ(M) = HM is a group homomorphism as well, with ψ(HM) = M . Consequently,
H := ϕ(GLd(Z)) is a subgroup of Sym(XV ,Z

d) that is isomorphic with GLd(Z). Since ϕ ◦ ψ
acts as the identity on H, our claim follows.

Remark With respect to the patch frequency (or Mirsky) measure, the situation is also
the same as for d = 2, meaning that the dynamical spectrum of (XV ,Z

d, νM) is pure point,
with trivial topological point spectrum. Nevertheless, the measure-theoretic eigenfunctions
are continuous on a subset of XV of full measure; see the discussion in [9].

In fact, the above multi-dimensional setting allows for a further generalisation.

De�nition 6.6 Let B = {bi | i ∈ N} be an in�nite set of positive integers that is primitive
in the sense that bi | bj implies i = j. Consider the point set VB = Zd \

⋃
i∈N biZ

d in Rd,

and de�ne XB = Zd + VB, which is compact. Then, the dynamical system (XB,Z
d) is called

a B-free lattice system. It is called Erd®s when the bi are pairwise coprime and satisfy
∞∑
i=0

1

bdi
< ∞,

which is an additional condition only for d = 1.
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Note that d = 1 is the case of B-free systems in Z, which is extensively studied in [36, 56]
and references therein. The primitivity condition really is some irreducibility notion, as any
multiple of some bi could simply be removed from the set B without any e�ect on VB. It is
obvious that Zd in De�nition 6.6 can be replaced by any lattice Γ ⊂ Rd. However, since this
does not change the arithmetic situation at hand, we restrict our attention to Zd for now.

A set U ⊂ Zd is called admissible for B if, for every b ∈ B, U meets at most bd − 1 cosets
of the sublattice bZd. Equivalently, U is admissible if it misses at least one coset of bZd for
each b ∈ B. The set of all admissible subsets of Zd is again denoted by A, and constitutes
a subshift. By de�nition, VB ∈ A, and we thus have XB ⊆ A. If P and Q are disjoint �nite
subsets of Zd, we de�ne the locator set

L(P,Q) := {t ∈ Zd : t+ P ⊂ VB and t+Q ⊂ Zd \ VB}

in analogy to the treatment in [84]. One has the following connection, which is a generalisation
of both [37, Prop. 2.5] and [84, Thm. 2].

Proposition 6.7 Assume that
(
XB,Z

d
)
is Erd®s, and let P and Q be disjoint �nite subsets

of Zd. Then, the following properties are equivalent.

1. L(P,Q) has positive natural density.

2. L(P,Q) 6= ∅.

3. P is admissible for B.

Proof. The implication (1) ⇒ (2) is clear. If L(P,Q) 6= ∅, one has t + P ⊂ VB for some
t ∈ Zd, so t+ P ∈ A and hence P ∈ A, which shows (2)⇒ (3).

It remains to prove (3)⇒ (1). To this end, let m = |P | and set

S1 := {b ∈ B : mı́n
(
|P mód b|, bd − 1

)
< m},

which is a �nite subset of B. Further, for the elements q ∈ Q, select distinct elements bq
from B \ S1, and set S2 = {bq : q ∈ Q}. Without loss of generality, we may choose each bq
large enough so that p ≡ q mód bq has no solution with p ∈ P , which is to say that q is a
representative of a coset modulo bq that is missed by P . Since |S2| = |Q|, S := S1 ∪ S2 is still
a �nite subset of B, with S = S1 for Q = ∅.

Since P is admissible for B, we know that, for each b ∈ B, at least one coset of bZd is missed
by P . Let pb be a representative of this coset, where we may choose pb = q for all b = bq ∈ S2

due to our choice of S2. As our system is Erd®s, we can invoke the lattice version of the CRT
to see that there is an element t0 ∈ Zd such that

t0 ≡ −pb mód b, for all b ∈ S.

Note that, with the choice of the pb for b ∈ S2 just made, this comprises the congruences
t0 ≡ −q mód bq for all q ∈ Q. In fact, due to the pairwise coprimality, we know that the set
of all solutions is given by the lattice coset t0 + cZd with c =

∏
b∈S b. For any t from this

coset and then every b ∈ S, we thus have t+ p 6≡ 0 mód b, which is to say that t+ P avoids
the zero coset for all b ∈ S, while t+ q ≡ 0 mód bq, so no element of t+Q can lie in VB.

138



Now, let Rn := {b ∈ B \S : b ≤ n}, which is �nite, where we assume the integer n to be large
enough so that Rn 6= ∅. Now, consider

Θn :=
(
t0 + cZd

)
∩ {t ∈ Zd : t 6≡ −p mód b for all b ∈ Rn and all p ∈ P}.

The second set is a �nite union of translates of the lattice γnZ
d with γn =

∏
b∈Rn b. Invoking

Fact 6.1, it is clear that Θn consists of �nitely many cosets of the intersection lattice, which
is cγnZ

d, and thus has a well-de�ned natural density. Consequently, Θn has density

dens(Θn) = c−d
∏
b∈Rn

(
1− |P |

bd

)
because, modulo b for any b ∈ Rn, no two points of P can be equal by our choice of S1.

Each term in the product is a positive number, again due to our choice of S1 ⊆ S, so the
Erd®s condition guarantees that the in�nite product satis�es∏

b∈B\S

(
1− |P |

bd

)
= D > 0,

which is to say that it converges to a positive number. Since Θn+1 ⊆ Θn for all large enough
n, say n ≥ n0, we can take the limit n → ∞ and conclude that Θ∞ :=

⋂
n≥n0

Θn is a set of
solutions of our congruence conditions, for all b ∈ B, with positive natural density. So, for
any t ∈ Θ∞, we have t+ P ⊂ VB together with t+Q ⊂ Zd \VB as claimed.

Theorem 6.8 Let
(
XB,Z

d
)
be a B-free lattice system, with Aut(XB,Z

d) its automorphism
group. Then, the group of extended symmetries is given by Sym(XB,Z

d) = Aut(XB,Z
d) o

GLd(Z), which is to say that the extension is always the maximally possible one.

If
(
XB,Z

d
)
is Erd®s, one has XB = A, the system is hereditary, and it has minimal auto-

morphism group, Aut(XB,Z
d) = G ∼= Zd, and we thus get Sym(XB,Z

d) = Zd o GLd(Z).

Proof. Due to the assumptions, any B-free lattice system de�nes a shift, with faithful shift
action, wherefore its automorphism group, Aut(XB,Z

d), contains a normal subgroup that is
isomorphic with Zd, namely the one generated by the shift action itself, G.
Since Aut(Zd) = GLd(Z), any M ∈ GLd(Z) maps Zd onto itself, hence one also has
M(bZd) = bM(Zd) = bZd for any b ∈ B. This implies M(VB) = VB. We thus see that
H := ϕ(GLd(Z)) is a subgroup of Sym(XB,Z

d) that is isomorphic with GLd(Z). Since we
have ψ(H) = ψ(Sym(XB,Z

d)) = GLd(Z), where ψ is the group homomorphism from above,
Aut(XB,Z

d) is the kernel of the group endomorphism ϕ ◦ ψ. By construction, ϕ ◦ ψ acts as
the identity on H, and the claimed semi-direct product structure follows.

Clearly, we have XB ⊆ A, as explained earlier. For the converse inclusion, when XB is Erd®s,
consider an arbitrary S ∈ A and, for n ∈ N, set Sn = S ∩ Bn(0), which is �nite. By
Proposition 6.7, for each n ∈ N, there exists some tn ∈ L

(
Sn, (Z

d ∩Bn(0)) \ Sn
)
6= ∅, which

means that
(VB − tn) ∩Bn(0) = Sn.

Consequently, ĺımn→∞(VB − tn) = S in the local topology, and S ∈ XB. This shows A ⊆ XB
and hence XB = A. Clearly, XB is then also hereditary. Now, a straight-forward modi�cation
of the centralizer argument used in the proof of Theorem 6.5 establishes Aut(XB,Z

d) = Zd.

139



Alternatively, the structure of the last proof can be summarised in stating that

1 −→ Aut(XB,Z
d)

id−→ Sym(XB,Z
d)

ψ−→ GLd(Z) −→ 1

is a short exact sequence where H := ϕ(GLd(Z)) is a subgroup of Sym(XB,Z
d) with H ∼=

GLd(Z) and the property that ϕ ◦ ψ acts as the identity on H. Outside the class of Erd®s
B-free lattice systems, the centralizer can indeed be a �nite-index extension of G, as is known
from one-dimensional examples of Toeplitz type [58], but we do not consider this case below.

Example Let k ∈ N be �xed and consider the lattice Zd. Then, B = {pk : p ∈ P} leads to
the k-free lattice points in d dimensions, which is Erd®s for kd ≥ 2. They have been studied
from various angles in [8,11,84], and provide a natural extension of our motivating example
from Section 6.3.

In particular, one always obtains a measure-theoretic dynamical system
(
XVB ,Z

d, νM

)
with

pure point di�raction and dynamical spectrum, as in Remark 6.4. The topological entropy is
log(2)/ζ(kd), while the measure-theoretic entropy with respect to the natural patch frequency
(or Mirsky) measure νM always vanishes [84], as it must in view of the fact that the dynamical
spectrum of

(
XVB ,Z

d, νM

)
is pure point.

The result of Theorem 6.8 can more generally be looked at as follows. Let
(
X,Zd

)
be a

faithful shift, with centralizer Aut(X,Zd) and normalizer Sym(X,Zd), and assume that hM ∈
Homeo(X) for some M ∈ GLd(Z), where hM is the mapping de�ned in Eq. (6.2). Let Tn
with n ∈ Zd denote the shift by n as before, so

(
Tnx

)
m

= xm+n, and consider an element
H ∈ Sym(X,Zd) with M = ψ(H). Then, for any ` ∈ Zd, one obtains the commutative
diagram

X H //

T`
��

X

TM`
��

hM−1
// X

T`
��

X
H // X

hM−1
// X

(6.5)

from Eq. (6.4), where hM−1 ∈ Homeo(X) by assumption. In particular, hM−1◦H ∈ Homeo(X)
commutes with the shift action, hence is a block map by the CHL theorem.

At this point, the structure of the centralizer enters crucially, and one obtains an interesting
consequence as follows, where ψ : Sym(X,Zd) −→ Aut(Zd) is the homomorphism from above.

Corollary 6.9 Let
(
X,Zd

)
be a faithful subshift with trivial centralizer. Consider an element

H ∈ Sym(X,Zd) with hψ(H) ∈ Homeo(X). Then, H is an a�ne mapping and hψ(H) ∈
Sym(X,Zd).

Proof. From the diagram (6.5), with M = ψ(H), we know that hM−1 ◦H ∈ Aut(X,Zd), so
this mapping equals Tn for some n ∈ Zd. This means H = hM ◦ Tn, which acts as

(Hx)m = xM−1m+n.

The equivalent formulation with sets, due to the relation hM ◦ Tn = TMn ◦ hM , now reads
H(U) = −Mn+M(U), which is a�ne.

Finally, since H ∈ Sym(X,Zd), one also has hM = H ◦ T−n ∈ Sym(X,Zd).

The occurrence of a�ne mappings in the context of Zd-actions, as a sign of some degree of
rigidity, is also known from [63, Thm. 1.1], and will become important later.
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6.5. Number theoretic setting

The concept of a B-free lattice system from De�nition 6.6 is only one possibility to generalise
the one-dimensional notion. For another, combining methods from the theory of aperiodic
order [6] with classic results from elementary and algebraic number theory [17,81], one may
start with the treatment of square-free integers in algebraic number �elds as in [25], and
simplify and generalise it as follows.

Let K be an algebraic number �eld of degree d, so [K : Q] = d < ∞. Let OK be the ring
of integers in K, which is the unique maximal order in K, such as Z for K = Q, Z[i] for
K = Q(i), or Z[

√
2 ] for K = Q(

√
2 ). Let ι : OK −→ Rr× Cs be the mapping de�ned by

z 7→
(
ρ1(z), . . . , ρr(z), σ1(z), . . . , σs(z)

)
,

where ρ1, . . . , ρr are the real embeddings of K into C, while σ1, . . . , σs arise from the complex
embeddings of K into C by choosing exactly one embedding from each pair of complex
conjugate ones (in particular, we have d = r+ 2s). Clearly, depending on K, one either takes
ρ1 or σ1 to be the identity.

Now, if b is a non-zero ideal of OK, its absolute norm is de�ned by NK|Q(b) := [OK : b]; see
Chapter 2. In fact, for any of the above choices, the image ι(b) is a lattice in Rr ×Cs ∼= Rd,
and the absolute norm of b is precisely the index of the sublattice ι(b) in the lattice ι(OK),
and thus a �nite number. The map ι is usually called the Minkowski embedding of OK;
see [6, 17,81] for details.

To continue, let K be an algebraic number �eld of degree d, and OK its ring of integers, with
Minkowski embedding Γ = ι(OK) ⊂ Rd. Let B = {bi | i ∈ N} be an in�nite set of non-trivial
ideals of OK, where B is assumed to be primitive in the sense that bi ⊇ bj implies i = j.
Let Γi = ι(bi) and consider VB := Γ \

⋃
i∈N Γi ⊂ Rd, which thus is the Minkowski embedding

of OK \
⋃
i∈N bi, and de�ne its hull as the orbit closure

XB = Γ + VB

in the local topology, so XB is compact as in our previous examples.

De�nition 6.10 In the setting just explained, the topological dynamical system
(
XB,Γ

)
is

called an algebraic B-free lattice system, or simply an algebraic B-free system.

Such a system is called Erd®s when the bi are pairwise coprime (meaning bi + bj = OK for
all i 6= j) and satisfy

∞∑
i=1

1

NK|Q(bi)
< ∞.

As before, we call a set U ⊂ Γ admissible for B when, for every b ∈ B, the set U meets at
most NK|Q(b)− 1 cosets of Γb := ι(b) in Γ, that is, misses at least one. All admissible subsets
of Γ once again constitute a subshift, denoted by A, which contains XB by construction.

Proposition 6.11 Assume that
(
XB,Γ

)
is Erd®s, and let P and Q be disjoint �nite subsets

of Γ. Then, the following properties are equivalent.
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1. The locator set L(P,Q) := {t ∈ Γ : t+P ⊂ VB and t+Q ⊂ Γ \VB} has positive natural
density.

2. L(P,Q) 6= ∅.

3. P is admissible for B.

Proof. This is a variant of the proof of Proposition 6.7, where (1) ⇒ (2) ⇒ (3) is again
clear. We thus need to establish (3)⇒ (1).

Let m = |P | and choose S1 as the set of all ideals b ∈ B such that |P mód Γb| < m or
NK|Q(b) ≤ m. As before, S1 is �nite. Then, for S2, select distinct ideals from B \S1, denoted
by S2 = {bq : q ∈ Q}, where, without loss of generality, we may select ideals bq of su�ciently
large absolute norm such that P does not meet the coset modulo bq represented by q. Then,
consider S = S1 ∪S2, which is still �nite. As all ideals b ∈ B can be viewed as lattices Γb via
the Minkowski embedding, we can again invoke the CRT to �nd an element t0 ∈ Γ so that

t0 ≡ −pb mód Γb, for all b ∈ S,

where pb is a representative of a coset modulo Γb that is missing in P , which we know to
exist. Due to our construction of S2, we may choose pbq = q for all q ∈ Q, wherefore the
above congruences actually comprise t0 ≡ −q mód Γbq

for all q ∈ Q. By pairwise coprimality
of the b ∈ B, we see that the set of all solutions is the coset t0 +G, where G is the Minkowski
embedding of the ideal

∏
b∈S b. For any t from this coset, t + P avoids the zero coset of Γb

for all b ∈ S, while no element of t+Q is in VB, so t+Q ⊂ Γ \ VB.

Now, for n ∈ N, consider the set Rn :={b ∈ B \S : NK|Q(b) ≤ n}. For a suitable n0 and then
all n ≥ n0, the set Rn is non-empty and �nite. Next, de�ne

Θn := (t0 +G) ∩ {t 6≡ −p mód Γb for all b ∈ Rn and all p ∈ P}.

Then, Θn is once again a �nite union of translates of a non-trivial intersection lattice and
thus a set of positive natural density, the latter being given by

dens(G)
∏
b∈Rn

(
1− |P |

NK|Q(b)

)
.

As in the previous case, the product is convergent as n → ∞ by the Erd®s condition, so
Θ∞ :=

⋂
n≥n0

Θn is a subset of Γ of positive density such that, for any t ∈ Θ∞, we have
t+ P ⊂ VB and t+Q ⊂ Γ \ VB.

Theorem 6.12 An Erd®s algebraic B-free system
(
XB,Γ

)
satis�es XB = A and is heredi-

tary. Moreover, it has minimal automorphism group, which means Aut(XB,Γ) = Γ ∼= Zd.
Moreover, its extended symmetry group is of the form Sym(XB,Γ) = Aut(XB,Γ) oH, where
H is isomorphic to a non-trivial subgroup of GLd(Z).

Proof. While XB ⊆ A is clear, A ⊆ XB is shown exactly as in Theorem 6.8, this time on the
basis of Proposition 6.11, so XB = A, and this shift is hereditary. Then, the statement on the
centralizer follows, once again, from a straight-forward modi�cation of the argument used in
the proof of Theorem 6.5.

142



Let X = XB, and consider an arbitrary H ∈ Sym(X,Γ). Here, we have M :=ψ(H) ∈ Aut(Γ)
in analogy to our previous cases, and the diagram (6.5) changes to

X
H //

T`
��

X
hM−1

//

TM`
��

Y

T`
��

X H // X
hM−1

// Y

(6.6)

where Y := hM−1(X), while T` with ` ∈ Γ is the shift in this case. Note that both X and
Y are subshifts of {0, 1}Γ, on which Tn and hM are still well de�ned, and it is clear that
∅ ∈ X ∩ Y . This new diagram is again commutative, so χ = hM−1 ◦H intertwines the shift
actions on X and Y . Consequently, by the CHL theorem, χ is a block map.

The space Y inherits important properties from X, such as its characterisation through
admissibility (now de�ned via the images of cosets in X under hM−1) as well as being heredi-
tary. After minor modi�cations, the arguments from the proof of Theorem 6.5 now show
that χ must be a shift map, hence equal to Tn for some n ∈ Γ. But TnX = X, whence
H ∈ Homeo(X) now implies

Y = hM−1(X) = hM−1(HX) = TnX = X,

and we are back to the situation of Corollary 6.9. Consequently, H is an a�ne mapping, with
H = hM ◦ Tn, and hM ∈ Sym(X,Γ). We thus have a short exact sequence

1 −→ Aut(X,Γ)
id−−→ Sym(X,Γ)

ψ−−→ H := ψ
(
Sym(X,Γ)

)
−→ 1

with H a subgroup of Aut(Γ). In particular, we get Sym(X,Γ) = Aut(X,Γ)oH as claimed.

To see that H is non-trivial, we observe that the unit group O×K is non-trivial (it contains
at least the elements ±1) and, via the Minkowski embedding, isomorphic to a subgroup of
Aut(Γ) ∼= GLd(Z). Each element of O×K maps any ideal b onto itself, so the corresponding
mapping induced by the Minkowski embedding is a bijection of VB, and thus gives rise to an
extended symmetry. Further elements emerge from non-trivial Galois automorphisms of K,
such as complex conjugation when K is a totally complex extension of Q. Consequently, the
claim on the nature of H is clear.

Remark The systems covered by Theorem 6.12 show many similarities with the k-free lattice
points discussed earlier. In particular, they have positive topological entropy, which can in
principle be determined from their description as weak model sets of maximal density in the
sense of [9]. The spectral properties will re�ect the comments made in Remark 6.4. We leave
details to the interested reader.

Unlike the situation in Theorem 6.8, the group H will generally not be Aut(Γ) ∼= GLd(Z),
as we shall see in Section 6.6 below. In particular, for M ∈ Aut(Γ) and b ∈ B, it need not
be true that M(b) = b or M(VB) = VB. The following negative result, obtained via methods
from analytic number theory, was pointed out to us by Valentin Blomer [16].

Fact 6.13 Let M ∈ GL2(Z) \ O(2,Z). Then, there exist Gaussian primes ρ ∈ Z[i] ∼= Z2

such that a positive proportion of square-free Gaussian integers α ∈ Z[i] satis�es ρ2 | Mα,
and Mα is thus not square-free in Z[i].
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As we shall see in the next section, a simpler statement of purely algebraic nature exists,
which su�ces for our purposes and permits various generalisations.

6.6. Power-free Gaussian and Eisenstein integers

From now on, we shall need some classic results on quadratic number �elds, which can all be
drawn from [50, Chs. 14 and 15] or from [96]. To keep things simple, we only consider rings of
integers that are Euclidean, so that we can easily work with primes and prime factorisation
(up to units) rather than with ideals; see [5] for various generalisations in our context.

As an example of an algebraic B-free system that is Erd®s, let us view Z2 as Z[i], the ring
of Gaussian integers, and consider, for some �xed 2 ≤ k ∈ N, the subset of k-free elements
(to be de�ned below). Z[i] is the maximal order in the quadratic �eld Q(i), and is Euclidean.
The unit group of Z[i] is

Z[i]× = {1, i,−1,−i} ∼= C4.

If P denotes the set of rational primes as before, the Gaussian primes [50, Thm. 252] can be
represented by

PG = {1+i} ∪ {p ∈ P : p ≡ 3 mód 4} ∪ {π, π̄ : ππ̄ = p ∈ P with p ≡ 1 mód 4},

where ·̄ is complex conjugation. The three subsets correspond to the rami�ed prime, where
(1 + i)2 = 2i, the inert primes, and the (complex) splitting primes, respectively. Within the
last, by slight abuse of notation, we assume one representing pair for each p to be selected,
for instance by demanding π to lie in the positive quadrant. This way, the representation of
the primes is unique, and prime factorisation works up to units.

Now, for any integer k ≥ 2, we can de�ne V (k)
G as the set of Gaussian integers that are not

divisible by the kth power of any Gaussian prime. This is the set of k-free Gaussian integers.
Figure 6.1 contains an illustration of the set V (2)

G , which was also used in [25]. We begin with
a geometric symmetry consideration of V (k)

G as follows.

Lemma 6.14 Let k ≥ 2 be �xed and let A : Z[i] −→ Z[i] be a Z-linear bijection that maps

V = V
(k)

G into itself, A(V ) ⊆ V. Then, A is a bijection of U = Z[i]×, and of V as well. As
such, it is of the form A(x) = εσ(x) with ε ∈ U and σ ∈ {id, ·}, that is, ε is a unit and σ a
�eld automorphism of Q(i).

Together, these mappings form a group, which is the stabilizer of V in GL2(Z), denoted by
Stab(V ). The latter, for any k ≥ 2, is the dihedral group D4

∼= C4 o C2 of order 8, which is
the symmetry group of the square and as such a maximal �nite subgroup of GL2(Z).

Proof. Clearly, any A of the form A(x) = εσ(x) maps units to units, and V onto itself.
Conversely, if A preserves U and A(1) = ε, bijectivity of A implies A(i) = iε or A(i) = −iε,
and Z-linearity of A determines the image of any x ∈ Z[i] from here. In the �rst case, this
gives A(x) = εx, and A(x) = εx̄ in the second. It thus remains to show that any Z-linear
bijection A of Z[i] with A(V ) ⊆ V must preserve units.

Let us begin with a simple but powerful observation on the coprimality structure of the k-
free Gaussian integers. Consider x ∈ V, with gcdG(x, p) = 1 for every odd rational prime,
where the gcdG in Z[i] is unique up to units. Then, p`x ∈ V for any 1 ≤ ` < k, hence

144



also A(pk−1x) = pk−1A(x) ∈ V, which implies gcdG(A(x), p) = 1. This argument cannot be
extended to p = 2 = −i(1 + i)2, which is rami�ed. Nevertheless, we may conclude that

A(U) ⊆ U ∪ (1 + i)U ∪ · · · ∪ (1 + i)k−1U,

where we now need to exclude all but the �rst set on the right-hand side.

Observe that, when A is a mapping as speci�ed, then so is the mapping A′ de�ned by
A′(x) = εA(x), for any ε ∈ U . We may thus assume A(1) = (1 + i)m for some 0 ≤ m ≤ k− 1
without loss of generality, matched by A(i) = κ(1 + i)n with κ ∈ U and 0 ≤ n ≤ k− 1. Now,
from Z-linearity in conjunction with bijectivity on Z[i], we know that det(A) = ±1, where

det(A) = =
(
A(1)A(i)

)
= =

(
κ(1− i)m(1 + i)n

)
.

When n ≥ m, this gives det(A) = 2m=
(
κ(1 + i)n−m

)
, which cannot be unimodular unless

m = 0, so A(1) = 1 and det(A) = =
(
κ(1 + i)n

)
.

Observing (1 + i)2 = 2i, an analogous argument now also excludes n ≥ 2, so A(i) = κ or
A(i) = κ(1 + i). In the �rst case, we get A(i) = i or A(i) = −i from bijectivity, and A is
also a bijection on U . When A(i) = κ(1 + i), we get A(1 ± i) = A(1) ± A(i) = 1 ± κ(1 + i).
Irrespective of which unit κ is, one of the images is an element of norm 5, where the norm
refers to the �eld norm2 of x ∈ Q(i), which is de�ned by N(x) = xx̄ as usual. But such a
norm value is impossible by our previous coprimality argument, and thus rules out this case.

When m > n, a completely analogous chain of arguments gives n = 0 and m = 1, which is
then once again ruled out by the coprimality result. This leaves us with the mappings that
preserve U as claimed.

This result has the following immediate consequence, which can be seen as a simpli�ed (and
purely algebraic) case of Fact 6.13.

Corollary 6.15 Let k ≥ 2 be a �xed integer and V = V
(k)

G the set of k-free Gaussian
integers. If A ∈ GL2(Z) \ Stab(V ), there exists a Gaussian prime ρ and an element w ∈ V
such that ρk divides A(w).

No such prime can be inert, and it cannot be rami�ed when k is even.

Proof. By Lemma 6.14, we know that A ∈ GL2(Z) with A(V ) ⊆ V must be an element of
Stab(V ), from which the �rst statement is clear.

The matrix A is unimodular modulo pk for any rational prime p. As such, it cannot change
the number of cosets of pkZ2, and maps the zero coset onto itself. This rules out the case
that ρ ∈ PG is inert.

If ρ = 1 + i, we have N(ρ) = 2, and the same argument applies to ρ when k is even.

Under the identi�cation of Z[i] with Z2, let us now consider the subshifts

X
(k)
G := Z2 + V

(k)
G ,

2Note that the absolute norm of an ideal in Z[i], which is always principal, agrees with the �eld norm of
its generating element in this case.
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which share many properties with our previous examples. In particular, they once again
satisfy X

(k)
G = A, with the appropriate notion for admissibility, and are hereditary. Further,

they have pure point spectrum with trivial topological point spectrum, and the sets V (k)
G

are generic elements for the corresponding patch frequency (or Mirsky) measure, the latter
de�ned via any averaging sequence of growing balls centered at 0.

Proposition 6.16 Let
(
X

(k)
G ,Z2

)
with �xed k ≥ 2 be the faithful shift generated by the k-free

Gaussian integers. Then, its centralizer is trivial, Aut(X
(k)
G ,Z2) = Z2, while the normalizer

Sym(X
(k)
G ,Z2) consists of a�ne transformations only. In particular, Sym(X

(k)
G ,Z2) contains

a subgroup of the form Z2 oD4, where D4 = Stab
(
V

(k)
G

)
is the group from Lemma 6.14.

Proof. The claim on the automorphisms is a consequence of our general result in Theo-
rem 6.12, which asserts that the centralizer is trivial, so Aut(X

(k)
G ,Z2) = Z2.

For the extended symmetries, we are once more in the situation of the diagram (6.6) from
the proof of Theorem 6.12. Consequently, by Corollary 6.9, each element of the normalizer is
an a�ne mapping, namely an element of the a�ne lattice group Z2 o GL2(Z).

That Z2 oD4 is a subgroup of Sym(X
(k)
G ,Z2) follows from Lemma 6.14. Indeed, since the Z2-

orbit of V (k)
G is dense in X

(k)
G by construction and each element of Sym(X

(k)
G ,Z2) is continuous,

any M ∈ D4 maps X
(k)
G onto itself, as does any a�ne mapping (t,M) with t ∈ Z2 and

M ∈ D4.

It remains to complete the determination of Sym(X
(k)
G ,Z2), which leads to the following result.

Theorem 6.17 The automorphism group and the extended symmetry group of
(
X

(k)
G ,Z2

)
,

with �xed k ≥ 2, are given by Aut(X
(k)
G ,Z2) = Z2 and Sym(X

(k)
G ,Z2) = Aut(X

(k)
G ,Z2) oD4,

respectively, where D4 = Stab(V ) = C4 o C2 is the symmetry group of the square, and as
such a maximal �nite subgroup of GL2(Z). In particular, C4

∼= Z[i]×, while C2 is the group
of �eld automorphisms of Q(i), generated by complex conjugation.

Proof. The role of Z2 oD4 is clear from Proposition 6.16. To complete the proof, we need
to show that the only Z-linear, bijective mappings of X(k)

G onto itself are the ones we already
know from Lemma 6.14.

As in the case of k-free lattice points, now by Theorem 6.12, we have X
(k)
G = A, where A is

the subshift that consists of all admissible subsets of V = V
(k)

G . Here, V itself has the property
that, for any π ∈ PG, precisely the zero coset of the principal ideal (πk) is missing.

To complete the proof, we have to show that no Z-linear bijection of Z[i] ∼= Z2 outside of
Stab(V ) can map A into itself. So, let A ∈ GL2(Z) \Stab(V ). Then, by Corollary 6.15, there
is a ρ ∈ PG and an element w ∈ V such that ρk | A(w). Set n = N(ρ)k and z1 = w. We will
now choose Gaussian integers z2, . . . , zn such that the set S = {z1, z2, . . . , zn} is admissible
while A(S) meets all cosets of the principal ideal (ρk) in Z[i].

To this end, choose a non-empty, �nite set P of Gaussian primes that contains all primes
with N(π) < N(ρ) but none with N(π) = N(ρ). Concretely, when N(ρ) > 2, we just take
all primes of smaller norm, while we simply choose the inert prime 3 when ρ = 1 + i. In any
case, we have P = {π1, . . . , πm} with m ≥ 1 this way.
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Let L = (πk1 · · · πkm), which is a sublattice of Z[i] of index N(π1 · · · πm)k. Since this index is
coprime with n = N(ρ)k, we know from Fact 6.1 that L meets all cosets of A−1(ρk), and
so does 1 + L, as this is just a translate. So, select numbers z2, . . . , zn ∈ 1 + L such that
A(z2), . . . , A(zn) meet all non-zero cosets of (ρk), and set S := {z1, . . . , zn}, with z1 = w.
Clearly, the set A(S) now meets all cosets of (ρk) and is thus not admissible for ρ, so
A(S) 6∈ A. If we can show that S itself is admissible for all Gaussian primes, we are done.

Clearly, S is admissible for all Gaussian primes π with N(π) > N(ρ) by cardinality. If S meets
all cosets of (ρk), each of them must occur precisely once. Then, we modify S via replacing
z2 by z′2 = z2 + w, which reduces the number of cosets in S by one, without reducing the
number of cosets in A(S) because w is k-free with A(w) ≡ 0 mód (ρk).

If ρ is a splitting prime, we also have to check ρ̄, which is not an associate but has the same
norm. If S meets all cosets of (ρ̄k), we need to modify one element zi with i > 1 to remove
one coset from S. Due to the previous step, we can neither use z′2 nor the other element of S
that is now congruent to z′2 modulo (ρk). Since n ≥ 4, there is at least one other element, z4

say, that can be replaced by z4 +w. The new set S is now admissible for all Gaussian primes
of norm at least N(ρ), while A(S) still meets all cosets of (ρk) and is thus not in A.

If ρ 6= 1 + i, it remains to see whether S is now also admissible for all π with N(π) < N(ρ).
By our construction with the lattice L, we know that, modulo (πk), all zi are congruent to
w, 1 or 1 + w, so we meet at most 3 cosets. Since N(π)k ≥ 2k ≥ 4, we are good, and S is
admissible for all Gaussian primes, while A(S) is not, and we have the desired contradiction.

Figure 6.2: The square-free Eisenstein integers, seen both in the Z2 representation and the
corresponding Minkowski embedding. The units are marked in red on the left �gure.

A completely analogous chain of arguments works for the ring of Eisenstein integers, Z[ρ],
where ρ = e2πi/3 = 1

2
(−1 + i

√
3 ) is a primitive third root of unity. This is the ring of integers

in the imaginary quadratic �eld Q(ρ), and is again Euclidean. The unit group is

Z[ρ]× = {(−ρ)m : 0 ≤ m ≤ 5} ∼= C6,

while the Eisenstein primes [50, Thm. 255], up to units, are represented by

PE = {1− ρ} ∪ {p ∈ P : p ≡ 2 mód 3} ∪ {π, π̄ : ππ̄ = p ∈ P with p ≡ 1 mód 3},

again in the order of the rami�ed prime, where (1 − ρ)2 = −3ρ, the inert primes, and the
complex splitting primes, where one pair (π, π̄) is selected for each p in the last set.
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De�ning V (k)
E for �xed k ≥ 2 as the set of k-free Eisenstein integers, which we may either

view as a subset of the triangular lattice, which is Z[ρ], or (equivalently) as one of the square
lattice via {(m,n) ∈ Z2 : m + nρ ∈ V (k)

E }, the analogue of Lemma 6.14 now gives mappings
of the form A(x) = εσ(x) with ε ∈ Z[ρ]× and σ ∈ {id, ·̄}, hence the group D6

∼= C6 o C2,
which is another maximal �nite subgroup of GL2(Z), this time the one that is the symmetry
group of the regular hexagon.

De�ning the subshifts

X
(k)
E := Z[ρ] + V

(k)
E ,

one obtains the following analogue of Theorem 6.17, the proof of which need not be repeated,
as the method is the same.

Theorem 6.18 The automorphism group and the extended symmetry group of
(
X

(k)
E ,Z[ρ]

)
,

with �xed k ≥ 2, are given by:

Aut(X
(k)
E ,Z[ρ]) = Z[ρ] ∼= Z2,

Sym(X
(k)
E ,Z[ρ]) = Aut(X

(k)
E ,Z[ρ]) oD6,

respectively, where D6 = C6 o C2 is the symmetry group of the regular hexagon, and as such
isomorphic to a maximal �nite subgroup of GL2(Z). In particular, C6 = Z[ρ]×, while C2 is
the group of �eld automorphisms of Q(ρ), generated by complex conjugation.

So far, we have seen extension groups that are either all of GL2(Z) (for the visible latti-
ce points), or �nite subgroups thereof (for the k-free Gaussian or Eisenstein integers). In
particular, the subshifts de�ned by the two examples illustrated in Figure 6.1 are clearly
distinguished by di�erent extended symmetry groups. At this point, it is a natural question
whether also in�nite true subgroups of GL2(Z) may occur. To this end, we take a look at the
corresponding dynamical systems for real quadratic �elds.

6.7. Power-free integers in real quadratic number �elds

Let us �rst consider subsets of Z2 constructed by means of k-free integers in Z[
√

2 ], namely

V
(k)

2 :=
{

(m,n) ∈ Z2 : m+ n
√

2 is k-free in Z[
√

2 ]
}
,

where k ∈ N with k ≥ 2 is �xed. This set emerges via the isomorphism between Z2 and
the Minkowski embedding of Z[

√
2 ] into R2; compare [6, Sec. 3.4.1]. Here, with λ := 1 +

√
2

denoting the fundamental unit, the unit group is

U = Z[
√

2 ]× = {±λn : n ∈ Z} ∼= C2 × C∞,

where we also note that Z[
√

2 ] = Z[λ]. This ring is again Euclidean, so we can work with
unique prime decomposition up to units.

The primes [50, Thm. 256] can be represented as

P2 = {
√

2 } ∪ {p ∈ P : p ≡ ±3 mód 8} ∪ {π, π? : ππ? = p ∈ P with p ≡ ±1 mód 8},
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where (·)? denotes the mapping that is the unique extension of
√

2 7→ −
√

2 to a �eld au-
tomorphism of the quadratic �eld K = Q(

√
2 ). The relevant �eld norm is then given by

N(x) = xx?, which means N(m+n
√

2 ) = m2−2n2 or, equivalently, N(r+sλ) = r2+2rs−s2.
Once again, to gain a representation modulo units (integers of norm ±1), one pair is selec-
ted in the last set for each p. Note that the �eld norm can be negative here, wherefore the
absolute norm of a principal ideal now is the absolute value of the �eld norm of a generating
element.

For some of the calculations below, it is helpful to express λn in terms of λ and 1, for arbitrary
n ∈ Z. De�ning the bi-in�nite sequence (cn)n∈Z by the recursion cn+1 = 2cn+cn−1 with initial
conditions c0 = 0 and c1 = 1, one obtains the analogue of the Fibonacci numbers for the
quadratic �eld K. In particular, they satisfy c−n = (−1)n+1cn for all n ∈ Z, and the �rst few
numbers are

. . . , 29,−12, 5,−2, 1, 0, 1, 2, 5, 12, 29, . . .

The required formula for the units now reads

λn = cnλ+ cn−1 = cn
√

2 + (cn + cn−1), (6.7)

which holds for all n ∈ Z, as can easily be checked by induction.

Lemma 6.19 Let A : Z[
√

2 ] −→ Z[
√

2 ] be a Z-linear bijection that maps V = V
(k)

2 into
itself, for some �xed integer k ≥ 2. Then, A is of the form A(x) = εσ(x) with ε ∈ U and
σ ∈ {id, (·)?}, so maps U = Z[

√
2 ]× onto itself. Together, these mappings form the group

Stab(V ) = U o C2 = C2 × (C∞ o C2) = C2 ×D∞ of in�nite order.

Proof. Any A of the form A(x) = εσ(x) satis�es A(V ) = V and maps U onto itself, while
the converse direction will be a consequence of showing that no further Z-linear bijection of
Z[
√

2 ] exists that maps the set V into itself.

So, let A be a Z-linear bijection of Z[
√

2 ] with A(V ) ⊆ V . As in the proof of Lemma 6.14,
we observe that x ∈ V with gcdK(x, p) = 1 for any odd p ∈ P implies pk−1x ∈ V and
A(pk−1x) = pk−1A(x) ∈ V , hence gcdK(A(x), p) = 1 as well. Since 2 = (

√
2 )2, which is the

only rami�ed prime in this case, we see that A(1) and A(
√

2 ) must be elements of the union

U ∪
√

2U ∪ 2U ∪ . . . ∪ (
√

2 )k−1U,

where we may assume that we have, once again without loss of generality, A(1) = 2m/2 and
A(
√

2 ) = κ2n/2 with κ ∈ U and 0 ≤ m,n ≤ k − 1. Here, we also know that this must result
in a mapping with determinant ±1.

Now, de�neW : Q(
√

2 ) −→ Q byW (x) =
(
x−x?

)
/2
√

2, and observe that this gives det(A) =

W
(
A(1)?A(

√
2 )
)
, hence

det(A) = W
(
κ(−1)m(

√
2 )m+n

)
.

When m+ n is even, so m+ n = 2`, this means det(A) = (−1)m2`W (κ), which can only be
unimodular if ` = 0 and thus m = n = 0. With κ = ±λr = ±

(
cr
√

2 + (cr + cr−1)
)
from (6.7),

we then get det(A) = ±cr, which in turn implies cr = 1 and thus r = ±1. So, we have to
consider A(1) = 1 together with A(

√
2 ) = ±λ. Both choices, however, lead to a contradiction

to our coprimality condition by observing that 2 ±
√

2, which has norm 2, is then mapped
under A to 3 +

√
2, which is a number of norm 7.
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Likewise, when m+ n = 2`+ 1, we have det(A) = (−1)m2`W (κ
√

2 ), which forces ` = 0 and
thus either m = 1 and n = 0 or m = 0 and n = 1. In both cases, κ = ±λr can only lead to a
unimodular determinant when cr + cr−1 ∈ {±1}, which means r ∈ {−1, 0, 1}. When m = 1

and n = 0, we get A(1) =
√

2 together with A(
√

2 ) = κ ∈ {±λ,±1,±λ?}. All six choices
lead to contradictions to coprimality with odd primes, by considering images of 1 ±

√
2 or

2±
√

2 under A.

It remains to consider m = 0 and n = 1, so A(1) = 1 together with A(
√

2 ) = κ
√

2, with the
same options for κ as in the previous case. Once again, κ = ±λ and κ = ±λ? are impossible,
as can be seen by considering A(1±

√
2 ). The choices κ = ±1, however, give the mappings

A(x) = x and A(x) = x?, which map U onto itself, as does any multiplication of such an A
with an arbitrary ε ∈ U .

Let us now consider the subshifts X(k)
2 := Z2 + V

(k)
2 , in complete analogy to above.

Proposition 6.20 The automorphism group and the extended symmetry group of
(
X

(k)
2 ,Z2

)
,

with �xed k ≥ 2, are given by Aut(X
(k)
2 ,Z2) = Z2 and Sym(X

(k)
2 ,Z2) = Aut(X

(k)
2 ,Z2) oH,

respectively, where the extension group is H = Stab
(
V

(k)
2

)
= U o C2

∼= C2 × D∞, which is
in�nite.

Proof. From Lemma 6.19, we see that Z2 oH is a subgroup of Sym(X
(k)
2 ,Z2). The latter is

a subgroup of Z2 o GL2(Z) by Corollary 6.9. It thus remains to show that H = Stab(V
(k)

2 )

contains all GL2(Z) elements that map X
(k)
2 into itself. This last step can be established by

the method from the proof of Theorem 6.17, with the �eld norm replaced by the absolute
norm.

There are other real quadratic �elds that are Euclidean, such as Q(
√
m ) with m = 5 and

m = 3, which play prominent roles in the theory of aperiodic order, as they are connected with
systems with �vefold and twelvefold symmetry, respectively; see [6, Sec. 2.5.1] for background.

For m = 5, the ring of integers is Z[τ ], where τ = 1
2
(1 +

√
5 ) is the golden ratio. Its unit

group is U = Z[τ ]× = {±τn : n ∈ Z}, and the primes [50, Thm. 257] are represented by

P5 = {
√

5 } ∪ {p ∈ P : p ≡ ±2 mód 5} ∪ {π, π? : ππ? = p ∈ P with p ≡ ±1 mód 5},

where (·)? is the �eld automorphism of Q(
√

5 ) induced by
√

5 7→ −
√

5, with our usual
convention for the splitting primes in place. The only rami�ed prime is 5, while the �eld
norm on Z[τ ] is N(m+ nτ) = m2 +mn− n2, which can be negative.

Finally, let us consider the slightly more complicated case m = 3, where the ring of integers
is Z[

√
3 ]. Its unit group is given by Z[

√
3 ]× = {±ηn : n ∈ Z}, with fundamental unit

η = 2 +
√

3. Here, in contrast to the two previous cases, all units have norm 1. Employing
[96, Thm. 11.1], one sees that the primes up to units can be represented as

P3 = {1 +
√

3,
√

3 } ∪ {p ∈ P : p ≡ ±5 mód 12}
∪ {π, π? : ππ? = ±p ∈ P with p ≡ ±1 mód 12}

with the usual convention for the last set, where (·)? is now induced by
√

3 7→ −
√

3. Unlike
before, since the �eld discriminant is 12 and thus divisible by 2 and 3, there are two rami�ed
primes, where (1 +

√
3 )2 = 2η is the additional relation.
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This leads to more cases to consider in the determination of Stab(V
(k)

3 ), but the Z-linear
bijections of Z[

√
3 ] that map V

(k)
3 into itself, for some �xed k ≥ 2, are still the expected

ones, namely the maps A of the form A(x) = εσ(x) with ε ∈ U = Z[
√

3 ]× and σ ∈ {id, (·)?};
we leave this proof to the interested reader.

In both cases, a proof analogous to the one of Proposition 6.20 gives the following result.

Theorem 6.21 The automorphism group and the extended symmetry group of
(
X

(k)
m ,Z2

)
,

with �xed m ∈ {2, 3, 5} and k ≥ 2, are given by Aut(X
(k)
m ,Z2) = Z2 and Sym(X

(k)
m ,Z2) =

Aut(X
(k)
m ,Z2) oH, respectively, where the extension group is H = Stab

(
V

(k)
m

)
= U o C2

∼=
C2×D∞, which is an in�nite group that does not depend on k, where U is the unit group as
before.

The advantage of using the normalizer in addition to the centralizer as a topological invariant
becomes obvious in dimensions d ≥ 2. In [13], this was demonstrated for the chair tiling shift
and for Ledrappier's shift. In both cases, Sym(X,Z2) was an extension of Aut(X,Z2) of
�nite index. As our number-theoretic examples above show, this phenomenon occurs again,
but Sym(X,Zd) can also be an in�nite-index extension of Aut(X,Zd), either for trivial
reasons (visible lattice points) or for non-trivial ones (k-free Z[

√
2 ]-integers). At present, we

do not know whether such an in�nite extension is also possible for minimal, deterministic
(zero entropy) subshifts. In any case, these groups allow the distinction of several subshifts
(up to topological conjugacy) that have the same centralizer, but di�erent normalizers, such
as (XV ,Z

2) and (X
(2)
G ,Z2) from above.

Due to the nature of the associated dynamical system, the structure of the hull XV (given the
property of hereditariness and the natural topology employed) allows for local symmetries
(that is, transformations that preserve �nite local substructures in the set V up to translation)
to manifest themselves. To some extent, they may be observed by analysing the extended
symmetry group Sym(XV ,Z

d). While symmetries of the set V in the standard sense (global
symmetries) are obviously local symmetries in this new sense, the converse is not clear. It is
easy to build sets V that have many local symmetries while lacking global symmetries entirely.
Thus, it is interesting to note that, in the current context, those two kind of symmetries
happen to be the same, bringing up the question on whether this is a natural phenomenon
on sets de�ned in an `algebraic' form in more general ways.

This setting deserves further attention, in particular in the context of dynamical systems of
number-theoretic origin. As this will require a more general approach via ideals, as well as
some additional and less elementary results from algebraic and analytic number theory, we
defer this to a separate investigation [5].

6.8. Brief commentary on the general quadratic case and

further generalizations

In what follows, we brie�y summarize how the examples from the previous section could be
generalized to other �elds; this is a comment on the not yet published work by Baake, Bustos
and Nickel [5]. We start by discussing the general structure of the proofs for the above �ve
examples.
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Theorem 6.12 above shows, in a very general setting, that the structure of a B-free shift
over a general ring of integers OK is closely linked to the collection of all admissible sets;
this shows that XB always has symmetry rigidity, i.e. Aut(XB,Γ) ∼= Γ, where Γ = Z[K:Q] is
the corresponding Minkowski embedding, and that we may study extended symmetries from
their e�ect on admissible sets. The situation for the extended symmetry group, as seen in
the examples above described, is closely related to the generating set V (k) and the collection
of matrices which preserve it.

In what follows, we shall identify Γ with Zd, d = [K : Q] via some integral basis, so that
the matrices that preserve V (k) belong to GLd(Z). In this regard, it is evident that if A ∈
GLd(Z) corresponds to multiplication by a unit, then A(V (k)) = V (k), since multiplication
by units preserves (ideal) factorizations. Less evident, but still easily veri�able, is the fact
that matrices corresponding to Galois automorphisms also preserve V (k), as they map the
lattice corresponding to the ideal pr to itself for any prime ideal p which is a factor of
an inert or rami�ed prime, and at most swaps pr with p̄r in the case of a rami�ed prime,
as Galois automorphisms preserve ideal norms; since V (k) is de�ned by exclusion of such
ideals depending only on the exponent, if some element of Zd is removed in the de�nition
of this set, its image under A will be removed too. This shows that the quotient group
Sym(XV (k) ,Γ)/Aut(XV (k) ,Γ) always contains a copy of O×K o Aut(K|Q), where the latter is
the set of all Galois automorphisms of K over Q.

As seen above in the Gaussian example, the crux of the proof of this inclusion being an
equality lies in proving that a matrix A satisfying the condition A(V (k)) ⊆ V (k) necessarily
belongs to this copy of O×K o Aut(K|Q). The necessity of proving this property with the
reduced hypothesis is that, as a consequence, we may �nd �bad elements� of V (k) whenever
A is a matrix not corresponding to an element of O×KoAut(K|Q), that is, elements x ∈ V (k)

with A(x) /∈ V (k); with analytic number theory arguments, we could argue that these bad
elements are actually common (as in, they form a subset of V (k) of positive density), at least
in our example cases, but we only need to �nd one.

The existence of these bad elements, combined with hereditariness, allows us to show that
any potential extended symmetry f with associated matrix A can be used to construct a
non-admissible set from any admissible �nite set x ∈ A = XV (k) using f . Of course, if A
represents an element of O×KoAut(K|Q), such bad elements do not exist, and thus we obtain
an isomorphism Sym(XV (k) ,Γ)/Aut(XV (k) ,Γ) ∼= O×K o Aut(K|Q), as we wanted to.

Thus, to generalize the above argument to other rings of integers, we need to study the
matrices A that send V (k) to some subset of V (k). If we look at the Gaussian example,
we see that, for both split and inert primes p, if some x ∈ V (k) is coprime with p, then
px, p2x, . . . , pk−1x are k-free. This �gcd trick� is part of the analysis we perform on the
elements of V (k), to determine if they are �bad� for the matrix A, and this technique allows
us to ignore split and inert primes in this situation. To be precise, if we de�ne W (k) as the
subset of V (k) comprised only of those elements whose ideal prime factors are rami�ed, that
is:

W (k) := {x ∈ V (k) : vp(x) = 0 if p - (dK)},
where dK is the discriminant of K, we may prove that A(V (k)) ⊆ V (k) implies that A(W (k)) =
W (k), and analysis of the latter set is often easier in our situation.

If we restrict ourselves to the case of quadratic �elds, the proof of the latter equality di�ers
depending on whether the �eld is real (i.e. contained in R; see Chapter 2) or imaginary, the
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Figure 6.3: The square-free integers in the imaginary quadratic �eld Z[
√
−2].

latter case being quite simple as the set W (k) is then �nite (as a consequence of the Dirichlet
unit theorem) and thus the obvious inclusion already implies equality. In the real case, W (k)

is in�nite, but, since the �eld norms of its element must be divisors of the discriminant dK,
it may be seen as the set of points with integer coordinates from a �nite union of hyperbolas
in the plane R2, as the �eld norm of some element (x, y) ∈ Z2 ∼= OK is a quadratic form on
x and y. Thus, we may use the fact that �ve points determine a conic section (which is a
consequence of Bézout's theorem from algebraic geometry; see Chapter 2) to prove that the
hyperbolas from this collection are mapped to themselves (up to a permutation), implying
then the desired equality.

Staying in the realm of quadratic �elds some more, we can prove that a matrix A that
preserves W (k) must also preserve the set of units of the integer ring OK. In the above
examples, we use this fact to prove then that A must be a matrix of the desired type as a
consequence. For instance, for Z[i], we have that {1, i} is an integral basis for the ring and
both A(1) and A(i) should be either ±1 or ±i; this shows that, since A has determinant
±1, it must then be one of the eight matrices from the usual 2-dimensional representation of
D4 (see Chapter 1). In the other examples, a similar argument is used, including the usage
of determinants in the analysis. For general quadratic �elds, this relationship between A
and the sets W (k) and O×K is less straightforward to prove, but it can be done; once again
the characterization of O×K and W (k) as points with integer coordinates in a collection of
hyperbolas proves useful in the real case.

Nonetheless, in both the real and imaginary cases, with some work, we can prove that the
equality A(O×K) = O×K is enough to conclude that A must be a matrix of the desired type.
The result we obtain with this procedure is as follows:

Theorem 6.22 Let k ≥ 2 and K = Q(
√
d) be any quadratic �eld, with d square-free. No
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matter whether K is real or imaginary, the k-free shift V (k) has extended symmetry group
given by3:

Sym(XV (k) ,Z2) ∼= Z2 o (O×K o Gal(K|Q)).

This also suggests a method to generalize the above results to other �elds: the set W (k) and
the corresponding set of units may be characterized by the �eld norm NK|Q, which, given a
�xed integer basis for K, is given by a polynomial on its coe�cients. This brings up algebraic
geometry to our study: the set NK|Q(x) = c is an a�ne variety in R[K:Q]. Thus, a similar
argument to the one used for hyperbolas above can be used to show that A(V (k)) ⊆ V (k)

implies A(W (k)) = W (k), using tools such as the decomposition ofNK|Q(x) = c into irreducible
varieties and the Ax�Grothendieck theorem (see Theorem 2.84 at the end of Chapter 2)
in place of the �ve-point characterization for conic sections. As an example on how these
arguments can be generalized, note that, as W (k) is the set of integer points of a �nite union
of irreducible varieties, and any linear map is continuous in the Zariski topology, the equality
AW (k) = W (k) implies that if V is one of the aforementioned irreducible varieties, A(V ) is
one of them as well, and thus A at most induces a permutation between these components.
In particular, some power of A must map O×K to itself, even if it is no longer obvious that A
itself does so.

Thus, the relationship between W (k) and units is less straightforward to study, as is the �nal
implication that a matrix that maps O×K to itself must be of the expected form. However,
using the above described techniques, including the algebraic-geometric characterization of
W (k), this result has been proved for all cyclotomic �elds. Since the details are signi�cantly
more technical than in the quadratic case, they fall outside of the scope of this summary, so
we will not delve into further detail.
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Conclusions

The extended symmetry group are a powerful and versatile algebraic invariant, whose struc-
ture may reveal the properties of the underlying shift space that cannot be �detected� by
automorphisms, such as e.g. palindromicity or invariance under certain a�ne transforma-
tions. They take special prominence in the low-complexity situation, where other invariants
such as entropy fail to distinguish between di�erent systems, while also being a sort of �in-
termediate� step between the automorphism group and other more complicated algebraic
objects de�ned in relation to a dynamical system, like full groups.

Over the course of the development of this thesis work, several connections between symbolic
dynamics and other branches of mathematics have been found, starting from the obvious
links to classical geometry and the theory of rigid transformations. From then on, we see
connections to the theory of �nite groups in the theory of automorphisms and extended
symmetries of shifts generated by bijective substitutions; as we saw in Chapters 4 and 5, both
Aut(Xθ,Z

d) and Sym(Xθ,Z
d) are linked to the column groups de�ned by the substitution,

their centralizers and normalizers as subgroups of a permutation group.

In Chapter 6, we proceed further and de�ne a class of subshifts de�ned via divisibility pro-
perties and other number-theoretical criteria. There, we found that these groups and the
associated spaces are connected with the structure of the underlying ring, and that maps
that preserve Dedekind factorizations in turn induce extended symmetries. Furthermore, the
theory that leads to such a connection is linked to various key features of algebraic and
analytic number theory, such as the properties of �eld norms and Galois automorphisms, the
Dedekind zeta function, and the Minkowski embedding; moreso, for �elds of higher degree,
we even need to reach into the basics of algebraic geometry, as the �eld norm is analyzed in
terms of the algebraic varieties de�ned by it, their decomposition into irreducible varieties,
and their relation to the aforementioned Minkowski embedding.

Thus, we see that the theory of extended symmetries, even restricted to the scope of symbolic
dynamics, is deep enough to serve as a �hub� for such kinds of connections to appear, and
in turn, this makes symbolic dynamics a tool appropriate to approach problems from other
areas of mathematics. Examples include the analysis of the half-hex tiling and other similar
ones as seen in, e.g., Chapter 4 and Baake and Grimm's work on the squiral tiling [7]; another
well-known example, into which we do not delve here but it is worth mentioning, is the proof
of Furstenberg's recurrence theorem and its close relationship to the theory of arithmetic
progressions and Szemerédi's theorem in number theory. We expect that this work may be
taken as an initial step to introduce ideas from the theory of extended symmetries for these
purposes, for example, in order to analyze the local structure of the set V of visible points
via the associated shift space XV .
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We expect this line of work to allow for further research in several directions. For example,
part of the theory of bijective substitutions seen in Chapters 4 and 5 ought to be extended to
other kinds of substitutions, such as those with coincidences, that would require a di�erent
approach. We expect that the underlying quasi-periodic or Toeplitz structure that might
appear in such shift spaces will play a role in this situation. Furthermore, one could take this
approach as a template, in order to devise how to deal with generalToeplitz shifts, which are
also hierarchical in nature. Other possible directions include di�erent kinds of substitutions,
such as those with overlap (see e.g. the Robinson tiling itself [43,44]) or digit tilings, which
are substitutions with non-rectangular support, linked with a linear expansive matrix,
which is nondiagonal and of determinant ∆ > 1, which establishes how lower-order supertiles
�t together to conform higher-order ones. The underlying theory of automorphisms in such
examples appears to be fairly similar to the rectangular situation, but, as the limit shape
of the supertiles is often fractal and may have gaps (and even be disconnected), we expect
the geometry of such a shift space to be much richer, leading to more variety among the
associated extended symmetry groups.

Similarly, the results on k-free shifts shown in Chapter 6 are already known to be generalizable
to other classes of �elds, most notably all quadratic and cyclotomic �elds; the former may be
done with elementary number-theoretical characterizations of the �eld norm, but it appears
that algebraic geometry is a required tool for the study of the latter. The obtained description
of the extended symmetry group follows the same form as the examples in Chapter 6, being
entirely determined by the unit structure and Galois automorphisms of the underlying ring.
This suggests that such a description may apply to all Galois extensions of the rationals, or
even maybe all algebraic �elds and their associated rings of integers. Other directions of study
include de�ning analogous shift spaces using non-zero characteristic �elds as a basis, or even
other algebraic structures that might have lattice-based substructures with similar behavior
to that of Dedekind factorizations in an integer ring, e.g. Gaussian semigroups. As well, the
theory of B-free shifts, even in the Z case, appears to be much richer when the Erd®s condition
on the corresponding lattices is removed, with more variety in the kind of automorphisms
that may appear; this, of course, should lead to a similar increase of complexity in the case
of extended symmetries in dimension 2 and higher.

It is also worth mentioning that most work on extended symmetries has focused on Z or Zd

as the underlying group. In the general setting of subshifts de�ned over a group G, the role
of GLd(Z) is overtaken by the set of group automorphisms Aut(G), and a similar theory of
extended symmetries can be developed; however, not much is known in this direction. In the
case where G is non-abelian, the relationship between shift maps and automorphisms is more
complicated: not all shift maps σg are shift automorphisms, due to the lack of commutativity.
However, all shift maps are extended symmetries. This hints at a deeper complexity in the
relation between the two groups. In this direction, tools such as projective subdynamics
might be good ways to establish the nature of such a connection, by reducing the problem
to the analysis of the behavior of such maps in a subgroup of lower complexity.

In summary, extended symmetries are both a powerful tool to study shift spaces and a rich
object of study in itself, and we expect that the research outlined during this thesis work can
be continued in several di�erent ways, both in the realm of �pure� symbolic dynamics and in
connection to several other areas of mathematics.
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Appendix A

Samples of exploratory code

This small section focuses on listing some of the mathematical scripts used during the deve-
lopment of this thesis work, including the implementation of a few algorithms discussed in
Chapters 4 and 5. Several of the �gures included in this thesis work were generated using
these scripts as a base. They are developed in the Sagemath® mathematical environment,
which is based on the Python® programming language.

Observation: Most of the code here is designed as a proof of concept and only tested for
small cases, and thus e�ciency was not a priority. This is kept as a sample of the capabilities
of the Sagemath® environment as a tool for research.

A.1. One-dimensional substitutions

In this part, substitutions are represented as dictionaries, where keys are one-character strings
(letters of an alphabet) and the associated values are the corresponding substituted words.
For example, the Fibonacci substitution corresponds to:

Fib_sub = {"0" : "01",

"1" : "0"}

A.1.1. Basic substitutive operations

The following code iterates a substitution over a string.

def str_subst(in_str ,rule):

lst_out = [rule[a] for a in list(in_str )]

return "".join(lst_out)

def iterated_str_subst(in_str ,rule ,n):

output = in_str;

for k in range(0,n):

output = str_subst(output ,rule)

return output

The next function computes the n-th power of a substitution.
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def subst_power(rule_dict ,power):

return {key : iterated_str_subst(key ,rule_dict ,power)

for key in rule_dict}

This is a function devised to obtain a substitutive word θk(a) containing a given word w; this
was used as a subroutine for a (partially implemented and �nally unused) procedure to �nd
a desubstitution for a word.

def subst_get_least_word(word ,

rule_dict ,

alphabet ,

constant_length=True ,

tolerance =10):

subst_words = copy(alphabet)

if constant_length == True:

tolerance = len(alphabet )^2 +

ceil(log(len(word) /

(subst_length_const(rule_dict) - 1))) + 1

for i in range(tolerance ):

for sw in subst_words:

if word in sw:

return sw

subst_words = [str_subst(w,rule_dict)

for w in subst_words]

return ""

The following computes the substitution matrix associated to a substitution:

def subst_matrix(subst_rule ,alphabet ):

M = [[0 for _ in alphabet] for _ in alphabet]

N = len(alphabet)

for i in range(N):

for row in subst_rule[alphabet[i]]:

for entry in row:

M[i][ alphabet.index(entry )] =

M[i][ alphabet.index(entry )] + 1

return matrix(M)

A.1.2. Constant length substitutions

The following function veri�es whether a substitution is of constant length and returns its
length.

def subst_length_const(rule_dict ):

slen = -1

for key in rule_dict:

if(slen == -1):

slen = len(rule_dict[key])

else:
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if(len(rule_dict[key]) != slen):

return -1

return slen

The following code returns the columns of a (bijective) substitution, either as a dictionary
or as a Permutation object.

def subst_column_dict(rule_dict , col):

return {rulekey : rule_dict[rulekey ][col]

for rulekey in rule_dict}

def subst_column_permutation(rule_dict , col):

col_dict = subst_column_dict(rule_dict ,col)

alphabet = col_dict.keys()

images = [col_dict[key] for key in alphabet]

SA = SymmetricGroup(domain=alphabet)

return SA(images)

The following reconstructs the substitution from its columns:

def subst_from_columns(col_list ):

return {a : "".join([col(a) for col in col_list ])

for a in col_list [0]. parent (). domain ()}

The following veri�es whether a substitution is bijective:

def subst_is_bijective(rule_dict ):

N = subst_length_const(rule_dict)

if(N == -1):

return False

for i in range(N):

col = subst_column_dict(rule_dict ,i)

vals = []

for key in col:

if col[key] not in vals:

vals.append(col[key])

else:

return False

return True

This computes the n-th column group of a substitution:

def subst_column_group(rule_dict , iterations ):

alphabet = rule_dict.keys()

slen = subst_length_const(rule_dict)

rule_pow = subst_power(rule_dict ,iterations)

return PermutationGroup(

[subst_column_permutation(rule_pow , col)

for col in range(slen^iterations )],

domain=alphabet)
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A.1.3. Automorphisms and extended symmetries of constant length

substitutions

This is an implementation of Algorithm 1 in Chapter 5, computing the letter swaps associated
to the automorphism group of a bijective substitution.

def subst_letter_swaps_group(rule_dict ):

alphabet = rule_dict.keys()

slen = subst_length_const(rule_dict)

N = min([ subst_column_permutation(rule_dict ,i). order()

for i in range(slen )])

rule_pow = subst_power(rule_dict ,N)

SA = SymmetricGroup(domain=alphabet)

swap_group = SA.centralizer(

subst_column_permutation(rule_pow ,0))

for j in range(1,slen^N):

swap_group = swap_group.intersection(

SA.centralizer(

subst_column_permutation(rule_pow ,j)))

return SA.subgroup ([SA([ alphabet[tpl(k)-1]

for k in range(1,len(alphabet )+1)])

for tpl in swap_group.gens ()])

The following is an implementation of Algorithm 2 in Chapter 5, computing alphabet per-
mutations that correspond to reversing symmetries.

def perm_conj_matching(perm1 ,perm2 ):

assert perm1.conjugacy_class () == perm2.conjugacy_class (),

"Permutations have to be conjugate to be matched"

symg = perm1.parent ()

dom = list(symg.domain ())

L1 = perm1.cycle_tuples ()

L2 = perm2.cycle_tuples ()

L1.sort(key = len)

L2.sort(key = len)

equiv_dict = {L1[i][j] : L2[i][j]

for i in range(len(L1))

for j in range(len(L1[i]))}

return symg([ equiv_dict[x] if x in equiv_dict else x

for x in dom])

def perm_mirror_coset(perm1 ,perm2 ):

assert perm1.conjugacy_class () == perm2.conjugacy_class (),

"Permutations have to be conjugate to be matched"

symg = perm1.parent ()

matching_map = symg(perm_conj_matching(perm1 ,perm2 ))

coset_left = Set([symg(c)* matching_map

for c in symg.centralizer(perm1 )])

return coset_left
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def mirror_permutations(subst_rule ):

N = subst_length_const(subst_rule)

M = min([lcm(subst_column_permutation(subst_rule ,i).order(),

subst_column_permutation(subst_rule ,N-i-1). order ())

for i in range(N/2)])

rpow = subst_power(subst_rule ,M)

cols = [subst_column_permutation(rpow ,i) for i in range(N^M)]

coset_intersection = perm_mirror_coset(cols[0],cols[N^M-1])

for i in range(1,N^M/2):

coset_inter = coset_inter.intersection(

perm_mirror_coset(cols[i],cols[N^M-i-1]))

return coset_inter

A.2. Two-dimensional substitutions

Here, two-dimensional rectangular con�gurations are treated as matrices with integer values,
and thus alphabets are always sets of integers. Thus, a substitution is represented as just a list
or tuple of matrices, e.g. the symbolic half-hex representation is associated to the following
substitution:

halfhex_sym = [matrix ([[7 ,12] ,[5 ,0]]) ,

matrix ([[3 ,9] ,[1 ,4]]) ,

matrix ([[3 ,10] ,[1 ,4]]) ,

matrix ([[7 ,12] ,[5 ,3]]) ,

matrix ([[4 ,8] ,[0 ,2]]) ,

matrix ([[5 ,8] ,[0 ,2]]) ,

matrix ([[3 ,9] ,[6 ,4]]) ,

matrix ([[3 ,11] ,[6 ,4]]) ,

matrix ([[7 ,12] ,[5 ,8]]) ,

matrix ([[3 ,9] ,[9 ,4]]) ,

matrix ([[3 ,10] ,[9 ,4]]) ,

matrix ([[3 ,11] ,[9 ,4]]) ,

matrix ([[12 ,8] ,[0 ,2]])]

A.2.1. Basic substitutive operations

The following code iterates a substitution over a set of matrices.

def matrix_subst(M,dict_subst ):

M_lst = M.list()

m,n = M.dimensions ()

entries = [dict_subst[k] for k in M_lst]

return block_matrix(m,n,entries ,subdivide=False)

def iterated_matrix_subst(M,dict_subst ,n):

P = M
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for _ in range(0,n):

P = matrix_subst(P,dict_subst)

return P

A.2.2. Analysis of structure substitutions

The following procedure marks a periodic subcon�guration on a rectangular pattern, that
can come from a Toeplitz structure (see e.g. substitutions with coincidences, or the half-hex
rectangular representation):

def largest_periodic_subset(mat_tiling ,period_matrix ):

mx ,my = mat_tiling.dimensions ()

period_SNF = period_matrix.smith_form ()

smcoeff = period_SNF [0]. diagonal ()

per_candidates = [[-1 for j in range(smcoeff [1])]

for i in range(smcoeff [0])]

can_be_periodic = [[True for j in range(smcoeff [1])]

for i in range(smcoeff [0])]

for i in range(mx):

for j in range(my):

imd , jmd = congruence_class_mod_matrix_smith(

vector ([i,j]),

period_SNF)

if not can_be_periodic[imd][jmd]:

continue

if per_candidates[imd][jmd] == -1:

per_candidates[imd][jmd] = mat_tiling[i,j]

else:

if per_candidates[imd][jmd] != mat_tiling[i,j]:

can_be_periodic[imd][jmd] = False

matrix_perset = matrix ([[-1 for j in range(my)]

for i in range(mx)])

for i in range(mx):

for j in range(my):

imd , jmd = congruence_class_mod_matrix_smith(

vector ([i,j]),

period_SNF)

matrix_perset[i,j] = Integer(can_be_periodic[imd][jmd])

return matrix_perset

The next function is designed to help compute the height lattice of a substitution, by checking
whether the alphabet of a matrix substitution is partitioned along cosets of a given lattice.

def lattice_alph_part(tiling ,lat_mat ):

tx , ty = tiling.dimensions ()

dict_eqclass = {}

SNF = lat_mat.smith_form ()

for i in range(tx):
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for j in range(ty):

key = tuple(congruence_class_mod_matrix_smith(

vector ([i,j]),

SNF))

if key in dict_eqclass:

dict_eqclass[key].add(tiling[i,j])

else:

dict_eqclass[key] = set([ tiling[i,j]])

return dict_eqclass

A.3. Tilings

Tilings are represented as lists of ordered pairs (~x, n), where ~x is the position of a tile of
type n (with n an integer). Thus, in�ation rules are lists of tilings, together with an in�ation
factor. For instance, the following code constructs the representation of the half-hex in�ation
as a list of 6 tilings:

hex_vertices = [vector ([cos(k*pi/3), sin(k*pi/3)])

for k in range (6)]

rule = [[[[0,0],i]] +

[[list(hex_vertices[mod(i+j-1 ,6)] +

hex_vertices[mod(i+j,6)]),

mod(i+j+1,6)]

for j in range (1 ,4)] for i in range (6)]

inflation = 2

The following implements in�ation rules for tilings:

def inflation_rule(tiling ,rule ,inflation_factor ):

inflated_tiling = [[[ tile [0][0]* inflation_factor ,

tile [0][1]* inflation_factor],

tile [1]] for tile in tiling]

new_tiling = []

for tile in inflated_tiling:

newtiles = [[[x+y for x,y in zip(tile[0], rep_tile [0])] ,

rep_tile [1]]

for rep_tile in rule[tile [1]]]

new_tiling = new_tiling + newtiles

return new_tiling

The following function plots a tiling:

def tiling_plot(tiling ,shapes ,colors ,edgecol ):

G = plot([],axes=False)

for tile in tiling:

G = G + polygon ([[x+y for x,y in zip(tile[0], shape_point )]

164



for shape_point in shapes[tile [1]]] ,

rgbcolor=colors[tile [1]],

edgecolor=edgecol ,

thickness =1)

return G

A.4. Algebraic shift spaces

The following is an example on how to use Sage to �nd a list of k-free numbers in an algebraic
integer ring such as Z[1

2
(1 +

√
5)].

def is_ideally_kfree(field ,intring_number ,exponent ):

if intring_number == 0:

return False

if abs(intring_number.norm ()) == 1:

return True

for factor_pair in list(

field.fractional_ideal(intring_number ). factor ()):

if abs(factor_pair [0]. norm ()) == 1:

continue

if factor_pair [1] >= exponent:

return False

return True

UK = NumberField(x^2 + 5, 'u')

uu = UK('u')

N = 10

M = matrix ([[int(is_ideally_kfree(UK ,b*uu + a,2))

for a in range(-N,N+1)]

for b in range(-N,N+1)])
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